ATME

atme | College of Engineering

PARALLEL COMPUTING Semester VII
Course Code BCS702 CIE Marks 50
Teaching Hours/Week (L:T:P: S) 3:0:2:0 SEE Marks 50
Total Hours of Pedagogy 40 hours Theory + 8-10 Lab slots Total Marks 100
Credits 04 Exam Hours 03
Examination nature (SEE) Theory/Practical

Course outcomes (Course SKkill Set):
At the end of the course, the student will be able to:
e [Explain the need for parallel programming

Demonstrate parallelism in MIMD system.
Apply MPI library to parallelize the code to solve the given problem.
Apply OpenMP pragma and directives to parallelize the code to solve the given problem

Design a CUDA program for the given problem.

ATME

atme College of Engineering

A % % bl l LbVv#

MODULE-1
Introduction to parallel programming, Parallel hardware and parallel software -

Classitications of parallel computers, SIMD systems, MIMD systems, Interconnection networks,

Cache coherence, Shared-memory vs. distributed-memory, Coordinating the processes/threads,
Shared-memory, Distributed-memory.

ATME

College of Engineering

i
E/\E/\E
———
- O) O

-:-..;*-
] |

ATME

College of Engineering

Pizza

A
RESTAURANT
—1 [~ '. ~|

Burger

ATME

College of Engineering

“Have you ever noticed your
phone running multiple apps
at once?”

¢ ® © o S °© ®
e e .o ® o ° ...¢ L4 ¢ [L :
° 0o® Vo 0 % mese®e .
©0% 0,0 o0 % e bttt ol
° .] ... o o, o*® ‘0% % ° g0 .'... o %® ° .
® ® 0y & o (]’o..... .‘. [°
[) .’.

°3s .Q.' .20‘.’ ':o...’:. ".00.

ATME

College of Engineering

Video streaming (Netflix
downloading + playing
simultaneously)

ATME

College of Engineering

Gaming consoles with
multiple players running on
separate

BAATME
AGENDA

Introduction to Parallel
Computing

Why It’s Needed

History and Motivation

Real-World Applications

Basic Concepts

2YATME

atme | College of Engineering

“Parallel Computing means performing many tasks
simultaneously”

30/08/25 Department of CSE, ATMECE, Mysuru

INCREASING DATA

CPU CLOCK SPEED
O REACHED LIMITS

-

ATME Q

College of Engineering

2YATME

atme | College of Engineering

Weather forecasting

Space Exploration

Online Platforms

Al training chatgpt using GPUs
autonomous vehicles

REAL WORLD
EXAMPLES

10/08/25 Department of C SEﬁe, Mysuru

2YATME

atme | College of Engineering

" \ « how multiple apps can run simultaneously on a computer

or phone and what happens internally

MULTITASKING

CPU CORE

OS SCHEDULER

Department of CSE, ATMECE, Mysuru

30/08/25

2YATME

atme | College of Engineering

HOW TASKS ARE ALLOCATED TO THE CORES OF THE CPVU?

A task can be: A Process
A thread

@ TASK CREATED:
@ READY QUEUE:

@ CORE AVAILABILITY:
@ CONTEXT SWITCHING:

@ EXECUTION
> MIGRATION
@ G

Department of CSE, ATMECE, Mysul

30/08/25

RJATME

atme | College of Engineering

BASIC
CONCEPTS

>

Data parallelism

Task parallelism

Department of CSE, ATMECE, Mysuru

A TME

atme | College of Engineering

PARALLEL ARCHITECTURES C

o
T
e
Wi
T
T
T

« Shared Memory
e Distributed Memory

ATME

atme | College of Engineering

Why We Need to Write Parallel Programs

1. The problem with old (serial) programs
Most existing programs were written for single-core systems.

On a multicore system, you can run multiple instances of the same program (e.g., run 4 games at once),
but that’s not useful — users want one program to run faster and better, not more copies.

Therefore: To use multiple cores effectively, programs must be parallelized.

ATME

atme | College of Engineering

2. Automatic conversion isn’t enough

Researchers have tried to create compilers that translate serial code to parallel code.

Success has been limited because:

. Translating each step independently into parallel code often leads to inefficiency.

. Sometimes the best parallel solution requires a completely new algorithm, not just a

step-by-step parallelization of the serial one.

. Example: Matrix multiplication — turning it into parallel dot-products may be inefficient

compared to designing a new parallel matrix multiplication algorithm.

ATME

atme |College of Engineering

Serial code(one core): Summation
sum = 0;
for(i=0;i<n;i++){

x = ComputeNextValue(...);

sum += X;

ATME

atme College of Engineering

The second method: Pairwise (tree-style) reduction

Instead of all cores sending to the master, we combine results in stages:
. Stage 1: Pair the cores:

. Core 0+ Core 1, Core 2 + Core 3, Core 4 + Core 5, Core 6 + Core /.
. Stage 2: Pair the winners (even-numbered cores now hold results):

. Core O + Core 2, Core 4 + Core 6.

. Stage 3: Final combination:

. Core O + Core 4.

ATME

atme |College of Engineering

Py
ss\
= (\p2
£()

°°'t oY

FIGURE 1.1

Multiple cores forming a global sum

ATME

atme College of Engineering

Comparing the two global sum methods

Method 1 (naive / centralized):
. Master adds up results from all cores.

. Needs p — 1 operations (e.g., 999 adds for 1000 cores).

Method 2 (tree reduction):

. Results combined in pairs over stages.

. Needs log,(p) operations (e.g., only 10 adds for 1000 cores).

. Much more efficient, especially as p grows.

ATME

atme | College of Engineering

how we actually write parallel programs and the main challenges

Two Main Approaches to Parallelism

1. Task Parallelism
. Different cores do different tasks.

. Example: In grading exams, one person grades only Question 1 (Shakespeare), another grades
Question 2 (Milton), and so on.

. Eachis doing a different job, so the instructions differ.

ATME

atme College of Engineering

2. Data Parallelism

Different cores do the same task on different pieces of data.

Example: Split the 100 exam papers into 5 piles of 20. Each TA grades all questions on their
pile. Same instructions, but applied to different data.

ATME

atme College of Engineering

Von Neumann Architecture (Classical Computer Design)

CPU
ALU Control
registers registers
I | I I
| | | |
I | I |
N
VW
Interconnect
N
WV
Address Contents

* e —

Main memory

FIGURE 2.1

The von Neumann architecture

24AATME

atme College of Engineering

Von Neumann Bottleneck

Problem: The CPU is much faster than the memory access speed.

CPU may execute 100+ instructions in the time it takes to fetch one piece of data from memory.

The bus/interconnect limits how quickly data & instructions travel.

Analogy:

CPU is like factory making products.

Memory is warehouse storing raw materials (data) and finished products (results).

Road (bus) is the transport system between them.

If the road is too narrow (limited bandwidth), the factory workers sit idle because raw materials arrive too slowly.

24AA TME

atme | College of Engineering

Modifications to the von Neumann model

The von Neumann bottleneck means the CPU is very fast, but memory (RAM) is much slower. Since the CPU often has to wait for
memory, overall performance suffers.

To fix this, computer engineers added caching, virtual memory, and parallelism.
This part is about caching.

What is caching?
Think of it like this:
CPU = factory
Main memory = warehouse

Road between them = slow, two-lane road

The CPU constantly needs raw materials (data & instructions) from memory. If every time it has to go to the warehouse far away,
it wastes time.

Solution is to Build a small storeroom (cache) right next to the CPU.
Cache stores a small amount of data that the CPU is very likely to need soon. It’s much faster to access than main memory.

ATME

atme College of Engineering

Cache mappings

1. Fully Associative
2. Direct Mapped

3. N-way Set Associative

ATME

atme | College of Engineering

Locality:
. Spatial locality: if you use A[0][0], you’ll probably use A[0][1], A[O][2] soon.

. Temporal locality: if you use a value once, you might use it again later.

for (i=0; i < MAX; i++)
for (j = 0; j < MAX; j++)
yli] += Afi][j] * x[j];

. Access pattern: row by row - contiguous memory.
Example (MAX=4):
. Access order: A[O][O], A[O][1], A[O][2], A[O][3] (all in same cache line - only 1 miss).
. Next row: A[1][0]...A[1][3] = again, just 1 miss.

ATME

atme | College of Engineering

virtual memory

Virtual memory gives:

Illusion of large memory (even bigger than RAM, because disk is used as backup).
Protection (one program cannot overwrite another’s memory).

Flexibility (any program can use any free RAM block).

‘Memory is divided into pages (usually 4 KB—16 KB).
Disk also has swap space divided into same-sized pages.

A program uses virtual addresses - these get mapped to physical addresses in RAM.

ATME

atme College of Engineering

Table 2.3 Pipelined Addition. Numbers in the Table Are
Subscripts of Operands/Results
Time Fetch Compare Shift Add Normalize Round Store

O O

1 1 O

2 2 1 0]

3 3 2 1 O

4 4 3 2 1 O

S) S 4 3 2 1 O

6 6 5 4 3 2 1 O

999 999 998 997 996 995 994 993

1000 999 998 997 996 995 994
1001 999 998 997 996 995
1002 999 998 997 996
1003 999 908 997
1004 999 998
1005 999

ATME

College of Engineering

Distributed-memory interconnects

10
S 0
&0

(a) (b)
FIGURE 2.8

(a) A ring and (b) a toroidal mesh.

ATME

atme College of Engineering

A/A B\B B/A B\A
\A B/ \B A/_

(a) (b)
FIGURE 2.9

Two bisections of a ring: (a) only two communications can take place between the halves
and (b) four simultaneous connections can take place.

ATME

atme College of Engineering

_/ _/ _/ Y,
FIGURE 2.10

A bisection of a toroidal mesh.

ATME

atme |College of Engineering

/
\

FIGURE 2.11

A fully connected network.

ATME

atme College of Engineering

Cache coherence: CPU caches are managed by system hardware: programmers don’t have direct
control over them. This has several important consequences for shared-memory systems.

Core 0O Core 1
A~
!]
Cache O Cache 1

i\ A

Y e
Interconnect

|

yO z1

FIGURE 2.17

A shared-memory system with two cores and two caches.

ATME

atme College of Engineering

Nondeterminism?

In MIMD systems (Multiple Instruction, Multiple Data) where multiple processors (or threads)
run at the same time, they usually don’t stay perfectly in sync.

This means the same input might produce different outputs depending on how the
processors finish their tasks. This unpredictability is called nondeterminism.

A TME

atme | College of Engineering

Thank You

BRJATME

atme College of Engineering

PARALLEL COMPUTING Semester VII
Course Code BCS702 CIE Marks 50
Teaching Hours/Week (L:T:P: S) 3:0:2:0 SEE Marks 50
Total Hours of Pedagogy 40 hours Theory + 8-10 Lab slots Total Marks 100
Credits 04 Exam Hours 03
Examilnation nature (SEE) Theory/Practical

Course outcomes (Course SKkill Set):
At the end of the course, the student will be able to:
e Explain the need for parallel programming

Demonstrate parallelism in MIMD system.
Apply MPI library to parallelize the code to solve the given problem.
Apply OpenMP pragma and directives to parallelize the code to solve the given problem

Design a CUDA program for the given problem.

BJATME

atme College of Engineering

MODULE-2

GPU programming, Programming hybrid systems, MIMD systems, GPUs, Performance —
Speedup and efticiency in MIMD systems, Amdahl’s law, Scalability in MIMD systems, Taking
timings of MIMD programs, GPU performance.

BRJATME

atme College of Engineering

GPU programming

GPUs are usually not “standalone” processors. They don’t ordinarily run an operating system and system services,

such as direct access to secondary storage.

So, program ming a GPU also involves writing code for the CPU “host” system, which runs on an ordinary CPU. The
memory for the CPU host and the GPU memory are usually separate. So, the code that runs on the host typically
allocates and initializes storage on both the CPU and the GPU.

It will start the program on the GPU, and it is responsible for the output of the results of the GPU program. Thus,

GPU programming is really heterogeneous programming, since it involves programming two different types of

Pprocessors.

BRJATME

atme College of Engineering

// Thread private variables
int rank_in_gp, my_x;

if (rank_in_gp < 16)
my x 4= 1;

else
my x —= 1;

Then the threads with rank < 16 will execute the first
assignment, while the threads with rank > 16areidle.

BRJATME

atme College of Engineering

MIMD systems

We've generally avoided the issue of input and output. There are a couple of reasons.

First and foremost, parallel I/0O, in which multiple cores access multiple disks or other devices, is a subject to
which one could easily devote a book.

When we call printf from multiple processes, we, as developers, would like the output to appear on the
console of a single system, the system on which we started the program.

BRJATME

atme College of Engineering

GPUs

In most cases, the host code in our GPU programs will carry out all I/O. Since we’ll only be running one

process/thread on the host, the standard C I/O functions should behave as they do in ordinary serial C programs.

The exception to the rule that we use the host for I/O is that when we are debug ging our GPU code, we’ll want to be
able to write to stdout and/or stderr. In the systems we use, each thread can write to stdout, and, as with MIMD
programs, the order of the output is nondeterministic. Also, in the systems we use, no GPU thread has access to stderr,

stdin, or secondary storage.

Z{ATME O
atme College of Engineering T

PERFORMANCE

1. Speedup and efficiency in MIMD systems

S = Tserial ,
Tparallel

This value, S/p, is sometimes called the efficiency of the parallel program.
If we substitute the formula for S, we see that the efficiency is

Teedial
B § = (Tparullcl) s T serial
P P P Tparallel

BRJATME

atme College of Engineering

Table 2.4 Speedups and Efficiencies
of a Parallel Program

p 1 2 4 8 16

S 1.0 L2 3.6 6.5 10.8
E=S/p 1.0 095 0.90 0.81 0.68

Table 2.5 Speedups and Efficiencies of a
Parallel Program on Different Problem Sizes
P 1 2 4 8 16
Half S 1.0 1.9 3.1 4.8 6.2
E 1.0 0.95 0.78 0.60 0.39
Original S 1.0 1.9 3.6 6.5 10.8
E 1.0 0.95 0.90 0.81 0.68
Double S 1.0 1.9 3.9 7:5 14.2
= 1.0 0.95 0.98 0.94 0.89

24ATME 70N
atme College of Engineering A 8

Many parallel programs are developed by dividing the work of the serial program among the processes/threads and
adding in the nec-essary “parallel overhead” such as mutual exclusion or communication.

Therefore, if Toverhead denotes this parallel overhead, it’s often the case that

Toarattel = Tserial/P + Toverhead-

BJATME

atme College of Engineering

16 T T T . . i '

—»— Half size
14 | | —+— Original
—e— Double size

Speedup

Processes

FIGURE 2.18

Speedups of parallel program on different problem sizes

BRJATME

atme College of Engineering

2. Amdahl’s law

Tharallel = 0.9 X Tserial/p +0.1 X Tgeriat = 18/p + 2,

and the speedup will be
Terial 20

= = :
0.9 X Teerial/p+ 0.1 X Terit 18/p+2

Z{ATME O
atme College of Engineering T

Now as p gets larger and larger, 0.9 Twia=p = 18=p gets closer and closer to 0, so the total parallel run-time can’t be

smaller than 0.1 Tseriat = 2. That is, the denominator in S can’t be

smaller than 0.1 Tseriat = 2. The fraction S must therefore be smaller than

Tparallel = 0.9 X Tserial/p + 0.1 X Tseriat = 18/p + 2,

and the speedup will be
S = T serial . 20
0.9 X Tseria1/p + 0.1 X Terial 18/p+2 '

BRJATME

atme College of Engineering
To see if the program is scalable, we inc

3. Scalability in MIMD systems
As an example, suppose that Tserial = n, where the units of Tserial are in microseconds,

and n is also the problem size. Also suppose that Tparallel = n/p + 1. Then

n n

E_

~pn/p+1) ji nTp

BRJATME

atme College of Engineering

4. Taking timings of MIMD programs

The first thing to note is that there are at least two different reasons for taking timings. During program
development we may take timings in order to determine if the program is behaving as we intend.

Second, we’re usually not interested in the time that elapses between the pro-gram’s start and the program’s
finish.

Third, we’re usually not interested in “CPU time.” This is the time reported by the standard C function clock.

BRJATME

atme College of Engineering

5 GPU performance

It’s quite common to see reported speedups of GPU programs over serial programs or parallel MIMD

programs.

Since efficiency of a GPU program relative to a CPU program doesn’t make sense, the formal definition of

the scalability of a MIMD program can’t be applied to a GPU program.

It should be noted that the same caveats that apply to Amdahl’s law on MIMD systems also apply to
Amdahl’s law on GPUs:

BJATME

atme College of Engineering

Thank you

BRJATME

atme College of Engineering

PARALLEL COMPUTING Semester VII
Course Code BCS702 CIE Marks 50
Teaching Hours/Week (L:T:P: S) 3:0:2:0 SEE Marks 50
Total Hours of Pedagogy 40 hours Theory + 8-10 Lab slots Total Marks 100
Credits 04 Exam Hours 03
Examilnation nature (SEE) Theory/Practical

Course outcomes (Course SKkill Set):
At the end of the course, the student will be able to:
e Explain the need for parallel programming

Demonstrate parallelism in MIMD system.
Apply MPI library to parallelize the code to solve the given problem.
Apply OpenMP pragma and directives to parallelize the code to solve the given problem

Design a CUDA program for the given problem.

BRJATME

atme College of Engineering

MODULE-3
Distributed memory programming with MPI — MPI functions, The trapezoidal rule in MPI,

Dealing with 1/0, Collective communication, MPI-derived datatypes, Performance evaluation of
MPI programs, A parallel sorting algorithm.

BRJATME

atme College of Engineering

A distributed memory system

CPU CPU CPU CPU
A) A .. N
V YV \4 V
Memory Memory Memory Memory
A A A
V v v V
Interconnect

BJATME

atme College of Engineering

CPU

A shared memory system

CPU

CPU

N
V

CPU

Interconnect

\4

Memory

BRJATME

atme College of Engineering

Hello World!

#include <stdio.h>

int main(void) |
printf("hello, world\n"):

return 0;

Pl

Fo
(b

% 10

BRJATME

atme College of Engineering

|dentifying MPI processes

Common practice to identify processes by nonnegative integer ranks.

processes are numbered

BRJATME

atme College of Engineering

eopm: ququ "v oy
&) \
3] a

- J = 4
R, I Gl
CREDITED

%c 10 ¥

wrapper script to compile

Y source file
\} > > Compilation
produce

create this executable file name

debugging (as opposed to default a.out)

information

turns on all warnings

BRJATME

atme College of Engineering

mpiexec -n <number of processes> <executable>

mpiexec -n 1 ./mpi_hello

L Execution
run with 1 process

mpiexec -n 4 ./mpi_hello

L run with 4 processes

BRJATME

atme College of Engineering

mpiexec -n 1 ./mpi_hello

Greetings from process 0 of 1!

mpiexec -n 4 ./mpi_hello

Greetings from process 0 of 4 !
Greetings from process 1 of 4 !
Greetings from process 2 of 4 !
Greetings from process 3 of 4 |

BRJATME

atme College of Engineering

MPI| Programs

Written in C.
Has main.
Uses stdio.h, string.h, etc.
Need to add mpi.h header file.
|dentifiers defined by MPI start with “MP1_".
First letter following underscore is uppercase.
For function names and MPI-defined types.

Helps to avoid confusion.

BRJATME

atme College of Engineering

MPI| Components

MPI_ Init
Tells MPI to do all the necessary setup.

int MPI Init(
Iint * argc_p [F+ in/fout =/,
char*=+ argv_p /* in/out */);

MPI_Finalize
Tells MPI we’re done, so clean up anything allocated for this program.

int MPI Finalize(void);

BJATME

atme College of Engineering

#include <mpi.h>

A collection of processes that can

int main { int arqgc, char* ar qv []) { send messages to each other.
/#= No MPI calls before this =#/ MPI_Init defines a communicator
MPI_Init(&argc, &argv): that consists of all the processes
o created when the program is
MPI_Finalize (); started Called

/% No MPI calls after this */ MPI_COMM_WORLD.

return 0:

BRJATME

atme College of Engineering

int MPI Comm size(
MPI _Comm cComm f= in %/,
int * COmMM_SZ_P F# out *=/):

number of processes in the communicator

Communicators

int MPI Comm _rank(

MPI_Comm cComm f= in %/,
int = my_rank_p f+ out */):
my rank

(the process making this call)

BRJATME

atme College of Engineering

MPI datatype

C datatype

MPI_CHAR
MPI_SHORT

MPI_INT

MPI_LONG
MPI_LONG_LONG
MPI_UNSIGNED_CHAR
MPI_UNSIGNED_SHORT
MPI_ UNSIGNED
MPI_UNSIGNED_LONG
MPI_FLOAT
MPI_DOUBLE
MPI_LONG_DOUEBLE
MPI_BYTE
MPI_PACKED

signed char

signed short int
signed int

signed long int
signed long long int
unsigned char
unsigned short int
unsigned int
unsigned long int
float

double

long double

Data types

BJATME

atme College of Engineering

int MPI_Recv(

voild
int

¥

MPI_D

int
int

atatype

MEI Comm

MPI_

[,
!

LdLUs#

msg_buf_p
buf_size
buf_type
spurce
tag

communicator
status_p

olt
In
In
n
In
In
0t

*/
*/
*/
x/
*/

*/
#/)

BJATME

atme College of Engineering

MPI_Send(send_buf_p, send_buf_sz, send_type, ._

ﬂ r
MPI Send

STC = ¢ ', P

Message matching

MPI Recv

dest =r

MPI_Recv(recv. buf_p, recv_buf_sz, recv_type, .@’
._ &status); \

q

BRJATME

atme College of Engineering

Recelving messages

A receiver can get a message without knowing:

the amount of data in the message,

the sender of the message,

or the tag of the message.

BRJATME

atme College of Engineering

MPI_Recv(recv_buf_p, recv_buf_sz, recv_type, src, recv_tag,
recv_comm, &status);:

MPI_Status*

MPI_Status* status; MPI_SOURCE
MPI TAG

MPI ERROR

status. MPI_SOURCE
status. MPI_TAG

BJATME

atme College of Engineering

int MPI Get count/(
MPI_Status* status_p J/* in =%/,
MPI_Datatype type /¥ in =/,
int count_p f% out =/):

BRJATME

atme College of Engineering

Exact behavior is determined by the MPI implementation.

MPI_Send may behave differently with regard to buffer size, cutoffs and
blocking

BJATME

atme College of Engineering

/x Input: a, b, n %/
h = (b—a)/n;
approx = (f(a) + t(b))/2.0;
for (i =1; 1 <= n=1; i++) {
X_1 = a + 1xh;
approx += f(x_1);

j

approx = hxapprox;

BJATME

atme College of Engineering

BRJATME

atme College of Engineering

#include <stdio.h>
#include <mpi.h>

int main(void) {
int my _rank, comm_sz:

Dealing with 1/0O

MPI Init (NULL, NULL):
MPI Comm_size(MPI COMM_WORLD, &comm_sz);
MPI_Comm_rank(MPI_COMM_WORLD, &my_rank):

printf("Proc %d of %d > Does anyone have a toothpick?\n",
my_rank, comm_sSz);

MPI Finalize ();

return 0:
b /% main =/

BJATME

atme College of Engineering

ol = [d =

N

of 6 > Does
of 6 > Does
of 6 > Does
of 6 > Does
of 6 > Does
of 6 > Does

dllyone
dllyone
dliyone
dllyone
dllyoIne
dllyone

unpredictable output

have
have
have
have
have
have

STRRA T TR VR e TR o1

toothpick?
toothpick?
toothpick?
toothpick?
toothpick?
toothpick?

BRJATME

atme College of Engineering

MPI Comm_rank(MPI_COMM_WORLD, &my_rank):
MPI Comm size(MPI COMM WORLD, &comm sz): Input

Get _data(my_rank, comm_sz, &a, &b, &n);

h = (b-a)/n:

BJATME

atme College of Engineering

Collective communication

24ATME 0
atme College of Engineering T

Processes

A tree-structured global sum

BRJATME

atme College of Engineering

MPI_Reduce

MPI Reduce(&local int, &total int, 1, MPI DOUBLE, MPI SUM., 0,
MPI COMM WORLD);

double local x[N]. sum|[N]:

MPI Reduce(local x, sum, N, MPI DOUBLE., MPI SUM, O,
MPI COMM _WORLD);

BRJATME

atme College of Engineering

Predefined reduction operators in MPI

Operation Value | Meaning

MPI_MAX Maximum

MPI_MIN Minimum

MPI_SUM Sum

MPI_PROD Product

MPI_LAND Logical and

MPI_BAND Bitwise and

MPI_LOR Logical or

MPI_BOR Bitwise or

MPI_LXOR Logical exclusive or

MPI_BXOR Bitwise exclusive or

MPI_MAXLOC Maximum and location of maximum
MPI_MINLOC Minimum and location of minimum

Pl

-

W)

% 10

BRJATME

atme College of Engineering

Collective vs. Point-to-Point Communications

All the processes in the communicator must call the same collective function.

For example, a program that attempts to match a call to MP| Reduce on one process with a call to
MPI Recv on another process is erroneous, and, in all likelihood, the program will hang or crash.

BRJATME

atme College of Engineering

Example (1)
Time || Process 0 Process | Process 2
0 a=1 c =2 a=1; ¢ =2 a=1; c=2
1 MPI_Reduce(&a, &b, MPI_Reduce (&c, &d, MPI_Reduce (&a, &b,
2 MPI Reduce (&c, &d, MPI_Reduce (&a, &b, MPI Reduce (&c, &d,

Multiple calls to MPI_Reduce

:‘“W ws\
()

% 10

BRJATME

atme College of Engineering

int MPI Allreduce(

void = input_data_p /0N /!,
void = output_data_p /% out =/,
int count /0N /.
MPI Datatype datatype TE /!,
MPI_Op operator E b /
MPI Comm Comm ET] /)

MPI1_Allreduce

BJATME

atme College of Engineering

Processes

A global sum followed
by distribution of the
result.

Processes

BJATME

atme College of Engineering

Processes
0 1 2 4 5

6
A butterfly-structured global sum.
ogovel \@ >@
Y

BJATME

atme College of Engineering

Broadcast
int MPI Bcast(
void = data_p / in/out =/,
int count /¥ 0in w/
MPI Datatype datatype VETR T #/
int source_proc /+ 0N #/
MPI Comm comm /+ In /)

BJATME

atme College of Engineering

()

A tree-structured broadcast.

S
X

3 4

@/z/j/

o (o) -

o

Processes

BRJATME

atme College of Engineering

X0 X1, .-y Xn—1) + (YO, ¥15-+ -5 Vn—1)
X0+ Y0, X1 + V15w Xp—1 +Vn1)

-
|
-
|
—

——

:ﬂﬁzlﬁ“'ﬂ‘zﬂ—l)

|
N —

Compute a vector sum.

BRJATME

atme College of Engineering

Different partitions of a 12-component vector among 3
processes

Components
Block-cyclic
Process Block Cyclic Blocksize = 2
0 0111213 J0(3[6]9 ||0]1] 67
I 41516 | 7|14y 7110]|2]3] 8|9
2 1911011 (|25 |8|11||4|5]10]11

BRJATME

atme College of Engineering

Partitioning options

Block partitioning
Assign blocks of consecutive components to each process.

Cyclic partitioning
Assign components in a round robin fashion.

Block-cyclic partitioning
Use a cyclic distribution of blocks of components.

. o
BRJATME)
atme College of Engineering el
Scatter
int MPI Scatter(

void * send buf p /% in %/ ,)

. o T MPI Scatter can be used in a function that reads

int send_count /% in */ _ — .

MPI_Datatype send type /+ in %/ in an entire vector on process 0 but only sends the

void x recv_buf p /+ out /. needed components to each of the other

int recv_count /% in %/, processes.

MPI_Datatype recv_type l# 0in %/

int Src_proc [+ in %/,

MPI Comm comm [+ 0in %/

BJATME

atme College of Engineering

int MPI_Gather(

void = send buf p /% in %/,

Int send_count /x in */, Collect all of the components of
MPI Datatype send type [+ 0in o/, the vector onto process 0, and
void + recv_buf_p /x out #/ then process 0 can process all of
int recv_count /% In */ the components.
MPI_Datatype recv_type [0in =/,

int dest_proc S in #/

MPI Comm C omm J= N +/)

BRJATME

atme College of Engineering

Matrix-vector multiplication

ano ol d.n—1

a1p an 1 n—1

din il din—1
Um—1.0 | dm—1.1 Um—1.n—1

A0
X1

Al

Yo

W1

Vi = djpXg +djlX1 + - djp—1Xp—1

Vm—1

BJATME

atme College of Engineering

01 2 3
4 5 6 7
§ 9 10 11 B

0123456789 1011

BJATME

atme College of Engineering

&&

\

Mpi derived datatypes

BRJATME

atme College of Engineering

Int MPI Type create struct|

Int count [+ in .
Int array_of blocklengths[] /+# in #/,
MPT Aint array_of displacements|| /# in +#/,
IPT Datatype array_of typss| [+ 1N],
IPT Datatypes new _type p [+ out +/):

BJATME

atme College of Engineering

Performance evaluation

BJATME

atme College of Engineering

Elapsed parallel time

Elapsed serial time

BJATME

atme College of Engineering

MPI1_Barrier

int MPI Barrier(MPI Comm comm J+ 0in */);

BRJATME

atme College of Engineering

Run-times of serial and parallel matrix-vector multiplication

Order of Matrix
comm_sz || 1024 | 2048 | 4096 | 8192 | 16,384
] 411 16.0 | 64.0| 270 1100
2 2.3 85| 33.0| 140 560
4 2.0 5.1 | 18.0 70 280
8 [.7 3.3 0.8 36 140
16 [.7 2.6 5.9 19 71

BJATME

atme College of Engineering

- _ Tserja1()
‘S[:”: J”\»] T T Speedup
paral]el(”: p)
S(n, f B
E(n,p)= (,P) = serial) Efficiency

P P > Inarallel (n,p)

BRJATME

atme College of Engineering

A parallel sorting algorithm

Serial odd-even transposition sort

Parallel odd-even transposition sort

Process
Time 0 | 2 3
Start 15.11.9,16 3.14.8.7 4.6.12.10 5.2.13. 1
After Local Sort || 9, 11, 15, 16 3.7.8. 14 4.6.10,12 [.2.5.13
After Phase 0 3.7.8.9 1. 14, 15,16 1,2.4.5 6. 10,12, 13
After Phase 1 3.7.8.9 1,2.4.5 [1. 14, 15,16 | 6.10.12. 13
After Phase 2 1,2,3.4 5.7.8.9 6,10, 11,12 | 13,14, 15,16
After Phase 3 1.2,.3.4 5.6.7.8 9,10, 11,12 | 13.14.15.16

BJATME

atme College of Engineering

int MPI_Ssend(
void
int
MPI _Datatype
int
int

MPI Comm

msg_buf_p
msg_size
msg_type
dest

tag
communicator

~ >~ > > >

in
in
in
in
in
in

MPI_Ssend

BJATME

atme College of Engineering
int MPI Sendrecv(

void + send_buf_p [+ in +/,
int send buf size /% in =/,
MPI Datatype send_buf type /% In %/,
int dest [+ In #/,
int send_tag [+ 0in #/, MPI_Sendrecv
void + recv_buf p [+ out */,
int recv_buf size /x in #/,
MPI Datatype recv_buf type /x In =%/,
int source [+ In o/,
int recv_tag [+ in %/,
MPI Comm communicator /+ In £/,
MPI Status# status_p f 0In %=/

Pl
-~

) {5}

% 10

BJATME

atme College of Engineering

_ _ Safe communication with five
Time 0 Time 1 processes

BJATME

atme College of Engineering

Thank you

BRYJATME

atme College of Engineering

PARALLEL COMPUTING Semester VII
Course Code BCS702 CIE Marks 50
Teaching Hours/Week (L:T:P: S) 3:0:2:0 SEE Marks 50
Total Hours of Pedagogy 40 hours Theory + 8-10 Lab slots Total Marks 100
Credits 04 Exam Hours 03
Examilnation nature (SEE) Theory/Practical

Course outcomes (Course SKkill Set):
At the end of the course, the student will be able to:
e Explain the need for parallel programming
Demonstrate parallelism in MIMD system.
Apply MPI library to parallelize the code to solve the given problem.
Apply OpenMP pragma and directives to parallelize the code to solve the given problem

Design a CUDA program for the given problem.

BRJATME

atme College of Engineering

MODULE-4
Shared-memory programming with OpenMP — openmp pragmas and directives, The trapezoidal

rule, Scope of variables, The reduction clause, loop carried dependency, scheduling, producers and
consumers, Caches, cache coherence and talse sharing in openmp, tasking, tasking, thread safety.

BJATME

atme College of Engineering

Shared Memory with MIMD

BRJATME

atme College of Engineering

All chefs working in the same kitchen,

using the same fridge and pantry

BJATME

atme College of Engineering

O

P

L o

RJATME

atme College of Engineering

OpenMP vs. Pthreads

Feature OpenMP Pthreads

Very easy—just add Complex—you manually

Ease of Use boraama om create and manage
P 2 threads

Control Compiler handles You control everything
thread creation & sync (creation, sync, etc.)
Looks like regular serial Requires lots of

S S code boilerplate and setup

: Implicit (compiler Explicit (you decide
FElEl OIS U decides) everything)

Best For Quick parallelization of Fine-grained control

loops & tasks over thread behavior
Debuaain Easier—Iless thread Harder—more chances
9ging management for race conditions

28-08-25 Department of CSE, ATMECE, Mysuru

2YATME

atme College of Engineering

Getting Started with OpenMP

OpenMP is directives-based.
In C/C++ — uses pragmas (special compiler instructions).

If a compiler doesn’t support OpenMP, it just ignores them, and the program runs sequentially.
So, an OpenMP program can run both with and without OpenMP.

Department of CSE, ATMECE, Mysuru

28-08-25

2YATME

atme College of Engineering

finclude <omp.h>

void Hello(void); /* Thread function */

int main(int argc, char* argv[]) {
/*¥ Get number of threads from command line */

int thread count = strtol(argv[1l], NULL, 10);

#pragma omp parallel num_threads(thread_count)

Hello();

return 9;

} /* main */

void Hello(void) {
int my_rank = omp_get thread num();

int thread_count = omp_get num_threads();

printf("Hello from thread %d of %d\n", my_rank, thread_count);
} /* Hello */

28-08-25 Department of CSE, ATMECE, Mysuru]

‘ ‘ Hello from thread 0 of 4

Hello from thread 1 of 4
Hello tfrom thread 2 of 4
Hello from thread 3 of 4

28-08-25 Department of CSE, ATMECE, Mysuru

‘ ‘ Hello from thread 2 of 4

Hello from thread 0 of 4
Hello from thread 3 of 4
Hello from thread 1 of 4

28-08-25 Department of CSE, ATMECE, Mysuru

2YATME

atme College of Engineering

Master thread: the original thread (thread 0).
Parent thread: the one that started new threads.
Child threads: threads created by parent.

OpenMP Terminology threads must finish before continuing.

Team: group of threads executing parallel block.
At the end of a parallel block — implicit barrier: all

Department of CSE, ATMECE, Mysuru

28-08-25

MATME

S I-GAUGE

INDIAN COLLEGE RATINGS

atme College of Engineering

2YATME

atme College of Engineering

Error checking

If OpenMP is available, each thread can compute the area of a chunk of trapezoids and then combine
their results.

If OpenMP is not available, the code assumes a single-threaded fallback:
The thread rank is set to 0.
The total number of threads is 1.

The Hello() function runs just once.

Department of CSE, ATMECE, Mysuru

28-08-25

2YATME

atme College of Engineering

if (argc 1= 2) {
fprintf(stderr, "Usage: %s <number of threads>\n", argv|[0]);
exit(1);

}

long thread_count = strtol(argv[1], NULL, 10);

if (thread_count <= 0) {
fprintf(stderr, "Thread count must be positive\n");

exit(1);

Department of CSE, ATMECE, Mysuru

28-08-25

RJATME

atme College of Engineering

Compiler Support Check with OPENMP
Use preprocessor guards to avoid compilation errors on unsupported compilers:

Header Inclusion
#ifdef OPENMP

28-08-25 Department of CSE, ATMECE, Mysuru

2YATME

atme College of Engineering

Optional: Runtime Thread Count Check

if (omp_get num_threads() != thread _count) {

fprintf(stderr, "Warning: Requested %ld threads, but got %d\n", thread count, omp _get num_threads());

28-08-25 Department of CSE, ATMECE, Mysuru

a xo Xi

(a) (b)

FIGURE 5.3: The trapezoidal rule.

s=a+i-h fori=12...,n-1
v Bample:fa=0,0="1andn=4
3. How does the formula work?

o Start with the boundary points: w ' h = % — 0-25

o Add values at all interior points; f (wl) + f(wg) + 4 f (wn_l)

* Multiply by step size h. ' 331 — . 'I' 1 ! .-25 = .-25
That gives the trapezoidal approximation. N $2 - . _|_ 2 . ..25 - ..50

v 23=043-025=07

These are the points where you evaluate (:B) inside the interval,

RJATME

atme College of Engineering

Variable Scope in OpenMP vs. Serial Programming

Function-wide scope

File-wide scope

28-08-25 Department of CSE, ATMECE, Mysuru

RJATME

atme College of Engineering

OpenMP Scope: Thread Accessibility

void Hello(void) {
int my_rank = omp_get thread _num();
int thread _count = omp_get num_threads();
printf("Hello from thread %d of %d\n", my_rank, thread count);

}

28-08-25 Department of CSE, ATMECE, Mysuru

RJATME

atme College of Engineering

Trapezoidal Rule Example

shared scope:

Thread

Thread 1\
int n, thread _count

Thread 2-

Thread

28-08-25 Department of CSE, ATMECE, Mysuru

2YATME

atme College of Engineering

Variables in Trap():

double local_a, local b, my_result;
int local_n;

Thread 6-

double local_a, local b, my_result;
int local_n;

Thread 1T

double local_a, local b, my_result;
int local_n;

Thread 2—

Thread 3— _double local_a, local b, my_result;
int local_n;

Private Scope

28-08-25 Department of CSE, ATMECE, Mysuru

2YATME

atme College of Engineering

Pointe Shared Variable

double* global result_p;
*global_result p += my_result;

#pragma omp critical to avoid race conditions.

28-08-25 Department of CSE, ATMECE, Mysuru

RJATME

atme College of Engineering

Why Scope Matters

If global_result were private:??

28-08-25 Department of CSE, ATMECE, Mysuru

2YATME

atme College of Engineering

Before parallel block: variables are shared by default.
Inside parallel block or called functions: variables are private by default.
Shared variables: retain their values across the parallel block.

Private variables: are isolated per thread and discarded after the block.

28-08-25 Department of CSE, ATMECE, Mysuru

RJATME

atme College of Engineering

Thank You

28-08-25 Department of CSE, ATMECE, Mysuru

BRJATME

atme College of Engineering

PARALLEL COMPUTING Semester VII
Course Code BCS702 CIE Marks 50
Teaching Hours/Week (L:T:P: S) 3:0:2:0 SEE Marks 50
Total Hours of Pedagogy 40 hours Theory + 8-10 Lab slots Total Marks 100
Credits 04 Exam Hours 03
Examilnation nature (SEE) Theory/Practical

Course outcomes (Course SKkill Set):
At the end of the course, the student will be able to:
e Explain the need for parallel programming

Demonstrate parallelism in MIMD system.
Apply MPI library to parallelize the code to solve the given problem.
Apply OpenMP pragma and directives to parallelize the code to solve the given problem

Design a CUDA program for the given problem.

BJATME

atme College of Engineering

| MODULE-5 |
GPU programming with CUDA - GPUs and GPGPU, GPU architectures, Heterogeneous
computing, Threads, blocks, and grids Nvidia compute capabilities and device architectures, Vector
addition, Returning results from CUDA kernels, CUDA trapezoidal rule I, CUDA trapezoidal rule
I1I: improving performance, CUDA trapezoidal rule I1l: blocks with more than one warp.

2AA TME

atme College of Engineering

Pl
h :
4 :

% 10

GPUs and GPGPU

In the late 1990s and early 2000s, the computer industry responded to the demand for highly realistic computer video games and video
animations by developing extremely powerful graphics processing units or GPUs.

These processors, as their name suggests, are designed to improve the performance of programs that need to render many detailed images.

One of the biggest difficulties faced by the early developers of GPGPU was that the GPUs of the time could only be programmed using
computer graphics APIs, such as Direct3D and OpenGL.

BRJATME

atme College of Engineering

GPU architectures

if (x[1]>=0)

x[1]+=1;
else|
x[1]—=2;

In a typical SIMD system, each datapath carries out the test x[1] >= 0. Then the datapaths for which the test 1s true execute
x[1] += 1, while those for which x[1] < 0 are idle. Then the roles of the datapaths are reversed: those for which x[1] >= 0
are 1dle while the other datapaths execute x[1] = 2.

(JATME ©

atme College of Engineering

s S
| Control | | Control | | control | | Control |
SP SP SP SP SP SP SP SP
SP SP SP SP SP SP SP SP
SP SP SP SP SP SP SP SP
SP SP SP SP SP SP SP SP
Shared Shared
Memory Memory
L2 Cache
Global
Memory

FIGURE 6.1
Simplified block diagram of a GPL.

BJATME

atme College of Engineering

Host Device

CPU SM SM

Main Global
Memory Memory

FIGURE 0.2
Simplified block diagram of a CPU and a GPU.

BRJATME

atme College of Engineering

Heterogeneous computing

Writing a program that runs on a GPU is an example of heterogeneous computing.

Field Programmable Gate Arrays or FPGAs, and Digital Signal Processors or DSPs. FPGAs contain programmable
logic blocks and interconnects that can be configured prior to program execution.

DSPs contain special circuitry for manipulating (e.g., compressing, filter- ing) signals, especially “real-world”
analog signals.

BRJATME

atme College of Engineering

CUDA hello

CUDA is a software platform that can be used to write GPGPU programs for heterogeneous
systems equipped with an Nvidia GPU.

float *x = malloc (n * sizeof (float));

However, in C++ a cast is required

float *x = (float *) malloc (n * sizeof (float));

2AA TME

atme College of Engineering

1 |#include <=stdio h>

2 |#include <cuda. h> /% Header file for CUDA =/

3

4 | /% Device code: runs on GPU %/

5 | __global__ wvoid Hello{void) {

6

7 pril‘ltf[:"HE”D from thread %diyn", threal:lll:lx_:-cj;

8 |} /% Hello %/

G

10

11 | /% Host code: Runs on CPU %/

12 [int main(int argc, char = argv[]) {

13 int thread_count ; f% Number of threads to rumn on GPU =/
14

15 thread_count = strtol{argv[1], wNuLL, 10);

16 /% Get thread count from command line */
17

18 Hello <<=<<1, thread_count =>>();

19 /% Start thread count threads on GPU, %/
a
2 cudaDeviceSynchronize () /% Wait for GPU to finish */
o
2 return 0;
24 1y & omain =/

Program 6.1: CUDA program that prints greetings from the threads.

ATME ®

atme College of Engineering

S nvce -o cuda_hello cuda_hello.cu

If we want to run one thread on the GPU, we can type
S ./cuda_hello 1

and the output will be

Hello from hread 0! oy o
' Compiling and running the program
If we want to run ten threads on the GPU, we can type

S .fcuda_ hello 10

and the output of will be

Hello from thread 0! Hello
from thread 1! Hello from
thread 2! Hello from thread
3! Hello from thread 4! Hello
from thread 5! Hello from
thread 6! Hello from thread
7! Hello from thread 8! Hello
from thread 9!

BRJATME

atme College of Engineering

Threads, blocks, and grids

Hello:

Hello <<<1, thread count > > >();

Hello <<<2, thread count /2 >>>();

If thread count is even, this kernel call will start a total of thread count threads, and the
threads will be divided between the two SMs: thread count/2 threads will run on each SM.
(What happens if thread count is 0odd?)

2AA TME

atme College of Engineering

1 |#include <stdio .h>

2 |#include <cuda .h> S Header file for CUDA x/

3

4 | /% Device code: runs on GPU =/

5 | __global__ wveoid Hello(void) {

6

7T printﬂ:"Hello from thread %d in block %dyn".

2 threadidx.x, blockldx. x);

211 S Hello =/

10

11

12 | /s Host code: Runs on CPU ./

13 int main(int argec, char#* argv[]) {

14 int blk_ct: S Number of thread blocks =/

15 int th _per_blk; S Number of threads in each block :i-:xﬁ'f
16

17 blk_ct = strtol(argv[1] . nNuLL., 10);

18 F Get number of blocks from command line */
19 th_per_blk = strtol{argv[2] ., mNuLL. 10):

20 HHe Ger number of threads per block from command line #/
21

22 Hello <<<<{blk_ct. th_per_blk>>=>=>():

23 S Start blk ctxth per blk threads on GPU, =x/

24

32 cudaDeviceSynchronize (); A3 Wait for GPU ro finish %/
27 returm O:

28 |1} A main =S

Program 6.2: CUDA program that prints greetings from threads in multiple blocks.

BRJATME

atme College of Engineering

Nvidia compute capabilities and device architectures

There are a number of versions of the CUDA API, and they do not correspond to the compute
capabilities of the different GPUs.

ompute 8 2 B
apability

GPU architectures and compute capabilities.

W""
“

WY
AN

% 10

BRJATME

atme College of Engineering

Vector addition

We’ll initialize x and y on the host. Then a kernel can start at least » threads, and the ith thread will add
z[1]=x[1]+y[1];

float *x , *y , *z ;

After allocating and initializing the arrays,
we’ll call the kernel, and after the kernel completes execution,
the program checks the result, frees memory, and quits.

BRJATME

atme College of Engineering

1 | void SEriaI_vec_add(

2 const float X[/% in %/,

3 const float [/% in %/,
4 float cz] /% out */,

3 const int n /% in x/) |
6

7 for (int i= 0; i< n; itt)

8 cz[i] = x[i] + v[i];

9

t /% Serial vec add */

Program 6.4: Serial vector addition function.

2AA TME

atme College of Engineering

1 void Get_aras(

2 const int aragc S 0In * ./
3 char x argwv [] P S *
4 int n_p S out * /1
5 int blk_ct_p S o outr * ./,
(&) int = th_per_blk_p S oot *
7 char i_ g S out =) |
ba if (argc !'= 5) |{

9 S Print am error message and exit x=/
10 .

11 }

12

13 *n_p = strtol(argv [1]. MNULL, 10);

14 *blk_ct_p = strtol(argv|[2], NULL, 10);

15 *th_per_blk_p = strtol(argv [3]., HWULL ., 10);:
16 *i1_g = argv [4]10]:

17

18 S s n > roral thread counr = blk_crx=th_per_blk? x/
19 if (=xn_p > (kblk_ct_pl)*k(xth_per_blk_p)) {
20 S Print am error message and exit x=/
21 .
22 }
23 H S Gel_args =/

Program 6.5: Get_args function from CUDA program that adds two vectors.

rﬂ"'l
“

) ()

% 10

BRJATME

atme College of Engineering

1 void Allocate_vectors(

2 float % xp /% out */,

3 float x% yop /% out */,

4 float % zp /% out */,

5 float % czp /% out */,

6 int n /% in %/) {

5

8 /% x, vy, and z are used omn host and device */
9 cudaMallocManaged(x p, nksizeof (float));
10 cudaMallocManaged(y p, nk sizeof (float));
11 cudaMallocManaged(z p, nksizeof (float));
12

13 /% cz is only used on host */

14 kcz p= (float k) malloc(nk sizeof(float));
I5 1y /% Allocate vectors */

Program 6.6: Array allocation function of CUDA program that adds two vectors.

BRJATME

atme College of Engineering

double Two_narm_diff(
const float f] /% in %/,
const float (z[] /% in %/,

const int n /% in */) {
double diff, sum = 0.0;

for (int i= 0; i< n; it+) {
diff = z[i] — ci];
sum += diffk diff;

O S0 1 O e o B e

—
<

j

return sqrt(sum);
/% Two morm diff x/

p—
Mo —
e,

Program 6.7: C function that finds the distance between two vectors.

BRJATME

atme College of Engineering

1 void Free_uectors(

2 float * x /% in/out */,
3 float * /% in/out %/,
4 float x /% in/out */,
5 float * « /% in/out */) {
6

7 /% Allocated with cudaMallocManaged */
8 cudaFree (x);

9 cudaFree(y);

10 cudafFree (z);

11

12 /% Allocated with malloc */

13 free(cz);

14 |V /% Free vectors */

Program 6.8: CUDA function that frees four arrays.

2AA TME

atme College of Engineering

1 void Allocate_vectors (

2 float k% hx p Sk out k.,

3 float %% hy p Sk out k.,

4 float k= hz p Sk out kS,

5 float k% cz p /¥ outr k.,

6 float sk dx_p Sk outr k.,

7 float sk dy_p Sk out */,

8 float %%k dz p Sk out k.,

9 int n S in * /) §

10

11 ¥ dx, dv, and dz are wused on device *k/
12 cudaMalloc(dx p, n3*k sizeof (float));

13 cudaMalloc(dy p., n*k sizeof (float));

14 cudaMalloc(dz_p, n>*k sizeof (float));

15

16 ’*k hx, hy, hz, cz are wused on hosr */
17 *khx_p= (float k) malloc(nzk sizeof (float));
18 sk hy p= (float k) malloc(nksizeof (float));
19 *hz p= (float k) malloc(n*k sizeof (float));
20 *kcz_p— (float %) malloc(nksizeof (float));
21 } Sk Allocarte vectors */

Program 6.10: Allocate vectors function for CUDA wvector addition program that
doesn’t use unified memory.

BRJATME

atme College of Engineering

Returning results from CUDA kernels

__global__ void Add(int x, int vy, int % sum_p)

Xsum p=xt vy
V% Add %/

int main(void) {
int sum = _3J;
Add <<<1, 1>>> (2, 3, &sum);
cudaDeviceSynchronize (),
printf("The sum is %d\n", sum);

return 0;

int main(void) |

int y sum_p;

cudaMaIIOCManaged(&sum_p,, sizeof (int)),
ksum_p = _5;

Add <<<1, 1>>> (2, 3, sum p);
cudaDeuiceSynchrnnize();

printf("The sum is %d\n", gsum_p);

cudaFree(sum_p);

return 0;

BJATME

atme College of Engineering

_managed Int sum;

void Add(int x, int vy) {
sum = X T v

YV /% Add %/

__global_

int main(void) {

2AA TME

atme [Collegeof Engineering CUDA trapezoidal rule I
This gives us a total approximation of the area between the graph and the x-axis as
h h h

> LF(xo) + fF(x1J] + E_Lffxl) + f(x=2)] + - - - + > F(xn—1) + fF(xnJ],
and we can rewrite this as L
]
hOL @ + £ D) + (FCe) + f(x2) + -+ + fGcn—1)

We can implement this with the serial function shown in Program 6.11.

1 float Serial_trapi(

2 const float a S din kS,
3 const float b S in kS,
4 const imt n Sodin o kS)Y |
S float x,. h = (b—a)/ n:

6 float trap — 0.5 % (f(a) + #fb)):

-

8 for (imt i= 1: i == n—1: i++) 4
o x = a + ix*kh;

10 trap +=— f(x):

11 ¥

12 trap — trap *¥h;

13

14 refurm trap:

15 |1 S Serial trap x/

Program 6.1 1: A serial function implementing the trapezoidal rule for a single CPTU.

Z{ATME O
atme College of Engineering T

Initialization, return value, and final update

To deal with the initialization and the final update (Iltems 1 and 5), we could try to select a single thread—say, thread 0 in block 0—to carry out
the operations:

int my 1= DblockDim . x blockldx . x & threadldx . x ;
if (my i==0) {
h=(b-a)/n;

trap=0.5x(f(a)+f(b));
b

if (my 1==0)
trap = trap *h ;

2AA TME

atme College of Engineering

CUDA trapezoidal rule II: improving performance

Thread
11

5 —(11+9

9 ¢«—trap_p

5 20 e—trap.p Thread _"_
25 +——trap_p
s (@25
32 ——trap p
7
4
. @»« 36
64
Q 64:4-9 9——trap p
73
3
FIGURE 6.4
FIGURE 6.3 Tree-structured sum.

Basic sum.

BRJATME

atme College of Engineering

Thread 9 1 E 3 4 5 6 7

@+ 18> G+ 22> @2+2D @+26) @+3D @+2) G0+30
28 36 36 44 44 o2 52 60

@8+ 3D G5+ 30 o+ 4d) @+5D G245 G2+6D
64 72 80 88 96 104 112

FIGURE 6.5

Tree-structured sum using warp shuffle.

BRJATME

atme College of Engineering

__device__ float Shared_mem_sum(fl[lﬂt shared_uals[]) {

int my lane = threadids. x % warpSize,

©giff = 0 diff = diff/2) {
[y Make sure 0 <= source < warpSize 4/
int source = (my_lane + diff) % warpize;

5hared_va|s[mv_|ant‘] += 5hared_va|5[5nurce];

for (int diff = warpsize/2;

|

return shared_vals[my_lane];

BJATME

atme College of Engineering

Thread] 1 2 q 4 - .
1 3 5 7 9 11 __113 15
—_—:"-_“_..___

G20 G Gr13) @15 (341 Gi+3) (3+5) G5+
10 2 8 22 10 14 18 22
--—-_-..-_.__________

. EPED @D ED

a4 34 84 54 54 54 84 54
FIGURE 6.6

Dissemination sum using shared memory.

BRJATME

atme College of Engineering

1 __global__ wvoid Dev trapl

2 const float a /% in * ./

3 const float b /% in */
4 const float h /% ir * /

5 const int n /% in * /
6 float * trap_p Sk infout k/) |
7 int my i = blockDim.x % blocklidx.x + threadidx.x;
8

9 float my trap = 0.07;

10 if (0 < my_i && my_i < n) |

11 float my x = a+ my_i¥h;

12 my_trap = flmy x);

13)

14

15 float result = Warp_Eum[mv_trap);

16

17 /% result is correct only om thread 0 */
18 if (threadidx.x =— 0) atomicadd(trap p. result);
19 |V /% Dev trap */

Program 6.13: CUDA kernel implementing trapezoidal rule and using warp_sum.

2AA TME

atme College of Engineering

1 | global__ void Dev_ trap(

2 const float = S in */

3 const float b J¥ in /.

4 const float h J¥ in /.

5 const int n J¥ in /.

6 float * trap_p /% out */) {
7 __shared__ float shared_vals[waRrpPsz]:

8 int my i = blockDim.x % blockldx.x+ threadidx.x;
9 int my lane = threadldx.x% warpSize;

10

11 shared_vals[my_lane] = 0.01;

12 if (0 < my_i&& my_i < n) {

13 float my x = a+ my_i*h;

14 shared_vals[my_lane] = f{ my_x):

15 }

16

17 float result = Shared mem_sumishared vals):
18

19 S result is the same on all threads in a block. #*/
20 if (threadides.x =— 0) atomicAdd(trap_p. result);
21 |} Sk Dev trap *®/

Program 6.14: CUDA kernel implementing trapezoidal rule and using shared mem-
ory.

BRJATME

atme College of Engineering

Performance

Table 6.8 Mean run-times for trapezoidal rule using block size of
32 threads (times in ms).

System ARM Nvidia Intel Nvidia GeForce
Cortex-A15 GK20A Corei7 GTX Titan X
Clock 2.3 GHz 692 MHz 3.5 GHz 1.086 GHz
SMs, SPs 1,192 243072
Original 336 207 4 48 3.08
Warp Shuffle 144 0.210
Shared Memory 15.0 0.206

BRJATME

atme College of Engineering

The remaining codes for the warp sum kernel and the shared memory sum kernel are very similar. First warp 0
computes the sum of the elements in warp sum_arr. Then thread 0 in the block adds the block sum into the total
across all the threads in the grid using atomicAdd. Here’s the code for the shared memory sum:

if (my warp==0) {
if (threadldx . x >= blockDim . x / warpSize)
warp sum_arr [threadldx . x] = 0.0;

blk result= Shared mem sum (warp sum arr);

}
if (threadldx .x==0) atomicAdd (trap p, blk result);

BJATME

atme College of Engineering

Thank you

	Slide 1:
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 1:
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16:
	Slide 1:
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55:
	Slide 1:
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6: OpenMP vs. Pthreads
	Slide 7
	Slide 8
	Slide 9: Hello from thread 0 of 4 Hello from thread 1 of 4 Hello from thread 2 of 4 Hello from thread 3 of 4
	Slide 10: Hello from thread 2 of 4 Hello from thread 0 of 4 Hello from thread 3 of 4 Hello from thread 1 of 4
	Slide 11
	Slide 12: Running the threads
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 1:
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33:

