WATME

atme College of Engineering

THEORY OF COMPUTATION Semester v
Course Code BCS503 CIE Marks 50
Teaching Hours/Week (L: T:P: S) (3:2:0:0) SEE Marks 50
Total Hours of Pedagogy 50 Total Marks 100
Credits 04 Exam Hours 3
Examination type (SEE) Theory

Course outcome (Course Skill Set)

At the end of the course, the student will be able to:
1. Apply the fundamentals of automata theory to write DFA, NFA, Epsilon-NFA and
conversion between them.

2. Prove the properties of regular languages using regular expressions.

3. Design context-free grammars (CFGs) and pushdown automata (PDAs) for formal
languages.

4. Design Turing machines to solve the computational problems.

5. Explain the concepts of decidability and undecidability.

BJATME

atme College of Engineering

Module-1 10 Hours
Introduction to Finite Automata, Structural Representations, Automata and Complexity. The Central
Concepts of Automata Theory. Deterministic Finite Automata, Nondeterministic Finite Automata, An
Application: Text Search, Finite Automata with Epsilon-Transitions.
TEXT BOOK: Sections 1.1, 1.5, 2.2,2.3,2.4,2.5

WATME

atme College of Engineering

Hierarchy of languages

Non-Recursively Enumerable Languages

Recursively Enumerable Languages

Recursive Languages

Context-Free Languages

Regular Languages

WIATME

atme College of Engineering

Deterministic Finite State Automata (DFA)
01100

One-way, infinite tape, broken into cells
One-way, read-only tape head.
Finite control, i.e.,
finite number of states, and
transition rules between them, i.e.,
a program, containing the position of the read head, current symbol being scanned, and
the current “state.”
A string is placed on the tape, read head is positioned at the left end, and the DFA will read
the string one symbol at a time until all symbols have been read. The DFA will then either
accept or reject the string.

WATME

atme College of Engineering

The finite control can be described by a transition diagram or table:

Example #1. 1
0
0
1 0 0 1 1
Jo Jo d. Jo Jo Jo

One state is final/accepting, all others are rejecting.
The above DFA accepts those strings that contain an even number of 0’s, including the null
string, over Sigma = {0,1}
L = {all strings with zero or more 0’s}
Note, the DFA must reject all other strings

WATME

atme College of Engineering

Note:
« Machine is for accepting a language, language is the purpose!

« Many equivalent machines may accept the same language,
but a machine cannot accept multiple languages!

ML M2 e Meinf
\ |
» Ids of the characters or states are irrelevant,
you can call them by any names!
Sigma = {0, 1} = {a, b}

States = {q0, ql} = {u, v}, as long as they have
Identical (isomorphic) transition table

WJATME

atme College of Engineering

: Yo Qs Q1 P, 2 g, accept
string

One state is final/accepting, all others are rejecting.

The above DFA accepts those strings that contain an even number of 0’s,
including null string, over Sigma = {0,1}

Can you draw a machine for a language by excluding the null string from
the language? L = {all strings with 2 or more 0’s}

AX-EHMGE&Z:

atme College of Engineering

a 3 alblc

/\
b

q ¢ ;/q\ C R
0 'w >

N

b
a C C C b
accepted
qO qo ql q2 q2 q2
a a C
rejected

Qo o Jo d,

Accepts those strings that contain at least two C’s

WATME

atme College of Engineering

/qv b/c
do C :@ G :
b b

Inductive Proof (sketch): that the machine correctly accepts strings with at least two ¢’s
Proof goes over the length of the string.

Base: x a string with |x|=0. state will be q0 => rejected.

Inductive hypothesis: |x|= integer k, & string x is rejected - in state qO (X must have zero c),
OR, rejected — in state g1 (x must have one c),
OR, accepted — in state g2 (x has already with two ¢’s)

Inductive steps: Each case for symbol p, for string xp (Jxp| = k+1), the last symbol p=a, b orc

WATME

atme College of Engineering

Formal Definition of a DFA

A DFA is a five-tuple:

M= (Q) 29 89 qu F)

Q A finite set of states
> A finite input alphabet
do The initial/starting state, g, is in Q
F A set of final/accepting states, which is a subset of Q
0 A transition function, which is a total function from Q x Z to
Q
0: (QxX)—Q 0 1s defined for any q in Q and s in X,
and
0(0,9) =q’ 1s equal to some state g’ in Q, could be
q’=q

Intuitively, 8(q,s) is the state entered by M after reading symbol s while
In state Q.

BJATME

atme College of Engineering

Revisit example #1.: 1
Q ={do, a1}
> ={0, 1} 0
Start state is q, > 1
F = {00 \
0
0:
S +

qO ql qo

41 Jdo o

WATME

atme College of Engineering

Jo

a b C
Uo Yo Yo d:

d, a1 41 o p)
op op) op) op)

Since 0 is a function, at each step M has exactly one option.

It follows that for a given string, there is exactly one computation.

WATME

atme College of Engineering

Extension of 6 to Strings
5" : (QXZ*)—>Q

5"(g,w) — The state entered after reading string w having started in state g.

Formally:

1)8°(q, €)= q, and
2)ForallwinX andain X
6°(q,wa) =3 (3°(q,w), a)

WATME

atme College of Engineering

Note that:
5" (g,a) =6(5°(q, €), a) by definition of 5",
rule #2
=3(q, a) by definition of 8",
rule #1
Therefore:

5" (0, a;a,...a,) = 8(5(...8(d(q, al), a2)...), a,)

However, we will abuse notations, and use 6 in place of 8"

6°(q, a,a,...a,) = 8(q, a,a,...a,)

WATME

atme College of Engineering
Example #3:

Uo >

What is d(q,, 011)? Informally, it is the state entered by M after processing 011
having started in state g,

Formally:
0(qq, 011) =0 (8(q,,01), 1) by rule #2
=03 (0 (8(qy,0), 1), 1) by rule #2
=3 (06(qqy 1), 1) by definition
of 0
=93 (qy, 1) by definition
of 0
=Q, by definition
of 0

Is 011 accepted? No, since 6(q,, 011) = g, is not a final state.
Language?
L ={ all strings over {0,1} that has 2 or more 0 symbols}

r\ D,
WIATME ()
atme College of Engineering A

Recall Example #3: 1

0
Qo
What is 6(q,, 10)?
0(q4, 10) =0 (0(qq,1), 0) by rule #2
=0(qy, 0) by

definition of

= 0> by
definition of

Is 10 accepted? No, since d(q,, 10) = g, is not a final state. The fact
that d(q,, 10) = q,is irrelevant, g1 is not the start state!

g Ai”: .,"-'. Ll
GOLD \ oy
B :
by J €
™ - B 5

[[e—

Definitions related to DFA

Let M =(Q, %, 3,q0,F) be a DFA and let w be in £*. Then w is accepted by M iff
0(qg,W) = p for some state p in F.

atme College of Engineering

Let M=(Q, %, 8,q,,F) bea DFA. Then the language accepted by M is the set:
L(M) = {w | wis in X" and (q,,w) is in F}

Another equivalent definition:
L(M) = {w | wisin X" and w is accepted by M}

Let L bealanguage. Then L is a regular language iff there exists a DFA M
such that L = L(M).

Let M;=(Qq, X, 04, 0q, F) and M, =(Q,, X,, 5, Py, F,) be DFAs. Then M; and
M, are equivalent iff L(M,) = L(M,).

WATME

atme College of Engineering

Notes:
A DFA M =(Q, %, 3,q,,F) partitions the set £* into two sets: L(M) and
X" - L(M).
If L =L(M) then L is a subset of L(M) and L(M) is a subset of L (def. of set equality).

Similarly, if L(M;) = L(M,) then L(M,) is a subset of L(M,) and L(M,) is a subset of
L(M,).

Some languages are regular, others are not. For example, if

Regular: L, = {x | x is a string of 0's and 1's containing an
even number of 1's} and

Not-regular: L, = {x | x = 0"1" for some n >= 0}
Can you write a program to “simulate” a given DFA, or any arbitrary input DFA?

Question we will address later:
How do we determine whether or not a given language is regular?

WIATME

atme College of Engineering

Give a DFA M such that:

L(M) = {x | x 1s a string of 0’s and 1’s and [x]
0/1

2}
0/1 0/1

>=

Prove this by induction

WATME

atme College of Engineering
Give a DFA M such that:

L(M) = {x | x 1s a string of (zero or more) a’s, b’s and c’s such
that x does not contain the substring aa}

b/c a/b/c

d
_’< ' - G2

b/c

Logic:

In Start state (q0): b’s and c’s: ignore — Stay in same state

q0 is also “accept” state

First ‘a’ appears: get ready (ql) to reject

But followed by a ‘b’ or ‘c’: go back to start state g0

When second ‘a’ appears after the “ready” state: go to reject state q2

Ignore everything after getting to the “reject’ state q2

WATME

atme College of Engineering
Give a DFA M such that:

L(M) = {x | x1s a string of a’s, b’s and ¢’s such that

contains the substring aba}
a/b/c

b/c

Logic: acceptance is straight forward, progressing on each expected symbol
However, rejection needs special care, in each state (for DFA, we will see this
becomes easier in NFA, non-deterministic machine)

WATME

atme College of Engineering

Give a DFA M such that:

L(M) = {x | x 1s a string of a’s and b’s such that x
contains both aa and bb}
First do, for a language where ‘aa’ comes before ‘bb’
Then do its reverse; and then parallelize them.
d

.

" dy)
\ A

BJATME

atme College of Engineering

Let =~ = {0, 1}. Give DFAs for {}, {€}, £*, and Z*.

0/1

For {}: For {e}: 0/1
0/1 “@ ‘D

Forozll: For 2+; o1

WATME

atme College of Engineering

Problem: Third symbol from last is 1

0/1
1 0/1 0/1
Is this a DFA?

No, but it is a Non-deterministic Finite Automaton

WATME

atme College of Engineering

Nondeterministic Finite State Automata (NFA)

An NFA is a five-tuple:

M=(Q, %39, qy F)

Q A finite set of states
) A finite input alphabet
do The initial/starting state, q, is in Q
F A set of final/accepting states, which is a subset of Q
) A transition function, which is a total function from Q x X to 2°
5:(QxX)—2° :2Q is the power set of Q, the set of all subsets
of Q 3(q,S) :The set of all states p such that there is a transition

labeled s from g top

d(q,s) is a function from Q x S to 29 (but not only to Q)

BATME

atme College of Engineering
%xample #1: one or more 0’s followed by offe or more 1°s

Q= {do 9w, A2} 0
=1{0,1} Yo
Start state is g

F={q,}

0: 0 1
Qo | {00 4y} {}
4, {3 {9;, 0.}

G {0} {9,}

WATME

atme College of Engineering

Example #2: pair of 0’s or pair of 1’s as substring

Q ={do, A1, 0, 03, Ag}

2=1{0,1}
Start state is q,
F={d, 0}
0:
Jo
oh
op
O3
4

0 1
{90, 93} | {do, A1}
{} {0,}
{9,} {9,}
{9} {}
{94} {94}

WATME

atme College of Engineering

Determining if a given NFA (example #2) accepts a given string (001) can
be done algorithmically:

\ ds d;

sV 44

accepted

Each level will have at most n states:
Complexity: O(]x|*n), for running over a string X

WATME

atme College of Engineering

Another example (010):

0 ‘ 1 ‘ 0 ‘
N‘ w‘ N‘ o
ds d; ds

accepted

All paths have been explored, and none lead to an accepting state.

WATME

atme College of Engineering

Let 2 = {a, b}. Give an NFA M that accepts:

/b L ={x| xis in £" and the third to the last symbol in

X is b}
4@ b @ alb @ alb

Is L a subset of L(M)?
Is L(M) a subset of L?

Give an equivalent DFA as an exercise.

WATME

atme College of Engineering

Extension of o to Strings and Sets of States
What we currently have: 5:(QxX)—>2°

What we want (why?): 5:(2%xX") - 2Q

We will do this in two steps, which will be slightly different from the book, and
we will make use of the following NFA.

AxImM?i E

atme College of Engineering

What is 8({q}, 10)?

Informally: The set of states the NFA could be in after processing

10,
having started in state q, i.e., {d;, d,, 43}
Formally: 0({qo}, 10) = 3(d({qy}, 1), 0)
=0({q0}, 0)
={0;, d, 93}

Is 10 accepted? Yes!

WIATME

atme College of Engineering

Example:

What is 8({q,, q;}, 1)?
o({do, 1}, 1) O({ge}, 1) W O({q.}, 1)
{do} v {ay, a3}

{do» 9z, O3}

What is 8({q,, g}, 10)?

0({dp, 05}, 10) o(0({qo, gz} 1), 0)
0(0({qo}, 1) U 0({a,}, 1), 0)
o({qo} v {qs}, 0)

0({d0,03}, 0)

= 0({qo}, 0) L 06({qs}, 0)
={01, 92, Azt Y {}

={d;, dy, 93}

WATME

atme College of Engineering

Example:

O({qo}, 101) ({90}, 10), 1)

(0({do}, 1), 0), 1)

({90}, 0), 1)

{91, 0z 03}, 1)

{g9.}, 1) U 6({q,}, 1) U d({qz}, 1)
2, O3} U {qz} U {}

21 O3}

0
0
0

o o1 o1 on o

= -
O O

Is 101 accepted? Yes! q; is a final state.

A Ai”: I 3
GOLD O oy
‘e E
4 g B
L & » | =
*

[[e—

Equivalence of DFAs and NFAS

Do DFAs and NFAs accept the same class of languages?
Is there a language L that is accepted by a DFA, but not by any NFA?
Is there a language L that is accepted by an NFA, but not by any DFA?

atme College of Engineering

Observation: Every DFA is an NFA, DFA is only restricted NFA.

Therefore, if L is a regular language then there exists an NFA M such that L =
L(M).

It follows that NFAs accept all regular languages.

But do NFAs accept more?

WJATME

atme College of Engineering

Consider the following DFA: 2 or more C's

Q = 1{0o» U1, 02} a a a/blc
> ={a, b, c} . /Q i
Start state is q do :@ .

F=1{q,}

O: a b C
Jo Jo Jo d,

d; d; d; d.
do d. d. d.

WATME

atme College of Engineering

Lemma 1: Let M be an DFA. Then there exists a NFA M’ such that L(M) =
L(M”).

Proof: Every DFA is an NFA. Hence, if we let M’ = M, then it follows that L(M”)
= L(M).

The above is just a formal statement of the observation from the
previous slide.

WIATME

atme College of Engineering

Lemma 2: Let M be an NFA. Then there exists a DFA M’ such that L(M)
= L(M).

Proof: (sketch)
LetM = (Q, Z, 6,q,,F).
Define a DFAM = (Q, Z, 8',q,,F’) as:
Q =29 Each state in M’ corresponds

to a
={Qq, Qp,---} subset of states from M

where Q, = [q;o, qil’---qij]

F'={Q, | Q, contains at least one state in F}
G0 = [Gol
0'(Q,, a) = Q, iff 5(Q,, a) = Q,

BATME

atme College of Engineering

Example: empty string or start and end with O

0 R
Q={0o a:} —’: . '@

=10, 1}

Start state is

F= {00}

O: 0 1
ad {a.} {}

A {a, a3 | {a}

WATME

atme College of Engineering

Theorem: Let L be a language. Then there exists an DFA M such that L = L(M)
Iff there exists an NFA M’ such that L = L(M”).

Proof:

(if) Suppose there exists an NFA M’ such that L = L(M’). Then by
Lemma 2 there exists an DFA M such that L = L(M).

(only if) Suppose there exists an DFA M such that L = L(M). Then by
Lemma 1 there exists an NFA M’ such that L = L(M’).

Corollary: The NFAs define the regular languages.

WATME

atme College of Engineering

Problem: Third symbol from last is 1

0/1

1 0/1 0/1

Now, can you convert this NFA to a DFA?

WIATME

atme College of Engineering

NFAs with € Moves

An NFA-¢ is a five-tuple:

M=(Q, Z,0,q, F)

Q A finite set of states

2 A finite input alphabet

do The initial/starting state, g, is in Q

F A set of final/accepting states, which is a subset of Q

0 A transition function, which is a total function from Q x
U {€} to 29

o: (QAx (ZU{e}) — 29
0(q,s) -The set of all states p such
that there is a
transition labeled a from q to
p, where a
isin 2 U {g}
Sometimes referred to as an NFA-¢ other times, simply as an NFA.

) FTMeE

atme College of Engineering

N —

m

1 0

0: 0 1 £

q - A string w = w,W,...w, IS
processeg {qO} { } {ql} L "

as W = €W, EW,E ...

E'Wne’ {01, A2F | {Go: Ga} | {02}

J; - Example: all
computation$ O{t](z)p: {a.} {}

0 € O
G2 {} {} {} o Y Y1 G

ds

WATME

atme College of Engineering

Informal Definitions
Let M =(Q, Z, 8,q,F) be an NFA-¢.

A String w in X7 is accepted by M iff there exists a path in M from g to a state in
F labeled by w and zero or more ¢ transitions.

The language accepted by M is the set of all strings from X* that are accepted by
M.

WATME

atme College of Engineering

s-closure

Define e-closure(q) to denote the set of all states reachable from g by zero
or more ¢ transitions.

Examples: (for the previous NFA)

e-closure(qo) = {do, 91, 95} €-closure(q,) = {d,}
e-closure(q,) = {0y, 0.} e-closure(qs) = {dz}

e-closure(q) can be extended to sets of states by defining:

e-closure(P)= e-closure(q)

Examples: qu @
e-closure({a;, 9,}) = {qs, 95} 0 0/1
e-closure({do, 0}) = {do, G, 0z, G} é . : @

—lao—lay— (N

A Ai”: I s
GOLD Y <
¢ A+ 2l
<, Jd ¥
Ll -
*

[[e—

Equivalence of NFAs and NFA-&s

Do NFAs and NFA-¢& machines accept the same class of languages?
Is there a language L that is accepted by a NFA, but not by any NFA-g?
Is there a language L that is accepted by an NFA-g, but not by any DFA?

atme College of Engineering

Observation: Every NFA is an NFA-e.

Therefore, if L is a regular language then there exists an NFA-g M such that L =
L(M).

It follows that NFA-& machines accept all regular languages.

But do NFA-¢ machines accept more?

WATME

atme College of Engineering

Lemma 1: Let M be an NFA. Then there exists a NFA-¢ M’ such that L(M) =
L(M).

Proof: Every NFA is an NFA-¢. Hence, if we let M’ = M, then it follows that
L(M*) =LM).

The above is just a formal statement of the observation from the
previous slide.

WATME

atme College of Engineering

Lemma 2: Let M be an NFA-c. Then there exists a NFA M’ such that L(M) = L(M").
Proof: (sketch)

Let M =(Q, Z, 3,q,,F) be an NFA-¢.

Define an NFA M’ = (Q, X, 8’°,q,,F’) as:

F’ =F U {q} if e-closure(q) contains at least one state from F
F’ =F otherwise

5’(q, a) = 6"(q, a) -forallginQandainX
Notes:
0’ (Q x X) — 2 is a function

M’ has the same state set, the same alphabet, and the same start state as M
M’ has no € transitions

) FTMeE

atme College of Engineering

Step #1.
Same state setas M
Jo IS the starting state

) FTMeE

atme College of Engineering

@)
o
yy
m
v
(=D
|
o m
vV
@> o
<
[y

Step #2:
g, becomes a final state

BJATME

atme College of Engineering S
1
Example: 0 0 0/1
e ‘ﬁ\ e ‘

Qo /e s
T\

Step #3:

BJATME

atme College of Engineering

Example:
0

e
Jo)«
1
Step #5: I

) FTMeE

atme College of Engineering

Step #6:

) FTMeE

atme College of Engineering

0 0
e 00
Qo /e '(h ;

Step #7:

BJATME

atme College of Engineering

1
0 0
— "\ Qo) 1

1~ 0

Step #8: [use table of e-closure]
Done!
1
0/1 01 1 0/1

o, o1
Y

0/1

WATME

atme College of Engineering

Theorem: Let L be a language. Then there exists an NFA M such that L= L(M)
Iff there exists an NFA-g M’ such that L = L(M”).

Proof:

(if) Suppose there exists an NFA-e M’ such that L = L(M’). Then by
Lemma 2 there exists an NFA M such that L = L(M).

(only if) Suppose there exists an NFA M such that L = L(M). Then by
Lemma 1 there exists an NFA-e M’ such that L = L(M”).

Corollary: The NFA-& machines define the regular languages.

WATME

atme College of Engineering

THEORY OF COMPUTATION Semester 4
Course Code BCS503 CIE Marks 50
Teaching Hours/Week (L: T:P: §) (3:2:0:0) SEE Marks 50
Total Hours of Pedagogy 50 Total Marks 100
Credits 04 Exam Hours 3
Examination type (SEE) Theory

Course outcome (Course Skill Set)

At the end of the course, the student will be able to:

1. Apply the fundamentals of automata theory to write DFA, NFA, Epsilon-NFA and
conversion between them.
Prove the properties of regular languages using regular expressions.

W o

Design context-free grammars (CFGs) and pushdown automata (PDAs) for formal
languages.

Design Turing machines to solve the computational problems.

5. Explain the concepts of decidability and undecidability.

WATME

atme College of Engineering

Module-2 10 Hours
Regular Expressions, Finite Automata and Regular Expressions, Proving Languages not to be Regular.
Closure Properties of Regular Languages, Equivalence and Minimization of Automata, Applications of
Regular Expressions

TEXT BOOK: Sections 3.1, 3.2 (Except 3.2.1), 3.3, 4.1, 4.2, 4.4

WATME

atme College of Engineering

RE’s: Introduction

*Regular expressions are algebraic ways to describe sets of strings that are regular
languages (denoted by L(RE)).

*RE’s and their languages are defined recursively.

WATME

atme College of Engineering

Operations in RE’s

3 basic operations between languages (i.e., sets of strings) derived from RE’s:
*Union denoted by L(RE1)+L(RE2)

*Concatenation denoted by L(RE1).L(RE2) or L(RE1)L(RE2)

Closure denoted by L(RE).

WIATME

atme College of Engineering

Definition of + . and * operat

L + M the is set of all strings either in L or in M or in both
Example: {001,10,111} + {e,001}={e,001,10,111}

L.M or simply LM is the set of all string that can be formed by concatenating any string in L
with any string in M.
Example: {001,10,111}.{e,001}=
{001,10,111,001001,10001,111001}
Note! left-right order is preserved

L* is set of strings obtained by taking any number of strings from L and forming all possible
concatenation.

WATME

atme College of Engineering

L* in relation to powers of L

L* = Uyg LK

Union of all powers of L (including zero)
L%={e}; hence, L* contains {e} for any L
Li=L
L* (k>1) concatenation of k copies of L
If L={0,11}, L2 = {0,11}{0,11} ={00,011,110,1111}
L(®) is the empty language (no strings)
L(@)*={e} rare example of finite closure

L* is the same as L* except no empty string

WATME

atme College of Engineering

Elementary components of RE’s

*Basis 1: any symbol, a, is a RE.

L (RE)={a} is language containing one string of length 1.
*Basis 2: eisa RE.

L (RE)={e} consists of empty string only
*Basis 3: @ is a RE.

*L(RE) = @ has no strings

WATME

atme College of Engineering

Recursive Definitions of RE’s

Induction 1: If E; and E, are RE’s, then E;+E, is a RE, and L(E,+E,) =
L(E,)+L(E,)

Induction 2: If E; and E, are RE’s then E,E, is a RE, and L(E,E,) =L(E,;)L(E,)

Induction 3: If E isa RE, then E* is a RE, and L(E*) = (L(E))* or simply L(E)*

WATME

atme College of Engineering

Building regular expressions

Precedence of operations
** highest
». (or juxtaposition) next
*+ lowest

Parentheses are used as needed to influence
the precedence of operators.

BATME

atme College of Engineering

* operates on smallest sequence of symbols to its left that is a legal RE
Example: 01* closure on 1 only
After grouping all *’s to their operands, group all concatenations to their operands
Example: 0 to 1* in RE=01*
Finally, group unions (+) with operands;
01*+1=0{e,1,11,...}+1={0,01,011,...}+1

={0,1,01,011,...}

WATME

atme College of Engineering

Precedence matters:

L(01*+1)=0{e,1,11,...}+1={0,01,011...}+1={0,1,01,011..}

When we override precedence by ()

L(0(1*+1)) = 01*= 0{e,1,11,...}={0,01,011,...}

Note: 1* and (1*+1) are the same

BATME

atme College of Engineering

Enumerate the strings in these L(RE)

L(01) =7
L(0(1+0)) = ?
L(0*) =7
L(01*) =7
L((01)%) =2
L((01)") =2

WATME

atme College of Engineering

Enumerate the strings in L(RE)

L(01) = {01}.
L(01+0) = {01, O}.

L(0(1+0)) = {0H0,1}={00, 01}.

L(0%) = {e, 0, 00, 000,... }.

L(01%) = 0{e,1,11,...)={0,01,011,...}
L((01)*) = {e,01,0101,...}

L((01)*) = {01,0101,...}

WIATME

atme College of Engineering

Given a description of L, what RE will generate the strings in L?

Example: L = strings of alternating 0’s and 1°’s
Start by enumerating strings in L

L={e,0,1}+strings alternating 0’s and 1’s length >1
L={e,0,1,01,10} + strings alternating 0’s and 1’s length >2
L={e,0,1,01,10,010,101} + strings alternating 0’s and 1’s length > 3
Generalize: {e,0,1} +

Strings with even number of characters that begin 0 and end 1
Strings with even number of characters that begin 1 and end 0
Strings with odd number of characters that begin 0 and end 0O

Strings with odd number of characters that begin 1 and end 1

Build each from closure and concatenation

WATME

atme College of Engineering

Strings with even number of characters that begin 0 and end 1
(01)*={e,01,0101,010101,...}

Strings with even number of characters that begin 1 and end O
(10)*={e,10,1010,101010,...}

Strings with odd number of characters that begin 0 and end 0
0(10)*=0{e,10,1010...}={0,010,01010,...}

Strings with odd number of characters that begin 1 and end 1
1(01)*=1{e,01,0101...}={1,101 10101,...}

L is the union of 4 cases
RE = (01)*+(10)*+0(10)*+1(01)*

WATME

atme College of Engineering

L is the union of 4 cases
RE = (01)*+(10)*+0(10)*+1(01)*

Find a different expression for RE using the distribution of concatenation over union.

WATME

atme College of Engineering

L is the union of 4 cases
RE = (01)*+(10)*+0(10)*+1(01)*

Find a different expression for RE using the distribution of concatenation over union.

RE = (e+1)(01)* + (e+0)(10)*

WATME

atme College of Engineering

RE = (01)*+(10)*+0(10)*+1(01)*
Is not the only RE that defines

L={e,0,1}+strings alternating 0’ and 1’s length >1
Enumerate and describe string defined by

(01)*0

1(01)*0

WATME

atme College of Engineering

RE = (01)*+(10)*+0(10)*+1(01)*
Is not the only RE that defines

L={e,0,1}+strings alternating 0’ and 1’s length >1

(01)*0={0,010,...} odd, begin=0, end=0

1(01)*0 ={10,1010,...} even, begin=1, end=0

WATME

atme College of Engineering

DFA Minimization

e Some states can be redundant:
e The following DFA accepts (alb)+

e State sl is not necessary

a

o,

BJATME

atme College of Engineering

DFA Minimization

e S0 these two DFAs are equivalent:

a

O vl s

WATME

atme College of Engineering

DFA Minimization

e This is a state-minimized (or just minimized) DFA

e Every remaining state is necessary

a, b

WATME

atme College of Engineering

DFA Minimization

e The task of DFA minimization, then, is to automatically transform a given DFA into

a state-minimized DFA
e Several algorithms and variants are known

e Note that this also in effect can minimize an NFA (since we know algorithm to

convert NFA to DFA)

WATME

atme College of Engineering

DFA Minimization Algorithm

e Create lower-triangular table DISTINCT, initially blank

e Forevery pair of states (p,q):
e Ifpisfinal and g is not, or vice versa
o DISTINCT(p,q) = ¢
e Loop until no change for an iteration:
e For every pair of states (p,q) and each symbol o

e If DISTINCT(p,q) is blank and
DISTINCT(6(p,a), 8(d,a)) Is not blank

DISTINCT(p,q) = o

e Combine all states that are not distinct

WATME

atme College of Engineering

THEORY OF COMPUTATION Semester V
Course Code BCS503 CIE Marks 50
Teaching Hours/Week (L: T:P: S) (3:2:0:0) SEE Marks 50
Total Hours of Pedagogy 50 Total Marks 100
Credits 04 Exam Hours 3
Examination type (SEE) Theory

Course outcome (Course Skill Set)

At the end of the course, the student will be able to:
1. Apply the fundamentals of automata theory to write DFA, NFA, Epsilon-NFA and
conversion between them.
2. Prove the properties of regular languages using regular expressions.
3. Design context-free grammars (CFGs) and pushdown automata (PDAs) for formal
languages.
4. Design Turing machines to solve the computational problems.

Explain the concepts of decidability and undecidability.

th

WIATME

atme College of Engineering

Context-Free Grammars, Parse Trees, Ambiguity in Grammars and Languages| Ambiguity in
Grammars and Languages, Definition of the Pushdown Automaton, The Languages of a PDA,
Equivalence of PDA's and CFG's, Deterministic Pushdown Automata.

TEXT BOOK: Sections 5.1, 5.2, 5.4, 6.1,6.2,6.3.1,6.4

WATME

atme College of Engineering

Pushdown Automata (PDA)

Informally:
A PDA is an NFA-¢ with a stack.
Transitions are modified to accommodate stack operations.

Questions:
What is a stack?
How does a stack help?

A DFA can “remember” only a finite amount of information, whereas a PDA can
“remember” an infinite amount of (certain types of) information, in one memory-stack

WATME

atme College of Engineering

Example:
{O"1" | O=<n} IS not regular, but

{0n1n] 0<n<k, for some fixed k} is regular, for any fixed k.

L = {¢, 01, 0011, 000111}

) 4

_’ 0 ’@ 0 ’/q) 0 O3
1 i
0/1
4z J

0/1

1
1 1
: 0s J* 44

WATME

atme College of Engineering

In a DFA, each state remembers a finite amount of information.

To get {0"1" | 0<n} with a DFA would require an infinite number of states using
the preceding technique.

An infinite stack solves the problem for {O"1" | 0<n} as follows:
Read all 0’s and place them on a stack
Read all 1’s and match with the corresponding 0’s on the stack

Only need two states to do this in a PDA

Similarly for {O"1™0™™ | n,m>0}

WATME

atme College of Engineering

Formal Definition of a PDA

A pushdown automaton (PDA) is a seven-tuple:

M=(Q,%,T,39,q 2z, F)

Q A finite set of states

) A finite input alphabet

r A finite stack alphabet

do The initial/starting state, g, is in Q

Z, A starting stack symbol, isin I" // need not always remain at the
bottom of stack

F A set of final/accepting states, which is a subset of Q

d A transition function, where

0: Qx (2 U {&}) xI' — finite subsets of Q x I'*

WATME

atme College of Engineering

Consider the various parts of o:
Qx (X U {e}) x I — finite subsets of Q x I'*

Q on the LHS means that at each step in a computation, a PDA must consider its’
current state.

I" on the LHS means that at each step in a computation, a PDA must consider the symbol
on top of its’ stack.

> U {c} on the LHS means that at each step in a computation, a PDA may or may not
consider the current input symbol, i.e., it may have epsilon transitions.

“Finite subsets” on the RHS means that at each step in a computation, a PDA may have
several options.

Q on the RHS means that each option specifies a new state.

I'* on the RHS means that each option specifies zero or more stack symbols that will
replace the top stack symbol, but in a specific sequence.

WATME

atme College of Engineering

Two types of PDA transitions:

6(q, a, 2) = {(P1,Y1)s (P2,Y2)s- -+ (Pr>Ym) }

Current state is q

Current input symbol is a

Symbol currently on top of the stack z

Move to state p; from q

Replace z with y; on the stack (leftmost symbol on top)
Move the input head to the next input symbol

WATME

atme College of Engineering

Two types of PDA transitions:

S(qa € Z) = {(p19Y1)’ (p29YZ)9' <o (pmﬂym)}

Current state is g

Current input symbol is not considered

Symbol currently on top of the stack z

Move to state p; from g

Replace z with vy; on the stack (leftmost symbol on top)
No input symbol is read

WATME

atme College of Engineering
Transition Diagram: (#|L#

A
e.#le ((go)) (LILL
&

),L|e

Example Computation:

Current Input Stack Transition

() 1t -- initial status

0) L# (1) - Could have
applied rule (5), but

) LL# (3) it would have done no
good

) L# (4)

€ # (4)

3 i (5)

WATME

atme College of Engineering

Example PDA #1: For the language {x | x = wcw" and w in {0,1}*, but sigma={0,1,c}}
Is this a regular language?
Note: length [x| is odd

M= ({0 a2}, {0, 1, ¢}, {#, B, G}, 8, q1, #, D)

o:
(1) 8(qu 0. #) = {(q, BH)} © 8(qn 1.#) = {(qn G#}
() 8a,0.B)={(, BB} (10)8(ay 1, B) = {(qs, GB)}
(3) 8an0,6)={(@,BG)} (11)3(ay L G) = {(a, GG)}

4) 6(qy, ¢, #) = {(a,, #)}

(5) 6(qy, ¢, B) ={(q, B)}

(6) 6(dy, ¢, G) ={(a,, G)}

(7) 6(qx 0, B) = {(ay,)} (12) 3(q,, 1, G) = {(ay, e)}
(8) 8((]2, &, #) = {(an 8)}

Notes:
Stack grows leftwards
Only rule #8 is non-deterministic.
Rule #8 is used to pop the final stack symbol off at the end of a computation.

WATME

atme College of Engineering

Example Computation:

(1)
(2)
3)
(4)
()
(6)
(7)
(8)

6(qy, 0, #) = {(a,, B#)}
6(qy, 0, B) ={(q,, BB)}
6(qy, 0, G) = {(a,, BG)}
6(qy, C, #) = {(0,, #)}
6(q;, ¢, B) = {(q,, B)}
6(qy, ¢, G) = {(a,, G)}
6(qx 0, B) ={(ay, &)}
6(qp, & #) = {(dy, &)}

State Input Stack

Js
Js
Js
P
op)
P
P

01c10 #
1c10 B#
c10 GB#
10 GB#
0 B#

€ #

€ €

9) 6(qy, 1, #) ={(q;, GH)}
(10) 6(qy, 1, B) ={(a,, GB)}
(11) 8(q1, 1, G) = {(q,, GG)}

(12) 8(qy 1, G) = {(0, &)}

Rule Applied Rules Applicable

(1)
(1) (10)
(10) (6)
(6) (12)
(12) (7)

(7) (8)
(8) -

ATME T
atme College of Engineering y G

Example Computation:

(1) 8(q: 0,#) ={(q,, B#)} (9) 6(qy, 1, #) =4(q;, GH)}
(2) 8(q:, 0,B)=1{(a;, BB)} (10) 8(qy, 1, B) ={(a,, GB)}
(3) 8(a:, 0,G)=1(q;, BG)} (11) 8(q1, 1, G) = {(q,, GG)}

(4) 6(qy, C, #) = {(dy, #)}

(5) 6(qy, €, B) ={(0,, B)}

(6) 6(qy, €, G) ={(a, G)}

(7) 6(qx 0, B) ={(ay ¢)} (12) 3(q,, 1, G) ={(ay,)}
(8) 0(qy, & #) = {(d,, €)}

State Input Stack Rule Applied

a; 1cl it

a, cl G# 9)
q, 1 G# (6)
d, g # (12)
P € € (8)

Questions:
Why isn’t 8(q,, 0, G) defined?
Why isn’t 8(q,, 1, B) defined?

TRY: 1lcl

WATME

atme College of Engineering

Example PDA #2: For the language {x | x =ww" and w in {0,1}*}
Note: length |x| is even
M= ({q11 qZ}a {O: 1}9 {#9 Ba G}a 89 q1 #1 Q)

0:
(1 6(qy, 0, #) = {(a,, B#)}
(2) 6(qy, 1, #) = {(a,, GH)}

3) 6(q5, 0, B) = {(a,, BB), (4, &)} (6) 6(qy, 1, G) = {(ay, GG), (ay;
&)}
4) 8(qs, 0,6) ={(a;, BG)} (7) 6(dz, 0, B) = {(a,, &)}
) 8(qy 1,B)={(q,, GB)} (8) 6(qy 1, G) = {(az, &)}
9) 6(dy» & #) = {(qz #)}
(10) 8(an &, #) = {(an 8)}
Notes:

Rules #3 and #6 are non-deterministic: two options each
Rules #9 and #10 are used to pop the final stack symbol off at the end of a computation.

WIATME

atme College of Engineering

Example Computation:

(1)
(2)
(3)
(4)
(5)

Questions:

0(q, 0, #) = {(a,, B#)} (6) 6(q;, 1, G) ={(as, GG), (ay, €)}
0(q;, 1, #) = {(a., G#)} (7) (92, 0, B) ={(qy, €)}
0(q;, 0, B) ={(qs, BB), (s, €)} (8) 0(qz, 1, G) = {(ay, €)}
9(q;, 0, G) ={(a;, BG)} (9) 0(qy, & #) = {(q, €)}
0(q;, 1, B) = {(as, GB)} (10) 3(q & #) ={(qz, €)}
State Input Stack Rule Applied Rules Applicable
d, 000000 # 1), (9)
g, 00000 B# (1) (3), both options
g, 0000 BB# (3) option #1 (3), both options
g, 000 BBB# (3) option #1 (3), both options
d, 00 BB# (3) option #2 (7)
0 0 B# (7) (7)
0 € # (7) (10)
o € £ (10)

What is rule #10 used for?
What is rule #9 used for?
Why do rules #3 and #6 have options?

Why don’t rules #4 and #5 have similar options? [transition not possible if the previous input
symbol was different]

WIATME

atme College of Engineering

Negative Example Computation:

(1) 6(qy, 0, #) = {(q;, B#)} (6) 0(qy, 1, G) ={(q;, GG), (d,, €)}
(2) 6(qy, 1, #) = {(q;, G#)} (7) 0(dy, 0, B) = {(d,, €)}
(3) 6(9;, 0, B) ={(q;, BB), (ds, €)} (8) 0(dy, 1, G) = {(ds,, €)}
(4) 6(9;, 0, G) ={(q,, BG)} (9) O(qy, & #) = {(dy, €)}
(5) 6(a;, 1, B) ={(q,, GB)} (10) O(qy & #) = {(qy, &)}

State Input Stack Rule Applied

d, 000 #

d, 00 B# (1)

o 0 BB# (3) option #1

(92, 0, #) by option 2
o} € BBB# (3) option #1 -crashes, no-rule to apply-
(92, €, B#) by option 2
-rejects: end of string but not empty stack-

WIATME

atme College of Engineering

Example Computation:

(1) 0(q, 0, #) = {(a,, B#)} (6) 6(q;, 1, G) ={(as, GG), (ay, €)}
(2) 0(q;, 1, #) = {(a,, G#)} (7) 6(qz, 0, B) ={(qy, €)}
(3) 9(q;, 0, B) ={(q1, BB), (s, €)} (8) 6(qz, 1, G) = {(ay, €)}
(4) 9(q;, 0, G) ={(a;, BG)} (9) 0(qy, € #) = {(q, €)}
(5) o(q;, 1, B) = {(a,, GB)} (10) 0(qy & #) ={(qz €)}
State Input Stack Rule Applied
q, 010010 #
o 10010 B# (1) From (1) and (9)
q, 0010 GB# (5)
d, 010 BGB# 4)
d, 10 GB# (3) option #2
0 0 B# (8)
4z 3 # (7)
4z € 3 (10)
Exercises:
0011001100 /I how many total options the machine (or you!) may need to try before
rejection?
011110
0111

WATME

atme College of Engineering

Formal Definitions for PDAS

LetM = (Q, 2, T, 0, qp 2, F) be a PDA.

Definition: An instantaneous description (ID) is a triple (g, w, y), where qisin Q, w
isin2*and yisin ™,

g is the current state

w is the unused input

y is the current stack contents

Example: (for PDA #2)

(g, 111, GBR) (g, 11, GGBR)
(g, 111, GBR) (q,, 11, BR)
(g,, 000, GR) (g,, 00, R)

WATME

atme College of Engineering

LetM = (Q, 2, T, 0, qp 2, F) be a PDA.

Definition: Leta be in 2 U {e}, wbe in 2*, zbe in ', and a and 3 both be in '*.

Then:
(9, aw, za) |—y (p, w, Ba)
if 8(q, a, z) contains (p, B).
Intuitively, if | and J are instantaneous descriptions, then | |[— J means that J follows
from | by one transition.

WATME

atme College of Engineering

Examples: (PDA #2)

(q,, 111, GBR) |— (g4, 11, GGBR) (6) option #1, with a=1, z=G,
B=GG, w=11, and a= BR

(q,, 111, GBR) |— (0., 11, BR) (6) option #2, with a=1, z=G, B= ¢,
w=11, and a=BR

(g4, 000, GR) |— (q,, 00, R) Is not true, Forany a, z, B, wand a

Examples: (PDA #1)

(@1, (), L) |— (@1, 0)),LLH) (3)

WATME

atme College of Engineering

Definition: |—* is the reflexive and transitive closure of |—.
| [—* | for each instantaneous description |
Ifl |—Jand J|—* Kthenl| |— K

Intuitively, if | and J are instantaneous descriptions, then | |—* J means that J
follows from | by zero or more transitions.

WATME

atme College of Engineering

Definition: Let M = (Q, Z, I, 3, q,, Z,, F) be a PDA. The language accepted by
empty stack, denoted L(M), is the set

{w | (gg, W, Zo) |—" (p, €, €) for some p in Q}

Definition: LetM = (Q, Z, I, d, q,, Z,, F) be a PDA. The language accepted by final
state, denoted L(M), is the set

w| (@ W, z5) |—" (p, €, y) forsome pin Fand y in ['*}

Definition: LetM = (Q, £, T, 9, q,, Z,, F) be a PDA. The language accepted by
empty stack and final state, denoted L(M), is the set

w | (g W, z5) |—" (p, €, €) for some p in F}

WATME

atme College of Engineering

Lemma 1: Let L = Lg(M,) for some PDA M;. Then there exits a PDA M, such that L
= Le(My).

Lemma 2: Let L = L(M,) for some PDA M,. Then there exits a PDA M, such that L
= Lg(My).

Theorem: Let L be a language. Then there exits a PDA M, such that L = L(M,) if
and only if there exists a PDA M, such that L = Lg(M,).

Corollary: The PDAs that accept by empty stack and the PDAs that accept by final
state define the same class of languages.

Note: Similar lemmas and theorems could be stated for PDAs that accept by both
final state and empty stack.

BJATME

atme College of Engineering

Back to CFG again:
PDA equivalent to CFG

WATME

atme College of Engineering

Definition: Let G = (V, T, P, S) be a CFL. If every production in P is of the form
A — aa
Where AisinV, aisin T, and ais in V*, then G is said to be in Greibach

Normal Form (GNF).
Only one non-terminal in front.

Example:

S —aAB | bB

A — aA | a

B—-bB|cC Language: (aa*+b)b*c
Theorem: Let L be a CFL. Then L — {€} is a CFL.

Theorem: Let L be a CFL not containing {€}. Then there exists a GNF grammar G
such that L = L(G).

WATME

atme College of Engineering

Lemma 1: Let L be a CFL. Then there exists a PDA M such that L = Lg(M).

Proof: Assume without loss of generality that € is not in L. The construction can be
modified to include ¢ later.

Let G =(V, T, P, S) be aCFG, and assume without loss of generality that G
is in GNF. Construct M = (Q, 2, I, 9, q, z,) where:

Q ={a}

2 =T

M=V

z=9S

O:forallainZand Ain T, d(q, a, A) contains (q, Y)

if A— ay is in P or rather:
5}%, a,A)={(q,y)|A—ay isinPandyisinl™},

forallainZand Ain Tl

For a given string x in 2* , M will attempt to simulate a leftmost derivation of x with
G.

WIATME

atme College of Engineering

Example #1: Consider the following CFG in GNF.

S —aS G isin GNF
S—a L(G) =a*

Construct M as:

Q ={a}

2 =T ={a}
=V ={S}
z=S

0(q, a, S) ={(q, S), (9, &)}
0(q,¢, S)=0

Is & complete?

WATME

atme College of Engineering

Example #2: Consider the following CFG in GNF.

(1) S—>aA

2) S-—>aB

3) A—>aA Gisin GNF

4) A—>aB L(G) =a* b* // This looks ok to me, one, two or more a’s in
the start

(5) B—>hbB

6) B—>Db [Can you write a simpler equivalent CFG? Will it
be GNF?]

Construct M as:

Q ={q}

2=T={a, b}

=V={S, A B}

z=S

(1) 08(q, a, S)={(q, A), (q, B)} From productions #1 and 2, S->aA, S->aB

(2) 08(q, a, A)={(q, A), (q, B)} From productions #3 and 4, A->aA, A->aB

(3) 9(q,a,B)=0

(4) 9(q,b,S)=0

(5) 9(q,b,A)=0

(6) ©(q, b, B)={(q, B), (q, €)} From productions #5 and 6, B->bB, B->b

(7) 9(q,&,3)=9

8) 00, e A)=0

Q

Is & complete?

24ATME

atme College of Engineering

For a string w in L(G) the PDA M will simulate a leftmost derivation of w.
If wis in L(G) then (q, w,) |—" (q, €, €)

If (, w, zp) [— (q, &, €) thenw is in L(G)

Consider generating a string using G. Since G is in GNF, each sentential form in a leftmost
derivation has form:
/;> tt. L AR A,

terminals non-terminals

And each step in the derivation (i.e., each application of a production) adds a terminal and some
non-terminals.

=ttt GAlAz- . -Am

Each transition of the PDA simulates one derivation step. Thus, the i" step of the PDAS’
computation corresponds to the it step in a corresponding leftmost derivation with the grammar.

After the it" step of the computation of the PDA, t,t,...t,,, are the symbols that have already been
read by the PDA and aA;A,...A,are the stack contents.

WATME

atme College of Engineering

For each leftmost derivation of a string generated by the grammar, there is an
equivalent accepting computation of that string by the PDA.

Each sentential form in the leftmost derivation corresponds to an instantaneous
description in the PDA’s corresponding computation.

For example, the PDA instantaneous description corresponding to the sentential
form:

:> tltz. . -tl A1A2. . .Am
would be:

(q, tl+ltl+2 . .tn y A1A2 . Am)

WATME

atme College of Engineering

Example: Using the grammar from example #2:

S f> aA (1) ggammar. S s an
=> aaA (3) () S->aB o
—aaan () 2 A gk
=> aaaaB (4) (5) B —>bB
=> aaaabB (5) (6) B—>b
=> aaaabb (6)
(1) 5(a, a, S) ={(a, A), (q, B)}
The corresponding computation of the PDA: % ggg: Z:AB))Z{éq’A)’ (@B}
(rule#)/right-side# g; ggq, E, 2)) :g
(0, aaaabb, S) |— (g, aaabb, A) (1)1 ©)3(d. b B) = {(q, B). (.)}
|— (g, aabb, A) (2)/1 (7)%(a,€,S)=9
—@ab) (2 HESR
|— (g, bb, B) (2)/2
|—(a, b, B) (6)/1
[— (. ¢ ¢€) (6)/2

String is read
Stack is emptied
Therefore the string is accepted by the PDA

WATME

atme College of Engineering

Another Example: Using the PDA from example #2:

(g, aabb, S) |— (q, abb, A) (1)/1
|— (q, bb, B) (2)/2
|— (a. b, B) (6)/1
|—(a, & €) (6)/2

The corresponding derivation using the grammar:

S =>aA (1)
=> aaB (4)
=> aabB (5)

=> aabb (6)

WATME

atme College of Engineering

Example #3: Consider the following CFG in GNF,

S —> aABC
A—>a
B—>b

C —> cAB
C—>cC

(1)
(2)
3)
(4)
(5)

Construct M as:

G is in GNF

aab cc” ab
Language?

Q ={q}

> =T={a,b,c}

r=VvV={S, A B,C}

z=S

(1) 0(q, a, S)={(q, ABC)} S->aABC 9) 9(q,c,

(2) 6(q’ a, A) = {(q’ 8)} A->a (10) 6(Qa C,

(3) 0(q,a,B)=d (11) &(q, c,

4) 06(q,a,C)=0 (12) 9d(q,c, C
>CAB|cC

() 06(q,b,8)=92 (13) 9(q; &,

(6) 0(q,b,A)=0 (14) 8(q, &,

(7) d(q, b, B)={(q, &)} B->b (15) 9(q; &,

(8) 06(q,b,C)=0 (16) d(q, &,

%)
%)
%)
%)

WATME

atme College of Engineering

Notes:
Recall that the grammar G was required to be in GNF before the construction could be

applied.
As a result, it was assumed at the start that € was not in the context-free language L.

Whatif € isin L? You need to add € back.
Suppose gisin L:
1) First, let L’ = L — {€}
Fact: If Lisa CFL, thenL'=L — {€} is a CFL.
By an earlier theorem, there is GNF grammar G such that L’ = L(G).
2) Construct a PDA M such that L = L¢(M)

How do we modify M to accept €?

Add 6(q, €, S)={(q, €)}? NO!

BJATME

atme College of Engineering

Counter Example:

Consider L = {g, b, ab, aab, aaab, ...}= €+ a*b Then L’ = {b, ab, aab, aaab,
...}=a%b

The GNF CFG for L’:
P:
(1) S—>aS
2) S—>b

The PDA M Accepting L’:
Q ={a}
>2=T={a, b}
=V ={S}
z=S

{(q, S)}
{9, &)}
%)

How to add € to L’ now?

WATME

atme College of Engineering

{(9, S)}
{(OI, €)}

5(q, a, S)
5(q, b, S)
5(q, €, S)

If &(q, €, S) = {(q, €)} is added then:
L(M) ={g, a, aa, aaa, ..., b, ab, aab, aaab, ...}, wrong!

Itislike, S->aS|b]e¢
which is wrong!

Correct grammar should be:
(0) S, ->¢|S, with new starting non-terminal S,

(1) S—>aS
2) S->b

For PDA, add a new Stack-bottom symbol S,, with new transitions:
o(q, €, S;) ={(q, €), (9, S)}, where S was the previous stack-bottom of

M

Alternatively, add a new start state q’ with transitions:
o(q’, &, S) ={(q’, €), (@, S)}

WATME

atme College of Engineering

Lemma 1: Let L be a CFL. Then there exists a PDA M such that L = Lg(M).

Lemma 2: Let M be a PDA. Then there exists a CFG grammar G such that Lg(M) =
L(G).

Can you prove it?

First step would be to transform an arbitrary PDA to a single state PDA!

Theorem: Let L be a language. Then there exists a CFG G such that L = L(G) iff
there exists a PDA M such that L = Lg(M).

Corollary: The PDAs define the CFLs.

BATME

atme College of Engineering

on1n, n>=1
S->0S1]|01

GNF:
S ->0SS; | 0S5,
S,>1

Note: in PDA the symbol S will float on top, rather than
stay at the bottom!

Acceptance of string by removing last S, at stack
bottom

WATME

atme College of Engineering

lgnore this slide
How about language like: ((())())(), nested

M= ({ql’qz}a {“(“9 “)”}a {La #}9 89 q1, #' g)

0:

(1) 8(qu (#) ={(az, L#)}
(2) o(qy,), #) =0 /] illegal, string rejected

) 8(qu (L) ={(an LL)}

(4) 6(qy,), L) ={(0,, &)}

() 8(qz), L) =1(a #)}

(6) 0(q,, (, L) ={(g,, LL)} // not balanced yet, but start back anyway
(7) o(qy, (, #) = {(q,, L#)} [/ start afresh again

(8) o(qy, & #) = {(qy, €)} //end of string & stack hits bottom, accept

(9) 0(qy, & #) = {(qy, €)} /I special rule for empty string

(10) o(qp e, L)=0 /I illegal, end of string but more L in stack
Total number of transitions? Verify all carefully.

WJATME

atme College of Engineering

THEORY OF COMPUTATION Semester v
Course Code BCS503 CIE Marks 50
Teaching Hours/Week (L: T:P: S) (3:2:0:0) SEE Marks 50
Total Hours of Pedagogy 50 Total Marks 100
Credits 04 Exam Hours 3
Examination type (SEE) Theory

Course outcome (Course SKill Set)
At the end of the course, the student will be able to:
1. Apply the fundamentals of automata theory to write DFA, NFA, Epsilon-NFA and
conversion between them.
Prove the properties of regular languages using regular expressions.

LS o)

Design context-free grammars (CFGs) and pushdown automata (PDAs) for formal
languages.
4. Design Turing machines to solve the computational problems.

A

Explain the concepts of decidability and undecidability.

WATME

atme College of Engineering

Module-4

10 Hours

Properties of Context-Free Languages.

TEXT BOOK: Sections 7.1, 7.2, 7.3

Normal Forms for Context-Free Grammars, The Pumping Lemma for Context-Free Languages, Closure

WIATME

atme College of Engineering

Introduction

Chomsky normal form
» Preliminary simplifications

» Final steps

Greibach Normal Form

» Algorithm (Example)

Summary

BJATME

atme College of Engineering

Introduction

[)
Terminals T={ab}
_
[)
Variables V=A B.C
_
[)
Start Symbol S
_
[)
Production P=S A
_

BJATME

atme College of Engineering

Grammar example

S = aBSc

S = abc [L:{allbllcn | ns 1—]
Ba - aB }

Bb - bb

S —3aBSc —aBabcc —aaBbcc —aabbcc

BATME

atme College of Engineering

Context free grammar

The head of any production contains only one
non-terminal symbol

S> P
P—> aPb [L:{anbnlnzo}]
P-—>e¢

BJATME

atme College of Engineering

Introduction

 Chomsky normal form

* Preliminary simplifications
* Final simplification
Greibach Normal Form

* Algorithm (Example)
Summary

WATME

atme College of Engineering

A context free grammar is said to be in Chomsky
Normal Form if all productions are in the following
form:

A - BC
A—-a

* A, Band C are non terminal symbols
* ais a terminal symbol

BJATME

atme College of Engineering

Introduction

Chomsky normal form

* Preliminary simplifications
* Final steps

Greibach Normal Form

* Algorithm (Example)
Summary

BJATME

atme College of Engineering

There are three preliminary simplifications

1 [Eliminate Useless]
Svmbols.

WIATME

atme College of Engineering

Eliminate Useless Symbols

We need to determine if the symbol is useful by
identifying if a symbol is generating and is reachable

* X is generating if X Z—w for some terminal string w.
* X is reachable if there is a derivation S Z=aXp
for some a and 3

WATME

atme College of Engineering

Example: Removing non-generating symbols

‘'S —-AB|)

a Initial CFL grammar
A—b
S SAB[)

a |dentify generating symbols
A b
f a

S—a .
Remove non-generating

\ A—D y

WIATME

atme College of Engineering

Example: Removing non-reachable symbols

f p
S—a .
= |dentify reachable symbols
\ y
f p
S —>a Eliminate non-reachable

BJATME

atme College of Engineering

The order is important.

Looking first for non-reachable symbols and then
for non-generating symbols can still leave some
useless symbols.

‘'S - AB]|) 4 S—>a\
a ‘
A= Db J _ A_)b)

WJATME

atme College of Engineering

Finding generating symbols

If there is a production A — a, and every
symbol of a is already known to be
generating. Then A is generating

‘'S -AB|) WecannotuseS - AB because
a B has not been established to

A—->Db be generating

WATME

atme College of Engineering

Finding reachable symbols

S is surely reachable. All symbols in the body of a
production with S in the head are reachable.

p _
S—=AB|) Inthis example the symbols
a {S, A, B, a, b} are reachable.

A—Db

BATME

atme College of Engineering

There are three preliminary simplifications

WATME

atme College of Engineering

Eliminate € Productions

* |nagrammar € productions are convenient but
not essential
e |[fLhasaCFG, then L-{e}hasa CFG

(")
*

A —x
\. y

Nullable variable

WATME

atme College of Engineering

If A is a nullable variable

* Whenever A appears on the body of a production
A might or might not derive €

S—> ASA | aB

A—->B|S Nullable: {A, B}
B>b]|c¢

WATME

atme College of Engineering

Eliminate € Productions

 Create two version of the production, one with
the nullable variable and one without it
* Eliminate productions with € bodies

S — ASA ASA AS SA|S

=)

WATME

atme College of Engineering

Eliminate € Productions

 Create two version of the production, one with
the nullable variable and one without it
* Eliminate productions with € bodies

aB

aB ‘ a

WATME

atme College of Engineering

Eliminate € Productions

 Create two version of the production, one with
the nullable variable and one without it
* Eliminate productions with € bodies

BATME

atme College of Engineering

There are three preliminary simplifications

WATME

atme College of Engineering

Eliminate unit productions

A unit production is one of the form A — B where
both A and B are variables

|dentify unit pairs

A->B B> w thenA—> w

WATME

atme College of Engineering

Example:

:*+
T=t%+()ab01}

(E,E) E—E+T
|>al|b|la|lb]|I10]I1 (EET) ET*F

F-> 1] (E) (E,F) E—(E)
TSF|T*F (E,1) E—alblla|lb]I0]I1
ES>T|E+T (T.T) T-TF

(T,F) T — (E)

Basis: (A, A) is a unit pair (T.1) T—albllajib]I0]I1
| ’ (F,F) F— (E)

ofa*nyvariabIeA,if (F.1) Foalbllalib|10]1
A ==A by O steps. (1,1) | >a|blla|lb]|I10]I1

BJATME

atme College of Engineering

Example:

Pairs Productions

(T, T) T—oT*F
(T,F) T (E)
(T,1) T—albllajib[l0|H

| >al|blla]lb|10] 1
E-E+T|T*F[(E)|alb|la]b]I0]
1

T>T*F|(E)|alb|la|lb|10]I1
F—(E)]a|b|la|lb]10]I1

BJATME

atme College of Engineering

Introduction

« Chomsky normal form

* Preliminary simplifications
* Final steps

Greilbach Normal Form

* Algorithm (Example)
Summary

WATME

atme College of Engineering

A context free grammar is said to be in Chomsky
Normal Form if all productions are in the following
form:

A - BC
A—-a

* A, Band C are non terminal symbols
* ais a terminal symbol

WIATME

atme College of Engineering

Chomsky Normal Form (CNF)

Starting with a CFL grammar with the preliminary
simplifications performed

1. Arrange that all bodies of length 2 or more to
consists only of variables.
2. Break bodies of length 3 or more into a cascade of

productions, each with a body consisting of two
variables.

WATME

atme College of Engineering

Step 1: For every terminal a that appears in a body
of length 2 or more create a new variable that has
only one production.

ES>E+T|T*F|(E)|albllallb|lo]I1
TST*F|(E)|alb|la]lb]l0]I1
F>(E) |albllallb]lo]I1
|>alblla|lb]l0]I1

E EPT|TMF |[LER|a|b|IA[IB]IZ]IO
T TMF|LER |a|b|IA|IB[1Z]|IO

F—-LER|a|b|IA|IB|IZ]|IO
| -a|b|IA[IB|IZ]|IO
A—-a B—-b Z—-0 0O0-—-1

P— + M—>* L—)(R—))

BJATME

atme College of Engineering

Step 2: Break bodies of length 3 or more adding
more variables

E—EPT|[TMF[LER|a|b[IA[IB[IZ]
IO

T —>TMF|LER|a|b|IA[IB|IZ]|IO gleATF
7 2
F—LER|a|b|IA[IB|IZ]IO 73

| —-a|b|IA[IB]|IZ]|IO
A—-aB—->bZ—-00-—>1
P->+M—->"L>(R—)

BJATME

atme College of Engineering

Introduction

Chomsky normal form

* Preliminary simplifications
* Final steps

Greibach Normal Form
 Algorithm (Example)
Summary

WIATME

atme College of Engineering

A context free grammar is said to be in Greibach
Normal Form if all productions are in the following
form:

A - aX

* Ais a non terminal symbols

* ais a terminal symbol

* X is a sequence of non terminal symbols.
It may be empty.

BJATME

atme College of Engineering

Introduction

Chomsky normal form

* Preliminary simplifications
* Final steps

Greibach Normal Form
 Algorithm (Example)
Summary

BJATME

atme College of Engineering

Example:

S > XA | BB S=A, A, > AA; | AA,

B->b|SB X=A, A,>b|AA,

X=>b A=A, A, > b

A—>a B=A, A; =2 a

[CNF] [New] [U dated CNF]
Labels P

BJATME

atme College of Engineering

Example:

A= AA | AA, First Step [Ai N ijk j > i]
A, b|AA,

A, > b X, is a string of zero
Az = a or more variables

X A2 AA,

BATME

atme College of Engineering

Example:

First Step [Ai —AX, |> i]

A, = AA, A, | AA,

A= AAA, | AAA | D A, >b[AA,
A, > bAA, | AAA, | b

BATME

atme College of Engineering

Example:
A~ AA | AA, Second Step
A, > bAA, | AJAAL LD T
A4 Aal AAA | Eliminate Left
2 7?0 Recursions
A; = a
A>Aa|B
X A, 2>AAA, Can be written as
A>BA-
A 2aA e

BATME

atme College of Engineering

Example:
Second Step

Eliminate Left
Recursions

A, > bAA, | b |bAAZIbZ A, >AA,|AA,

Z>AA, | AAZ A, > bAA, [BAAD] b

A, > b
A3$a

BJATME

atme College of Engineering

Example:

A, — bAA, | b | bAA,Z | bZ [A ax]
Z — A4A4 | A4A4 L

Ay = b GNF
A; — a

WATME

atme College of Engineering

Example:

A > AA | AA,
4 b | bAAZ | bZ
Z >AA | AAZ

A,—b

A; - a

>

N

A, > bA, | bAJAA, | bA, | bAAZA, | bZA,

Z > bAAA,| bA, | bAAZA, | bZA, | bAAA, | bA, | bAA,ZA, | bZA,

WATME

atme College of Engineering

Example:

A, - bA; | bA;AA, | BA, | bAJA,ZA, | bZA,

A, > bAA, | b | bAJAZ | bZ

Z - bAAA,| bA, | bAJAZA, | BZA, | BASAA, | BA, | BAJA,ZA, | BZA,
A,>b

A; > a

Grammar in Greibach Normal Form

BATME

atme College of Engineering

Summary (Some properties)

* Every CFG that doesn’t generate the empty string
can be simplified to the Chomsky Normal Form and
Greibach Normal Form

* The derivation tree in a grammar in CNF is a binary
tree

* In the GNF, a string of length n has a derivation of
exactly n steps

 Grammars in normal form can facilitate proofs

 CNF is used as starting point in the algorithm CYK

BJATME

atme College of Engineering

WATME

atme College of Engineering

THEORY OF COMPUTATION Semester V
Course Code BCS503 CIE Marks 50
Teaching Hours/Week (L: T:P: S) (3:2:0:0) SEE Marks 50
Total Hours of Pedagogy 50 Total Marks 100
Credits 04 Exam Hours 3
Examination type (SEE) Theory

Course outcome (Course SKill Set)

At the end of the course, the student will be able to:
1. Apply the fundamentals of automata theory to write DFA, NFA, Epsilon-NFA and
conversion between them.

b

Prove the properties of regular languages using regular expressions.

3. Design context-free grammars (CFGs) and pushdown automata (PDAs) for formal
languages.

4. Design Turing machines to solve the computational problems.

A

Explain the concepts of decidability and undecidability.

WATME

atme College of Engineering

Module-5 10 Hours
Introduction to Turing Machines: Problems That Computers Cannot Solve, The Turing Machine,

Programming Techniques for Turing Machines, Extensions to the Basic Turing Machine, Undecidability: A
Language That Is Not Recursively Enumerable.
TEXT BOOK: Sections 8.1,8.2, 8.3,8.4, 9.1, 9.2

MATME

atme College of Engineering

Non-Recursively Enumerable Languages

Recursively Enumerable Languages

Recursive Languages

Context-Sensitive Languages

Context-Free Languages - €

Regular Languages - €

WATME

atme College of Engineering

Recursively enumerable languages are also known as type 0 languages.
Context-sensitive languages are also known as type 1 languages.

Context-free languages are also known as type 2 languages.

Regular languages are also known as type 3 languages.

WIATME

atme College of Engineering

TMs model the computing capability of a general purpose computer, which informally can
be described as:

Effective procedure
Finitely describable
Well defined, discrete, “mechanical” steps
Always terminates
Computable function
A function computable by an effective procedure

TMs formalize the above notion.

Church-Turing Thesis: There is an effective procedure for solving a problem if and only if
there is a TM that halts for all inputs and solves the problem.

There are many other computing models, but all are equivalent to or subsumed by TMs.
There is no more powerful machine (Technically cannot be proved).

DFAs and PDAs do not model all effective procedures or computable functions, but only a
subset.

WATME

.I-GAUGE I, ‘? %
atme College of Engineering i !

Deterministic Turing Machine (DTM)

........ B B O 1 1 O O B B

Two-way, infinite tape, broken into cells, each containing one symbol.

Two-way, read/write tape head.

An input string is placed on the tape, padded to the left and right infinitely with blanks,
read/write head is positioned at the left end of input string.

Finite control, i.e., a program, containing the position of the read head, current symbol being
scanned, and the current state.

In one move, depending on the current state and the current symbol being scanned, the TM

1) changes state, 2) prints a symbol over the cell being scanned, and 3) moves its’ tape
head one cell left or right.

Many modifications possible, but Church-Turing declares equivalence of all.

WIATME

atme College of Engineering

Formal Definition of a DTM

A DTM is a seven-tuple:
M = (Q1 21 r7 67 q()l 81 F)

A finite set of states

A finite input alphabet, which is a subset of - {B}

A finite tape alphabet, which is a strict superset of 2

A distinguished blank symbol, which is in I

0 The initial/starting state, g, is in Q

A set of final/accepting states, which is a subset of Q
A next-move function, which is a mapping (i.e., may be

oMo mwIMO

undefined) from
QxIN—=QxTIl x{L,R}

Intuitively, &(q,s) specifies the next state, symbol to be written, and the
direction of tape head movement by M after reading symbol s while in state q.

WATME

atme College of Engineering

Example #1: {w | wisin {0,1}* and w ends with a 0}

0

00

10
10110
Not €

Q ={do, 41, 95}
r={0, 1, B}

2 ={0, 1}
F={q,}

0:

0] 1 B
>0 (do: 0, R) (0o, 1, R) (a,, B, L)
d: (02, 0, R) - .
q, - - -

q, is the start state and the “scan right” state, until hits B
g, is the verify O state
g, is the final state

WATME

atme College of Engineering

Exercises: Construct a DTM for each of the following.

{w|wisin {0,1}* and w ends in 00}

{w | wis in {0,1}* and w contains at least two 0’s}
{w|wisin {0,1} and w contains at least one 0 and one 1}
Just about anything else (simple) you can think of

WATME

atme College of Engineering

Formal Definitions for DTMs

LetM=(Q, 2, T, 0, qy B, F) be a TM.
Definition: An instantaneous description (ID) is a triple a,qa,, where:

g, the current state, isin Q

a,0,, is in '*, and is the current tape contents up to the rightmost non-blank symbol, or the
symbol to the left of the tape head, whichever is rightmost

The tape head is currently scanning the first symbol of a,

At the start of a computation a;= ¢

If a,= € then a blank is being scanned

Example: (for TM #1)

q,0011 Xq,011 XO0g;11 Xg,0Y1 q,X0Y1
Xg0Y1 XXq,Y1 — XXYQ,1 XXQ,YY X0, XYY

XXGoYY XXYq,Y XXYYqy XXYYBq,

BJATME

atme College of Engineering

Suppose the following is the current ID of a DTM
X1 X+« Xiog OXiXis1 - - - X
Case 1) 6(q, x) = (p, ¥, L)
(@) ifi =1 then gX;X,... X 1XXi11--- X [— PBYXs5. .. X 1 XXi11--- X,
(b) else X;X5... X 1OXiXisq---Xp |[— X1 X5. . XioPXi YXigq -+ - Xy
If any suffix of x,;yX.,;...X, is blank then it is deleted.
Case 2) 6(q, x;) = (p, ¥, R)
X1 Xpe o X 1 OXiXipq - Xy |[— X1 Xp o Xi 1 YPXisq - Xy,
If i>n then the ID increases in length by 1 symbol

X1X2' . 'an |_ X1X2. . Xl’lyp

WATME

atme College of Engineering

Definition: Let M = (Q, %, T, 3, qy, B, F) be a TM, and let w be a string in £*. Then w is
accepted by M iff

*
QoW —* azpas
where p isin F and a; and o, are in I'™*

Definition: Let M = (Q, %, T, §, q,, B, F) be a TM. The language accepted by M, denoted
L(M), is the set

{w | wisin Z* and w is accepted by M}

Notes:
In contrast to FA and PDAs, if a TM simply passes through a final state then the string
IS accepted.
Given the above definition, no final state of a TM need to have any transitions.
Henceforth, this is our assumption.
If x is NOT in L(M) then M may enter an infinite loop, or halt in a non-final state.
Some TMs halt on ALL inputs, while others may not. In either case the language
defined by TM is still well defined.

24ATME

atme College of Engineering

Definition: Let L be a language. Then L is recursively enumerable if there exists a TM M such that L =
L(M).

If L is r.e. then L = L(M) for some TM M, and
If x is in L then M halts in a final (accepting) state.
If x is not in L then M may halt in a non-final (non-accepting) state or no transition is
available, or loop forever.

Definition: Let L be a language. Then L is recursive if there exists a TM M such that L = L(M) and M
halts on all inputs.

If L is recursive then L = L(M) for some TM M, and
If x is in L then M halts in a final (accepting) state.
If x is not in L then M halts in a non-final (non-accepting) state or no transition is available
(does not go to infinite loop).
Notes:
The set of all recursive languages is a subset of the set of all recursively enumerable languages

Terminology is easy to confuse: A TM is not recursive or recursively enumerable, rather a
language is recursive or recursively enumerable.

WIATME

atme College of Engineering

Closure Properties for Recursive and
Recursively Enumerable Languages

TMs model General Purpose (GP) Computers:
If a TM can do it, so can a GP computer
If a GP computer can do it, thensocana TM

If you want to know if a TM can do X, then some equivalent question

are:
Can a general purpose computer do X?
Can a C/C++/Java/etc. program be written to do X?

For example, is a language L recursive?
Can a C/C++/Java/etc. program be written that always halts and accepts L?

WATME

atme College of Engineering

TM Block Diagrams:
If L is a recursive language, then a TM M that accepts L and always halts can be
pictorially represented by a “chip” or “box” that has one input and two outputs.

——> Yes

————> No

If L is a recursively enumerable language, then a TM M that accepts L can be pictorially
represented by a “box” that has one output.

—— yes
W > M

Conceivably, M could be provided with an output for “no,” but this output cannot be
counted on. Consequently, we simply ignore it.

WIATME

atme College of Engineering
Theorem 1: The recursive languages are closed with respect to complementation, i.e., if L is
a recursive language, then so is L =>*_L

Proof: Let M be a TM such that L = L(M) and M always halts. Construct TM M as follows:
M’

yes

—> Yes
no
Note That:

M’ accepts iff M does not
M’ always halts since M always halts

v

From this it follows that the complement of L is recursive. =

Question: How is the construction achieved? Do we simply complement the final states in

the TM? No! A string in L could end up in the complement of L.

Suppose gs is an accepting state in M, but g is not.
If we simply complemented the final and non-final states, then g, would be an accepting state in A’

but g5 would not.
Since q, is an accepting state, by definition all strings are accepted by M~

WATME

atme College of Engineering

Theorem 2: The recursive languages are closed with respect to union, i.e., if L, and L, are recursive
languages, then so is |_3 — |_1 J |_2

Proof: Let M, and M, be TMs such that L; = L(M,) and L, = L(M,) and M; and M, always halts.
Construct TM M as follows:

M’ yes
Yes start > '

no

v

Note That:
LM)=LMM;) L(M,)
L(M’) is a subset of L(M;) U L(M,)
L(M,) U L(M,) is a subset of L(M”)
M’ always halts since M, and M, always halt

It follows from this that IS recursive.=

L=L UL,

WATME

atme College of Engineering

Theorem 3: The recursive enumerable languages are closed with respect to union, i.e., if L,

and L, are recursively enumerable languages, then so is L,=L UL,
Proof: Let M, and M, be TMs such that L, = L(M,) and L, = L(M,). Construct M’ as
follows:
M’ yes yes =
> |\/|1 g
W
yes

» M,

Note That:

L(M’) = L(M,) U L(M,)
L(M’) is a subset of L(M;) U L(M,)
L(M,) U L(M,) is a subset of L(M”)
M’ halts and accepts iff M; or M, halts and accepts

It follows from this that L.=L v |_|§ recursively enumerable. =

Question: How do you run two TMs in parallel?

WATME

atme College of Engineering

Suppose, M; and M, had outputs for “no” in the previous construction, and these
were transferred to the “no” output for M~

M’ yes yes

A 4
<
=

A 4
<
N

Question: What would happen if w is in L(M,) but not in L(M,)?

Answer: You could get two outputs — one “yes” and one “no.”

At least M, will halt and answer accept, M, may or may not halt.
As before, for the sake of convenience the “no” output will be ignored.

WATME

atme College of Engineering L

Theorem 4: If Land are both recursively enumerable then L (and therefore)
IS recursive. L

Proof: Let M; and M, be TMs such that L =L(M,) and =L(M,). Construct M’ as

follows:
M’ yes | yes
> |\/|1
w
yes
» M, \ no
Note That:
L(M) =L

L(M’) is a subset of L
L is a subset of L(M’)

M’ is TM for L
M’ always halts since either M; or M, halts for any given string
M’ shows that L is recursive

It follows from this that L (and therefore its’ complement) is recursive.
So, Is also recursive (we proved it before).

L

WATME

atme College of Engineering

Corollary of Thm 4: Let L be a subset of 2*. Then one of the following
must be true:

Both L and are recursive.

One of Land | is recursively enumerable but not recursive, and the other is
not recursively erLumerabIe, or

Neither L nor is recursively enumerable

In other words, it i impossible to have both L and r.e. but not recursive

L

WATME

atme College of Engineering

In terms of the hierarchy: (possibility #1)

Non-Recursively Enumerable Languages

Recursively Enumerable Languages

L L

Recursive Languages

WATME

atme College of Engineering

In terms of the hierarchy: (possibility #2)

Non-Recursively Enumerable Languages

Recursively Enumerable Languages

Recursive Languages

WATME

atme College of Engineering

In terms of the hierarchy: (possibility #3)

Non-Recursively Enumerable Languages

—|

Recursively Enumerable Languages

Recursive Languages

WATME

atme College of Engineering

In terms of the hierarchy: (Impossibility #1)

Non-Recursively Enumerable Languages

L L

Recursively Enumerable Languages

Recursive Languages

WATME

atme College of Engineering

In terms of the hierarchy: (Impossibility #2)

Non-Recursively Enumerable Languages

L
Recursively Enumerable Languages

L

Recursive Languages

WATME

atme College of Engineering

In terms of the hierarchy: (Impossibility #3)

Non-Recursively Enumerable Languages

—|

Recursively Enumerable Languages

L

Recursive Languages

WATME

atme College of Engineering

Note: This gives/identifies three approaches to show that a language is not

recursive.
Show that the language’s complement is not recursive, in one of the two ways:

Show that the language’s complement is recursively enumerable but not recursive
Show that the language’s complement is not even recursively enumerable

WIATME

atme College of Engineering

The Halting Problem - Background

Definition: A decision problem is a problem having a yes/no answer (that one presumably
wants to solve with a computer). Typically, there is a list of parameters on which the
problem is based.

Given a list of numbers, is that list sorted?

Given a number X, is X even?

Given a C program, does that C program contain any syntax errors?

Given a TM (or C program), does that TM contain an infinite loop?

From a practical perspective, many decision problems do not seem all that

interesting. However, from a theoretical perspective they are for the following two reasons:
Decision problems are more convenient/easier to work with when proving complexity results.
Non-decision counter-parts can always be created & are typically at least as difficult to solve.

Notes:
The following terms and phrases are analogous:

Algorithm - Ahalting TM program
Decision Problem - Alanguage (will show shortly)
(un)Decidable - (non)Recursive

WATME

atme College of Engineering

Statement of the Halting Problem

Practical Form: (P1)
Input: Program P and input 1.
Question: Does P terminate on input I?

Theoretical Form: (P2)
Input: Turing machine M with input alphabet X and string w in X*.
Question: Does M halt on w?

A Related Problem We Will Consider First: (P3)
Input: Turing machine M with input alphabet X and one final state, and string w

in X*,

Question: Is w in L(M)?
Analogy:

Input: DFA M with input alphabet £ and string w in Z*,

Question: Is w in L(M)?

Is this problem (regular language) decidable? Yes! DFA always accepts or
rejects.

WATME

atme College of Engineering

Over-All Approach:

We will show that a language L, is not recursively enumerable
From this it will follow that IS not recursive

Using this we will show that a language L, is not recursive
From this it will follow that the talting problem is undecidable.

As We Will See:
P3 will correspond to the language L,
Proving P3 (un)decidable is equivalent to proving L, (non)recursive

WATME

atme College of Engineering

The Universal Language

Define the language L, as follows:
L, = {x|xisin {0, 1}* and x = <M,w> where M is a TM encoding and w is in
L(M)}
Let x be in {0, 1}*. Then either:
1. x doesn’'t have a TM prefix, in which case x is notin L,

2. X has a TM prefix, i.e., x = <M,w> and either:
a) wis notin L(M), in which case x is not in L,

b) wisin L(M), in which case xisinL,

