
30/08/25 Department of CSE, ATMECE, Mysuru 1

30/08/25 Department of CSE, ATMECE, Mysuru 2

Pizza

Burger

Pasta

Cut

fruits

30/08/25
Department of CSE, ATMECE, Mysuru 3

Pizza

Burger

Pasta

Cut

fruits

30/08/25
Department of CSE, ATMECE, Mysuru 4

“Have you ever noticed your
phone running multiple apps
at once?”

30/08/25
Department of CSE, ATMECE, Mysuru 5

Video streaming (Netflix
downloading + playing
simultaneously)

30/08/25
Department of CSE, ATMECE, Mysuru 6

Gaming consoles with
multiple players running on
separate

30/08/25
Department of CSE, ATMECE, Mysuru 7

AGENDA Introduction to Parallel
Computing

1

Why It’s Needed2

Real - World Applications4

History and Motivation3

Basic Concepts5

30/08/25
Department of CSE, ATMECE, Mysuru 8

“Parallel Computing means performing many tasks

simultaneously”

30/08/25
Department of CSE, ATMECE, Mysuru 9

INCREASING DATA

CPU CLOCK SPEED
REACHED LIMITS

30/08/25
Department of CSE, ATMECE, Mysuru 10

30/08/25
Department of CSE, ATMECE, Mysuru 11

• Weather forecasting

• Space Exploration

• Online Platforms

• AI training chatgpt using GPUs

• autonomous vehicles

REAL WORLD
EXAMPLES

30/08/25
Department of CSE, ATMECE, Mysuru 12

• how multiple apps can run simultaneously on a computer

or phone and what happens internally

MULTITASKING

CPU CORE

OS SCHEDULER

30/08/25
Department of CSE, ATMECE, Mysuru 13

A task can be: A Process
 A thread

HOW TASKS ARE ALLOCATED TO THE CORES OF THE CPU?

TASK CREATED:

READY QUEUE:

CORE AVAILABILITY:

CONTEXT SWITCHING:

EXECUTION
:

MIGRATION
:30/08/25

Department of CSE, ATMECE, Mysuru 14

Data parallelism

TYPES

Task parallelism

BASIC
CONCEPTS

30/08/25
Department of CSE, ATMECE, Mysuru 15

• Shared Memory

• Distributed Memory

PARALLEL ARCHITECTURES

30/08/25
Department of CSE, ATMECE, Mysuru 16

30/08/25
Department of CSE, ATMECE, Mysuru 17

Why We Need to Write Parallel Programs

1. The problem with old (serial) programs

• Most existing programs were written for single-core systems.

• On a multicore system, you can run multiple instances of the same program (e.g., run 4 games at once),

but that’s not useful — users want one program to run faster and better, not more copies.

• Therefore: To use multiple cores effectively, programs must be parallelized.

30/08/25
Department of CSE, ATMECE, Mysuru 18

2. Automatic conversion isn’t enough

• Researchers have tried to create compilers that translate serial code to parallel code.

• Success has been limited because:

o Translating each step independently into parallel code often leads to inefficiency.

o Sometimes the best parallel solution requires a completely new algorithm, not just a

step-by-step parallelization of the serial one.

o Example: Matrix multiplication — turning it into parallel dot-products may be inefficient

compared to designing a new parallel matrix multiplication algorithm.

30/08/25
Department of CSE, ATMECE, Mysuru 19

Serial code(one core): Summation

sum = 0;

for (i = 0; i < n; i++) {

 x = ComputeNextValue(...);

 sum += x;

}

30/08/25
Department of CSE, ATMECE, Mysuru 20

The second method: Pairwise (tree-style) reduction

• Instead of all cores sending to the master, we combine results in stages:

o Stage 1: Pair the cores:

▪ Core 0 + Core 1, Core 2 + Core 3, Core 4 + Core 5, Core 6 + Core 7.

o Stage 2: Pair the winners (even-numbered cores now hold results):

▪ Core 0 + Core 2, Core 4 + Core 6.

o Stage 3: Final combination:

▪ Core 0 + Core 4.

30/08/25
Department of CSE, ATMECE, Mysuru 21

30/08/25
Department of CSE, ATMECE, Mysuru 22

Comparing the two global sum methods

• Method 1 (naïve / centralized):

o Master adds up results from all cores.

o Needs p − 1 operations (e.g., 999 adds for 1000 cores).

• Method 2 (tree reduction):

o Results combined in pairs over stages.

o Needs log₂(p) operations (e.g., only 10 adds for 1000 cores).

o Much more efficient, especially as p grows.

30/08/25
Department of CSE, ATMECE, Mysuru 23

how we actually write parallel programs and the main challenges

Two Main Approaches to Parallelism

1. Task Parallelism

o Different cores do different tasks.

o Example: In grading exams, one person grades only Question 1 (Shakespeare), another grades

Question 2 (Milton), and so on.

o Each is doing a different job, so the instructions differ.

30/08/25
Department of CSE, ATMECE, Mysuru 24

2. Data Parallelism

Different cores do the same task on different pieces of data.

Example: Split the 100 exam papers into 5 piles of 20. Each TA grades all questions on their

pile. Same instructions, but applied to different data.

30/08/25
Department of CSE, ATMECE, Mysuru 25

Von Neumann Architecture (Classical Computer Design)

30/08/25
Department of CSE, ATMECE, Mysuru 26

Von Neumann Bottleneck

• Problem: The CPU is much faster than the memory access speed.

• CPU may execute 100+ instructions in the time it takes to fetch one piece of data from memory.

• The bus/interconnect limits how quickly data & instructions travel.

Analogy:

• CPU is like factory making products.

• Memory is warehouse storing raw materials (data) and finished products (results).

• Road (bus) is the transport system between them.

• If the road is too narrow (limited bandwidth), the factory workers sit idle because raw materials arrive too slowly.

30/08/25
Department of CSE, ATMECE, Mysuru 27

Modifications to the von Neumann model

The von Neumann bottleneck means the CPU is very fast, but memory (RAM) is much slower. Since the CPU often has to wait for

memory, overall performance suffers.

To fix this, computer engineers added caching, virtual memory, and parallelism.

This part is about caching.

What is caching?

Think of it like this:

• CPU = factory

• Main memory = warehouse

• Road between them = slow, two-lane road

The CPU constantly needs raw materials (data & instructions) from memory. If every time it has to go to the warehouse far away,

it wastes time.

Solution is to Build a small storeroom (cache) right next to the CPU.

Cache stores a small amount of data that the CPU is very likely to need soon. It’s much faster to access than main memory.

30/08/25
Department of CSE, ATMECE, Mysuru 28

Cache mappings

1. Fully Associative

2. Direct Mapped

3. N-way Set Associative

30/08/25
Department of CSE, ATMECE, Mysuru 29

Locality:

• Spatial locality: if you use A[0][0], you’ll probably use A[0][1], A[0][2] soon.

• Temporal locality: if you use a value once, you might use it again later.

for (i = 0; i < MAX; i++)

 for (j = 0; j < MAX; j++)

 y[i] += A[i][j] * x[j];

• Access pattern: row by row → contiguous memory.

• Example (MAX=4):

o Access order: A[0][0], A[0][1], A[0][2], A[0][3] (all in same cache line → only 1 miss).

o Next row: A[1][0]...A[1][3] → again, just 1 miss.

30/08/25
Department of CSE, ATMECE, Mysuru 30

virtual memory

Virtual memory gives:

Illusion of large memory (even bigger than RAM, because disk is used as backup).

Protection (one program cannot overwrite another’s memory).

Flexibility (any program can use any free RAM block).

Memory is divided into pages (usually 4 KB–16 KB).

Disk also has swap space divided into same-sized pages.

A program uses virtual addresses → these get mapped to physical addresses in RAM.

30/08/25
Department of CSE, ATMECE, Mysuru 31

30/08/25
Department of CSE, ATMECE, Mysuru 32

Distributed-memory interconnects

30/08/25
Department of CSE, ATMECE, Mysuru 33

30/08/25
Department of CSE, ATMECE, Mysuru 34

30/08/25
Department of CSE, ATMECE, Mysuru 35

30/08/25
Department of CSE, ATMECE, Mysuru 36

Cache coherence: CPU caches are managed by system hardware: programmers don’t have direct

control over them. This has several important consequences for shared-memory systems.

30/08/25
Department of CSE, ATMECE, Mysuru 37

Nondeterminism?

• In MIMD systems (Multiple Instruction, Multiple Data) where multiple processors (or threads)

run at the same time, they usually don’t stay perfectly in sync.

• This means the same input might produce different outputs depending on how the

processors finish their tasks. This unpredictability is called nondeterminism.

Thank You

30/08/25
Department of CSE, ATMECE, Mysuru 38

29/08/2025 Department of CSE, ATMECE, Mysuru 1

29/08/2025 Department of CSE, ATMECE, Mysuru 2

29/08/2025 Department of CSE, ATMECE, Mysuru 3

GPU programming

GPUs are usually not “standalone” processors. They don’t ordinarily run an operating system and system services,

such as direct access to secondary storage.

So, program ming a GPU also involves writing code for the CPU “host” system, which runs on an ordinary CPU. The

memory for the CPU host and the GPU memory are usually separate. So, the code that runs on the host typically

allocates and initializes storage on both the CPU and the GPU.

It will start the program on the GPU, and it is responsible for the output of the results of the GPU program. Thus,

GPU programming is really heterogeneous programming, since it involves programming two different types of

processors.

29/08/2025 Department of CSE, ATMECE, Mysuru 4

Then the threads with rank < 16 will execute the first

assignment, while the threads with rank ≥ 16areidle.

29/08/2025 Department of CSE, ATMECE, Mysuru 5

MIMD systems

We’ve generally avoided the issue of input and output. There are a couple of reasons.

First and foremost, parallel I/O, in which multiple cores access multiple disks or other devices, is a subject to
which one could easily devote a book.

When we call printf from multiple processes, we, as developers, would like the output to appear on the
console of a single system, the system on which we started the program.

29/08/2025 Department of CSE, ATMECE, Mysuru 6

GPUs

In most cases, the host code in our GPU programs will carry out all I/O. Since we’ll only be running one

process/thread on the host, the standard C I/O functions should behave as they do in ordinary serial C programs.

The exception to the rule that we use the host for I/O is that when we are debug ging our GPU code, we’ll want to be

able to write to stdout and/or stderr. In the systems we use, each thread can write to stdout, and, as with MIMD

programs, the order of the output is nondeterministic. Also, in the systems we use, no GPU thread has access to stderr,

stdin, or secondary storage.

29/08/2025 Department of CSE, ATMECE, Mysuru 7

PERFORMANCE

1. Speedup and efficiency in MIMD systems

This value, S/p, is sometimes called the efficiency of the parallel program.
If we substitute the formula for S, we see that the efficiency is

29/08/2025 Department of CSE, ATMECE, Mysuru 8

29/08/2025 Department of CSE, ATMECE, Mysuru 9

Many parallel programs are developed by dividing the work of the serial program among the processes/threads and
adding in the nec-essary “parallel overhead” such as mutual exclusion or communication.

Therefore, if Toverhead denotes this parallel overhead, it’s often the case that

29/08/2025 Department of CSE, ATMECE, Mysuru 10

29/08/2025 Department of CSE, ATMECE, Mysuru 11

2. Amdahl’s law

29/08/2025 Department of CSE, ATMECE, Mysuru 12

Now as p gets larger and larger, 0.9 Tserial=p = 18=p gets closer and closer to 0, so the total parallel run-time can’t be

smaller than 0.1 Tserial = 2. That is, the denominator in S can’t be

smaller than 0.1 Tserial = 2. The fraction S must therefore be smaller than

29/08/2025 Department of CSE, ATMECE, Mysuru 13

3. Scalability in MIMD systems

As an example, suppose that Tserial = n, where the units of Tserial are in microseconds,

 and n is also the problem size. Also suppose that Tparallel = n/p + 1. Then

To see if the program is scalable, we inc

29/08/2025 Department of CSE, ATMECE, Mysuru 14

4. Taking timings of MIMD programs

The first thing to note is that there are at least two different reasons for taking timings. During program
development we may take timings in order to determine if the program is behaving as we intend.

Second, we’re usually not interested in the time that elapses between the pro-gram’s start and the program’s
finish.

Third, we’re usually not interested in “CPU time.” This is the time reported by the standard C function clock.

29/08/2025 Department of CSE, ATMECE, Mysuru 15

5 GPU performance

It’s quite common to see reported speedups of GPU programs over serial programs or parallel MIMD

programs.

Since efficiency of a GPU program relative to a CPU program doesn’t make sense, the formal definition of

the scalability of a MIMD program can’t be applied to a GPU program.

It should be noted that the same caveats that apply to Amdahl’s law on MIMD systems also apply to

Amdahl’s law on GPUs:

29/08/2025 Department of CSE, ATMECE, Mysuru 16

Thank you

30/08/25 Department of CSE, ATMECE, Mysuru 1

30/08/25 Department of CSE, ATMECE, Mysuru 2

30/08/25 Department of CSE, ATMECE, Mysuru 3

A distributed memory system

30/08/25 Department of CSE, ATMECE, Mysuru 4

A shared memory system

30/08/25 Department of CSE, ATMECE, Mysuru 5

Hello World!

30/08/25 Department of CSE, ATMECE, Mysuru 6

Common practice to identify processes by nonnegative integer ranks.

p processes are numbered 0, 1, 2, .. p-1

Identifying MPI processes

30/08/25 Department of CSE, ATMECE, Mysuru 7

wrapper script to compile

turns on all warnings

source file

create this executable file name

(as opposed to default a.out)

produce

debugging

information

Compilation

30/08/25 Department of CSE, ATMECE, Mysuru 8

mpiexec -n <number of processes> <executable>

mpiexec -n 1 ./mpi_hello

mpiexec -n 4 ./mpi_hello

run with 1 process

run with 4 processes

Execution

30/08/25 Department of CSE, ATMECE, Mysuru 9

mpiexec -n 1 ./mpi_hello

mpiexec -n 4 ./mpi_hello

Greetings from process 0 of 1 !

Greetings from process 0 of 4 !

Greetings from process 1 of 4 !

Greetings from process 2 of 4 !

Greetings from process 3 of 4 !

30/08/25 Department of CSE, ATMECE, Mysuru 10

Written in C.

Has main.

Uses stdio.h, string.h, etc.

Need to add mpi.h header file.

Identifiers defined by MPI start with “MPI_”.

First letter following underscore is uppercase.

For function names and MPI-defined types.

Helps to avoid confusion.

MPI Programs

30/08/25 Department of CSE, ATMECE, Mysuru 11

MPI Components

MPI_Init

Tells MPI to do all the necessary setup.

MPI_Finalize

Tells MPI we’re done, so clean up anything allocated for this program.

30/08/25 Department of CSE, ATMECE, Mysuru 12

A collection of processes that can

send messages to each other.

MPI_Init defines a communicator

that consists of all the processes

created when the program is

started Called

MPI_COMM_WORLD.

30/08/25 Department of CSE, ATMECE, Mysuru 13

number of processes in the communicator

my rank

(the process making this call)

Communicators

30/08/25 Department of CSE, ATMECE, Mysuru 14

Data types

30/08/25 Department of CSE, ATMECE, Mysuru 15

30/08/25 Department of CSE, ATMECE, Mysuru 16

MPI_Send

src = q

MPI_Recv

dest = r

r

q

Message matching

30/08/25 Department of CSE, ATMECE, Mysuru 17

Receiving messages

A receiver can get a message without knowing:

the amount of data in the message,

the sender of the message,

or the tag of the message.

30/08/25 Department of CSE, ATMECE, Mysuru 18

MPI_SOURCE

MPI_TAG

MPI_ERROR

MPI_Status*

MPI_Status* status;

status.MPI_SOURCE

status.MPI_TAG

30/08/25 Department of CSE, ATMECE, Mysuru 19

30/08/25 Department of CSE, ATMECE, Mysuru 20

Exact behavior is determined by the MPI implementation.

MPI_Send may behave differently with regard to buffer size, cutoffs and

blocking

30/08/25 Department of CSE, ATMECE, Mysuru 21

30/08/25 Department of CSE, ATMECE, Mysuru 22

Tasks and communications for Trapezoidal Rule

30/08/25 Department of CSE, ATMECE, Mysuru 23

Dealing with I/O

30/08/25 Department of CSE, ATMECE, Mysuru 24

unpredictable output

30/08/25 Department of CSE, ATMECE, Mysuru 25

Input

30/08/25 Department of CSE, ATMECE, Mysuru 26

Collective communication

30/08/25 Department of CSE, ATMECE, Mysuru 27

A tree-structured global sum

30/08/25 Department of CSE, ATMECE, Mysuru 28

MPI_Reduce

30/08/25 Department of CSE, ATMECE, Mysuru 29

Predefined reduction operators in MPI

30/08/25 Department of CSE, ATMECE, Mysuru 30

Collective vs. Point-to-Point Communications

All the processes in the communicator must call the same collective function.

For example, a program that attempts to match a call to MPI_Reduce on one process with a call to

MPI_Recv on another process is erroneous, and, in all likelihood, the program will hang or crash.

30/08/25 Department of CSE, ATMECE, Mysuru 31

Multiple calls to MPI_Reduce

Example (1)

30/08/25 Department of CSE, ATMECE, Mysuru 32

MPI_Allreduce

30/08/25 Department of CSE, ATMECE, Mysuru 33

A global sum followed

by distribution of the

result.

30/08/25 Department of CSE, ATMECE, Mysuru 34

A butterfly-structured global sum.

30/08/25 Department of CSE, ATMECE, Mysuru 35

Broadcast

30/08/25 Department of CSE, ATMECE, Mysuru 36

A tree-structured broadcast.

30/08/25 Department of CSE, ATMECE, Mysuru 37

Compute a vector sum.

30/08/25 Department of CSE, ATMECE, Mysuru 38

Different partitions of a 12-component vector among 3

processes

30/08/25 Department of CSE, ATMECE, Mysuru 39

Block partitioning

Assign blocks of consecutive components to each process.

Cyclic partitioning

Assign components in a round robin fashion.

Block-cyclic partitioning

Use a cyclic distribution of blocks of components.

Partitioning options

30/08/25 Department of CSE, ATMECE, Mysuru 40

MPI_Scatter can be used in a function that reads

in an entire vector on process 0 but only sends the

needed components to each of the other

processes.

Scatter

30/08/25 Department of CSE, ATMECE, Mysuru 41

Collect all of the components of

the vector onto process 0, and

then process 0 can process all of

the components.

30/08/25 Department of CSE, ATMECE, Mysuru 42

Matrix-vector multiplication

30/08/25 Department of CSE, ATMECE, Mysuru 43

stored as

30/08/25 Department of CSE, ATMECE, Mysuru 44

Mpi derived datatypes

30/08/25 Department of CSE, ATMECE, Mysuru 45

30/08/25 Department of CSE, ATMECE, Mysuru 46

Performance evaluation

30/08/25 Department of CSE, ATMECE, Mysuru 47

Elapsed parallel time

Elapsed serial time

30/08/25 Department of CSE, ATMECE, Mysuru 48

MPI_Barrier

30/08/25 Department of CSE, ATMECE, Mysuru 49

Run-times of serial and parallel matrix-vector multiplication

30/08/25 Department of CSE, ATMECE, Mysuru 50

Speedup

Efficiency

30/08/25 Department of CSE, ATMECE, Mysuru 51

A parallel sorting algorithm

Serial odd-even transposition sort

Parallel odd-even transposition sort

30/08/25 Department of CSE, ATMECE, Mysuru 52

MPI_Ssend

30/08/25 Department of CSE, ATMECE, Mysuru 53

MPI_Sendrecv

30/08/25 Department of CSE, ATMECE, Mysuru 54

Safe communication with five

processes

30/08/25 Department of CSE, ATMECE, Mysuru 55

Thank you

28-08-25 Department of CSE, ATMECE, Mysuru 1

28-08-25 Department of CSE, ATMECE, Mysuru 2

chef 1

chef 2

chef 3

each cooking a different dish

Shared Memory with MIMD

Department of CSE, ATMECE, Mysuru28-08-25 3

All chefs working in the same kitchen,

using the same fridge and pantry

Department of CSE, ATMECE, Mysuru28-08-25 4

Department of CSE, ATMECE, Mysuru28-08-25 5

OpenMP vs. Pthreads

Department of CSE, ATMECE, Mysuru

Feature OpenMP Pthreads

Ease of Use
Very easy—just add
#pragma omp

Complex—you manually

create and manage

threads

Control
Compiler handles

thread creation & sync

You control everything

(creation, sync, etc.)

Code Style
Looks like regular serial

code

Requires lots of

boilerplate and setup

Parallelism Type
Implicit (compiler

decides)

Explicit (you decide

everything)

Best For
Quick parallelization of

loops & tasks

Fine-grained control

over thread behavior

Debugging
Easier—less thread

management

Harder—more chances

for race conditions

28-08-25 6

Getting Started with OpenMP

OpenMP is directives-based.

In C/C++ → uses pragmas (special compiler instructions).

If a compiler doesn’t support OpenMP, it just ignores them, and the program runs sequentially.

So, an OpenMP program can run both with and without OpenMP.

Department of CSE, ATMECE, Mysuru28-08-25 7

Department of CSE, ATMECE, Mysuru28-08-25 8

Hello from thread 0 of 4
Hello from thread 1 of 4
Hello from thread 2 of 4
Hello from thread 3 of 4

Department of CSE, ATMECE, Mysuru28-08-25 9

Hello from thread 2 of 4
Hello from thread 0 of 4
Hello from thread 3 of 4
Hello from thread 1 of 4

Department of CSE, ATMECE, Mysuru28-08-25 10

OpenMP Terminology

Master thread: the original thread (thread 0).

Parent thread: the one that started new threads.

Child threads: threads created by parent.

threads must finish before continuing.

Department of CSE, ATMECE, Mysuru

Team: group of threads executing parallel block.

At the end of a parallel block → implicit barrier: all

28-08-25 11

Running the threads

Department of CSE, ATMECE, Mysuru

Main thread forks and joins two threads.

28-08-25 12

If OpenMP is available, each thread can compute the area of a chunk of trapezoids and then combine

their results.

If OpenMP is not available, the code assumes a single-threaded fallback:

The thread rank is set to 0.

The total number of threads is 1.

The Hello() function runs just once.

Department of CSE, ATMECE, Mysuru

Error checking

28-08-25 13

if (argc != 2) {

 fprintf(stderr, "Usage: %s <number of threads>\n", argv[0]);

 exit(1);

}

long thread_count = strtol(argv[1], NULL, 10);

if (thread_count <= 0) {

 fprintf(stderr, "Thread count must be positive\n");

 exit(1);

}

Department of CSE, ATMECE, Mysuru28-08-25 14

Compiler Support Check with _OPENMP

Use preprocessor guards to avoid compilation errors on unsupported compilers:

 Header Inclusion

#ifdef _OPENMP

Department of CSE, ATMECE, Mysuru28-08-25 15

Optional: Runtime Thread Count Check

if (omp_get_num_threads() != thread_count) {

 fprintf(stderr, "Warning: Requested %ld threads, but got %d\n", thread_count, omp_get_num_threads());

}

Department of CSE, ATMECE, Mysuru28-08-25 16

h = (b - a) / n;

approx = (f(a) + f(b)) / 2.0;

for (i = 1; i <= n-1; i++) {

x_i = a + i * h;

approx += f(x_i);

}

approx = h * approx;

5.2 The Trapezoidal Rule

17

18

Function-wide scope

File-wide scope

Department of CSE, ATMECE, Mysuru

Variable Scope in OpenMP vs. Serial Programming

28-08-25 19

void Hello(void) {

 int my_rank = omp_get_thread_num();

 int thread_count = omp_get_num_threads();

 printf("Hello from thread %d of %d\n", my_rank, thread_count);

}

Department of CSE, ATMECE, Mysuru

OpenMP Scope: Thread Accessibility

28-08-25 20

shared scope:

Department of CSE, ATMECE, Mysuru

Thread 0

Thread 1

Thread 2

Thread 3

int n, thread_count

Trapezoidal Rule Example

28-08-25 21

Variables in Trap():

Department of CSE, ATMECE, Mysuru

Thread 0

Thread 1

Thread 2

Thread 3

double local_a, local_b, my_result;

int local_n;

double local_a, local_b, my_result;

int local_n;

double local_a, local_b, my_result;

int local_n;

double local_a, local_b, my_result;

int local_n;

Private Scope

28-08-25 22

double* global_result_p;

*global_result_p += my_result;

Department of CSE, ATMECE, Mysuru

Pointe

r
Shared Variable

#pragma omp critical to avoid race conditions.

28-08-25 23

If global_result were private:??

Department of CSE, ATMECE, Mysuru

Why Scope Matters

28-08-25 24

Before parallel block: variables are shared by default.

Inside parallel block or called functions: variables are private by default.

Shared variables: retain their values across the parallel block.

Private variables: are isolated per thread and discarded after the block.

Department of CSE, ATMECE, Mysuru28-08-25 25

Thank You

Department of CSE, ATMECE, Mysuru28-08-25 26

30/08/2025 Department of CSE, ATMECE, Mysuru 1

30/08/2025 Department of CSE, ATMECE, Mysuru 2

30/08/2025 Department of CSE, ATMECE, Mysuru 3

GPUs and GPGPU

In the late 1990s and early 2000s, the computer industry responded to the demand for highly realistic computer video games and video

animations by developing extremely powerful graphics processing units or GPUs.

These processors, as their name suggests, are designed to improve the performance of programs that need to render many detailed images.

One of the biggest difficulties faced by the early developers of GPGPU was that the GPUs of the time could only be programmed using

computer graphics APIs, such as Direct3D and OpenGL.

30/08/2025 Department of CSE, ATMECE, Mysuru 4

GPU architectures

In a typical SIMD system, each datapath carries out the test x[i] >= 0. Then the datapaths for which the test is true execute

x[i] += 1, while those for which x[i] < 0 are idle. Then the roles of the datapaths are reversed: those for which x[i] >= 0

are idle while the other datapaths execute x[i] = 2.

30/08/2025 Department of CSE, ATMECE, Mysuru 5

30/08/2025 Department of CSE, ATMECE, Mysuru 6

30/08/2025 Department of CSE, ATMECE, Mysuru 7

Heterogeneous computing

Writing a program that runs on a GPU is an example of heterogeneous computing.

Field Programmable Gate Arrays or FPGAs, and Digital Signal Processors or DSPs. FPGAs contain programmable
logic blocks and interconnects that can be configured prior to program execution.

 DSPs contain special circuitry for manipulating (e.g., compressing, filter- ing) signals, especially “real-world”
analog signals.

30/08/2025 Department of CSE, ATMECE, Mysuru 8

CUDA hello

CUDA is a software platform that can be used to write GPGPU programs for heterogeneous

systems equipped with an Nvidia GPU.

30/08/2025 Department of CSE, ATMECE, Mysuru 9

30/08/2025 Department of CSE, ATMECE, Mysuru 10

Compiling and running the program

$ nvcc -o cuda_hello cuda_hello.cu

If we want to run one thread on the GPU, we can type
$./cuda_hello 1

and the output will be

30/08/2025 Department of CSE, ATMECE, Mysuru 11

Threads, blocks, and grids

Hello:

Hello <<<1, thread_count > > >();

Hello <<<2, thread_count / 2 >> >();

If thread_count is even, this kernel call will start a total of thread_count threads, and the

threads will be divided between the two SMs: thread_count/2 threads will run on each SM.

(What happens if thread_count is odd?)

30/08/2025 Department of CSE, ATMECE, Mysuru 12

30/08/2025 Department of CSE, ATMECE, Mysuru 13

Nvidia compute capabilities and device architectures

There are a number of versions of the CUDA API, and they do not correspond to the compute

capabilities of the different GPUs.

Name Ampere Tesla Fermi Kepler Maxwell Pascal Volta Turing

Compute

capability

8.0 1.b 2.b 3.b 5.b 6.b 7.0 7.5

GPU architectures and compute capabilities.

30/08/2025 Department of CSE, ATMECE, Mysuru 14

Vector addition

We’ll initialize x and y on the host. Then a kernel can start at least n threads, and the ith thread will add

z [i] = x [i] + y [i];

float ∗x , ∗y , ∗z ;

After allocating and initializing the arrays,

we’ll call the kernel, and after the kernel completes execution,

the program checks the result, frees memory, and quits.

30/08/2025 Department of CSE, ATMECE, Mysuru 15

30/08/2025 Department of CSE, ATMECE, Mysuru 16

30/08/2025 Department of CSE, ATMECE, Mysuru 17

30/08/2025 Department of CSE, ATMECE, Mysuru 18

30/08/2025 Department of CSE, ATMECE, Mysuru 19

30/08/2025 Department of CSE, ATMECE, Mysuru 20

30/08/2025 Department of CSE, ATMECE, Mysuru 21

Returning results from CUDA kernels

30/08/2025 Department of CSE, ATMECE, Mysuru 22

30/08/2025 Department of CSE, ATMECE, Mysuru 23

CUDA trapezoidal rule I

30/08/2025 Department of CSE, ATMECE, Mysuru 24

Initialization, return value, and final update

To deal with the initialization and the final update (Items 1 and 5), we could try to select a single thread—say, thread 0 in block 0—to carry out

the operations:

∗int my_i = blockDim . x blockIdx . x + threadIdx . x ;

if (my_i == 0) {

h = (b−a)/ n ;

trap = 0 . 5 ∗ (f (a) + f (b));

}

. . .

if (my_i == 0)

trap = trap ∗h ;

30/08/2025 Department of CSE, ATMECE, Mysuru 25

CUDA trapezoidal rule II: improving performance

30/08/2025 Department of CSE, ATMECE, Mysuru 26

30/08/2025 Department of CSE, ATMECE, Mysuru 27

30/08/2025 Department of CSE, ATMECE, Mysuru 28

30/08/2025 Department of CSE, ATMECE, Mysuru 29

30/08/2025 Department of CSE, ATMECE, Mysuru 30

30/08/2025 Department of CSE, ATMECE, Mysuru 31

Performance

30/08/2025 Department of CSE, ATMECE, Mysuru 32

The remaining codes for the warp sum kernel and the shared memory sum kernel are very similar. First warp 0

computes the sum of the elements in warp_sum_arr. Then thread 0 in the block adds the block sum into the total

across all the threads in the grid using atomicAdd. Here’s the code for the shared memory sum:

if (my_warp == 0) {

if (threadIdx . x >= blockDim . x / warpSize)

 warp_sum_arr [threadIdx . x] = 0.0;

blk_result = Shared_mem_sum (warp_sum_arr);

}

if (threadIdx . x == 0) atomicAdd (trap_p , blk_result);

30/08/2025 Department of CSE, ATMECE, Mysuru 33

Thank you

	Slide 1:
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 1:
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16:
	Slide 1:
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55:
	Slide 1:
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6: OpenMP vs. Pthreads
	Slide 7
	Slide 8
	Slide 9: Hello from thread 0 of 4 Hello from thread 1 of 4 Hello from thread 2 of 4 Hello from thread 3 of 4
	Slide 10: Hello from thread 2 of 4 Hello from thread 0 of 4 Hello from thread 3 of 4 Hello from thread 1 of 4
	Slide 11
	Slide 12: Running the threads
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 1:
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33:

