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“Have you ever noticed your 
phone running multiple apps 
at once?”
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Video streaming (Netflix 
downloading + playing 
simultaneously)
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Gaming consoles with 
multiple players running on 
separate
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AGENDA Introduction to Parallel 
Computing

1

Why It’s Needed2

Real - World Applications4

History and Motivation3

Basic Concepts5
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“Parallel Computing means performing many tasks 

simultaneously”
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INCREASING DATA

CPU CLOCK SPEED 
REACHED LIMITS
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• Weather forecasting

• Space Exploration

• Online Platforms

• AI training chatgpt using GPUs

• autonomous vehicles

REAL WORLD 
EXAMPLES
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•  how multiple apps can run simultaneously on a computer 

or phone and what happens internally

MULTITASKING

CPU CORE

OS SCHEDULER
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A task can be: A Process
                              A thread

HOW TASKS ARE ALLOCATED TO THE CORES OF THE CPU?

TASK CREATED:

READY QUEUE:

CORE AVAILABILITY:

CONTEXT SWITCHING:

EXECUTION
:

MIGRATION
:30/08/25
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Data parallelism

TYPES

Task parallelism

BASIC 
CONCEPTS
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• Shared Memory

• Distributed Memory

PARALLEL ARCHITECTURES
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Why We Need to Write Parallel Programs

1. The problem with old (serial) programs

• Most existing programs were written for single-core systems.

• On a multicore system, you can run multiple instances of the same program (e.g., run 4 games at once), 

but that’s not useful — users want one program to run faster and better, not more copies.

• Therefore: To use multiple cores effectively, programs must be parallelized.
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2. Automatic conversion isn’t enough

• Researchers have tried to create compilers that translate serial code to parallel code.

• Success has been limited because:

o Translating each step independently into parallel code often leads to inefficiency.

o Sometimes the best parallel solution requires a completely new algorithm, not just a 

step-by-step parallelization of the serial one.

o Example: Matrix multiplication — turning it into parallel dot-products may be inefficient 

compared to designing a new parallel matrix multiplication algorithm.
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Serial code(one core): Summation

sum = 0;

for (i = 0; i < n; i++) {

    x = ComputeNextValue(...);

    sum += x;

}
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The second method: Pairwise (tree-style) reduction

• Instead of all cores sending to the master, we combine results in stages:

o Stage 1: Pair the cores:

▪ Core 0 + Core 1, Core 2 + Core 3, Core 4 + Core 5, Core 6 + Core 7.

o Stage 2: Pair the winners (even-numbered cores now hold results):

▪ Core 0 + Core 2, Core 4 + Core 6.

o Stage 3: Final combination:

▪ Core 0 + Core 4.
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Comparing the two global sum methods

• Method 1 (naïve / centralized):

o Master adds up results from all cores.

o Needs p − 1 operations (e.g., 999 adds for 1000 cores).

• Method 2 (tree reduction):

o Results combined in pairs over stages.

o Needs log₂(p) operations (e.g., only 10 adds for 1000 cores).

o Much more efficient, especially as p grows.
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how we actually write parallel programs and the main challenges

Two Main Approaches to Parallelism

1. Task Parallelism

o Different cores do different tasks.

o Example: In grading exams, one person grades only Question 1 (Shakespeare), another grades 

Question 2 (Milton), and so on.

o Each is doing a different job, so the instructions differ.
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2. Data Parallelism

Different cores do the same task on different pieces of data.

Example: Split the 100 exam papers into 5 piles of 20. Each TA grades all questions on their 

pile. Same instructions, but applied to different data.
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Von Neumann Architecture (Classical Computer Design)



30/08/25
Department of CSE, ATMECE, Mysuru 26

Von Neumann Bottleneck

• Problem: The CPU is much faster than the memory access speed.

• CPU may execute 100+ instructions in the time it takes to fetch one piece of data from memory.

• The bus/interconnect limits how quickly data & instructions travel.

Analogy:

• CPU is like factory making products.

• Memory is warehouse storing raw materials (data) and finished products (results).

• Road (bus) is the transport system between them.

• If the road is too narrow (limited bandwidth), the factory workers sit idle because raw materials arrive too slowly.
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Modifications to the von Neumann model

The von Neumann bottleneck means the CPU is very fast, but memory (RAM) is much slower. Since the CPU often has to wait for 

memory, overall performance suffers.

To fix this, computer engineers added caching, virtual memory, and parallelism.

This part is about caching.

What is caching?

Think of it like this:

• CPU = factory

• Main memory = warehouse

• Road between them = slow, two-lane road

The CPU constantly needs raw materials (data & instructions) from memory. If every time it has to go to the warehouse far away, 

it wastes time.

Solution is to Build a small storeroom (cache) right next to the CPU.

Cache stores a small amount of data that the CPU is very likely to need soon. It’s much faster to access than main memory.
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Cache mappings

1. Fully Associative

2. Direct Mapped

3. N-way Set Associative
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Locality:

• Spatial locality: if you use A[0][0], you’ll probably use A[0][1], A[0][2] soon.

• Temporal locality: if you use a value once, you might use it again later.

for (i = 0; i < MAX; i++) 

    for (j = 0; j < MAX; j++) 

        y[i] += A[i][j] * x[j];

• Access pattern: row by row → contiguous memory.

• Example (MAX=4):

o Access order: A[0][0], A[0][1], A[0][2], A[0][3] (all in same cache line → only 1 miss).

o Next row: A[1][0]...A[1][3] → again, just 1 miss.
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virtual memory

Virtual memory gives:

Illusion of large memory (even bigger than RAM, because disk is used as backup).

Protection (one program cannot overwrite another’s memory).

Flexibility (any program can use any free RAM block).

Memory is divided into pages (usually 4 KB–16 KB).

Disk also has swap space divided into same-sized pages.

A program uses virtual addresses → these get mapped to physical addresses in RAM.
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Distributed-memory interconnects 
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Cache coherence: CPU caches are managed by system hardware: programmers don’t have direct 

control over them. This has several important consequences for shared-memory systems. 
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Nondeterminism?

• In MIMD systems (Multiple Instruction, Multiple Data) where multiple processors (or threads) 

run at the same time, they usually don’t stay perfectly in sync.

• This means the same input might produce different outputs depending on how the 

processors finish their tasks. This unpredictability is called nondeterminism.



Thank You
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GPU programming

GPUs are usually not “standalone” processors. They don’t ordinarily run an operating system and system services, 

such as direct access to secondary storage. 

So, program ming a GPU also involves writing code for the CPU “host” system, which runs on an ordinary CPU. The 

memory for the CPU host and the GPU memory are usually separate. So, the code that runs on the host typically 

allocates and initializes storage on both the CPU and the GPU. 

It will start the program on the GPU, and it is responsible for the output of the results of the GPU program. Thus, 

GPU programming is really heterogeneous programming, since it involves programming two different types of 

processors.
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Then the threads with rank < 16 will execute the first 

assignment, while the threads with rank ≥ 16areidle. 
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MIMD systems

We’ve generally avoided the issue of input and output. There are a couple of reasons. 

First and foremost, parallel I/O, in which multiple cores access multiple disks or other devices, is a subject to 
which one could easily devote a book. 

When we call printf from multiple processes, we, as developers, would like the output to appear on the 
console of a single system, the system on which we started the program. 
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GPUs

In most cases, the host code in our GPU programs will carry out all I/O. Since we’ll only be running one 

process/thread on the host, the standard C I/O functions should behave as they do in ordinary serial C programs.

 

The exception to the rule that we use the host for I/O is that when we are debug ging our GPU code, we’ll want to be 

able to write to stdout and/or stderr. In the systems we use, each thread can write to stdout, and, as with MIMD 

programs, the order of the output is nondeterministic. Also, in the systems we use, no GPU thread has access to stderr, 

stdin, or secondary storage.
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PERFORMANCE

1. Speedup and efficiency in MIMD systems

This value, S/p, is sometimes called the efficiency of the parallel program. 
If we substitute the formula for S, we see that the efficiency is



29/08/2025 Department of CSE, ATMECE, Mysuru 8



29/08/2025 Department of CSE, ATMECE, Mysuru 9

Many parallel programs are developed by dividing the work of the serial program among the processes/threads and 
adding in the nec-essary “parallel overhead” such as mutual exclusion or communication. 

Therefore, if Toverhead denotes this parallel overhead, it’s often the case that
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2. Amdahl’s law
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Now as p gets larger and larger, 0.9 Tserial=p = 18=p gets closer and closer to 0, so the total parallel run-time can’t be 

smaller than 0.1 Tserial = 2. That is, the denominator in S can’t be

smaller than 0.1 Tserial = 2. The fraction S must therefore be smaller than
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3. Scalability in MIMD systems

As an example, suppose that Tserial = n, where the units of Tserial are in microseconds,

 and n is also the problem size. Also suppose that Tparallel = n/p + 1. Then

To see if the program is scalable, we inc 
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4. Taking timings of MIMD programs

The first thing to note is that there are at least two different reasons for taking timings. During program 
development we may take timings in order to determine if the program is behaving as we intend.

Second, we’re usually not interested in the time that elapses between the pro-gram’s start and the program’s 
finish. 

Third, we’re usually not interested in “CPU time.” This is the time reported by the standard C function clock. 
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5 GPU performance

It’s quite common to see reported speedups of GPU programs over serial programs or parallel MIMD 

programs.

Since efficiency of a GPU program relative to a CPU program doesn’t make sense, the formal definition of 

the scalability of a MIMD program can’t be applied to a GPU program. 

It should be noted that the same caveats that apply to Amdahl’s law on MIMD systems also apply to 

Amdahl’s law on GPUs: 
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Thank you 



30/08/25 Department of CSE, ATMECE, Mysuru 1



30/08/25 Department of CSE, ATMECE, Mysuru 2



30/08/25 Department of CSE, ATMECE, Mysuru 3

A distributed memory system
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A shared memory system
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Hello World! 
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Common practice to identify processes by nonnegative integer ranks.

p processes are numbered 0, 1, 2, .. p-1

Identifying MPI processes
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wrapper script to compile

turns on all warnings

source file

create this executable file name

(as opposed to default a.out)

produce

debugging 

information

Compilation
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mpiexec  -n  <number of processes>   <executable>

mpiexec  -n  1  ./mpi_hello

mpiexec  -n  4  ./mpi_hello

run with 1 process

run with 4 processes

Execution
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mpiexec  -n  1  ./mpi_hello

mpiexec  -n  4  ./mpi_hello

Greetings from process 0 of 1 !

Greetings from process 0 of 4 !

Greetings from process 1 of 4 !

Greetings from process 2 of 4 !

Greetings from process 3 of 4 !
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Written in C.

Has main.

Uses stdio.h, string.h, etc.

Need to add mpi.h header file.

Identifiers defined by MPI start with “MPI_”.

First letter following underscore is uppercase.

For function names and MPI-defined types.

Helps to avoid confusion.

MPI Programs
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MPI Components

MPI_Init

Tells MPI to do all the necessary setup.

MPI_Finalize

Tells MPI we’re done, so clean up anything allocated for this program.
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A collection of processes that can 

send messages to each other.

MPI_Init defines a communicator 

that consists of all the processes 

created when the program is 

started Called 

MPI_COMM_WORLD.
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number  of processes in the communicator

my rank 

(the process making this call)

Communicators
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Data types
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MPI_Send

src = q

MPI_Recv

dest  = r

r

q

Message matching
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Receiving messages

A receiver can get a message without knowing:

the amount of data in the message,

the sender of the message,

or the tag of the message.
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MPI_SOURCE

MPI_TAG

MPI_ERROR

MPI_Status*

MPI_Status*  status;

status.MPI_SOURCE

status.MPI_TAG
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Exact behavior is determined by the MPI implementation.

MPI_Send may behave differently with regard to buffer size, cutoffs and 

blocking
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Tasks and communications for Trapezoidal Rule
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Dealing with I/O
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unpredictable output
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Input
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Collective communication
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A tree-structured global sum
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MPI_Reduce
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Predefined reduction operators in MPI
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Collective vs. Point-to-Point Communications

All the processes in the communicator must call the same collective function. 

For example, a program that attempts to match a call to MPI_Reduce on one process with a call to 

MPI_Recv on another process is erroneous, and, in all likelihood, the program will hang or crash.
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Multiple calls to MPI_Reduce

Example (1)
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MPI_Allreduce
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A global sum followed

by distribution of the

result.
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A butterfly-structured global sum.
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Broadcast
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A tree-structured broadcast.
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Compute a vector sum.
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Different partitions of a 12-component vector among 3 

processes
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Block partitioning

Assign blocks of consecutive components to each process.

Cyclic partitioning

Assign components in a round robin fashion.

Block-cyclic partitioning

Use a cyclic distribution of blocks of components.

Partitioning options
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MPI_Scatter can be used in a function that reads 

in an entire vector on process 0 but only sends the 

needed components to each of the other 

processes.

Scatter
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Collect all of the components of 

the vector onto process 0, and 

then process 0 can process all of 

the components.
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Matrix-vector multiplication
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stored  as
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Mpi derived datatypes
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Performance evaluation
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Elapsed parallel time

Elapsed serial time
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MPI_Barrier
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Run-times of serial and parallel matrix-vector multiplication
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Speedup

Efficiency
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A parallel sorting algorithm

Serial odd-even transposition sort

Parallel odd-even transposition sort
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MPI_Ssend
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MPI_Sendrecv
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Safe communication with five 

processes
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Thank you 
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chef 1

chef 2

chef 3

each cooking a different dish

Shared Memory with MIMD
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All chefs working in the same kitchen, 

using the same fridge and pantry
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OpenMP vs. Pthreads

Department of CSE, ATMECE, Mysuru

Feature OpenMP Pthreads

Ease of Use
Very easy—just add 
#pragma omp

Complex—you manually 

create and manage 

threads

Control
Compiler handles 

thread creation & sync

You control everything 

(creation, sync, etc.)

Code Style
Looks like regular serial 

code

Requires lots of 

boilerplate and setup

Parallelism Type
Implicit (compiler 

decides)

Explicit (you decide 

everything)

Best For
Quick parallelization of 

loops & tasks

Fine-grained control 

over thread behavior

Debugging
Easier—less thread 

management

Harder—more chances 

for race conditions
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Getting Started with OpenMP

OpenMP is directives-based.

In C/C++ → uses pragmas (special compiler instructions).

If a compiler doesn’t support OpenMP, it just ignores them, and the program runs sequentially.

So, an OpenMP program can run both with and without OpenMP.
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Hello from thread 0 of 4
Hello from thread 1 of 4
Hello from thread 2 of 4
Hello from thread 3 of 4
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Hello from thread 2 of 4
Hello from thread 0 of 4
Hello from thread 3 of 4
Hello from thread 1 of 4
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OpenMP Terminology

Master thread: the original thread (thread 0).

Parent thread: the one that started new threads.

Child threads: threads created by parent.

threads must finish before continuing.

Department of CSE, ATMECE, Mysuru

Team: group of threads executing parallel block.

At the end of a parallel block → implicit barrier: all 
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Running the threads

Department of CSE, ATMECE, Mysuru

Main thread forks and joins two threads.
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If OpenMP is available, each thread can compute the area of a chunk of trapezoids and then combine 

their results.

If OpenMP is not available, the code assumes a single-threaded fallback:

The thread rank is set to 0.

The total number of threads is 1.

The Hello() function runs just once.

Department of CSE, ATMECE, Mysuru

Error checking
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if (argc != 2) {

    fprintf(stderr, "Usage: %s <number of threads>\n", argv[0]);

    exit(1);

}

long thread_count = strtol(argv[1], NULL, 10);

if (thread_count <= 0) {

    fprintf(stderr, "Thread count must be positive\n");

    exit(1);

}
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Compiler Support Check with _OPENMP

Use preprocessor guards to avoid compilation errors on unsupported compilers:

 Header Inclusion

#ifdef _OPENMP
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Optional: Runtime Thread Count Check

if (omp_get_num_threads() != thread_count) {

    fprintf(stderr, "Warning: Requested %ld threads, but got %d\n", thread_count, omp_get_num_threads());

}
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h = (b - a) / n;

approx = (f(a) + f(b)) / 2.0;

for (i = 1; i <= n-1; i++) {

x_i = a + i * h;

approx += f(x_i);

}

approx = h * approx;

5.2 The Trapezoidal Rule

17



18



Function-wide scope

File-wide scope

Department of CSE, ATMECE, Mysuru

Variable Scope in OpenMP vs. Serial Programming
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void Hello(void) {

    int my_rank = omp_get_thread_num();

    int thread_count = omp_get_num_threads();

    printf("Hello from thread %d of %d\n", my_rank, thread_count);

}

Department of CSE, ATMECE, Mysuru

OpenMP Scope: Thread Accessibility
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shared scope:

Department of CSE, ATMECE, Mysuru

Thread 0

Thread 1

Thread 2

Thread 3

int n, thread_count

Trapezoidal Rule Example
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Variables in Trap():

Department of CSE, ATMECE, Mysuru

Thread 0

Thread 1

Thread 2

Thread 3

double local_a, local_b, my_result;

int local_n;

double local_a, local_b, my_result;

int local_n;

double local_a, local_b, my_result;

int local_n;

double local_a, local_b, my_result;

int local_n;

Private Scope
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double* global_result_p;

*global_result_p += my_result;

Department of CSE, ATMECE, Mysuru

Pointe

r
Shared Variable

#pragma omp critical to avoid race conditions.
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If global_result were private:??

Department of CSE, ATMECE, Mysuru

Why Scope Matters
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Before parallel block: variables are shared by default.

Inside parallel block or called functions: variables are private by default.

Shared variables: retain their values across the parallel block.

Private variables: are isolated per thread and discarded after the block.
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Thank You
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GPUs and GPGPU

In the late 1990s and early 2000s, the computer industry responded to the demand for highly realistic computer video games and video 

animations by developing extremely powerful graphics processing units or GPUs. 

These processors, as their name suggests, are designed to improve the performance of programs that need to render many detailed images.

One of the biggest difficulties faced by the early developers of GPGPU was that the GPUs of the time could only be programmed using 

computer graphics APIs, such as Direct3D and OpenGL. 
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GPU architectures

In a typical SIMD system, each datapath carries out the test x[i] >= 0. Then the datapaths for which the test is true execute 

x[i] += 1, while those for which x[i] < 0 are idle. Then the roles of the datapaths are reversed: those for which x[i] >= 0 

are idle while the other datapaths execute x[i]  = 2. 
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Heterogeneous computing

Writing a program that runs on a GPU is an example of heterogeneous computing.

Field Programmable Gate Arrays or FPGAs, and Digital Signal Processors or DSPs. FPGAs contain programmable 
logic blocks and interconnects that can be configured prior to program execution.

 DSPs contain special circuitry for manipulating (e.g., compressing, filter- ing) signals, especially “real-world” 
analog signals.
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CUDA hello

CUDA is a software platform that can be used to write GPGPU programs for heterogeneous 

systems equipped with an Nvidia GPU. 
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Compiling and running the program

$ nvcc -o cuda_hello cuda_hello.cu

If we want to run one thread on the GPU, we can type
$ ./cuda_hello 1

and the output will be 



30/08/2025 Department of CSE, ATMECE, Mysuru 11

Threads, blocks, and grids

Hello:

Hello <<<1, thread_count > > >(); 

Hello <<<2, thread_count / 2 >> >();

If thread_count is even, this kernel call will start a total of thread_count threads, and the 

threads will be divided between the two SMs: thread_count/2 threads will run on each SM. 

(What happens if thread_count is odd?)
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Nvidia compute capabilities and device architectures

There are a number of versions of the CUDA API, and they do not correspond to the compute 

capabilities of the different GPUs.

Name Ampere Tesla Fermi Kepler Maxwell Pascal Volta Turing

Compute 

capability

8.0 1.b 2.b 3.b 5.b 6.b 7.0 7.5

GPU architectures and compute capabilities.
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Vector addition

We’ll initialize x and y on the host. Then a kernel can start at least n threads, and the ith thread will add

z [ i ] = x [ i ] + y [ i ]; 

float ∗x , ∗y , ∗z ;

After allocating and initializing the arrays, 

we’ll call the kernel, and after the kernel completes execution, 

the program checks the result, frees memory, and quits. 
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Returning results from CUDA kernels
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CUDA trapezoidal rule I
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Initialization, return value, and final update

To deal with the initialization and the final update (Items 1 and 5), we could try to select a single thread—say, thread 0 in block 0—to carry out 

the operations:

∗int  my_i = blockDim . x blockIdx . x + threadIdx . x ;

if  ( my_i == 0 ) {

h = ( b−a )/ n ;

trap = 0 . 5 ∗ ( f ( a ) + f ( b )); 

}

. . . 

if  ( my_i == 0 )

trap = trap ∗h ;
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CUDA trapezoidal rule II: improving performance
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Performance
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The remaining codes for the warp sum kernel and the shared memory sum kernel are very similar. First warp 0 

computes the sum of the elements in warp_sum_arr. Then thread 0 in the block adds the block sum into the total 

across all the threads in the grid using atomicAdd. Here’s the code for the shared memory sum:

if  ( my_warp == 0 ) {

if  ( threadIdx . x >= blockDim . x / warpSize )

 warp_sum_arr [ threadIdx . x ]  =  0.0; 

blk_result =  Shared_mem_sum ( warp_sum_arr ); 

}

if  ( threadIdx . x == 0 )  atomicAdd ( trap_p ,  blk_result ); 
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Thank you 
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