
24/07/2025 Department of CSE, ATMECE, Mysuru 1

Object Oriented Programming with JAVA

 Semester 3

 Course Code : BCS306A

 Module-1:
An Overview of Java: Object-Oriented Programming (Two Paradigms, Abstraction, The Three OOP Principles),

Using Blocks of Code, Lexical Issues (Whitespace, Identifiers, Literals, Comments, Separators, The Java

Keywords).

Data Types, Variables, and Arrays: The Primitive Types (Integers, Floating-Point Types, Characters,

Booleans), Variables, Type Conversion and Casting, Automatic Type Promotion in Expressions, Arrays, Introducing

Type Inference with Local Variables.

Operators: Arithmetic Operators, Relational Operators, Boolean Logical Operators, The Assignment

Operator, The ? Operator, Operator Precedence, Using Parentheses.

Control Statements: Java’s Selection Statements (if, The Traditional switch), Iteration Statements

(while, do-while, for, The For-Each Version of the for Loop, Local Variable Type Inference in a for Loop, Nested Loops),
Jump Statements (Using break, Using continue, return).

Department of CSE, ATMECE, Mysuru24/07/2025 2

OOPs Principles: Encapsulation, Inheritance and Polymorphism are the basic principles of any object

oriented programming language.

Encapsulation:

➢ It is a mechanism to bind the data and code working on that data into a single entity.

➢ In Java, encapsulation is achieved using classes. A class is a collection of data and code. An object is an instance of

a class.

➢ It provides the security for the data by avoiding outside manipulations.

Inheritance:

➢ It allows us to have code re-usability. It is a process by which one object can acquire the properties of another

object.

Polymorphism:

➢ It can be thought of as one interface, multiple methods. It is a feature that allows one interface to be used for a

general class of actions. The specific action is determined by the exact nature

Department of CSE, ATMECE, Mysuru24/07/2025 3

Lexical Issues: Java programs are a collection of whitespace, identifiers, literals, comments, operators, separators,

and keywords. We will discuss the significance of each of these here.

Whitespace :

➢ In Java, whitespace is a space, tab or newline. Usually, a space is used to separate tokens; tab and newline are

used for indentation.

Identifiers:

➢ Identifiers are used for class names, method names, and variable names

➢ An identifier may be any sequence of uppercase and lowercase letters, numbers, or the underscore and dollar- sign

characters. They must not begin with a number..

➢ As Java is case-sensitive, Avg is a different identifier than avg.

Literals :

➢ A constant value in Java is created by using a literal representation of it. For example, 25 (an integer literal), 4.5 (a

floating point value), ‘p’ (a character constant, “Hello World” (a string value).

Department of CSE, ATMECE, Mysuru24/07/2025 4

Comments :

➢ There are three types of comments defined by Java.

➢ Two of these are well-know viz. single-line comment (starting with //), multiline comment (enclosed within /*

and */). The third type of comment viz. documentation comment is used to produce an HTML file that documents

your program. The documentation comment begins with a /** and ends

➢ The documentation comment begins with a /** and ends with a */.

Separators :

➢ In Java, there are a few characters that are used as separators. The most commonly used separator in Java is

the semicolon which is used to terminate statements.

Department of CSE, ATMECE, Mysuru24/07/2025 5

Primitive datatypes:

 Java defines eight primitive types of data: byte, short, int, long, char, float, double, and Boolean.

 The primitive types are also commonly referred to as simple types.

 These can be put in 4 groups:

❖ Integers: This group includes byte, short, int, and long, which are for whole-valued signed
numbers.

❖ Floating-point numbers: This group includes float and double, which represent numbers with

fractional precision.

❖ Characters: This group includes char, which represents symbols in a character set, like letters and

numbers.

❖ Boolean: This group includes Boolean, which is a special type for representing true/false

values.

Department of CSE, ATMECE, Mysuru24/07/2025 6

Integers:

Java defines four integer types: byte, short, int, and long.

 The width of an integer type should not be thought of as the amount of storage it consumes,

but rather as the behavior it defines for variables and expressions of that type.

 The Java run-time environment is free to use whatever size it wants, as long as the types

behave as you declared them.

Department of CSE, ATMECE, Mysuru24/07/2025 7

Byte: :

 The smallest integer type is byte.

 This is a signed 8-bit type that has a range from –128 to 127.

 Variables of type byte are especially useful when you’re working with a stream of data from a network or file.

 Byte variables are declared by use of the byte keyword.

For example : The following declares two byte variables called b and c:

byte b, c ;

Short:

 short is a signed 16-bit type.

It has a range from –32,768 to 32,767.

It is probably the least used Java type.

 Here are some examples of short variable declarations:

Department of CSE, ATMECE, Mysuru24/07/2025 8

short s;

short t;

Int:

The most commonly used integer type is int.

 It is a signed 32-bit type that has a range from –2,147,483,648 to 2,147,483,647.

 In addition to other uses, variables of type int are commonly employed to control loops and to index arrays.

 Although you might think that using a byte or short would be more efficient than using an int in situations in which the

larger range of an int is not needed, this may not be the case.

 The reason is that when byte and short values are used in an expression, they are promoted to int when the expression is

evaluated.

Therefore, int is often the best choice when an integer is needed

Department of CSE, ATMECE, Mysuru24/07/2025 9

long:
 It is a signed 64-bit type and is useful for those occasions where an int type is not large enough to hold the desired value.

➢ The range of a long is quite large.This makes it useful when big, whole numbers are needed.

➢ For example, here is a program that computes the number of miles that light will travel in a specified

number of days:

Department of CSE, ATMECE, Mysuru24/07/2025 10

Output:

This program generates the following output:

 In 1000 days light will travel about 16070400000000 miles.

Clearly, the result could not have been held in an int variable.

Floating Point Types:
Floating-point numbers, also known as real numbers, are used when evaluating expressions that require fractional

precision. For example, calculations such as square root, or transcendental such as sine and cosine, result in a
value whose precision requires a floating-point type.

 There are two kinds of floating-point types, float and double, which represent

single and double- precision numbers, respectively.

Department of CSE, ATMECE, Mysuru24/07/2025 11

float :The type float specifies a single-precision value that uses 32 bits of storage.

For example, float can be useful when representing dollars and cents. Here are some example for float variable declarations:

 float hightemp, lowtemp;

 double: Double precision, as denoted by the double keyword, uses 64 bits to store a value.

Double precision is actually faster than single precision on some modern processors that have been optimized for

high-speed mathematical calculations.

Department of CSE, ATMECE, Mysuru24/07/2025 12

In Java, the data type used to store characters is char. char in Java is not the same as char in C or C++. In C/C++, char is 8 bits

wide. This is not the case in Java.

 Java uses Unicode to represent characters. (Unicode defines a fully international character set that can represent all of the

characters found in all human languages.)

 • In Java char is a 16-bit type. The range of a char is 0 to 65,536. There are no negative chars.

Here is a program that demonstrates char variables:

ch1 is first given the value X. Next, ch1 is incremented. This results in ch1 containing Y, the next character in the ASCII (and

Unicode) sequence.

Department of CSE, ATMECE, Mysuru24/07/2025 13

 Java has a primitive type, called boolean, for logical values.

 It can have only one of two possible values, true or false.

 This is the type returned by all relational operators, as in the case of a < b.

 boolean is also the type required by the conditional expressions that govern the

control statements such as if and for.

 Here is a program that demonstrates the boolean type:

Department of CSE, ATMECE, Mysuru24/07/2025 14

Department of CSE, ATMECE, Mysuru24/07/2025 15

First, when a boolean value is output by println(), “true” or “false” is displayed.

 Second, the value of a boolean variable is sufficient, by itself, to control the if statement.

 There is no need to write an if statement like this: if(b == true)

➢ Third, the outcome of a relational operator, such as 9 displays the value "true." Further, the extra set of parentheses

around 10>9 is necessary because the + operator has a higher precedence than the >.

Variables:

▪ Basic unit of storage in a Java program.

▪ A variable is defined by the combination of an identifier, a type, and an optional initializer.

Department of CSE, ATMECE, Mysuru24/07/2025 16

It is a quantity whose value can be changed during program execution.

 A variable name may consists of alphabets, digits

or underscore.

Declaring a Variable:

The basic form of a variable declaration is shown here:

Uuuuuuuuuuuuuuuuuuuuuuuuu

Example of variable declaration

Department of CSE, ATMECE, Mysuru24/07/2025 17

Dynamic Initialization:

Java allows variables to be initialized dynamically, using any expression valid at the time the variable is declared.

 Example program that computes the length of the hypotenuse of a right triangle given the lengths of its two opposing sides:

Department of CSE, ATMECE, Mysuru24/07/2025 18

Type Conversion and Casting:

 In java, when one type of data is assigned to another type of variable, an automatic

type conversion takes place if the following two conditions are satisfied

➢ The destination memory is larger than the source memory. They are compatible

 Casting:

A cast is an explicit type conversion. The general form is

given below.

Variable = (target-type) value;

Example: int x;

byte y;

y=(byte)x; // At this point only x is converted to byte.

Department of CSE, ATMECE, Mysuru24/07/2025 19

Types of Casting:

1. Widening Type Casting: Java automatically converts one data type to

another data type.

 2. Narrowing Type Casting: manually convert one data type into another using the

parenthesis.

class Main {

 public static void main(String[] args) {

 // create int type variable

 int num = 10;

 System.out.println("The integer value: " + num);

 // convert into double type

 double data = num;

 System.out.println("The double value: " + data);

 }

 }

Department of CSE, ATMECE, Mysuru24/07/2025 20

// Java program to demonstrate Widening TypeCasting

import java.io.*;

class GFG {

public static void main(String[] args)

{

int i = 10;

// Wideing TypeCasting (Automatic Casting)

// from int to long

long l = i;

// Wideing TypeCasting (Automatic Casting)

// from int to double

double d = i;

System.out.println("Integer: " + i);

System.out.println("Long: " + l);

System.out.println("Double: " + d);

}}

Output:

Integer: 10

Long: 10

Double: 10.0

Department of CSE, ATMECE, Mysuru24/07/2025 21

Narrowing Type Casting:

class Main {

 public static void main(String[] args) {

 // create double type variable

 double num = 10.99;

 System.out.println("The double value: " + num);

 // convert into int type

 int data = (int)num;

 System.out.println("The integer value: " + data);

 }

 }

Department of CSE, ATMECE, Mysuru24/07/2025 22

Java Automatic Type Conversions:
 When these two conditions are met, a widening conversion

takes place.

 For example, the int type is always large enough to hold all valid byte values, so no explicit cast

statement is required.

 For widening conversions, the numeric types, including integer and floating-point types, are compatible

with each other.

 However, there are no automatic conversions from the

numeric types to char or boolean.

 Also, char and boolean are not compatible with each other.

 As mentioned earlier, Java also performs an automatic type conversion when storing a literal integer

constant into variables of type byte, short, long, or char.

Department of CSE, ATMECE, Mysuru24/07/2025 23

Automatic Type Promotion in Expressions:

In an expression, the precision required of an intermediate value will sometimes exceed the

range of either operand.

 For example,

The result of the intermediate term a * b easily exceeds the range of either of its byte operands.

 To handle this kind of problem, Java automatically promotes each byte, short,

or char operand to int when evaluating an expression.

 This means that the subexpression a*b is performed using integers—not bytes.

Thus, 2,000, the result of the intermediate expression, 50 * 40, is legal even though a and b

are both specified as type byte.

Department of CSE, ATMECE, Mysuru24/07/2025 24

Array:
 An array is a group of like-typed variables that are referred to by a common name.

 One-Dimensional Arrays:A one-dimensional array is, essentially, a list of like-typed variables. To create an

array, you first must create an array variable of the desired type.

 The general form of a one-dimensional array declaration is:

To allocate memory for arrays: new is a special operator that allocates memory.

month_days will refer to an array of 12 integers

Department of CSE, ATMECE, Mysuru24/07/2025 25

Multidimensional Arrays:

➢ Are implemented as arrays of arrays.

 //This allocates a 4 by 5 array and assigns it to twoD.

Java Is a Strongly Typed Language:
It is important to state at the outset that Java is a strongly typed language.

 Every variable has a type, every expression has a type, and every type is strictly

defined.

 All assignments, whether explicit or via parameter passing in method calls, are checked for

type compatibility.

 There are no automatic coercions or conversions of conflicting types as in some languages.

 The Java compiler checks all expressions and parameters to ensure that the types are

compatible. Any type mismatches are errors that must be corrected before the compiler will

finish compiling the class.

Department of CSE, ATMECE, Mysuru24/07/2025 26

Operators:

Java provides a rich operator environment. Most of its operators can be divided into the following four groups:

 – arithmetic,

 – bitwise,

 – relational, and

 – logical.

 Java also defines some additional operators that handle certain special situations.

Arithmetic Operators:

Arithmetic operators are used in mathematical expressions in the same way that they are used in algebra.

Department of CSE, ATMECE, Mysuru24/07/2025 27

The operands of the arithmetic operators must be of a numeric type. You cannot use them on boolean types, but you

can use them on char types, since the char type in Java is, essentially, a subset of int.

Department of CSE, ATMECE, Mysuru24/07/2025 28

Basic Arithmetic Operators:

Addition,

Subtraction,

 Multiplication,

and Division

Combining multiple statements:

 class BasicMath {

public static void main(String[] args) {

int a = 1 + 1, b = a * 3, c = b / 4, d = c - a, e = -d;

System.out.println("a=" + a + "\nb=" + b + "\nc=" + c + "\nd=" + d + "\ne=" + e);

}

}

Department of CSE, ATMECE, Mysuru24/07/2025 29

Output:

Department of CSE, ATMECE, Mysuru24/07/2025 30

Department of CSE, ATMECE, Mysuru24/07/2025 31

 Modulus Operator: % this returns the remainder of a division operation.

 Arithmetic Compound Assignment Operators (+=)

 Increment is ++

 Decrement is –-

 Bitwise Operators

Department of CSE, ATMECE, Mysuru24/07/2025 32

Bitwise LogicalOperators:

 Bitwise NOT (~)

 Bitwise AND (&)

 Bitwise OR(|)

 Bitwise XOR(^)

 Left Shift(<<)

 Right Shift(>>)

Relational Operators:It deterimine the relationship that

one operand has to the other.

NOTE: Outcome of these operations is a boolean

value.

Department of CSE, ATMECE, Mysuru24/07/2025 33

Boolean Logical Operators : operate only on boolean operands:.

Department of CSE, ATMECE, Mysuru24/07/2025 34

Department of CSE, ATMECE, Mysuru24/07/2025 35

Output:

The Assignment Operator:

Assignment operator is the single equal sign ”=“.

 This fragment sets the variables x, y, and z to 100 using a single

statement.

The value of z = 100 is 100, which is then assigned to y,

which in turn is assigned to x.

Department of CSE, ATMECE, Mysuru24/07/2025 36

The ? Operator:

example:

expression1 ? expression2 : expression3

If expression1 is true, then expression2 is evaluated; otherwise, expression3 is evaluated.

Department of CSE, ATMECE, Mysuru24/07/2025 37

The output generated by the program is shown here:

Operator Precedence:

Department of CSE, ATMECE, Mysuru24/07/2025 38

Using Parentheses:

 Operators in the same row are equal in precedence.

 Examples of uses of Parentheses

 a>>(b+3) (a>>b)+3

In the following statements , which of the following

expressions is easier to read?

Parentheses (redundant or not) do not degrade the performance of

your program. Therefore, adding parentheses to reduce

ambiguity does not negatively affect your program.

Department of CSE, ATMECE, Mysuru24/07/2025 39

Control statements:

➢ Selection statements: if, if-else, if-else-if, switch

➢ Iteration statements :for, while, do-while

➢ Jump statements :break, continue, return.

If:

syntax:

if (condition) {

}

Example:
int a = 10, b = 20;

if (a < b) {

 System.out.println("a is smaller than b")

;}

Department of CSE, ATMECE, Mysuru24/07/2025 40

if-else:
Syntax:

if (condition)

 {

}

else {

}

Example:

int a = 10, b = 20;

if (a < b)

{

 System.out.println("a is smaller");

}

 else

{

 System.out.println("b is smaller");

}

Department of CSE, ATMECE, Mysuru24/07/2025 41

Nested if:
We can place one if inside another. This is called nested if.

Example:
if (i == 10)

 {

 if (j < 20) {

 System.out.println("j is less than 20");

 }

 else

 {

System.out.println("j is greater or equal to 20");

 }

}

if-else-if Ladder:
Used when we have multiple conditions to test.

Syntax:if (condition1) {

 // code

}

Department of CSE, ATMECE, Mysuru24/07/2025 42

else if (condition2)

 { // code

}

 else if (condition3)

 { // code

}

else {

 // default block}

Example:
int marks = 85;

if (marks >= 90)

{

 System.out.println("Grade A");

}

 else if (marks >= 75)

 {

 System.out.println("Grade B");

}

 else if (marks >= 50)

 {

 System.out.println("Grade C");

}

 else

 {

 System.out.println("Fail");

Department of CSE, ATMECE, Mysuru24/07/2025 43

switch Statement:The switch statement is used when we have many choices

based on one variable.

Syntax:
switch (expression)

{ case value1:

 // statements

 break;

case value2:

 // statements

 break; ...

 default: // statements

Example:int day = 3;

switch(day)

 {

case 1:

 System.out.println("Monday");

break;

 case 2:

 System.out.println("Tuesday");

 break;
case 3:

 System.out.println("Wednesday");

 break;

 default:

 System.out.println("Invalid day");}

.

Department of CSE, ATMECE, Mysuru24/07/2025 44

2. Iteration Statements (Loops):Loops are used to repeat a block of code multiple

times until a condition becomes false. while Loop:Executes the block while the

condition is true.

Syntax:
while (condition) {

 // body of loop}

Example:

int i = 1;

while (i <= 5)

 {

 System.out.println(i);

 i++;

for Loop:

Used when the number of iterations is known.

Syntax:
for (initialization; condition; update) {

 // body of loop}

Department of CSE, ATMECE, Mysuru24/07/2025 45

Example:

for (int i = 1; i <= 5; i++)

{

 System.out.println(i);

}

do-while Loop:

Executes the loop at least once, even if the condition is false.

Syntax:
do {

 // body of loop

}

 while (condition);

Example:

int i = 1;

do {

 System.out.println(i);

 i++;

}

 while (i <= 5);

Department of CSE, ATMECE, Mysuru24/07/2025 46

for-Each Loop :The for-each loop is a special type of for loop that is used to go

through (iterate) all elements of an array or a collection easily — from start to end —

without using an index.

Syntax:
for (type variable : arrayName) {

 // use variable here}

type → type of elements in the array

variable → name of a temporary variable that holds each element

arrayName → the array or collection you want to loop through.

Example:
class ForEachExample {

 public static void main(String[] args) {

 int nums[] = {1, 2, 3, 4, 5};

 for (int x : nums) {

 System.out.println("Value: " + x);

 } }

}

Department of CSE, ATMECE, Mysuru24/07/2025 47

Local Variable Type Inference in a for Loop:

Example (Normal for loop without inference):for (int i = 0; i < 5; i++) {

 System.out.println(i);

}

use type inference in nested loops:
public class NestedVar {

 public static void main(String[] args) {

 for (var i = 1; i <= 3; i++) {

 // outer loop for (var j = 1; j <= 2; j++) {

 // inner loop System.out.println("i = " i ", j = " j);

 }

 }

 }

}

Department of CSE, ATMECE, Mysuru24/07/2025 48

3.Jump Statements:

Break Statement: To stop a loop immediately before its condition becomes false.

Example : Break in a for loop

class BreakExample {

 public static void main(String[] args)

 {

 for (int i = 0; i < 100; i++) {

 if (i == 10) break; // loop stops when i = 10

 System.out.println("i: " + i);

 }

 System.out.println("Loop complete.");

 }

}

Department of CSE, ATMECE, Mysuru24/07/2025 49

Continue:
 To skip the current iteration of the loop and go to the next one.

Example:

class ContinueExample {

public static void main(String[] args) {

for (int i = 0; i < 10; i++) {

 if (i % 2 == 0) continue; //

 System.out.println(i); } }

Return Statement:

To exit from a method and go back to where it was called.

Example:
class ReturnExample {

 public static void main(String[] args) {

 System.out.println("Before return.");

 if (true) return; // exit main()

 System.out.println("This will not execute.");

 }

}

Department of CSE, ATMECE, Mysuru24/07/2025 50

Output:Before return.

 Explanation: When return executes, the program ends immediately because

main() returns to the JV

24/07/2025 Department of CSE, ATMECE, Mysuru 51

Thank you

24/07/2025 Department of CSE, ATMECE, Mysuru 1

Introducing Classes: Class Fundamentals, Declaring Objects, Assigning Object Reference Variables, Introducing

 Methods, Constructors, The this Keyword, Garbage Collection.

Methods and Classes: Overloading Methods, Objects as Parameters, Argument Passing, Returning Objects,

 Recursion, Access Control, Understanding static, Introducing final, Introducing Nested and Inner Classes.

Module-2

Department of CSE, ATMECE, Mysuru24/07/2025 2

Introducing classes:

Class:class is a template or blueprint which can be used to create an object

➢ Object is an instance of a class.

Example:class Student {

 String name;

int age;

void study()

 {

 System.out.println(name + " is studying.");

 }}

class Main {

 public static void main(String[] args) {

 Student s1 = new Student();

 // Object 1

s1.name = "Divya";

 s1.age = 20;

Department of CSE, ATMECE, Mysuru24/07/2025 3

s1.study();

 Student s2 = new Student(); // Object 2

 s2.name = "Rahul";

s2.age = 21; s2.study(); }}

 Output:
Student → class

s1, s2 → objects

Declaring objects:

Declaring Objects :
➢ A class is just a blueprint; to use it, we must create an object.

➢ An object is a real instance of a class created in memory.

syntax:

ClassName objectName;

Example: Box b1;

Department of CSE, ATMECE, Mysuru24/07/2025 4

➢ The above line declares an object reference but does not create the object (it

contains null)

➢ Memory is allocated for the object using the new keyword:b1 = new Box()

 We can also declare and create the object in a single statement

 Box b1 = new Box();

➢ The new keyword calls the constructor and allocates memory dynamically at runtime.

. If memory allocation fails, a runtime exception will occur.

Assigning object variables::

➢ when one object reference variable is assigned to another, no new object is created.

➢ . The second reference variable will point to the same memory location as the first

one.

 Box b1 = new Box();

 Box b2 = b1;
➢ Any changes made using one reference will reflect in the other because both refer to the same object.

➢ If one reference is set to null, the other still points to the original object.b1 = null; // b2 still points to the

object

➢ This process copies the reference, not the object itself same object

Department of CSE, ATMECE, Mysuru24/07/2025 5

➢ It is useful for sharing the same object between different parts of a program.

➢ Care must be taken because modifying data through one reference affects all references pointing to

the

Example:
Box b1 = new Box();

Box b2 = b1; // b2 refers to the same object as b1Both b1 and b2 now point to the

same object in memory.

➢ Any update using b1 or b2 changes the same object.

Introducing methods:

➢ method is a block of code that performs a specific task.

 General syntax:
return_type methodName(parameter_list)

 {

 // method body

 return value;

}

Department of CSE, ATMECE, Mysuru24/07/2025 6

return_type: Data type of the value returned by the method (use void if nothing is returned)..

methodName: Any valid name that describes the method’s task.

 parameter_list: Input values passed to the method (can be empty).

return: Keyword used to return a value to the calling method

Methods can be:
Without return type: Just perform a task.

 With return type: Perform a task and return a result.

 With parameters: Take input and process it.

Example:

double volume() {

 return w * h * d;

}---

Benefits of Using Methods:Reduces code duplication

Improves readability and structure Easy to test and debug

Promotes modular programming

Department of CSE, ATMECE, Mysuru24/07/2025 7

Constructors:

➢ A constructor is a special method that is called automatically when an object is created.

➢ Its name must be same as the class name.

➢ It has no return type, not even void..

➢ Constructors are used to initialize objects.

 Types of Constructors:

 1. Default Constructor : No arguments, sets default values.

 Box() { w = h = d = 5;}

2. Parameterized Constructor : Accepts arguments to initialize variables

 Box(double wd , double ht , double dp) {

 w = wd; h = ht; d = dp;}---

➢ Important Points about Constructors:If no constructor is defined, Java provides a default

constructor automatically.If you define any constructor, the default one is not provided.

➢ Constructors are called when an object is created using new . They help set up initial values

and make objects ready for use.

Box b1 = new Box(); // Calls default constructor

Box b2 = new Box(2, 4, 3); // Calls parameterized constructor

Department of CSE, ATMECE, Mysuru24/07/2025 8

This keyword:

➢ this is a reference variable in Java that refers to the current object.

➢ Used when a method or constructor needs to refer to the object that invoked it.

 Syntax: this. variableName;

Uses of this:
➢ To distinguish instance variables from local variables with the same name.

➢ To call other constructors in the same class.

➢ To pass the current object as a parameter to another method.

➢ To return the current object from a method.

Instance Variable Hiding: Occurs when a local variable or parameter name

is the same as an instance variable name.

➢ In such cases, the local variable hides the instance variable within that method

➢ Its means the local variable is uses instead of instance.

➢ Use

 this. variableName

Department of CSE, ATMECE, Mysuru24/07/2025 9

Example:
Class Box

{

Int width;

Box(int width)

{

this.width=width;

}

}

Garbage Collection in Java:

➢ In C/C++, memory must be manually released using delete.

➢ In Java, Garbage Collection (GC) is automatic.

➢ GC reclaims memory from objects that are no longer referenced.

➢ It helps prevent memory leaks and improve application performance.

➢ GC runs periodically in the background of the Java Virtual Machine (JVM).

Department of CSE, ATMECE, Mysuru24/07/2025 10

The finalize() Method:

➢ Called by the garbage collector before reclaiming an object’s memory.

➢ Used to release resources (e.g., closing file handles, database connections).

Syntax: protected void finalize() { // cleanup code

}

Important Notes:It is not guaranteed to run immediately or at all. Should not be relied

upon for critical resource management.

Department of CSE, ATMECE, Mysuru24/07/2025 11

Methods and classes

Overloading methods:when more than one method has the same name but different parameters, it is

called method overloading.

Rules:

➢ Number of arguments must be different.

➢ Return type alone is not enough for overloading

Example:class Overload {

 void test()

{

 System.out.println("No parameters");

 }

 void test(int a)

{

 System.out.println("Integer: " + a);

 }

 void test(int a, int b)

 {

 System.out.println("Two integers: " + a + ", " + b);

 }

Department of CSE, ATMECE, Mysuru24/07/2025 12

void test(double a)

 {

 System.out.println("Double: " + a);

 }

}

Explanation: Same method name → test(), but parameters differ.

Overload ob = new Overload();

ob.test();

ob.test(10);

ob.test(10, 20);

ob.test(12.5);

Constructor overloading: A class can have multiple constructors with different parameter lists.

Example:class OverloadConstruct {

 OverloadConstruct()

 {

 System.out.println("No arguments");

 }

 OverloadConstruct(int x)

{

Department of CSE, ATMECE, Mysuru24/07/2025 13

System.out.println("One argument: " + x);

}

 OverloadConstruct(int x, int y)

{

 System.out.println("Two arguments: " + x + ", " + y);

}

OverloadConstruct obj1 = new OverloadConstruct();

OverloadConstruct obj2 = new OverloadConstruct(10);

OverloadConstruct obj3 = new OverloadConstruct(5, 12);

Object as a parameters:

Objects can also be passed as arguments to methods.

Example:

class Test {

 int a, b;

 Test(int i, int j)

 {

Department of CSE, ATMECE, Mysuru24/07/2025 14

a = i;

 b = j;

}

 boolean equals(Test ob) {

 return (ob.a == a && ob.b == b);

 }

}

In main():

Test t1 = new Test(10, 20);

Test t2 = new Test(10, 20);

System.out.println(t1.equals(t2));

Using One Object to Initialize Another:

✓ You can use an existing object to initialize a new one.

Example:
class Box {

double h, w, d;

 Box(double ht, double wd, double dp)

Department of CSE, ATMECE, Mysuru24/07/2025 15

{

 h = ht; w = wd; d = dp;

}

 Box(Box bx)

 {

 h = bx.; w = bx; d = bx;

 }

}

main():

Box b1 = new Box(2, 3, 4);

Box b2 = new Box(b1);

Method Overloading: Same method name, different parameters

Constructor Overloading: Same constructor name, different arguments.

Objects as Parameters: Objects can be passed to and compared in

methods.

Object Initialization: One object can copy another using a constructor.

Department of CSE, ATMECE, Mysuru24/07/2025 16

Argument Passing:
Two Ways to Pass Arguments:

Call by Value:

➢ Copies the value of an argument into the method parameter.Changes made inside

the method don’t affect the original variable.

Call by Reference:

➢ Passes a reference to the actual object.Changes made inside the method affect the

original object.

Example:class Test

 {

 int a, b;

 Test(int i, int j)

 {

 a = i;

 b = j;

}

 void meth(Test ob)

 {

Department of CSE, ATMECE, Mysuru24/07/2025 17

ob. *= 2;

 ob./= 2;

 }

 }

class CallByRef

 {

 public static void main(String args[])

 {

Test ob = new Test(15, 20);

 System.out.println("before call: " + ob.a + " " + ob.b);

ob.meth(ob);

System.out.println("after call: " + ob.a + " " + ob.b);

 }

 }

Department of CSE, ATMECE, Mysuru24/07/2025 18

Returning objects:

➢ In Java, a method can return an object of user defined class.

Example:

 class Test {

int a;

 Test(int i)

 {

 a = i;

 }

 Test incrByTen()

 {

Test temp = new Test(a+10);

 return temp;

}

}

 class RetOb {

 public static void main(String args[])

test ob1 = new Test(2);

 Test ob2;

Department of CSE, ATMECE, Mysuru24/07/2025 19

ob2 = ob1.incrByTen();

 System.out.println("ob1.a: " + ob1.a);

 System.out.println("ob2.a: " ob2.a);

 ob2 = ob2.incrByTen();

 System.out.println("ob2.a after second increase: " + ob2.a);

 output:ob1.a: 2

 ob2.a: 12

 ob2.a after second increase: 22

Recursion: Recursion is when a method calls itself directly or indirectly.

Important Rules:
• Must have a base condition (non-recursive terminating condition).

• Each recursive call must bring the problem closer to the solution (smaller sub-

problem).
Example:
class Factorial {

 int fact(int n)

{

 if (n == 0)

Department of CSE, ATMECE, Mysuru24/07/2025 20

return 1; // Base case

return n * fact(n - 1); // Recursive call

 }

}

class FactDemo {

 public static void main(String args[]) {

 Factorial f = new Factorial();

 System.out.println("Factorial of 3 is " + f.fact(3));

 System.out.println("Factorial of 8 is " + f.fact(8));

 }

}

Department of CSE, ATMECE, Mysuru24/07/2025 21

Access Control: Access control in Java helps in encapsulation — restricting access

to data.

Access Specifiers:

Specifier Scope

Public: Accessible every where

Private : Accessible only within the same class

Protected: Accessible within same package and subclasses

default (no keyword):Accessible only within the same package

Example:

class Test {

 int a; // default

 public int b; // public

private int c; // private

 void setc(int i)

{

 c = i;

 }

24/07/2025 Department of CSE, ATMECE, Mysuru 22

int getc()

 {

 return c;

 }

}

class AccessTest {

 public static void main(String args)

.
{

 Test ob = new Test();

 ob.a = 10;

 ob.b = 20;

 ob.c = 30; //

Error:

 ob.setc(30);

 System.out.println("a, b, and c: " + ob.a + " " + ob.b + " "

+ ob.getc());

 }

}

24/07/2025 Department of CSE, ATMECE, Mysuru 23

Output:a, b, and c: 10 20 30

Explanation:c is private, so can’t be accessed directly.Must use setc() and getc()

methods to modify or read

Understanding static:

When a member is declared static, it can be accessed before any objects of its class

are created, and without reference to any object

Methods declared as static have several restrictions:

➢ They can only call other static methods.

➢ They must only access static data.

➢ They cannot refer to this or super in any way.

Department of CSE, ATMECE, Mysuru24/07/2025 24

class UseStatic {

static int a = 3;

 static int b;

 static void meth(int x) //static method

{

 System.out.println("x = " + x);

System.out.println("a = " + a);

 System.out.println("b = " + b);

 }

 static //static block {

 System.out.println("Static block initialized.");

 b = a * 4;

 }

 public static void main(String args[])

 {

meth(42);

}

}

 Output: Static block initialized. x = ? a = ? b = ?

24/07/2025 Department of CSE, ATMECE, Mysuru 25

➢ Outside of the class in which they are defined, static methods and variables can be

used independently of any object.

➢ To do so, you need only specify the name of their class followed by the dot

operator. The general form is –

 classname.method();

Example:

class StaticDemo {

static int a = 42;

 static int b = 99;

 static void callme()

 {

 System.out.println("Inside static method, a = " + a);

 }

 }

 class StaticByName {

 public static void main(String args[])

 {

StaticDemo.callme();

 System.out.println("Inside main, b = " + StaticDemo.b);

24/07/2025 Department of CSE, ATMECE, Mysuru 26

}

 }

Output:

Inside static method, a = 42

Inside main, b = 99

24/07/2025 Department of CSE, ATMECE, Mysuru 27

Thank you

Department of CSE, ATMECE, Mysuru24/07/2025 1

Module -3
I

Inheritance: Inheritance Basics, Using super, Creating a Multilevel Hierarchy, When Constructors Are Executed,

Method Overriding, Dynamic Method Dispatch, Using Abstract Classes, Using final with Inheritance, Local Variable

Type Inference and Inheritance, The Object Class.

Interfaces: Interfaces, Default Interface Methods, Use static Methods in an Interface, Private Interface methods

Department of CSE, ATMECE, Mysuru24/07/2025 2

Inheritance:

 Inheritance is one of the building blocks of object oriented programming

languages. It allows creation of classes with hierarchical relationship among them.

 Using inheritance, one can create a general class that defines traits common to a

set of related items. This class can then be inherited by other, more specific

classes, each adding those things that are unique to it.

 A class that is inherited is called a superclass. The class that does the inheriting

is called a subclass.

In Java, inheritance is achieved using the keyword “extends”.

class A //super class

{

//members of class A

}

class B extends A //sub class

{

//members of B

24/07/2025 Department of CSE, ATMECE, Mysuru 3

Example:
class A {

int i, j;

void showij()

{

System.out.println("i and j: " + i + " " + j);

}

}

class B extends A {

int k;

void showk()

{

System.out.println("k: " + k);

}

void sum()

{

System.out.println("i+j+k: " + (i+j+k));

}

}

24/07/2025 Department of CSE, ATMECE, Mysuru 4

class SimpleInheritance

{

public static void main(String args[])

{

A superOb = new A();

B subOb = new B();

superOb.i = 10;

superOb.j = 20;

System.out.println("Contents of superOb: ");

superOb.showij();

subOb.i = 7;

subOb.j = 8;

subOb.k = 9;

System.out.println("Contents of subOb: ");

subOb.showij();

subOb.showk();

System.out.println("Sum of i, j and k in subOb:");

subOb.sum();

}

}

24/07/2025 Department of CSE, ATMECE, Mysuru 5

Type of Inheritance :

Single Inheritance: If a class is inherited from one parent class, then it is known as

single inheritance. This will be of the form as shown below

Super

class

Sub

class

Department of CSE, ATMECE, Mysuru24/07/2025 6

Multilevel Inheritance: If several classes are inherited one after the other in a

hierarchical manner, it is known as multilevel inheritance, as shown below

a

b

c

d

24/07/2025 Department of CSE, ATMECE, Mysuru 7

A Superclass variable can reference a subclass object:

class Base {

void dispB()

{

System.out.println("Super class ");

}

}

class Derived extends Base

{

void dispD()

{

System.out.println("Sub class ");

}

}

class Demo {

public static void main(String args[])

{

Base b = new Base();

24/07/2025 Department of CSE, ATMECE, Mysuru 8

Derived d=new Derived();

b=d;

b.dispB(); //superclass reference is holding subclass object //

b.dispD();

}

}

Note:
 type of reference variable decides the members that can be accessed, but not the

type of the actual object.

Using super:

the keyword super can be used in following situations:

To invoke superclass constructor within the subclass constructor

To access superclass member (variable or method) when there is a duplicate

member name in the subclass

24/07/2025 Department of CSE, ATMECE, Mysuru 9

To invoke superclass constructor within the subclass constructor Sometimes:

 we may need to initialize the members of super class while creating subclass object.

 Writing such a code in subclass constructor may lead to redundancy in code.

example :

class Box

{

double w, h, b;

Box(double wd, double ht, double br)

{

w=wd; h=ht; b=br;

}

}

class ColourBox extends Box

{

int colour; ColourBox(double wd, double ht, double br, int c)

{

w=wd; h=ht; b=br; colour=c; //code redundacy

}

}

Department of CSE, ATMECE, Mysuru24/07/2025 10

 if the data members of super class are private, then we can’t even write such a code in

subclass constructor.

 If we use super() to call superclass constructor, then it must be the first statement executed

inside a subclass constructor.

class Box {

double w, h, b;

Box(double wd, double ht, double br)

{

w=wd; h=ht; b=br;

}

}

class ColourBox extends Box

{

int colour;

ColourBox(double wd, double ht, double br, int c)

{

super(wd, ht, br);

colour=c;

24/07/2025 Department of CSE, ATMECE, Mysuru 11

}

}

//calls superclass constructor

class Demo

{

public static void main(String args[])

{

ColourBox b=new ColourBox(2,3,4, 5);

}

}

Creating Multilevel Hierarchy Java supports multi-level inheritance. A sub class can access all the

non-private members of all of its super classes.

Example:

class A {

int a;

{

24/07/2025 Department of CSE, ATMECE, Mysuru 12

}

class B extends A

{

int b;

}

class C extends B

{

Int c;

C(int x, int y, int z)

{

a=x; b=y; c=z;

}

void disp()

{

System.out.println("a= "+a+ " b= "+b+" c="+c);

}

}

}

}

24/07/2025 Department of CSE, ATMECE, Mysuru 13

class MultiLevel {

public static void main(String args[])

{

C ob=new C(2,3,4);

ob.disp();

}

}

When Constructors are called:

 When class hierarchy is created (multilevel inheritance), the constructors are called in the order of

their derivation.

 That is, the top most super class constructor is called first, and then its immediate sub class and

so on.

 If super is not used in the sub class constructors, then the default constructor of super class will be

called

24/07/2025 Department of CSE, ATMECE, Mysuru 14

class A

{

A()

{

}

}

System.out.println("A's constructor.");

class B extends A { B() {

}

System.out.println("B's constructor.");

}

class C extends B {

C()

{

}

System.out.println("C's constructor.");

}

24/07/2025 Department of CSE, ATMECE, Mysuru 15

class CallingCons {

public static void main(String args[])

{

}

}

C c = new C();

Output: A's constructor B's constructor C's constructor

Method Overriding:

 In a class hierarchy, when a method in a subclass has the same name and type signature as

a method in its superclass, then the method in the subclass is said to override the method in

the superclass.

 When an overridden method is called from within a subclass, it will always refer to the

version of that method defined by the subclass.

24/07/2025 Department of CSE, ATMECE, Mysuru 16

class A

{

int i, j;

A(int a, int b)

{

i = a; j = b;

}

void show()

{ //suppressed

System.out.println("i and j: " + i + " " + j);

}

}

class B extends A

{

int k;

B(int a, int b, int c)

{

super(a, b);

k = c;

}

Department of CSE, ATMECE, Mysuru24/07/2025 17

void show()

{ //Overridden method

System.out.println("k: " + k);

}

}

class Override

{

public static void main(String args[])

{

B subOb = new B(1, 2, 3);

subOb.show();

}

}

Output: k: 3

24/07/2025 Department of CSE, ATMECE, Mysuru 18

Dynamic Method Dispatch:

 Dynamic method dispatch is the mechanism by which a call to an overridden

method is resolved at run time, rather than compile time.

 java implements run-time polymorphism using dynamic method dispatch. We know

that, a superclass reference variable can refer to subclass object.

 When an overridden method is called through a superclass reference, Java

determines which version of that method to execute based upon the type of the

object being referred to at the time the call occurs.

Example:
class A

{

void callme()

{

System.out.println("Inside A");

}

}

class B extends A

{

24/07/2025 Department of CSE, ATMECE, Mysuru 19

void callme()

{

System.out.println("Inside B");

}

}

class C extends A

{

void callme()

{

System.out.println("Inside C");

}

}

class Dispatch {

public static void main(String args[])

{

A a = new A();

B b = new B();

C c = new C();

A r; r = a; //Superclass reference

24/07/2025 Department of CSE, ATMECE, Mysuru 20

//holding subclass

object r.callme();

r = b;

r.callme();

r = c;

r.callme();

}

}

Using Abstract class:

 A method which does not contain any definition in the superclass is termed as abstract method.

Such a method declaration should be preceded by the keyword abstract.

 A class containing at least one abstract method is called as abstract class.

 Abstract classes can not be instantiated, that is one cannot create an object of abstract class.

Whereas, a reference can be created for an abstract class.

Department of CSE, ATMECE, Mysuru24/07/2025 21

abstract class A

{

abstract void callme();

void callmetoo()

{

System.out.println("This is a concrete method.");

}

}

class B extends A

{

void callme() //overriding abstract method

{

System.out.println("B's implementation of callme.");

}

}

class AbstractDemo {

public static void main(String args[])

{

B b = new B(); //subclass object

24/07/2025 Department of CSE, ATMECE, Mysuru 22

b.callme(); //calling abstract method

b.callmetoo(); //calling concrete method } }

Using final:

The keyword final can be used in three situations in Java:

To create the equivalent of a named constant.

To prevent method overriding

To prevent Inheritance

To create the equivalent of a named constant:

A variable can be declared as final. Doing so prevents its contents from being modified. This

means that you must initialize a final variable when it is declared.

final int FILE_NEW = 1;

final int FILE_OPEN = 2;

final int FILE_SAVE = 3;

final int FILE_SAVEAS =

4; final int FILE_QUIT = 5;

Department of CSE, ATMECE, Mysuru24/07/2025 23

To prevent method overriding:

Sometimes, we do not want a superclass method to be overridden in the subclass.

Instead, the same superclass method definition has to be used by every subclass. In

such situation, we can prefix a method with the keyword final

class A {

final void meth()

{

}

System.out.println("This is a final method.");

}

class B extends A

{

void meth() // ERROR! Can't override.

{

}

} System.out.println("Illegal!")

24/07/2025 Department of CSE, ATMECE, Mysuru 24

To prevent Inheritance:

 the subclass is treated as a specialized class and superclass is most generalized

class.

 During multi-level inheritance, the bottom most class will be with all the features of

real-time and hence it should not be inherited further. In such situations,

we can prevent a particular class from inheriting further, using the keyword final.

final class A

{

// ...

}

class B extends A {

} // ..

Note:
Declaring a class as final implicitly declares all of its methods as final, too.

It is illegal to declare a class as both abstract and final since an abstract class is incomplete by itself

and relies upon its subclasses to provide complete implementations

	Slide 1:
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51:
	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27:

