!]| A T M E

oc] College of Engineering

INTRODUCTION
Module 1- Chapt 1

Mrs. Madhu Nagaraj
Assistant Professor

Dept of CSE-Data Science
ATMECE

A i i N E

] College of Enginecering

IMPLEMENTATION

SOF TWARE X ANALYZE

2R A_ENGINEERING)/

DESIGN

PLANNING

=

T

)\ VALIDATION AND (2)

TESTING VERIFICATION ’)

M

LY &

ne College of Engincering

Course Out Comes:

» COl1: Differentiate process models to judge which process model has to be

adopted for the given scenarios.

» (CO2: Derive both functional and nonfunctional requirements from the case study.
» CO3: Analyze the importance of various software testing methods and agile
methodology.

» CO4: Illustrate the role of project planning and quality management in software
development.

» COS5: Identify appropriate techniques to enhance software quality.

L B

ne College of Engincering

Module 1

* Software and Software Engineering: The nature of Software, The unique
nature of WebApps, Software Engineering, The software Process, Software
Engineering Practice, Software Myths.

* Process Models: A generic process model, Process assessment and
improvement, Prescriptive process models: Waterfall model, Incremental
process models, Evolutionary process models, Concurrent models, Specialized
process models. Unified Process , Personal and Team process models

e College of Engineering _

The Evolving role of software
Dual role of Software
1. A Product

* Transforms information - produces, manages, acquires, modifies, displays, or
transmits information

* Delivers computing potential of hardware and networks
2. A Vehicle for delivering a product

* Controls other programs (operating system)

» Effects communications (networking software)

* Helps build other software (software tools & environments)

A T M E

College of Engineering

Software 1s
Ty _ P - = AlmOSt
- Everywhere.

Facebook helps you connect and share with Sign Up

the people in your life. 1t’s free and anyone can join
2 F Ve
]) S S e
{4 s » ! =
R |
1 4 -
% ANt p\

Toaest apage i a cokinty, andwbisiness, ik e

A T M E B cucel)

oc] College of Engineering A

Software 1s defined as
1. Instructions - Programs that when executed provide desired function

2. Data structures -Enable the programs to adequately manipulate
information

3. Documents -Describe the operation and use of the programs.

» Software is the collection of executable program codes, associated
libraries and documentation.

be developed for a general market.

AL M OE ¢ ;
2] College of Enginecering

Software products may be

> Generic - developed to be sold to a range of different
customers e.g. PC software such as Excel or Word.

> Custom - developed for a single customer according to
their specification.

™ A
[
- _

ne College of Engincering

Software Characteristics

> Software 1s developed or engineered; it 1s not
manufactured in the classical sense.

> Software does not “wear out” but it does
deteriorate.

> Software continues to be custom built, as
industry 1s moving toward component based
construction.

L B

ne College of Engincering

Changing Nature of Software
The nature of software has changed a lot over the years.

1.System software: It is a collection of programs to provide service to other programs.
Infrastructure software come under this category like compilers, operating systems, editors,
drivers, etc.

2. Real time software: These software are used to monitor, control and analyze real world
events as they occur.

3. Embedded software: This type of software is placed inside the hardware of the system
and 1s used control the various functions of the product.

Eg: Microwave oven controls

4. Business software : This is the largest application area. The software designed to process
business applications is called business software.

L B

ne College of Engincering

5. Personal computer software: The software used in personal computers are
covered 1in this category. Examples are word processors, computer graphics,
multimedia and animating tools, database management, computer games etc

6. Artificial intelligence software: Artificial Intelligence software makes use of non
numerical algorithms to solve complex problems.

Examples: Robotics, Gaming etc

7. Web based software: The software related to web applications come under this
category. Examples are CGI, HTML, Java, Perl, DHTML etc.

I M

oc] College of Engineering

* What 1s Software Engineering?

» Software Engineering is an engineering discipline that is
concerned with all aspects of software production.

» Software engineers should adopt a systematic and
organized approach to their work.

» use appropriate tools and techniques depending on the
problem to be solved, the development constraints and the
resources available

CJA T M E as |
atine | College of Engineering ; . = :

o PROGRAMMMG

VALIZATION AND IMPLEMENTATION
VERIFICATION

%,0 SOFTWARE

|

v ENGINEERING

% o 2

[EVEDFMENT OESKEN
TESTING

A ¥ + '
£\ | I { A -r 3, I_J-.-.[:I
2] College of Eng1nccr1ng T

Essential attributes of good software

Maintainability

Software should be written in such a way so that it can evolve to meet the
changing needs of customers.

This 1s a critical attribute because software change is an inevitable
requirement of a changing business environment.

Dependability and security

Software dependability includes a range of characteristics including
reliability, security and safety.

Dependable software should not cause physical or economic damage in the
event of system failure. Malicious users should not be able to access or
damage the system.

T A
WY
- _

. C:::llcgc of El;lginccring
« Efficiency

« Software should not make wasteful use of system resources such
as memory and processor cycles.

» Efficiency therefore includes responsiveness, processing time,
memory utilisation, etc.

* Acceptability
. Software must be acceptable to the type of users for which it 1s

designed. This means that it must be understandable, usable and
compatible with other systems that they use.

A - N A

M FE . T B cRucE]

e College of Engineering _

Process Framework

* Framework is a Standard way to build and deploy applications.
» Software Process Framework is a foundation of complete software engineering process.

» Software process framework includes all set of umbrella activities. It also includes number of
framework activities that are applicable to all software projects.

Generic Process Framework Activities

e Communication:

— Heavy communication and collaboration with customers, stakeholders, team
— Encompasses requirements gathering and related activities

A g ™ A
kY

LW A

B cucel

e College of Engineering _

* Planning:
— Workflow that is to follow

— Describe technical task, likely risk, resources will require, work products to be
produced and a work schedule.

Modeling:

— Help developer and customer to understand requirements (Analysis of requirements &
Design of software)

Construction:
— Code generation: either manual or automated or both
— Testing — to uncover error in the code.

* Deployment:
— Delivery to the customer for evaluation
— Customer provide feedback

2.

3.

A LI M E B cRucel]

oc] College of Engineering N—_—

Umbrella Activities
Software project tracking and control

— Assessing progress against the project plan.
— Take adequate action to maintain schedule.

Formal technical reviews

— Assessing software work products in an effort to uncover and remove errors before it
goes into next action or activity.

Software quality assurance
— Define and conducts the activities required to ensure software quality.

Software configuration management
— Manages the effects of change.

6.

7.

AT M E e e
ue] College of Engineering v R SoLD

Document preparation and production
— Help to create work products such as models, documents, logs, form and list.

Reusability management
— Define criteria for work product reuse
— Mechanisms to achieve reusable components.
Measurement & Metrics
— All measurement related activities like cost, time man power is done.
— Assist the team in delivering software that meets customer’s needs.
Risk management

— Assesses risks that may effect that outcome of project or quality of product (i.e.
software)

College of Engineering & e

General Principles of Software Engineering:

The word principle 1s “an important underlying law or assumption required in a system of
thought.” David Hooker [Ho096] has proposed seven principles that focus on software
engineering practice as a whole.

1. The First Principle: The Reason It All Exists

A software system exists for one reason: to provide value to its users. All decisions should be
made with this in mind.

2. The Second Principle: Keep It Simple, Stupid!
All design should be as simple as possible, but no simpler.
This facilitates having a more easily understood and easily maintained system.

College of Engineering & o fo

3. The Third Principle: Maintain the Vision

A clear vision is essential to the success of a software project. Without one, a project almost
unfailingly ends up being “of two [or more] minds” about itself.

4. The Fourth Principle: What You Produce, Others Will Consume

always specify, design, and implement knowing someone else will have to understand

what you are doing. The audience for any product of software development 1s potentially large.
5. The Fifth Principle: Be Open to the Future

Never design yourself into a corner. Always ask “what if,” and prepare for all possible answers
by creating systems that solve the general problem, not just the specific one.

B cucel]

oo] College of Engineering

6. The Sixth Principle: Plan Ahead for Reuse

Planning ahead for reuse reduces the cost and increases the value of both the reusable
components and the systems into which they are incorporated.

7. The Seventh principle: Think!
Placing clear, complete thought before action almost always produces better results.

When you think about something, you are more likely to do it right. You also gain
knowledge about how to do it right again.

College of Engineering

Software Myths

Software myths are erroneous beliefs about software and the process that 1s used to build it.
We categorize myths from three different perspectives.
Management myths:

Myth: We already have a book that’s full of standards and procedures for building software.
Won'’t that provide my people with everything they need to know?

Reality: The book of standards may very well exist, but is it used? Are software
practitioners aware of its existence? Does it reflect modern software engineering practice?
Is it complete? Is it adaptable? Is it streamlined to improve time-to-delivery while still
maintaining a focus on

quality? In many cases, the answer to all of these questions is “no.”

College of Engineering

Myth: If we get behind schedule, we can add more programmers and catch up (sometimes
called the “Mongolian horde” concept).

Reality: Software development is not a mechanistic process like manufacturing. As new
people
are added, people who are working must spend time educating the newcomers, thereby

reducing the amount of time spent on productive development effort. People can be added but
only in a planned and well coordinated manner.

Myth: If I decide to outsource the software project to a third party, I can just relax and let that
firm build it.

Reality: If an organization does not understand how to manage and control software projects
internally, it will invariably struggle when it out-sources software projects.

College of Engineering & o fo

Customer myths.

Myth: A general statement of objectives 1s sufficient to begin writing programs—we can fill
in the details later.

Reality: Although a comprehensive and stable statement of requirements is not always
possible, an ambiguous “statement of objectives” is a recipe for disaster.

Myth: Software requirements continually change, but change can be easily accommodated
because software is flexible.

Reality: It is true that software requirements change, but the impact of change varies with the
time at which it 1s introduced. When requirements changes are requested early (before design
or code has been started), the cost impact is relatively small. However, as time passes, the cost
impact grows rapidly

College of Engineering

Customer myths.

Myth: A general statement of objectives 1s sufficient to begin writing programs—we can fill
in the details later.

Reality: Although a comprehensive and stable statement of requirements is not always
possible, an ambiguous “statement of objectives” is a recipe for disaster.

Myth: Software requirements continually change, but change can be easily accommodated
because software is flexible.

Reality: It 1s true that software requirements change, but the impact of change varies with
the time at which it is introduced. When requirements changes are requested early (before
design or code has been started), the cost impact is relatively small. However, as time passes,
the cost impact grows rapidly

College of Engineering & e

Practitioner’s myths:

Myth: Once we write the program and get it to work, our job is done.

Reality: Someone once said that “the sooner you begin ‘writing code,’ the longer it’1l take you
to get done.” Industry data indicate that between 60 and 80 percent of all effort expended on
software will be expended after it is delivered to the customer for the first time.

Myth: The only deliverable work product for a successful project is the working program.

Reality: A working program is only one part of a software configuration that includes many
elements.

Myth: Software engineering will make us create voluminous and unnecessary documentation
and will invariably slow us down.

Reality: Software engineering 1s not about creating documents. It is about creating a quality
product. Better quality leads to reduced rework.

