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Hierarchy of languages
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Regular Languages

Context-Free Languages

Recursive Languages

Recursively Enumerable Languages

Non-Recursively Enumerable Languages
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Deterministic Finite State Automata (DFA)

……..

One-way, infinite tape, broken into cells
One-way, read-only tape head.
Finite control, i.e., 

finite number of states, and 
transition rules between them, i.e., 
a program, containing the position of the read head, current symbol being scanned, and 
the current “state.”

A string is placed on the tape, read head is positioned at the left end, and the DFA will read 
the string one symbol at a time until all symbols have been read. The DFA will then either 
accept or reject the string.
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Finite

Control

0 1 1 0 0
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The finite control can be described by a transition diagram or table:

Example #1:

1 0 0 1 1
q0 q0 q1 q0 q0 q0

One state is final/accepting, all others are rejecting.
The above DFA accepts those strings that contain an even number of 0’s, including the null
string, over Sigma = {0,1}

L = {all strings with zero or more 0’s}
Note, the DFA must reject all other strings
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Note: 

• Machine is for accepting a language, language is the purpose!

• Many equivalent machines may accept the same language,

but a machine cannot accept multiple languages!

• Id’s of the characters or states are irrelevant, 

you can call them by any names!

Sigma = {0, 1} ≡ {a, b}

States = {q0, q1} ≡ {u, v}, as long as they have 

identical (isomorphic) transition table

M1 M2 …. M-inf

L
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1 0 0 1 1
q0 q3 q1 q2 q2 q2 accept 

string

One state is final/accepting, all others are rejecting.
The above DFA accepts those strings that contain an even number of 0’s, 
including null string, over Sigma = {0,1}
Can you draw a machine for a language by excluding the null string from 
the language?  L = {all strings with 2 or more 0’s}
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Example #2:

a c c c b

accepted

q0 q0 q1 q2 q2 q2

a a c

rejected

q0 q0 q0 q1             

Accepts those strings that contain at least two c’s
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q1q0
q2
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b

a

b

c c

a/b/c
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q1q0
q2

a

b

a

b

c c

a/b/c

Inductive Proof (sketch): that the machine correctly accepts strings with at least two c’s

Proof goes over the length of the string.

Base: x a string with |x|=0. state will be q0 => rejected.

Inductive hypothesis: |x|= integer k, & string x is rejected - in state q0 (x must have zero c),

OR, rejected – in state q1 (x must have one c),

OR, accepted – in state q2 (x has already with two c’s)

Inductive steps: Each case for symbol p, for string xp (|xp| = k+1), the last symbol p = a, b or c
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Formal Definition of a DFA
A DFA is a five-tuple:

M = (Q, Σ, δ, q0, F)

Q A finite set of states
Σ A finite input alphabet
q0 The initial/starting state, q0 is in Q
F A set of final/accepting states, which is a subset of Q
δ A transition function, which is a total function from Q x Σ to 

Q

δ: (Q x Σ) –> Q δ is defined for any q in Q and s in Σ, 
and 

δ(q,s) = q’ is equal to some state q’ in Q, could be 
q’=q

Intuitively, δ(q,s) is the state entered by M after reading symbol s while 
in state q.

10Ashwini P, CSE,ATME college of Engineeering



Revisit example #1:

Q = {q0, q1}

Σ = {0, 1}

Start state is q0

F = {q0}

δ:

0 1

q0 q1 q0

q1 q0 q1
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a b c

q0 q0 q0 q1

q1 q1 q1 q2

q2 q2 q2 q2

Since δ is a function, at each step M has exactly one option.

It follows that for a given string, there is exactly one computation.      
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q1q0
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Extension of δ to Strings

δ^ : (Q x Σ*) –> Q

δ^(q,w) – The state entered after reading string w having started in state q.

Formally:

1) δ^(q, ε) = q, and

2) For all w in Σ* and a in Σ

δ^(q,wa) = δ (δ^(q,w), a) 
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Note that:

δ^ (q,a) = δ(δ^(q, ε), a) by definition of δ^, 

rule #2

= δ(q, a) by definition of δ^, 

rule #1

Therefore:

δ^ (q, a1a2…an) = δ(δ(…δ(δ(q, a1), a2)…), an)

However, we will abuse notations, and use δ in place of δ^:

δ^(q, a1a2…an) = δ(q, a1a2…an)
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Example #3:

What is δ(q0, 011)? Informally, it is the state entered by M after processing 011 

having started in state q0.

Formally:

δ(q0, 011) = δ (δ(q0,01), 1) by rule #2

= δ (δ (δ(q0,0), 1), 1) by rule #2

= δ (δ (q1, 1), 1) by definition 

of δ

= δ (q1, 1) by definition 

of δ

= q1 by definition 

of δ

Is 011 accepted? No, since δ(q0, 011) = q1 is not a final state.

Language?

L ={ all strings over {0,1} that has 2 or more 0 symbols}
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Recall Example #3:

What is δ(q1, 10)?

δ(q1, 10) = δ (δ(q1,1), 0) by rule #2

= δ (q1, 0) by 

definition of δ

= q2 by 

definition of δ

Is 10 accepted? No, since δ(q0, 10) = q1 is not a final state. The fact 

that δ(q1, 10) = q2 is irrelevant, q1 is not the start state!
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Definitions related to DFAs
Let M = (Q, Σ, δ,q0,F) be a DFA and let w be in Σ*.  Then w is accepted by  M  iff
δ(q0,w) = p  for some state p in F. 

Let  M = (Q, Σ, δ,q0,F)  be a DFA. Then the language accepted by M is the set:

L(M) = {w | w is in Σ* and δ(q0,w) is in F} 

Another equivalent definition:

L(M) = {w | w is in Σ* and w is accepted by M}

Let  L  be a language. Then  L  is a regular language iff there exists a DFA  M  
such that L = L(M).

Let  M1 = (Q1, Σ1, δ1, q0, F1)  and M2 = (Q2, Σ2, δ2, p0, F2)  be DFAs. Then M1 and 
M2 are equivalent iff L(M1) = L(M2).
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Notes:
A DFA  M = (Q, Σ, δ,q0,F) partitions the set Σ* into two sets: L(M) and

Σ* - L(M). 

If L = L(M) then L is a subset of L(M) and L(M) is a subset of L  (def. of set equality).

Similarly, if L(M1) = L(M2) then L(M1) is a subset of L(M2) and L(M2) is a subset of 
L(M1). 

Some languages are regular, others are not. For example, if

Regular: L1 = {x | x is a string of 0's and 1's containing an 
even number of 1's} and 

Not-regular: L2 = {x | x = 0n1n for some n >= 0} 

Can you write a program to “simulate” a given DFA,  or any arbitrary input DFA?

Question we will address later:
How do we determine whether or not a given language is regular?
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Give a DFA M such that:

L(M) = {x | x is a string of 0’s and 1’s and |x| 

>= 2}

Prove this by induction
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Give a DFA M such that:

L(M) = {x | x is a string of (zero or more) a’s, b’s and c’s such 

that x does not contain the substring aa}

Logic:  

In Start state (q0): b’s and c’s: ignore – stay in same state

q0 is also “accept” state

First ‘a’ appears: get ready (q1) to reject

But followed by a  ‘b’ or ‘c’: go back to start state q0

When second ‘a’ appears after the “ready” state: go to reject state q2

Ignore everything after getting to the “reject” state q2
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q2q0
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Give a DFA M such that:

L(M) = {x | x is a string of a’s, b’s and c’s such that 

x 

contains the substring aba}

Logic:  acceptance is straight forward, progressing on each expected symbol

However, rejection needs special care, in each state (for DFA, we will see this 

becomes easier in NFA, non-deterministic machine)
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Give a DFA M such that:

L(M) = {x | x is a string of a’s and b’s such that x 

contains both aa and bb}

First do, for a language where ‘aa’ comes before ‘bb’

Then do its reverse; and then parallelize them.
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Let Σ = {0, 1}. Give DFAs for {}, {ε}, Σ*, and Σ+.

For {}: For {ε}:

For Σ*: For Σ+:
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Problem: Third symbol from last is 1

24

0/1

q1q0
q3

1 0/1
q2

0/1

Is this a DFA?

No, but it is a  Non-deterministic Finite Automaton
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Nondeterministic Finite State  Automata (NFA)

An NFA is a five-tuple:

M = (Q, Σ, δ, q0, F)

Q A finite set of states
Σ A finite input alphabet
q0 The initial/starting state, q0 is in Q
F A set of final/accepting states, which is a subset of Q
δ A transition function, which is a total function from Q x Σ to 2Q

δ: (Q x Σ) –> 2Q :2Q is the power set of Q, the set of all subsets 
of Q δ(q,s) :The set of all states p such that there is a transition

labeled s from q to p

δ(q,s) is a function from Q x S to 2Q (but not only to Q)
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Example #1: one or more 0’s followed by one or more 1’s

Q = {q0, q1, q2}

Σ = {0, 1}

Start state is q0

F = {q2}

δ: 0 1

q0

q1

q2

26

{q0, q1} {}

{} {q1, q2}

{q2} {q2}

q1q0
q2

0 1

0 1

0/1
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Example #2: pair of 0’s or pair of 1’s as substring

Q = {q0, q1, q2 , q3 , q4}

Σ = {0, 1}

Start state is q0

F = {q2, q4}

δ: 0 1

q0

q1

q2

q3

q4
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{q0, q3} {q0, q1}

{} {q2}

{q2} {q2}

{q4} {}

{q4} {q4}

q0

0/1

0 0
q3

q4

0/1

q1
q2

0/11

1
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Determining if a given NFA (example #2) accepts a given string (001) can 

be done algorithmically:

q0 q0 q0 q0

q3 q3 q1

q4 q4

accepted

Each level will have at most n states: 

Complexity: O(|x|*n), for running over a string x
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Another example (010):

q0 q0 q0 q0

q3 q1 q3

not 

accepted

All paths have been explored, and none lead to an accepting state.
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Let Σ = {a, b}. Give an NFA M that accepts:

L = {x | x is in Σ* and the third to the last symbol in 

x is b}

Is L a subset of L(M)? 

Is L(M) a subset of L?

Give an equivalent DFA as an exercise.
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Extension of δ to Strings and Sets of States
What we currently have: δ : (Q x Σ) –> 2Q

What we want (why?): δ : (2Q x Σ*) –> 2Q

We will do this in two steps, which will be slightly different from the book, and 

we will make use of the following NFA.
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Example:

What is δ({q0}, 10)?

Informally: The set of states the NFA could be in after processing 
10,

having started in state q0, i.e., {q1, q2, q3}.

Formally: δ({q0}, 10) = δ(δ({q0}, 1), 0)
= δ({q0}, 0)
= {q1, q2, q3}

Is 10 accepted? Yes!
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Example:

What is δ({q0, q1}, 1)?

δ({q0 , q1}, 1) = δ({q0}, 1)  δ({q1}, 1) 

= {q0}  {q2, q3}

= {q0, q2, q3}

What is δ({q0, q2}, 10)?

δ({q0 , q2}, 10) = δ(δ({q0 , q2}, 1), 0)

= δ(δ({q0}, 1) U δ({q2}, 1), 0)

= δ({q0}  {q3}, 0)

= δ({q0,q3}, 0)

= δ({q0}, 0)  δ({q3}, 0)

= {q1, q2, q3}  {}

= {q1, q2, q3}
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Example:

δ({q0}, 101) = δ(δ({q0}, 10), 1)

= δ(δ(δ({q0}, 1), 0), 1)

= δ(δ({q0}, 0), 1)

= δ({q1 , q2, q3}, 1)

= δ({q1}, 1) U δ({q2}, 1) U δ({q3}, 1) 

= {q2, q3} U {q3} U {}

= {q2, q3}

Is 101 accepted? Yes! q3 is a final state.
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Equivalence of DFAs and NFAs
Do DFAs and NFAs accept the same class of languages?

Is there a language L that is accepted by a DFA, but not by any NFA?

Is there a language L that is accepted by an NFA, but not by any DFA?

Observation: Every DFA is an NFA, DFA is only restricted NFA.

Therefore, if L is a regular language then there exists an NFA M such that L = 

L(M).

It follows that NFAs accept all regular languages.

But do NFAs accept more?
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Consider the following DFA: 2 or more c’s

Q = {q0, q1, q2}

Σ = {a, b, c}

Start state is q0

F = {q2}

δ: a b c

q0 q0 q0 q1

q1 q1 q1 q2

q2 q2 q2 q2

36

q1q0
q2
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b

a
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c c

a/b/c
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Lemma 1: Let M be an DFA.  Then there exists a NFA M’ such that L(M) = 

L(M’).

Proof: Every DFA is an NFA. Hence, if we let M’ = M, then it follows that L(M’) 

= L(M).

The above is just a formal statement of the observation from the 

previous slide.
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Lemma 2: Let M be an NFA.  Then there exists a DFA M’ such that L(M) 
= L(M’).

Proof: (sketch)

Let M = (Q, Σ, δ,q0,F).

Define a DFA M’ = (Q’, Σ, δ’,q’
0,F’) as:

Q’ = 2Q Each state in M’ corresponds 
to a

= {Q0, Q1,…,} subset of states from M

where Qu = [qi0, qi1,…qij]

F’ = {Qu | Qu contains at least one state in F}

q’
0 = [q0]

δ’(Qu, a) = Qv iff δ(Qu, a) = Qv
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Example: empty string or start and end with 0

Q = {q0, q1}

Σ = {0, 1}

Start state is q0

F = {q0}

δ: 0 1

q0

q1

39

{q1} {}

{q0, q1} {q1}

q1q0

0

0/1

0
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Theorem: Let L be a language.  Then there exists an DFA M  such that L = L(M) 

iff there exists an NFA M’ such that L = L(M’).

Proof:

(if) Suppose there exists an NFA M’ such that L = L(M’).  Then by 

Lemma 2 there exists an DFA M such that L = L(M).

(only if) Suppose there exists an DFA M such that L = L(M).  Then by 

Lemma 1 there exists an NFA M’ such that L = L(M’).

Corollary: The NFAs define the regular languages.
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Problem: Third symbol from last is 1
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0/1

q1q0
q3

1 0/1
q2

0/1

Now, can you convert this NFA to a DFA?
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NFAs with ε Moves

An NFA-ε is a five-tuple:

M = (Q, Σ, δ, q0, F)

Q A finite set of states
Σ A finite input alphabet
q0 The initial/starting state, q0 is in Q
F A set of final/accepting states, which is a subset of Q
δ A transition function, which is a total function from Q x Σ 

U {ε} to 2Q

δ: (Q x (Σ U {ε})) –> 2Q

δ(q,s) -The set of all states p such 
that there is a 

transition labeled a from q to 
p, where a 

is in Σ U {ε}
Sometimes referred to as an NFA-ε other times, simply as an NFA.
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Example:

δ: 0 1 ε

q0 - A string w = w1w2…wn is 

processed

as w = ε*w1ε
*w2ε

* … 

ε*wnε
*

q1 - Example: all 

computations on 00:

0    ε   0

q2 q0 q0 q1 q2

:

q3
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ε
0/1
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0

q1

0

q3

ε

0

1

{q0} { } {q1}

{q1, q2} {q0, q3} {q2}

{q2} {q2} { }

{ } { } { }
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Informal Definitions
Let M = (Q, Σ, δ,q0,F) be an NFA-ε.

A String w in Σ* is accepted by M iff there exists a path in M from q0 to a state in 

F labeled by w and zero or more ε transitions.

The language accepted by M is the set of all strings from Σ* that are accepted by 

M.
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ε-closure
Define ε-closure(q) to denote the set of all states reachable from q by zero 
or more ε transitions.

Examples: (for the previous NFA)

ε-closure(q0) = {q0, q1, q2} ε-closure(q2) = {q2}
ε-closure(q1) = {q1, q2} ε-closure(q3) = {q3}

ε-closure(q) can be extended to sets of states by defining:

ε-closure(P) =      ε-closure(q)

Examples:

ε-closure({q1, q2}) = {q1, q2}
ε-closure({q0, q3}) = {q0, q1, q2, q3}
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Equivalence of NFAs and NFA-εs
Do NFAs and NFA-ε machines accept the same class of languages?

Is there a language L that is accepted by a NFA, but not by any NFA-ε?

Is there a language L that is accepted by an NFA-ε, but not by any DFA?

Observation: Every NFA is an NFA-ε.

Therefore, if L is a regular language then there exists an NFA-ε M such that L = 

L(M).

It follows that NFA-ε machines accept all regular languages.

But do NFA-ε machines accept more?
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Lemma 1: Let M be an NFA.  Then there exists a NFA-ε M’ such that L(M) = 

L(M’).

Proof: Every NFA is an NFA-ε. Hence, if we let M’ = M, then it follows that 

L(M’) = L(M).

The above is just a formal statement of the observation from the 

previous slide.

47Ashwini P, CSE,ATME college of Engineeering



Lemma 2: Let M be an NFA-ε.  Then there exists a NFA M’ such that L(M) = L(M’).

Proof: (sketch)

Let M = (Q, Σ, δ,q0,F) be an NFA-ε.

Define an NFA M’ = (Q, Σ, δ’,q0,F’) as:

F’ = F U {q} if ε-closure(q) contains at least one state from F
F’ = F otherwise

δ’(q, a) = δ^(q, a) - for all q in Q and a in Σ

Notes:
δ’: (Q x Σ) –> 2Q is a function
M’ has the same state set, the same alphabet, and the same start state as M
M’ has no ε transitions

48Ashwini P, CSE,ATME college of Engineeering



Example:

Step #1:
Same state set as M

q0 is the starting state

49

q0

ε

0/1

q2

1

0

q1

0

q3

ε

0

1

q2q1

q3

q0

Ashwini P, CSE,ATME college of Engineeering



Example:

Step #2:
q0 becomes a final state
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Example:

Step #3:
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Example:

Step #5:
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Example:

Step #6:
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Example:

Step #7:
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0/1

1

1 0

q1
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Step #8: [use table of e-closure]
Done!
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0/1
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0/1

0/1
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Theorem: Let L be a language.  Then there exists an NFA M  such that L= L(M) 

iff there exists an NFA-ε M’ such that L = L(M’).

Proof:

(if) Suppose there exists an NFA-ε M’ such that L = L(M’).  Then by 

Lemma 2 there exists an NFA M such that L = L(M).

(only if) Suppose there exists an NFA M such that L = L(M).  Then by 

Lemma 1 there exists an NFA-ε M’ such that L = L(M’).

Corollary: The NFA-ε machines define the regular languages.
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RE’s: Introduction

•Regular expressions are algebraic ways to describe sets of strings that are regular

languages (denoted by L(RE)).

•RE’s and their languages are defined recursively.
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3 basic operations between languages (i.e., sets of strings) derived from RE’s: 

•Union denoted by L(RE1)+L(RE2)

•Concatenation denoted by L(RE1).L(RE2) or L(RE1)L(RE2)

•Closure denoted by L*(RE).

4

Operations in RE’s
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5

L + M the is set of all strings either in L or in M or in both

Example: {001,10,111} + {e,001}={e,001,10,111}

L.M or simply LM is the set of all string that can be formed by concatenating any string in L 

with any string in M.

Example: {001,10,111}.{e,001}=

{001,10,111,001001,10001,111001}

Note! left-right order is preserved

L* is set of strings obtained by taking any number of strings from L and forming all possible 

concatenation.

Definition of + . and * operations
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L* in relation to powers of L
L* = Uk>0 Lk

Union of all powers of L (including zero)

L0 = {e}; hence, L* contains {e} for any L

L1 = L 

Lk (k>1) concatenation of k copies of L

If L={0,11}, L2 = {0,11}{0,11} ={00,011,110,1111} 

L(∅) is the empty language (no strings)

L(∅)*={e} rare example of finite closure

L+ is the same as L* except no empty string
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Elementary components of RE’s

•Basis 1: any symbol, a, is a RE. 

•L(RE)={a} is language containing one string of length 1.

•Basis 2: e is a RE. 

•L(RE)={e} consists of empty string only

•Basis 3: ∅ is a RE.

•L(RE) = ∅ has no strings
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Recursive Definitions of RE’s 

Induction 1: If E1 and E2 are RE’s, then E1+E2 is a RE, and L(E1+E2) = 

L(E1)+L(E2)

Induction 2: If E1 and E2 are RE’s then E1E2 is a RE, and L(E1E2) =L(E1)L(E2)

Induction 3: If E is a RE, then E* is a RE, and L(E*) = (L(E))* or simply L(E)*
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Precedence of operations

•* highest 

•. (or juxtaposition) next 

•+ lowest

9

Building regular expressions

Parentheses are used as needed to influence 

the precedence of operators.
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* operates on smallest sequence of symbols to its left that is a legal RE

Example: 01* closure on 1 only

After grouping all *’s to their operands, group all concatenations to their operands 

Example: 0 to 1* in RE=01*

Finally, group unions (+) with operands;

01*+1=0{e,1,11,…}+1={0,01,011,…}+1

={0,1,01,011,…}
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Precedence matters:

L(01*+1)=0{e,1,11,…}+1={0,01,011…}+1={0,1,01,011..}

When we override precedence by ()

L(0(1*+1)) = 01*= 0{e,1,11,…}={0,01,011,…} 

Note: 1* and (1*+1) are the same
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Enumerate the strings in these L(RE)

L(01) = ?

L(01+0) = ?

L(0(1+0)) = ?

L(0*) = ?

L(01*) = ?

L((01)*) = ?

L((01)+) = ?
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L(01) = {01}.

L(01+0) = {01, 0}.

L(0(1+0)) = {0}{0,1}={00, 01}.
L(0*) = {ε, 0, 00, 000,… }.

L(01*) = 0{e,1,11,…}={0,01,011,…}

L((01)*) = {e,01,0101,…}

L((01)+) = {01,0101,…}

13

Enumerate the strings in L(RE)
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14

Given a description of L, what RE will generate the strings in L?

Example: L = strings of alternating 0’s and 1’s

Start by enumerating strings in L 

L={e,0,1}+strings alternating 0’s and 1’s length >1

L={e,0,1,01,10} + strings alternating 0’s and 1’s length >2

L={e,0,1,01,10,010,101} + strings alternating 0’s and 1’s length > 3

Generalize: {e,0,1} +

Strings with even number of characters that begin 0 and end 1

Strings with even number of characters that begin 1 and end 0

Strings with odd number of characters that begin 0 and end 0

Strings with odd number of characters that begin 1 and end 1

Build each from closure and concatenation
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Strings with even number of characters that begin 0 and end 1

(01)*={e,01,0101,010101,…}

Strings with even number of characters that begin 1 and end 0

(10)*={e,10,1010,101010,…}

Strings with odd number of characters that begin 0 and end 0

0(10)*=0{e,10,1010…}={0,010,01010,…}

Strings with odd number of characters that begin 1 and end 1

1(01)*=1{e,01,0101…}={1,101 10101,…}

L is the union of 4 cases

RE = (01)*+(10)*+0(10)*+1(01)* 
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L is the union of 4 cases

RE = (01)*+(10)*+0(10)*+1(01)* 

Find a different expression for RE using the distribution of concatenation over union.
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L is the union of 4 cases

RE = (01)*+(10)*+0(10)*+1(01)* 

Find a different expression for RE using the distribution of concatenation over union.

RE = (e+1)(01)* + (e+0)(10)*
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RE = (01)*+(10)*+0(10)*+1(01)* 

is not the only RE that defines

L={e,0,1}+strings alternating 0’ and 1’s length >1

Enumerate and describe string defined by

(01)*0

1(01)*0

18Ashwini P, CSE, ATME College of Engineering



RE = (01)*+(10)*+0(10)*+1(01)* 

is not the only RE that defines

L={e,0,1}+strings alternating 0’ and 1’s length >1

(01)*0={0,010,…} odd, begin=0, end=0

1(01)*0 ={10,1010,…} even, begin=1, end=0
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DFA Minimization

 Some states can be redundant:

 The following DFA accepts (a|b)+

 State s1 is not necessary
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DFA Minimization

 So these two DFAs are equivalent:
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DFA Minimization

 This is a state-minimized (or just minimized) DFA

 Every remaining state is necessary
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DFA Minimization

 The task of DFA minimization, then, is to automatically transform a given DFA into 

a state-minimized DFA

 Several algorithms and variants are known

 Note that this also in effect can minimize an NFA (since we know algorithm to 

convert NFA to DFA)
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DFA Minimization Algorithm
 Create lower-triangular table DISTINCT, initially blank

 For every pair of states (p,q):

 If p is final and q is not, or vice versa

 DISTINCT(p,q) = ε

 Loop until no change for an iteration:

 For every pair of states (p,q) and each symbol α

 If DISTINCT(p,q) is blank and 

DISTINCT( δ(p,α), δ(q,α) ) is not blank

 DISTINCT(p,q) = α

 Combine all states that are not distinct 
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Pushdown Automata (PDA)

Informally:
A PDA is an NFA-ε with a stack.

Transitions are modified to accommodate stack operations.

Questions:
What is a stack?

How does a stack help?

A DFA can “remember” only a finite amount of information, whereas a PDA can 

“remember” an infinite amount of (certain types of) information, in one memory-stack
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Example:

{0n1n | 0=<n} is not regular, but

{0n1n | 0nk, for some fixed k} is regular, for any fixed k.

For k=3:

L = {ε, 01, 0011, 000111}

4

0/1

q0

q7

0
q1

11

q2

1
q5

0
q3

11

q4

0

1

0
0

0/1 q6

0
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In a DFA, each state remembers a finite amount of information.

To get {0n1n | 0n} with a DFA would require an infinite number of states using 

the preceding technique.

An infinite stack solves the problem for {0n1n | 0n} as follows:
Read all 0’s and place them on a stack

Read all 1’s and match with the corresponding 0’s on the stack

Only need two states to do this in a PDA

Similarly for {0n1m0n+m | n,m0}
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Formal Definition of a PDA

A pushdown automaton (PDA) is a seven-tuple:

M = (Q, Σ, Г, δ, q0, z0, F)

Q A finite set of states

Σ A finite input alphabet

Г A finite stack alphabet

q0 The initial/starting state, q0 is in Q

z0 A starting stack symbol, is in Г    // need not always remain at the 

bottom of stack

F A set of final/accepting states, which is a subset of Q

δ A transition function, where

δ: Q x (Σ U {ε}) x Г –> finite subsets of Q x Г*
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Consider the various parts of δ:

Q x (Σ U {ε}) x Г –> finite subsets of Q x Г*

Q on the LHS means that at each step in a computation, a PDA must consider its’ 

current state.

Г on the LHS means that at each step in a computation, a PDA must consider the symbol 

on top of its’ stack.

Σ U {ε} on the LHS means that at each step in a computation, a PDA may or may not 

consider the current input symbol, i.e., it may have epsilon transitions.

“Finite subsets” on the RHS means that at each step in a computation, a PDA may have 

several options.

Q on the RHS means that each option specifies a new state.

Г* on the RHS means that each option specifies zero or more stack symbols that will 

replace the top stack symbol, but in a specific sequence.
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Two types of PDA transitions:

δ(q, a, z) = {(p1,γ1), (p2,γ2),…, (pm,γm)}

Current state is q

Current input symbol is a

Symbol currently on top of the stack z

Move to state pi from q

Replace z with γi on the stack (leftmost symbol on top)

Move the input head to the next input symbol

:

8

q

p1

p2

pm

a/z/ γ1

a/z/ γ2

a/z/ γm
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Two types of PDA transitions:

δ(q, ε, z) = {(p1,γ1), (p2,γ2),…, (pm,γm)}

Current state is q

Current input symbol is not considered

Symbol currently on top of the stack z

Move to state pi from q

Replace z with γi on the stack (leftmost symbol on top)

No input symbol is read

:

9

q

p1

p2

pm

ε/z/ γ1

ε/z/ γ2

ε/z/ γm
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Transition Diagram:

Example Computation:

Current Input Stack Transition

(()) # -- initial status

()) L# (1) - Could have 

applied rule (5), but

)) LL# (3) it would have done no 

good

) L# (4)

ε # (4)

ε - (5)

10

q0

(, # | L#

ε, # | ε (, L | LL

), L | ε
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Example PDA #1: For the language {x | x = wcwr and w in {0,1}*, but sigma={0,1,c}}

Is this a regular language?

Note: length |x| is odd

M = ({q1, q2}, {0, 1, c}, {#, B, G}, δ, q1, #, Ø)

δ:

(1) δ(q1, 0, #) = {(q1, B#)} (9) δ(q1, 1, #) = {(q1, G#)}

(2) δ(q1, 0, B) = {(q1, BB)} (10) δ(q1, 1, B) = {(q1, GB)}

(3) δ(q1, 0, G) = {(q1, BG)} (11) δ(q1, 1, G) = {(q1, GG)}

(4) δ(q1, c, #) = {(q2, #)}

(5) δ(q1, c, B) = {(q2, B)}

(6) δ(q1, c, G) = {(q2, G)}

(7) δ(q2, 0, B) = {(q2, ε)} (12) δ(q2, 1, G) = {(q2, ε)}

(8) δ(q2, ε, #) = {(q2, ε)}

Notes:
Stack grows leftwards

Only rule #8 is non-deterministic.

Rule #8 is used to pop the final stack symbol off at the end of a computation.
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Example Computation:

(1) δ(q1, 0, #) = {(q1, B#)} (9) δ(q1, 1, #) = {(q1, G#)}

(2) δ(q1, 0, B) = {(q1, BB)} (10) δ(q1, 1, B) = {(q1, GB)}

(3) δ(q1, 0, G) = {(q1, BG)} (11) δ(q1, 1, G) = {(q1, GG)}

(4) δ(q1, c, #) = {(q2, #)}

(5) δ(q1, c, B) = {(q2, B)}

(6) δ(q1, c, G) = {(q2, G)}

(7) δ(q2, 0, B) = {(q2, ε)} (12) δ(q2, 1, G) = {(q2, ε)}

(8) δ(q2, ε, #) = {(q2, ε)}

State Input Stack Rule Applied Rules Applicable

q1 01c10 # (1)

q1 1c10 B# (1) (10)

q1 c10 GB# (10) (6)

q2 10 GB# (6) (12)

q2 0 B# (12) (7)

q2 ε # (7) (8)

q2 ε ε (8) -
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Example Computation:

(1) δ(q1, 0, #) = {(q1, B#)} (9) δ(q1, 1, #) = {(q1, G#)}
(2) δ(q1, 0, B) = {(q1, BB)} (10) δ(q1, 1, B) = {(q1, GB)}
(3) δ(q1, 0, G) = {(q1, BG)} (11) δ(q1, 1, G) = {(q1, GG)}
(4) δ(q1, c, #) = {(q2, #)}
(5) δ(q1, c, B) = {(q2, B)}
(6) δ(q1, c, G) = {(q2, G)}
(7) δ(q2, 0, B) = {(q2, ε)} (12) δ(q2, 1, G) = {(q2, ε)}
(8) δ(q2, ε, #) = {(q2, ε)}

State Input Stack Rule Applied
q1 1c1 #
q1 c1 G# (9)
q2 1 G# (6)
q2 ε # (12)
q2 ε ε (8)

Questions:
Why isn’t δ(q2, 0, G) defined?
Why isn’t δ(q2, 1, B) defined?

TRY:   11c1
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Example PDA #2: For the language {x | x = wwr and w in {0,1}*}

Note: length |x| is even

M = ({q1, q2}, {0, 1}, {#, B, G}, δ, q1, #, Ø)

δ:

(1) δ(q1, 0, #) = {(q1, B#)}

(2) δ(q1, 1, #) = {(q1, G#)} 

(3) δ(q1, 0, B) = {(q1, BB), (q2, ε)} (6) δ(q1, 1, G) = {(q1, GG), (q2, 

ε)}

(4) δ(q1, 0, G) = {(q1, BG)} (7) δ(q2, 0, B) = {(q2, ε)} 

(5) δ(q1, 1, B) = {(q1, GB)} (8) δ(q2, 1, G) = {(q2, ε)} 

(9) δ(q1, ε, #) = {(q2, #)}

(10) δ(q2, ε, #) = {(q2, ε)}

Notes:
Rules #3 and #6 are non-deterministic: two options each

Rules #9 and #10 are used to pop the final stack symbol off at the end of a computation.
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Example Computation:

(1) δ(q1, 0, #) = {(q1, B#)} (6) δ(q1, 1, G) = {(q1, GG), (q2, ε)}
(2) δ(q1, 1, #) = {(q1, G#)} (7) δ(q2, 0, B) = {(q2, ε)} 
(3) δ(q1, 0, B) = {(q1, BB), (q2, ε)} (8) δ(q2, 1, G) = {(q2, ε)}
(4) δ(q1, 0, G) = {(q1, BG)} (9) δ(q1, ε, #) = {(q2, ε)}
(5) δ(q1, 1, B) = {(q1, GB)} (10) δ(q2, ε, #) = {(q2, ε)}

State Input Stack Rule Applied Rules Applicable
q1 000000 # (1), (9)
q1 00000 B# (1) (3), both options
q1 0000 BB# (3) option #1 (3), both options
q1 000 BBB# (3) option #1 (3), both options
q2 00 BB# (3) option #2 (7)
q2 0 B# (7) (7)
q2 ε # (7) (10)
q2 ε ε (10)

Questions:
What is rule #10 used for?
What is rule #9 used for?
Why do rules #3 and #6 have options?
Why don’t rules #4 and #5 have similar options? [transition not possible if the previous input 
symbol was different]
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Negative Example Computation:

(1) δ(q1, 0, #) = {(q1, B#)} (6) δ(q1, 1, G) = {(q1, GG), (q2, ε)}
(2) δ(q1, 1, #) = {(q1, G#)} (7) δ(q2, 0, B) = {(q2, ε)} 
(3) δ(q1, 0, B) = {(q1, BB), (q2, ε)} (8) δ(q2, 1, G) = {(q2, ε)}
(4) δ(q1, 0, G) = {(q1, BG)} (9) δ(q1, ε, #) = {(q2, ε)}
(5) δ(q1, 1, B) = {(q1, GB)} (10) δ(q2, ε, #) = {(q2, ε)}

State Input Stack Rule Applied
q1 000   #
q1 00   B# (1)
q1 0   BB# (3) option #1

(q2, 0, #) by option 2
q1 ε BBB# (3) option #1 -crashes, no-rule to apply-

(q2, ε, B#) by option 2
-rejects: end of string but not empty stack-
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Example Computation:

(1) δ(q1, 0, #) = {(q1, B#)} (6) δ(q1, 1, G) = {(q1, GG), (q2, ε)}
(2) δ(q1, 1, #) = {(q1, G#)} (7) δ(q2, 0, B) = {(q2, ε)} 
(3) δ(q1, 0, B) = {(q1, BB), (q2, ε)} (8) δ(q2, 1, G) = {(q2, ε)}
(4) δ(q1, 0, G) = {(q1, BG)} (9) δ(q1, ε, #) = {(q2, ε)}
(5) δ(q1, 1, B) = {(q1, GB)} (10) δ(q2, ε, #) = {(q2, ε)}

State Input Stack Rule Applied
q1 010010 #
q1 10010 B# (1) From (1) and (9)
q1 0010 GB# (5)
q1 010 BGB# (4)
q2 10 GB# (3) option #2
q2 0 B# (8)
q2 ε # (7)
q2 ε ε (10)

Exercises:
0011001100   // how many total options the machine (or you!) may need to try before 
rejection?
011110
0111
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Formal Definitions for PDAs
Let M = (Q, Σ, Г, δ, q0, z0, F) be a PDA.

Definition: An instantaneous description (ID) is a triple (q, w, γ), where q is in Q, w 

is in Σ* and γ is in Г*.

q is the current state

w is the unused input

γ is the current stack contents

Example: (for PDA #2)

(q1, 111, GBR) (q1, 11, GGBR)

(q1, 111, GBR) (q2, 11, BR)

(q1, 000, GR) (q2, 00, R)

18Ashwini P, CSE, ATME college of Engineering



Let M = (Q, Σ, Г, δ, q0, z0, F) be a PDA.

Definition: Let a be in Σ U {ε}, w be in Σ*, z be in Г, and α and β both be in Г*. 

Then:

(q, aw, zα) |—M (p, w, βα)

if δ(q, a, z) contains (p, β).

Intuitively, if I and J are instantaneous descriptions, then I |— J means that J follows 

from I by one transition.
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Examples: (PDA #2)

(q1, 111, GBR) |— (q1, 11, GGBR) (6) option #1, with a=1, z=G, 

β=GG, w=11, and α= BR

(q1, 111, GBR) |— (q2, 11, BR) (6) option #2, with a=1, z=G, β= ε, 

w=11, and α= BR

(q1, 000, GR) |— (q2, 00, R) Is not true, For any a, z, β, w and α

Examples: (PDA #1)

(q1, (())), L#) |— (q1, ())),LL#) (3)
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Definition: |—* is the reflexive and transitive closure of |—.

I |—* I for each instantaneous description I

If I |— J and J |—* K then I |—* K 

Intuitively, if I and J are instantaneous descriptions, then I |—* J means that J 

follows from I by zero or more transitions.
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Definition: Let M = (Q, Σ, Г, δ, q0, z0, F) be a PDA. The language accepted by 

empty stack, denoted LE(M), is the set

{w | (q0, w, z0) |—* (p, ε, ε) for some p in Q}

Definition: Let M = (Q, Σ, Г, δ, q0, z0, F) be a PDA. The language accepted by final 

state, denoted LF(M), is the set

{w | (q0, w, z0) |—* (p, ε, γ) for some p in F and γ in Г*}

Definition: Let M = (Q, Σ, Г, δ, q0, z0, F) be a PDA. The language accepted by 

empty stack and final state, denoted L(M), is the set

{w | (q0, w, z0) |—* (p, ε, ε) for some p in F}
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Lemma 1: Let L = LE(M1) for some PDA M1. Then there exits a PDA M2 such that L 

= LF(M2).

Lemma 2: Let L = LF(M1) for some PDA M1. Then there exits a PDA M2 such that L 

= LE(M2).

Theorem: Let L be a language. Then there exits a PDA M1 such that L = LF(M1) if 

and only if there exists a PDA M2 such that L = LE(M2).

Corollary: The PDAs that accept by empty stack and the PDAs that accept by final 

state define the same class of languages.

Note: Similar lemmas and theorems could be stated for PDAs that accept by both 

final state and empty stack.
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Back to CFG again:

PDA equivalent to CFG
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Definition: Let G = (V, T, P, S) be a CFL. If every production in P is of the form

A –> aα

Where A is in V, a is in T, and α is in V*, then G is said to be in Greibach 

Normal Form (GNF).

Only one non-terminal in front.

Example:

S –> aAB | bB

A –> aA | a

B –> bB | c Language: (aa++b)b+c

Theorem: Let L be a CFL. Then L – {ε} is a CFL.

Theorem: Let L be a CFL not containing {ε}. Then there exists a GNF grammar G 

such that L = L(G).
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Lemma 1: Let L be a CFL. Then there exists a PDA M such that L = LE(M).

Proof: Assume without loss of generality that ε is not in L. The construction can be 

modified to include ε later.

Let G = (V, T, P, S) be a CFG, and assume without loss of generality that G

is in GNF. Construct M = (Q, Σ, Г, δ, q, z, Ø) where:

Q = {q}

Σ = T

Г = V

z = S

δ: for all a in Σ and A in Г, δ(q, a, A) contains (q, γ) 

if A –> aγ is in P or rather:

δ(q, a, A) = {(q, γ) | A –> aγ   is in P and γ is in Г*}, 

for all a in Σ and A in Г

For a given string x in Σ* , M will attempt to simulate a leftmost derivation of x with 

G.
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Example #1: Consider the following CFG in GNF.

S –> aS G is in GNF

S –> a L(G) = a+

Construct M as:

Q = {q}

Σ = T = {a}

Г = V = {S}

z = S

δ(q, a, S) = {(q, S), (q, ε)}

δ(q, ε, S) = Ø

Is δ complete? 
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Example #2: Consider the following CFG in GNF.

(1) S –> aA
(2) S –> aB
(3) A –> aA G is in GNF
(4) A –> aB L(G) = a+ b+ // This looks ok to me, one, two or more a’s in 

the start
(5) B –> bB
(6) B –> b [Can you write a simpler equivalent CFG? Will it 

be GNF?]

Construct M as:
Q = {q}
Σ = T = {a, b}
Г = V = {S, A, B}
z = S

(1) δ(q, a, S) = {(q, A), (q, B)} From productions #1 and 2, S->aA, S->aB
(2) δ(q, a, A) = {(q, A), (q, B)} From productions #3 and 4, A->aA, A->aB
(3) δ(q, a, B) = Ø
(4) δ(q, b, S) = Ø
(5) δ(q, b, A) = Ø
(6) δ(q, b, B) = {(q, B), (q, ε)} From productions #5 and 6, B->bB, B->b
(7) δ(q, ε, S) = Ø
(8) δ(q, ε, A) = Ø

(9) δ(q, ε, B) = Ø Is δ complete? 
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For a string w in L(G) the PDA M will simulate a leftmost derivation of w.

If w is in L(G) then (q, w, z0) |—* (q, ε, ε)

If (q, w, z0) |—* (q, ε, ε) then w is in L(G)

Consider generating a string using G. Since G is in GNF, each sentential form in a leftmost
derivation has form:

=> t1t2…ti A1A2…Am

terminals non-terminals

And each step in the derivation (i.e., each application of a production) adds a terminal and some 
non-terminals.

A1 –> ti+1α

=> t1t2…ti ti+1 αA1A2…Am

Each transition of the PDA simulates one derivation step. Thus, the ith step of the PDAs’ 
computation corresponds to the ith step in a corresponding leftmost derivation with the grammar.

After the ith step of the computation of the PDA, t1t2…ti+1 are the symbols that have already been 
read by the PDA and αA1A2…Amare the stack contents.

29Ashwini P, CSE, ATME college of Engineering



For each leftmost derivation of a string generated by the grammar, there is an 

equivalent accepting computation of that string by the PDA.

Each sentential form in the leftmost derivation corresponds to an instantaneous 

description in the PDA’s corresponding computation.

For example, the PDA instantaneous description corresponding to the sentential 

form:

=> t1t2…ti A1A2…Am

would be:

(q, ti+1ti+2…tn , A1A2…Am)
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Example: Using the grammar from example #2:

S => aA (1)

=> aaA (3)

=> aaaA (3)

=> aaaaB (4)

=> aaaabB (5)

=> aaaabb (6)

The corresponding computation of the PDA:

(rule#)/right-side#

(q, aaaabb, S) |— (q, aaabb, A) (1)/1

|— (q, aabb, A) (2)/1

|— (q, abb, A) (2)/1

|— (q, bb, B) (2)/2

|— (q, b, B) (6)/1

|— (q, ε, ε) (6)/2

String is read

Stack is emptied

Therefore the string is accepted by the PDA

31

Grammar:
(1) S –> aA
(2) S –> aB
(3) A –> aA G is in GNF
(4) A –> aB L(G) = a+b+

(5) B –> bB
(6) B –> b

(1) δ(q, a, S) = {(q, A), (q, B)}
(2) δ(q, a, A) = {(q, A), (q, B)}
(3) δ(q, a, B) = Ø
(4) δ(q, b, S) = Ø
(5) δ(q, b, A) = Ø
(6) δ(q, b, B) = {(q, B), (q, ε)}
(7) δ(q, ε, S) = Ø
(8) δ(q, ε, A) = Ø

(9) δ(q, ε, B) = Ø
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Another Example: Using the PDA from example #2:

(q, aabb, S) |— (q, abb, A) (1)/1

|— (q, bb, B) (2)/2

|— (q, b, B) (6)/1

|— (q, ε, ε) (6)/2

The corresponding derivation using the grammar:

S => aA (1)

=> aaB (4)

=> aabB (5)

=> aabb (6)
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Example #3: Consider the following CFG in GNF.

(1) S –> aABC

(2) A –> a G is in GNF

(3) B –> b

(4) C –> cAB

(5) C –> cC Language? 

Construct M as:

Q = {q}

Σ = T = {a, b, c}

Г = V = {S, A, B, C}

z = S

(1) δ(q, a, S) = {(q, ABC)} S->aABC (9) δ(q, c, S) = Ø

(2) δ(q, a, A) = {(q, ε)} A->a (10) δ(q, c, A) = Ø

(3) δ(q, a, B) = Ø (11) δ(q, c, B) = Ø

(4) δ(q, a, C) = Ø (12) δ(q, c, C) = {(q, AB), (q, C))} // C-

>cAB|cC

(5) δ(q, b, S) = Ø (13) δ(q, ε, S) = Ø

(6) δ(q, b, A) = Ø (14) δ(q, ε, A) = Ø

(7) δ(q, b, B) = {(q, ε)} B->b (15) δ(q, ε, B) = Ø

(8) δ(q, b, C) = Ø (16) δ(q, ε, C) = Ø

33

aab cc* ab
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Notes:
Recall that the grammar G was required to be in GNF before the construction could be 

applied.

As a result, it was assumed at the start that ε was not in the context-free language L.

What if ε is in L? You  need to add ε back.

Suppose ε is in L:

1) First, let L’ = L – {ε}

Fact: If L is a CFL, then L’ = L – {ε} is a CFL.

By an earlier theorem, there is GNF grammar G such that L’ = L(G).

2) Construct a PDA M such that L’ = LE(M)

How do we modify M to accept ε?

Add δ(q, ε, S) = {(q, ε)}?      NO!!
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Counter Example:

Consider L = {ε, b, ab, aab, aaab, …}= ε + a*b Then L’ = {b, ab, aab, aaab, 

…} = a*b

The GNF CFG for L’:

P:

(1) S –> aS

(2) S –> b

The PDA M Accepting L’:

Q = {q}

Σ = T = {a, b}

Г = V = {S}

z = S

δ(q, a, S) = {(q, S)}

δ(q, b, S) = {(q, ε)} 

δ(q, ε, S) = Ø

How to add ε to L’ now?
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δ(q, a, S) = {(q, S)}

δ(q, b, S) = {(q, ε)} 

δ(q, ε, S) = Ø

If δ(q, ε, S) = {(q, ε)} is added then:

L(M) = {ε, a, aa, aaa, …, b, ab, aab, aaab, …}, wrong!

It is like,   S -> aS | b | ε

which is wrong!

Correct grammar should be:  

(0)  S1 -> ε | S,  with new starting non-terminal S1

(1) S –> aS

(2) S –> b

For PDA, add a new Stack-bottom symbol S1, with new transitions:

δ(q, ε, S1) = {(q, ε), (q, S)},   where S was the previous stack-bottom of 

M

Alternatively, add a new start state q’ with transitions:

δ(q’, ε, S) = {(q’, ε), (q, S)}
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Lemma 1: Let L be a CFL. Then there exists a PDA M such that L = LE(M).

Lemma 2: Let M be a PDA. Then there exists a CFG grammar G such that LE(M) = 

L(G).

Can you prove it?

First step would be to transform an arbitrary PDA to a single state PDA!

Theorem: Let L be a language. Then there exists a CFG G such that L = L(G) iff 

there exists a PDA M such that L = LE(M).

Corollary: The PDAs define the CFLs.
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0n1n, n>=1

S -> 0S1 | 01

GNF:

S -> 0SS1 | 0S1

S1 -> 1

Note: in PDA the symbol S will float on top, rather than 

stay at the bottom!

Acceptance of string by removing last S1 at stack 

bottom
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Ignore this slide

How about language like: ((())())(), nested

39

M = ({q1,q2}, {“(“, “)”}, {L, #}, δ, q1, #, Ø)

δ:

(1) δ(q1, (, #) = {(q1, L#)}

(2) δ(q1, ), #) = Ø // illegal, string rejected

(3) δ(q1, (, L) = {(q1, LL)}

(4) δ(q1, ), L) = {(q2, ε)} 

(5) δ(q2, ), L) = {(q2, ε)}

(6) δ(q2, (, L) = {(q1, LL)}   // not balanced yet, but start back anyway

(7) δ(q2, (, #) = {(q1, L#)}   // start afresh again

(8) δ(q2, ε, #) = {(q2, ε)} // end of string & stack hits bottom, accept

(9) δ(q1, ε, #) = {(q1, ε)} // special rule for empty string

(10) δ(q1, ε, L) = Ø // illegal, end of string but more L in stack

Total number of transitions? Verify all carefully.
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Introduction

4

Grammar: G = (V, T, P, S)

T = { a, b }Terminals 

V = A, B, CVariables

SStart Symbol

P = S → AProduction
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Grammar example

S → aBSc
S → abc
Ba → aB
Bb → bb

L = { anbncn | n ≥ 1 

}

S        aBSc        aBabcc        aaBbcc         aabbcc   
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Context free grammar

The head of any production contains only one 
non-terminal symbol

S → P
P → aPb
P → ε

L = { anbn | n ≥ 0 }
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• Introduction

• Chomsky normal form

• Preliminary simplifications

• Final simplification

• Greibach Normal Form

• Algorithm  (Example)

• Summary
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A → BC
A → α

A context free grammar is said to be in Chomsky 
Normal Form if all productions are in the following 
form:

• A, B and C are non terminal symbols
• α is a terminal symbol
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• Introduction
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Eliminate Useless 

Symbols
1

Eliminate ε productions 2

Eliminate unit 

productions
3

There are three preliminary simplifications
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Eliminate Useless Symbols

We need to determine if the symbol is useful by 
identifying if a symbol is generating and is reachable

• X is generating if X       ω for some terminal string ω.
• X is reachable if there is a derivation S       αXβ

for some α and β





*

*
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Example: Removing non-generating symbols

S → AB | 

a

A → b
Initial CFL grammar

S → AB | 

a

A → b

Identify generating symbols

S → a

A → b
Remove non-generating
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Example: Removing non-reachable symbols

S → a Eliminate non-reachable

S → a

A → b
Identify reachable symbols
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The order is important. 

S → AB | 

a

A → b

Looking first for non-reachable symbols and then 
for non-generating symbols can still leave some 
useless symbols.

S → a

A → b
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Finding generating symbols

If there is a production A → α, and every 

symbol of α is already known to be 

generating. Then A is generating 

S → AB | 

a

A → b

We cannot use S → AB because 
B has not been established to 
be generating 

Ashwini P, CSE, ATME college of Engineering 



16

Finding reachable symbols

S is surely reachable. All symbols in the body of a 
production with S in the head are reachable.

S → AB | 

a

A → b

In this example the symbols   
{S, A, B, a, b} are reachable.
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Eliminate Useless 

Symbols
1

Eliminate ε productions 2

Eliminate unit 

productions
3

There are three preliminary simplifications

Ashwini P, CSE, ATME college of Engineering 



18

Eliminate ε Productions

• In a grammar ε productions are convenient but 
not essential

• If L has a CFG, then L – {ε} has a CFG

Nullable variable

A        ε*
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If A is a nullable variable

• Whenever A appears on the body of a production 
A might or might not derive ε

S → ASA | aB
A → B | S
B → b | ε

Nullable: {A, B}
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• Create two version of the production, one with 
the nullable variable and one without it

• Eliminate productions with ε bodies

S → ASA | 

aB

A → B | S

B → b | ε

S → ASA | aB | AS | SA | S | 

a

A → B | S

B → b

Eliminate ε Productions
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• Create two version of the production, one with 
the nullable variable and one without it

• Eliminate productions with ε bodies

S → ASA |

aB

A → B | S

B → b | ε

S → ASA | aB | AS | SA | S | 

a

A → B | S

B → b

Eliminate ε Productions
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• Create two version of the production, one with 
the nullable variable and one without it

• Eliminate productions with ε bodies

S → ASA | 

aB

A → B | S

B → b | ε

S → ASA | aB | AS | SA | S | 

a

A → B | S

B → b

Eliminate ε Productions
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Eliminate Useless 

Symbols
1

Eliminate ε productions 2

Eliminate unit 

productions
3

There are three preliminary simplifications
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Eliminate unit productions

A unit production is one of the form A → B where 

both A and B are variables

A         B*

A → B, B → ω, then A → ω

Identify unit pairs
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Example:

I → a | b | Ia | Ib | I0 | I1
F → I | (E)
T → F | T * F
E → T | E + T

Pairs Productions

( E, E ) E → E + T

( E, T ) E → T * F

( E, F ) E → (E)

( E, I ) E → a | b | Ia | Ib | I0 | I1

( T, T ) T → T * F

( T, F ) T → (E)

( T, I ) T → a | b | Ia |Ib | I0 | I1

( F, F ) F → (E)

( F, I ) F → a | b | Ia | Ib | I0 | I1

( I, I ) I → a | b | Ia | Ib | I0 | I1

Basis: (A, A)  is a unit pair 
of any variable A, if           
A         A  by  0  steps.*

T = {*, +, (, ), a, b, 0, 1}
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Example:

Pairs Productions

… …

( T, T ) T → T * F

( T, F ) T → (E)

( T, I ) T → a | b | Ia |Ib | I0 | I1

… …

I → a | b | Ia | Ib | I0 | I1

E → E + T | T * F | (E ) | a | b | la | lb | l0 | 

l1

T → T * F | (E) | a | b | Ia | Ib | I0 | I1

F → (E) | a | b | Ia | Ib | I0 | I1
Ashwini P, CSE, ATME college of Engineering 
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• Introduction

• Chomsky normal form

• Preliminary simplifications

• Final steps

• Greibach Normal Form

• Algorithm  (Example)

• Summary
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A → BC
A → α

A context free grammar is said to be in Chomsky 
Normal Form if all productions are in the following 
form:

• A, B and C are non terminal symbols
• α is a terminal symbol
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Chomsky Normal Form (CNF)

1. Arrange that all bodies of length 2 or more to 
consists only of variables.

2. Break bodies of length 3 or more into a cascade of 
productions, each with a body consisting of two 
variables.

Starting with a CFL grammar with the preliminary 
simplifications performed
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Step 1: For every terminal α that appears in a body 
of length 2 or more create a new variable that has 
only one production.

E → E + T | T * F | (E ) | a | b | la | lb | l0 | l1
T → T * F | (E) | a | b | Ia | Ib | I0 | I1
F → (E) | a | b | Ia | Ib | I0 | I1
I → a | b | Ia | Ib | I0 | I1

E → EPT | TMF | LER | a | b | lA | lB | lZ | lO

T → TMF | LER | a | b | IA | IB | IZ | IO

F → LER | a | b | IA | IB | IZ | IO

I → a | b | IA | IB | IZ | IO

A → a B → b Z → 0 O → 1 

P → + M → * L → ( R → ) 
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Step 2: Break bodies of length 3 or more adding 
more variables

E → EPT | TMF | LER | a | b | lA | lB | lZ | 

lO

T → TMF | LER | a | b | IA | IB | IZ | IO

F → LER | a | b | IA | IB | IZ | IO

I → a | b | IA | IB | IZ | IO

A → a B → b Z → 0 O → 1 

P → + M → * L → ( R → )

C1 → PT
C2 → MF
C3 → ER  
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• Introduction

• Chomsky normal form

• Preliminary simplifications

• Final steps

• Greibach Normal Form

• Algorithm (Example)

• Summary

Ashwini P, CSE, ATME college of Engineering 



33

A → αX

A context free grammar is said to be in Greibach 
Normal Form if all productions are in the following 
form:

• A is a non terminal symbols
• α is a terminal symbol
• X is a sequence of non terminal symbols. 

It may be empty.
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• Introduction

• Chomsky normal form

• Preliminary simplifications

• Final steps

• Greibach Normal Form

• Algorithm (Example)

• Summary
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Example:

S → XA | BB
B → b | SB
X → b
A → a

CNF

S = A1

X = A2

A = A3

B = A4

New 

Labels

A1 → A2A3 | A4A4

A4 → b | A1A4

A2 → b
A3 → a

Updated CNF
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Example:

A1 → A2A3 | A4A4

A4 → b | A1A4

A2 → b
A3 → a

First Step

Xk is a string of zero 
or more variables

Ai → AjXk j > i 

A4 → A1A4
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Example:

A1 → A2A3 | A4A4

A4 → b | A1A4

A2 → b
A3 → a

A4 → A1A4

A4 → A2A3A4 | A4A4A4 | b

A4 → bA3A4 | A4A4A4 | b

First Step Ai → AjXk j > i 
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Example:

Second Step

Eliminate Left 

Recursions

A1 → A2A3 | A4A4

A4 → bA3A4 | A4A4A4 | b 
A2 → b
A3 → a

A4 → A4A4A4

A  A α | β

Can be written as

A  β A ‘

A ‘   α A’ | ɛ
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Example:

Second Step

Eliminate Left 

Recursions

A1 → A2A3 | A4A4

A4 → bA3A4 | A4A4A4 | b 
A2 → b
A3 → a

A4 → bA3A4 | b | bA3A4Z | bZ

Z → A4A4 | A4A4Z
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Example:

A1 → A2A3 | A4A4

A4 → bA3A4 | b | bA3A4Z | bZ

Z   → A4A4 | A4A4 Z

A2 → b

A3 → a

A → αX

GNF
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Example:

A1 → A2A3 | A4A4

A4 → bA3A4 | b | bA3A4Z | bZ
Z   → A4A4 | A4A4 Z
A2 → b
A3 → a

Z   → bA3A4A4 | bA4 | bA3A4ZA4 | bZA4 | bA3A4A4 | bA4 | bA3A4ZA4 | bZA4

A1 → bA3 | bA3A4A4 | bA4 | bA3A4ZA4 | bZA4
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Example:

A1 → bA3 | bA3A4A4 | bA4 | bA3A4ZA4 | bZA4 

A4 → bA3A4 | b | bA3A4Z | bZ
Z   → bA3A4A4 | bA4 | bA3A4ZA4 | bZA4 | bA3A4A4 | bA4 | bA3A4ZA4 | bZA4

A2 → b
A3 → a

Grammar in Greibach Normal Form
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Summary (Some properties)

• Every CFG that doesn’t generate the empty string 
can be simplified to the Chomsky Normal Form and 
Greibach Normal Form

• The derivation tree in a grammar in CNF is a binary 
tree

• In the GNF, a string of length n has a derivation of 
exactly n steps

• Grammars in normal form can facilitate proofs
• CNF is used as starting point in the algorithm CYK
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3

Regular Languages - ε

Context-Free Languages - ε

Context-Sensitive Languages

Recursive Languages

Non-Recursively Enumerable Languages

Recursively Enumerable Languages
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Recursively enumerable languages are also known as type 0 languages.

Context-sensitive languages are also known as type 1 languages.

Context-free languages are also known as type 2 languages.

Regular languages are also known as type 3 languages.
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TMs model the computing capability of a general purpose computer, which informally can 
be described as:

Effective procedure
Finitely describable
Well defined, discrete, “mechanical” steps
Always terminates

Computable function
A function computable by an effective procedure

TMs formalize the above notion.

Church-Turing Thesis: There is an effective procedure for solving a problem if and only if 
there is a TM that halts for all inputs and solves the problem.

There are many other computing models, but all are equivalent to or subsumed by TMs. 
There is no more powerful machine (Technically cannot be proved).

DFAs and PDAs do not model all effective procedures or computable functions, but only a 
subset.
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Deterministic Turing Machine (DTM)
…….. ……..

Two-way, infinite tape, broken into cells, each containing one symbol.

Two-way, read/write tape head.

An input string is placed on the tape, padded to the left and right infinitely with blanks,

read/write head is positioned at the left end of input string.

Finite control, i.e., a program, containing the position of the read head, current symbol being

scanned, and the current state.

In one move, depending on the current state and the current symbol being scanned, the TM

1) changes state, 2) prints a symbol over the cell being scanned, and 3) moves its’ tape

head one cell left or right.

Many modifications possible, but Church-Turing declares equivalence of all.

6

Finite

Control

B B 0 1 1 0 0 B B
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Formal Definition of a DTM

A DTM is a seven-tuple:

M = (Q, Σ, Γ, δ, q0, B, F)

Q A finite set of states

Σ A finite input alphabet, which is a subset of Γ– {B}

Γ A finite tape alphabet, which is a strict superset of Σ 

B A distinguished blank symbol, which is in Γ

q0 The initial/starting state, q0 is in Q

F A set of final/accepting states, which is a subset of Q

δ A next-move function, which is a mapping (i.e., may be 

undefined) from

Q x Γ –> Q x Γ x {L,R}

Intuitively, δ(q,s) specifies the next state, symbol to be written, and the 

direction of tape head movement by M after reading symbol s while in state q.
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Example #1: {w | w is in {0,1}* and w ends with a 0}

0

00

10

10110

Not ε

Q = {q0, q1, q2}

Γ = {0, 1, B}

Σ = {0, 1}

F = {q2}

δ:

0 1 B

->q0 (q0, 0, R) (q0, 1, R) (q1, B, L)

q1 (q2, 0, R) - -

q2
* - - -

q0 is the start state and the “scan right” state, until hits B

q1 is the verify 0 state

q2 is the final state
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Exercises: Construct a DTM for each of the following.

{w | w is in {0,1}* and w ends in 00}

{w | w is in {0,1}* and w contains at least two 0’s}

{w | w is in {0,1}* and w contains at least one 0 and one 1}

Just about anything else (simple) you can think of
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Formal Definitions for DTMs
Let M = (Q, Σ, Г, δ, q0, B, F) be a TM.

Definition: An instantaneous description (ID) is a triple α1qα2, where:

q, the current state, is in Q

α1α2, is in Г*, and is the current tape contents up to the rightmost non-blank symbol, or the 

symbol to the left of the tape head, whichever is rightmost

The tape head is currently scanning the first symbol of α2

At the start of a computation α1= ε

If α2= ε then a blank is being scanned

Example: (for TM #1)

q00011 Xq1011 X0q111 Xq20Y1 q2X0Y1

Xq00Y1 XXq1Y1 XXYq11 XXq2YY Xq2XYY

XXq0YY XXYq3Y XXYYq3 XXYYBq4
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Suppose the following is the current ID of a DTM

x1x2…xi-1qxixi+1…xn

Case 1) δ(q, xi) = (p, y, L)

(a) if i = 1 then qx1x2…xi-1xixi+1…xn |— pByx2…xi-1xixi+1…xn 

(b) else x1x2…xi-1qxixi+1…xn |— x1x2…xi-2pxi-1yxi+1…xn

If any suffix of xi-1yxi+1…xn is blank then it is deleted.

Case 2) δ(q, xi) = (p, y, R)

x1x2…xi-1qxixi+1…xn |— x1x2…xi-1ypxi+1…xn

If i>n then the ID increases in length by 1 symbol

x1x2…xnq |— x1x2…xnyp
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Definition: Let M = (Q, Σ, Г, δ, q0, B, F) be a TM, and let w be a string in Σ*. Then w is 
accepted by M iff

q0w |—* α1pα2

where p is in F and α1 and α2 are in Г*

Definition: Let M = (Q, Σ, Г, δ, q0, B, F) be a TM. The language accepted by M, denoted 
L(M), is the set

{w | w is in Σ* and w is accepted by M}

Notes:
In contrast to FA and PDAs, if a TM simply passes through a final state then the string 
is accepted.
Given the above definition, no final state of a TM need to have any transitions. 
Henceforth, this is our assumption.
If x is NOT in L(M) then M may enter an infinite loop, or halt in a non-final state.
Some TMs halt on ALL inputs, while others may not.  In either case the language 
defined by TM is still well defined.

12Ashwini P, CSE,ATME college of Engineering



Definition: Let L be a language. Then L is recursively enumerable if there exists a TM M such that L = 
L(M).

If L is r.e. then L = L(M) for some TM M, and
If x is in L then M halts in a final (accepting) state.
If x is not in L then M may halt in a non-final (non-accepting) state or no transition is 
available, or loop forever.

Definition: Let L be a language. Then L is recursive if there exists a TM M such that L = L(M) and M 
halts on all inputs.

If L is recursive then L = L(M) for some TM M, and
If x is in L then M halts in a final (accepting) state.
If x is not in L then M halts in a non-final (non-accepting) state or no transition is available 
(does not go to infinite loop).

Notes:

The set of all recursive languages is a subset of the set of all recursively enumerable languages

Terminology is easy to confuse: A TM is not recursive or recursively enumerable, rather a 
language is recursive or recursively enumerable.
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Closure Properties for Recursive and 

Recursively Enumerable Languages

TMs model General Purpose (GP) Computers:
If a TM can do it, so can a GP computer

If a GP computer can do it, then so can a TM

If you want to know if a TM can do X, then some equivalent question 

are:
Can a general purpose computer do X?

Can a C/C++/Java/etc. program be written to do X?

For example, is a language L recursive?
Can a C/C++/Java/etc. program be written that always halts and accepts L?
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TM Block Diagrams:
If L is a recursive language, then a TM M that accepts L and always halts can be 
pictorially represented by a “chip” or “box” that has one input and two outputs.

If L is a recursively enumerable language, then a TM M that accepts L can be pictorially 
represented by a “box” that has one output.

Conceivably, M could be provided with an output for “no,” but this output cannot be 
counted on. Consequently, we simply ignore it.
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Theorem 1: The recursive languages are closed with respect to complementation, i.e., if L is 
a recursive language, then so is

Proof: Let M be a TM such that L = L(M) and M always halts. Construct TM M’ as follows:

Note That:
M’ accepts iff M does not
M’ always halts since M always halts

From this it follows that the complement of L is recursive. •

Question: How is the construction achieved? Do we simply complement the final states in 
the TM? No! A string in L could end up in the complement of L.

Suppose q5 is an accepting state in M, but q0 is not.
If we simply complemented the final and non-final states, then q0 would be an accepting state in M’ 
but q5 would not.
Since q0 is an accepting state, by definition all strings are accepted by M’
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Theorem 2: The recursive languages are closed with respect to union, i.e., if L1 and L2 are recursive 

languages, then so is

Proof: Let M1 and M2 be TMs such that L1 = L(M1) and L2 = L(M2) and M1 and M2 always halts. 

Construct TM M’ as follows:

Note That:

L(M’) = L(M1)     L(M2)

L(M’) is a subset of L(M1) U L(M2)

L(M1) U L(M2) is a subset of L(M’)

M’ always halts since M1 and M2 always halt

It follows from this that                               is recursive. •
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Theorem 3: The recursive enumerable languages are closed with respect to union, i.e., if L1

and L2 are recursively enumerable languages, then so is

Proof: Let M1 and M2 be TMs such that L1 = L(M1) and L2 = L(M2). Construct M’ as 
follows:

Note That:
L(M’) = L(M1) U L(M2)

L(M’) is a subset of L(M1) U L(M2)
L(M1) U L(M2) is a subset of L(M’)

M’ halts and accepts iff M1 or M2 halts and accepts

It follows from this that                               is recursively enumerable. •

Question: How do you run two TMs in parallel?
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Suppose, M1 and M2 had outputs for “no” in the previous construction, and these 

were transferred to the “no” output for M’

Question: What would happen if w is in L(M1) but not in L(M2)?

Answer: You could get two outputs – one “yes” and one “no.”

At least M1 will halt and answer accept, M2 may or may not halt.

As before, for the sake of convenience the “no” output will be ignored.
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Theorem 4: If L and      are both recursively enumerable then L (and therefore     ) 
is recursive.

Proof: Let M1 and M2 be TMs such that L = L(M1) and      = L(M2). Construct M’ as 
follows:

Note That:
L(M’) = L

L(M’) is a subset of L
L is a subset of L(M’)

M’ is TM for L
M’ always halts since either M1 or M2 halts for any given string
M’ shows that L is recursive

It follows from this that L (and therefore its’ complement) is recursive.
So,       is also recursive (we proved it before).  •
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Corollary of Thm 4: Let L be a subset of Σ*. Then one of the following 

must be true:

Both L and       are recursive.

One of L and       is recursively enumerable but not recursive, and the other is 

not recursively enumerable, or

Neither L nor      is recursively enumerable

In other words, it is impossible to have both L and      r.e. but not recursive
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In terms of the hierarchy: (possibility #1)

22

Recursive Languages

Recursively Enumerable Languages

Non-Recursively Enumerable Languages

L L
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In terms of the hierarchy: (possibility #2)
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Recursive Languages

Recursively Enumerable Languages

Non-Recursively Enumerable Languages
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In terms of the hierarchy: (possibility #3)
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Non-Recursively Enumerable Languages
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In terms of the hierarchy: (Impossibility #1)
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In terms of the hierarchy: (Impossibility #2)
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In terms of the hierarchy: (Impossibility #3)
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Note: This gives/identifies three approaches to show that a language is not 

recursive.
Show that the language’s complement is not recursive, in one of the two ways:

Show that the language’s complement is recursively enumerable but not recursive

Show that the language’s complement is not even recursively enumerable
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The Halting Problem - Background
Definition: A decision problem is a problem having a yes/no answer (that one presumably

wants to solve with a computer). Typically, there is a list of parameters on which the

problem is based.
Given a list of numbers, is that list sorted?

Given a number x, is x even?

Given a C program, does that C program contain any syntax errors?

Given a TM (or C program), does that TM contain an infinite loop?

From a practical perspective, many decision problems do not seem all that

interesting. However, from a theoretical perspective they are for the following two reasons:
Decision problems are more convenient/easier to work with when proving complexity results.

Non-decision counter-parts can always be created & are typically at least as difficult to solve.

Notes:
The following terms and phrases are analogous:

Algorithm - A halting TM program

Decision Problem - A language (will show shortly)

(un)Decidable - (non)Recursive
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Statement of the Halting Problem
Practical Form: (P1)

Input: Program P and input I.
Question: Does P terminate on input I?

Theoretical Form: (P2)
Input: Turing machine M with input alphabet Σ and string w in Σ*.
Question: Does M halt on w?

A Related Problem We Will Consider First: (P3)
Input: Turing machine M with input alphabet Σ and one final state, and string w 

in Σ*.
Question: Is w in L(M)?

Analogy:
Input: DFA M with input alphabet Σ and string w in Σ*.
Question: Is w in L(M)?
Is this problem (regular language) decidable? Yes! DFA always accepts or 

rejects.
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Over-All Approach:

We will show that a language Ld is not recursively enumerable

From this it will follow that       is not recursive

Using this we will show that a language Lu is not recursive

From this it will follow that the halting problem is undecidable.

As We Will See:
P3 will correspond to the language Lu

Proving P3 (un)decidable is equivalent to proving Lu (non)recursive
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The Universal Language
Define the language Lu as follows:

Lu = {x | x is in {0, 1}* and x = <M,w> where M is a TM encoding and w is in 

L(M)}

Let x be in {0, 1}*.  Then either:

1. x doesn’t have a TM prefix, in which case x is not in Lu

2. x has a TM prefix, i.e., x = <M,w> and either:

a) w is not in L(M), in which case x is not in Lu

b) w is in L(M), in which case x is in Lu
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