

Powered by TCPDF (www.tcpdf.org)

http://www.tcpdf.org

16

Computable function

Computable functions are the basic objects of study in computability theory. Computable

functions are the formalized analogue of the intuitive notion of algorithm. They are used to

discuss computability without referring to any concrete model of computation such as Turing

machines or register machines.

According to the Church–Turing thesis, computable functions are exactly the functions that can

be calculated using a mechanical calculation device given unlimited amounts of time and storage

space.

Each computable function f takes a fixed, finite number of natural numbers as arguments.A

function which is defined for all possible arguments is called total. If a computable function is

total, it is called a total computable function or total recursive function.

The basic characteristic of a computable function is that there must be a finite procedure (an

algorithm) telling how to compute the function. The models of computation listed above give

different interpretations of what a procedure is and how it is used, but these interpretations share

many properties.

Recursive and Recursively Enumerable Languages

Remember that there are three possible outcomes of executing a Turing machine over a given

input. The Turing machine may

• Halt and accept the input;

• Halt and reject the input; or

• Never halt.

A language is recursive if there exists a Turing machine that accepts every string of the language

and rejects every string (over the same alphabet) that is not in the language.

Note that, if a language L is recursive, then its complement -L must also be recursive. (Why?)

A language is recursively enumerable if there exists a Turing machine that accepts every string

of the language, and does not accept strings that are not in the language. (Strings that are not in

the language may be rejected or may cause the

Turing machine to go into an infinite loop.)

Clearly, every recursive language is also

recursively enumerable. It is not obvious

whether every recursively enumerable language

is also recursive.

17

Closure Properties of Recursive Languages

• Union: If L1 and If L2 are two recursive languages, their union L1∪L2 will also be

recursive because if TM halts for L1 and halts for L2, it will also halt for L1∪L2.

• Concatenation: If L1 and If L2 are two recursive languages, their concatenation L1.L2

will also be recursive. For Example:

• L1= {a
n
b

n
c

n
|n>=0}

• L2= {d
m

e
m

f
m

|m>=0}

• L3= L1.L2

• = {a
n
b

n
c

n
d

m
 e

m
f
m

|m>=0 and n>=0} is also recursive.

L1 says n no. of a’s followed by n no. of b’s followed by n no. of c’s. L2 says m no. of

d’s followed by m no. of e’s followed by m no. of f’s. Their concatenation first matches

no. of a’s, b’s and c’s and then matches no. of d’s, e’s and f’s. So it can be decided by

TM.

• Kleene Closure: If L1is recursive, its kleene closure L1* will also be recursive. For

Example:

 L1= {a
n
b

n
c

n
|n>=0}

 L1*= { a
n
b

n
c

n
||n>=0}* is also recursive.

• Intersection and complement: If L1 and If L2 are two recursive languages, their

intersection L1 ∩ L2 will also be recursive. For Example:

• L1= {a
n
b

n
c

n
dm|n>=0 and m>=0}

• L2= {a
n
b

n
c

n
d

n
|n>=0 and m>=0}

• L3=L1 ∩ L2

• = { a
n
b

n
c

n
d

n
 |n>=0} will be recursive.

L1 says n no. of a’s followed by n no. of b’s followed by n no. of c’s and then any no. of

d’s. L2 says any no. of a’s followed by n no. of b’s followed by n no. of c’s followed by n

no. of d’s. Their intersection says n no. of a’s followed by n no. of b’s followed by n no.

of c’s followed by n no. of d’s. So it can be decided by turing machine, hence recursive.

Similarly, complementof recursive language L1 which is ∑*-L1, will also be recursive.

RE - Recursive Enumerable REC- Recursive Language

Note: As opposed to REC languages, RE languages are not closed under complementon which

means complement of RE language need not be RE.

18

The Church - Turing Thesis

Intuitive notion of an algorithm: a sequence of steps to solve a problem.

Questions: What is the meaning of "solve" and "problem"?

Answers:

Problem: This is a mapping. Can be represented as a function,

or as a set membership "yes/no" question.

To solve a problem: To find a Turing machine that computes the function

or answers the question.

Church-Turing Thesis: Any Turing machine that halts on all inputs corresponds to an

algorithm,

and any algorithm can be represented by a Turing machine.

This is the formal definition of an algorithm. This is not a theorem - only a hypothesis.

In computability theory, the Church–Turing thesis (also known as the Church-Turing

conjecture, Church's thesis, Church's conjecture, and Turing's thesis) is a combined

hypothesis ("thesis") about the nature of functions whose values are effectively calculable; i.e.

computable. In simple terms, it states that "everything computable is computable by a Turing

machine."

Counter machine

A counter machine is an abstract machine used in formal logic and theoretical computer science

to model computation. It is the most primitive of the four types of register machines. A counter

machine comprises a set of one or more unbounded registers, each of which can hold a single

non-negative integer, and a list of (usually sequential) arithmetic and control instructions for the

machine to follow.

The primitive model register machine is, in effect, a multitape 2-symbol Post-Turing machine

with its behavior restricted so its tapes act like simple "counters".

By the time of Melzak, Lambek, and Minsky the notion of a "computer program" produced a

different type of simple machine with many left-ended tapes cut from a Post-Turing tape. In all

cases the models permit only two tape symbols { mark, blank }.
[3]

Some versions represent the positive integers as only a strings/stack of marks allowed in a

"register" (i.e. left-ended tape), and a blank tape represented by the count "0". Minsky eliminated

the PRINT instruction at the expense of providing his model with a mandatory single mark at the

left-end of each tape.
[3]

In this model the single-ended tapes-as-registers are thought of as "counters", their instructions

restricted to only two (or three if the TEST/DECREMENT instruction is atomized). Two

common instruction sets are the following:

19

(1): { INC (r), DEC (r), JZ (r,z) }, i.e.

{ INCrement contents of register #r; DECrement contents of register #r; IF contents of

#r=Zero THEN Jump-to Instruction #z}

(2): { CLR (r); INC (r); JE (ri, rj, z) }, i.e.

{ CLeaR contents of register r; INCrement contents of r; compare contents of ri to rj and

if Equal then Jump to instruction z}

Although his model is more complicated than this simple description, the Melzak "pebble"

model extended this notion of "counter" to permit multi- pebble adds and subtracts.

Basic features

For a given counter machine model the instruction set is tiny—from just one to six or seven

instructions. Most models contain a few arithmetic operations and at least one conditional

operation (if condition is true, then jump). Three base models, each using three instructions, are

drawn from the following collection. (The abbreviations are arbitrary.)

• CLR (r): CLeaR register r. (Set r to zero.)

• INC (r): INCrement the contents of register r.

• DEC (r): DECrement the contents of register r.

• CPY (rj, rk): CoPY the contents of register rj to register rk leaving the contents of rj intact.

• JZ (r, z): IF register r contains Zero THEN Jump to instruction z ELSE continue in

sequence.

• JE (rj, rk, z): IF the contents of register rj Equals the contents of register rk THEN Jump to

instruction z ELSE continue in sequence.

In addition, a machine usually has a HALT instruction, which stops the machine (normally after

the result has been computed).

Using the instructions mentioned above, various authors have discussed certain counter

machines:

• set 1: { INC (r), DEC (r), JZ (r, z) }, (Minsky (1961, 1967), Lambek (1961))

• set 2: { CLR (r), INC (r), JE (rj, rk, z) }, (Ershov (1958), Peter (1958) as interpreted by

Shepherdson-Sturgis (1964); Minsky (1967); Schönhage (1980))

• set 3: { INC (r), CPY (rj, rk), JE (rj, rk, z) }, (Elgot-Robinson (1964), Minsky (1967))

The three counter machine base models have the same computational power since the

instructions of one model can be derived from those of another. All are equivalent to the

computational power of Turing machines (but only if Gödel numbers are used to encode data in

the register or registers; otherwise their power is equivalent to the primitive recursive functions).

Due to their unary processing style, counter machines are typically exponentially slower than

comparable Turing machines.

20

Universal Turing Machines

Turing machines are abstract computing devices. Each Turing machine represents a particular

algorithm. Hence we can think of Turing machines as being "hard-wired".

Is there a programmable Turing machine that can solve any problem solved by a "hard-wired"

Turing machine?

The answer is "yes", the programmable Turing machine is called "universal Turing machine".

Basic Idea:

The Universal TM will take as input a description of a standard TM and an input w in the

alphabet of the standard TM, and will halt if and only if the standard TM halts on w.

Theory Of Computations (TOC)

Prepared by Y. Nagender, Asst. Prof & G. Sunil Reddy, Asst. Prof, CSE, SREC, Warangal Page 1

UNIT – V

Syllabus:

Computability Theory: Chomsky hierarchy of languages, Linear Bounded Automata and

Context Sensitive Language, LR(0) grammar, Decidability of problems, Universal Turing

Machine, Undecidability of Posts Correspondence Problem, Turing Reducibility, Definition of P

and NP problems.

Chomsky hierarchy of languages:

According to Noam Chomsky, there are four types of grammars − Type 0, Type 1, Type 2, and
Type 3. The following table shows how they differ from each other −

Grammar

Type
Grammar Accepted Language Accepted Automaton

Type 0 Unrestricted grammar
Recursively enumerable

language
Turing Machine

Type 1
Context-sensitive

grammar

Context-sensitive

language

Linear-bounded

automaton

Type 2 Context-free grammar Context-free language Pushdown automaton

Type 3 Regular grammar Regular language Finite state automaton

Take a look at the following illustration. It shows the scope of each type of grammar −

Theory Of Computations (TOC)

Prepared by Y. Nagender, Asst. Prof & G. Sunil Reddy, Asst. Prof, CSE, SREC, Warangal Page 2

Grammar

Type
Production Rules

Language

Accepted
Automata Closed Under

Type-3

(Regular

Grammar)

A→a or A→aB

where A,B ∈N(no

n terminal) and

a∈T(Terminal)

Regular
Finite

Automata

Union, Intersection,

Complementation,

Concatenation,

Kleene Closure

Type-2

(Context

Free

Grammar)

A->ρ where A∈N

and ρ ∈ (T∪N)
*

Context

Free

Push Down

Automata

Union,

Concatenation,

Kleene Closure

Type-1

(Context

Sensitive

Grammar)

α→β where

α,β∈ (T∪N)* and

len(α) <= len(β)
and α should

contain atleast 1

non terminal.

Context

Sensitive

Linear

Bound

Automata

Union, Intersection,

Complementation,

Concatenation,

Kleene Closure

Type-0

(Recursive

Enumerable)

α → β where

α,β∈ (T∪N)
*
 andα

contains atleast 1

non-terminal

Recursive

Enumerable

Turing

Machine

Union, Intersection,

Concatenation,

Kleene Closure

Type - 3 Grammar:

Type-3 grammars generate regular languages. Type-3 grammars must have a single non-

terminal on the left-hand side and a right-hand side consisting of a single terminal or single

terminal followed by a single non-terminal.

The productions must be in the form X → a or X → aY

where X, Y ∈ N (Non terminal)

and a ∈ T (Terminal)

The rule S → ε is allowed if S does not appear on the right side of any rule.

Example

X → İ

X → a |aY

Y → b

Theory Of Computations (TOC)

Prepared by Y. Nagender, Asst. Prof & G. Sunil Reddy, Asst. Prof, CSE, SREC, Warangal Page 3

Type - 2 Grammar:

Type-2 grammars generate context-free languages.

The productions must be in the form A → Ȗ

where A ∈ N (Non terminal)

and Ȗ ∈ (T ∪ N)* (String of terminals and non-terminals).

These languages generated by these grammars are be recognized by a non-deterministic

pushdown automaton.

Example

S → Xa

X → a

X → aX

X → abc

X → İ

Type - 1 Grammar:

Type-1 grammars generate context-sensitive languages.

The productions must be in the form

α A ȕ → α Ȗ ȕ

where A ∈ N (Non-terminal)

and α, ȕ, Ȗ ∈ (T ∪ N)* (Strings of terminals and non-terminals)

The strings α and ȕ may be empty, but Ȗ must be non-empty.

The rule S → ε is allowed if S does not appear on the right side of any rule. The languages

generated by these grammars are recognized by a linear bounded automaton.

Example

AB → AbBc

A → bcA

B → b

Theory Of Computations (TOC)

Prepared by Y. Nagender, Asst. Prof & G. Sunil Reddy, Asst. Prof, CSE, SREC, Warangal Page 4

Type - 0 Grammar:

Type-0 grammars generate recursively enumerable languages. The productions have no

restrictions. They are any phase structure grammar including all formal grammars.

They generate the languages that are recognized by a Turing machine.

The productions can be in the form of α → ȕ where α is a string of terminals and nonterminals

with at least one non-terminal and α cannot be null. ȕ is a string of terminals and non-terminals.

Example

S → ACaB

Bc → acB

CB → DB

aD → Db

Linear Bounded Automata:

Definition

Linear Bounded Automata is a single tape Turing Machine with two special tape symbols call

them left marker < and right marker >.

The transitions should satisfy these conditions:

 It should not replace the marker symbols by any other symbol.

 It should not write on cells beyond the marker symbols.

Thus the initial configuration will be:

< q0a1a2a3a4a5.......an >

Formal Definition:

Formally Linear Bounded Automata is a non-deterministic Turing εachine, ε=(Q, P, Γ, į, F
,q0, t, r)

 Q is set of all states

 P is set of all terminals

 Γ is set of all tape alphabets P ⊂ Γ
 į is set of transitions
 F is blank symbol

 q0 is the initial state

 < is left marker and > is right marker

 t is accept state

 r is reject state

Theory Of Computations (TOC)

Prepared by Y. Nagender, Asst. Prof & G. Sunil Reddy, Asst. Prof, CSE, SREC, Warangal Page 5

Context Sensitive Languages:

 The Context sensitive languages are the languages which are accepted by linear bounded

automata. These types of languages are defined by context Sensitive Grammar. In this

grammar more than one terminal or non terminal symbol may appear on the left hand

side of the production rule. Along with it, the context sensitive grammar follows

following rules:

 The number of symbols on the left hand side must not exceed number of symbols on the

right hand side.

 The rule of the form A ∈ is not allowed unless A is a start symbol. It does not occur

on the right hand side of any rule.
The classic example of context sensitive language is L= { anb

n
c

n
 | n ≥ 1 }

 If G is a Context Sensitive Grammar then
L(G) = {w| w ∈ ∑∗ and S ⇒+ G w}

 CSG for L = { a
n
b

n
c

n
 | n ≥ 1 }

 N : {S, B} and P = {a, b, c}

 P : S → aSBc | abc cB → Bc bB → bb
 Derivation of aabbcc :

S ⇒ aSBc ⇒ aabcBc ⇒ aabBcc ⇒ aabbcc

Grammar: The Context Sensitive Grammar can be written as

 S aBC

 S SABC

 CA AC

 BA AB

 CB  BC

 aA  aa

 aB  ab

 bB  bb

 bC  bc

 cC  cc

Now to derive the string aabbcc we will start from starting symbol:

 S rule S SABC

 SABC rule S aBC

 aBCABC rule CA AC

 aBACBC rule CB  BC

 aBABCC rule BA AB

 aABBCC rule aA  aa

 aaBBCC rule aB  ab

Theory Of Computations (TOC)

Prepared by Y. Nagender, Asst. Prof & G. Sunil Reddy, Asst. Prof, CSE, SREC, Warangal Page 6

 aabBCC rule bB  bb

 aabbCC rule bC  bc

 aabbcC rule cC  cc

 aabbcc

NOTE: The language an b
n
c

n
 where n ≥ 1 is represented by context sensitive grammar but it can

not be represented by context free grammar.

Every context sensitive language can be represented by LBA.

Closure Properties
Context Sensitive Languages are closed under

 Union
 Concatenation
 Reversal
 Kleene Star

 Intesection
All of the above except Intersection can be proved by modifying the grammar.

Proof of Intersection needs a machine model for CSG

LR-Grammar:

 Left-to-right scan of the input producing a rightmost derivation in reverse order

 Simply:

 L stands for Left-to-right

 R stands for rightmost derivation in reverse order

LR-Items

 An item (for a given CFG)

 A production with a dot anywhere in the right side (including the beginning and

end)

 In the event of an -production: B  
 B  · is an item

Example: Items

 Given our example grammar:

 S’  Sc, S  SA|A, A  aSb|ab

 The items for the grammar are:

S’·Sc, S’S·c, S’Sc·

S·SA, SS·A, SSA·, S·A, SA·

Theory Of Computations (TOC)

Prepared by Y. Nagender, Asst. Prof & G. Sunil Reddy, Asst. Prof, CSE, SREC, Warangal Page 7

A·aSb, Aa·Sb, AaS·b, AaSb·, A·ab, Aa·b, Aab·

Some Notation

 * = 1 or more steps in a derivation

 *rm = rightmost derivation

 rm = single step in rightmost derivation

More terms

 Handle

 A substring which matches the right-hand side of a production and represents 1

step in the derivation

 Or more formally:

 (of a right-sentential form  for CFG G)

 Is a substring  such that:

 S *rm w

 w = 
 If the grammar is unambiguous:

 There are no useless symbols

 The rightmost derivation (in right-sentential form) and the handle are unique

Example

 Given our example grammar:

o S’  Sc, S  SA|A, A  aSb|ab

 An example right-most derivation:

o S’  Sc  SAc  SaSbc

 Therefore we can say that: SaSbc is in right-sentential form

o The handle is aSb

 Viable Prefix

o (of a right-sentential form for )
o Is any prefix of  ending no farther right than the right end of a handle of

.
 Complete item

 An item where the dot is the rightmost symbol

Example

 Given our example grammar:

o S’  Sc, S  SA|A, A  aSb|ab

 The right-sentential form abc:

o S’ *rm Ac  abc

 Valid prefixes:

o A  ab for prefix ab

Theory Of Computations (TOC)

Prepared by Y. Nagender, Asst. Prof & G. Sunil Reddy, Asst. Prof, CSE, SREC, Warangal Page 8

o A  ab for prefix a

o A  ab for prefix 
 Aab is a complete item,  Ac is the right-sentential form for abc

LR(0)

 Left-to-right scan of the input producing a rightmost derivation with a look-ahead (on the

input) of 0 symbols

 It is a restricted type of CFG

 1st in the family of LR-grammars

 LR(0) grammars define exactly the DCFLs having the prefix property

Definition of LR(0) Grammar

 G is an LR(0) grammar if

 The start symbol does not appear on the right side of any productions

  prefixes  of G where A is a complete item, then it is unique

 i.e., there are no other complete items (and there are no items with a terminal

to the right of the dot) that are valid for 
Facts we now know:

 Every LR(0) grammar generates a DCFL

 Every DCFL with the prefix property has a LR(0) grammar

 Every language with LR(0) grammar have the prefix property

 L is DCFL if L has a LR(0) grammar

Example Grammar

1. S → E$

2. E → E+(E)
3. E → id

The LR(0) items (simply place a dot at point in every production)

1. S → • E$

2. S → E• $

3. S → E$•
4. E → • E+(E)
5. E → E• +(E)
6. E → E+• (E)
7. E → E+(• E)
8. E → E+(E•)
9. E → E+(E)•
10. E → • id

11. E → id•

Theory Of Computations (TOC)

Prepared by Y. Nagender, Asst. Prof & G. Sunil Reddy, Asst. Prof, CSE, SREC, Warangal Page 9

Creating states from Items

States are composed of closures constructed from items. Initially the only closure is {S → • E$}.

Next, we construct the closure like so:

Closure(I) = Closure(I) ∪ {A → • α | B → ȕ• AȖ ∈ I}

Basically, for a non-terminal \(A\) in \(I\) with a • before it, add all items of the form "A → • …".

Given our example (Initial = {S → • E$}) we create the following closure:

Closure({S → • E$ } = {S → • E$, E → • E+(E), E → • id}

to create more closures we define a "goto" function that creates new closures. Given a closure

\(I\) and a symbol \(a\) (terminal or non-terminal):

goto(I, a) = {B → α a• ȕ | B→α • aȕ ∈ I}

Basically, For every item in \(I\) that has a • before \(a\) we create a new closure by pushing the •
one symbol forward. For instance, given our example closure and the symbol \(E\) we get:

goto({S → • E$, E → • E+(E), E → • id}, E) = {S → E• $, E → E• +(E)}

Now, for each of these items we create a closure and for each of those closures we create all

possible goto sets. We keep going until there are no more new states (items that are not part of a

closure).

Lets finish building the states:

Creating the transition table

The table is index by state and symbol. We created the states already and the symbols are given

by the grammar, now we need to create the action within the cells. The goto functions defines the

Theory Of Computations (TOC)

Prepared by Y. Nagender, Asst. Prof & G. Sunil Reddy, Asst. Prof, CSE, SREC, Warangal Page 10

transitions between the closures. Transition from state q1 to state q2 given symbol a \(\iff\)

goto(closure(q1), a) = closure(q2).

 If the • is at the end of the item, this is a reduction action.
 If the symbol is a non-terminal, the action for the transition is a go-to.

 If the symbol is a terminal, the action is a shift

Now we create the transition table:

 Actions go-to actions

States A + () $ S E

0 s1

g2

1 rIII rIII rIII rIII rIII

2

s4

s3

3 Acc acc acc acc acc

4

s5

5 s1

g6

6

s4

s7

7 rII rII rII rII rII

Conflicts

There are two kinds of conflicts we encounter

1. Shift-reduce conflict - a state contains items that correspond to

both reduce and shift actions

2. Reduce-reduce conflict - a state has 2 different items corresponding to

different reduce actions

Indications of a conflict

Any grammar with an İ derivation cannot be δR(0). This is because there is no input to reduce,
so at any point that derivation rule can be used to reduce (add the rule's LHS non-terminal to the

stack)

Theory Of Computations (TOC)

Prepared by Y. Nagender, Asst. Prof & G. Sunil Reddy, Asst. Prof, CSE, SREC, Warangal Page 11

Decidability of problems:

A problem is said to be Decidable if we can always construct a corresponding algorithm that

can answer the problem correctly. We can intuitively understand Decidable problems by

considering a simple example. Suppose we are asked to compute all the prime numbers in the

range of 1000 to 2000. To find the solution of this problem, we can easily devise an algorithm

that can enumerate all the prime numbers in this range.

Now talking about Decidability in terms of a Turing machine, a problem is said to be a

Decidable problem if there exist a corresponding Turing machine which halts on every input

with an answer- yes or no. It is also important to know that these problems are termed as Turing

Decidable since a Turing machine always halts on every input, accepting or rejecting it.

Semi- Decidable Problems –

Semi-Decidable problems are those for which a Turing machine halts on the input accepted by it

but it can either halt or loop forever on the input which is rejected by the Turing Machine. Such

problems are termed as Turing Recognisable problems.

Examples – We will now consider few important Decidable problems:

 Are two regular languages L and M equivalent?

We can easily check this by using Set Difference operation.

L-M =Null and M-L =Null.

Hence (L-M) U (M-L) = Null, then L,M are equivalent.

 Membership of a CFL?

We can always find whether a string exist in a given CFL by using on algorithm based on

dynamic programming.

 Emptiness of a CFL

By checking the production rules of the CFL we can easily state whether the language

generates any strings or not.

Undecidable Problems –

The problems for which we can’t construct an algorithm that can answer the problem correctly in
a finite time are termed as Undecidable Problems. These problems may be partially decidable but

they will never be decidable. That is there will always be a condition that will lead the Turing

Machine into an infinite loop without providing an answer at all.

We can understand Undecidable Problems intuitively by considering Fermat’s Theorem, a

popular Undecidable Problem which states that no three positive integers a, b and c for any n>=2

can ever satisfy the equation: a^n + b^n = c^n.

If we feed this problem to a Turing machine to find such a solution which gives a contradiction

then a Turing Machine might run forever, to find the suitable values of n, a, b and c. But we are

Theory Of Computations (TOC)

Prepared by Y. Nagender, Asst. Prof & G. Sunil Reddy, Asst. Prof, CSE, SREC, Warangal Page 12

always unsure whether a contradiction exists or not and hence we term this problem as

an Undecidable Problem.

Examples – These are few important Undecidable Problems:

 Whether a CFG generates all the strings or not?

As a CFG generates infinite strings ,we can’t ever reach up to the last string and hence it is
Undecidable.

 Whether two CFG L and M equal?

Since we cannot determine all the strings of any CFG , we can predict that two CFG are

equal or not.

 Ambiguity of CFG?

There exist no algorithm which can check whether for the ambiguity of a CFL. We can

only check if any particular string of the CFL generates two different parse trees then the

CFL is ambiguous.

 Is it possible to convert a given ambiguous CFG into corresponding non-ambiguous CFL?

It is also an Undecidable Problem as there doesn’t exist any algorithm for the conversion of
an ambiguous CFL to non-ambiguous CFL.

 Is a language Learning which is a CFL, regular?

This is an Undecidable Problem as we can not find from the production rules of the CFL

whether it is regular or not.

Some more Undecidable Problems related to Turing machine:

 Membership problem of a Turing Machine?

 Finiteness of a Turing Machine?

 Emptiness of a Turing Machine?

 Whether the language accepted by Turing Machine is regular or CFL?

A language is called Decidable or Recursive if there is a Turing machine which accepts and

halts on every input string w. Every decidable language is Turing-Acceptable.

A decision problem P is decidable if the language L of all yes instances to P is decidable.

Theory Of Computations (TOC)

Prepared by Y. Nagender, Asst. Prof & G. Sunil Reddy, Asst. Prof, CSE, SREC, Warangal Page 13

For a decidable language, for each input string, the TM halts either at the accept or the reject

state as depicted in the following diagram −

Example 1

Find out whether the following problem is decidable or not −

Is a number ‘m’ prime?

Solution

Prime numbers = {2, 3, 5, 7, 11, 13, …………..}

Divide the number ‘m’ by all the numbers between ‘2’ and ‘√m’ starting from ‘2’.
If any of these numbers produce a remainder zero, then it goes to the “Rejected state”, otherwise
it goes to the “Accepted state”. So, here the answer could be made by ‘Yes’ or ‘No’.
Hence, it is a decidable problem.

Example 2

Given a regular language L and string w, how can we check if w ∈ L?

Solution

Take the DFA that accepts L and check if w is accepted

Some more decidable problems are −

 Does DFA accept the empty language?

 Is L1 ∩ δ2 = ∅ for regular sets?

Note −

 If a language L is decidable, then its complement L' is also decidable

 If a language is decidable, then there is an enumerator for it.

Theory Of Computations (TOC)

Prepared by Y. Nagender, Asst. Prof & G. Sunil Reddy, Asst. Prof, CSE, SREC, Warangal Page 14

Universal Turing Machines:

Turing machines are abstract computing devices. Each Turing machine represents a particular

algorithm. Hence we can think of Turing machines as being "hard-wired".

Is there a programmable Turing machine that can solve any problem solved by a "hard-wired"

Turing machine?

The answer is "yes", the programmable Turing machine is called "universal Turing machine".

Basic Idea:

The Universal TM will take as input a description of a standard TM and an input w in the

alphabet of the standard TM, and will halt if and only if the standard TM halts on w.

Post Correspondence Problem (PCP):

The Post Correspondence Problem (PCP), introduced by Emil Post in 1946, is an undecidable

decision problem. The PCP problem over an alphabet ∑ is stated as follows −

Given the following two lists, M and N of non-empty strings over ∑ −

M = (x1, x2, x3,………, xn)

N = (y1, y2, y3,………, yn)

We can say that there is a Post Correspondence Solution, if for some i1,i2,………… ik, where 1

≤ ij ≤ n, the condition xi1 …….xik = yi1 …….yik satisfies.

Example 1

Find whether the lists M = (abb, aa, aaa) and N = (bba, aaa, aa) have a Post Correspondence

Solution?

Solution

 X1 X2 X3

M abb aa aaa

N bba aaa aa

Here,

x2x1x3 = ‘aaabbaaa’

and y2y1y3 = ‘aaabbaaa’

We can see that

x2x1x3 = y2y1y3

Hence, the solution is i = 2, j = 1, and k = 3.

Theory Of Computations (TOC)

Prepared by Y. Nagender, Asst. Prof & G. Sunil Reddy, Asst. Prof, CSE, SREC, Warangal Page 15

Example 2

Find whether the lists M = (ab, bab, bbaaa) and N = (a, ba, bab) have a Post Correspondence

Solution?

Solution

 X1 X2 X3

M ab bab bbaaa

N a ba bab

In this case, there is no solution because −

| x2x1x3 | ≠ | y2y1y3 | (Lengths are not same)

Hence, it can be said that this Post Correspondence Problem is undecidable.

Turing Reducibility:

In computability theory, a Turing reduction from a problem A to a problem B, is a reduction

which solves A, assuming the solution to B is already known (Rogers 1967, Soare 1987). It can

be understood as an algorithm that could be used to solve A if it had available to it a subroutine

for solving B. More formally, a Turing reduction is a function computable by an oracle machine

with an oracle for B. Turing reductions can be applied to both decision problems and function

problems.

If a Turing reduction of A to B exists then every algorithm for B can be used to produce an

algorithm for A, by inserting the algorithm for B at each place where the oracle machine

computing A queries the oracle for B. However, because the oracle machine may query the

oracle a large number of times, the resulting algorithm may require more time asymptotically

than either the algorithm for B or the oracle machine computing A, and may require as much

space as both together.

Definition

Given two sets A, B ⊆ N of natural numbers, we say A is Turing reducible to B and write A ≤T B

if there is an oracle machine that computes the characteristic function of A when run with oracle

B. In this case, we also say A is B-recursive and B-computable.

If there is an oracle machine that, when run with oracle B, computes a partial function with

domain A, then A is said to be B-recursively enumerable and B-computably enumerable.

https://en.wikipedia.org/wiki/Computability_theory
https://en.wikipedia.org/wiki/Reduction_%28complexity%29
https://en.wikipedia.org/wiki/Algorithm
https://en.wikipedia.org/wiki/Subroutine
https://en.wikipedia.org/wiki/Oracle_machine
https://en.wikipedia.org/wiki/Decision_problem
https://en.wikipedia.org/wiki/Function_problem
https://en.wikipedia.org/wiki/Function_problem
https://en.wikipedia.org/wiki/Algorithm
https://en.wikipedia.org/wiki/Oracle_machine
https://en.wikipedia.org/wiki/Indicator_function
https://en.wikipedia.org/wiki/Recursively_enumerable_set

Theory Of Computations (TOC)

Prepared by Y. Nagender, Asst. Prof & G. Sunil Reddy, Asst. Prof, CSE, SREC, Warangal Page 16

Definition of P & NP:

Definition of P:

 P is the class of languages that are decidable in polynomial time on a deterministic single-tape

Turing machine. In other words,

P = [k Time(n k)

Motivation: To define a class of problems that can be solved efficiently.

 P is invariant for all models of computation that are polynomially equivalent to the

deterministic single-tape Turing Machine.

 P roughly corresponds to the class of problems that are realistically solvable on a

computer.

Definition of NP:

The term NP comes from nondeterministic polynomial time and has an alternative

characterization by using nondeterministic polynomial time Turing machines.

Theorem

A language is in NP iff it is decided by some nondeterministic polynomial time Turing machine.

Proof.

(⇒) Convert a polynomial time verifier V to an equivalent polynomial time NTM N. On input w

of length n:

 Nondeterministically select string c of length at most n
k
 (assuming that V runs in time n

k

).

 Run V on input < w, c >.

 If V accepts, accept; otherwise, reject.

P vs. NP

If you spend time in or around the programming community you probably hear the term “P
versus NP” rather frequently.

The Problem

P vs. NP

The P vs. NP problem asks whether every problem whose solution can be quickly

verified by a computer can also be quickly solved by a computer.

Theory Of Computations (TOC)

Prepared by Y. Nagender, Asst. Prof & G. Sunil Reddy, Asst. Prof, CSE, SREC, Warangal Page 17

P problems are easily solved by computers, and NP problems are not easily solvable, but if you

present a potential solution it’s easy to verify whether it’s correct or not.

As you can see from the diagram above, all P problems are NP problems. That is, if it’s easy for
the computer to solve, it’s easy to verify the solution. So the P vs NP problem is just asking if
these two problem types are the same, or if they are different, i.e. that there are some problems

that are easily verified but not easily solved.

It currently appears that P ≠ NP, meaning we have plenty of examples of problems that we can
quickly verify potential answers to, but that we can’t solve quickly. δet’s look at a few examples:

 A traveling salesman wants to visit 100 different cities by driving, starting and ending his

trip at home. He has a limited supply of gasoline, so he can only drive a total of 10,000

kilometers. He wants to know if he can visit all of the cities without running out of

gasoline. (from Wikipedia)

 A farmer wants to take 100 watermelons of different masses to the market. She needs to

pack the watermelons into boxes. Each box can only hold 20 kilograms without breaking.

The farmer needs to know if 10 boxes will be enough for her to carry all 100

watermelons to market.

All of these problems share a common characteristic that is the key to understanding the intrigue

of P versus NP: In order to solve them you have to try all combinations.

The Solution

This is why the answer to the P vs. NP problem is so interesting to people. If anyone were able to

show that P is equal to NP, it would make difficult real-world problems trivial for computers.

Summary

1. P vs. NP deals with the gap between computers being able to quickly solve problems vs.

just being able to test proposed solutions for correctness.

2. As such, the P vs. NP problem is the search for a way to solve problems that require the

trying of millions, billions, or trillions of combinations without actually having to try

each one.

3. Solving this problem would have profound effects on computing, and therefore on our

society.

