
1Ashwini P, CSE,ATME college of Engineeering

2Ashwini P, CSE,ATME college of Engineeering

Hierarchy of languages

3

Regular Languages

Context-Free Languages

Recursive Languages

Recursively Enumerable Languages

Non-Recursively Enumerable Languages

Ashwini P, CSE,ATME college of Engineeering

Deterministic Finite State Automata (DFA)

……..

One-way, infinite tape, broken into cells
One-way, read-only tape head.
Finite control, i.e.,

finite number of states, and
transition rules between them, i.e.,
a program, containing the position of the read head, current symbol being scanned, and
the current “state.”

A string is placed on the tape, read head is positioned at the left end, and the DFA will read
the string one symbol at a time until all symbols have been read. The DFA will then either
accept or reject the string.

4

Finite

Control

0 1 1 0 0

Ashwini P, CSE,ATME college of Engineeering

The finite control can be described by a transition diagram or table:

Example #1:

1 0 0 1 1
q0 q0 q1 q0 q0 q0

One state is final/accepting, all others are rejecting.
The above DFA accepts those strings that contain an even number of 0’s, including the null
string, over Sigma = {0,1}

L = {all strings with zero or more 0’s}
Note, the DFA must reject all other strings

5

q0
q1

0

0

1

1

Ashwini P, CSE,ATME college of Engineeering

6

Note:

• Machine is for accepting a language, language is the purpose!

• Many equivalent machines may accept the same language,

but a machine cannot accept multiple languages!

• Id’s of the characters or states are irrelevant,

you can call them by any names!

Sigma = {0, 1} ≡ {a, b}

States = {q0, q1} ≡ {u, v}, as long as they have

identical (isomorphic) transition table

M1 M2 …. M-inf

L

Ashwini P, CSE,ATME college of Engineeering

1 0 0 1 1
q0 q3 q1 q2 q2 q2 accept

string

One state is final/accepting, all others are rejecting.
The above DFA accepts those strings that contain an even number of 0’s,
including null string, over Sigma = {0,1}
Can you draw a machine for a language by excluding the null string from
the language? L = {all strings with 2 or more 0’s}

7

q0
q1

0

0 1

q2

1

1

0

q3

1

0

Ashwini P, CSE,ATME college of Engineeering

Example #2:

a c c c b

accepted

q0 q0 q1 q2 q2 q2

a a c

rejected

q0 q0 q0 q1

Accepts those strings that contain at least two c’s

8

q1q0
q2

a

b

a

b

c c

a/b/c

Ashwini P, CSE,ATME college of Engineeering

9

q1q0
q2

a

b

a

b

c c

a/b/c

Inductive Proof (sketch): that the machine correctly accepts strings with at least two c’s

Proof goes over the length of the string.

Base: x a string with |x|=0. state will be q0 => rejected.

Inductive hypothesis: |x|= integer k, & string x is rejected - in state q0 (x must have zero c),

OR, rejected – in state q1 (x must have one c),

OR, accepted – in state q2 (x has already with two c’s)

Inductive steps: Each case for symbol p, for string xp (|xp| = k+1), the last symbol p = a, b or c

Ashwini P, CSE,ATME college of Engineeering

Formal Definition of a DFA
A DFA is a five-tuple:

M = (Q, Σ, δ, q0, F)

Q A finite set of states
Σ A finite input alphabet
q0 The initial/starting state, q0 is in Q
F A set of final/accepting states, which is a subset of Q
δ A transition function, which is a total function from Q x Σ to

Q

δ: (Q x Σ) –> Q δ is defined for any q in Q and s in Σ,
and

δ(q,s) = q’ is equal to some state q’ in Q, could be
q’=q

Intuitively, δ(q,s) is the state entered by M after reading symbol s while
in state q.

10Ashwini P, CSE,ATME college of Engineeering

Revisit example #1:

Q = {q0, q1}

Σ = {0, 1}

Start state is q0

F = {q0}

δ:

0 1

q0 q1 q0

q1 q0 q1

11

q0
q1

0

0

1

1

Ashwini P, CSE,ATME college of Engineeering

a b c

q0 q0 q0 q1

q1 q1 q1 q2

q2 q2 q2 q2

Since δ is a function, at each step M has exactly one option.

It follows that for a given string, there is exactly one computation.

12

q1q0
q2

a

b

a

b

c c

a/b/c

Ashwini P, CSE,ATME college of Engineeering

Extension of δ to Strings

δ^ : (Q x Σ*) –> Q

δ^(q,w) – The state entered after reading string w having started in state q.

Formally:

1) δ^(q, ε) = q, and

2) For all w in Σ* and a in Σ

δ^(q,wa) = δ (δ^(q,w), a)

13Ashwini P, CSE,ATME college of Engineeering

Note that:

δ^ (q,a) = δ(δ^(q, ε), a) by definition of δ^,

rule #2

= δ(q, a) by definition of δ^,

rule #1

Therefore:

δ^ (q, a1a2…an) = δ(δ(…δ(δ(q, a1), a2)…), an)

However, we will abuse notations, and use δ in place of δ^:

δ^(q, a1a2…an) = δ(q, a1a2…an)

14Ashwini P, CSE,ATME college of Engineeering

Example #3:

What is δ(q0, 011)? Informally, it is the state entered by M after processing 011

having started in state q0.

Formally:

δ(q0, 011) = δ (δ(q0,01), 1) by rule #2

= δ (δ (δ(q0,0), 1), 1) by rule #2

= δ (δ (q1, 1), 1) by definition

of δ

= δ (q1, 1) by definition

of δ

= q1 by definition

of δ

Is 011 accepted? No, since δ(q0, 011) = q1 is not a final state.

Language?

L ={ all strings over {0,1} that has 2 or more 0 symbols}

15

q1q0
q2

1 1

0
0

1

0

Ashwini P, CSE,ATME college of Engineeering

Recall Example #3:

What is δ(q1, 10)?

δ(q1, 10) = δ (δ(q1,1), 0) by rule #2

= δ (q1, 0) by

definition of δ

= q2 by

definition of δ

Is 10 accepted? No, since δ(q0, 10) = q1 is not a final state. The fact

that δ(q1, 10) = q2 is irrelevant, q1 is not the start state!

16

0
q1q0

q2

1 1

0

1

0

Ashwini P, CSE,ATME college of Engineeering

Definitions related to DFAs
Let M = (Q, Σ, δ,q0,F) be a DFA and let w be in Σ*. Then w is accepted by M iff
δ(q0,w) = p for some state p in F.

Let M = (Q, Σ, δ,q0,F) be a DFA. Then the language accepted by M is the set:

L(M) = {w | w is in Σ* and δ(q0,w) is in F}

Another equivalent definition:

L(M) = {w | w is in Σ* and w is accepted by M}

Let L be a language. Then L is a regular language iff there exists a DFA M
such that L = L(M).

Let M1 = (Q1, Σ1, δ1, q0, F1) and M2 = (Q2, Σ2, δ2, p0, F2) be DFAs. Then M1 and
M2 are equivalent iff L(M1) = L(M2).

17Ashwini P, CSE,ATME college of Engineeering

Notes:
A DFA M = (Q, Σ, δ,q0,F) partitions the set Σ* into two sets: L(M) and

Σ* - L(M).

If L = L(M) then L is a subset of L(M) and L(M) is a subset of L (def. of set equality).

Similarly, if L(M1) = L(M2) then L(M1) is a subset of L(M2) and L(M2) is a subset of
L(M1).

Some languages are regular, others are not. For example, if

Regular: L1 = {x | x is a string of 0's and 1's containing an
even number of 1's} and

Not-regular: L2 = {x | x = 0n1n for some n >= 0}

Can you write a program to “simulate” a given DFA, or any arbitrary input DFA?

Question we will address later:
How do we determine whether or not a given language is regular?

18Ashwini P, CSE,ATME college of Engineeering

Give a DFA M such that:

L(M) = {x | x is a string of 0’s and 1’s and |x|

>= 2}

Prove this by induction

19

q1q0
q2

0/1

0/1

0/1

Ashwini P, CSE,ATME college of Engineeering

Give a DFA M such that:

L(M) = {x | x is a string of (zero or more) a’s, b’s and c’s such

that x does not contain the substring aa}

Logic:

In Start state (q0): b’s and c’s: ignore – stay in same state

q0 is also “accept” state

First ‘a’ appears: get ready (q1) to reject

But followed by a ‘b’ or ‘c’: go back to start state q0

When second ‘a’ appears after the “ready” state: go to reject state q2

Ignore everything after getting to the “reject” state q2

20

q2q0

a

a/b/c

a
q1

b/c

b/c

Ashwini P, CSE,ATME college of Engineeering

Give a DFA M such that:

L(M) = {x | x is a string of a’s, b’s and c’s such that

x

contains the substring aba}

Logic: acceptance is straight forward, progressing on each expected symbol

However, rejection needs special care, in each state (for DFA, we will see this

becomes easier in NFA, non-deterministic machine)

21

q2q0

a

a/b/c

b
q1

c

b/c a

b/c

q3

a

Ashwini P, CSE,ATME college of Engineeering

Give a DFA M such that:

L(M) = {x | x is a string of a’s and b’s such that x

contains both aa and bb}

First do, for a language where ‘aa’ comes before ‘bb’

Then do its reverse; and then parallelize them.

22

q0

b

q7

q5q4 q6

b

b

b

a

q2q1 q3

a

a

a

b

a/bb

a

a

a b

Ashwini P, CSE,ATME college of Engineeering

Let Σ = {0, 1}. Give DFAs for {}, {ε}, Σ*, and Σ+.

For {}: For {ε}:

For Σ*: For Σ+:

23

0/1

q0

0/1

q0

q1q0

0/1

0/1

0/1
q0 q1

0/1

Ashwini P, CSE,ATME college of Engineeering

Problem: Third symbol from last is 1

24

0/1

q1q0
q3

1 0/1
q2

0/1

Is this a DFA?

No, but it is a Non-deterministic Finite Automaton

Ashwini P, CSE,ATME college of Engineeering

Nondeterministic Finite State Automata (NFA)

An NFA is a five-tuple:

M = (Q, Σ, δ, q0, F)

Q A finite set of states
Σ A finite input alphabet
q0 The initial/starting state, q0 is in Q
F A set of final/accepting states, which is a subset of Q
δ A transition function, which is a total function from Q x Σ to 2Q

δ: (Q x Σ) –> 2Q :2Q is the power set of Q, the set of all subsets
of Q δ(q,s) :The set of all states p such that there is a transition

labeled s from q to p

δ(q,s) is a function from Q x S to 2Q (but not only to Q)

25Ashwini P, CSE,ATME college of Engineeering

Example #1: one or more 0’s followed by one or more 1’s

Q = {q0, q1, q2}

Σ = {0, 1}

Start state is q0

F = {q2}

δ: 0 1

q0

q1

q2

26

{q0, q1} {}

{} {q1, q2}

{q2} {q2}

q1q0
q2

0 1

0 1

0/1

Ashwini P, CSE,ATME college of Engineeering

Example #2: pair of 0’s or pair of 1’s as substring

Q = {q0, q1, q2 , q3 , q4}

Σ = {0, 1}

Start state is q0

F = {q2, q4}

δ: 0 1

q0

q1

q2

q3

q4

27

{q0, q3} {q0, q1}

{} {q2}

{q2} {q2}

{q4} {}

{q4} {q4}

q0

0/1

0 0
q3

q4

0/1

q1
q2

0/11

1

Ashwini P, CSE,ATME college of Engineeering

Determining if a given NFA (example #2) accepts a given string (001) can

be done algorithmically:

q0 q0 q0 q0

q3 q3 q1

q4 q4

accepted

Each level will have at most n states:

Complexity: O(|x|*n), for running over a string x

28

0 0 1

q0

0/1

0
q3

q4

q1
q2

1

1

0

0/1

0/1

Ashwini P, CSE,ATME college of Engineeering

Another example (010):

q0 q0 q0 q0

q3 q1 q3

not

accepted

All paths have been explored, and none lead to an accepting state.

29

0 1 0

q0

0/1

0
q3

q4

q1
q2

1

1

0

Ashwini P, CSE,ATME college of Engineeering

Let Σ = {a, b}. Give an NFA M that accepts:

L = {x | x is in Σ* and the third to the last symbol in

x is b}

Is L a subset of L(M)?

Is L(M) a subset of L?

Give an equivalent DFA as an exercise.

30

q1q0

b q3
a/b

a/b

q2

a/b

Ashwini P, CSE,ATME college of Engineeering

Extension of δ to Strings and Sets of States
What we currently have: δ : (Q x Σ) –> 2Q

What we want (why?): δ : (2Q x Σ*) –> 2Q

We will do this in two steps, which will be slightly different from the book, and

we will make use of the following NFA.

31

q0

0 1
q1

q4q3

0 1

q2

0
0

1

0

0

Ashwini P, CSE,ATME college of Engineeering

Example:

What is δ({q0}, 10)?

Informally: The set of states the NFA could be in after processing
10,

having started in state q0, i.e., {q1, q2, q3}.

Formally: δ({q0}, 10) = δ(δ({q0}, 1), 0)
= δ({q0}, 0)
= {q1, q2, q3}

Is 10 accepted? Yes!

32

q0

0 1
q1

q3

0 1

q2

1

1 0

Ashwini P, CSE,ATME college of Engineeering

Example:

What is δ({q0, q1}, 1)?

δ({q0 , q1}, 1) = δ({q0}, 1)  δ({q1}, 1)

= {q0}  {q2, q3}

= {q0, q2, q3}

What is δ({q0, q2}, 10)?

δ({q0 , q2}, 10) = δ(δ({q0 , q2}, 1), 0)

= δ(δ({q0}, 1) U δ({q2}, 1), 0)

= δ({q0}  {q3}, 0)

= δ({q0,q3}, 0)

= δ({q0}, 0)  δ({q3}, 0)

= {q1, q2, q3}  {}

= {q1, q2, q3}

33Ashwini P, CSE,ATME college of Engineeering

Example:

δ({q0}, 101) = δ(δ({q0}, 10), 1)

= δ(δ(δ({q0}, 1), 0), 1)

= δ(δ({q0}, 0), 1)

= δ({q1 , q2, q3}, 1)

= δ({q1}, 1) U δ({q2}, 1) U δ({q3}, 1)

= {q2, q3} U {q3} U {}

= {q2, q3}

Is 101 accepted? Yes! q3 is a final state.

34Ashwini P, CSE,ATME college of Engineeering

Equivalence of DFAs and NFAs
Do DFAs and NFAs accept the same class of languages?

Is there a language L that is accepted by a DFA, but not by any NFA?

Is there a language L that is accepted by an NFA, but not by any DFA?

Observation: Every DFA is an NFA, DFA is only restricted NFA.

Therefore, if L is a regular language then there exists an NFA M such that L =

L(M).

It follows that NFAs accept all regular languages.

But do NFAs accept more?

35Ashwini P, CSE,ATME college of Engineeering

Consider the following DFA: 2 or more c’s

Q = {q0, q1, q2}

Σ = {a, b, c}

Start state is q0

F = {q2}

δ: a b c

q0 q0 q0 q1

q1 q1 q1 q2

q2 q2 q2 q2

36

q1q0
q2

a

b

a

b

c c

a/b/c

Ashwini P, CSE,ATME college of Engineeering

Lemma 1: Let M be an DFA. Then there exists a NFA M’ such that L(M) =

L(M’).

Proof: Every DFA is an NFA. Hence, if we let M’ = M, then it follows that L(M’)

= L(M).

The above is just a formal statement of the observation from the

previous slide.

37Ashwini P, CSE,ATME college of Engineeering

Lemma 2: Let M be an NFA. Then there exists a DFA M’ such that L(M)
= L(M’).

Proof: (sketch)

Let M = (Q, Σ, δ,q0,F).

Define a DFA M’ = (Q’, Σ, δ’,q’
0,F’) as:

Q’ = 2Q Each state in M’ corresponds
to a

= {Q0, Q1,…,} subset of states from M

where Qu = [qi0, qi1,…qij]

F’ = {Qu | Qu contains at least one state in F}

q’
0 = [q0]

δ’(Qu, a) = Qv iff δ(Qu, a) = Qv

38Ashwini P, CSE,ATME college of Engineeering

Example: empty string or start and end with 0

Q = {q0, q1}

Σ = {0, 1}

Start state is q0

F = {q0}

δ: 0 1

q0

q1

39

{q1} {}

{q0, q1} {q1}

q1q0

0

0/1

0

Ashwini P, CSE,ATME college of Engineeering

Theorem: Let L be a language. Then there exists an DFA M such that L = L(M)

iff there exists an NFA M’ such that L = L(M’).

Proof:

(if) Suppose there exists an NFA M’ such that L = L(M’). Then by

Lemma 2 there exists an DFA M such that L = L(M).

(only if) Suppose there exists an DFA M such that L = L(M). Then by

Lemma 1 there exists an NFA M’ such that L = L(M’).

Corollary: The NFAs define the regular languages.

40Ashwini P, CSE,ATME college of Engineeering

Problem: Third symbol from last is 1

41

0/1

q1q0
q3

1 0/1
q2

0/1

Now, can you convert this NFA to a DFA?

Ashwini P, CSE,ATME college of Engineeering

NFAs with ε Moves

An NFA-ε is a five-tuple:

M = (Q, Σ, δ, q0, F)

Q A finite set of states
Σ A finite input alphabet
q0 The initial/starting state, q0 is in Q
F A set of final/accepting states, which is a subset of Q
δ A transition function, which is a total function from Q x Σ

U {ε} to 2Q

δ: (Q x (Σ U {ε})) –> 2Q

δ(q,s) -The set of all states p such
that there is a

transition labeled a from q to
p, where a

is in Σ U {ε}
Sometimes referred to as an NFA-ε other times, simply as an NFA.

42Ashwini P, CSE,ATME college of Engineeering

Example:

δ: 0 1 ε

q0 - A string w = w1w2…wn is

processed

as w = ε*w1ε
*w2ε

* …

ε*wnε
*

q1 - Example: all

computations on 00:

0 ε 0

q2 q0 q0 q1 q2

:

q3

43

q0

ε
0/1

q2

1

0

q1

0

q3

ε

0

1

{q0} { } {q1}

{q1, q2} {q0, q3} {q2}

{q2} {q2} { }

{ } { } { }

Ashwini P, CSE,ATME college of Engineeering

Informal Definitions
Let M = (Q, Σ, δ,q0,F) be an NFA-ε.

A String w in Σ* is accepted by M iff there exists a path in M from q0 to a state in

F labeled by w and zero or more ε transitions.

The language accepted by M is the set of all strings from Σ* that are accepted by

M.

44Ashwini P, CSE,ATME college of Engineeering

ε-closure
Define ε-closure(q) to denote the set of all states reachable from q by zero
or more ε transitions.

Examples: (for the previous NFA)

ε-closure(q0) = {q0, q1, q2} ε-closure(q2) = {q2}
ε-closure(q1) = {q1, q2} ε-closure(q3) = {q3}

ε-closure(q) can be extended to sets of states by defining:

ε-closure(P) = ε-closure(q)

Examples:

ε-closure({q1, q2}) = {q1, q2}
ε-closure({q0, q3}) = {q0, q1, q2, q3}

45


Pq

q0

ε
0/1

q2

1

0

q1

0

q3

ε

0

1

Ashwini P, CSE,ATME college of Engineeering

Equivalence of NFAs and NFA-εs
Do NFAs and NFA-ε machines accept the same class of languages?

Is there a language L that is accepted by a NFA, but not by any NFA-ε?

Is there a language L that is accepted by an NFA-ε, but not by any DFA?

Observation: Every NFA is an NFA-ε.

Therefore, if L is a regular language then there exists an NFA-ε M such that L =

L(M).

It follows that NFA-ε machines accept all regular languages.

But do NFA-ε machines accept more?

46Ashwini P, CSE,ATME college of Engineeering

Lemma 1: Let M be an NFA. Then there exists a NFA-ε M’ such that L(M) =

L(M’).

Proof: Every NFA is an NFA-ε. Hence, if we let M’ = M, then it follows that

L(M’) = L(M).

The above is just a formal statement of the observation from the

previous slide.

47Ashwini P, CSE,ATME college of Engineeering

Lemma 2: Let M be an NFA-ε. Then there exists a NFA M’ such that L(M) = L(M’).

Proof: (sketch)

Let M = (Q, Σ, δ,q0,F) be an NFA-ε.

Define an NFA M’ = (Q, Σ, δ’,q0,F’) as:

F’ = F U {q} if ε-closure(q) contains at least one state from F
F’ = F otherwise

δ’(q, a) = δ^(q, a) - for all q in Q and a in Σ

Notes:
δ’: (Q x Σ) –> 2Q is a function
M’ has the same state set, the same alphabet, and the same start state as M
M’ has no ε transitions

48Ashwini P, CSE,ATME college of Engineeering

Example:

Step #1:
Same state set as M

q0 is the starting state

49

q0

ε

0/1

q2

1

0

q1

0

q3

ε

0

1

q2q1

q3

q0

Ashwini P, CSE,ATME college of Engineeering

Example:

Step #2:
q0 becomes a final state

50

q0

ε

0/1

q2

1

0

q1

0

q3

ε

0

1

q2q1

q3

q0

Ashwini P, CSE,ATME college of Engineeering

Example:

Step #3:

51

q0

ε

0/1

q2

1

0

q1

0

q3

ε

0

1

q2q1

q3

q0

0

0

0

Ashwini P, CSE,ATME college of Engineeering

Example:

Step #5:

52

q0

ε

0/1

q2

1

0

q1

0

q3

ε

0

1

q2q1

q3

q0

0/1

0/1

0/1

1

0

0

Ashwini P, CSE,ATME college of Engineeering

Example:

Step #6:

53

q0

ε

0/1

q2

1

0

q1

0

q3

ε

0

1

q2q1

q3

q0

0/1

0/1

0/1

1

0/1

0/1

1

1

Ashwini P, CSE,ATME college of Engineeering

Example:

Step #7:

54

q0

ε

0/1

q2

1

0

q1

0

q3

ε

0

1

q2

q3

q0

0/1

0/1

0/1

1

0/1

0/1

1

1 0

q1

Ashwini P, CSE,ATME college of Engineeering

Step #8: [use table of e-closure]
Done!

55

q0

ε

0/1

q2

1

0

q1

0

q3

ε

0

1

q2q1

q3

q0

0/1

0/1

0/1

1

0/1

0/1

1

1 0/1

Ashwini P, CSE,ATME college of Engineeering

Theorem: Let L be a language. Then there exists an NFA M such that L= L(M)

iff there exists an NFA-ε M’ such that L = L(M’).

Proof:

(if) Suppose there exists an NFA-ε M’ such that L = L(M’). Then by

Lemma 2 there exists an NFA M such that L = L(M).

(only if) Suppose there exists an NFA M such that L = L(M). Then by

Lemma 1 there exists an NFA-ε M’ such that L = L(M’).

Corollary: The NFA-ε machines define the regular languages.

56Ashwini P, CSE,ATME college of Engineeering

Ashwini P, CSE, ATME College of Engineering 1

Ashwini P, CSE, ATME College of Engineering 2

RE’s: Introduction

•Regular expressions are algebraic ways to describe sets of strings that are regular

languages (denoted by L(RE)).

•RE’s and their languages are defined recursively.

3Ashwini P, CSE, ATME College of Engineering

3 basic operations between languages (i.e., sets of strings) derived from RE’s:

•Union denoted by L(RE1)+L(RE2)

•Concatenation denoted by L(RE1).L(RE2) or L(RE1)L(RE2)

•Closure denoted by L*(RE).

4

Operations in RE’s

Ashwini P, CSE, ATME College of Engineering

5

L + M the is set of all strings either in L or in M or in both

Example: {001,10,111} + {e,001}={e,001,10,111}

L.M or simply LM is the set of all string that can be formed by concatenating any string in L

with any string in M.

Example: {001,10,111}.{e,001}=

{001,10,111,001001,10001,111001}

Note! left-right order is preserved

L* is set of strings obtained by taking any number of strings from L and forming all possible

concatenation.

Definition of + . and * operations

Ashwini P, CSE, ATME College of Engineering

L* in relation to powers of L
L* = Uk>0 Lk

Union of all powers of L (including zero)

L0 = {e}; hence, L* contains {e} for any L

L1 = L

Lk (k>1) concatenation of k copies of L

If L={0,11}, L2 = {0,11}{0,11} ={00,011,110,1111}

L(∅) is the empty language (no strings)

L(∅)*={e} rare example of finite closure

L+ is the same as L* except no empty string

6Ashwini P, CSE, ATME College of Engineering

Elementary components of RE’s

•Basis 1: any symbol, a, is a RE.

•L(RE)={a} is language containing one string of length 1.

•Basis 2: e is a RE.

•L(RE)={e} consists of empty string only

•Basis 3: ∅ is a RE.

•L(RE) = ∅ has no strings

7Ashwini P, CSE, ATME College of Engineering

Recursive Definitions of RE’s

Induction 1: If E1 and E2 are RE’s, then E1+E2 is a RE, and L(E1+E2) =

L(E1)+L(E2)

Induction 2: If E1 and E2 are RE’s then E1E2 is a RE, and L(E1E2) =L(E1)L(E2)

Induction 3: If E is a RE, then E* is a RE, and L(E*) = (L(E))* or simply L(E)*

8Ashwini P, CSE, ATME College of Engineering

Precedence of operations

•* highest

•. (or juxtaposition) next

•+ lowest

9

Building regular expressions

Parentheses are used as needed to influence

the precedence of operators.

Ashwini P, CSE, ATME College of Engineering

* operates on smallest sequence of symbols to its left that is a legal RE

Example: 01* closure on 1 only

After grouping all *’s to their operands, group all concatenations to their operands

Example: 0 to 1* in RE=01*

Finally, group unions (+) with operands;

01*+1=0{e,1,11,…}+1={0,01,011,…}+1

={0,1,01,011,…}

10Ashwini P, CSE, ATME College of Engineering

Precedence matters:

L(01*+1)=0{e,1,11,…}+1={0,01,011…}+1={0,1,01,011..}

When we override precedence by ()

L(0(1*+1)) = 01*= 0{e,1,11,…}={0,01,011,…}

Note: 1* and (1*+1) are the same

11Ashwini P, CSE, ATME College of Engineering

Enumerate the strings in these L(RE)

L(01) = ?

L(01+0) = ?

L(0(1+0)) = ?

L(0*) = ?

L(01*) = ?

L((01)*) = ?

L((01)+) = ?

12Ashwini P, CSE, ATME College of Engineering

L(01) = {01}.

L(01+0) = {01, 0}.

L(0(1+0)) = {0}{0,1}={00, 01}.
L(0*) = {ε, 0, 00, 000,… }.

L(01*) = 0{e,1,11,…}={0,01,011,…}

L((01)*) = {e,01,0101,…}

L((01)+) = {01,0101,…}

13

Enumerate the strings in L(RE)

Ashwini P, CSE, ATME College of Engineering

14

Given a description of L, what RE will generate the strings in L?

Example: L = strings of alternating 0’s and 1’s

Start by enumerating strings in L

L={e,0,1}+strings alternating 0’s and 1’s length >1

L={e,0,1,01,10} + strings alternating 0’s and 1’s length >2

L={e,0,1,01,10,010,101} + strings alternating 0’s and 1’s length > 3

Generalize: {e,0,1} +

Strings with even number of characters that begin 0 and end 1

Strings with even number of characters that begin 1 and end 0

Strings with odd number of characters that begin 0 and end 0

Strings with odd number of characters that begin 1 and end 1

Build each from closure and concatenation

Ashwini P, CSE, ATME College of Engineering

Strings with even number of characters that begin 0 and end 1

(01)*={e,01,0101,010101,…}

Strings with even number of characters that begin 1 and end 0

(10)*={e,10,1010,101010,…}

Strings with odd number of characters that begin 0 and end 0

0(10)*=0{e,10,1010…}={0,010,01010,…}

Strings with odd number of characters that begin 1 and end 1

1(01)*=1{e,01,0101…}={1,101 10101,…}

L is the union of 4 cases

RE = (01)*+(10)*+0(10)*+1(01)*

15Ashwini P, CSE, ATME College of Engineering

L is the union of 4 cases

RE = (01)*+(10)*+0(10)*+1(01)*

Find a different expression for RE using the distribution of concatenation over union.

16Ashwini P, CSE, ATME College of Engineering

L is the union of 4 cases

RE = (01)*+(10)*+0(10)*+1(01)*

Find a different expression for RE using the distribution of concatenation over union.

RE = (e+1)(01)* + (e+0)(10)*

17Ashwini P, CSE, ATME College of Engineering

RE = (01)*+(10)*+0(10)*+1(01)*

is not the only RE that defines

L={e,0,1}+strings alternating 0’ and 1’s length >1

Enumerate and describe string defined by

(01)*0

1(01)*0

18Ashwini P, CSE, ATME College of Engineering

RE = (01)*+(10)*+0(10)*+1(01)*

is not the only RE that defines

L={e,0,1}+strings alternating 0’ and 1’s length >1

(01)*0={0,010,…} odd, begin=0, end=0

1(01)*0 ={10,1010,…} even, begin=1, end=0

19Ashwini P, CSE, ATME College of Engineering

DFA Minimization

 Some states can be redundant:

 The following DFA accepts (a|b)+

 State s1 is not necessary

Ashwini P, CSE, ATME College of Engineering 20

DFA Minimization

 So these two DFAs are equivalent:

Ashwini P, CSE, ATME College of Engineering 21

DFA Minimization

 This is a state-minimized (or just minimized) DFA

 Every remaining state is necessary

Ashwini P, CSE, ATME College of Engineering 22

DFA Minimization

 The task of DFA minimization, then, is to automatically transform a given DFA into

a state-minimized DFA

 Several algorithms and variants are known

 Note that this also in effect can minimize an NFA (since we know algorithm to

convert NFA to DFA)

Ashwini P, CSE, ATME College of Engineering 23

DFA Minimization Algorithm
 Create lower-triangular table DISTINCT, initially blank

 For every pair of states (p,q):

 If p is final and q is not, or vice versa

 DISTINCT(p,q) = ε

 Loop until no change for an iteration:

 For every pair of states (p,q) and each symbol α

 If DISTINCT(p,q) is blank and

DISTINCT(δ(p,α), δ(q,α)) is not blank

 DISTINCT(p,q) = α

 Combine all states that are not distinct

Ashwini P, CSE, ATME College of Engineering 24

1Ashwini P, CSE, ATME college of Engineering

2Ashwini P, CSE, ATME college of Engineering

Pushdown Automata (PDA)

Informally:
A PDA is an NFA-ε with a stack.

Transitions are modified to accommodate stack operations.

Questions:
What is a stack?

How does a stack help?

A DFA can “remember” only a finite amount of information, whereas a PDA can

“remember” an infinite amount of (certain types of) information, in one memory-stack

3Ashwini P, CSE, ATME college of Engineering

Example:

{0n1n | 0=<n} is not regular, but

{0n1n | 0nk, for some fixed k} is regular, for any fixed k.

For k=3:

L = {ε, 01, 0011, 000111}

4

0/1

q0

q7

0
q1

11

q2

1
q5

0
q3

11

q4

0

1

0
0

0/1 q6

0

Ashwini P, CSE, ATME college of Engineering

In a DFA, each state remembers a finite amount of information.

To get {0n1n | 0n} with a DFA would require an infinite number of states using

the preceding technique.

An infinite stack solves the problem for {0n1n | 0n} as follows:
Read all 0’s and place them on a stack

Read all 1’s and match with the corresponding 0’s on the stack

Only need two states to do this in a PDA

Similarly for {0n1m0n+m | n,m0}

5Ashwini P, CSE, ATME college of Engineering

Formal Definition of a PDA

A pushdown automaton (PDA) is a seven-tuple:

M = (Q, Σ, Г, δ, q0, z0, F)

Q A finite set of states

Σ A finite input alphabet

Г A finite stack alphabet

q0 The initial/starting state, q0 is in Q

z0 A starting stack symbol, is in Г // need not always remain at the

bottom of stack

F A set of final/accepting states, which is a subset of Q

δ A transition function, where

δ: Q x (Σ U {ε}) x Г –> finite subsets of Q x Г*

6Ashwini P, CSE, ATME college of Engineering

Consider the various parts of δ:

Q x (Σ U {ε}) x Г –> finite subsets of Q x Г*

Q on the LHS means that at each step in a computation, a PDA must consider its’

current state.

Г on the LHS means that at each step in a computation, a PDA must consider the symbol

on top of its’ stack.

Σ U {ε} on the LHS means that at each step in a computation, a PDA may or may not

consider the current input symbol, i.e., it may have epsilon transitions.

“Finite subsets” on the RHS means that at each step in a computation, a PDA may have

several options.

Q on the RHS means that each option specifies a new state.

Г* on the RHS means that each option specifies zero or more stack symbols that will

replace the top stack symbol, but in a specific sequence.

7Ashwini P, CSE, ATME college of Engineering

Two types of PDA transitions:

δ(q, a, z) = {(p1,γ1), (p2,γ2),…, (pm,γm)}

Current state is q

Current input symbol is a

Symbol currently on top of the stack z

Move to state pi from q

Replace z with γi on the stack (leftmost symbol on top)

Move the input head to the next input symbol

:

8

q

p1

p2

pm

a/z/ γ1

a/z/ γ2

a/z/ γm

Ashwini P, CSE, ATME college of Engineering

Two types of PDA transitions:

δ(q, ε, z) = {(p1,γ1), (p2,γ2),…, (pm,γm)}

Current state is q

Current input symbol is not considered

Symbol currently on top of the stack z

Move to state pi from q

Replace z with γi on the stack (leftmost symbol on top)

No input symbol is read

:

9

q

p1

p2

pm

ε/z/ γ1

ε/z/ γ2

ε/z/ γm

Ashwini P, CSE, ATME college of Engineering

Transition Diagram:

Example Computation:

Current Input Stack Transition

(()) # -- initial status

()) L# (1) - Could have

applied rule (5), but

)) LL# (3) it would have done no

good

) L# (4)

ε # (4)

ε - (5)

10

q0

(, # | L#

ε, # | ε (, L | LL

), L | ε

Ashwini P, CSE, ATME college of Engineering

Example PDA #1: For the language {x | x = wcwr and w in {0,1}*, but sigma={0,1,c}}

Is this a regular language?

Note: length |x| is odd

M = ({q1, q2}, {0, 1, c}, {#, B, G}, δ, q1, #, Ø)

δ:

(1) δ(q1, 0, #) = {(q1, B#)} (9) δ(q1, 1, #) = {(q1, G#)}

(2) δ(q1, 0, B) = {(q1, BB)} (10) δ(q1, 1, B) = {(q1, GB)}

(3) δ(q1, 0, G) = {(q1, BG)} (11) δ(q1, 1, G) = {(q1, GG)}

(4) δ(q1, c, #) = {(q2, #)}

(5) δ(q1, c, B) = {(q2, B)}

(6) δ(q1, c, G) = {(q2, G)}

(7) δ(q2, 0, B) = {(q2, ε)} (12) δ(q2, 1, G) = {(q2, ε)}

(8) δ(q2, ε, #) = {(q2, ε)}

Notes:
Stack grows leftwards

Only rule #8 is non-deterministic.

Rule #8 is used to pop the final stack symbol off at the end of a computation.

11Ashwini P, CSE, ATME college of Engineering

Example Computation:

(1) δ(q1, 0, #) = {(q1, B#)} (9) δ(q1, 1, #) = {(q1, G#)}

(2) δ(q1, 0, B) = {(q1, BB)} (10) δ(q1, 1, B) = {(q1, GB)}

(3) δ(q1, 0, G) = {(q1, BG)} (11) δ(q1, 1, G) = {(q1, GG)}

(4) δ(q1, c, #) = {(q2, #)}

(5) δ(q1, c, B) = {(q2, B)}

(6) δ(q1, c, G) = {(q2, G)}

(7) δ(q2, 0, B) = {(q2, ε)} (12) δ(q2, 1, G) = {(q2, ε)}

(8) δ(q2, ε, #) = {(q2, ε)}

State Input Stack Rule Applied Rules Applicable

q1 01c10 # (1)

q1 1c10 B# (1) (10)

q1 c10 GB# (10) (6)

q2 10 GB# (6) (12)

q2 0 B# (12) (7)

q2 ε # (7) (8)

q2 ε ε (8) -

12Ashwini P, CSE, ATME college of Engineering

Example Computation:

(1) δ(q1, 0, #) = {(q1, B#)} (9) δ(q1, 1, #) = {(q1, G#)}
(2) δ(q1, 0, B) = {(q1, BB)} (10) δ(q1, 1, B) = {(q1, GB)}
(3) δ(q1, 0, G) = {(q1, BG)} (11) δ(q1, 1, G) = {(q1, GG)}
(4) δ(q1, c, #) = {(q2, #)}
(5) δ(q1, c, B) = {(q2, B)}
(6) δ(q1, c, G) = {(q2, G)}
(7) δ(q2, 0, B) = {(q2, ε)} (12) δ(q2, 1, G) = {(q2, ε)}
(8) δ(q2, ε, #) = {(q2, ε)}

State Input Stack Rule Applied
q1 1c1 #
q1 c1 G# (9)
q2 1 G# (6)
q2 ε # (12)
q2 ε ε (8)

Questions:
Why isn’t δ(q2, 0, G) defined?
Why isn’t δ(q2, 1, B) defined?

TRY: 11c1

13Ashwini P, CSE, ATME college of Engineering

Example PDA #2: For the language {x | x = wwr and w in {0,1}*}

Note: length |x| is even

M = ({q1, q2}, {0, 1}, {#, B, G}, δ, q1, #, Ø)

δ:

(1) δ(q1, 0, #) = {(q1, B#)}

(2) δ(q1, 1, #) = {(q1, G#)}

(3) δ(q1, 0, B) = {(q1, BB), (q2, ε)} (6) δ(q1, 1, G) = {(q1, GG), (q2,

ε)}

(4) δ(q1, 0, G) = {(q1, BG)} (7) δ(q2, 0, B) = {(q2, ε)}

(5) δ(q1, 1, B) = {(q1, GB)} (8) δ(q2, 1, G) = {(q2, ε)}

(9) δ(q1, ε, #) = {(q2, #)}

(10) δ(q2, ε, #) = {(q2, ε)}

Notes:
Rules #3 and #6 are non-deterministic: two options each

Rules #9 and #10 are used to pop the final stack symbol off at the end of a computation.

14Ashwini P, CSE, ATME college of Engineering

Example Computation:

(1) δ(q1, 0, #) = {(q1, B#)} (6) δ(q1, 1, G) = {(q1, GG), (q2, ε)}
(2) δ(q1, 1, #) = {(q1, G#)} (7) δ(q2, 0, B) = {(q2, ε)}
(3) δ(q1, 0, B) = {(q1, BB), (q2, ε)} (8) δ(q2, 1, G) = {(q2, ε)}
(4) δ(q1, 0, G) = {(q1, BG)} (9) δ(q1, ε, #) = {(q2, ε)}
(5) δ(q1, 1, B) = {(q1, GB)} (10) δ(q2, ε, #) = {(q2, ε)}

State Input Stack Rule Applied Rules Applicable
q1 000000 # (1), (9)
q1 00000 B# (1) (3), both options
q1 0000 BB# (3) option #1 (3), both options
q1 000 BBB# (3) option #1 (3), both options
q2 00 BB# (3) option #2 (7)
q2 0 B# (7) (7)
q2 ε # (7) (10)
q2 ε ε (10)

Questions:
What is rule #10 used for?
What is rule #9 used for?
Why do rules #3 and #6 have options?
Why don’t rules #4 and #5 have similar options? [transition not possible if the previous input
symbol was different]

15Ashwini P, CSE, ATME college of Engineering

Negative Example Computation:

(1) δ(q1, 0, #) = {(q1, B#)} (6) δ(q1, 1, G) = {(q1, GG), (q2, ε)}
(2) δ(q1, 1, #) = {(q1, G#)} (7) δ(q2, 0, B) = {(q2, ε)}
(3) δ(q1, 0, B) = {(q1, BB), (q2, ε)} (8) δ(q2, 1, G) = {(q2, ε)}
(4) δ(q1, 0, G) = {(q1, BG)} (9) δ(q1, ε, #) = {(q2, ε)}
(5) δ(q1, 1, B) = {(q1, GB)} (10) δ(q2, ε, #) = {(q2, ε)}

State Input Stack Rule Applied
q1 000 #
q1 00 B# (1)
q1 0 BB# (3) option #1

(q2, 0, #) by option 2
q1 ε BBB# (3) option #1 -crashes, no-rule to apply-

(q2, ε, B#) by option 2
-rejects: end of string but not empty stack-

16Ashwini P, CSE, ATME college of Engineering

Example Computation:

(1) δ(q1, 0, #) = {(q1, B#)} (6) δ(q1, 1, G) = {(q1, GG), (q2, ε)}
(2) δ(q1, 1, #) = {(q1, G#)} (7) δ(q2, 0, B) = {(q2, ε)}
(3) δ(q1, 0, B) = {(q1, BB), (q2, ε)} (8) δ(q2, 1, G) = {(q2, ε)}
(4) δ(q1, 0, G) = {(q1, BG)} (9) δ(q1, ε, #) = {(q2, ε)}
(5) δ(q1, 1, B) = {(q1, GB)} (10) δ(q2, ε, #) = {(q2, ε)}

State Input Stack Rule Applied
q1 010010 #
q1 10010 B# (1) From (1) and (9)
q1 0010 GB# (5)
q1 010 BGB# (4)
q2 10 GB# (3) option #2
q2 0 B# (8)
q2 ε # (7)
q2 ε ε (10)

Exercises:
0011001100 // how many total options the machine (or you!) may need to try before
rejection?
011110
0111

17Ashwini P, CSE, ATME college of Engineering

Formal Definitions for PDAs
Let M = (Q, Σ, Г, δ, q0, z0, F) be a PDA.

Definition: An instantaneous description (ID) is a triple (q, w, γ), where q is in Q, w

is in Σ* and γ is in Г*.

q is the current state

w is the unused input

γ is the current stack contents

Example: (for PDA #2)

(q1, 111, GBR) (q1, 11, GGBR)

(q1, 111, GBR) (q2, 11, BR)

(q1, 000, GR) (q2, 00, R)

18Ashwini P, CSE, ATME college of Engineering

Let M = (Q, Σ, Г, δ, q0, z0, F) be a PDA.

Definition: Let a be in Σ U {ε}, w be in Σ*, z be in Г, and α and β both be in Г*.

Then:

(q, aw, zα) |—M (p, w, βα)

if δ(q, a, z) contains (p, β).

Intuitively, if I and J are instantaneous descriptions, then I |— J means that J follows

from I by one transition.

19Ashwini P, CSE, ATME college of Engineering

Examples: (PDA #2)

(q1, 111, GBR) |— (q1, 11, GGBR) (6) option #1, with a=1, z=G,

β=GG, w=11, and α= BR

(q1, 111, GBR) |— (q2, 11, BR) (6) option #2, with a=1, z=G, β= ε,

w=11, and α= BR

(q1, 000, GR) |— (q2, 00, R) Is not true, For any a, z, β, w and α

Examples: (PDA #1)

(q1, (())), L#) |— (q1, ())),LL#) (3)

20Ashwini P, CSE, ATME college of Engineering

Definition: |—* is the reflexive and transitive closure of |—.

I |—* I for each instantaneous description I

If I |— J and J |—* K then I |—* K

Intuitively, if I and J are instantaneous descriptions, then I |—* J means that J

follows from I by zero or more transitions.

21Ashwini P, CSE, ATME college of Engineering

Definition: Let M = (Q, Σ, Г, δ, q0, z0, F) be a PDA. The language accepted by

empty stack, denoted LE(M), is the set

{w | (q0, w, z0) |—* (p, ε, ε) for some p in Q}

Definition: Let M = (Q, Σ, Г, δ, q0, z0, F) be a PDA. The language accepted by final

state, denoted LF(M), is the set

{w | (q0, w, z0) |—* (p, ε, γ) for some p in F and γ in Г*}

Definition: Let M = (Q, Σ, Г, δ, q0, z0, F) be a PDA. The language accepted by

empty stack and final state, denoted L(M), is the set

{w | (q0, w, z0) |—* (p, ε, ε) for some p in F}

22Ashwini P, CSE, ATME college of Engineering

Lemma 1: Let L = LE(M1) for some PDA M1. Then there exits a PDA M2 such that L

= LF(M2).

Lemma 2: Let L = LF(M1) for some PDA M1. Then there exits a PDA M2 such that L

= LE(M2).

Theorem: Let L be a language. Then there exits a PDA M1 such that L = LF(M1) if

and only if there exists a PDA M2 such that L = LE(M2).

Corollary: The PDAs that accept by empty stack and the PDAs that accept by final

state define the same class of languages.

Note: Similar lemmas and theorems could be stated for PDAs that accept by both

final state and empty stack.

23Ashwini P, CSE, ATME college of Engineering

Back to CFG again:

PDA equivalent to CFG

24Ashwini P, CSE, ATME college of Engineering

Definition: Let G = (V, T, P, S) be a CFL. If every production in P is of the form

A –> aα

Where A is in V, a is in T, and α is in V*, then G is said to be in Greibach

Normal Form (GNF).

Only one non-terminal in front.

Example:

S –> aAB | bB

A –> aA | a

B –> bB | c Language: (aa++b)b+c

Theorem: Let L be a CFL. Then L – {ε} is a CFL.

Theorem: Let L be a CFL not containing {ε}. Then there exists a GNF grammar G

such that L = L(G).

25Ashwini P, CSE, ATME college of Engineering

Lemma 1: Let L be a CFL. Then there exists a PDA M such that L = LE(M).

Proof: Assume without loss of generality that ε is not in L. The construction can be

modified to include ε later.

Let G = (V, T, P, S) be a CFG, and assume without loss of generality that G

is in GNF. Construct M = (Q, Σ, Г, δ, q, z, Ø) where:

Q = {q}

Σ = T

Г = V

z = S

δ: for all a in Σ and A in Г, δ(q, a, A) contains (q, γ)

if A –> aγ is in P or rather:

δ(q, a, A) = {(q, γ) | A –> aγ is in P and γ is in Г*},

for all a in Σ and A in Г

For a given string x in Σ* , M will attempt to simulate a leftmost derivation of x with

G.

26Ashwini P, CSE, ATME college of Engineering

Example #1: Consider the following CFG in GNF.

S –> aS G is in GNF

S –> a L(G) = a+

Construct M as:

Q = {q}

Σ = T = {a}

Г = V = {S}

z = S

δ(q, a, S) = {(q, S), (q, ε)}

δ(q, ε, S) = Ø

Is δ complete?

27Ashwini P, CSE, ATME college of Engineering

Example #2: Consider the following CFG in GNF.

(1) S –> aA
(2) S –> aB
(3) A –> aA G is in GNF
(4) A –> aB L(G) = a+ b+ // This looks ok to me, one, two or more a’s in

the start
(5) B –> bB
(6) B –> b [Can you write a simpler equivalent CFG? Will it

be GNF?]

Construct M as:
Q = {q}
Σ = T = {a, b}
Г = V = {S, A, B}
z = S

(1) δ(q, a, S) = {(q, A), (q, B)} From productions #1 and 2, S->aA, S->aB
(2) δ(q, a, A) = {(q, A), (q, B)} From productions #3 and 4, A->aA, A->aB
(3) δ(q, a, B) = Ø
(4) δ(q, b, S) = Ø
(5) δ(q, b, A) = Ø
(6) δ(q, b, B) = {(q, B), (q, ε)} From productions #5 and 6, B->bB, B->b
(7) δ(q, ε, S) = Ø
(8) δ(q, ε, A) = Ø

(9) δ(q, ε, B) = Ø Is δ complete?

28Ashwini P, CSE, ATME college of Engineering

For a string w in L(G) the PDA M will simulate a leftmost derivation of w.

If w is in L(G) then (q, w, z0) |—* (q, ε, ε)

If (q, w, z0) |—* (q, ε, ε) then w is in L(G)

Consider generating a string using G. Since G is in GNF, each sentential form in a leftmost
derivation has form:

=> t1t2…ti A1A2…Am

terminals non-terminals

And each step in the derivation (i.e., each application of a production) adds a terminal and some
non-terminals.

A1 –> ti+1α

=> t1t2…ti ti+1 αA1A2…Am

Each transition of the PDA simulates one derivation step. Thus, the ith step of the PDAs’
computation corresponds to the ith step in a corresponding leftmost derivation with the grammar.

After the ith step of the computation of the PDA, t1t2…ti+1 are the symbols that have already been
read by the PDA and αA1A2…Amare the stack contents.

29Ashwini P, CSE, ATME college of Engineering

For each leftmost derivation of a string generated by the grammar, there is an

equivalent accepting computation of that string by the PDA.

Each sentential form in the leftmost derivation corresponds to an instantaneous

description in the PDA’s corresponding computation.

For example, the PDA instantaneous description corresponding to the sentential

form:

=> t1t2…ti A1A2…Am

would be:

(q, ti+1ti+2…tn , A1A2…Am)

30Ashwini P, CSE, ATME college of Engineering

Example: Using the grammar from example #2:

S => aA (1)

=> aaA (3)

=> aaaA (3)

=> aaaaB (4)

=> aaaabB (5)

=> aaaabb (6)

The corresponding computation of the PDA:

(rule#)/right-side#

(q, aaaabb, S) |— (q, aaabb, A) (1)/1

|— (q, aabb, A) (2)/1

|— (q, abb, A) (2)/1

|— (q, bb, B) (2)/2

|— (q, b, B) (6)/1

|— (q, ε, ε) (6)/2

String is read

Stack is emptied

Therefore the string is accepted by the PDA

31

Grammar:
(1) S –> aA
(2) S –> aB
(3) A –> aA G is in GNF
(4) A –> aB L(G) = a+b+

(5) B –> bB
(6) B –> b

(1) δ(q, a, S) = {(q, A), (q, B)}
(2) δ(q, a, A) = {(q, A), (q, B)}
(3) δ(q, a, B) = Ø
(4) δ(q, b, S) = Ø
(5) δ(q, b, A) = Ø
(6) δ(q, b, B) = {(q, B), (q, ε)}
(7) δ(q, ε, S) = Ø
(8) δ(q, ε, A) = Ø

(9) δ(q, ε, B) = Ø

Ashwini P, CSE, ATME college of Engineering

Another Example: Using the PDA from example #2:

(q, aabb, S) |— (q, abb, A) (1)/1

|— (q, bb, B) (2)/2

|— (q, b, B) (6)/1

|— (q, ε, ε) (6)/2

The corresponding derivation using the grammar:

S => aA (1)

=> aaB (4)

=> aabB (5)

=> aabb (6)

32Ashwini P, CSE, ATME college of Engineering

Example #3: Consider the following CFG in GNF.

(1) S –> aABC

(2) A –> a G is in GNF

(3) B –> b

(4) C –> cAB

(5) C –> cC Language?

Construct M as:

Q = {q}

Σ = T = {a, b, c}

Г = V = {S, A, B, C}

z = S

(1) δ(q, a, S) = {(q, ABC)} S->aABC (9) δ(q, c, S) = Ø

(2) δ(q, a, A) = {(q, ε)} A->a (10) δ(q, c, A) = Ø

(3) δ(q, a, B) = Ø (11) δ(q, c, B) = Ø

(4) δ(q, a, C) = Ø (12) δ(q, c, C) = {(q, AB), (q, C))} // C-

>cAB|cC

(5) δ(q, b, S) = Ø (13) δ(q, ε, S) = Ø

(6) δ(q, b, A) = Ø (14) δ(q, ε, A) = Ø

(7) δ(q, b, B) = {(q, ε)} B->b (15) δ(q, ε, B) = Ø

(8) δ(q, b, C) = Ø (16) δ(q, ε, C) = Ø

33

aab cc* ab

Ashwini P, CSE, ATME college of Engineering

Notes:
Recall that the grammar G was required to be in GNF before the construction could be

applied.

As a result, it was assumed at the start that ε was not in the context-free language L.

What if ε is in L? You need to add ε back.

Suppose ε is in L:

1) First, let L’ = L – {ε}

Fact: If L is a CFL, then L’ = L – {ε} is a CFL.

By an earlier theorem, there is GNF grammar G such that L’ = L(G).

2) Construct a PDA M such that L’ = LE(M)

How do we modify M to accept ε?

Add δ(q, ε, S) = {(q, ε)}? NO!!

34Ashwini P, CSE, ATME college of Engineering

Counter Example:

Consider L = {ε, b, ab, aab, aaab, …}= ε + a*b Then L’ = {b, ab, aab, aaab,

…} = a*b

The GNF CFG for L’:

P:

(1) S –> aS

(2) S –> b

The PDA M Accepting L’:

Q = {q}

Σ = T = {a, b}

Г = V = {S}

z = S

δ(q, a, S) = {(q, S)}

δ(q, b, S) = {(q, ε)}

δ(q, ε, S) = Ø

How to add ε to L’ now?

35Ashwini P, CSE, ATME college of Engineering

δ(q, a, S) = {(q, S)}

δ(q, b, S) = {(q, ε)}

δ(q, ε, S) = Ø

If δ(q, ε, S) = {(q, ε)} is added then:

L(M) = {ε, a, aa, aaa, …, b, ab, aab, aaab, …}, wrong!

It is like, S -> aS | b | ε

which is wrong!

Correct grammar should be:

(0) S1 -> ε | S, with new starting non-terminal S1

(1) S –> aS

(2) S –> b

For PDA, add a new Stack-bottom symbol S1, with new transitions:

δ(q, ε, S1) = {(q, ε), (q, S)}, where S was the previous stack-bottom of

M

Alternatively, add a new start state q’ with transitions:

δ(q’, ε, S) = {(q’, ε), (q, S)}

36Ashwini P, CSE, ATME college of Engineering

Lemma 1: Let L be a CFL. Then there exists a PDA M such that L = LE(M).

Lemma 2: Let M be a PDA. Then there exists a CFG grammar G such that LE(M) =

L(G).

Can you prove it?

First step would be to transform an arbitrary PDA to a single state PDA!

Theorem: Let L be a language. Then there exists a CFG G such that L = L(G) iff

there exists a PDA M such that L = LE(M).

Corollary: The PDAs define the CFLs.

37Ashwini P, CSE, ATME college of Engineering

0n1n, n>=1

S -> 0S1 | 01

GNF:

S -> 0SS1 | 0S1

S1 -> 1

Note: in PDA the symbol S will float on top, rather than

stay at the bottom!

Acceptance of string by removing last S1 at stack

bottom

38Ashwini P, CSE, ATME college of Engineering

Ignore this slide

How about language like: ((())())(), nested

39

M = ({q1,q2}, {“(“, “)”}, {L, #}, δ, q1, #, Ø)

δ:

(1) δ(q1, (, #) = {(q1, L#)}

(2) δ(q1,), #) = Ø // illegal, string rejected

(3) δ(q1, (, L) = {(q1, LL)}

(4) δ(q1,), L) = {(q2, ε)}

(5) δ(q2,), L) = {(q2, ε)}

(6) δ(q2, (, L) = {(q1, LL)} // not balanced yet, but start back anyway

(7) δ(q2, (, #) = {(q1, L#)} // start afresh again

(8) δ(q2, ε, #) = {(q2, ε)} // end of string & stack hits bottom, accept

(9) δ(q1, ε, #) = {(q1, ε)} // special rule for empty string

(10) δ(q1, ε, L) = Ø // illegal, end of string but more L in stack

Total number of transitions? Verify all carefully.

Ashwini P, CSE, ATME college of Engineering

Ashwini P, CSE, ATME college of Engineering 1

2Ashwini P, CSE, ATME college of Engineering

3

• Introduction

• Chomsky normal form

• Preliminary simplifications

• Final steps

• Greibach Normal Form

• Algorithm (Example)

• Summary

Ashwini P, CSE, ATME college of Engineering

Introduction

4

Grammar: G = (V, T, P, S)

T = { a, b }Terminals

V = A, B, CVariables

SStart Symbol

P = S → AProduction

Ashwini P, CSE, ATME college of Engineering

5

Grammar example

S → aBSc
S → abc
Ba → aB
Bb → bb

L = { anbncn | n ≥ 1

}

S aBSc aBabcc aaBbcc aabbcc   

Ashwini P, CSE, ATME college of Engineering

6

Context free grammar

The head of any production contains only one
non-terminal symbol

S → P
P → aPb
P → ε

L = { anbn | n ≥ 0 }

Ashwini P, CSE, ATME college of Engineering

7

• Introduction

• Chomsky normal form

• Preliminary simplifications

• Final simplification

• Greibach Normal Form

• Algorithm (Example)

• Summary

Ashwini P, CSE, ATME college of Engineering

8

A → BC
A → α

A context free grammar is said to be in Chomsky
Normal Form if all productions are in the following
form:

• A, B and C are non terminal symbols
• α is a terminal symbol

Ashwini P, CSE, ATME college of Engineering

9

• Introduction

• Chomsky normal form

• Preliminary simplifications

• Final steps

• Greibach Normal Form

• Algorithm (Example)

• Summary

Ashwini P, CSE, ATME college of Engineering

10

Eliminate Useless

Symbols
1

Eliminate ε productions 2

Eliminate unit

productions
3

There are three preliminary simplifications

Ashwini P, CSE, ATME college of Engineering

11

Eliminate Useless Symbols

We need to determine if the symbol is useful by
identifying if a symbol is generating and is reachable

• X is generating if X ω for some terminal string ω.
• X is reachable if there is a derivation S αXβ

for some α and β





*

*

Ashwini P, CSE, ATME college of Engineering

12

Example: Removing non-generating symbols

S → AB |

a

A → b
Initial CFL grammar

S → AB |

a

A → b

Identify generating symbols

S → a

A → b
Remove non-generating

Ashwini P, CSE, ATME college of Engineering

13

Example: Removing non-reachable symbols

S → a Eliminate non-reachable

S → a

A → b
Identify reachable symbols

Ashwini P, CSE, ATME college of Engineering

14

The order is important.

S → AB |

a

A → b

Looking first for non-reachable symbols and then
for non-generating symbols can still leave some
useless symbols.

S → a

A → b

Ashwini P, CSE, ATME college of Engineering

15

Finding generating symbols

If there is a production A → α, and every

symbol of α is already known to be

generating. Then A is generating

S → AB |

a

A → b

We cannot use S → AB because
B has not been established to
be generating

Ashwini P, CSE, ATME college of Engineering

16

Finding reachable symbols

S is surely reachable. All symbols in the body of a
production with S in the head are reachable.

S → AB |

a

A → b

In this example the symbols
{S, A, B, a, b} are reachable.

Ashwini P, CSE, ATME college of Engineering

17

Eliminate Useless

Symbols
1

Eliminate ε productions 2

Eliminate unit

productions
3

There are three preliminary simplifications

Ashwini P, CSE, ATME college of Engineering

18

Eliminate ε Productions

• In a grammar ε productions are convenient but
not essential

• If L has a CFG, then L – {ε} has a CFG

Nullable variable

A ε*

Ashwini P, CSE, ATME college of Engineering

19

If A is a nullable variable

• Whenever A appears on the body of a production
A might or might not derive ε

S → ASA | aB
A → B | S
B → b | ε

Nullable: {A, B}

Ashwini P, CSE, ATME college of Engineering

20

• Create two version of the production, one with
the nullable variable and one without it

• Eliminate productions with ε bodies

S → ASA |

aB

A → B | S

B → b | ε

S → ASA | aB | AS | SA | S |

a

A → B | S

B → b

Eliminate ε Productions

Ashwini P, CSE, ATME college of Engineering

21

• Create two version of the production, one with
the nullable variable and one without it

• Eliminate productions with ε bodies

S → ASA |

aB

A → B | S

B → b | ε

S → ASA | aB | AS | SA | S |

a

A → B | S

B → b

Eliminate ε Productions

Ashwini P, CSE, ATME college of Engineering

22

• Create two version of the production, one with
the nullable variable and one without it

• Eliminate productions with ε bodies

S → ASA |

aB

A → B | S

B → b | ε

S → ASA | aB | AS | SA | S |

a

A → B | S

B → b

Eliminate ε Productions

Ashwini P, CSE, ATME college of Engineering

23

Eliminate Useless

Symbols
1

Eliminate ε productions 2

Eliminate unit

productions
3

There are three preliminary simplifications

Ashwini P, CSE, ATME college of Engineering

24

Eliminate unit productions

A unit production is one of the form A → B where

both A and B are variables

A B*

A → B, B → ω, then A → ω

Identify unit pairs

Ashwini P, CSE, ATME college of Engineering

25

Example:

I → a | b | Ia | Ib | I0 | I1
F → I | (E)
T → F | T * F
E → T | E + T

Pairs Productions

(E, E) E → E + T

(E, T) E → T * F

(E, F) E → (E)

(E, I) E → a | b | Ia | Ib | I0 | I1

(T, T) T → T * F

(T, F) T → (E)

(T, I) T → a | b | Ia |Ib | I0 | I1

(F, F) F → (E)

(F, I) F → a | b | Ia | Ib | I0 | I1

(I, I) I → a | b | Ia | Ib | I0 | I1

Basis: (A, A) is a unit pair
of any variable A, if
A A by 0 steps.*

T = {*, +, (,), a, b, 0, 1}

Ashwini P, CSE, ATME college of Engineering

26

Example:

Pairs Productions

… …

(T, T) T → T * F

(T, F) T → (E)

(T, I) T → a | b | Ia |Ib | I0 | I1

… …

I → a | b | Ia | Ib | I0 | I1

E → E + T | T * F | (E) | a | b | la | lb | l0 |

l1

T → T * F | (E) | a | b | Ia | Ib | I0 | I1

F → (E) | a | b | Ia | Ib | I0 | I1
Ashwini P, CSE, ATME college of Engineering

27

• Introduction

• Chomsky normal form

• Preliminary simplifications

• Final steps

• Greibach Normal Form

• Algorithm (Example)

• Summary

Ashwini P, CSE, ATME college of Engineering

28

A → BC
A → α

A context free grammar is said to be in Chomsky
Normal Form if all productions are in the following
form:

• A, B and C are non terminal symbols
• α is a terminal symbol

Ashwini P, CSE, ATME college of Engineering

29

Chomsky Normal Form (CNF)

1. Arrange that all bodies of length 2 or more to
consists only of variables.

2. Break bodies of length 3 or more into a cascade of
productions, each with a body consisting of two
variables.

Starting with a CFL grammar with the preliminary
simplifications performed

Ashwini P, CSE, ATME college of Engineering

30

Step 1: For every terminal α that appears in a body
of length 2 or more create a new variable that has
only one production.

E → E + T | T * F | (E) | a | b | la | lb | l0 | l1
T → T * F | (E) | a | b | Ia | Ib | I0 | I1
F → (E) | a | b | Ia | Ib | I0 | I1
I → a | b | Ia | Ib | I0 | I1

E → EPT | TMF | LER | a | b | lA | lB | lZ | lO

T → TMF | LER | a | b | IA | IB | IZ | IO

F → LER | a | b | IA | IB | IZ | IO

I → a | b | IA | IB | IZ | IO

A → a B → b Z → 0 O → 1

P → + M → * L → (R →)

Ashwini P, CSE, ATME college of Engineering

31

Step 2: Break bodies of length 3 or more adding
more variables

E → EPT | TMF | LER | a | b | lA | lB | lZ |

lO

T → TMF | LER | a | b | IA | IB | IZ | IO

F → LER | a | b | IA | IB | IZ | IO

I → a | b | IA | IB | IZ | IO

A → a B → b Z → 0 O → 1

P → + M → * L → (R →)

C1 → PT
C2 → MF
C3 → ER

Ashwini P, CSE, ATME college of Engineering

32

• Introduction

• Chomsky normal form

• Preliminary simplifications

• Final steps

• Greibach Normal Form

• Algorithm (Example)

• Summary

Ashwini P, CSE, ATME college of Engineering

33

A → αX

A context free grammar is said to be in Greibach
Normal Form if all productions are in the following
form:

• A is a non terminal symbols
• α is a terminal symbol
• X is a sequence of non terminal symbols.

It may be empty.

Ashwini P, CSE, ATME college of Engineering

34

• Introduction

• Chomsky normal form

• Preliminary simplifications

• Final steps

• Greibach Normal Form

• Algorithm (Example)

• Summary

Ashwini P, CSE, ATME college of Engineering

35

Example:

S → XA | BB
B → b | SB
X → b
A → a

CNF

S = A1

X = A2

A = A3

B = A4

New

Labels

A1 → A2A3 | A4A4

A4 → b | A1A4

A2 → b
A3 → a

Updated CNF

Ashwini P, CSE, ATME college of Engineering

36

Example:

A1 → A2A3 | A4A4

A4 → b | A1A4

A2 → b
A3 → a

First Step

Xk is a string of zero
or more variables

Ai → AjXk j > i

A4 → A1A4

Ashwini P, CSE, ATME college of Engineering

37

Example:

A1 → A2A3 | A4A4

A4 → b | A1A4

A2 → b
A3 → a

A4 → A1A4

A4 → A2A3A4 | A4A4A4 | b

A4 → bA3A4 | A4A4A4 | b

First Step Ai → AjXk j > i

Ashwini P, CSE, ATME college of Engineering

38

Example:

Second Step

Eliminate Left

Recursions

A1 → A2A3 | A4A4

A4 → bA3A4 | A4A4A4 | b
A2 → b
A3 → a

A4 → A4A4A4

A  A α | β

Can be written as

A  β A ‘

A ‘  α A’ | ɛ

Ashwini P, CSE, ATME college of Engineering

39

Example:

Second Step

Eliminate Left

Recursions

A1 → A2A3 | A4A4

A4 → bA3A4 | A4A4A4 | b
A2 → b
A3 → a

A4 → bA3A4 | b | bA3A4Z | bZ

Z → A4A4 | A4A4Z

Ashwini P, CSE, ATME college of Engineering

40

Example:

A1 → A2A3 | A4A4

A4 → bA3A4 | b | bA3A4Z | bZ

Z → A4A4 | A4A4 Z

A2 → b

A3 → a

A → αX

GNF

Ashwini P, CSE, ATME college of Engineering

41

Example:

A1 → A2A3 | A4A4

A4 → bA3A4 | b | bA3A4Z | bZ
Z → A4A4 | A4A4 Z
A2 → b
A3 → a

Z → bA3A4A4 | bA4 | bA3A4ZA4 | bZA4 | bA3A4A4 | bA4 | bA3A4ZA4 | bZA4

A1 → bA3 | bA3A4A4 | bA4 | bA3A4ZA4 | bZA4

Ashwini P, CSE, ATME college of Engineering

42

Example:

A1 → bA3 | bA3A4A4 | bA4 | bA3A4ZA4 | bZA4

A4 → bA3A4 | b | bA3A4Z | bZ
Z → bA3A4A4 | bA4 | bA3A4ZA4 | bZA4 | bA3A4A4 | bA4 | bA3A4ZA4 | bZA4

A2 → b
A3 → a

Grammar in Greibach Normal Form

Ashwini P, CSE, ATME college of Engineering

43

Summary (Some properties)

• Every CFG that doesn’t generate the empty string
can be simplified to the Chomsky Normal Form and
Greibach Normal Form

• The derivation tree in a grammar in CNF is a binary
tree

• In the GNF, a string of length n has a derivation of
exactly n steps

• Grammars in normal form can facilitate proofs
• CNF is used as starting point in the algorithm CYK

Ashwini P, CSE, ATME college of Engineering

44Ashwini P, CSE, ATME college of Engineering

1Ashwini P, CSE,ATME college of Engineering

2Ashwini P, CSE,ATME college of Engineering

3

Regular Languages - ε

Context-Free Languages - ε

Context-Sensitive Languages

Recursive Languages

Non-Recursively Enumerable Languages

Recursively Enumerable Languages

Ashwini P, CSE,ATME college of Engineering

Recursively enumerable languages are also known as type 0 languages.

Context-sensitive languages are also known as type 1 languages.

Context-free languages are also known as type 2 languages.

Regular languages are also known as type 3 languages.

4Ashwini P, CSE,ATME college of Engineering

TMs model the computing capability of a general purpose computer, which informally can
be described as:

Effective procedure
Finitely describable
Well defined, discrete, “mechanical” steps
Always terminates

Computable function
A function computable by an effective procedure

TMs formalize the above notion.

Church-Turing Thesis: There is an effective procedure for solving a problem if and only if
there is a TM that halts for all inputs and solves the problem.

There are many other computing models, but all are equivalent to or subsumed by TMs.
There is no more powerful machine (Technically cannot be proved).

DFAs and PDAs do not model all effective procedures or computable functions, but only a
subset.

5Ashwini P, CSE,ATME college of Engineering

Deterministic Turing Machine (DTM)
…….. ……..

Two-way, infinite tape, broken into cells, each containing one symbol.

Two-way, read/write tape head.

An input string is placed on the tape, padded to the left and right infinitely with blanks,

read/write head is positioned at the left end of input string.

Finite control, i.e., a program, containing the position of the read head, current symbol being

scanned, and the current state.

In one move, depending on the current state and the current symbol being scanned, the TM

1) changes state, 2) prints a symbol over the cell being scanned, and 3) moves its’ tape

head one cell left or right.

Many modifications possible, but Church-Turing declares equivalence of all.

6

Finite

Control

B B 0 1 1 0 0 B B

Ashwini P, CSE,ATME college of Engineering

Formal Definition of a DTM

A DTM is a seven-tuple:

M = (Q, Σ, Γ, δ, q0, B, F)

Q A finite set of states

Σ A finite input alphabet, which is a subset of Γ– {B}

Γ A finite tape alphabet, which is a strict superset of Σ

B A distinguished blank symbol, which is in Γ

q0 The initial/starting state, q0 is in Q

F A set of final/accepting states, which is a subset of Q

δ A next-move function, which is a mapping (i.e., may be

undefined) from

Q x Γ –> Q x Γ x {L,R}

Intuitively, δ(q,s) specifies the next state, symbol to be written, and the

direction of tape head movement by M after reading symbol s while in state q.

7Ashwini P, CSE,ATME college of Engineering

Example #1: {w | w is in {0,1}* and w ends with a 0}

0

00

10

10110

Not ε

Q = {q0, q1, q2}

Γ = {0, 1, B}

Σ = {0, 1}

F = {q2}

δ:

0 1 B

->q0 (q0, 0, R) (q0, 1, R) (q1, B, L)

q1 (q2, 0, R) - -

q2
* - - -

q0 is the start state and the “scan right” state, until hits B

q1 is the verify 0 state

q2 is the final state

8Ashwini P, CSE,ATME college of Engineering

Exercises: Construct a DTM for each of the following.

{w | w is in {0,1}* and w ends in 00}

{w | w is in {0,1}* and w contains at least two 0’s}

{w | w is in {0,1}* and w contains at least one 0 and one 1}

Just about anything else (simple) you can think of

9Ashwini P, CSE,ATME college of Engineering

Formal Definitions for DTMs
Let M = (Q, Σ, Г, δ, q0, B, F) be a TM.

Definition: An instantaneous description (ID) is a triple α1qα2, where:

q, the current state, is in Q

α1α2, is in Г*, and is the current tape contents up to the rightmost non-blank symbol, or the

symbol to the left of the tape head, whichever is rightmost

The tape head is currently scanning the first symbol of α2

At the start of a computation α1= ε

If α2= ε then a blank is being scanned

Example: (for TM #1)

q00011 Xq1011 X0q111 Xq20Y1 q2X0Y1

Xq00Y1 XXq1Y1 XXYq11 XXq2YY Xq2XYY

XXq0YY XXYq3Y XXYYq3 XXYYBq4

10Ashwini P, CSE,ATME college of Engineering

Suppose the following is the current ID of a DTM

x1x2…xi-1qxixi+1…xn

Case 1) δ(q, xi) = (p, y, L)

(a) if i = 1 then qx1x2…xi-1xixi+1…xn |— pByx2…xi-1xixi+1…xn

(b) else x1x2…xi-1qxixi+1…xn |— x1x2…xi-2pxi-1yxi+1…xn

If any suffix of xi-1yxi+1…xn is blank then it is deleted.

Case 2) δ(q, xi) = (p, y, R)

x1x2…xi-1qxixi+1…xn |— x1x2…xi-1ypxi+1…xn

If i>n then the ID increases in length by 1 symbol

x1x2…xnq |— x1x2…xnyp

11Ashwini P, CSE,ATME college of Engineering

Definition: Let M = (Q, Σ, Г, δ, q0, B, F) be a TM, and let w be a string in Σ*. Then w is
accepted by M iff

q0w |—* α1pα2

where p is in F and α1 and α2 are in Г*

Definition: Let M = (Q, Σ, Г, δ, q0, B, F) be a TM. The language accepted by M, denoted
L(M), is the set

{w | w is in Σ* and w is accepted by M}

Notes:
In contrast to FA and PDAs, if a TM simply passes through a final state then the string
is accepted.
Given the above definition, no final state of a TM need to have any transitions.
Henceforth, this is our assumption.
If x is NOT in L(M) then M may enter an infinite loop, or halt in a non-final state.
Some TMs halt on ALL inputs, while others may not. In either case the language
defined by TM is still well defined.

12Ashwini P, CSE,ATME college of Engineering

Definition: Let L be a language. Then L is recursively enumerable if there exists a TM M such that L =
L(M).

If L is r.e. then L = L(M) for some TM M, and
If x is in L then M halts in a final (accepting) state.
If x is not in L then M may halt in a non-final (non-accepting) state or no transition is
available, or loop forever.

Definition: Let L be a language. Then L is recursive if there exists a TM M such that L = L(M) and M
halts on all inputs.

If L is recursive then L = L(M) for some TM M, and
If x is in L then M halts in a final (accepting) state.
If x is not in L then M halts in a non-final (non-accepting) state or no transition is available
(does not go to infinite loop).

Notes:

The set of all recursive languages is a subset of the set of all recursively enumerable languages

Terminology is easy to confuse: A TM is not recursive or recursively enumerable, rather a
language is recursive or recursively enumerable.

13Ashwini P, CSE,ATME college of Engineering

Closure Properties for Recursive and

Recursively Enumerable Languages

TMs model General Purpose (GP) Computers:
If a TM can do it, so can a GP computer

If a GP computer can do it, then so can a TM

If you want to know if a TM can do X, then some equivalent question

are:
Can a general purpose computer do X?

Can a C/C++/Java/etc. program be written to do X?

For example, is a language L recursive?
Can a C/C++/Java/etc. program be written that always halts and accepts L?

14Ashwini P, CSE,ATME college of Engineering

TM Block Diagrams:
If L is a recursive language, then a TM M that accepts L and always halts can be
pictorially represented by a “chip” or “box” that has one input and two outputs.

If L is a recursively enumerable language, then a TM M that accepts L can be pictorially
represented by a “box” that has one output.

Conceivably, M could be provided with an output for “no,” but this output cannot be
counted on. Consequently, we simply ignore it.

15

w

yes

no

M

w

yes

M

Ashwini P, CSE,ATME college of Engineering

Theorem 1: The recursive languages are closed with respect to complementation, i.e., if L is
a recursive language, then so is

Proof: Let M be a TM such that L = L(M) and M always halts. Construct TM M’ as follows:

Note That:
M’ accepts iff M does not
M’ always halts since M always halts

From this it follows that the complement of L is recursive. •

Question: How is the construction achieved? Do we simply complement the final states in
the TM? No! A string in L could end up in the complement of L.

Suppose q5 is an accepting state in M, but q0 is not.
If we simply complemented the final and non-final states, then q0 would be an accepting state in M’
but q5 would not.
Since q0 is an accepting state, by definition all strings are accepted by M’

16

LL  *

w

yes

noM

yes

no

M’

Ashwini P, CSE,ATME college of Engineering

Theorem 2: The recursive languages are closed with respect to union, i.e., if L1 and L2 are recursive

languages, then so is

Proof: Let M1 and M2 be TMs such that L1 = L(M1) and L2 = L(M2) and M1 and M2 always halts.

Construct TM M’ as follows:

Note That:

L(M’) = L(M1) L(M2)

L(M’) is a subset of L(M1) U L(M2)

L(M1) U L(M2) is a subset of L(M’)

M’ always halts since M1 and M2 always halt

It follows from this that is recursive. •

17

213 LLL 

w

yes

no

M1

yes

noM2

start

M’

213 LLL 



Ashwini P, CSE,ATME college of Engineering

Theorem 3: The recursive enumerable languages are closed with respect to union, i.e., if L1

and L2 are recursively enumerable languages, then so is

Proof: Let M1 and M2 be TMs such that L1 = L(M1) and L2 = L(M2). Construct M’ as
follows:

Note That:
L(M’) = L(M1) U L(M2)

L(M’) is a subset of L(M1) U L(M2)
L(M1) U L(M2) is a subset of L(M’)

M’ halts and accepts iff M1 or M2 halts and accepts

It follows from this that is recursively enumerable. •

Question: How do you run two TMs in parallel?

18

213 LLL 

213 LLL 

w

yes

M1

yes

yes

M2

M’

Ashwini P, CSE,ATME college of Engineering

Suppose, M1 and M2 had outputs for “no” in the previous construction, and these

were transferred to the “no” output for M’

Question: What would happen if w is in L(M1) but not in L(M2)?

Answer: You could get two outputs – one “yes” and one “no.”

At least M1 will halt and answer accept, M2 may or may not halt.

As before, for the sake of convenience the “no” output will be ignored.

19

w

yes

M1

yes

yes
M2

M’

no

no

no

Ashwini P, CSE,ATME college of Engineering

Theorem 4: If L and are both recursively enumerable then L (and therefore)
is recursive.

Proof: Let M1 and M2 be TMs such that L = L(M1) and = L(M2). Construct M’ as
follows:

Note That:
L(M’) = L

L(M’) is a subset of L
L is a subset of L(M’)

M’ is TM for L
M’ always halts since either M1 or M2 halts for any given string
M’ shows that L is recursive

It follows from this that L (and therefore its’ complement) is recursive.
So, is also recursive (we proved it before). •

20

LL

L

w

yes

M1

yes

yes

M2

M’

no

L

Ashwini P, CSE,ATME college of Engineering

Corollary of Thm 4: Let L be a subset of Σ*. Then one of the following

must be true:

Both L and are recursive.

One of L and is recursively enumerable but not recursive, and the other is

not recursively enumerable, or

Neither L nor is recursively enumerable

In other words, it is impossible to have both L and r.e. but not recursive

21

L

L

L

L

Ashwini P, CSE,ATME college of Engineering

In terms of the hierarchy: (possibility #1)

22

Recursive Languages

Recursively Enumerable Languages

Non-Recursively Enumerable Languages

L L

Ashwini P, CSE,ATME college of Engineering

In terms of the hierarchy: (possibility #2)

23

Recursive Languages

Recursively Enumerable Languages

Non-Recursively Enumerable Languages

L L

Ashwini P, CSE,ATME college of Engineering

In terms of the hierarchy: (possibility #3)

24

Recursive Languages

Recursively Enumerable Languages

Non-Recursively Enumerable Languages

L L

Ashwini P, CSE,ATME college of Engineering

In terms of the hierarchy: (Impossibility #1)

25

Recursive Languages

Recursively Enumerable Languages

Non-Recursively Enumerable Languages

L L

Ashwini P, CSE,ATME college of Engineering

In terms of the hierarchy: (Impossibility #2)

26

Recursive Languages

Recursively Enumerable Languages

Non-Recursively Enumerable Languages

L

L

Ashwini P, CSE,ATME college of Engineering

In terms of the hierarchy: (Impossibility #3)

27

Recursive Languages

Recursively Enumerable Languages

Non-Recursively Enumerable Languages

L

L

Ashwini P, CSE,ATME college of Engineering

Note: This gives/identifies three approaches to show that a language is not

recursive.
Show that the language’s complement is not recursive, in one of the two ways:

Show that the language’s complement is recursively enumerable but not recursive

Show that the language’s complement is not even recursively enumerable

28Ashwini P, CSE,ATME college of Engineering

The Halting Problem - Background
Definition: A decision problem is a problem having a yes/no answer (that one presumably

wants to solve with a computer). Typically, there is a list of parameters on which the

problem is based.
Given a list of numbers, is that list sorted?

Given a number x, is x even?

Given a C program, does that C program contain any syntax errors?

Given a TM (or C program), does that TM contain an infinite loop?

From a practical perspective, many decision problems do not seem all that

interesting. However, from a theoretical perspective they are for the following two reasons:
Decision problems are more convenient/easier to work with when proving complexity results.

Non-decision counter-parts can always be created & are typically at least as difficult to solve.

Notes:
The following terms and phrases are analogous:

Algorithm - A halting TM program

Decision Problem - A language (will show shortly)

(un)Decidable - (non)Recursive

29Ashwini P, CSE,ATME college of Engineering

Statement of the Halting Problem
Practical Form: (P1)

Input: Program P and input I.
Question: Does P terminate on input I?

Theoretical Form: (P2)
Input: Turing machine M with input alphabet Σ and string w in Σ*.
Question: Does M halt on w?

A Related Problem We Will Consider First: (P3)
Input: Turing machine M with input alphabet Σ and one final state, and string w

in Σ*.
Question: Is w in L(M)?

Analogy:
Input: DFA M with input alphabet Σ and string w in Σ*.
Question: Is w in L(M)?
Is this problem (regular language) decidable? Yes! DFA always accepts or

rejects.

30Ashwini P, CSE,ATME college of Engineering

Over-All Approach:

We will show that a language Ld is not recursively enumerable

From this it will follow that is not recursive

Using this we will show that a language Lu is not recursive

From this it will follow that the halting problem is undecidable.

As We Will See:
P3 will correspond to the language Lu

Proving P3 (un)decidable is equivalent to proving Lu (non)recursive

31

dL

Ashwini P, CSE,ATME college of Engineering

The Universal Language
Define the language Lu as follows:

Lu = {x | x is in {0, 1}* and x = <M,w> where M is a TM encoding and w is in

L(M)}

Let x be in {0, 1}*. Then either:

1. x doesn’t have a TM prefix, in which case x is not in Lu

2. x has a TM prefix, i.e., x = <M,w> and either:

a) w is not in L(M), in which case x is not in Lu

b) w is in L(M), in which case x is in Lu

32Ashwini P, CSE,ATME college of Engineering

