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Design/development of solutions: Design solutions for complex engineering problems
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need for sustainable development.

Ethics: Apply ethical principles and commit to professional ethics and responsibilities and
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Individual and team work: Function effectively as an individual, and as a member or

leader in diverse teams, and in multidisciplinary settings.

Communication: Communicate effectively on complex engineering activities with the

engineering community and with society at large, such as, being able to comprehend and

write effective reports and design documentation, make effective presentations, and give
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e Project management and finance: Demonstrate knowledge and understanding of the
engineering and management principles and apply these to one’s own work, as a member
and leader in a team, to manage projects and in multidisciplinary environments.

Life-long learning: Recognize the need for, and have the preparation and ability to engage
in independent and life-long learning in the broadest context of technological change.

Program Specific Outcomes (PSOs)

PSO1: Develop relevant programming skills to become a successful data scientist

PSO2: Apply data science concepts and algorithms to solve real world problems of the
society

PSO3: Apply data science techniques in the various domains like agriculture, education
healthcare for better society

Program Educational Objectives (PEOs):

PEOL1.: Develop cutting-edge skills in data science and its related technologies, such as machine
learning, predictive analytic, and data engineering.

PEO2: Design and develop data-driven solutions to real-world problems in a business, research,

or social environment.

PEOS3: Apply data engineering and data visualization techniques to discover, investigate, and

interpret data.
PEO4: Demonstrate ethical and responsible data practices in problem solving

PEOS: Integrate fields within computer science, optimization, and statistics to develop better
solutions




Chapter

Emergence of loT

Learning Outcomes

After reading this chapter, the reader will be able to:
e Explain the chronology for the evolution of Internet of Things (loT)

e Relate new concepts with concepts learned earlier to make a smooth transition to
loT

e List the reasons for a prevailing universal networked paradigm, which is loT
e Compare and correlate loT with its precursors such as WSN, M2M, and CPS
e List the various enablers of loT

e Understand loT networking components and various networking topologies

¢ Recognize the unique features of loT which set it apart from other similar
paradigms

4.1 Introduction

The modern-day advent of network-connected devices has given rise to the popular
paradigm of the Internet of Things (IoT). Each second, the present-day Internet allows
massively heterogeneous traffic through it. This network traffic consists of images,
videos, music, speech, text, numbers, binary codes, machine status, banking messages,
data from sensors and actuators, healthcare data, data from vehicles, home automation
system status and control messages, military communications, and many more. This
huge variety of data is generated from a massive number of connected devices, which
may be directly connected to the Internet or connected through gateway devices.
According to statistics from the Information Handling Services [7], the total number of
connected devices globally is estimated to be around 25 billion. This figure is projected
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to triple within a short span of 5 years by the year 2025. Figure 4.1 shows the global
trend and projection for connected devices worldwide.

Global connected IoT device trend
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Figure 4.1 10-year global trend and projection of connected devices (statistics sourced from
the Information Handling Services [7])

The traffic flowing through the Internet can be attributed to legacy systems as well
as modern-day systems. The miniaturization of electronics and the cheap affordability
of technology is resulting in a surge of connected devices, which in turn is leading to
an explosion of traffic flowing through the Internet.

Points to ponder

“The Internet of Things (loT) is the network of physical objects that contain
embedded technology to communicate and sense or interact with their internal
states or the external environment.”

—Gartner Research [5]

One of the best examples of this explosion is the evolution of smartphones. In the
late 1990’s, cellular technology was still expensive and which could be afforded only
by a select few. Moreover, these particular devices had only the basic features of voice
calling, text messaging, and sharing of low-quality multimedia. Within the next 10
years, cellular technology had become common and easily affordable. With time, the
features of these devices evolved, and the dependence of various applications and
services on these gadgets on packet-based Internet accesses started rapidly increasing.
The present-day mobile phones (commonly referred to as smartphones) are more or
less Internet-based. The range of applications on these gadgets such as messaging,
video calling, e-mails, games, music streaming, video streaming, and others are
solely dependent on network provider allocated Internet access or WiFi. Most of
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the present-day consumers of smartphone technology tend to carry more than one of
these units. In line with this trend, other connected devices have rapidly increased
in numbers resulting in the number of devices exceeding the number of humans
on Earth by multiple times. Now imagine that as all technologies and domains are
moving toward smart management of systems, the number of sensor/actuator-based
systems is rapidly increasing. With time, the need for location-independent access
to monitored and controlled systems keep on rising. This rise in number leads to a
further rise in the number of Internet-connected devices.

The original Internet intended for sending simple messages is now connected with
all sorts of “Things”. These things can be legacy devices, modern-day computers,
sensors, actuators, household appliances, toys, clothes, shoes, vehicles, cameras, and
anything which may benefit a product by increasing its scientific value, accuracy, or
even its cosmetic value.

Internet of Things

“In the 2000s, we are heading into a new era of ubiquity, where the ‘users’
of the Internet will be counted in billions and where humans may become the
minority as generators and receivers of traffic. Instead, most of the traffic will
flow between devices and all kinds of “Things”, thereby creating a much wider
and more complex Internet of Things.”

—ITU Internet Report 2005 [6]

J

IoT is an anytime, anywhere, and anything (as shown in Figure 4.2) network of
Internet-connected physical devices or systems capable of sensing an environment
and affecting the sensed environment intelligently. This is generally achieved
using low-power and low-form-factor embedded processors on-board the “things”
connected to the Internet. In other words, IoT may be considered to be made
up of connecting devices, machines, and tools; these things are made up of
sensors/actuators and processors, which connect to the Internet through wireless
technologies. Another school of thought also considers wired Internet access to be
inherent to the IoT paradigm. For the sake of harmony, in this book, we will consider
any technology enabling access to the Internet—be it wired or wireless—to be an
IoT enabling technology. However, most of the focus on the discussion of various
IoT enablers will be restricted to wireless IoT systems due to the much more severe
operating constraints and challenges faced by wireless devices as compared to wired
systems. Typically, IoT systems can be characterized by the following features [2]:

e Associated architectures, which are also efficient and scalable.

¢ No ambiguity in naming and addressing.

* Massive number of constrained devices, sleeping nodes, mobile devices, and

non-IP devices.

¢ Intermittent and often unstable connectivity.
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Figure 4.2 The three characteristic features—anytime, anywhere, and anything—highlight the
robustness and dynamic nature of loT

IoT is speculated to have achieved faster and higher technology acceptance as
compared to electricity and telephony. These speculations are not ill placed as evident
from the various statistics shown in Figures 4.3, 4.4, and 4.5.
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Figure 4.3 The global loT spending across various organizations and industries and its

subsequent projection until the year 2021 (sourced from International Data
Corporation [1])
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Worldwide IoT market growth
(2016-2021)

M Consumer M Insurance W Healthcare

" Cross industries M Resource industries M Others

Figure 4.4 The compound annual growth rate (CAGR) of the loT market (statistics sourced

from [1])
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Figure 4.5 The loT market share across various industries (statistics sourced from International
Data Corporation [8])

According to an International Data Corporation (IDC) report, worldwide spending
on IoT is reported to have crossed USD 700 billion. The projected spending on IoT-
based technologies worldwide is estimated to be about USD 1.1 trillion [1]. Similarly,
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the compounded annual growth rate of IoT between the years 2016 and 2021, as
depicted in Figure 4.4, shows that the majority of the market share is captured by
consumer goods, which is closely followed by insurance and healthcare industries.
However, the combined industrial share of IoT growth (both cross and resource)
is 32% of the collective market, which is again more than that of the consumer
market. In continuation, Figure 4.5 shows the IoT market share of various sectors. The
manufacturing, logistics, and asset management sectors were purported to be the
largest receivers of IoT-linked investments in 2017 [8].

4.2 Evolution of loT

The IoT, as we see it today, is a result of a series of technological paradigm shifts
over a few decades. The technologies that laid the foundation of connected systems
by achieving easy integration to daily lives, popular public acceptance, and massive
benefits by using connected solutions can be considered as the founding solutions for
the development of IoT. Figure 4.6 shows the sequence of technological advancements
for shaping the IoT as it is today. These sequence of technical developments toward
the emergence of IoT are described in brief:

Web Smart lock Connected vehicles Smart dust UAVs_

2] 4 o o ©
9 © o 7 O

ATM Smart meters Connected healthcare Smart cities Smart factories

Figure 4.6 The sequence of technological developments leading to the shaping of the modern-
day loT

o ATM: ATMs or automated teller machines are cash distribution machines, which
are linked to a user’s bank account. ATMs dispense cash upon verification of
the identity of a user and their account through a specially coded card. The
central concept behind ATMs was the availability of financial transactions even
when banks were closed beyond their regular work hours. These ATMs were
ubiquitous money dispensers. The first ATM became operational and connected
online for the first time in 1974.

e Web: World Wide Web is a global information sharing and communication
platform. The Web became operational for the first time in 1991. Since then, it has
been massively responsible for the many revolutions in the field of computing
and communication.

* Smart Meters: The earliest smart meter was a power meter, which became
operational in early 2000. These power meters were capable of communicating
remotely with the power grid. They enabled remote monitoring of subscribers’
power usage and eased the process of billing and power allocation from grids.
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¢ Digital Locks: Digital locks can be considered as one of the earlier attempts at
connected home-automation systems. Present-day digital locks are so robust
that smartphones can be used to control them. Operations such as locking and
unlocking doors, changing key codes, including new members in the access lists,
can be easily performed, and that too remotely using smartphones.

* Connected Healthcare: Here, healthcare devices connect to hospitals, doctors,
and relatives to alert them of medical emergencies and take preventive measures.
The devices may be simple wearable appliances, monitoring just the heart
rate and pulse of the wearer, as well as regular medical devices and monitors
in hospitals. The connected nature of these systems makes the availability of
medical records and test results much faster, cheaper, and convenient for both
patients as well as hospital authorities.

¢ Connected Vehicles: Connected vehicles may communicate to the Internet or
with other vehicles, or even with sensors and actuators contained within it.
These vehicles self-diagnose themselves and alert owners about system failures.

¢ Smart Cities: This is a city-wide implementation of smart sensing, monitoring,
and actuation systems. The city-wide infrastructure communicating amongst
themselves enables unified and synchronized operations and information
dissemination. Some of the facilities which may benefit are parking,
transportation, and others.

* Smart Dust: These are microscopic computers. Smaller than a grain of sand each,
they can be used in numerous beneficial ways, where regular computers cannot
operate. For example, smart dust can be sprayed to measure chemicals in the soil
or even to diagnose problems in the human body.

* Smart Factories: These factories can monitor plant processes, assembly lines,
distribution lines, and manage factory floors all on their own. The reduction
in mishaps due to human errors in judgment or unoptimized processes is
drastically reduced.

* UAVs: UAVs or unmanned aerial vehicles have emerged as robust public-
domain solutions tasked with applications ranging from agriculture, surveys,
surveillance, deliveries, stock maintenance, asset management, and other tasks.

The present-day IoT spans across various domains and applications. The major
highlight of this paradigm is its ability to function as a cross-domain technology
enabler. Multiple domains can be supported and operated upon simultaneously over
IoT-based platforms. Support for legacy technologies and standalone paradigms,
along with modern developments, makes IoT quite robust and economical for
commercial, industrial, as well as consumer applications. IoT is being used in
vivid and diverse areas such as smart parking, smartphone detection, traffic
congestion, smart lighting, waste management, smart roads, structural health,
urban noise maps, river floods, water flow, silos stock calculation, water leakages,
radiation levels, explosive and hazardous gases, perimeter access control, snow
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level monitoring, liquid presence, forest fire detection, air pollution, smart grid,
tank level, photovoltaic installations, NFC (near-field communications) payments,
intelligent shopping applications, landslide and avalanche prevention, early detection
of earthquakes, supply chain control, smart product management, and others.

Figure 4.7 shows the various technological interdependencies of IoT with other

domains and networking paradigms such as M2M, CPS, the Internet of environment
(IoE), the Internet of people (IoP), and Industry 4.0. Each of these networking
paradigms is a massive domain on its own, but the omnipresent nature of IoT implies
that these domains act as subsets of IoT. The paradigms are briefly discussed here:

Scale People

- Environment

Figure 4.7 The interdependence and reach of loT over various application domains and

(i)

networking paradigms

M2M: The M2M or the machine-to-machine paradigm signifies a system
of connected machines and devices, which can talk amongst themselves
without human intervention. The communication between the machines can
be for updates on machine status (stocks, health, power status, and others),
collaborative task completion, overall knowledge of the systems and the
environment, and others.

CPS: The CPS or the cyber physical system paradigm insinuates a closed control
loop—from sensing, processing, and finally to actuation—using a feedback
mechanism. CPS helps in maintaining the state of an environment through the
feedback control loop, which ensures that until the desired state is attained, the
system keeps on actuating and sensing. Humans have a simple supervisory role
in CPS-based systems; most of the ground-level operations are automated.
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(iii) IoE: The IoE paradigm is mainly concerned with minimizing and even
reversing the ill-effects of the permeation of Internet-based technologies on the
environment [3]. The major focus areas of this paradigm include smart and
sustainable farming, sustainable and energy-efficient habitats, enhancing the
energy efficiency of systems and processes, and others. In brief, we can safely
assume that any aspect of IoT that concerns and affects the environment, falls
under the purview of IoE.

(iv) Industry 4.0: Industry 4.0 is commonly referred to as the fourth industrial
revolution pertaining to digitization in the manufacturing industry. The previous
revolutions chronologically dealt with mechanization, mass production, and the
industrial revolution, respectively. This paradigm strongly puts forward the
concept of smart factories, where machines talk to one another without much
human involvement based on a framework of CPS and IoT. The digitization
and connectedness in Industry 4.0 translate to better resource and workforce
management, optimization of production time and resources, and better upkeep
and lifetimes of industrial systems.

(v) IoP: IoP is a new technological movement on the Internet which aims to
decentralize online social interactions, payments, transactions, and other tasks
while maintaining confidentiality and privacy of its user’s data. A famous site
for IoP states that as the introduction of the Bitcoin has severely limited the
power of banks and governments, the acceptance of IoP will limit the power
of corporations, governments, and their spy agencies [4].

421 loT versus M2M

M2M or the machine-to-machine paradigm refers to communications and interactions
between various machines and devices. These interactions can be enabled through a
cloud computing infrastructure, a server, or simply a local network hub. M2M collects
data from machinery and sensors, while also enabling device management and device
interaction. Telecommunication services providers introduced the term M2M, and
technically emphasized on machine interactions via one or more communication
networks (e.g., 3G, 4G, 5G, satellite, public networks). M2M is part of the IoT and is
considered as one of its sub-domains, as shown in Figure 4.7. M2M standards occupy
a core place in the IoT landscape. However, in terms of operational and functional
scope, IoT is vaster than M2M and comprises a broader range of interactions
such as the interactions between devices/things, things, and people, things and
applications, and people with applications; M2M enables the amalgamation of
workflows comprising such interactions within IoT. Internet connectivity is central
to the IoT theme but is not necessarily focused on the use of telecom networks.
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422 loT versus CPS

Cyber physical systems (CPS) encompasses sensing, control, actuation, and feedback
as a complete package. In other words, a digital twin is attached to a CPS-based
system. As mentioned earlier, a digital twin is a virtual system—model relation, in
which the system signifies a physical system or equipment or a piece of machinery,
while the model represents the mathematical model or representation of the physical
system’s behavior or operation. Many a time, a digital twin is used parallel to a
physical system, especially in CPS as it allows for the comparison of the physical
system’s output, performance, and health. Based on feedback from the digital twin,
a physical system can be easily given corrective directions/commands to obtain
desirable outputs. In contrast, the IoT paradigm does not compulsorily need feedback
or a digital twin system. IoT is more focused on networking than controls. Some of the
constituent sub-systems in an IoT environment (such as those formed by CPS-based
instruments and networks) may include feedback and controls too. In this light, CPS
may be considered as one of the sub-domains of IoT, as shown in Figure 4.7.

4.2.3 loT versus WoT

From a developer’s perspective, the Web of Things (WoT) paradigm enables access
and control over IoT resources and applications. These resources and applications
are generally built using technologies such as HTML 5.0, JavaScript, Ajax, PHP, and
others. REST (representational state transfer) is one of the key enablers of WoT. The use
of RESTful principles and RESTful APIs (application program interface) enables both
developers and deployers to benefit from the recognition, acceptance, and maturity of
existing web technologies without having to redesign and redeploy solutions from
scratch. Still, designing and building the WoT paradigm has various adaptability
and security challenges, especially when trying to build a globally uniform WoT. As
IoT is focused on creating networks comprising objects, things, people, systems, and
applications, which often do not consider the unification aspect and the limitations of
the Internet, the need for WoT, which aims to integrate the various focus areas of IoT
into the existing Web is really invaluable. Technically, WoT can be thought of as an
application layer-based hat added over the network layer. However, the scope of IoT
applications is much broader; IoT also which includes non-IP-based systems that are
not accessible through the web.

4.3 Enabling loT and the Complex Interdependence of Technologies

IoT is a paradigm built upon complex interdependencies of technologies (both legacy
and modern), which occur at various planes of this paradigm. Regarding Figure 4.8,
we can divide the IoT paradigm into four planes: services, local connectivity, global
connectivity, and processing. If we consider a bottom-up view, the services offered fall
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under the control and purview of service providers. The service plane is composed of
two parts: 1) things or devices and 2) low-power connectivity.
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Figure 4.8 The loT planes, various enablers of loT, and the complex interdependencies among
them

Typically, the services offered in this layer are a combination of things and low-
power connectivity. For example, any IoT application requires the basic setup of
sensing, followed by rudimentary processing (often), and a low-power, low-range
network, which is mainly built upon the IEEE 802.15.4 protocol. The things may
be wearables, computers, smartphones, household appliances, smart glasses, factory
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machinery, vending machines, vehicles, UAVs, robots, and other such contraptions
(which may even be just a sensor). The immediate low-power connectivity, which is
responsible for connecting the things in local implementation, may be legacy protocols
such as WiFi, Ethernet, or cellular. In contrast, modern-day technologies are mainly
wireless and often programmable such as Zigbee, RFID, Bluetooth, 6LoWPAN, LoRA,
DASH, Insteon, and others. The range of these connectivity technologies is severely
restricted; they are responsible for the connectivity between the things of the IoT and
the nearest hub or gateway to access the Internet.

The local connectivity is responsible for distributing Internet access to multiple
local IoT deployments. This distribution may be on the basis of the physical placement
of the things, on the basis of the application domains, or even on the basis of providers
of services. Services such as address management, device management, security,
sleep scheduling, and others fall within the scope of this plane. For example, in a
smart home environment, the first floor and the ground floor may have local IoT
implementations, which have various things connected to the network via low-power,
low-range connectivity technologies. The traffic from these two floors merges into a
single router or a gateway. The total traffic intended for the Internet from a smart home
leaves through a single gateway or router, which may be assigned a single global IP
address (for the whole house). This helps in the significant conservation of already
limited global IP addresses. The local connectivity plane falls under the purview of
IoT management as it directly deals with strategies to use/reuse addresses based on
things and applications. The modern-day “edge computing” paradigm is deployed in
conjunction with these first two planes: services and local connectivity.

In continuation, the penultimate plane of global connectivity plays a significant
role in enabling IoT in the real sense by allowing for worldwide implementations and
connectivity between things, users, controllers, and applications. This plane also falls
under the purview of IoT management as it decides how and when to store data,
when to process it, when to forward it, and in which form to forward it. The Web,
data-centers, remote servers, Cloud, and others make up this plane. The paradigm of
“fog computing” lies between the planes of local connectivity and global connectivity.
It often serves to manage the load of global connectivity infrastructure by offloading
the computation nearer to the source of the data itself, which reduces the traffic load
on the global Internet.

The final plane of processing can be considered as a top-up of the basic IoT
networking framework. The continuous rise in the usefulness and penetration of
IoT in various application areas such as industries, transportation, healthcare, and
others is the result of this plane. The members in this plane may be termed as
IoT tools, simply because they wring-out useful and human-readable information
from all the raw data that flows from various IoT devices and deployments. The
various sub-domains of this plane include intelligence, conversion (data and format
conversion, and data cleaning), learning (making sense of temporal and spatial data
patterns), cognition (recognizing patterns and mapping it to already known patterns),
algorithms (various control and monitoring algorithms), visualization (rendering
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numbers and strings in the form of collective trends, graphs, charts, and projections),
and analysis (estimating the usefulness of the generated information, making sense
of the information with respect to the application and place of data generation, and
estimating future trends based on past and present patterns of information obtained).
Various computing paradigms such as “big data”, “machine Learning”, and others,
fall within the scope of this domain.

4.4 10T Networking Components

An IoT implementation is composed of several components, which may vary with
their application domains. Various established works such as that by Savolainen et al.
[2] generally outline five broad categories of IoT networking components. However,
we outline the broad components that come into play during the establishment of
any IoT network, into six types: 1) IoT node, 2) IoT router, 3) IoT LAN, 4) IoT WAN,
5) IoT gateway, and 6) IoT proxy. A typical IoT implementation from a networking
perspective is shown in Figure 4.9. The individual components are briefly described
here:
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Figure 4.9 A typical lIoT network ecosystem highlighting the various networking components—
from loT nodes to the Internet

(i) IoT Node: These are the networking devices within an IoT LAN. Each of
these devices is typically made up of a sensor, a processor, and a radio, which
communicates with the network infrastructure (either within the LAN or outside
it). The nodes may be connected to other nodes inside a LAN directly or by
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means of a common gateway for that LAN. Connections outside the LAN are
through gateways and proxies.

(ii) IoT Router: An I oT router is a piece of networking equipment that is primarily
tasked with the routing of packets between various entities in the IoT network;
it keeps the traffic flowing correctly within the network. A router can be
repurposed as a gateway by enhancing its functionalities.

(iif) IoT LAN: The local area network (LAN) enables local connectivity within the
purview of a single gateway. Typically, they consist of short-range connectivity
technologies. IoT LANs may or may not be connected to the Internet. Generally,
they are localized within a building or an organization.

(iv) IoT WAN: The wide area network (WAN) connects various network segments
such as LANs. They are typically organizationally and geographically wide,
with their operational range lying between a few kilometers to hundreds of
kilometers. IoT WANs connect to the Internet and enable Internet access to the
segments they are connecting.

(v) IoT Gateway: An IoT gateway is simply a router connecting the IoT LAN to a
WAN or the Internet. Gateways can implement several LANs and WANSs. Their
primary task is to forward packets between LANs and WANS, and the IP layer
using only layer 3.

(vi) IoT Proxy: Proxies actively lie on the application layer and performs application
layer functions between IoT nodes and other entities. Typically, application layer
proxies are a means of providing security to the network entities under it ; it
helps to extend the addressing range of its network.

In Figure 4.9, various IoT nodes within an IoT LAN are configured to to one another
as well as talk to the IoT router whenever they are in the range of it. The devices
have locally unique (LU-x) device identifiers. These identifiers are unique only within
a LAN. There is a high chance that these identifiers may be repeated in a new LAN.
Each IoT LAN has its own unique identifier, which is denoted by IoT LAN-x in Figure
4.9. A router acts as a connecting link between various LANs by forwarding messages
from the LANSs to the IoT gateway or the IoT proxy. As the proxy is an application
layer device, it is additionally possible to include features such as firewalls, packet
filters, and other security measures besides the regular routing operations. Various
gateways connect to an IoT WAN, which links these devices to the Internet. There
may be cases where the gateway or the proxy may directly connect to the Internet.
This network may be wired or wireless; however, IoT deployments heavily rely on
wireless solutions. This is mainly attributed to the large number of devices that are
integrated into the network; wireless technology is the only feasible and neat-enough
solution to avoid the hassles of laying wires and dealing with the restricted mobility
rising out of wired connections.
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4.5 Addressing Strategies in loT

Table 4.1 lists the differences in features of IPv4 and IPv6. The most interesting point
to note is that as compared to IPv4, which relies more on reliable delivery of packets
between source and destination, an IPv6 packet is more address-oriented. Due to the
increasing rate of devices being connected to the Internet, the early developers of IPv6
felt the need for accommodating addresses as more crucial than the need for reliable
transmission of packets (which was the main feature of IPv4-based routing of packets).

Table 4.1 Feature-wise difference between IPv4 and IPv6 capabilities

Feature IPv4 IPv6

Developed IETF 1974 IETF 1998
Address length (bits) 32 128

No. of addresses 232 2128

Notation Dotted decimal Hexadecimal
Dynamic allocation of addresses DHCP DHCPv6, SLAAC
IPSec Optional Compulsary
Header size Variable Fixed

Header checksum Yes No

Header options Yes No

Broadcast addresses Yes No

Multicast addresses No Yes

Feature Focus on reliable transmission =~ Focus on addressing

In the context of IoT, we will consider and center our discussions on addressing
schemes primarily focused on IPv6. The IPv4 and IPv6 header packet formats are
shown in Chapter 1 of this book. In continuation, Figure 4.10 shows the address format
of IPv6, which is 128 bits long.

The first three blocks are designated as the global prefix, which is globally unique.
The next block is designated as the subnet prefix, which identifies the subnet of an
interface/gateway through which LANs may be connected to the Internet. Finally,
the last four blocks (64 bits) of hexadecimal addresses are collectively known as the
interface identifier (IID). IIDs may be generated based on MAC (media access control)
identifiers of devices/nodes or using pseudo-random number generator algorithms
[2]. The IPv6 addresses can be divided into seven separate address types, which is
generally based on how these addresses are used or where they are deployed.
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Figure 4.10 The IPv6 address format

(i) Global Unicast (GUA): These addresses are assigned to single IoT entities/

(i)

(iii)

(vi)

(vii)

interfaces; they enable the entities to transmit traffic to and from the Internet.
In regular IoT deployments, these addresses are assigned to gateways, proxies,
or WANs.

Multicast: These addresses enable transmission of messages from a single
networked entity to multiple destination entities simultaneously.

Link Local (LL): The operational domain of these addresses are valid only within
a network segment such as LAN. These addresses may be repeated in other
network segments/LANSs, but are unique within that single network segment.

Unique Local (ULA): Similar to LL addresses, ULA cannot be routed over the
Internet. These addresses may be repeated in other network segments/LANSs,
but are unique within that single network segment.

Loopback: It is also known as the localhost address. Typically, these addresses
are used by developers and network testers for diagnostics and system checks.

Unspecified: Here, all the bits in the IPv6 address are set to zero and the
destination address is not specified.

Solicited-node Multicast: It is a multicast address based on the IPv6 address of
an IoT node or entity.

Points to ponder

Multihoming in IoT networks: It is a network configuration in which

a

reliability. Network proxies are used to manage multiple IP addresses and map
them to LL addresses of loT nodes in small deployments, where the allotment
of address prefixes is not possible. Other approaches for multihoming include
the use of gateways for assigning LL addresses to loT nodes under the gateway's
operational purview.

node/network connects to multiple networks simultaneously for improved
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4.5.1 Address management classes

As discussed previously, the IoT deployment and network topology are largely
dependent on where it is deployed. Unlike traditional IPv4 networked devices, the
newer IoT devices largely depend on IPv6 for address allocation and management of
addresses, which again is dictated by the application and the place of deployment
of the IoT solution. Keeping these requirements in consideration, the addressing
strategies in IoT may be broadly differentiated into seven classes, as shown in Figure
4.11. These classes are as follows:

(i)

(i)

(iii)

Class 1: The IoT nodes are not connected to any other interface or the Internet
except with themselves. This class can be considered as an isolated class, where
the communication between IoT nodes is restricted within a LAN only. The IoT
nodes in this class are identified only by their link local (LL) addresses, as shown
in Figure 4.11(a). These LL addresses may be repeated for other devices outside
the purview of this network class. The communication among the nodes may be
direct or through other nodes (as in a mesh configuration).

Class 2: The class 1 configuration is mainly utilized for enabling communication
between two or more IoT LANs or WANs. The IoT nodes within the LANs
cannot directly communicate to nodes in the other LANs using their LL
addresses, but through their LAN gateways (which have a unique address
assigned to them). Generally, ULA is used for addressing; however, in certain
scenarios, GUA may also be used. Figure 4.11(b) shows a class 2 IoT network
topology. L1-L5 are the LL addresses of the locally unique IoT nodes within
the LAN; whereas Ul and U2 are the unique addresses of the two gateways
extending communication to their LANs with the WAN. The WAN may or may
not connect to the Internet.

Class 3: Figure 4.11(c) shows a class 3 IoT network configuration, where the
IoT LAN is connected to an IoT proxy. The proxy performs a host of functions
ranging from address allocation, address management to providing security to
the network underneath it. In this class, the IoT proxy only uses ULA (denoted
as Lx-Ux in the figure).

Class 4: In this class, the IoT proxy acts as a gateway between the LAN and
the Internet, and provides GUA to the IoT nodes within the LAN. A globally
unique prefix is allotted to this gateway, which it uses with the individual device
identifiers to extend global Internet connectivity to the IoT nodes themselves.
This configuration is shown in Figure 4.11(d). An important point to note in this
class is that the gateway also enables local communication between the nodes
without the need for the packets to be routed through the Internet. Additionally,
the IoT nodes within the gateway can talk to one another directly without
always involving the gateway. A proxy beyond the gateway enables global
communication through the Internet.
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(v) Class 5: This class is functionally similar to class 4. However, the main difference
with class 4 is that this class follows a star topology with the gateway as the
center of the star. All the communication from the IoT nodes under the gateway
has to go through the gateway, as shown in Figure 4.11(e). A proxy beyond
the gateway enables global communication through the Internet. The IoT nodes
within a gateway’s operational purview have the same GUA.

(vi) Class 6: The configuration of this class is again similar to class 5. However,
the IoT nodes are all assigned unique global addresses (GUA), which enables a
point-to-point communication network with an Internet gateway. A class 6 IoT
network configuration is shown in Figure 4.11(f). Typically, this class is very
selectively used for special purposes.

(vii) Class 7: The class 7 configuration is shown in Figure 4.11(g). Multiple gateways
may be present; the configuration is such that the nodes should be reachable
through any of the gateways. Typically, organizational IoT deployments follow
this class of configuration. The concept of multihoming is important and inherent
to this class.

Points to ponder

Tunneling: It is a networking protocol in which data from private networks can
be seamlessly streamed over a public network in the form of encapsulated packets.
This is mainly used for ensuring connectivity and security of data generated from
various technologies and protocols that may not be supported over the public
communication channel. Some of the best examples of tunneling are virtual
private networks (VPNs), secure shell (SSH), and others.

4.5.2 Addressing during node mobility

Traditional networks, mainly computer networks, and even paradigms such as
M2M and CPS seldom take into account the need for addressing strategies when
the IoT nodes are mobile. However, in a realistic scenario, especially in modern-
day IoT systems (which are low-power and have low form-factor), the need for
addressing of mobile nodes is extremely crucial to avoid address clashes of addresses
accommodating a large number of IoT nodes. One of the following three strategies
may be to for ensure portability of addresses in the event of node mobility in IoT
deployments [2] as shown in Figure 4.12:

(i) Global Prefix Changes: Figure 4.12(a) abstracts the addressing strategy using
global prefix changes. A node from the left LAN moves to the LAN on the right.
The node undergoing movement is highlighted in the figure. The nodes in the
first LAN have the prefix A, which changes to B under the domain of the new
gateway overseeing the operation of nodes in the new LAN. However, it may
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(g) Class 7

Figure 4.11 Various loT topology configurations. LL/L denotes the link local addresses, LU
denotes the locally unique link addresses (ULA), and LG denotes the globally
unique link addresses (GUA)
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IoT gateway

S| O
Prefix-A% Prefix-A|

(b) WAN prefix change

Prefix-R

(c) Remote anchoring

Figure 4.12 Various scenarios during mobility of loT nodes and their addressing strategies.
ID-prefix denotes the point to which the loT node is attached to for address
allocation

happen that due to movement, the device identifier may face clashes. Recall
the structure of the IPv6 address (Figure 4.10). The device identifier, if allotted
randomly, might face an address clash upon the node’s arrival into the new
LAN as there may already be a similar node identifier present in it. Typically,
addresses are assigned using DHCPv6/ SLAAC; however, in this scenario, it is
always prudent to have static node IP addresses to avoid a clash of addresses.
This strategy is, in most cases, beneficial as the IoT nodes may be resource-
constrained and have low-processing resources due to which it may not be able
to handle protocols such as DHCPv6 or SLAAC.
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(ii) Prefix Changes within WANs: Figure 4.12(b) abstracts the addressing strategy
for prefix changes within WANs. In case the WAN changes its global prefix,
the network entities underneath it must be resilient to change and function
normally. The address allocation is hence delegated to entities such as gateways
and proxies, which make use of ULAs to manage the network within the WAN.

(iii) Remote Anchoring: Figure 4.12(c) abstracts the addressing strategy using a
remote anchoring point. This is applicable in certain cases which require that
the IoT node’s global addresses are maintained and not affected by its mobility
or even the change in network prefixes. Although a bit expensive to implement,
this strategy of having a remote anchoring point from which the IoT nodes obtain
their global addresses through tunneling ensures that the nodes are resilient to
changes and are quite stable. Even if the node’s original network’s (LAN) prefix
changes from A to B, the node’s global address remains immune to this change.

Check yourself

DHCP, DHCPv6, SLAAC, MIPv6, PMIPv6, DS-MIPv6

Summary

This chapter covered an overview of the IoT paradigm. Starting from the variations
in global market trends and the rapidly expanding trend toward connected systems
and devices, to the actual market capture of various IoT solutions in diverse
domains, this chapter highlights the importance of IoT in the modern world.
Subsequently, the emergence of IoT from its precursors, the IoT ecosystem, and
thematic differences between IoT and similar technologies (M2M, CPS, WoT) are
outlined. The complex technological interdependence between technologies and
paradigms towards enabling IoT is described in the form of planes of functionalities.
Keeping in tune with the networking theme of this book, the various networking
entities in an IoT ecosystem are described, which is naturally followed by various IoT
deployment topology classes and addressing schemes. This chapter concludes with a
discussion on IoT node address management during node mobility.

Exercises

(i)  What is loT?

(i) What is smart dust?

(iii) Differentiate between loT and M2M.
(iv) Differentiate between loT and WoT.
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v)  What is Web of Things (WoT)?

vi) What are the various loT connectivity terminologies?

(
(
(vii) Differentiate between an loT proxy and an loT gateway.
(viii) What is gateway prefix allotment?

(

ix) How are locally unique (LU) addresses different from globally unique (GU)
addresses?

x) How is mobility handled in loT networks?
xi) What is the function of a remote anchor point in loT networks?

i
xii) What is tunneling?

(
(
(
(xiii) What is multihoming in loT networks?
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Chapter

loT Sensing and Actuation

Learning Outcomes

After reading this chapter, the reader will be able to:

e List the salient features of transducers

Differentiate between sensors and actuators

Characterize sensors and distinguish between types of sensors

List the multi-faceted considerations associated with sensing

Characterize actuators and distinguish between types of actuators

List the multi-faceted considerations associated with actuation

5.1 Introduction

A major chunk of IoT applications involves sensing in one form or the other. Almost
all the applications in IoT—be it a consumer IoT, an industrial IoT, or just plain
hobby-based deployments of IoT solutions—sensing forms the first step. Incidentally,
actuation forms the final step in the whole operation of IoT application deployment
in a majority of scenarios. The basic science of sensing and actuation is based on
the process of transduction. Transduction is the process of energy conversion from
one form to another. A transducer is a physical means of enabling transduction.
Transducers take energy in any form (for which it is designed)—electrical, mechanical,
chemical, light, sound, and others—and convert it into another, which may be
electrical, mechanical, chemical, light, sound, and others. Sensors and actuators
are deemed as transducers. For example, in a public announcement (PA) system,
a microphone (input device) converts sound waves into electrical signals, which is
amplified by an amplifier system (a process). Finally, a loudspeaker (output device)
outputs this into audible sounds by converting the amplified electrical signals back
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into sound waves. Table 5.1 outlines the basic terminological differences between
transducers, sensors, and actuators.

Table 5.1 Basic outline of the differences between transducers, sensors, and actuators

Parameters Transducers

Sensors

Actuators

Definition =~ Converts Converts various forms of Converts electrical
energy from energy into electrical signals. signals into
one form to various forms of
another. energy, typically
mechanical
energy.
Domain Can be used It is an input transducer. It is an output
to represent a transducer.
sensor as well
as an actuator.
Function = Can work as Used for quantifying Used for
a sensor or an environmental stimuli into converting signals
actuator but not signals. into proportional
simultaneously. mechanical or
electrical outputs.
Examples Any sensor or Humidity sensors, Temperature = Motors (convert
actuator sensors, Anemometers electrical energy
(measures flow velocity), to rotary motion),
Manometers (measures fluid Force heads
pressure), Accelerometers (which impose
(measures the acceleration of a a force), Pumps
body), Gas sensors (measures (which convert
concentration of specific gas or rotary motion of
gases), and others shafts into either a
pressure or a fluid
velocity).
5.2 Sensors

Sensors are devices that can measure, or quantify, or respond to the ambient changes
in their environment or within the intended zone of their deployment. They generate
responses to external stimuli or physical phenomenon through characterization of the
input functions (which are these external stimuli) and their conversion into typically
electrical signals. For example, heat is converted to electrical signals in a temperature
sensor, or atmospheric pressure is converted to electrical signals in a barometer. A
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sensor is only sensitive to the measured property (e.g., a temperature sensor only
senses the ambient temperature of a room). It is insensitive to any other property
besides what it is designed to detect (e.g., a temperature sensor does not bother about
light or pressure while sensing the temperature). Finally, a sensor does not influence
the measured property (e.g., measuring the temperature does not reduce or increase
the temperature). Figure 5.1 shows the simple outline of a sensing task. Here, a
temperature sensor keeps on checking an environment for changes. In the event of a
fire, the temperature of the environment goes up. The temperature sensor notices this
change in the temperature of the room and promptly communicates this information
to a remote monitor via the processor.

»l_>

Temperature
sensor

Enent: Fire

Sensor node

Figure 5.1 The outline of a simple sensing operation

The various sensors can be classified based on: 1) power requirements, 2) sensor
output, and 3) property to be measured.

* Power Requirements: The way sensors operate decides the power requirements
that must be provided for an IoT implementation. Some sensors need to be
provided with separate power sources for them to function, whereas some
sensors do not require any power sources. Depending on the requirements of
power, sensors can be of two types.

(i) Active: Active sensors do not require an external circuitry or mechanism to
provide it with power. It directly responds to the external stimuli from its
ambient environment and converts it into an output signal. For example, a
photodiode converts light into electrical impulses.

(ii) Passive: Passive sensors require an external mechanism to power them
up. The sensed properties are modulated with the sensor’s inherent
characteristics to generate patterns in the output of the sensor. For example,
a thermistor’s resistance can be detected by applying voltage difference
across it or passing a current through it.

® Output: The output of a sensor helps in deciding the additional components
to be integrated with an IoT node or system. Typically, almost all modern-day
processors are digital; digital sensors can be directly integrated to the processors.
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However, the integration of analog sensors to these digital processors or IoT
nodes requires additional interfacing mechanisms such as analog to digital
converters (ADC), voltage level converters, and others. Sensors are broadly
divided into two types, depending on the type of output generated from these
sensors, as follows.

(i) Analog: Analog sensors generate an output signal or voltage, which is
proportional (linearly or non-linearly) to the quantity being measured and is
continuous in time and amplitude. Physical quantities such as temperature,
speed, pressure, displacement, strain, and others are all continuous
and categorized as analog quantities. For example, a thermometer or a
thermocouple can be used for measuring the temperature of a liquid (e.g., in
household water heaters). These sensors continuously respond to changes
in the temperature of the liquid.

(ii) Digital: These sensors generate the output of discrete time digital
representation (time, or amplitude, or both) of a quantity being measured,
in the form of output signals or voltages. Typically, binary output signals in
the form of a logic 1 or a logic 0 for ON or OFF, respectively are associated
with digital sensors. The generated discrete (non-continuous) values may
be output as a single “bit” (serial transmission), eight of which combine to
produce a single “byte” output (parallel transmission) in digital sensors.

Measured Property: The property of the environment being measured by
the sensors can be crucial in deciding the number of sensors in an IoT
implementation. Some properties to be measured do not show high spatial
variations and can be quantified only based on temporal variations in the
measured property, such as ambient temperature, atmospheric pressure, and
others. Whereas some properties to be measured show high spatial as well
as temporal variations such as sound, image, and others. Depending on the
properties to be measured, sensors can be of two types.

(i) Scalar: Scalar sensors produce an output proportional to the magnitude
of the quantity being measured. The output is in the form of a signal or
voltage. Scalar physical quantities are those where only the magnitude of
the signal is sufficient for describing or characterizing the phenomenon and
information generation. Examples of such measurable physical quantities
include color, pressure, temperature, strain, and others. A thermometer or
thermocouple is an example of a scalar sensor that has the ability to detect
changes in ambient or object temperatures (depending on the sensor’s
configuration). Factors such as changes in sensor orientation or direction
do not affect these sensors (typically).

(ii) Vector: Vector sensors are affected by the magnitude as well as the direction
and/or orientation of the property they are measuring. Physical quantities
such as velocity and images that require additional information besides
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their magnitude for completely categorizing a physical phenomenon are
categorized as vector quantities. Measuring such quantities are undertaken
using vector sensors. For example, an electronic gyroscope, which is
commonly found in all modern aircraft, is used for detecting the changes
in orientation of the gyroscope with respect to the Earth’s orientation along
all three axes.

Points to ponder

A sensor node is made up of a combination of sensor/sensors, a processor unit, a
radio unit, and a power unit. The nodes are capable of sensing the environment
they are set to measure and communicate the information to other sensor nodes
or a remote server. Typically, a sensor node should have low-power requirements
and be wireless. This enables them to be deployed in a vast range of scenarios
and environments without the constant need for changing their power sources
or managing wires. The wireless nature of sensor nodes would also allow them
to be freely relocatable and deployed in large numbers without bothering about
managing wires. The functional outline of a typical loT sensor node is shown in

Figure 5.2.
Light AC-DC Converter
Power

Temp.
Force

Position Processor
Speed

Pressure

Chemical

Interface

Figure 5.2 The functional blocks of a typical sensor node in loT
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Figure 5.3 shows some commercially available sensors used for sensing applications.

(b) Color sensor (c) Compass and (d) Currentsensor (e) Digital temperature
barometer and humidity sensor

o il

(f) Flame sensor (g) Gas sensor (h) Infrared sensor (i) Rainfall sensor (j) Ultrasonic
distance
measurement
sensor

Figure 5.3 Some common commercially available sensors used for loT-based sensing applications

5.3 Sensor Characteristics

All sensors can be defined by their ability to measure or capture a certain phenomenon
and report them as output signals to various other systems. However, even within the
same sensor type and class, sensors can be characterized by their ability to sense the
phenomenon based on the following three fundamental properties.

* Sensor Resolution: The smallest change in the measurable quantity that a sensor
can detect is referred to as the resolution of a sensor. For digital sensors, the
smallest change in the digital output that the sensor is capable of quantifying is
its sensor resolution. The more the resolution of a sensor, the more accurate is the
precision. A sensor’s accuracy does not depend upon its resolution. For example,
a temperature sensor A can detect up to 0.5° C changes in temperature; whereas
another sensor B can detect up to 0.25° C changes in temperature. Therefore, the
resolution of sensor B is higher than the resolution of sensor A.

¢ Sensor Accuracy: The accuracy of a sensor is the ability of that sensor to measure
the environment of a system as close to its true measure as possible. For example,
a weight sensor detects the weight of a 100 kg mass as 99.98 kg. We can say that
this sensor is 99.98% accurate, with an error rate of £0.02%.

¢ Sensor Precision: The principle of repeatability governs the precision of a sensor.
Only if, upon multiple repetitions, the sensor is found to have the same error
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rate, can it be deemed as highly precise. For example, consider if the same
weight sensor described earlier reports measurements of 98.28 kg, 100.34 kg, and
101.11 kg upon three repeat measurements for a mass of actual weight of 100 kg.
Here, the sensor precision is not deemed high because of significant variations in
the temporal measurements for the same object under the same conditions.

Points to ponder

The more the resolution of a sensor, the more accurate is the precision. A sensor's
accuracy does not depend upon its resolution.

5.4 Sensorial Deviations

In this section, we will discuss the various sensorial deviations that are considered as
errors in sensors. Most of the sensing in IoT is non-critical, where minor deviations
in sensorial outputs seldom change the nature of the undertaken tasks. However,
some critical applications of IoT, such as healthcare, industrial process monitoring,
and others, do require sensors with high-quality measurement capabilities. As the
quality of the measurement obtained from a sensor is dependent on a large number of
factors, there are a few primary considerations that must be incorporated during the
sensing of critical systems.

In the event of a sensor’s output signal going beyond its designed maximum and
minimum capacity for measurement, the sensor output is truncated to its maximum
or minimum value, which is also the sensor’s limits. The measurement range between
a sensor’s characterized minimum and maximum values is also referred to as the full-
scale range of that sensor. Under real conditions, the sensitivity of a sensor may differ
from the value specified for that sensor leading to sensitivity error. This deviation is
mostly attributed to sensor fabrication errors and its calibration.

If the output of a sensor differs from the actual value to be measured by a constant,
the sensor is said to have an offset error or bias. For example, while measuring an actual
temperature of 0° C, a temperature sensor outputs 1.1° C every time. In this case, the
sensor is said to have an offset error or bias of 1.1° C.

Similarly, some sensors have a non-linear behavior. If a sensor’s transfer function
(TF) deviates from a straight line transfer function, it is referred to as its non-linearity.
The amount a sensor’s actual output differs from the ideal TF behavior over the full
range of the sensor quantifies its behavior. It is denoted as the percentage of the
sensor’s full range. Most sensors have linear behavior. If the output signal of a sensor
changes slowly and independently of the measured property, this behavior of the
sensor’s output is termed as drift. Physical changes in the sensor or its material may
result in long-term drift, which can span over months or years. Noise is a temporally
varying random deviation of signals.
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In contrast, if a sensor’s output varies/deviates due to deviations in the sensor’s
previous input values, it is referred to as hysteresis error. The present output of
the sensor depends on the past input values provided to the sensor. Typically, the
phenomenon of hysteresis can be observed in analog sensors, magnetic sensors, and
during heating of metal strips. One way to check for hysteresis error is to check how
the sensor’s output changes when we first increase, then decrease the input values
to the sensor over its full range. It is generally denoted as a positive and negative
percentage variation of the full-range of that sensor.

Focusing on digital sensors, if the digital output of a sensor is an approximation
of the measured property, it induces quantization error. This error can be defined as
the difference between the actual analog signal and its closest digital approximation
during the sampling stage of the analog to digital conversion. Similarly, dynamic
errors caused due to mishandling of sampling frequencies can give rise to aliasing
errors. Aliasing leads to different signals of varying frequencies to be represented as
a single signal in case the sampling frequency is not correctly chosen, resulting in the
input signal becoming a multiple of the sampling rate.

Finally, the environment itself plays a crucial role in inducing sensorial deviations.
Some sensors may be prone to external influences, which may not be directly linked
to the property being measured by the sensor. This sensitivity of the sensor may lead
to deviations in its output values. For example, as most sensors are semiconductor-
based, they are influenced by the temperature of their environment.

5.5 Sensing Types

Sensing can be broadly divided into four different categories based on the nature
of the environment being sensed and the physical sensors being used to do so
(Figure 5.4): 1) scalar sensing, 2) multimedia sensing, 3) hybrid sensing, and 4) virtual
sensing—I2].

5.5.1 Scalar sensing

Scalar sensing encompasses the sensing of features that can be quantified simply by
measuring changes in the amplitude of the measured values with respect to time [3].
Quantities such as ambient temperature, current, atmospheric pressure, rainfall, light,
humidity, flux, and others are considered as scalar values as they normally do not have
a directional or spatial property assigned with them. Simply measuring the changes
in their values with passing time provides enough information about these quantities.
The sensors used for measuring these scalar quantities are referred to as scalar sensors,
and the act is known as scalar sensing. Figures 5.3(b), 5.3(d), 5.3(e), 5.3(f), 5.3(g), 5.3(h),
5.3(i), and 5.3(j) show scalar sensors. A simple scalar temperature sensing of a fire
detection event is shown in Figure 5.4(a).
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ENVIRONMENT SENSING SENSING

CAMERA SENSOR
EVENT: FIRE TEMPERATURE | pvENT: SURVEILLANCE
SENSOR
(a) Scalar sensing (b) Multimedia sensing

ENVIRONMENT

CAMERA
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i
+
l TEMP.

EVENT: WILDLIFE MON.
(c) Hybrid sensing (d) Virtual sensing

Figure 5.4 The different sensing types commonly encountered in loT

5.5.2 Multimedia sensing

Multimedia sensing encompasses the sensing of features that have a spatial variance
property associated with the property of temporal variance [4]. Unlike scalar sensors,
multimedia sensors are used for capturing the changes in amplitude of a quantifiable
property concerning space (spatial) as well as time (temporal). Quantities such
as images, direction, flow, speed, acceleration, sound, force, mass, energy, and
momentum have both directions as well as a magnitude. Additionally, these quantities
follow the vector law of addition and hence are designated as vector quantities. They
might have different values in different directions for the same working condition
at the same time. The sensors used for measuring these quantities are known as
vector sensors. Figures 5.3(a) and 5.3(c) are vector sensors. A simple camera-based
multimedia sensing using surveillance as an example is shown in Figure 5.4(b).

5.5.3 Hybrid sensing

The act of using scalar as well as multimedia sensing at the same time is referred to
as hybrid sensing. Many a time, there is a need to measure certain vector as well as
scalar properties of an environment at the same time. Under these conditions, a range
of various sensors are employed (from the collection of scalar as well as multimedia
sensors) to measure the various properties of that environment at any instant of
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time, and temporally map the collected information to generate new information.
For example, in an agricultural field, it is required to measure the soil conditions at
regular intervals of time to determine plant health. Sensors such as soil moisture
and soil temperature are deployed underground to estimate the soil’s water retention
capacity and the moisture being held by the soil at any instant of time. However,
this setup only determines whether the plant is getting enough water or not. There
may be a host of other factors besides water availability, which may affect a plant’s
health. The additional inclusion of a camera sensor with the plant may be able
to determine the actual condition of a plant by additionally determining the color
of leaves. The aggregate information from soil moisture, soil temperature, and the
camera sensor will be able to collectively determine a plant’s health at any instant
of time. Other common examples of hybrid sensing include smart parking systems,
traffic management systems, and others. Figure 5.4(c) shows an example of hybrid
sensing, where a camera and a temperature sensor are collectively used to detect and
confirm forest fires during wildlife monitoring.

5.5.4 Virtual sensing

Many a time, there is a need for very dense and large-scale deployment of sensor
nodes spread over a large area for monitoring of parameters. One such domain is
agriculture [5]. Here, often, the parameters being measured, such as soil moisture,
soil temperature, and water level, do not show significant spatial variations. Hence, if
sensors are deployed in the fields of farmer A, it is highly likely that the measurements
from his sensors will be able to provide almost concise measurements of his neighbor
B’s fields; this is especially true of fields which are immediately surrounding A’s
fields. Exploiting this property, if the data from A’s field is digitized using an
IoT infrastructure and this system advises him regarding the appropriate watering,
fertilizer, and pesticide regimen for his crops, this advisory can also be used by B for
maintaining his crops. In short, A ’s sensors are being used for actual measurement
of parameters; whereas virtual data (which does not have actual physical sensors
but uses extrapolation-based measurements) is being used for advising B. This is the
virtual sensing paradigm. Figure 5.4(d) shows an example of virtual sensing. Two
temperature sensors S1 and S3 monitor three nearby events E1, E2, and E3 (fires). The
event E2 does not have a dedicated sensor for monitoring it; however, through the
superposition of readings from sensors S1 and S3, the presence of fire in E2 is inferred.

5.6 Sensing Considerations

The choice of sensors in an IoT sensor node is critical and can either make or break the
feasibility of an IoT deployment. The following major factors influence the choice of
sensors in IoT-based sensing solutions: 1) sensing range, 2) accuracy and precision, 3)
energy, and 4) device size. These factors are discussed as follows:
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(i)

(iii)

Sensing Range: The sensing range of a sensor node defines the detection fidelity
of that node. Typical approaches to optimize the sensing range in deployments
include fixed k-coverage and dynamic k-coverage. A lifelong fixed k-coverage
tends to usher in redundancy as it requires a large number of sensor nodes,
the sensing range of some of which may also overlap. In contrast, dynamic k-
coverage incorporates mobile sensor nodes post detection of an event, which,
however, is a costly solution and may not be deployable in all operational areas
and terrains [1].

Additionally, the sensing range of a sensor may also be used to signify the upper
and lower bounds of a sensor’s measurement range. For example, a proximity
sensor has a typical sensing range of a couple of meters. In contrast, a camera
has a sensing range varying between tens of meters to hundreds of meters. As
the complexity of the sensor and its sensing range goes up, its cost significantly
increases.

Accuracy and Precision: The accuracy and precision of measurements provided
by a sensor are critical in deciding the operations of specific functional processes.
Typically, off-the-shelf consumer sensors are low on requirements and often very
cheap. However, their performance is limited to regular application domains.
For example, a standard temperature sensor can be easily integrated with
conventional components for hobby projects and day-to-day applications, but it
is not suitable for industrial processes. Regular temperature sensors have a very
low-temperature sensing range, as well as relatively low accuracy and precision.
The use of these sensors in industrial applications, where a precision of up to
3—4 decimal places is required, cannot be facilitated by these sensors. Industrial
sensors are typically very sophisticated, and as a result, very costly. However,
these industrial sensors have very high accuracy and precision score, even under
harsh operating conditions.

Energy: The energy consumed by a sensing solution is crucial to determine the
lifetime of that solution and the estimated cost of its deployment. If the sensor
or the sensor node is so energy inefficient that it requires replenishment of its
energy sources quite frequently, the effort in maintaining the solution and its
cost goes up; whereas its deployment feasibility goes down. Consider a scenario
where sensor nodes are deployed on the top of glaciers. Once deployed, access
to these nodes is not possible. If the energy requirements of the sensor nodes are
too high, such a deployment will not last long, and the solution will be highly
infeasible as charging or changing of the energy sources of these sensor nodes is
not an option.

Device Size: Modern-day IoT applications have a wide penetration in all
domains of life. Most of the applications of IoT require sensing solutions which
are so small that they do not hinder any of the regular activities that were
possible before the sensor node deployment was carried out. Larger the size
of a sensor node, larger is the obstruction caused by it, higher is the cost and
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energy requirements, and lesser is its demand for the bulk of the IoT applications.
Consider a simple human activity detector. If the detection unit is too large to
be carried or too bulky to cause hindrance to regular normal movements, the
demand for this solution would be low. It is because of this that the onset of
wearables took off so strongly. The wearable sensors are highly energy-efficient,
small in size, and almost part of the wearer’s regular wardrobe.

Check yourself

Principle of virtualization, MEMS

5.7 Actuators

An actuator can be considered as a machine or system’s component that can affect
the movement or control the said mechanism or the system. Control systems affect
changes to the environment or property they are controlling through actuators. The
system activates the actuator through a control signal, which may be digital or analog.
It elicits a response from the actuator, which is in the form of some form of mechanical
motion. The control system of an actuator can be a mechanical or electronic system,
a software-based system (e.g., an autonomous car control system), a human, or any
other input. Figure 5.5 shows the outline of a simple actuation system. A remote
user sends commands to a processor. The processor instructs a motor controlled
robotic arm to perform the commanded tasks accordingly. The processor is primarily
responsible for converting the human commands into sequential machine-language
command sequences, which enables the robot to move. The robotic arm finally moves
the designated boxes, which was its assigned task.

i)

Monitoring Processing Actuation Environment
s fia i n

Y

Motor-driven
mechanism

Event: Factory
automation

Sensor node

Figure 5.5 The outline of a simple actuation mechanism
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5.8 Actuator Types

Broadly, actuators can be divided into seven classes: 1) Hydraulic, 2) pneumatic, 3)
electrical, 4) thermal /magnetic, 5) mechanical, 6) soft, and 7) shape memory polymers.
Figure 5.6 shows some of the commonly used actuators in IoT applications.

5.8.1 Hydraulic actuators

A hydraulic actuator works on the principle of compression and decompression
of fluids. These actuators facilitate mechanical tasks such as lifting loads through
the use of hydraulic power derived from fluids in cylinders or fluid motors. The
mechanical motion applied to a hydraulic actuator is converted to either linear,
rotary, or oscillatory motion. The almost incompressible property of liquids is used
in hydraulic actuators for exerting significant force. These hydraulic actuators are also
considered as stiff systems. The actuator’s limited acceleration restricts its usage.

5.8.2 Pneumatic actuators

A pneumatic actuator works on the principle of compression and decompression
of gases. These actuators use a vacuum or compressed air at high pressure and
convert it into either linear or rotary motion. Pneumatic rack and pinion actuators are
commonly used for valve controls of water pipes. Pneumatic actuators are considered
as compliant systems. The actuators using pneumatic energy for their operation are
typically characterized by the quick response to starting and stopping signals. Small
pressure changes can be used for generating large forces through these actuators.
Pneumatic brakes are an example of this type of actuator which is so responsive that
they can convert small pressure changes applied by drives to generate the massive
force required to stop or slow down a moving vehicle. Pneumatic actuators are
responsible for converting pressure into force. The power source in the pneumatic
actuator does not need to be stored in reserve for its operation.

5.8.3 Electric actuators

Typically, electric motors are used to power an electric actuator by generating
mechanical torque. This generated torque is translated into the motion of a motor’s
shaft or for switching (as in relays). For example, actuating equipments such as
solenoid valves control the flow of water in pipes in response to electrical signals.
This class of actuators is considered one of the cheapest, cleanest and speedy actuator
types available. Figures 5.6(a), 5.6(b), 5.6(c), 5.6(d), 5.6(e), 5.6(f), 5.6(i), and 5.6(j) show
some of the commonly used electrical actuators.
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(a) Brushless DC (b) Brushless DC (c) Stepper motor (d) Geared (e) DC motor
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(k) DPDT switch (1) Push button
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Figure 5.6 Some common commercially available actuators used for loT-based control
applications

5.8.4 Thermal or magnetic actuators

The use of thermal or magnetic energy is used for powering this class of actuators.
These actuators have a very high power density and are typically compact,
lightweight, and economical. One classic example of thermal actuators is shape
memory materials (SMMs) such as shape memory alloys (SMAs). These actuators do
not require electricity for actuation. They are not affected by vibration and can work
with liquid or gases. Magnetic shape memory alloys (MSMAs) are a type of magnetic
actuators.

5.8.5 Mechanical actuators

In mechanical actuation, the rotary motion of the actuator is converted into linear
motion to execute some movement. The use of gears, rails, pulleys, chains, and
other devices are necessary for these actuators to operate. These actuators can be
easily used in conjunction with pneumatic, hydraulic, or electrical actuators. They
can also work in a standalone mode. The best example of a mechanical actuator is
a rack and pinion mechanism. Figures 5.6(g), 5.6(h), 5.6(k), and 5.6(1) show some of
the commonly available mechanical actuators. The hydroelectric generator shown in
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Figures 5.6(g) and 5.6(h) convert the water-flow induced rotary motion of a turbine
into electrical energy. Similarly, the mechanical switches shown in Figures 5.6 (k) and
5.6(1) uses the mechanical motion of the switch to switch on or off an electrical circuit.

5.8.6 Soft actuators

Soft actuators (e.g., polymer-based) consists of elastomeric polymers that are used as
embedded fixtures in flexible materials such as cloth, paper, fiber, particles, and others
[7]. The conversion of molecular level microscopic changes into tangible macroscopic
deformations is the primary working principle of this class of actuators. These
actuators have a high stake in modern-day robotics. They are designed to handle
fragile objects such as agricultural fruit harvesting, or performing precise operations
like manipulating the internal organs during robot-assisted surgeries.

5.8.7 Shape memory polymers

Shape memory polymers (SMP) are considered as smart materials that respond to
some external stimulus by changing their shape, and then revert to their original shape
once the affecting stimulus is removed [6]. Features such as high strain recovery,
biocompatibility, low density, and biodegradability characterize these materials.
SMP-based actuators function similar to our muscles. Modern-day SMPs have been
designed to respond to a wide range of stimuli such as pH changes, heat differentials,
light intensity, and frequency changes, magnetic changes, and others.

Photopolymer/light-activated polymers (LAP) are a particular type of SMP, which
require light as a stimulus to operate. LAP-based actuators are characterized by their
rapid response times. Using only the variation of light frequency or its intensity, LAPs
can be controlled remotely without any physical contact. The development of LAPs
whose shape can be changed by the application of a specific frequency of light have
been reported. The polymer retains its shape after removal of the activating light. In
order to change the polymer back to its original shape, a light stimulus of a different
frequency has to be applied to the polymer.

5.9 Actuator Characteristics

The choice or selection of actuators is crucial in an IoT deployment, where a control
mechanism is required after sensing and processing of the information obtained from
the sensed environment. Actuators perform the physically heavier tasks in an IoT
deployment; tasks which require moving or changing the orientation of physical
objects, changing the state of objects, and other such activities. The correct choice
of actuators is necessary for the long—term sustenance and continuity of operations,
as well as for increasing the lifetime of the actuators themselves. A set of four
characteristics can define all actuators:
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* Weight: The physical weight of actuators limits its application scope. For
example, the use of heavier actuators is generally preferred for industrial
applications and applications requiring no mobility of the IoT deployment. In
contrast, lightweight actuators typically find common usage in portable systems
in vehicles, drones, and home IoT applications. It is to be noted that this is not
always true. Heavier actuators also have selective usage in mobile systems, for
example, landing gears and engine motors in aircraft.

e Power Rating: This helps in deciding the nature of the application with which
an actuator can be associated. The power rating defines the minimum and
maximum operating power an actuator can safely withstand without damage
to itself. Generally, it is indicated as the power-to-weight ratio for actuators.
For example, smaller servo motors used in hobby projects typically have a
maximum rating of 5 VDC, 500 mA, which is suitable for an operations-driven
battery-based power source. Exceeding this limit might be detrimental to the
performance of the actuator and may cause burnout of the motor. In contrast to
this, servo motors in larger applications have a rating of 460 VAC, 2.5 A, which
requires standalone power supply systems for operations. It is to be noted that
actuators with still higher ratings are available and vary according to application
requirements.

¢ Torque to Weight Ratio: The ratio of torque to the weight of the moving part of
an instrument/device is referred to as its torque/weight ratio. This indicates the
sensitivity of the actuator. Higher is the weight of the moving part; lower will be
its torque to weight ratio for a given power.

¢ Stiffness and Compliance: The resistance of a material against deformation
is known as its stiffness, whereas compliance of a material is the opposite of
stiffness. Stiffness can be directly related to the modulus of elasticity of that
material. Stiff systems are considered more accurate than compliant systems as
they have a faster response to the change in load applied to it. For example,
hydraulic systems are considered as stiff and non-compliant, whereas pneumatic
systems are considered as compliant.

Check yourself

Operation of PLC and SCADA, Working principle of electric motors, applications
of pneumatic and hydraulic actuators, Differences between pneumatic, hydraulic,
electrical, and mechanical actuators

Summary

This chapter covered the basics of sensing and actuation in order to help the readers
grasp the intricacies of designing an IoT solution keeping in mind the need to select
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the proper sensors and actuators. The first part of this chapter discusses sensors,
sensing characteristics, considerations of various sensorial deviations, and the sensing
types possible in a typical IoT-based implementation of a sensing solution. This part
concludes with a discussion on the various considerations to be thought of while
selecting sensors for architecting a viable IoT-based sensing solution. The second
part of this chapter focuses on actuators and the broad classes of actuators available.
This part concludes with a discussion on the various considerations to be thought
of while selecting actuators for architecting a viable IoT-based control solution using
actuators. After completing this chapter, the reader will be able to decide upon
the most appropriate sensing and actuation solutions to use with their IoT-based
applications.

Exercises

i) Differentiate between sensors and actuators.

i) Differentiate between sensors and transducers.

iii) How is sensor resolution different from its accuracy?
iv) Differentiate between scalar and vector sensors.

v) Differentiate between analog and digital sensors.

vi) What is a an offset error?
i

(

(

(

(

(

(

(vii) What is a hysteresis error?

(viii) What is a quantization error?
(ix) What is aliasing error?

(x) Differentiate between hydraulic and pneumatic actuators with examples.
(xi) What are shape memory alloys (SMA)?
(xii) What are soft actuators?
(xiii) What are the main features of shape memory polymers?
(

xiv) What are light activated polymers?
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Chapter

loT Processing Topologies and
Types

Learning Outcomes

After reading this chapter, the reader will be able to:
e List common data types in loT applications
e Understand the importance of processing
e Explain the various processing topologies in loT

e Understand the importance of processing off-loading toward achieving scalability
and cost-effectiveness of loT solutions

e Determine the importance of choosing the right processing topologies and
associated considerations while designing loT applications

e Determine the requirements that are associated with loT-based processing of
sensed and communicated data.

6.1 Data Format

The Internet is a vast space where huge quantities and varieties of data are generated
regularly and flow freely. As of January 2018, there are a reported 4.021 billion Internet
users worldwide. The massive volume of data generated by this huge number of users
is further enhanced by the multiple devices utilized by most users. In addition to these
data-generating sources, non-human data generation sources such as sensor nodes
and automated monitoring systems further add to the data load on the Internet. This
huge data volume is composed of a variety of data such as e-mails, text documents
(Word docs, PDFs, and others), social media posts, videos, audio files, and images,
as shown in Figure 6.1. However, these data can be broadly grouped into two types
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based on how they can be accessed and stored: 1) Structured data and 2) unstructured
data.
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Figure 6.1 The various data generating and storage sources connected to the Internet and the
plethora of data types contained within it

6.1.1 Structured data

These are typically text data that have a pre-defined structure [1]. Structured data
are associated with relational database management systems (RDBMS). These are
primarily created by using length-limited data fields such as phone numbers, social
security numbers, and other such information. Even if the data is human or machine-
generated, these data are easily searchable by querying algorithms as well as human-
generated queries. Common usage of this type of data is associated with flight or
train reservation systems, banking systems, inventory controls, and other similar
systems. Established languages such as Structured Query Language (SQL) are used
for accessing these data in RDBMS. However, in the context of IoT, structured data
holds a minor share of the total generated data over the Internet.

6.1.2 Unstructured data

In simple words, all the data on the Internet, which is not structured, is categorized as
unstructured. These data types have no pre-defined structure and can vary according
to applications and data-generating sources. Some of the common examples of
human-generated unstructured data include text, e-mails, videos, images, phone
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recordings, chats, and others [2]. Some common examples of machine-generated
unstructured data include sensor data from traffic, buildings, industries, satellite
imagery, surveillance videos, and others. As already evident from its examples, this
data type does not have fixed formats associated with it, which makes it very difficult
for querying algorithms to perform a look-up. Querying languages such as NoSQL
are generally used for this data type.

6.2 Importance of Processing in loT

The vast amount and types of data flowing through the Internet necessitate the need
for intelligent and resourceful processing techniques. This necessity has become even
more crucial with the rapid advancements in IoT, which is laying enormous pressure
on the existing network infrastructure globally. Given these urgencies, it is important
to decide—uwhen to process and what to process? Before deciding upon the processing to
pursue, we first divide the data to be processed into three types based on the urgency
of processing: 1) Very time critical, 2) time critical, and 3) normal. Data from sources
such as flight control systems [3], healthcare, and other such sources, which need
immediate decision support, are deemed as very critical. These data have a very low
threshold of processing latency, typically in the range of a few milliseconds.

Data from sources that can tolerate normal processing latency are deemed as time-
critical data. These data, generally associated with sources such as vehicles, traffic,
machine systems, smart home systems, surveillance systems, and others, which can
tolerate a latency of a few seconds fall in this category. Finally, the last category of
data, normal data,can tolerate a processing latency of a few minutes to a few hours
and are typically associated with less data-sensitive domains such as agriculture,
environmental monitoring, and others.

Considering the requirements of data processing, the processing requirements
of data from very time-critical sources are exceptionally high. Here, the need for
processing the data in place or almost nearer to the source is crucial in achieving
the deployment success of such domains. Similarly, considering the requirements of
processing from category 2 data sources (time-critical), the processing requirements
allow for the transmission of data to be processed to remote locations /processors such
as clouds or through collaborative processing. Finally, the last category of data sources
(normal) typically have no particular time requirements for processing urgently and
are pursued leisurely as such.

Check yourself
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6.3 Processing Topologies

The identification and intelligent selection of processing requirement of an IoT
application are one of the crucial steps in deciding the architecture of the deployment.
A properly designed IoT architecture would result in massive savings in network
bandwidth and conserve significant amounts of overall energy in the architecture
while providing the proper and allowable processing latencies for the solutions
associated with the architecture. Regarding the importance of processing in IoT as
outlined in Section 6.2, we can divide the various processing solutions into two large
topologies: 1) On-site and 2) Off-site. The off-site processing topology can be further
divided into the following: 1) Remote processing and 2) Collaborative processing.

6.3.1 On-site processing

As evident from the name, the on-site processing topology signifies that the data is
processed at the source itself. This is crucial in applications that have a very low
tolerance for latencies. These latencies may result from the processing hardware or
the network (during transmission of the data for processing away from the processor).
Applications such as those associated with healthcare and flight control systems (real-
time systems) have a breakneck data generation rate. These additionally show rapid
temporal changes that can be missed (leading to catastrophic damages) unless the
processing infrastructure is fast and robust enough to handle such data. Figure 6.2
shows the on-site processing topology, where an event (here, fire) is detected utilizing
a temperature sensor connected to a sensor node. The sensor node processes the
information from the sensed event and generates an alert. The node additionally has
the option of forwarding the data to a remote infrastructure for further analysis and
storage.

Environment Sensing Processing

((T>) On-site
processing

Event: Fire Temperature Sensor node
' sensor

Figure 6.2 Event detection using an on-site processing topology
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6.3.2 Off-site processing

The off-site processing paradigm, as opposed to the on-site processing paradigms,
allows for latencies (due to processing or network latencies); it is significantly cheaper
than on-site processing topologies. This difference in cost is mainly due to the low
demands and requirements of processing at the source itself. Often, the sensor
nodes are not required to process data on an urgent basis, so having a dedicated
and expensive on-site processing infrastructure is not sustainable for large-scale
deployments typical of IoT deployments. In the off-site processing topology, the
sensor node is responsible for the collection and framing of data that is eventually
to be transmitted to another location for processing. Unlike the on-site processing
topology, the off-site topology has a few dedicated high-processing enabled devices,
which can be borrowed by multiple simpler sensor nodes to accomplish their tasks. At
the same time, this arrangement keeps the costs of large-scale deployments extremely
manageable [5]. In the off-site topology, the data from these sensor nodes (data
generating sources) is transmitted either to a remote location (which can either be a
server or a cloud) or to multiple processing nodes. Multiple nodes can come together
to share their processing power in order to collaboratively process the data (which
is important in case a feasible communication pathway or connection to a remote
location cannot be established by a single node).

Remote processing

This is one of the most common processing topologies prevalent in present-day IoT
solutions. It encompasses sensing of data by various sensor nodes; the data is then
forwarded to a remote server or a cloud-based infrastructure for further processing
and analytics. The processing of data from hundreds and thousands of sensor nodes
can be simultaneously offloaded to a single, powerful computing platform; this results
in massive cost and energy savings by enabling the reuse and reallocation of the
same processing resource while also enabling the deployment of smaller and simpler
processing nodes at the site of deployment [4]. This setup also ensures massive
scalability of solutions, without significantly affecting the cost of the deployment.
Figure 6.3 shows the outline of one such paradigm, where the sensing of an event is
performed locally, and the decision making is outsourced to a remote processor (here,
cloud). However, this paradigm tends to use up a lot of network bandwidth and relies
heavily on the presence of network connectivity between the sensor nodes and the
remote processing infrastructure.

Collaborative processing

This processing topology typically finds use in scenarios with limited or no network
connectivity, especially systems lacking a backbone network. Additionally, this
topology can be quite economical for large-scale deployments spread over vast areas,
where providing networked access to a remote infrastructure is not viable. In such
scenarios, the simplest solution is to club together the processing power of nearby
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Figure 6.3 Event detection using an off-site remote processing topology

processing nodes and collaboratively process the data in the vicinity of the data
source itself. This approach also reduces latencies due to the transfer of data over
the network. Additionally, it conserves bandwidth of the network, especially ones
connecting to the Internet. Figure 6.4 shows the collaborative processing topology
for collaboratively processing data locally. This topology can be quite beneficial for
applications such as agriculture, where an intense and temporally high frequency
of data processing is not required as agricultural data is generally logged after
significantly long intervals (in the range of hours). One important point to mention
about this topology is the preference of mesh networks for easy implementation of
this topology.

Environment Sensing

|
) Collaborative
\ ‘ > > network/mesh

«

Event: Fire Temperature
sensor

Figure 6.4 Event detection using a collaborative processing topology

6.4 loT Device Design and Selection Considerations

The main consideration of minutely defining an IoT solution is the selection of the
processor for developing the sensing solution (i.e., the sensor node). This selection is
governed by many parameters that affect the usability, design, and affordability of the
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designed IoT sensing and processing solution. In this chapter, we mainly focus on the
deciding factors for selecting a processor for the design of a sensor node. The main
factor governing the IoT device design and selection for various applications is the
processor. However, the other important considerations are as follows.

Size: This is one of the crucial factors for deciding the form factor and the
energy consumption of a sensor node. It has been observed that larger the form
factor, larger is the energy consumption of the hardware. Additionally, large form
factors are not suitable for a significant bulk of IoT applications, which rely on
minimal form factor solutions (e.g., wearables).

Energy: The energy requirements of a processor is the most important
deciding factor in designing IoT-based sensing solutions. Higher the energy
requirements, higher is the energy source (battery) replacement frequency. This
principle automatically lowers the long-term sustainability of sensing hardware,
especially for IoT-based applications.

Cost: The cost of a processor, besides the cost of sensors, is the driving force
in deciding the density of deployment of sensor nodes for IoT-based solutions.
Cheaper cost of the hardware enables a much higher density of hardware
deployment by users of an IoT solution. For example, cheaper gas and fire
detection solutions would enable users to include much more sensing hardware
for a lesser cost.

Memory: The memory requirements (both volatile and non-volatile memory) of
IoT devices determines the capabilities the device can be armed with. Features
such as local data processing, data storage, data filtering, data formatting, and
a host of other features rely heavily on the memory capabilities of devices.
However, devices with higher memory tend to be costlier for obvious reasons.

Processing power: As covered in earlier sections, processing power is vital
(comparable to memory) in deciding what type of sensors can be accommodated
with the IoT device/node, and what processing features can integrate on-site
with the IoT device. The processing power also decides the type of applications
the device can be associated with. Typically, applications that handle video and
image data require IoT devices with higher processing power as compared to
applications requiring simple sensing of the environment.

I/O rating: The input-output (I/O) rating of IoT device, primarily the processor,
is the deciding factor in determining the circuit complexity, energy usage, and
requirements for support of various sensing solutions and sensor types. Newer
processors have a meager I/O voltage rating of 3.3 V, as compared to 5 V for the
somewhat older processors. This translates to requiring additional voltage and
logic conversion circuitry to interface legacy technologies and sensors with the
newer processors. Despite low power consumption due to reduced I/0O voltage
levels, this additional voltage and circuitry not only affects the complexity of the
circuits but also affects the costs.
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* Add-ons: The support of various add-ons a processor or for that matter, an IoT
device provides, such as analog to digital conversion (ADC) units, in-built clock
circuits, connections to USB and ethernet, inbuilt wireless access capabilities, and
others helps in defining the robustness and usability of a processor or IoT device
in various application scenarios. Additionally, the provision for these add-ons
also decides how fast a solution can be developed, especially the hardware part
of the whole IoT application. As interfacing and integration of systems at the
circuit level can be daunting to the uninitiated, the prior presence of these options
with the processor makes the processor or device highly lucrative to the users/
developers.

Check yourself

RISC versus CISC processors, volative versus non-volatile memory

6.5 Processing Offloading

The processing offloading paradigm is important for the development of densely
deployable, energy-conserving, miniaturized, and cheap IoT-based solutions for
sensing tasks. Building upon the basics of the off-site processing topology covered
in the previous sections in this chapter, we delve a bit further into the various nuances
of processing offloading in IoT.

Figure 6.5 shows the typical outline of an IoT deployment with the various layers of
processing that are encountered spanning vastly different application domains—from
as near as sensing the environment to as far as cloud-based infrastructure. Starting
from the primary layer of sensing, we can have multiple sensing types tasked with
detecting an environment (fire, surveillance, and others). The sensors enabling these
sensing types are integrated with a processor using wired or wireless connections
(mostly, wired). In the event that certain applications require immediate processing of
the sensed data, an on-site processing topology is followed, similar to the one in Figure
6.2. However, for the majority of IoT applications, the bulk of the processing is carried
out remotely in order to keep the on-site devices simple, small, and economical.

Typically, for off-site processing, data from the sensing layer can be forwarded to
the fog or cloud or can be contained within the edge layer [6]. The edge layer makes
use of devices within the local network to process data that which is similar to the
collaborative processing topology shown in Figure 6.4. The devices within the local
network, till the fog, generally communicate using short-range wireless connections.
In case the data needs to be sent further up the chain to the cloud, long-range wireless
connection enabling access to a backbone network is essential. Fog-based processing is
still considered local because the fog nodes are typically localized within a geographic
area and serve the IoT nodes within a much smaller coverage area as compared to the
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cloud. Fog nodes, which are at the level of gateways, may or may not be accessed by
the IoT devices through the Internet.
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Figure 6.5 The various data generating and storage sources connected to the Internet and the
plethora of data types contained within it

Finally, the approach of forwarding data to a cloud or a remote server, as shown
in the topology in Figure 6.3, requires the devices to be connected to the Internet
through long-range wireless /wired networks, which eventually connect to a backbone
network. This approach is generally costly concerning network bandwidth, latency, as
well as the complexity of the devices and the network infrastructure involved.

This section on data offloading is divided into three parts: 1) offload location
(which outlines where all the processing can be offloaded in the IoT architecture), 2)
offload decision making (how to choose where to offload the processing to and by how
much), and finally 3) offloading considerations (deciding when to offload).

6.5.1 Offload location

The choice of offload location decides the applicability, cost, and sustainability of the
IoT application and deployment. We distinguish the offload location into four types:
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Edge: Offloading processing to the edge implies that the data processing is
facilitated to a location at or near the source of data generation itself. Offloading
to the edge is done to achieve aggregation, manipulation, bandwidth reduction,
and other data operations directly on an IoT device [7].

Fog: Fog computing is a decentralized computing infrastructure that is utilized
to conserve network bandwidth, reduce latencies, restrict the amount of data
unnecessarily flowing through the Internet, and enable rapid mobility support
for IoT devices. The data, computing, storage and applications are shifted to a
place between the data source and the cloud resulting in significantly reduced
latencies and network bandwidth usage [8].

Remote Server: A simple remote server with good processing power may
be used with IoT-based applications to offload the processing from resource-
constrained IoT devices. Rapid scalability may be an issue with remote servers,
and they may be costlier and hard to maintain in comparison to solutions such
as the cloud [4].

Cloud: Cloud computing is a configurable computer system, which can get
access to configurable resources, platforms, and high-level services through a
shared pool hosted remotely. A cloud is provisioned for processing offloading
so that processing resources can be rapidly provisioned with minimal effort over
the Internet, which can be accessed globally. Cloud enables massive scalability of
solutions as they can enable resource enhancement allocated to a user or solution
in an on-demand manner, without the user having to go through the pains of
acquiring and configuring new and costly hardware [9].

6.5.2 Offload decision making

The choice of where to offload and how much to offload is one of the major deciding
factors in the deployment of an offsite-processing topology-based IoT deployment
architecture. The decision making is generally addressed considering data generation
rate, network bandwidth, the criticality of applications, processing resource available
at the offload site, and other factors. Some of these approaches are as follows.

* Naive Approach: This approach is typically a hard approach, without too much

decision making. It can be considered as a rule-based approach in which the data
from IoT devices are offloaded to the nearest location based on the achievement
of certain offload criteria. Although easy to implement, this approach is never
recommended, especially for dense deployments, or deployments where the
data generation rate is high or the data being offloaded in complex to handle
(multimedia or hybrid data types). Generally, statistical measures are consulted
for generating the rules for offload decision making.

Bargaining based approach: This approach, although a bit processing-intensive
during the decision making stages, enables the alleviation of network traffic
congestion, enhances service QoS (quality of service) parameters such as
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bandwidth, latencies, and others. At times, while trying to maximize multiple
parameters for the whole IoT implementation, in order to provide the most
optimal solution or QoS, not all parameters can be treated with equal importance.
Bargaining based solutions try to maximize the QoS by trying to reach a point
where the qualities of certain parameters are reduced, while the others are
enhanced. This measure is undertaken so that the achieved QoS is collaboratively
better for the full implementation rather than a select few devices enjoying very
high QoS. Game theory is a common example of the bargaining based approach.
This approach does not need to depend on historical data for decision making
purposes.

* Learning based approach: Unlike the bargaining based approaches, the learning
based approaches generally rely on past behavior and trends of data flow
through the IoT architecture. The optimization of QoS parameters is pursued by
learning from historical trends and trying to optimize previous solutions further
and enhance the collective behavior of the IoT implementation. The memory
requirements and processing requirements are high during the decision making
stages. The most common example of a learning based approach is machine
learning.

6.5.3 Offloading considerations

There are a few offloading parameters which need to be considered while deciding
upon the offloading type to choose. These considerations typically arise from the
nature of the IoT application and the hardware being used to interact with the
application. Some of these parameters are as follows.

¢ Bandwidth: The maximum amount of data that can be simultaneously
transmitted over the network between two points is the bandwidth of that
network. The bandwidth of a wired or wireless network is also considered to
be its data-carrying capacity and often used to describe the data rate of that
network.

¢ Latency: It is the time delay incurred between the start and completion of an
operation. In the present context, latency can be due to the network (network
latency) or the processor (processing latency). In either case, latency arises due
to the physical limitations of the infrastructure, which is associated with an
operation. The operation can be data transfer over a network or processing of
a data at a processor.

¢ Criticality: It defines the importance of a task being pursued by an IoT
application. The more critical a task is, the lesser latency is expected from the
IoT solution. For example, detection of fires using an IoT solution has higher
criticality than detection of agricultural field parameters. The former requires a
response time in the tune of milliseconds, whereas the latter can be addressed
within hours or even days.
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* Resources: It signifies the actual capabilities of an offload location. These
capabilities may be the processing power, the suite of analytical algorithms, and
others. For example, it is futile and wasteful to allocate processing resources
reserved for real-time multimedia processing (which are highly energy-intensive
and can process and analyze huge volumes of data in a short duration) to scalar
data (which can be addressed using nominal resources without wasting much
energy).

¢ Data volume: The amount of data generated by a source or sources that can be
simultaneously handled by the offload location is referred to as its data volume
handling capacity. Typically, for large and dense IoT deployments, the offload
location should be robust enough to address the processing issues related to
massive data volumes.

Summary

This chapter started with an overview of the various data formats available on
the Internet and to which various IoT solutions are exposed. The complexities in
handling the numerous data formats available present a significant challenge to the
design of IoT-based solutions. In order to address these challenges, the importance
of processing in IoT is discussed. This discussion is followed by an introduction
to various processing topologies, which can be chosen to address the challenges of
IoT processing. These topologies are broadly made up of two categories: 1) On-site
processing and 2) Off-site processing. The off-site processing is typically composed
of approaches to offload data to locations which are not the same as the one from
which the data was generated. A discussion on processing offloading follows these
topologies. Various offload location types, means of deciding offload location and
quantity are explained. Finally, the various parameters to be considered for offloading
are discussed to enable the reader to grasp the nuances of processing in IoT.

Exercises

i) What are the different data formats found in loT network traffic streams?
i) Depending on the urgency of data processing, how are loT data classified?

iii) Highlight the pros and cons of on-site and off-site processing.

v) How is collaborative processing different from remote processing?
vi) What are the critical factors to be considered during the design of loT devices?
i

\'%

(

(

(

(iv) Differentiate between structured and unstructured data.

(

(

(vii) What are the typical data offload locations available in the context of loT?
(

viii) What are the various decision making approaches chosen for offloading data in
loT?
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(ix) What factors are to be considered while deciding on the data offload location?
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Chapter

loT Connectivity Technologies

Learning Outcomes

After reading this chapter, the reader will be able to:

e List common connectivity protocols in loT
¢ |dentify the salient features and application scope of each connectivity protocol
e Understand the terminologies and technologies associated with loT connectivity

e Determine the requirements associated with each of these connectivity protocols
in real-world solutions

e Determine the most appropriate connectivity protocol for each segment of their
loT implementation

7.1 Introduction

This chapter outlines the main features of fifteen identified commonly used
and upcoming IoT connectivity enablers. These connectivity technologies can be
integrated with existing sensing, actuation, and processing solutions for extending
connectivity to them. Some of these solutions necessarily require integration with a
minimal form of processing infrastructure, such as Wi-Fi. In contrast, others, such
as Zigbee, can work in a standalone mode altogether, without the need for external
processing and hardware support. These solutions are outlined in the subsequent
sections in this chapter.
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7.2 |EEE 802.15.4

The IEEE 802.15.4 standard represents the most popular standard for low data rate
wireless personal area networks (WPAN) [1]. This standard was developed to enable
monitoring and control applications with lower data rate and extend the operational
life for uses with low-power consumption. This standard uses only the first two
layers—physical and data link—for operation along with two new layers above it:
1) logical link control (LLC) and 2) service-specific convergence sublayer (55CS). The
additional layers help in the communication of the lower layers with the upper layers.
Figure 7.1 shows the IEEE 802.15.4 operational layers. The IEEE 802.15.4 standard was
curated to operate in the ISM (industrial, scientific, and medical) band.
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Figure 7.1 The operational part of IEEE 802.15.4's protocol stack in comparison to the OSI
stack

The direct sequence spread spectrum (DSSS) modulation technique is used in IEEE
802.15.4 for communication purposes, enabling a wider bandwidth of operation with
enhanced security by the modulating pseudo-random noise signal. This standard
exhibits high tolerance to noise and interference and offers better measures for
improving link reliability. Typically, the low-speed versions of the IEEE 802.15.4
standard use binary phase shift keying (BPSK), whereas the versions with high data
rate implement offset quadrature phase shift keying (O-QPSK) for encoding the
message to be communicated. Carrier sense multiple access with collision avoidance
(CSMA-CA) is the channel access method used for maintaining the sequence of
transmitted signals and preventing deadlocks due to multiple sources trying to access
the same channel. Temporal multiplexing enables access to the same channel by
multiple users or nodes at different times in a maximally interference-free manner.
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The IEEE 802.15.4 standard [2] utilizes infrequently occurring and very short
packet transmissions with a low duty cycle (typically, < 1%) to minimize the power
consumption. The minimum power level defined is -3 dBm or 0.5 mW for the radios
utilizing this standard. The transmission, for most cases, is line of sight (LOS),
with the standard transmission range varying between 10 m to 75 m. The best-case
transmission range achieved outdoors can be up to 1000 m.

This standard typically defines two networking topologies: 1) Star and 2) mesh.
There are seven variants identified with in IEEE 802.15.4—A, B. C, D, E, F, and G.
Variants A /B are the base versions, C is assigned for China, and D for Japan. Variants
E, F, and G are assigned respectively for industrial applications, active RFID (radio
frequency identification) uses, and smart utility systems.

The IEEE 802.15.4 standard supports two types of devices: 1) reduced function
device (RFD) and 2) full function devices (FFD). FFDs can talk to all types of devices
and support full protocol stacks. However, these devices are costly and energy-
consuming due to increased requirements for support of full stacks. In contrast, RFDs
can only talk to an FFD and have lower power consumption requirements due to
minimal CPU/RAM requirements. Figure 7.2 shows the device types and network
types supported by the IEEE 802.15.4 standard.
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Figure 7.2 The various device and network types supported in the IEEE 802.15.4 standard

The IEEE 802.15.4 standard supports two network types: 1) Beacon-enabled
networks and 2) non-beacon-enabled networks. The periodic transmission of beacon
messages characterizes beacon-enabled networks. Here, the data frames sent via
slotted CSMA /CA with a superframe structure managed by a personal area network
(PAN) coordinator. These beacons are used for synchronization and association of
other nodes with the coordinator. The scope of operation of this network type spans
the whole network.

In contrast, for non-beacon-enabled networks, unslotted CSMA /CA (contention-
based) is used for transmission of data frames, and beacons are used only for link
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layer discovery. This network typically requires both source and destination IDs of the
communicating nodes. As the IEEE 802.15.4 is primarily a mesh protocol, all protocol
addressing must adhere to mesh configurations such that there is a decentralized
communication amongst nodes.

Figure 7.3 shows the frame types associated with the IEEE 802.15.4 standard.
Beacon frames are used for signaling and synchronization; data transmission is
done through the data frames; and message reception is confirmed using the
acknowledgment frames. MAC and command frames are used for association
requests/responses, dissociation requests, data requests, beacon requests, coordinator
realignment, and orphan notifications.

IEEE 802.15.4 Frames

«
|
"l
|
l

Date
Command
Beacon

Figure 7.3 Various frame types supported in the IEEE 802.15.4 standard

Check yourself

CSMA/CD versus CSMS/CA, transmission power, DSSS, BPSK, OQPSK

7.3 Zigbee

The Zigbee radio communication is designed for enabling wireless personal area
networks (WPANSs). It uses the IEEE 802.15.4 standard for defining its physical and
medium access control (layers 1 and 2 of the OSI stack). Zigbee finds common usage
in sensor and control networks [4]. It was designed for low-powered mesh networks
at low cost, which can be broadly implemented for controlling and monitoring
applications, typically in the range of 10-100 meters [3]. The PHY and MAC layers in
this communication are designed to handle multiple low data rate operating devices.
The frequencies of 2.4 GHz, 902-928 MHz or 868 MHz are commonly associated with
Zigbee WPAN operations. The Zigbee commonly uses 250 kbps data rate which is
optimal for both periodic and intermittent full-duplex data transmission between two
Zigbee entities.
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Zigbee supports various network configurations such as master-to-master
communication or master-to-slave communication. Several network topologies are
supported in Zigbee, namely the star (Figure 7.4(a)), mesh (Figure 7.4(b)), and cluster
tree (Figure 7.4(c)). Any of the supported topologies may consist of a single or multiple
coordinators. In star topology, a coordinator initiates and manages the other devices
in the Zigbee network. The other devices which communicate with the coordinator
are called end devices. As the star topology is easy to maintain and deploy, it finds
widespread usage in applications where a single central controller manages multiple
devices.
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Figure 7.4 Various communication topologies in Zigbee

A network can be significantly extended in the Zigbee mesh and tree topologies
by using multiple routers where the root of the topology is the coordinator. These
configurations allow any Zigbee device or node to communicate with any other
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adjacent node. In case of the failure of one or more nodes, the information is
automatically forwarded to other devices through other functional devices. In a
Zigbee cluster tree network, a coordinator is placed in the leaf node position of the
cluster, which is, in turn, connected to a parent coordinator who initiates the entire
network.

A typical Zigbee network structure can consist of three different device types,
namely the Zigbee coordinator, router, and end device, as shown in Figure 7.4. Every
Zigbee network has a minimum of one coordinator device type who acts as the root;
it also functions as the network bridge. The coordinator performs data handling and
storing operations. The Zigbee routers play the role of intermediate nodes that connect
two or more Zigbee devices, which may be of the same or different types. Finally,
the end devices have restricted functionality; communication is limited to the parent
nodes. This reduced functionality enables them to have a lower power consumption
requirement, allowing them to operate for an extended duration. There are provisions
to operate Zigbee in different modes to save power and prolong the deployed network
lifetime.

The PHY and MAC layers of the IEEE 802.15.4 standard are used to build the
protocol for Zigbee architecture; the protocol is then accentuated by network and
application layers designed especially for Zigbee. Figure 7.5 shows the Zigbee protocol
stack. The various layer of the Zigbee stack are as follows.
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Figure 7.5 The Zigbee protocol stack in comparison to the OSI stack

¢ Physical Layer: This layer is tasked with transmitting and receiving signals, and
performing modulation and demodulation operations on them, respectively. The
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Zigbee physical layer consists of 3 bands made up of 27 channels: the 2.4 GHz
band has 16 channels at 250 kbps the 868.3 MHz has one channel at 20 kbps; and
the 902-928 MHz has ten channels at 40 kbps.

* MAC Layer: This layer ensures channel access and reliability of data
transmission. CSMA-CA is used for channel access and intra-channel
interference avoidance. This layer handles communication synchronization
using beacon frames.

* Network Layer: This layer handles operations such as setting up the network,
connecting and disconnecting the devices, configuring the devices, and routing.

¢ Application Support Sub-Layer: This layer handles the interfacing services,
control services, bridge between network and other layers, and enables the
necessary services to interface with the lower layers for Zigbee device object
(ZDO) and Zigbee application objects (ZAO). This layer is primarily tasked with
data management services and is responsible for service-based device matching.

* Application Framework: Two types of data services are provided by the
application framework: provision of a key-value pair and generation of generic
messages. A key-value pair is used for getting attributes within the application
objects, whereas a generic message is a developer-defined structure.

Zigbee handles two-way data transfer using two operational modes: 1) Non-
beacon mode and 2) beacon mode. As the coordinators and routers monitor the active
state of the received data continuously in the non-beacon mode, it is more power-
intensive. In this mode, there is no provision for the routers and coordinators to sleep.
In contrast, a beacon mode allows the coordinators and routers to launch into a very
low-power sleep state in the absence of data communication from end devices. The
Zigbee coordinator is designed to periodically wake up and transmit beacons to the
available routers in the network. These beacon networks are used when there is a need
for lower duty cycles and more extended battery power consumption.
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7.4 Thread

Thread is built upon the IEEE 802.15.4 radio standard; it is used for extremely
low power consumption and low latency deployments [5]. Unlike Zigbee, Thread
can extend direct Internet connectivity to the devices it is connected with. Thread
removes the need for a mobile phone or a proprietary gateway to be in the range
of devices for accessing the Internet. It is specially designed for IoT with the need for
interoperability, security, power, and architecture addressed in a single radio platform.
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Figure 7.6 shows the comparison of the Thread stack against the standard ISO-OSI
stack. Thread is built on open standards to achieve a low-power wireless mesh
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Figure 7.6 The functional protocol stack of Thread in comparison to the OSI stack

networking protocol with universal Internet Protocol (IP) support. The standard is
easy to set up and simple to use; it can reliably connect thousands of devices to the
Internet or a cloud with no single point of failure. It has the distinctive feature of self-
healing and reconfiguration in the event of the addition or removal of a device. Figure
7.7 shows the Thread network architecture.

Thread enables IoT interoperability by utilizing a certification application that
validates a device’s conformance to the specification as well as its interoperability
against multiple certified stacks. This feature ensures the resilience of connectivity,
even with diverse networks, in turn enabling its users to have consistent operational
experience.

Empowering low-power wireless devices with IP connectivity enables Thread
to seamlessly accommodate itself with larger IP-based networks and be a robust
option for most IoT applications such as smart homes/buildings, connected vehicles,
and others. This feature of Thread devices removes the need for Internet-enabled
proprietary gateways and cross-stack translators for connection between other
technologies. The additional benefits of this feature include better resilience to single
point of failures, highly economical deployments, less complex infrastructure, and
enhanced IoT end-to-end device security on the Internet.
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Figure 7.7 Outline of the Thread network architecture (from end devices to the cloud)

Thread devices can use common infrastructure similar to Wi-Fi networks and can
connect directly to smartphones or computers if they are on the same IP network,
without any additional setup for Thread.
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7.5 1SA100.11A

The ISA100.11A is a very low power communication standard and has been developed
and managed by ISA (International Society of Automation) [7]. Similar to the previous
protocols, it uses the IEEE 802.15.4 standard as a base for building its protocol.
The standard was mainly proposed for industrial plant automation systems. The
ISA100.11A is characterized by an IoT compliant protocol stack, which can also be
integrated with wired networks using Ethernet, support for open access protocols
and device-level interoperability; it boasts of a 128-bit AES (Advanced Encryption
Standard) encryption securing all communications. The security in ISA100.11A is
in two layers: Transport layer and data link layer. ISA100.11A provides extensive
support for IPv6 and UDP and uses TDMA (time-division multiple access)-based
resource sharing with CSMA-CA. Both IPv6 and UDP as well as star topologies
are supported by this standard. The utilization of IPv6 provides certain distinct
benefits to ISA100.11A, such as increased address sizes, enhanced IPSec-based security
measures, savings in network bandwidth by virtue of multicasting and auto address
configuration.
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An ISA100.11A wireless network utilizes the 2.4 GHz frequency band for
communication, similar to Wi-Fi and Bluetooth. To avoid interference over wireless
channels in the same band, it uses frequency hopping spread spectrum (FHSS) over a
total of 16 channels. A definitive feature of this protocol is channel blacklisting, which
blacklists the channels already in use by other protocols. This enables the protocol
to perform even better by further achieving immunity from interference. Figure 7.8
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Figure 7.8 A typical ISA100.11A network architecture

shows the ISA100.11A network architecture. The ISA100.11A architecture consists of
the following: 1) field devices and 2) backbone devices. Field devices may be non-
routing I/O devices, handheld devices, routing devices, which may or may not be
fixed or mobile. For industrial usage, the inclusion of portable and mobile devices is
highly desirable as it allows floor supervisors and workers to keep checking various
parts of the plant without the need for dedicated devices for each part. In contrast,
backbone devices include backbone routers, gateways, the system manager, and the
security manager, which are kept fixed and not portable. The ISA100.11A architecture
provides support for mesh, star, and star—-mesh topologies. The connected devices
in ISA100.11A are collectively referred to as the downLink (DL) subnet. A wireless
industrial sensor network (WISN) gateway connects the ISA100.11A network to the
plant network.

The average ISA100.11A protocol stack consists of five different layers:
1) Application layer, 2) transport layer, 3) network layer, 4) data link layer, and
5) physical layer. Figure 7.9 compares the ISA100.11A stack with the standard
ISO-OSI stack. A central system manager handles network routing by scheduling
communication. The functionalities of the ISA100.11A protocol stack can be outlined
as follows:
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Figure 7.9 The ISA100.11A protocol stack in comparison to the OSI stack
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IEEE 802.15.4
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¢ Physical Layer: It is built upon the IEEE 802.15.4-2006 standard. The physical
layer communicates on the 2.4 GHz frequency band using a DSSS (direct
sequence spread spectrum) modulation.

e Data Link Layer: It handles the creation, maintenance, and forwarding
packet functionalities in addition to typical MAC functionalities. Additionally,
it is responsible for operations dealing with the structure of the data packet,
formation of the frame, detecting the error, and bus arbitration. A data link
control (DLC) layer in ISA100.11A, which uses a graph-based routing, is
responsible for specific distinctive functions such as adaptive channel hopping,
detection and recovery of message loss, and clock synchronization.

¢ Network Layer: The ISA100.11A network layer is 6LoWPAN-compliant and
uses IPv6 addressing for an end-to-end routing. Protocol conversion from IPv6
to 6LoOWPAN and 6LoWPAN to IPv6 is executed at this layer by a router.

¢ Transport Layer: The ISA100.11A transport layer supports UDP-based
connectionless services.

e Application Layer: The ISA100.11A stack only specifies system management
application in this layer.

Check yourself

Wireless Industrial Sensor Networks (WISN), 6LoWPAN, field devices, routing
and non-routing devices
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7.6 WirelessHART

WirelessHART can be considered as the wireless evolution of the highway addressable
remote transducer (HART) protocol [7]. It is a license-free protocol, which was
developed for networking smart field devices in industrial environments. The lack
of wires makes the adaptability of this protocol significantly advantageous over
its predecessor, HART, in industrial settings. By virtue of its highly encrypted
communication, wireless HART is very secure and has several advantages over
traditional communication protocols. Similar to Zigbee, wirelessHART uses the IEEE
802.15.4 standard for its protocols designing.

Figure 7.10 shows the WirelessHART network architecture. WirelessHART can
communicate with a central control system in any of the two ways: 1) Direct and
2) indirect. Direct communication is achieved when the devices transmit data directly
to the gateway in a clear LOS (typically 250 m). Indirect communication is achieved
between devices in a mesh and a gateway when messages jump from device to
device until it reaches the gateway. WirelessHART communication is 99.999% reliable
due to the maintenance of a tight schedule between message transmissions. All
wirelessHART devices are back-compatible and allow for the integration of legacy

devices as well as new ones.
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Figure 7.10 The WirelessHART network architecture
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The HART encompasses the most number of field devices incorporated in any field
network. WirelessHART makes device placements more accessible and cheaper, such
as the top of a reaction tank, inside a pipe, or widely separated warehouses. The wired
and unwired versions differ mainly in the network, data link, and physical layer. The
wired HART lacks a network layer. HART ensures congestion control in the 2.4 Ghz
ISM band by eliminating channel 26 because of its restricted usage in certain areas. The
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use of interference-prone channels is avoided by using channel switching after every
transmission. The transmissions are synchronized using 10 ms time-slots. During each
time-slot, all available channels can be utilized by the various nodes in the network,
allowing for the simultaneous propagation of 15 packets through the network, which
also minimizes the risk of collisions between channels.

A network manager supervises each node in the network and guides them on when
and where to send packets. This network manager allows for collision-free and timely
delivery of packets between a source and the destination. It updates information
regarding neighbors, signal strength, and information needing a delivery receipt. This
network manager also decides which nodes transmit, which nodes listen, and the
frequency to be utilized in each time-slot. It also handles code-based network security
and prevents unauthorized nodes from joining the network.

Figure 7.11 shows the comparison of the wirelessHART protocol stack against the
standard ISO-OSI stack. The various layers of the wirelessHART stack are outlined as
follows:

OSI stack Wireless HART stack
Application Application
Presentation

Session

Transport
. Logical link control
Data link

IEEE 802.15.4 Media access control

Physical

Figure 7.11 The WirelessHART protocol stack in comparison to the OSI stack

¢ Physical Layer: The IEEE 802.15.4 standard specification is used for designing
the physical layer of this protocol. Its operation is limited to the use of the
2.4 GHz frequency band. The channel reliability is significantly increased by
utilizing only 15 channels of the 2.4 GHz band.

¢ Data Link Layer: The data link layer avoids collisions by the use of TDMA.
The communication is also made deterministic by the use of superframes.
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WirelessHART superframes consist of 10 ms wide time-slots that are grouped
together.  The use of superframes ensures better controllability of the
transmission timing, collision avoidance, and communication reliability. This
layer incorporates channel hopping and channel blacklisting to increase
reliability and security. A characteristic feature of the wirelessHART is channel
blacklisting. This feature identifies channels consistently affected by interference
and removes them from use.

* Network and Transport Layers: The network and the transport layer
work in tandem to address issues of network traffic, security, session
initiation/termination, and routing. WirelessHART is primarily a mesh-based
network, where each node can accept data from other nodes in range and
forward them to the next node. All the devices in its network have an updated
network graph, which defines the routing paths to be taken. Functionally, the
OSlI stack’s network, transport, and session layers constitute the WirelessHART’s
network layer.

e Application Layer: The application layer connects gateways and devices
through various command and response messages. This layer enables back-
compatibility with legacy HART devices as it does not differentiate between the
wired and wireless versions of HART.

Check yourself

Graph-based routing, superframes, co-channel interference

7.7 RFID

RFID stands for radio frequency identification. This technology uses tags and readers
for communication. RFID tags have data encoded onto them digitally [8]. The RFID
readers can read the values encoded in these tags without physically touching them.
RFIDs are functionally similar to barcodes as the data read from tags are stored in
a database. However, RFID does not have to rely on line of sight operation, unlike
barcodes.

The automatic identification and data capture (AIDC) technology can be
considered as the precursor of RFID. Similar to AIDC techniques, RFID systems are
capable of automatically categorizing objects. Categorization tasks such as identifying
tags, reading data, and feeding the read data directly into computer systems through
radio waves outline the operation of RFID systems. Typically, RFID systems are made
up of three components: 1) RFID tag or smart label, 2) RFID reader, and 3) an antenna.
Figure 7.12 shows the various RFID components.

In RFID, the tags consist of an integrated circuit and an antenna, enclosed in a
protective casing to protect from wear and tear and environmental effects. These
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Figure 7.12 An outline of the RFID operation and communication

tags can be either active or passive. Passive tags find common usage in a variety of
applications due to its low cost; however, it has to be powered using an RFID reader
before data transmission. Active tags have their own power sources and do not need
external activation by readers. Tags are used for transmitting the data to an RFID
interrogator or an RFID reader. The radio waves are then converted to a more usable
form of data by this reader. A host computer system accesses the collected data on
the reader by a communication technology such as Wi-Fi or Ethernet. The data on the
host system is finally updated onto a database. RFID applications span across domains
such as inventory management, asset tracking, personnel tracking, and supply chain
management.

Check yourself

How does RFID tackle various services, such as asset tracking and inventory
management?

7.8 NFC

Near field communication (NFC) was jointly developed by Philips and Sony as a
short-range wireless connectivity standard, enabling peer-to-peer (P2P) data exchange
network. Communication between NFC devices is achieved by the principle of
magnetic induction, whenever the devices are brought close to one another [9]. NFC
can also be used with other wireless technologies such as Wi-Fi after establishing
and configuring the P2P network. The communication between compatible devices
requires a pair of transmitting and receiving devices. The typical NFC operating
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frequency for data is 13.56 MHz, which supports data rates of 106, 212, or 424 kbps.
NFC devices can be grouped into two types: 1) passive NFC and 2) active NFC. Figure
7.13 shows the various NFC types, components, and its usage.

A small electric current is emitted by the NFC reader, which creates a magnetic field
that acts as a bridge in the physical space between two NFC devices. The generated
EM (electromagnetic) field is converted back into electrical impulses through another
coil on the client device. Data such as identifiers, messages, currency, status, and
others can be transmitted using NFCs. NFC communication and pairing are speedy
due to the use of inductive coupling and the absence of manual pairing.
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Figure 7.13 An outline of the NFC operation and communication

Passive NFC devices do not need a power source for communicating with the NFC
reader. Tags and other small transmitters can act as passive NFC devices. However,
passive devices cannot process information; they simply store information, which is
read by an NFC reader. In contrast, active NFC devices can communicate with active
as well as passive NFC devices. Active devices are capable of reading as well as
writing data to other NFC terminals or devices. Some of the most commonly used
NFC platforms are smartphones, public transport card readers, and commercial touch
payment terminals.

NFC currently supports three information exchange modes: 1) peer-to-peer,
2) read/write, and 3) card emulation. The peer-to-peer mode is commonly used in
NFC modes; it enables two NFC devices to exchange information. In the peer-to-peer
mode of information exchange, the transmitting device goes active while the receiving
device becomes passive. During the reverse transfer, both devices change roles. The
read /write mode of information exchange allows only one-way data transmission. An
active NFC device connects to a passive device to read information from it. Finally,
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the card emulation mode enables an NFC device (generally, smartphones) to act as a
contactless credit card and make payments using just a simple tap on an NFC reader.

Check yourself

Magnetic induction, inductive coupling, peer-to-peer data exchange

7.9 DASH7

The DASH? protocol is based on an active RFID standard [10]. It operates in the 433
MHz frequency band and is being rapidly accepted in agriculture, vehicles, mobiles,
and other consumer electronics-related applications. The messages in DASH7 are
modulated using FSK (frequency shift keying) modulation before transmission over
the 433 MHz frequency band. A very crucial aspect of DASHY is its capability to use its
433.92 MHz operational band to enable communications with NFC devices. Recall, as
the NFCs operate in the 13.56 MHz band, they can communicate with DASH7 radios
by temporarily modifying/altering their antenna to access the higher-order harmonics
of the DASHY band (433.92/13.56 = 32 or 2°). Figure 7.14 shows the DASH7 network
architecture.

Smart
devices

Figure 7.14 The DASH7 communication architecture

Compared to the IEEE 802.15.4 and its dependent technologies, the DASH7
protocol has a fully defined and complete OSI stack. This enables the DASH7 stack to
be made adaptable to the physical layers of technologies such as Sigfox or LoRa. The
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DASHY stack includes support for cheap processing systems by virtue of its integrated
file system. Figure 7.15 shows the protocol stack of DASH 7 in comparison to the ISO-
OSI stack. DASH7 gateways can query devices in proximity to it without waiting for
pre-defined time-slots to listen to end-device beacons.

OSI stack DASH?Y stack
Application Application
Presentation Presentation

Session Session

Transport Transport

Data link Logical link control

Figure 7.15 The DASH7 protocol stack in comparison to the OSI stack

Media access control

Physical

DASHY is capable of very dense deployments, has a low memory footprint,
consumes minuscule power, and considered by many as a bridge between NFC and
IoT communication systems. It can also be used to enable tag-to-tag communication
without needing the tags to pass their information through a base station or a tag
reader. This feature of DASHY is quite synonymous with the multinode hopping mesh
networks found in Zigbee and Z-wave. The reported range of DASHY7 is between 1 to
10 km and a typical querying latency of 1 to 10 seconds.

Check yourself

File-system, node hopping mesh network, frequency harmonics




146 Introduction to Internet of Things

7.10 Z-Wave

Z-Wave is an economical and less complicated alternative to Zigbee. It was developed
by Zensys, mainly for home automation solutions [11]. It boasts of a power
consumption much lower than Wi-Fi, but with ranges greater than Bluetooth. This
feature makes Z-Wave significantly useful for home IoT use by enabling inter-device
communication between Z-wave integrated sensors, locks, home power distribution
systems, appliances, and heating systems. Figure 7.16 shows the network architecture
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Figure 7.16 A typical Z-Wave deployment and communication architecture

Figure 7.17 shows the stack for this protocol. The Z-Wave operational frequency
is in the range of 800-900 MHz, which makes it mostly immune to the interference
effects of Wi-Fi and other radios utilizing the 2.4 GHz frequency band. Z-wave
utilizes gaussian frequency shift keying (GFSK) modulation, where the baseband
pulses are passed through a Gaussian filter before modulation. The filtering operation
smoothens the pulses consisting of streams of -1 and 1 (known as pulse shaping),
which limits the modulated spectrum’s width. A Manchester channel encoding is
applied for preparing the data for transmission over the channel.
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Figure 7.17 The Z-Wave protocol stack

Z-wave devices are mostly configured to connect to home-based routers and
access points. These routers and access points are responsible for forwarding Z-
wave messages to a central hub. Z-wave devices can also be configured to connect
to the central hub directly if they are in range. Z-wave routing within the home
follows a source-routed mesh network topology. When the Z-wave devices are not
in range, messages are routed through different nodes to bypass obstructions created
by household appliances or layouts. This process of avoiding radio dead-spots is done
using a message called healing. Healing messages are a characteristic of Z-wave.

A central network controller device sets up and manages a Z-wave network (Figure
7.16), where each logical Z-wave network has one home (network) ID and multiple
node IDs for the devices in it. Each network ID is 4 bytes long, whereas the node
ID length is 1 byte. Z-Wave nodes with different home IDs cannot communicate
with one another. The central hub is designed to be connected to the Internet, but
their quantities are limited to one hub per home. Each home can have multiple
devices, which can talk to the hub using Z-Wave. However, the devices themselves
cannot connect to the Internet. The Z-wave can support 232 devices in a single
home deployment (a single hub). This technology has been designed to be backward
compatible. As Z-wave uses a source-routed static network, mobile devices are
excluded from the network; only static devices are considered.

Check yourself

GFSK, Manchester encoding, pulse shaping principle
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7.11 Weightless

Weightless is yet another emerging open standard for enabling networked
communication in IoT; it is especially useful for low-power wide area networks [12]. It
was designed for useful for low-power, low-throughput, and moderate to high latency
applications supporting either or both public and private networks. The operating
frequency of Weightless is restricted to sub-GHz bands, which are also exempted from
the requirements of licensing such as 138 MHz, 433 MHz, 470 MHz, 780 MHz, 868
MHz, 915 MHz, and 923 MHz. Initially, three standards were released for Weightless:
Weightless P, Weightless N, and Weightless W. Weightless P is the only currently
accepted and used standard as it has features for bi-directional communication over
both licensed as well as unlicensed ISM bands. Weightless N was designed as an
LWPAN uplink-only technology, whereas Weightless W was designed to make use of
the TV whitespace frequencies for communication.

As Weightless P was the most commonly adopted and accepted standard among
the three Weightless standards, it came to be referred to merely as Weightless.
Weightless provides a true bi-directional and reliable means of communication,
where each message transaction is validated using an acknowledgment message.
As it was designed initially for dense deployments of low-complexity IoT end
devices, its payload size was limited to less than 48 bytes. Weightless networks
can be optimized to attain ultra-low-power consumption status compared to cellular
networks. However, this is at the cost of network latency and throughput with data
rates in the range of 0.625 kbps to 100 kbps. Weightless has been identified with three
architectural components: end devices, base stations, and base station network (Figure
7.18). The end devices (ED) form the leaf nodes in the Weightless network. These
devices are typically low complexity and low cost. The duty cycle of EDs is also low,
with a nominal transmiting power of 14 dBm (which can be increased up to 30 dBm).
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Figure 7.18 Typical components of the Weightless standard and its protocols
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The base stations (BS) act as the central coordinating node in each cell. A star topology
is deployed to connect the EDs to the BS. The transmit powers of a typical BS lie in the
range of 27 dBm to 30 dBm. Finally, the base station network (BSN) is responsible
for connecting all the BS of a single network. This enables the BSN to manage the
allocation and scheduling of radio resources across the network. Additional tasks of
the BSN include addressing authentication, roaming, and scheduling responsibilities.

Check yourself

Cellular architecture, base stations, whitespace bands

7.12  Sigfox

Sigfox is a low-power connectivity solution, which was developed for various
businesses such as building automation and security, smart metering, agriculture,
and others. It uses ultra-narrowband technology (192 kHz wide) for accessing and
communicating through the radio spectrum [13]. The typical data rates achieved in
Sigfox is in the range 100-600 bits per second. A binary phase shift keying (BPSK)
is used for encoding the message transmission by changing the phase of the carrier
waves, where each message is 100 Hz wide. Sigfox in Europe utilizes the 868 and 868.2
MHz spectrum, whereas it uses 902 and 928 MHz elsewhere. As the Sigfox receiver
has to access only a very tiny part of the spectrum for receiving messages, the effects of
noise are significantly reduced. It can even communicate in the presence of jamming
signals, making this standard quite resilient.

Figure 7.19 shows the network architecture of Sigfox. Sigfox has an exciting
message forwarding principle called random access, which ensures the high quality of
services in this standard. Each Sigfox device emits a message at an arbitrary frequency;

End-points Base-stations AG/LTE Cloud backend

o OO
)

Figure 7.19 The Sigfox communication architecture
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it simultaneously sends two replicas of the same message at different frequencies; it
time using a principle known as time frequency diversity. Although the Sigfox devices
are relatively less complicated, the base stations are very complicated as they monitor
the whole 192 kHz spectrum looking for UNB (ultra narrow band) transmissions for
demodulation. The base stations in Sigfox follow a cooperative reception principle.
The messages in Sigfox are not attached to any base station, and any base station in
the vicinity of the device can receive messages from it. This is called the principle of
spatial diversity in Sigfox. The time and frequency diversity, along with the spatial
diversity, ensures excellent quality of service for Sigfox.

Figure 7.20 shows the comparison of the Sigfox stack with the standard ISO-OSI
stack. The Sigfox communication is bi-directional and asynchronous with a significant
difference between the uplink and downlink speeds. As the devices are less complex
than the base stations, the uplink budget (device to base station) is high compared
to the downlink budget (base station to device). It is mainly due to this reason that
the Sigfox was designed to have small message lengths ranging from 0 to 12 bytes.
This 12-byte payload supports the simultaneous transfer of sensor data, the status
of an event/alerts, GPS coordinates, and even application data. Sigfox boasts of
excellent security features with support for authentication, integrity, and anti-replay
on messages transmitted through the network. AES is supported by this standard. All
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Figure 7.20 The Sigfox protocol stack in comparison to the OSI stack
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these collective features of Sigfox enables it to be a low-power and resilient standard.
However, due to the low data rates and asynchronous links, it is better utilized
in applications requiring infrequent communication with small bursts of data. The
Sigfox architecture and range supports wide and dense deployments depending on
topologies and is better suited for indoor use; however, mobility is not an aspect
associated with it.

Check yourself

AES, asynchronous versus synchronous communication

7.13 LoRa

LoRa or long range is a patented wireless technology for communication developed
by Cycleo of Grenoble, France for cellular-type communications aimed at providing
connectivity to M2M and IoT solutions [14]. It is a sub-GHz wireless technology that
operationally uses the 169 MHz, 433 MHz, 868 MHz, and 915 MHz frequency bands
for communication. LoRa uses bi-directional communication links symmetrically and
a spread spectrum with a 125 kHz wideband for operating. Applications such as
electric grid monitoring are typically suited for utilizing LoRa for communications.
Typical communication of LoRa devices ranges from 15 to 20 km, with support for
millions of devices. Figure 7.21 shows the LoRa network architecture.

End-points Gateway Network server Application server
| @ | | |
| |
EvIVE
| N Q‘__’ }
|

9

TCP/IP

z
<
3
04
o
|
3
24
(=}
|

Figure 7.21 A typical LoRa deployment and communication architecture

It is a spread spectrum technology with a broader band (usually 125 kHz or more).
LoRa achieves high receiver sensitivity by utilizing frequency-modulated chirp coding
gain. LoRa devices provide excellent support for mobility, which makes them very
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useful for applications such as asset tracking and asset management. In comparison
with similar technologies such as NB-IoT, LoRa devices have significantly higher
battery lives, but these devices have low data rates (27 to 50 kbps) and longer latency
times. Figure 7.22 shows the LoRa protocol stack.

LoRa Stack
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Figure 7.22 The LoRa protocol stack

LoRa devices make use of a network referred to as LoRaWAN, which enables the
routing of messages between end nodes and the destination via a LoORaWAN gateway.
Unlike Sigfox, LoRaWAN has a broader spectrum resulting in interference, which
is solved using coding gains of the chirp signals. Additionally, unlike Sigfox, the
LoRaWAN end nodes and the base stations are quite inexpensive. The LoRaWAN
protocol is designed for WAN communications and is an architecture that makes use
of LoRa, whereas LoRa is used as an enabling technology for a wide area network.
Messages transmitted over LoRaWAN is received by all base stations in proximity
to the device, which induces message redundancy in the network. However, this
enhances the resilience of the network by ensuring more messages are successfully
delivered between entities in the network.

A LoRa network follows the star topology and is made up of four crucial
entities: end points/nodes, gateways, network server, and a remote computer
(Figure 7.21). The end nodes deal with all the sensing and control solutions. The
gateways forward messages from end nodes to a backhaul network. The LoRa
network can comprise both or either of wired and wireless technologies. The gateways
themselves are connected to the network server utilizing IP-based connections (either
private or public). The LoRa network server is responsible for scheduling message
acknowledgments, modifying data rates, and removing message redundancies.
Finally, the remote computers have control over the end nodes and act as data sinks
for data originating from these nodes.

The LoRa network security is achieved through various mechanisms such as
unique network key, which ensures security on the network level, unique application
key, which ensures an end-to-end security on the application level and device specific
key.
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Check yourself

Features of a chirp signal, coding gains, spread spectrum technology

7.14 NB-loT

NB-IoT or narrowband IoT is an initiative by the Third Generation Partnership
Project (3GPP) to develop a cellular standard, which can coexist with cellular systems
(2G/3G/4G), be highly interoperable and that too using minimum power [15]. It is
reported that a major portion of the NB-IoT applications can support a battery life
of up to ten years. NB-IoT also boasts of significant improvements in reliability,
spectrum efficiencies, and system capacities. NB-IoT uses orthogonal frequency
division multiplexing (OFDM) modulation, which enhances the system capacity and
increases spectrum efficiency (Figure 7.23). However, device complexities are quite
high. NB-IoT also provides support for security features such as confidentiality,
authentication, and integrity. Figure 7.24 shows the protocol stacks of the various
components of NB-IoT.
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Figure 7.23 A location of NB-loT band within the LTE spectrum

The coverage of NB-IoT supports deployments in indoor environments as well
as in dense urban areas. When compared with technologies such as LoRa, NB-IoT
ensures a higher quality of service as well as reduced latencies. Because of its design
principles, the transfer of large messages is not efficient. NB-IoT is better suited
for static deployments such as energy metering, fixed sensors, and others. Mobility
support is not provided in this standard. NB-IoT communication can either make use
of the available 200-kHz GSM (global system for mobile communications) bands or
be allocated resource blocks on the guard bands by LTE base stations. This ensures
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Figure 7.24 The NB-loT protocol stack with respect to its entities

that the NB-IoT can achieve more extensive coverage while coexisting with cellular
systems.

NB-IoT was developed for non-IP based applications requiring quite small
volumes of daily data transactions, typically in the range of a few tens to a hundred
bytes of data per device daily. Unlike technologies such as Sigfox and LoRa, the use of
OFDM (orthogonal frequency division multiplexing’s) faster modulation rates ensures
higher data handling capacities for NB-IoT.

Check yourself

OFDM, LTE, guard band, GSM

7.15 Wi-Fi

Wi-Fi or WiFi is technically referred to by its standard, IEEE 802.11, and is a wireless
technology for wireless local area networking of nodes and devices built upon similar
standards (Figure 7.25). Wi-Fi utilizes the 2.4 GHz ultra high frequency (UHF) band
or the 5.8 GHz super high frequency (SHF) ISM radio bands for communication
[16]. For operation, these bands in Wi-Fi are subdivided into multiple channels.
The communication over each of these channels is achieved by multiple devices
simultaneously using time-sharing based TDMA multiplexing. It uses CSMA /CA for
channel access.

Various versions of IEEE 802.11 have been popularly adapted, such as a/b/g/n.
The IEEE 802.11a achieves a data rate of 54 Mbps and works on the 5 GHz band using
OFDM for communication. IEEE 802.11b achieves a data rate of 11 Mbps and operates
on the 2.4 GHz band. Similarly, IEEE 802.11g also works on the 2.4 GHz band but
achieves higher data rates of 54 Mbps using OFDM. Finally, the newest version, IEEE
802.11n, can transmit data at a rate of 140 Mbps on the 5 GHz band.
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Figure 7.25 The IEEE 802.11 Wi-Fi stack

Wi-Fi devices can network using a technology referred to as wireless LAN
(WLAN), as shown in Figure 7.26. A Wi-Fi enabled device has to connect to a wireless
access point, which connects the device to the WLAN. WLAN is then responsible for
forwarding the messages from the devices to and fro between the devices and the
Internet.

Host A Host B

]

Host A Host B @ SrrIzIaae.

Wt s

router 1

Wireless

router 2 AN
Host A Host B Internet o =

e

Wireless
router 3

Access point 2

Figure 7.26 The Wi-Fi deployment architecture
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7.16 Bluetooth

Bluetooth is defined by the IEEE 802.15.1 standard and is a short-range wireless
communication technology operating at low power to enable communication among
two or more Bluetooth-enabled devices [17]. It was initially developed as a cable
replacement technology for data communication between two or more mobile devices
such as smartphones and laptops. This standard allows the transmission of data as
well as voice-over short distances. Bluetooth functions on the 2.4 GHz ISM band
and has a range of approximately 10 m. The transmission of data is done through
frequency hopping spread spectrum (FHSS), which also reduces the interference
caused by other devices functioning in the 2.4 GHz band. The data is divided into
packets before transmitting them by Bluetooth. The packets are transmitted over the
79 designated channels, each 1IMHz wide in the 2.4 GHz band. Adaptive frequency
hopping (AFH) enables this standard to perform 800 hops per second over these
channels. Initial versions of this standard followed Gaussian frequency shift keying
(GFSK) modulation, which was known as the basic rate (BR) mode, and was capable
of data rates of up to 1 Mbps. However, with the development of newer variants,
modulation schemes such as 7/4 DQPSK (differential quadrature phase shift keying)
and 8-DPSK (differential phase shift keying) were adopted, which enabled data rates
of 2 Mbps and 3 Mbps respectively.
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Figure 7.27 The Bluetooth device network architecture

Bluetooth follows a master—slave architecture (Figure 7.27). It enables a small
network, which can accommodate seven slave devices simultaneously with a single
master node. A slave node in one piconet cannot be part of another piconet at the
same time, that is, it can have a single master node at a time. This network is known
as a personal area network (PAN) or piconet. All the devices in a piconet share the
master node’s clock. Two piconets can be joined using a bridge. The whole network is
also referred to as a scatternet.

Bluetooth Low Energy (BLE), the advanced variant of Bluetooth has 2 MHz
wide bands, which can accommodate 40 channels. Its features include low energy
consumption, low cost, multivendor interoperability, and an enhanced range of
operations.
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Bluetooth connections are encrypted and prevent eavesdropping of
communications between devices. The inclusion of service-level security adds an
additional layer of security by restricting the usage and device features and activities.

The Bluetooth standard consists of four parts: 1) core protocols, 2) cable
replacement protocols, 3) telephony control protocols, and 4) adopted protocols.
Figure 7.28 shows the Bluetooth protocol stack. Link Manager Protocol (LMP), Logical
Link Control and Adaptation Protocol (L2CAP), Host Controller Interface (HCI),
Radio Frequency Communications (RFCOMM), and Service Discovery Protocol (SDP)
are some of the well-known protocols associated with Bluetooth. These protocols can
be enumerated as follows:

Bluetooth stack

Application

Telephony
Serv. Disc.

RFComm

L2CAP

PHY Radio

Figure 7.28 The Bluetooth protocol stack

(i) Link Manager Protocol: It manages the establishment, authentication, and
links configuration. LMPs consist of some protocol data units (PDU), between
which transmission occurs for availing services such as name requests, link
address requests, connection establishment, connection authentication, mode
negotiation, and data transfer.

(ii) Host Controller Interface: It enables access to hardware status and control
registers and connects the controller with the link manager. The automatic
discovery of Bluetooth devices in its proximity is one of the essential tasks of
HCL
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(iif) L2CAP: It multiplexes logical connections between two devices. It is also tasked
with data segmentation, flow control, and data integrity checks.

(iv) Service Discovery Protocol: It is tasked with the discovery of services provided
by other Bluetooth devices.

(v) Radio Frequency Communications: It is a cable replacement protocol, which
generates a virtual stream of serial data. This protocol supports many telephony
related profiles as AT commands and Object Exchange Protocol (OBEX) over
Bluetooth.

(vi) Telephony Control Protocol — Binary (TCS BIN): It is a bit-oriented protocol to
control call signaling prior to initiation of voice or data communications between
devices.

Check yourself

Bluetooth paging and inquiry, /4 DQPSK, 8-DPSK, AFH

Summary

This chapter covered the various IoT connectivity technologies and their functional
requirements and focuses on those technologies, which primarily rely on wireless
media for communications. The standards covered in this chapter are a mix of the
ones used for general consumer electronics, household devices, as well as speciality
applications such as industries. The connectivity technologies covered here range
from near-field ones to long-range ones. After going through this chapter, readers
will be able to select various connectivity technologies, which will be suitable for an
IoT application or architecture under consideration.

Exercises

(i) What is a piconet?

(i) What is a scatternet? Explain the working of a scatternet with a brief
description of its various members.

(iii) Describe the protocol stack of Bluetooth.

(iv) What is BLE?

(v) Differentiate between class 1, 2, and 3 Bluetooth devices.
(vi) What are the various modes of operation of Bluetooth?
(vii) Describe the L2CAP layer in Bluetooth.

(viii) Describe the RFCOMM layer in Bluetooth.
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(ix) What is service discovery protocol (SDP) in Bluetooth?
(x) Describe the Bluetooth baseband.

(xi) How does Bluetooth avoid collisions between simultaneously transmitting
nodes?

(xii) Explain the protocol stack of Zigbee.

(xiii) What is ZDO? How is it different from APS?

(xiv) Elaborate on the various network topologies of Zigbee.

(xv) What are the various Zigbee device types?

(xvi) Describe the Zigbee network layer.

(xvii) What is AODV? Explain with an example.
(xviii) How is Zigbee different from Bluetooth?

(xix) How is Zigbee different from 6LoWPAN?

(xx) Explain the protocol stack of IEEE 802.15.4

(xxi) How is LWPAN different from PANs?

(xxii) Explain the terms:

(a) DSSS
(b) BPSK
(c) QPSK
(d) O-QPSK
(xxiii) Differentiate between CSMA/CA and CSMA/CD.
(xxiv) Differentiate between star and mesh network topologies.
(xxv) What are the various |IEEE 802.15.4 network types?
(xxvi) Differentiate between RFD and FFD.
(xxvii) Differentiate between a PAN coordinator, router, and a device in IEEE 802.15.4.
(xxviii) What are the various |IEEE 802.15.4 frame types?
(xxix) What is beaconing?

(xxx) How are beacon-enabled networks different from non-Beacon enabled
networks?

(xxxi) What is HART? How is it different from wirelessHART?
(xxxii) Describe the protocol stack of HART.
(xxxiii) Describe the HART physical layer.
(xxxiv) Describe the HART data link layer.
(xxxv) Describe the HART network and transport layers.
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What is TDMA? Describe with an example.
What is channel blacklisting?

(xxxvi
(xxxvii
(xxxviii) What are superframes?
(xxxix) Describe the HART congestion control mechanism.

(xI) Describe the working of the wirelessHART network manager.

(xli) How is wirelessHART different from Zigbee?

(xlii) What is RFID? Explain its working.

(xliii) How is RFID different from QR codes?

(xliv) Differentiate between active and passive RFID.

~— N N N N N

(xlv) List some of the typical applications of RFID.

(xIvi) What is NFC? Describe its working.

(xlvii) How is NFC different from RFID?

(xlIviii) What are the different types of NFC? Explain in detail.

(xlix) Describe the various modes of operation of NFC.

(1) List some of the popular applications of NFC.

(li) What is ISA 100.11a?

(lii) Describe the various transport services in ISA100.11a.
(liii) What are the various networks permitted in ISA100.11a?
(liv) What network topologies are allowed in ISA100.11a?
(Iv) What are the various device types in ISA100.11a?
(Ivi) List the salient features of ISA100.11a.

(Ivii) What are the security features of ISA100.11a?

(Iviii) Differentiate between an NRD and backbone device in ISA100.11a.
(lix) Differentiate between an RD and an NRD in ISA100.11a.
(Ix) What are the typical usage classes in ISA100.11a7
(Ixi) What is Z-Wave?

(Ixii) Describe the working of a Z-Wave implementation.

(Ixiii) Describe GFSK.

(Ixiv) What is Manchester encoding?

(Ixv) What is healing in the context of Z-Wave?

(Ixvi) Differentiate between Z-Wave and Zigbee.

(Ixvii) What are the different variants of Weightless? Enumerate the highlighting
features of each.
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(Ixviii) How does Weightless provide true bi-directional communication?
(Ixix) In Weightless, what topology is deployed to connect the EDs to the BS?
(Ixx) What is the typical payload size restriction of Weightless?
(Ixxi) What are the typical application domains of Sigfox?
(Ixxii) What are the general data rates associated with Sigfox?
(Ixxiii) Which encoding is used in Sigfox for transmitting messages?
(Ixxiv) How does Sigfox communicate even in the presence of jamming signals?
(Ixxv) What is the principle of spatial diversity in Sigfox?
(Ixxvi) Why is the Sigfox uplink budget different from its downlink budget?
(Ixxvii) What frequency bands are typically associated with LoRa?
(Ixxvii) Differentiate between LoRa and NB-IoT.
(Ixxix) How is the spread spectrum used for enhancing the efficiency of LoRa?
(Ixxx) What is LoRaWAN? How is it different from LoRa?
(Ixxxi) Differentiate between LoRaWAN and Sigfox.
(Ixxxii) Describe the network topology of LoRa.
(Ixxxiii) What are the modes of existence of NB-loT?
(Ixxxiv) How does NB-loT make use of existing redundant GSM/CDMA bands?
(Ixxxv) How does NB-loT ensure high data handling capacities?
(Ixxxvi) How does IEEE 802.11g achieve higher data rates?
(Ixxxvii) What is the typical data transmission rate of IEEE 802.11n7
(Ixxxviii) What is WLAN?
(Ixxxix) Differentiate between WiFi and Bluetooth.
(xc) Differentiate between WiFl and Zigbee.
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Chapter

loT Communication Technologies

Learning Outcomes

After reading this chapter, the reader will be able to:
e List common communication protocols in loT
¢ |dentify the salient features and application scope of each communication protocol
e Understand the terminologies and technologies in loT communication

e Determine the requirements associated with each of these communication
protocols in real-world solutions

e Determine the most appropriate communication protocol for their loT
implementation

8.1 Introduction

Having covered the various connectivity technologies for IoT in the previous chapter,
this chapter specifically focuses on the various intangible technologies that enable
communication between the IoT devices, networks, and remote infrastructures. We
organize the various IoT communication protocols according to their usage into
six groups: 1) Infrastructure protocols, 2) discovery protocols, 3) data protocols,
4) identification protocols, 5) device management protocols, and 6) semantic
protocols. These protocols are designed to enable one or more of the functionalities
and features associated with various IoT networks and implementations such as
routing, data management, event handling, identification, remote management, and
interoperability. Figure 8.1 outlines the distribution of these IoT communication
protocol groups [3].
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lot Infrastructure Protoclos

Infrastructure

Discovery

Interoperability
Remote management
Unique identity
Event handling
Data management
Routing
OSI layer-3 and above

Device
management

Semantic

Figure 8.1 Various loT communication protocol groups

Before delving into the various IoT communication protocols, we outline some of
the essential terms associated with IoT networks that are indirectly responsible for the
development of these communication protocols.

8.1.1 Constrained nodes

Constrained nodes is a term associated with those nodes where regular features of
Internet-communicating devices are generally not available. These drawbacks are
often attributed to the constraints of costs, size restrictions, weight restrictions, and
available power for the functioning of these nodes. The resulting restrictions of
memory and processing power often limit the usage of these nodes. For example, most
of these nodes have a severely limited layer 2 capability and often lack full connectivity
features and broadcasting capabilities. While architecting their use in networks and
networked applications, these nodes require special design considerations. The issues
of energy optimization and bandwidth utilization are dominant work areas associated
with these nodes [1].

8.1.2 Constrained networks

Constrained networks [2], [1] are those networks in which some or all of the
constituent nodes are limited in usage aspects due to the following constraints:

¢ limited processing power resulting in restrictions on achieving smaller duty
cycles.
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low data rates and low throughput.

asymmetric links and increased packet losses.

restrictions on supported packet sizes due to increased packet losses.
lack of advanced layer 3 functions such as multicasting and broadcasting.

limited temporal device reachability from outside the network due to the
inclusion of sleep states for power management in the devices.

8.1.3 Types of constrained devices

Constrained devices can be divided into three distinct classes according to the device’s
functionalities:

Class 0: These devices are severely constrained regarding resources and
capabilities. The barely feasible memory and processing available in these classes
of devices do not allow for direct communication to the Internet. Even if the
devices manage to communicate to the Internet directly, the mechanisms in place
for ensuring the security of the device are not supported at all due to the device’s
reduced capabilities. Typically, this class of device communicates to the Internet
through a gateway or a proxy.

Class 1: These devices are constrained concerning available code space and
processing power. They can primarily talk to the Internet, but cannot employ a
regular full protocol stack such as HTTP (hyper text transfer protocol). Specially
designed protocols stacks such as CoAP (common offer acceptance portal) can
be used to enable Internet-based communication with other nodes. Compared to
Class 0 devices, Class 1 devices have a comparatively increased power budget,
which is attributed to the increased functionalities it supports over Class 0
devices. This class of devices does not need a gateway for accessing the Internet
and can be armed with security features for ensuring safer communication over
the Internet.

Class 2: These devices are functionally similar to regular portable computers
such as laptops and PDAs (personal digital assistants). They have the ability
and capacity to support full protocol stacks of commonly used protocols such as
HTTP, TLS, and others. However, as compared to the previous two classes of
devices, these devices have a significantly higher power budget.

8.1.4 Low power and lossy networks

Low power and lossy networks (LLNs) typically comprise devices or nodes with
limited power, small usable memory space, and limited available processing resources
[4]. The network links between the devices in this network may be composed of
low power Wi-Fi or may be based on the IEEE 802.15.4. The physical layers of
the devices comprising LLNs are characterized by high variations in delivery rates,
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significant packet losses, and other similar behavior, which makes it quite unreliable,
and often compromises network stability. However, LLNs have found extensive
use in application areas such as industrial automation and monitoring, building
automation, smart healthcare, smart homes, logistics, environment monitoring, and
energy management.

8.2 Infrastructure Protocols

The protocols covered in this section are hugely dependent on the network and
the network infrastructure for its operation. This section covers eight popular IoT-
based communication technologies: Internet Protocol Version 6 (IPv6), Lightweight
On-demand Ad hoc Distance vector Routing Protocol-Next Generation (LOADng),
Routing Protocol for Low-Power and Lossy Networks (RPL), [Pv6 over Low-Power
Wireless Personal Area Networks (6LoWPAN), Quick UDP Internet Connection
(QUIC), micro IP (ulP), nanolP, and Content-Centric Networking (CCN).

8.2.1 Internet protocol version 6 (IPv6)

The Internet Protocol Version 6 or IPv6, as it is commonly known, is a resultant of the

developments on and beyond IPv4 due to fast depleting address ranges in IPv4. The

IPv4 was not designed to handle the needs of the future Internet systems, making it

cumbersome and wasteful to use for loT-based applications. The needs of massive

scalability and limited resources gave rise to IPv6, which was developed by the IETF

(Internet Engineering Task Force); it is also termed as the Internet version 2 [5].

Similar to IPv4, IPv6 also works on the OSI layer 3 (network layer). However,
in contrast to IPv4 (which is 32 bits long and offers around 4,294,967,296 addresses),

IPv6 has a massive logical address range (which is 128 bits long). Additional features

in IPv6 include auto-configuration features, end-to-end connectivity, inbuilt security

measures (IPSec), provision for faster routing, support for mobility, and many others.

These features not only make IPv6 practical for use in IoT but also makes it attractive

for a majority of the present-day and upcoming IoT-based deployments. Interestingly,

as IPv6 was designed entirely from scratch, it is not backward compatible; it cannot be
made to support IPv4 applications directly. Figure 8.2 shows the differences between

IPv4 and IPv6 packet structures.

Some of the important features of IPv6 are as follows:

(i) Larger Addressing Range: IPv6 has roughly four times more addressable bits
than IPv4. This magnanimous range of addresses can accommodate the address
requirements for any number of connected or massively networked devices in
the world.

(ii) Simplified Header Structure: Unlike IPv4, the IPv6 header format is quite
simple. Although much bigger than the IPv4 header, the IPv6 header’s increased
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IPv4 header IPv6 header
< 8-bits >« 8-bits >« 8-bits >« 8-bits » < 8-bits >« 8-bits >4 8-bits >« 8-bits »
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Identifier Flags| Fragment offset | Payload length | Next header|| HOP limit
TTL H Protocol H Header checksum ‘
Source address Source address
Destination address (128-bit)
Options | Padding |
Destination address
19y Addressnotation (2851
4—32-hits » < 32-bits » < 32-bits » <4 32-bits»
XXXX H xxxxHxxxx XXXX [xxxxH xxxxHxxxxHxxxx‘ Extension header
Prefix ‘ Interface ID ‘

(iii)

(vii)

Figure 8.2 Differences between IPv4 and IPv6 packets and the IPv6 address notation

size is mainly attributed to the increased number of bits needed for addressing
purposes.

End-to-End Connectivity: Unlike IPv4, the IPv6 paradigm allows for globally
unique addresses on a significantly massive scale. This scheme of addressing
enables packets from a source node using IPv6 to directly reach the destination
node without the need for network address translations en route (as is the case
with IPv4).

Auto-configuration: The configuration of addresses is automatically done in
IPv6. It supports both stateless and stateful auto-configuration methods and
can work even in the absence of DHCP (dynamic host configuration protocol)
servers. This mechanism is not possible in IPv4 without DHCP servers.

Faster Packet Forwarding: As IPv6 headers have all the seldom-used optional
fields at the end of its packet, the routing decisions by a router are taken much
faster, by checking only the first few fields of the header.

Inbuilt Security: IPv6 supports inbuilt security mechanisms (IPSec) that IPv4
does not directly support. IPv4 security measures were attained using separate
mechanisms in conjunction with IPv4. The present-day version of IPv6 has
security as an optional feature.

Anycast Support: Multiple networking interfacesare assigned the same IPv6
addresses globally; these addresses are known as anycast addresses. This
mechanism enables routers to send packets to the nearest available destination
during routing.
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(viii) Mobility Support: IPv6 has one of the essential features that is crucial for IoT
and the modern-day connected applications: mobility support. The mobility
support of IPv6 allows for mobile nodes to retain their IP addresses and remain
connected, even while changing geographic areas of operation.

(ix) Enhanced Priority Support: The priority support system in IPv6 is entirely
simplified as compared to IPv4. The use of traffic classes and flow labels
determine the most efficient routing paths of packets for the routers.

(x) Extensibility of Headers: The options part of an IPv6 header can be extended by
adding more information to it; it is not limited in size. Some applications may
require quite a large options field, which may be comparable to the size of the
packet itself.

IPv6 Addressing

The IPv6 addressing scheme has a crucial component: the interface identifier (IID). IID
is made up of the last 64 bits (out of the 128 bits) in the IPv6 address. IPv6 incorporates
the MAC (media access control) address of the system for IID generation. As a device’s
MAC address is considered as its hardware footprint and is globally unique, the use
of MAC makes IID unique too. The IID is auto-configured by a host using IEEE’s
extended unique identifier (EUI-64) format. Figure 8.2 illustrates the IPv6 addressing
notation. IPv6 supports three types of unicasting: Global unicast address (GUA), link
local address (LL), and unique local address (ULA).

The GUA is synonymous with IPv4’s static addresses (public IP). It is globally
identifiable and uniquely addressable. The global routing prefix is designated by the
first (most significant) 48 bits. The first three bits of this routing prefix is always set
to 001; these three bits are also the most significant bits of this prefix. In contrast,
LLs are auto-configured IPv6 addresses, whose communication is limited to within a
network segment only (under a gateway or a router). The first 16 bits of LL addresses
are fixed and equals FE80 in hexadecimal. The subsequent 48 bits are set to 0. As
these addresses are not routable, the LLs” scope is restricted to within the operational
purview of a router or a gateway. Finally, ULAs are locally global and unique. They
are meant for use within local networks only. Packets from ULAs are not routed to
the Internet. The first half of an ULA is divided into four parts and the last half is
considered as a whole. The four parts of the first part are the following: Prefix, local
bit, global ID, and subnet ID, whereas the last half contains the IID. ULA’s prefix is
always assigned as FD in hexadecimal (1111 110 in binary). If the least significant bit
in this prefix is assigned as 1, it signifies locally assigned addresses.

IPv6 Address Assignment

Any node in an IPv6 network is capable of auto-configuring its unique LL address.
Upon assigning an IPv6 address to itself, the node becomes part of many multicast
groups that are responsible for any communication within that segment of the
network. The node then sends a neighbor solicitation message to all its IPv6 addresses.
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If no reply is received in response to the neighbor solicitation message, the node
assumes that there is no duplicate address in that segment, and its address is locally
unique. This mechanism is known as duplicate address detection (DAD) in IPv6. Post
DAD, the node configures the IPv6 address to all its interfaces and then sends out
neighbor advertisements informing its neighbors about the address assignment of its
interfaces. This step completes the IPv6 address assignment of a node.

IPv6 Communication

An IPv6 configured node starts by sending a router solicitation message to its
network segment; this message is essentially a multicast packet. It helps the node
in determining the presence of routers in its network segment or path. Upon receiving
the solicitation message, a router responds to the node by advertising its presence on
that link. Once discovered, the router is then set as that node’s default gateway. In case
the selected gateway is made unavailable due to any reason, a new default gateway is
selected using the previous steps.

If a router upon receiving a solicitation message determines that it may not be the
best option for serving as the node’s gateway, the router sends a redirect message
to the node informing it about the availability of a better router (which can act as a
gateway) within its next hop.

IPv6 Mobility

A mobile IPv6 node located within its home link uses its home address for routing all
communication to it. However, when the mobile IPv6 node goes beyond its home
link, it has to first connect to a foreign link for enabling communication. A new
IPv6 address is acquired from the foreign link, which is also known as the mobile
node’s care-of-address (CoA). The mobile node now binds its CoA to its home agent (a
router/gateway to which the node was registered in its home segment). This binding
between the CoA and the home agent is done by establishing a tunnel between them.
Whenever the node’s home agent receives a correspondence message, it is forwarded
to the mobile node’s CoA over the established tunnel. Upon receiving the message
from a correspondent node, the mobile node may choose not to reply through its
home agent; it can communicate directly to the correspondent node by setting its
home address in the packet’s source address field. This mechanism is known as route
optimization.

Check yourself

IPv6 header structure, IPv6 extension header types, Neighbor discovery using
IPv6, Mobility in IPv6
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8.2.2 LOADng

LOADng stands for Lightweight On-demand Ad hoc Distance vector Routing
Protocol — Next Generation. This protocol is inspired by the AODV (Ad hoc On-
Demand Distance Vector) routing protocol, which is primarily a distance vector
routing scheme [6]. Figure 8.3 illustrates the LOADng operation. Unlike AODV,
LOADng was developed as a reactive protocol by taking into consideration the
challenges of Mobile Ad hoc Networks (MANETs). The LOADng process starts
with the initiation of the action of route discovery by a LOADng router through
the generation of route requests (RREQs), as illustrated in Figure 8.3(a). The router
forwards packets to its nearest connected neighbors, each of which again forwards
the packets to their one-hop neighbors. This process is continued until the intended
destination is reached. Upon receiving the RREQ packet, the destination sends back
a route reply (RREP) packet toward the RREQ originating router (Figure 8.3(b)). In
continuation, route error (RERR) messages are generated and sent to the origin router
if a route is found to be down between the origin and the destination.
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Figure 8.3 The LOADng routing mechanism

To summarize the operation of LOADng, a router performs the following tasks:

¢ Bi-directional network route discovery between a source and a destination.

e Route establishment and route maintenance between the source and the
destination only when data is to be sent through the route.
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* Generation of control and signaling traffic in the network only when data is to
be transferred or a route to the destination is down.

Operational Principle

A LOADnNg router transmits an RREQ over all of its LOADng interfaces whenever
a data packet from a local data source is received by it for transmission to a
destination whose routing entry (a tuple) is not present with it. Figure 8.3(a) shows
the flooding operation, where each LOADng’s forward interfaces are numbered
separately. Considering that it takes three hops to discover the destination from the
source LOADng node, the individual forward interfaces are numbered from 1 to 3.
The RREQ encodes the destination address received from the local source through the
packet. The routing set managing the routing entries at each LOADng router updates
or inserts an entry (with information of the originating address, and the immediate
neighbor LOADng router) upon receiving an RREQ. This also works to enable a
record of the reverse route between the source and destination (Figure 8.3(b)). The
received RREQ initiates the checking of the destination address so that if the packets
are intended for a local interface of a LOADng router, an RREP is sent back using
the reverse route. In case the destination address is not local, it is forwarded to other
LOADng interfaces in a hop-by-hop unicast manner through flooding.

When an RREP is received, it is recorded in the routing entry as the forward
path toward the origin of the RREP along with the LOADng router that forwarded
the message. The route metrics are additionally updated using RREQ and RREP
messages. The LOADng determines the desired metric to be used (Figure 8.3(c)).

Check yourself

AODV routing, MANETSs

8.2.3 RPL

RPL stands for routing protocol for low-power and lossy networks (LLN) and is
designed for IPv6 routing. It follows a distance vector based routing mechanism [7].
The protocol aims to achieve a destination-oriented directed acyclic graph (DODAG).
The network DODAG is formed based on an objective function and a set of network
metrics. The DODAG built by RPL is a logical routing topology which is built over a
physical network. The logical topology is built using specific criteria set by network
administrators. The most optimum path (best path) is calculated from the objective
function, a set of metrics, and constraints. The metrics in RPL may be expected
transmission values (ETX), path latencies, and others. Similarly, the constraints in
RPL include encryption of links, the presence of battery-operated nodes, and others.
In general, the metrics are either minimized or maximized, whereas the constraints
need to be minimized. The objective function dictates the rules for the formation of the
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DODAG. Interestingly, in RPL, a single node in the mesh network may have multiple
objective functions. The primary reason for this is attributed to the presence of
different network traffic path quality requirements that need separate addressal within
the same mesh network. Using RPL, a node within a network can simultaneously
join more than one RPL instance (graphs). This enables RPL to support QoS-aware
and constraint-based routing. An RPL node can also simultaneously take on multiple
network roles: leaf node, router, and others. Figure 8.4 shows the RPL mechanism
with different intra-mesh addressing arising due to different requirements of network
and objective functions. The RPL border router, which is also the RPL root (in the
illustrated figure), handles the intra-mesh addressing.

Internet

@T%

RPL nodes
e = End host

LLN border router

Low-power & lossy
network (LLN)

Figure 8.4 RPL information flow mechanism with different intra-mesh addressing and paths

RPL Instances

There are two instances associated with RPL: global and local. Global RPL instances
are characterized by coordinated behavior and the possibility of the presence of more
than one DODAG; they have a long lifetime. In contrast, local RPL instances are
characterized by single DODAGs. The local RPL DODAG's root is associated directly
with the DODAG-ID. The RPL instance ID is collaboratively and unilaterally allocated;
it is divided between global and local RPL instances. Even the RPL control and data



IoT Communication Technologies 173

messages are tagged with their corresponding RPL instances using RPL instance IDs
to avoid any ambiguity in operations.

Check yourself

Directed acyclic graphs (DAG), destination oriented directed acyclic graph
(DODAG), vector based routing

8.2.4 6LoWPAN

6LoWPAN allows low power and constrained devices/nodes to connect to the
Internet. 6LOWPAN stands for IPv6 over low power wireless personal area networks.
As the name suggests, it enables IPv6 support for WPANs, which are limited
concerning power, communication range, memory, and throughput [8]. 6LoWPAN
is designed to be operational and straightforward over low-cost systems, and extend
IPv6 networking capabilities to IEEE 802.15.4-based networks. Popular uses of this
protocol are associated with smart grids, M2M applications, and IoT. 6LoWPAN
allows constrained IEEE 802.15.4 devices to accommodate 128-bit long IPv6 addresses.
This is achieved through header compression, which allows the protocol to compress
and retro-fit IPv6 packets to the IEEE 802.15.4 packet format.

6LoWPAN networks can consist of both limited capability (concerning throughput,
processing, memory, range) devices—called reduced function devices (RFD)—and
devices with significantly better capabilities, called full function devices (FFD). The
RFDs are so constrained that for accessing IP-based networks, they have to forward
their data to FFDs in their personal area network (PAN). The FFDs yet again forward
the forwarded data from the RFD to a 6LoWPAN gateway in a multi-hop manner. The
gateway connects the packet to the IPv6 domain in the communication network. From
here on, the packet is forwarded to the destination IP-enabled node/device using
regular IPv6-based networking.

6LoWPAN Stack

The 6LoWPAN stack rests on top of the IEEE 802.15.4 PHY and MAC layers, which are
generally associated with low rate wireless personal area networks (LR-WPAN). The
choice of IEEE 802.15.4 for the base layer makes 6LoWPAN suitable for low power
LR-WPANSs. The network layer in 6LOWPAN enabled devices (layer 3) serves as
an adaptation layer for extending IPv6 capabilities to IEEE 802.15.4 based devices.
Figure 8.5 shows the 6LoWPAN packet structure.

e PHY and MAC layers: The PHY layer consists of 27 wireless channels, each
having their separate frequency band and varying data rates. The MAC layer
defines the means and methods of accessing the defined channels and use them
for communication. The LoOWPAN MAC layer is characterized by the following:
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Figure 8.5 6LoWPAN packet structure

(i) Beaconing tasks for device identification. These tasks include both beacon
generation and beacon synchronization.

(if) Channel access control is provided by CSMA /CA.

(iii) PAN membership control functions. Membership functions include
association and dissociation tasks.

Adaptation layer: As mentioned previously, 6LOWPAN accommodates and
retro-fits the IPv6 packet to the IEEE 802.15.4 packet format. The challenge
presented to 6LOWPAN is evident from the fact that IPv6 requires a minimum of
1280 octets for transmission. In contrast, IEEE 802.15.4 can support a maximum
of only 1016 octets (127 bytes): 25 octets for frame overheads and 102 octets for
payload. Additional inclusion of options in the IEEE 802.15.4 frame, such as
security in the headers, leaves only 81 octets for IPv6 packets to use, which is
insufficient. Even out of these available 81 octets, the IPv6 header reserves 40
octets for itself, 8 octets for UDP (user datagram protocol), and 20 octets for TCP
(transmission control protocol), which are added in the upper layers. This leaves
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only 13 octets available at the disposal of the upper layers and the data itself. The
6LoWPAN adaptation layer between the MAC and the network layers takes care
of these issues through the use of header compression, packet forwarding, and
packet fragmentation.

< 64-bits »<4—16-bits —»

XXXX XXXX XXXX XXXX XXXX

Extended -

Globally unique Pan-specific

Figure 8.6 6LoWPAN address format

¢ Address Format: The 6LoOWPAN address format is made up of two parts: 1) the
short (16-bit) address and 2) the extended (64-bit) address. The short address is
PAN specific and is used for identifying devices within a PAN only, which makes
its operational scope highly restricted and valid within a local network only. In
contrast, the globally unique extended address is valid globally and can be used
to identify devices, even outside the local network uniquely. Figure 8.6 illustrates
the 6LOWPAN address format.

Encapsulation Header Formats

The encapsulation headers, as the name suggests, defines methods and means by
which 6LoWPAN encapsulates the IPv6 payloads within IEEE 802.15.4 frames. Figure
8.7 outlines the various header types associated with 6LoWPAN. 6LoWPAN has
three encapsulation header types associated with it: dispatch, mesh addressing, and
fragmentation. This system is similar to the IPv6 extension headers. The headers are
identified by a header type field placed in front of the headers. The dispatch header
type is used to initiate communication between a node and a destination node. The
mesh addressing header is used for multi-hop forwarding by providing support for
layer two forwarding of messages. Finally, the fragmentation header is used to fit large
payloads to the IEEE 802.15.4 frame size.
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Figure 8.7 6LoWPAN header structures

8.25 QUIC

Quick UDP internet connections (QUIC) was developed (and still undergoing
developments) to work as a low-latency and independent TCP connection [9]. The
aim behind the development of this protocol is to achieve a highly reduced latency
(almost zero round-trip-time) communication scheme with stream and multiplexing
support like the SPDY protocol developed by Google. Figure 8.8 illustrates the
differences between the positions of the various functionalities in QUIC and regular
HTTP protocols.

Hitp/2 QuIC

Htpp/2 on QUIC

QuIC

Http/2

| LRIGE
TLS TLS key negotiation
I
_
IP IP

Figure 8.8 Differences between HTTP and QUIC protocols
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The connection latency in QUIC is reduced by reducing the number of round trips
incurred during connection establishment in TCP, such as those for handshaking,
data requests, and encryption exchanges. This is achieved by including session
negotiation information in the initial packet itself. The QUIC servers further enhance
this compression by publishing a static configuration record corresponding to the
connections. Clients synchronize connection information through cookies received
from QUIC servers.

<4«——————— TCPrequest

Data transfer d b

Htpp/2 server Htpp/2 client

e <« —  UDPrequest

Data transfer
Quic server Quic client

Figure 8.9 Differences between stream of packets over HTTP and QUIC protocols

QUIC uses advanced techniques such as packet pacing and proactive speculative
retransmission to avoid congestion. Proactive speculative retransmission sends copies
of most essential packets, which contain initial negotiation for encryption and error
correction. The additional speedup is achieved using compression of data such as
headers, which are generally redundant and repetitive. This feature enables QUIC
connections to make multiple secured requests within a single congestion window,
which would not have been possible using TCP. Figure 8.9 shows the difference in
regular streaming of packets over HTTP and the improved performance of HTTP-
over-QUIC during packet streaming. The use of UDP and multiple transmission
paths significantly speeds up the performance of streaming over QUIC as compared
to regular HTTP-based packet streaming.

Check yourself
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8.2.6 Micro internet protocol (ulP)

The micro-IP (ulP) protocol is developed to extend the TCP/IP protocol stack
capabilities to 8-bit and 16-bit microcontrollers [10]. ulP is an open-source protocol
developed by the Swedish Institute of Computer Science (SICS). The low code space
and memory requirements of ulP make it significantly useful for networking low-cost
and low-power embedded systems. ulP now features a full IPv6 stack, which was
developed jointly by Atmel, Cisco, and SICS. Figure 8.10 shows the micro-IP protocol
stack.

ulP
Socket API

love LoOWPAN

Figure 8.10 The ulP protocol

The main highlighting features of ulP, which makes it stand out from other IP-
based protocols are as follows:

The software interface of ulP does not require any operating system for working,
making it quite easy to integrate with small computers.

When called in a timed loop within the embedded system, it also manages all the
network behavior and connection retries.

The hardware driver for the ulP is responsible for packet builds, packet sending;
it may also be used for response reception for the packets sent.

ulP uses a minimal packet buffer (packet buffer = 1) in contrast to normal IP
protocol stacks. This makes ulP suitable for low-power operations.

The packet buffer is used in a half-duplex manner so that the same buffer can be
repurposed for use in transmission and reception.

Unlike regular TCP/IP protocols, ulP does not store data in buffers in case there
is a need for retransmission. In the event of retransmission of packets, the
previous data has to be reproduced and is recalled from the application code
itself.

Unlike conventional IP-based protocols, where a task is dedicated for each
connection to a distant networked device/node, ulP stores connections in an
array, and serves each connection sequentially through subroutine calls to the
application for sending data.
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8.2.7 Nano internet protocol (nanolP)

The nano Internet protocol or NanolP was designed to work with embedded
devices, specifically sensor devices, by enabling Internetworking amongst these
devices [11]. The concept of nanolP enables wireless networking among low-power
sensor devices, which is address-based, without incurring the overheads associated
with the TCP/IP protocol stacks and mechanisms. Figure 8.11 shows the nano-
IP TCP and UDP protocol stacks. The nanolP is made up of two two transport
mechanisms: nanoUDP and nanoTCP. These two transport mechanisms are analogous
to the conventional UDP (unreliable transport protocol) and TCP (reliable transport
protocol), respectively. NanoTCP even supports packet retransmissions and flow
control, just like regular TCP. Instead of logical addressing, nanolP uses hardware
(MAC) addresses of devices for networking. The supported port range is 256 each
for source and destination nodes, which is the allowable limit for an 8-bit port
representation. With the advent of the nanolP, several associated protocols have also
come up, such as nHTTP and nPing.

Nano-TCP
4+——8hits———» «——8-hits———Pp4¢———8-hits—>»
Flags (FIN | SYN | ACK) Length
Sequence
Acknowledgment
Nano-UDP

4+——8bits———P» «——Bbits— —P&—8bits— >

Payload

Destination port

Figure 8.11 The nano-IP TCP and UDP protocols
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Check yourself

nHTTP working, nPing working

8.2.8 Content-centric networking (CCN)

The content-centric networking (CCN) paradigm [12] is more commonly known as
information-centric networking (ICN). Other names associated with this paradigm
are named data networking (NDN) and publish-subscribe networking (PSIRP). CCN
enables communication by defining and adhering to the concept of uniquely named
data. This networking paradigm, unlike conventional networking approaches, is
independent of location, application, and storage requirements. CCN is anchorless,
which enables mobility and focuses on in-network caching for operations. These
measures extend the features of data and communication efficiency, enhances
scalability, and robustness, even in constrained and challenged networks. Figure 8.12
shows the operation of a typical CCN paradigm. Users can access cached content from
multiple content generating sources by accessing data from trusted content servers,
which also enable security of the data (not the communication channel).

Cache
Content l\‘

000000 E :

Untrusted
Content server

Trusted content
server

Figure 8.12 Content centric networking operation and its scope
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In CCN, a forwarder checks a named request through hierarchical prefix matching
(typically, longest prefix match) with a forwarding information base (FIB). A binary
comparison is performed for prefix matching. The CCN request is a hierarchical
sequence of network path segments. The FIB matching is then used to forward the
named request to the appropriate network or network segment, which can respond
to the issued request. The forwarder has to additionally determine the reverse path
from the responder to the requester. All these operations are carried out without
specifically binding a request to a network end point. The FIB at each CCN router
stores information in a table, which is updated by a routing mechanism. Although
the path segments and names are theoretically unbounded, they are restricted by the
routing protocol being used for practical reasons.

Check yourself

Examples of publish—subscribe networking (PSIRP) and named data networking
(NDN)

Points to ponder

A sensor node is made up of a combination of sensor/sensors, a processor unit,
a radio unit, and a power unit.

8.3 Discovery Protocols

The protocols and paradigms covered in this section are largely focused on the
discovery of services and logical addresses. We cover three interesting discovery
protocols in this section: 1) Physical web, 2) mDNS, and 3) universal plug and play
(UPnP).

8.3.1 Physical web

The physical web was designed to provide its users with the ability to interact with
physical objects and locations seamlessly. The information to the users can be in the
form of regular web pages or even dynamic web applications [13].

Some examples in the context of the physical web include user-friendly buses,
which can alert its users about various route-related information, smart home
appliances that can teach new users how to use them, self-diagnostic robots and
machinery in industries, smart pet tags which can provide information about the pet’s
owner and its home location, and many more. Figure 8.13 shows the outline of a
physical web model. The main takeaway of this concept is the seamless integration of
several standalone smart systems through the web to provide information on demand
to its users.



182 Introduction to Internet of Things

_v
)
o
553
Qo
>
S
N 5
s .
=
=
&l

P
/‘7

(

Figure 8.13 The physical web model

The physical web broadcasts a list of URLs within a short radius around it so that
anyone in range can see the available URLs and interact with them. This paradigm
is primarily built upon Bluetooth low energy (BLE), which is used to broadcast the
content as beacons. The primary requirement of any supporting beacons to function in
the physical web and broadcast URLs is their ability to support the Eddystone protocol
specification. BLE was primarily chosen for the physical web due to its ubiquity,
efficiency, and extended battery life of several years.

URLs are one of the core principles of the web and can be either flexible or
decentralized. These URLs allow any application to have a presence on the web
and enables the digital presence of an object or thing. As of now, physical web
deployments have been undertaken in public spaces, and any device with a physical
web scanner can detect these URLs. The use of URLs extends the benefits of the
web security model to the physical web. Features such as secured login, secure
communication over HTTPS (HTTP over secure socket layer), domain obfuscation,
and others can be easily integrated with the physical web.

Check yourself
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8.3.2 Multicast DNS (mDNS)

The multicast domain name system or mDNS is explicitly designed for small networks
and is analogous to regular DNS (domain name system), which is tasked with the
resolution of IP addresses [14]. Interestingly, this system is free from any local name
server from an operational point of view. However, it can work with regular DNS
systems as it is a zero-configuration service. It uses multicast UDP for resolving host
names. An mDNS client initiates a multicast query on the IP network, which asks
a remote host to identify itself. The mDNS cache in the associated network subnet
is updated with the multicast response received from the target. A node can give
up its claim to a domain name by setting the time-to-live (TTL) field to zero in its
response packet to an mDNS query. Some popular implementations of mDNS include
the Apple Bonjour service and the networked printer discovery service in Windows
10 operating system from Microsoft. The main drawback of mDNS is its host name
resolution reach to a top-level domain only.

Check yourself

DNS, DNS query, DNS response

8.3.3 Universal plug and play (UPnP)

Universal plug and play or UPnP encompasses a set of networking protocols aimed
at service discovery and the establishment of functional network-based data sharing
and communication services [15]. In brief, it is mainly used for enabling dynamic
connections of devices to computing platforms. This paradigm is termed plug and
play as the devices attaching to a computer network can configure themselves and
update their hosts about their working configurations over a network. The UPnP
is backed by a forum of many consumer electronics vendors and industries and is
managed by the Open Connectivity Foundation. As UPnP is primarily designed
for non-enterprise devices, its scope includes the discovery and intercommunication
between networked devices such as mobiles, printers, access points, gateways,
televisions, and other regular commercial systems enabled with IP capabilities.
Figure 8.14 outlines the underlying UPnP stack and the relative location of the various
functionalities in the stack.

The present-day UPnP has been designed to run on IP enabled networks, and
makes use of the networking services of HTTP, XML, and SOAP for data transfer,
device descriptions, and event generation and monitoring. UPnP enables UDP-based
HTTP device search requests and advertisements using multicasting. The responses
to device requests are necessarily unicast. UPnP advertisements use UDP port 1900
for multicasting. The unnecessary overheads and traffic generated by UPnP systems
and their multicast behavior make them unsuitable for enterprise systems. The main
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Figure 8.14 An outline of the basic UPnP stack

reason for this is because, on a large scale, the cost of this solution would be infeasible
from an operational point of view.

Check yourself
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8.4 Data Protocols

The protocols covered in this section are directly related to access, storage, and
distribution of data through the IoT network. The data may be transferred between
clients and servers as well as between brokers and subscribers in the IoT ecosystem.
This section is further divided into seven parts: 1) MQTT, 2) MQTT-SN, 3) CoAP, 4)
AMQP, 5) XMPP, 6) REST, and 7) websockets.
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8.41 MQTT

Message queue telemetry transport or MQTT is a simple, lightweight publish—
subscribe protocol, designed mainly for messaging in constrained devices and
networks [16]. It provides a one-to-many distribution of messages and is payload-
content agnostic. MQTT works reliably and flawlessly over high latency and limited
bandwidth of unreliable networks without the need for significant device resources
and device power. Figure 8.15 shows the working of MQTT. The MQTT paradigm
consists of numerous clients connecting to a server; this server is referred to as a
broker. The clients can have the roles of information publishers (sending messages
to the broker) or information subscribers (retrieving messages from the broker). This
allows MQTT to be largely decoupled from the applications being used with MQTT.
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Thermometer ' @
Control panel
B ] ,
Microwave S Lights =
o
/,/’//’/’/’/lS | \
Tablet e . @»
Television ,\ Smart
Appliances home
Publisher Broker Subscriber

Figure 8.15 MQTT operation and its stakeholders

Operational Principle

MQTT is built upon the principles of hierarchical topics and works on TCP for
communication over the network. Brokers receive new messages in the form of
topics from publishers. A publisher first sends a control message along with the
data message. Once updated in the broker, the broker distributes this topic’s content
to all the subscribers of that topic for which the new message has arrived. This
paradigm enables publishers and subscribers to be free from any considerations of
the address and ports of multiple destinations/subscribers or network considerations
of the subscribers, and vice versa. In the absence of any subscribers of a topic, a broker
normally discards messages received for that topic unless specified by the publisher
otherwise. This feature removes data redundancies and ensures that maximally
updated information is provided to the subscribers. It also reduces the requirements
of storage at the broker. The publishers can set up default messages for subscribers in
agreement with the broker if the publisher’s connection is abruptly broken with the
broker. This arrangement is referred to as the last will and testament feature of MQTT.
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Multiple brokers can communicate in order to connect to a subscriber’s topic if it is
not present directly with the subscriber’s primary broker.

MQTT’s control message sizes can range between 2 bytes to 256 megabytes of data,
with a fixed header size of 2 bytes. This enables the MQTT to reduce network traffic
significantly. The connection credentials in MQTT are unencrypted and often sent as
plain text. The responsibility of protecting the connection lies with the underlying
TCP layer. The MQTT protocol provides support for 14 different message types,
which range from connect/disconnect operations to acknowledgments of data. The
following are the standard MQTT message types:

(i) CONNECT: Publisher/subscriber request to connect to the broker.

(i) CONNACK: Acknowledgment after successful connection between publisher/
subscriber and broker.

(iii) PUBLISH: Message published by a publisher to a broker or a broker to a
subscriber.

(iv) PUBACK: Acknowledgment of the successful publishing operation.

(v) PUBREC: Assured delivery component message upon successfully receiving
publish.

(vi) PUBREL: Assured delivery component message upon successfully receiving
publish release signal.

(vii) PUBCOMP: Assured delivery component message upon successfully receiving
publish completion.

(viii) SUBSCRIBE: Subscription request to a broker from a subscriber.

(ix) SUBACK: Acknowledgment of successful subscribe operation.

(x) UNSUBSCRIBE: Request for unsubscribing from a topic.

(xi) UNSUBACK: Acknowledgment of successful unsubscribe operation.
(xii) PINGREQ: Ping request message.

(xiii) PINGRESP: Ping response message.

(xiv) DISCONNECT: Message for publisher/subscriber disconnecting from the
broker.

MQTT Message Delivery QoS

MQTT’s features and content delivery mechanisms are primarily designed for
message transmission over constrained networks and through constrained devices.
However, MQTT supports three QoS features:

* At most once: This is a best-effort delivery service and is largely dependent on
the best delivery efforts of the TCP /IP network on which the MQTT is supported.
It may result in message duplication or loss.
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* At least once: This delivery service guarantees assured delivery of messages.
However, message redundancy through duplication is a possibility.

¢ Exactly once: This delivery service guarantees assured message delivery.
Additionally, this service also prevents message duplication.
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MQTT clients and servers available online, implementing MQTT

8.42 MQTT-SN

The primary MQTT protocols heavily inspire MQTT for sensor networks or MQTT-
SN; however, the MQTT-SN is robust enough to handle the requirements and
challenges of wireless communications networks in sensor networks [17]. Typical
features of MQTT-SN include low bandwidth usage, ability to operate under high
link failure conditions; it is suitable for low-power, low-cost constrained nodes and
networks. The major differences between the original MQTT and MQTT-SN include
the following:

* The CONNECT message types are broken into three messages in which two are
optional and are tasked with the communication of the testament message and
testament topic to the broker.

* The topic name in the PUBLISH messages are replaced by topic identifiers, which
are only 2 bytes long. This reduces the traffic generated from the protocol and
enables the protocol to operate over bandwidth-constrained networks.

¢ A separate mechanism is present for topic name registration with the broker in
MQTT-SN. After a topic identifier is generated for the topic name, the identifier
is informed to the publisher/subscribers. This mechanism also supports the
reverse pathway.

¢ In special cases in MQTT-SN, pre-defined topic identifiers are present that need
no registration mechanism. The mapping of topic names and identifiers are
known in advance to the broker as well as the publishers/subscribers.

® The presence of a special discovery process is used to link the
publisher/subscriber to the operational broker’s network address in the absence
of a preconfigured broker address.

¢ The subscriptions to a topic, Will topic, and Will message are persistentin MQTT-
SN. The publishers/subscribers can modify their Will messages during a session.

¢ Sleeping publishers/subscribers are supported by a keep-alive procedure, which
is offline, and which helps buffer the messages intended for them in the broker
until they wake up. This feature of MQTT-SN is not present in regular MQTT.
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Figure 8.16 shows the two gateway types in MQTT-SN: 1) the transparent gateway and
2) the aggregating gateway. The MQTT-SN converts/translates MQTT and MQTT-
SN traffic by acting as a bridge between these two network types. The transparent
gateway (Figure 8.16(a)) creates as many connections to the MQTT broker as there are
MQTT-SN nodes within its operational purview; whereas the aggregating gateway
(Figure 8.16(b)) creates a single connection to the MQTT broker, irrespective of the
number of MQTT-SN nodes under it.
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Figure 8.16 The MQTT-SN types

8.43 CoAP

The constrained application protocol, or CoAP as it is more popularly known, is
designed for use as a web transfer protocol in constrained devices and networks,
which are typically low power and lossy [18]. The constrained devices typically have
minimal RAM and an 8-bit processor at most. CoAP can efficiently work on such
devices, even when these devices are connected to highly lossy networks with high
packet loss, high error rates, and bandwidth in the range of kilobits.

CoAP follows a request-response paradigm for communication over these lossy
networks. Additional highlights of this protocol include support for service discovery,
resource discovery, URIs (uniform resource identifier), Internet media handling
support, easy HTTP integration, and multicasting support, that too while maintaining
low overheads. Typically, COAP implementations can act as both clients and servers
(not simultaneously). A CoAP client’s request signifies a request for action from
an identified resource on a server, which is similar to HTTP. The response sent by
the server in the form of a response code can contain resource representations as
well. However, CoAP interchanges are asynchronous and datagram-oriented over
UDP. Figure 8.17 shows the placement of CoAP in a protocol stack. Packet traffic
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collisions are handled by a logical message layer incorporating the exponential back-
off mechanism for providing reliability. The reliability feature of CoAP is optional. The
two seemingly distinct layers of messaging (which handle the UDP and asynchronous
messaging) and request-response (which handles the connection establishment) are

part of the CoAP header.
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Figure 8.17 Position of the CoAP protocol in a stack

CoAP Features
The CoAP is characterized by the following main features:

(vii)

It has suitable web protocol for integrating IoT and M2M services in constrained
environments with the Internet.

CoAP enables UDP binding and provides reliability concerning unicast as well
as multicast requests.

Message exchanges between end points in the network or between nodes is
asynchronous.

The limited packet header incurs significantly lower overheads. This also results
in less complexity and processing requirements for parsing of packets.

CoAP has provisions for URI and other content-type identifier support. CoAP
additionally provides DTLS (datagram transport layer security) binding.

It has a straightforward proxy mechanism and caching capabilities, which is
responsible for overcoming the effects of the lossy network without putting extra
constraints on the low-power devices. The caching is based on the concept of the
maximum age of packets.

The protocol provides a stateless mapping with HTTP. The server or receiving
node does not retain information about the source of the message; rather, it is
expected that the message packet carries that information with it. This enables
CoAP’s easy and uniform integration with HTTP.
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CoAP Messaging

CoAP defines four messaging types: 1) Confirmable (CON), 2) non-confirmable
(NON), 3) acknowledgment (ACK), and 4) reset. The method codes and the response
codes are included in the messages being carried. These codes determine whether the
message is a request message or a response message. Requests are typically carried
in confirmable and non-confirmable message types. However, responses are carried
in both of these message types as well as with the acknowledgment message. The
transmission of responses with acknowledgment messages is known as piggybacking
and is quite synonymous with CoAP.

Operational Principle

CoAP is built upon the exchange of messages between two or more UDP end
points. Options and payload follow the compact 4-byte binary header in CoAP. This
arrangement is typical of request and response messages of CoAP. A 2-byte message
ID is used with each message to detect duplicates.

Whenever a message is marked as a CON message, it signifies that the message
is reliable. In the event of delivery failure of a CON message, subsequent retries are
attempted with exponential back-off until the receiving end point receives an ACK
with the same message ID (Figure 8.18). In case the recipient does not have the
resources to process the CON message, a RESET message is sent to the originator of
the CON message instead of an ACK message.

Client Server Client Server Client Server
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CON—» § & —CON— | 3 ——CON—»,
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Figure 8.18 Various CoAP response-response models. (A): CON and NON messages, (B):
Piggyback messages, and (C): Separate messages

Specific messages, which do not require reliable message transmission (such as
rapid temporal readings of the environment from a sensor node), are sent as NON
messages. NON messages do not receive an acknowledgment (Figure 8.18). However,
the message ID associated with it prevents duplication. NON messages elucidate a
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NON or CON response from a server, based on the settings and semantics of the
application. If the receiver of the NON cannot process the message, a RESET message
is sent to the originator of the NON message.

If a server fails to respond immediately to a request received by it in a
CON message, an empty ACK response is sent to the requester to stop request
retransmissions. Whenever the response is ready, a new CON message is used to
respond to the previous request by the client. Here, the client then has to respond to
the server using an ACK message. This scheme is known as a separate response (Figure
8.18).

The multicast support of CoAP over UDP results in multicast CoAP requests. The
request and response semantics of CoAP is carried in the form of method and response
codes in the CoAP messages itself. The options field of CoAP carries information
about the requests and responses such as URI and MIME (multipurpose Internet mail
extensions). The concept of tokens is used to match requests with their corresponding
responses. The need for a token mechanism arose due to the asynchronous nature
of the CoAP messaging. Similar to HTTP, CoAP uses GET, PUT, POST, and DELETE
methods.

Check yourself

CoAP header fields, CoAP packet size

8.44 AMQP

AMQP or the advanced message queuing protocol is an open standard middleware
at the application layer developed for message-oriented operations [19]. It tries to
bring about the concept of interoperability between clients and the server by enabling
cross-vendor implementations. Figure 8.19 shows the various components of AMQP
and their relationships. An AMQP broker is tasked with maintaining message queues
between various subscribers and publishers. The protocol is armed with features of
message orientation, queuing, reliability, security, and routing. Both request-response
and publish-subscribe methods are supported. AMQP is considered as a wire-level
protocol. Here, the data format description is released on the network as a stream
of bytes. This description allows AMQP to connect to anyone who can interpret and
create messages in the same format. It also results in a level of interoperability where
anyone with compliant or supporting means can make use of this protocol without
any need for a specific programming language.

AMQP Features

AMQP is built for the underlying TCP and is designed to support a variety of
messaging applications efficiently. It provides a wide variety of features such as
flow-controlled communication, message-oriented communication, message delivery
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Figure 8.19 AMQP components and their relationships

guarantees (at most once, at least once, and exactly once), authentication support, and
an optional SSL or TLS based encryption support. The AMQP is specified across four
layers: 1) type system, 2) process to process asynchronous and symmetric message
transfer protocol, 3) extensible message format, and 4) set of extensible messaging
capabilities. In continuation, the primary unit of data in AMQP is referred to as a
frame. These frames are responsible for the initiation of connections, termination of
connections, and control of messages between two peers using AMQP. There are nine
frame types in AMQP:

(i)  Open: responsible for opening the connection between peers.

(ii) Begin: responsible for setup and control of messaging sessions between peers.
(iif) Attach: responsible for link attachment.

(iv) Transfer: responsible for message transfer over the link.

(v) Flow: responsible for updating the flow control state.

(vi) Disposition: responsible for updating of transfer state.

(vii) Detach: responsible for detachment of link between two peers.

(viii) End: responsible for truncation of a session.

(ix) Close: responsible for closing/ending a connection.

Operational Principle

The workings of AMQP revolve around the link protocol. A new link is initiated
between peers that need to exchange messages by sending an ATTACH frame. A
DETACH frame terminates the link between peers. Once a link is established,
unidirectional messages are sent using the TRANSFER frame. Flow control is
maintained by using a credit-based flow-control scheme, which protects a process
from being overloaded by voluminous messages. Every message transfer state has
to be mutually settled by both the sender and the receiver of the message. This
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settlement scheme ensures reliability measures for messaging in AMQP. Any change
in state and settlement of transfer is notified using a DISPOSITION frame. This allows
for the implementation of various reliability guarantees. A session can accommodate
multiple links in both directions. Unlike the link, a session is bidirectional and
sequential. Upon initiation with a BEGIN frame, a session enables a conversation
between peers. The session is terminated using an END frame. Multiple logically
independent sessions can be multiplexed between peers over a connection. The OPEN
frame initiates a connection and the connection is terminated by using a CLOSE frame.

8.45 XMPP

The extensible messaging and presence protocol, or XMPP, which was initially
named as Jabber, is designed for message-oriented middlewares based on the
extensible markup language (XML) [20]. XMPP was developed for instant messaging,
maintenance of contacts, and information about network presence. Structured and
extensible data between two networked nodes/devices can be exchanged in near real-
time using this protocol. XMPP has found use in VOIP (voice-over Internet protocol)
presence signaling, video and file transfers, smart grid, social networks, publish—-
subscribe systems, IoT applications, and others. The protocol, being open-source, has
enabled a spurt of developments in various freeware as well as commercial messaging
software. As XMPP follows a client-server architecture, peers in a network cannot talk
directly to one another through XMPP. All communication between peers has to be
routed through an XMPP server. The XMPP model is considered to be decentralized
as anyone can host an XMPP server to which various clients can subscribe. Figure 8.20
shows the basic communication between the various XMPP stakeholders.

Direct client to client connection

Client-1A —»

Client-1B  ——»

Client-1C ’
XMPP

Client-1D »

Plug-ins

Componet

Figure 8.20 XMPP components
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Operational Principle

A unique XMPP address, which is also referred to as a Jabber ID (JID), is assigned
to every user on the network. The JID, similar to an email address, has a username
and a domain name (user@domain.com). The domain name is mostly the IP address
of the server hosting the XMPP service. XMPP allows its users to login from multiple
devices by means of specifying resources. The resource is used to identify a user’s
clients/devices (home, mobile, work, laptop, and others), which is generally included
in the JID by appending the JID with the resource name separated by a slash. A typical
JID looks like this: user@domain.com/resource. Resources are prioritized using
numerical IDs. Any message arriving at the default JID (without resource name) is
forwarded to the resource with the highest priority (largest numerical ID value). Often
JIDs without usernames are used for specific control messages and system messages,
which are meant for the server. The use of JID in this mode—without an explicit IP
address—allows XMPP to be used as an overlay network on top of multiple underlay
networks.

XMPP Technologies

XMPP is an extensible, flexible, and diverse protocol; it has resulted in the
development of a significant number of technologies based on it. Some key XMPP
technologies include the following:

¢ Core: It deals with information about the core XMPP technologies for XML
streaming over a network. The core includes the base XML layer for streaming,
provides TLS-based encryption, imparts simple authentication and security
layer (SASL) based authentication, informs about the availability of a network,
provides UTF-8 support, and contact lists, which are presence enabled.

¢ Jingle: This provides session initiation protocol (SIP)-compatible multimedia
signaling for voice, video, file transfer, and other applications. Various media
transfer protocols such as TCP, UDP, RTP, or even in-band XMPP is supported.
The Jingle session initiation signal is sent over XMPP, and the media transfer
takes place in a peer-to-peer manner or over media relays.

® Multi-user chat: MUC is a flexible, multiparty communication exchange
extension for XMPP. Here multiple users can exchange information in a chat
room or channel. Support for strong chat room controls is also provided, which
enables the banning of users and updation of chat room moderators.

¢ Pub-sub: This provides publish—subscribe functionality to XMPP by proving
alerts and notifications for data syndication, vibrant presence, and more such
features. Pub—sub enables XMPP clients to create topics at a pub—sub service and
publish/subscribe to them.

* BOSH: It stands for bidirectional streams over synchronous HTTP. This is an
HTTP binding for XMPP (and other) traffic. BOSH incurs lower latencies and
lesser network bandwidth usage by doing away with HTTP polling. It is mainly
used for the XMPP traffic exchange between clients and servers.
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8.4.6 SOAP

SOAP or simple object access protocol is used for exchanging structured information
in web services by making use of XML information set formatting over the application
layer protocol (HTTP, SMTP) based transmission and negotiation of messages, as
shown in Figure 8.21 [21]. This allows SOAP to communicate with two or more
systems with different operating systems using XML, making it language and
platform independent. The use of SOAP facilitates the messaging layer of the web
services protocol stack.

Soap (Web services messaging)

Figure 8.21 A representation of the position of the SOAP API in a stack

A SOAP application can send a request with the requisite search parameters to a
server with web services enabled. The target server responds in a SOAP response
format with the results of the search. The response from the server can be directly
integrated with applications at the requester’s end, as it is already in a structured and
parsable format. Figure 8.22 illustrates the basic working of SOAP.

SOAP is made up of three broad components: 1) Envelope (which defines
the structure of the message and its processing instructions), 2) encoding rules
(which handles various datatypes arising out of the numerous applications), and
3) convention (which is responsible for web procedure calls and their responses).
This messaging protocol extends the features of neutrality (can operate over any
application layer protocol), independence (independent of programming models),
and extensibility (features such as security and web service addressing can be
extended) to its services. The use of SOAP with HTTP-based request-response
exchanges does not require the modification of the communication and processing
infrastructures. It can easily pass through network/system firewalls and proxies
(similar to tunneling), as illustrated in Figure 8.22. However, the use of XML affects the
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Figure 8.22 Working of SOAP

parsing speed and hence, the performance of this protocol. Additionally, the verbose
nature of SOAP is not recommended for use everywhere. The specifications of the
SOAP architecture are defined across several layers, such as message format layer,
message exchange patterns (MEP) layer, transport protocol binding layer, message
processing model layer, and protocol extensibility layer.

Check yourself

Limitations of SOAP, Protocols derived from SOAP

8.47 REST

Representational state transfer or REST encompasses a set of constraints for the
creation of web services, mainly using a software architectural style [22]. The web
services adhering to REST styles are referred to as RESTful services; these services
enable interoperability between various Internet-connected devices. RESTful systems
are stateless: the web services on the server do not retain client states. The use
of stateless protocols and standards makes RESTful systems quite fast, reliable, and
scalable. The reuse of components can be easily managed without hindering the
regular operations of the system as a whole. Requesting systems can manipulate
textual web resource representations by making use of this stateless behavior of REST.
RESTful web services, in response to requests made to a resource’s URI, mainly
responds with either an HTML, XML, or JSON (JavaScript Object Notation) formatted
payload. As RESTful services use HTTP for transfer over the network, the following
four methods are commonly used: 1) GET (read-only access to a resource), 2) POST
(for creating a new resource), 3) DELETE (used for removing a resource), and 4) PUT
(used for updating an existing resource or creating a new one). Figure 8.23 represents
the REST style and its components.
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Figure 8.23 A representation of the REST style and its components

REST offers several advantages over regular web-based services. Enhanced
network efficiency through the use of REST is ensured by an increase in the
performance of interaction between components. Its use also enables a uniform and
simple interface, easy live operational modification capabilities, reliability against
component and data failures, portability of components, robust scalability, and
support for a large number of components.

In REST, requests are used for identifying individual resources. As the resources
can be represented in a variety of formats such as HTML, XML, JSON, and others,
RESTful services can identify the individual resources from their representations,
which allows them to modify, update, or delete these resources. The REST messages
contain sufficient information in them to direct a parser on how to interpret the
messages. REST client’s can dynamically discover all web resources and actions
associated with an initial URIL. This enhances the dynamicity of applications using
REST by avoiding the need to hard-code all clients with the information of the proper
structure or dynamics of the web application.

RESTful systems are guided by six general constraints, which define and restrict
the process of client-server interactions and requests-responses. These guidelines
increase system performance, scalability, reliability, modifiability, portability, and
visibility. All RESTful systems have to adhere to these six guidelines strictly:

(i) Statelessness: The statelessness of the client-server communication prevents the
storage of any contextual information of the client on the server. Each client
request has to be self-sufficient in informing its responders about its services and
session state. This is done by including the possible links for new state transitions
within the representation of each application state. Generally, upon detecting
pending requests, the server infers that the client is in a state of transition.

(ii) Uniform Interface: Each part or component of a RESTful system must
evolve independently as a result of the decoupling of architectures and its
simplification.
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(iii) Cacheability: The responses have to be implicitly, or in some cases, explicitly
clear on whether they have to be cached or not. This helps the clients in retaining
the most updated data in response to requests. Caching also reduces the number
of client-server interactions, thereby improving the performance and scalability
of the system as a whole.

(iv) Client-server Architecture: The user-interface interactions should be separate
from data storage ones. This would result in enhanced portability of user
interfaces across multiple platforms. The separation also allows for the
independent evolution of components, which would result in scalability over
the Internet across various organizational domains.

(v) Layered System: The client in RESTful services is oblivious to the nature of the
server to which it is connected: an end point server or an intermediary server.
The use of intermediaries also helps in improving the balancing of load and
enhancing security measures and system scalability.

(vi) Code on Demand: This is an optional parameter. Here, the functionality of
clients can be extended for a short period by the server. For example, the transfer
of executable codes from compiled components.

Check yourself

Difference between REST and SOAP, evolution of REST

8.4.8 WebSocket

Websocket is an IETF (Internet Engineering Task Force)-standardized full-duplex
communication protocol. Websockets (WS), an OSI layer seven protocol, enables
reliable and full-duplex communication channels over a single TCP connection [23].
Figure 8.24 shows the position of a websocket layer in a stack. The WS relies on the
OSlI layer 4 TCP protocol for communication. Despite being different from the HTTP
protocol, WS is compatible with HTTP and can work over HTTP ports 80 and 443,
enabling support for network mechanisms such as the HTTP proxy, which is usually
present during organizational Internet accesses through firewalls.

WS enables client-server interactions over the Web. Web servers and clients
such as browsers can transfer real-time data between them without incurring many
overheads. Upon establishment of a connection, servers can send content to clients
without the clients requesting them first. Messages are exchanged over the established
connection, which is kept open, in a standardized format. Support for WS is present in
almost all modern-day browsers; however, the server must also include WS support
for the communication to happen.

The full-duplex communication provided by WS is absent in protocols such as
HTTP. Additionally, the use of TCP (which supports byte stream transfers) is also
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Figure 8.24 A representation of the position of websockets in a stack

enhanced by enabling it to provide message stream transfers using WS. Before the
emergence of WS, comet channels were used for attaining full-duplex communication
over port 80. However, comet systems were very complicated and incurred significant
overheads, which made their utility limited for constrained application scenarios
mainly associated with IoT.

Websocket (WS) and websocket secure (WSS) have been specified as uniform
resource identifier (URI) schemes in the WS specification, which are meant for
unencrypted and encrypted connections, respectively. The WS handshake process and
the frames can be quickly inspected using browser development tools.

Operational Principle

A client initiates the WS connection process by sending a WS handshake request. In
response, a WS server responds with a WS handshake response. As the servers have
to incorporate both HTTP and WS connections on the same port, the handshaking
is initiated by an HTTP request/response mechanism. Upon establishment of a
connection between the client and server, the WS communication separates as a bi-
directional protocol that is non-conformant with the HTTP protocol. The WS client
sends an update header and a sec-websocket-Key header, which contains base64 encoded
random bytes. The server responds to the client’s request using a hash of the key
included in the Sec-WebSocket-Accept header. This allows the WS to overcome a caching
proxy’s efforts to resend previous WS communication. A fixed string, 258 EAFA5-
E914-47DA-95CA-C5AB0ODC85B11, is appended to the undecoded value from the Sec-
WebSocket-Key header by a hashing function using the SHA (secure hash algorithm)-1,
which is finally encoded using base64 encoding. Once the WS full-duplex connection
is established, minimally framed data (small header and a payload), which may be
data or text, can be exchanged. The WS transmissions or messages can be further split
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into multiple data frames whenever the full message length is not available during
message transfer. This feature is occasionally exploited to include/multiplex several
simultaneous streams, using simple extensions to the WS protocol. This multiplexing
avoids the monopoly of a single large payload over the WS port.

Check yourself
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8.5 Identification Protocols

The surge of IoT devices and Things which are connected over the Internet, makes
it significantly hard to identify each device securely. The number of connected
things is rising exponentially; with this rise the need to design and develop protocols
that can provide unique and distinguishable identifiers to so many Things becomes
overwhelming. However, unified global efforts have come up with certain solutions
to address the challenges regarding identification of Things, which keep on updating
from time to time. Some of the commonly encountered ones are EPC, uCode, and
URIs. This section outlines the various nuances associated with each of these methods.

8.5.1 EPC

EPC or the electronic product code identification system was designed to act as a
universal identifier and provide unique identities accommodating all physical objects
in the world [24]. The open standard and free EPCglobal Tag Data Standard defines
the EPC structure. The official representation of EPC is an URI (uniform resource
identifier) and referred to as the pure identity URI. Figure 8.25 illustrates the standard
EPC representation. This representation is used for referring to physical objects in
communicating information and business systems and application software. The
standard also defines representations for EPC identifiers: tag encoding URI formats
and formats for binary EPC identifier storage. In systems such as passive RFIDs that
generally have low memory, the EPC binary identifier storage format plays a crucial
role. The standard also provides EPC encoding and decoding rules to use URI and
binary formats interchangeably seamlessly. Being a very flexible framework, external
support for various coding schemes such as those used with barcodes is also possible
with EPC. The EPC standard currently supports EPC identifiers, general identifiers,
and seven types of identification keys from the GS1 Application Identifier system. As
the EPC is not designed to be restricted for use only with RFID data carriers, the data
carrier technology-agnostic behavior of EPC is further enhanced by the pure identity
URI.
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Figure 8.25 The EPC representation

8.5.2 uCode

Another identification number system, the uCode is designed to uniquely identify
real-world things and objects whose information is digitally associated with the uCode
system [25]. The ulD center in Japan provides support for the uCode system. The
uCode system can be used with any application, business processes, and technology
(RFID, barcodes, matrix codes). uCode is application and technology independent and
uses 128 bit codes for uniquely tagging /naming physical objects. The uCode provides
3.4 x 10* unique codes for individually tagging objects. These features make uCode a
crucial enabling technology for IoT. Figure 8.26 represents the working of uCode tags
and its various stakeholders.

The uCode tags are generally grouped into five categories: 1) print tags, 2) acoustic
tags, 3) active RF tags, 4) active infrared tags, and 5) passive RFID tags. In contrast to
other identification systems, the uCode system has the following distinct features:

(i) It does not display product types, albeit it identifies individual objects. Existing
codes identify products by individual vendors, making the possibility of
identifier tag reuse a possibility, which is avoided in the uCode system.

(i) In addition to physical objects, the uCode can be associated with places,
concepts, and contents, enabling this system to identify such items universally.

(iii) Being application and business agnostic, the uCode system can be used across
industries and organizations. The system provides a unique identification
number, which does not carry any meaning or information about the tagged
object/item. This enables the same system to be used seamlessly across
organizations, industries, and product types.

(iv) uTRON, a ubiquitous security framework, which is incorporated with the
ubiquitous ID architecture of the uCode system, makes it entirely secure and
enables information privacy protection.

(v) The tag agnostic nature of the uCode system makes it possible for various
systems such as RFIDs, and barcodes to store uCode information. This makes
uCode highly ubiquitous and pervasive.

(vi) The uCode represents pure numbers and is devoid of any meaning or
information related to the tagged item/object. This makes the reassignment of
uCode tags quite robust and straightforward.
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Figure 8.26 The operation of an uCode tag system

The ubiquitous ID architecture of the uCode system is made up of five distinct
components: 1) uCode, 2) uCode tags, 3) ubiquitous communicators, 4) uCode
resolution server, and 5) uCode information server. The operational process of reading
a uCode is as follows:

(i) uCode tags are read using mobile phone cameras to identify the ucode.

(ii) An inquiry about the uCode is sent to the uCode resolution server from the
mobile phone over the Internet.

(iii) The uCode resolution server returns information about the uCode to the mobile
phone. The returned information contains the source of the read uCode
information.

(iv) The ubiquitous communicator then acquires the contents and service
information from the information providing source of the read uCode.

Just like the Internet DNS resolution mechanism, the uCode resolution system is
hierarchically constructed. The three-tiered uCode resolution hierarchy has the root
server at the top level. The ulD center in Japan maintains the root server. The next
level, the top level domain (TLD), is situated below the root server. As of now various
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TLD servers are located around the globe in Japan, Finland, and a few other countries.
Finally, the second level domain (SLD) is at the bottom of the hierarchy, below the
TLD. The TLD and SLD servers are not restricted and can be added to the existing
system.

Check yourself
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8.5.3 URIs

One of the most common identifiers in use is the uniform resource identifier (URI).
[26] The URI is used to identify individual resources only by using character strings
distinctly. As with other protocols, the uniformity of this protocol is ensured by an
agreed-upon set of syntax rules. These rules also allow for extensibility through the
incorporation of separate hierarchical naming schemes such as “http://”. URIs enable
interaction with network-based resource representations through specific protocols,
especially over the WWW. Some terms commonly derived from URIs are URLs and
URNs. URLs or uniform resource locators are very commonly encountered during
resource search over the Web or a network. URLs are generally referred to as web
addresses and specify the location as well as the access mechanism for a remote
resource. For example, “http://www.abc.xz/home/index” denotes the location of
the resource at “/home/index”, which is hosted at the domain “www.abc.xz”, and
can be accessed using HTTP. A less encountered form of URIs is the uniform resource
name (URN), which identifies resources in particular namespaces only. URNs were
initially designed to complement URLs. However, unlike URLs, URNSs only identify
resources and do not provide the location or method to access the identified resource.
Figure 8.27 shows the typical URI format.

http://www.examplelink.com/directory_path/target_file.html

Protocol Host _ File name

Figure 8.27 The representation of an URI link
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8.6 Device Management

The need for device management protocols is vital given the rising number of
applications of IoT in various application areas spread across the globe. In most of
the cases, it is not possible to manage these devices or change their settings manually.
Toward this goal, much work is being pursued in the domain of remote device
management. We outline two of the most well-known device management protocols
in this section.

8.6.1 TR-069

Owing to the rising need for remote management of customer premises equipment
(CPE), the Broadband Forum defined the technical specifications for the application
layer protocol for CPE over IP networks; these specifications are referred to as
Technical Report 069 or TR-069 [27]. The TR-069 mainly focuses on the auto-
configuration of Internet-connected devices using auto configuration servers (ACS).
Within the premises of this report, the CPE WAN management protocol (CWMP)
outlines the various support functions for CPE, which encompasses software and
firmware management, status and performance report management, diagnostics, and
auto-configuration. CWMDP, a primarily SOAP/HTTP-based bi-directional protocol,
which is also text-based, provides communication and management support between
CPE and servers within a single framework. Devices connecting over the Internet
such as routers, gateways, and end devices such as set-top boxes and VoIP devices
fall under its purview. Figure 8.28 shows the main components of TR-069 and their
relations between each other.

Service provider End-user network

[

- Managed devices
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server . .
gateway Managed devices
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Figure 8.28 The various components of TR-069 and their inter-relations



IoT Communication Technologies 205

The various functionalities of this protocol are as follows:

(i) The commands between the CPE and the ACS during provisioning sessions are
either HTTP or HTTPS based, where the ACS is the server and the CPE are
clients.

(ii) The provisioning session is responsible for the communications and operations
between the CPE and ACS.

(iii) Session initiation is performed by the CPE through an “inform” message, to
which the ACS indicates its readiness using an “inform response”.

(iv) In the subsequent stage, the CPE transmits orders to the ACS, which is invoked
using a “transfer complete” message. An empty HTTP-request completes the
transmission from the CPE to the ACS.

(v) Inresponse to the empty HTTP request, the HTTP response from the ACS to the
device contains a CWMP (CPE WAN management protocol) request. An empty
HTTP-response from the ACS indicates the completion of pending orders.

(vi) Information security during transmission (login, password, and others) is
handled using HTTPS and ACS certificate verification. Authentication of CPE
is done based on a shared secret key between the CPE and ACS.

(vii) A time limit of 30 seconds is imposed on the start of the provisioning session
after receiving device confirmation.

Points to ponder

The use of TR-069 for remote management of home networked devices and
terminals is endorsed by various forums such as Home Gateway Initiative (HGI),
Digital Video Broadcasting (DVB), and WiMAX Forum.

Check yourself

Security risks of CWMP, Data model of CWMP, multi-instance object handling

8.6.2 OMA-DM

The open mobile alliance (OMA) device management (DM) protocol is specified
by the OMA working group and the data synchronization (DS) working group for
remote device management of mobile devices, including mobile phones and tablets
[28]. The management functions include provisioning, device configuration, software
upgrades, fault management, and others. On the device end, any or all of these
features may be implemented. The OMA-DM specification is designed for constrained
devices with limited bandwidth, memory, storage, and processing. Data exchanges
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take place through SyncML, which is a subset of XML. OMA-DM supports both wired
as well as wireless data transport (USB, RS-232, GSM, CDMA, Bluetooth, and others)
over transport layer protocols such as WAP, HTTP, or OBEX.

< Operations

XML representation

/ Protocols

Transport layer
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Parameters
Device specific interface

DM tree

Physical layer

Client DM server

Figure 8.29 Communication between an OMA-DM client and a server

The OMA-DM follows a request-response communication model. The OMA-DM
server asynchronously initiates the communication with the end device/client, which
is generally in the form of a notification or alert message through WAP push or SMS.
The client is meant to execute the command received from the server and reply with
a message. More significant messages are generally broken down into chunks before
transmission to the client. In terms of information security, authentication methods
are built-in in this protocol, which prevents a client and a server from communicating
until proper validation. Figure 8.29 shows the communication between a client and a
server in OMA-DM.
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Security mechanisms in OMA-DM commands

8.7 Semantic Protocols

The semantic protocols for IoT, which is a rapidly upcoming domain, focus on the
meaning and logic behind data connectivity and formats. Examples include JSON-
LD and the Web Thing model. Primarily designed to be cross-operable and modular,
these protocols enhance the robustness and utility of IoT by incorporating the reach of
the Web. As an example, the integration of semantic protocols such as JSON-LD with
the Web Things model gives rise to the Semantic Web. The chapter on interoperability
in this book discusses the challenges and developments in this domain.
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8.7.1 JSON-LD

JavaScript object notation for linked data or JSON-LD is a lightweight protocol,
which is designed for JSON-based encoding of linked data by seamlessly converting
older JSON-based representations of data. The representations of the data are
highly human-understandable and highly suitable for RESTful environments and
unstructured data over the Web [29]. JSON-LD has an additional resource description
framework (RDF) over and above the typical JSON model and is built to be contextual.
This feature allows for the interoperability of JSON data over the Web. The contextual
linking of the object properties of a JSON document follows a fixed ontology in
JSON-LD through strategies such as tagging with a language by or forcibly assigning
values to pre-defined groups/bins. Context embeddings in JSON-LD documents
can be either direct or through the use of separate file references using HTTP link
headers. Linked data allows for the existence of a network of machine-readable and
standardized data over the Web, which can be parsed by starting at a singular piece
of data and subsequently traversing the embedded links within it; this may lead to
different locations across the Web.

A sample JSON-LD schema

<script type="application/ld+json”>

“@context”: "https :// schema.org”,
"@type”: "BlogPosting”,
"mainEntityOfPage”: {

"@type”: "WebPage”,

"@id”: "www.xyz.com”
b
"headline”: "Hello Readers”,
“description”: "This is a test”,
"image”: {

"@type”: "ImageObject”,

“url”: "www.img1234.com”,

"width”: 696,
"height”: 14

Hi

"author”: {
"@type”: "Person”,
"name”: "abc”

b

"publisher”: {
"@type”: "Organization”,
"name”: "CUP”,

1
“datePublished”: ””

}

</script>
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Check yourself

Types of linked data, RDF examples

8.7.2 Web thing model

The Web of Things (WoT) is another interoperability-driven initiative for achieving
seamless Web-based uniformity for IoT devices. The main driving factor behind this
initiative is to develop a unifying application layer-based framework for IoT which
can provide URLs for the connected devices over the Web. This initiative aims to
transform the traditionally predominant “Web of pages” to “Web of Things”. As
the current Web-based technologies and IoT-based integrations over the Web are
vastly vendor-specific and use proprietary data formats, the cross-utilization of such
technologies is seldom flawless. These drawbacks of the present technologies led
to the need for a common syntactical vocabulary and API which will be able to
induce ad hoc interoperability for IoT. The paradigms, such as “machine-to-machine
communication”, promote technological overhaul (most often complete technology
replacement), without incorporating the existing technologies. In contrast, the WoT
paradigm aims to integrate the existing Web with the various applications and systems
already in place to fully utilize the infrastructural and technological leverage already
present.
The following are the major sub-components of the WoT paradigm:

(i) Integration Patterns: Dictates how the Things in IoT connect to the Web.
It is mainly composed of three schemes: Direct connectivity, gateway based
connectivity, and cloud-based connectivity.

(i) Web Things (WT) Requirements: Provides guidelines and recommendations
for handling various constraints and protocol implementations to enhance the
seamless interaction between the WoT entities. A typical web-server is referred
to as a Web Thing; it should also confirm to these recommendations.

(i) Web Thing Model: Data exchange over the WoT ensues once a Web Thing is
compliant. Additionally, in order to achieve context-awareness, this specification
outlines RESTful web protocol, which has a defined set of payload syntax, data
models, and resources. A fully compliant model is referred to as the Extended
Web of Things model.

Summary

This chapter provided an outline of various communication technologies that are
deemed as core technologies for developing IoT-based solutions. We initially explain
the requirements and classification of IoT devices and communication types. We
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divide the various communication protocols under six heads based on their usability
and functionalities: 1) Infrastructure, 2) discovery, 3) data, 4) identification, 5) device
management, and 6) semantic. After this chapter, readers will be able to distinguish
between various requirements and constraints associated with these protocols and

select the best one amongst them according to their application’s requirements.

Exercises

(i) What are the salient features of 6LoWPAN?

(i) What is a WPAN?

(iii) Describe the addressing types in 6LoWPAN.

(iv) Describe the LOADng routing.

(v) Describe the RPL routing.

(vi) What are the different header types in 6LoWPAN?
(vii) What constitutes a low power lossy network (LLN)?
(viii) What is AMQP? Describe in detail.

(ix) What are the various message guarantees provided by AMQP? Explain each in

detail.
(x) List some of the salient features of AMQP.
(xi) What are the frame types in AMQP?
(xii) Differentiate between OPEN, BEGIN and ATTACH frame types in AMQP.
(xiii) Differentiate between DETACH, END, and CLOSE frame types in AMQP.
(xiv) Differentiate between TRANSFER and FLOW frame types in AMQP.
(xv) What are BINDINGS in the context of AMQP?
(xvi) What are the various types of AMQP exchanges? Describe each.
(xvii) What are the popular applications of AMQP?
(xviii) Explain the working of MQTT
(xix) How is MQTT different from HTTP?
(xx) What are the various MQTT methods?
(xxi) What is SMQTT? How is it different from MQTT?
(xxii) List the salient features of MQTT.
(xxiii) List the salient features of XMPP.
(xxiv) Describe the XMPP protocol.
(xxv) Differentiate between structured and unstructured data.
(xxvi) What is XML?



210 Introduction to Internet of Things

(xxvii) What is BOSH? Explain in detail.
(xxviii) What is CORE? Explain in detail.
(xxix) What is Jingle? Explain in detail.
(xxx) What is Pub—=Sub? Explain in detail.
(xxxi) List the significant limitations of XMPP.
(xxxii) List some of the popular uses of XMPP.
(xxxiii) What is CoAP?
(xxxiv) Describe the working of CoAP.
(xxxv) Explain the various messaging modes in CoAP.
(xxxvi) List the salient features of the CoAP protocol.
(xxxvii) What is REST?
(xxxviii) What are RESTful services?
(xxxix) Describe the LOADng protocol.
(xI) What is a DODAG?
(xli) Explain the mechanism of formation of a DODAG in RPL.
(xlii) Explain the working of RPL protocol.
(xliii) Illustrate the salient features of RPL.
(xliv) How is the global instance different from local instances in RPL?
(xIv) What is QUIC? How is the connection latency reduced in QUIC?
(xIvi) What is the purpose of publishing static configuration records in QUIC?
(xlvii) Highlight the various features of ulP.
(xIviii) What led to the development of nanolP?
(xlix) How is the CCN paradigm different from traditional networking approaches?

(1) How is the Physical Web able to interact with physical objects and locations?
What are its advantages?

(li) How is mDNS different from DNS?
(lii) What are some of the commonly used discovery protocols in loT?
(liii) What features separate MQTT-SN from MQTT?

(liv) What are the main functional differences between transparent and aggregate
gateways in MQTT-SN?

(Iv) Differentiate between SOAP and REST.

(Ivi) How does SOAP enable communication between two syntactically different
devices/machines?

(lvii) What are the functional components of SOAP?
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(Iviii) What are the advantages of using REST over regular web-based services?

(lix) What are the various methods used in REST for transferring data over the
network?

(Ix) What is statelessness in the context of REST?

(Ixi) How are websockets different from simple HTTP?

(Ixii) Describe the working of websockets?

(Ixiii) What is the functional mechanism for EPC in loT?

(Ixiv) What is uCode and how is it different from EPC?

(Ixv) What are the various categories associated with uCode tags?

(Ixvi) Describe the uCode resolution system.
(Ixvii) What are URIs? How is it used for identifying individual resources?

(Ixviii) How is auto-configuration over Internet-connected devices achieved using the
auto configuration server?

(Ixix) What are the various components of TR-069?
(Ixx) What is OMA-DM?
(Ixxi) How is OMA-DM functionally different from TR-0697?
(Ixxii) Differentiate between JSON-LD and XML.
(Ixxiii) What is the Web Thing model? lllustrate its strengths and weaknesses.
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Chapter

loT Interoperability

Learning Outcomes

After reading this chapter, the reader will be able to:

e Understand the importance of interoperability in loT

e List various interoperability types

Identify the salient features and application scope of each interoperability type

Understand the challenges associated with interoperability in loT

Comprehend the importance of real-world use of interoperability frameworks in
loT

9.1 Introduction

The introduction of billions of connected devices under the IoT environment,
which may extend to trillions soon, has contributed massively to the evolution of
interoperability. As more and more manufacturers and developers are venturing into
IoT, the need for uniform and standard solutions is felt now more than ever before
[1]. Figure 9.1 shows the various facets of interoperability in IoT. Interoperability
is considered as the interface between systems or products—hardware, software,
or middleware—designed in such a manner that the connecting devices can
communicate, exchange data, or services with one another seamlessly irrespective of
the make, model, manufacturer, and platform.

The urgency in the requirement for interoperability and interoperable solutions in
IoT arose mainly due to the following reasons:
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(iii)

(iv)
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Figure 9.1 An illustration of the various facets of interoperability in loT

Large-scale Cooperation: There is a need for cooperation and coordination
among the huge number of IoT devices, systems, standards, and platforms;
this is a long-standing problem. Proprietary solutions are seldom reusable and
economical in the long run, which is yet another reason for the demand for
interoperability.

Global Heterogeneity: The network of devices within and outside the purview
of gateways and their subnets are quite large considering the spread of IoT and
the applications it is being adapted to daily. Device heterogeneity spans the globe
when connected through the Internet. A common syntax, platform, or standard
is required for unifying these heterogeneous devices.

Unknown IoT Device Configuration: Device heterogeneity is often
accompanied by further heterogeneity in device configurations. Especially
considering the global-scale network of devices, the vast combinations of device
configurations such as data rate, frequencies, protocols, language, syntax, and
others, which are often unknown beforehand, further raise the requirement of
interoperable solutions.

Semantic Conflicts: The variations in processing logic and the way data
is handled by the numerous sensors and devices making up a typical
IoT implementation, makes it impossible for rapid and robust deployment.
Additionally, the variations in the end applications and their supported platform
configurations further add to the challenges.

The heterogeneity in IoT devices may arise due to several reasons. Some of the
common ones are as follows:

e Communication Potocols: ZigBee(IEEE 802.15.4), Bluetooth (IEEE 802.15.1),

GPRS, 6LowPAN, Wi-Fi (IEEE 802.11), Ethernet (IEEE 802.3), and Higher Layer
LAN Protocols (IEEE 802.1)
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Programming Languages: JavaScript, JAVA, C, C++, Visual Basic, PHP, and
Python

Hardware Platforms: Crossbow, National Instruments, and others

Operating Systems: TinyOS, SOS, Mantis OS, RETOS, NOOBS, Windows 10 IoT
Core, and mostly vendor-specific OS

Databases: DB2, MySQL, Oracle, PostgreSQL, SQLite, SQL Server, and Sybase

Data Representations: Comma separated values (CSV), text, rich text format
(RTF), open document format (ODF), strings, characters, floating-point values,
integer values, and others

Control Models: Event-driven, publish—subscribe, client-server, and others

9.1.1 Taxonomy of interoperability

The significant range of interoperable solutions that has been developed for IoT can
be broadly categorized into the following groups:

(i)

(iii)

Device: The existence of a vast plethora of devices and device types in an
IoT ecosystem necessitates device interoperability. Devices can be loosely
categorized as low-end, mid-end, and high-end devices based on their
processing power, energy, and communication requirements. Low-end devices
are supposed to be deployed in bulk, with little or no chance of getting
their energy supplies replenished, depending on the application scenario.
These devices rely on low-power communication schemes and radios, typically
accompanied by low-data rates. The interface of such devices with high-end
devices (e.g., smartphones, tablets) requires device-level interoperability [2].

Platform: The variations in the platform may be due to variations in operating
systems (Contiki, RIOT, TinyOS, OpenWSN), data structures, programming
languages (Python, Java, Android, C++), or/and application development
environment. For example, the Android platform is quite different from the iOS
one, and devices running these are not compatible with one another [3].

Semantic: Semantic conflicts arise during IoT operations, mainly due to the
presence of various data models (XML, CSV, JSON), information models (°C, °F,
K, or different representations of the same physical quantity), and ontologies [4].
There is a need for semantic interoperability, especially in a WoT environment,
which can enable various agents, applications, and services to share data or
knowledge in a meaningful manner.

Syntactic: Syntactic interoperability is a necessity due to the presence of conflicts
between data formats, interfaces, and schemas. The variation in the syntactical
grammar between a sender and a receiver of information results in massive
stability issues, redundancies, and unnecessary data handling efforts [5]. For
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example, a packet from a device has a format as Header-Identifier-SensorA-
SensorB-Footer, whereas another device from a different manufacturer, but
deployed for the same application has the data format as Header-Identifier-
SensorB-SensorA-Footer. This change in position of sensor A and sensor B in the
two packets creates syntactic errors, although they contain the same information.

(v) Network: The large range of connectivity solutions, both wired and wireless, at
the disposal of developers and manufacturers of IoT devices and components,
further necessitates network interoperability. Starting from the networks and
sub-networks on the ground, to the uplink connectivity solutions, there is a
need for uniformity or means of integrating to devices enable seamless and
interoperable operations.

9.2 Standards

Toward enabling IoT interoperability, various technologies have been standardized
and are recognized globally for incorporating consistent interoperability efforts
worldwide across various industries, domains, and technologies. We list seven of the
popular ones in this chapter.

9.2.1 EnOQOcean

EnOcean is a wireless technology designed for building automation systems,
primarily based on the principle of energy harvesting [6]. Due to the robustness
and popularity of EnOcean, it is being used in domains such as industries,
transportation, logistics, and homes. As of 2012, EnOcean was adopted as a wireless
standard under ISO/IEC 14543-3-10, providing detailed coverage of the physical,
data link, and networking layers. EnOceanbased devices are batteryless. They
use ultra-low power consuming electronics along with micro energy converters to
enable wireless communication among themselves; the devices include networking
components such as wireless sensors, switches, controllers, and gateways. The energy
harvesting modules in EnOcean use micro-level variations and differences in electric,
electromagnetic, solar, or other forms of energy to transform the energy into usable
energy through highly efficient energy converters. The wireless signals from the
batteryless EnOcean sensors and switches, which are designed to be maintenance-free,
can operate up to 30 meters in buildings and homes and up to 300 meters in the open.
EnOcean wireless sensor modules wirelessly transmit their data to EnOcean system
modules, as shown in Figure 9.2.

EnOcean is typically characterized by low data rates (of about 125 kbit/s) for
wireless packets that are 14 bytes long. This reduces the energy consumption of the
EnOcean devices. Additional features such as the transmission of RF (radio frequency)
energy only during transmission of 1s in the binary encoded message further reduce



218 Introduction to Internet of Things

Wireless sensor module

i oo g Eneroy

Il Sensor l
onverter “¥mnanagement ‘

Energy source
Measurable
quantity

EnOcean

Processor Sensor

Wireless system module

Figure 9.2 A representation of the major constituents of EnOcean devices

the energy consumption of these devices. Frequencies of 902 MHz, 928.35 MHz, 868.3
MHz, and 315 MHz are employed for transmission of messages in this technology.

Check yourself

EnQOcean ultra-low power management, self-powered loT

9.2.2 DLNA

The Digital Living Network Alliance (DLNA), previously known as the Digital Home
Working Group (DHWG), was proposed by a consortium of consumer electronics
companies in 2003 to incorporate interoperability guidelines for digital media sharing
among multimedia devices such as smartphones, smart TVs, tablets, multimedia
servers, and storage servers. Primarily designed for home networking, this standard
relies majorly on WLAN for communicating with other devices in its domain and can
easily incorporate cable, satellite, and telecom service providers to ensure data transfer
link protection at either end. The inclusion of a digital rights management layer
allows for multimedia data sharing among users while avoiding piracy of data. The
consumers in DLNA, which may consist of a variety of devices such as TVs, phones,
tablets, media players, PCs, and others, can view subscribable content without any



IoT Interoperability 219

additional add-ons or devices through VidiPath. Figure 9.3 shows the steps involved
in a typical DLNA-based multimedia streaming application. As of 2019, DLNA has
over a billion devices following its guidelines globally [7].
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Figure 9.3 A representation of the various roles in a DLNA-based media streaming application

DLNA outlines the following key technological components, which enable
interoperability guidelines for manufacturers [7].
i)  Network and Connectivity
ii) Device and Service Discovery and Control
iii) Media Format and Transport Model
iv) Media Management, Distribution, and Control
v) Digital Rights Management and Content Protection
vi) Manageability

Check yourself

DLNA Home Network and Infrastructure devices and components, DLNA mobile
infrastructure
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9.2.3 Konnex

Konnex or KNX is a royalty-free open Home Automation Network (HAN) based
wired standard for domestic building and home applications. It relies on wired
communication for achieving automation [8]. Wired configurations such as a star,
tree, or line topologies can be achieved by using a variety of physical communication
technologies involving twisted pair, power line, RF (KNX-RF), or IP-based (KNX-
net/IP) ones. KNX evolved from three previous standards: 1) BatiBUS, 2) European
Home Systems Protocol (EHS), and 3) European Installation Bus (EIB or Instabus). It
has a broad scope of applications in building automation, which involve tasks such
as controlling lighting, doors, windows, high-voltage AC (HVAC) systems, security
systems, audio/video systems, and energy management. Figure 9.4 represents a
typical Konnex-based building network. The KNX facilitates automation through
distributed applications and their interaction using standard data types, objects,
logical devices, and channels, which form an interworking model. The technology is
robust enough to be supported by a wide range of hardware platforms, starting from
a simple microcontroller to a sophisticated computer. The requirements of building
automation often dictate the hardware requirements.

Internet
ﬁ
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Q gateway (Browser)

Smart home

HE N
L L appliances
HE N

Building network

Figure 9.4 A representation of the Konnex network

The KNX architecture consists of sensors (temperature, current, light), actuators
(motors, switches, solenoids, valves), controllers (implementable logic), and other



IoT Interoperability 221

system devices and components (couplers). Typically, the KNX uses a twisted pair
bus for communication, which is channeled through the building/home alongside the
electrical wiring. Using a 16-bit address bus, KNX can accommodate 57375 devices. A
KNXnet/IP installation allows the integration of KNX sub-networks via IP. A system
interface component is used for loading application software, system topology, and
operating software onto the devices, after which the devices can be accessed over LAN
or phone networks. This feature also allows for the centralized as well as distributed
control of systems remotely. KNX has three different configuration modes according
to device categories.

(i) Automatic mode (A mode): Typically used for auto-configurable devices, and is
generally installed by the end users.

(ii) Easy mode (E mode): Devices require initial training for installation, where the
configuration is done as per the user’s requirements; the device behavior is pre-
programmed using E mode.

(iii) System mode (S mode): Some devices generally require specialists to install; the
system mode is used for this. The devices do not have a default behavior but can
be used for deploying complex building automation systems.

Points to ponder

KNX is an approved standard under International standards (ISO/IEC 14543-3),
European standards (CENELEC EN 50090 and CEN EN 13321-1), US standards
(ANSI/ASHRAE 135), and China Guobiao (GB/T 20965)

Check yourself

KNX architecture, KNX addressing, KNX use cases

9.2.4 UPnP

The Universal Plug and Play (UPnP) was designed primarily for home networks
as a set of protocols for networking devices such as PCs, printers, mobile devices,
gateways, and wireless access points. UPnP can discover the presence of other
UPnP devices on the network, as well as establish networks amongst them for
communication and data sharing [9]. Whenever they are connected to a network,
UPnP devices can establish working configurations with other devices. As of
2016, UPnP is managed by the Open Connectivity Forum (OCF). The underlying
assumption of UPnP is the presence of an IP network over which it uses HTTP
to share events, data, actions, and service/device descriptions through a device-to-
device networking arrangement. Device search and advertisements are multicast
through HTTP over UDP (HTTPMU) over port 1900. The responses are returned in
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a unicast manner through HTTP over UDP (HTTPU). UPnP is based on established
protocols and architectures such as TCP/IP protocol suite, HTTP, XML, and SOAP.
UPnP is a distributed and open standard. Devices controlled by UPnP are handled by
UPnP control points (CPs). The networked UPnP devices are designed to dynamically
join networks, obtain IP addresses, advertise its presence and capabilities, and detect
the presence and capabilities of other neighboring and networked devices through a
process known as zero configuration networking.

Non-UPnP device

UPnP device UPNP device
Control point I Control point

Service Service Service

i

Service Service

IV

Service

N
Control
point

Figure 9.5 A representation of the UPnP operation

UPnP devices are typically characterized by a control point and service(s). The
service(s) need to communicate with the control point for further
instructions/execution. Figure 9.5 shows a typical UPnP operation. A central control
point in a room can be used to control various UPnP services across a home. Non-
UPnP devices can be easily integrated with the UPnP services through a bridge.

UPnP supports a range of IP supporting media such as Ethernet, IR, Bluetooth,
Wi-Fi, FireWire, and others, without the need for individual device drivers. UPnP,
being an OS and language independent protocol, typically uses web browsers for the
user interface. Each UPnP device implements a DHCP (dynamic host configuration
protocol) client and searches for a DHCP server during its first initiation in the
network. These devices can also use a feature known as AutolP to assign itself an IP
address, in case a DHCP server is not available. The UPnP device then discovers the
network through the simple service discovery protocol (SSDP), which advertises the
device through the CPs (coordination protocols) on the network. The CP then retrieves
the device’s information through a location URL sent by the device. The device
information is in the form of an XML schema using SOAP; it additionally contains
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a list of services: commands, actions, and actionable variables and parameters. To the
control URL in the description, CPs use control messages to send actions to a device’s
service. Finally, if a device has a URL for presentation, the CP retrieves the contents,
allowing a user to control or view the device and device status.

Check yourself

UPnP device discovery, UPnP protocol, Event notification

9.2.5 LonWorks

LonWorks or local operating network, as it was initially named, is a protocol
developed by the Echelon Corp [10]. It was primarily developed for addressing
the needs of networked control applications within buildings over physical
communication media such as twisted pair, fiber optic cables, powerlines, and RE. The
twisted pair uses differential Manchester encoding and has a data rate of 78 kbit/s,
whereas the powerline is much slower and can have either 5.4 kbit/s or 3.6 kbit/s
depending on the frequency of the power line. This protocol was standardized by
ANSI (American National Standards Institute) as early as 1999 when it was known
as LonTalk and was used for control networking. This protocol has been used
in a variety of deployment areas such as the pneumatic braking system of trains,
semiconductor equipment manufacturing, petrol station controls, and as a building
automation standard. LonWorks extends backward compatibility support to its legacy
installations through an IP-based tunneling standard (ISO/IEC 14908-4). Regular IP-
based services can be readily used with LonWorks platforms or installations for UI or
control level applications. Figure 9.6 illustrates a typical LonWorks network.

Initially, a LonTalk protocol node could only be installed using a custom-designed
IC with an 8-bit processor; this IC was referred to as the “neuron chip”. The neuron
chip is a system on a chip and is essentially the soul of the LonWorks-based devices.
There are two types of neuron chips based on the memory capabilities and packaging:
1) the 3120 and 2) the 3150. Presently, a significant number of LonWorks-based
devices use the neuron chip, which is also accessible by general processors by porting
to an IP-based or 32-bit chip. A neuron chip has three CPUs, one each for MAC
processing, network processing, and application processing. The MAC processor is
tasked with CRCs (cyclic redundancy checks), transmitting and receiving messages
over the physical media, and confirming message destinations. The network processor
deals with addressing, routing, acknowledgments, and other network layer tasks.
Finally, the application processor is used for deploying custom applications which
typically support 8-bit operations; it can also be used as a communication co-processor
for high-end processors. The decoupling of processors based on tasks enables the
robust and speedy performance of the neuron chips. Each neuron chip has three
memory types available with it: 1) ROM, 2) RAM, and 3) EEPROM. The LonTalk,
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Figure 9.6 A representation of the LonWorks network

along with the OS and I/O libraries are typically programmed in the ROM during
manufacturing.

Check yourself

LonWorks addressing, Memory handling by neurons, LonWorks network access

9.2.6 Insteon

Insteon was developed as a home automation technology by Smartlabs in 2005
and marketed under its subsidiary Insteon. Insteon enables interoperability and
automation among household devices such as lights, switches, thermostats, motion
and gas sensors, and others through RF or powerline communication [11]. Insteon-
connected devices act as peers and can independently perform network-based
functions such as message transmission and reception by using a dual mesh network
topology. These devices operating over the powerline have a frequency of 131.65 kHz;
the devices use binary phase shift keying (BPSK), with a minimum receive signal level
of 10 mV. In contrast, Insteon devices using RF operates over a frequency of 915 MHz;
these devices use frequency shift keying for communication and Manchester codes
for encoding data with a data rate of 4.56 kbit/s over ranges of approximately 120 m
without obstructions. Figure 9.7 shows a typical home-based Insteon network.
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Insteon networks can have 16 million+ unique IDs and can support 65,000+
devices. Each of these devices has a built-in engine, which has an 80 byte RAM
and a 3 kbyte ROM. Application-specific requirements of Insteon devices such as
lights and switches require 256 bytes of RAM and EEPROM, and 7 kbytes of flash
memory. Insteon devices have an average data rate of 180 bit/s, using which a
standard message of 10 bytes or extended message of 24 bytes is transmitted. Each
Insteon message can accommodate up to 14 bytes of user data and contain a two-
bit field meant for counting hops. Message originating nodes initialize this field
value to 3, which is decremented by the number of times a node repeats the message
during its transmission. Upon receiving a message, each device performs error
detection and correction. Retransmission of erroneous messages in this manner
enhances the reliability of Insteon technology. All devices transmit the same message
simultaneously using PSK to ensure synchronicity with the powerline frequency. This
ensures message integrity and strengthens the signal over the powerline.

Y
15

Home automation

% .\ RF
—@ Powerline

Gateway Internet

Figure 9.7 A representation of an Insteon network

The dual mesh/ dual band network topology of Insteon is named so mainly
because, during operations over the RF band, interferences are mitigated by
transmitting data over the powerline, and vice versa. As this is a peer-to-peer network,
it can operate without the need for central controllers. Central controllers can be
integrated with this technology to extend control operations over smartphones and
tablets. As a security measure to avoid hijacking a neighbor’s Insteon devices, Insteon
requires users to have physical ownership of the devices they want to connect to their
network and the respective device IDs (which is unique and similar to a MAC ID). The
inbuilt firmware on the devices prevents Insteon devices from forming connections
and identifying themselves to other devices until a button is physically pressed on
them during their installation.
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Points to ponder

Legacy Insteon chipsets are interoperable with X10 powerline messaging, but with
reduced functionalities. Present-day initiatives have incorporated compatibility
for certain functionalities of Insteon with Amazon Echo, Microsoft Cortana, Apple
Watch, and the Google-owned NEST.

Check yourself

Insteon installation, Insteon functionalities with other platforms, Insteon use
cases

9.27 X-10

The X-10 protocol was developed by Pico Electronics (Scotland) in 1975 as a means of
achieving communication and automation among household devices over powerlines.
It was one of the first home automation technologies, and yet it remains one of the
most widely used even in the present day [12]. Data and controls are encoded as
brief RF bursts for signaling and control over the powerlines. Household electrical
wiring is used for sending data between X-10 devices by encoding it over a 120 kHz
carrier frequency, which is transmitted during zero crossings of 50-60 Hz consumer
AC signals as RF bursts, one bit per crossing. The data is made up of an address
and a command between the controller and the device. X-10 signals are restricted
within the power supply of a house/network using inductive filters, which act as
attenuators. Coupling capacitors or active repeaters for X-10 are used to facilitate
signal transmission over multiphase systems. An X-10 system can have 256 possible
addresses, which is made up of 4-bit house codes (numbered from alphabets A to
P), 4-bit unit codes, and finally, a 4-bit command. More than one house code can
be simultaneously called within a single house. X-10 devices may be either one-
way or two-way. One-way devices are typically very cheap and can only receive
commands, whereas two-way devices are more expensive and can send as well as
receive commands. These two-way devices are generally used as controllers. Figure
9.8 represents a typical X-10 setup and controller, which allows a user to connect to
and control a variety of appliances and devices at home.
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Figure 9.8 A representation of the X-10 network

A bit value of 1 is represented by a 1 ms burst of 120 kHz for a typical 60 Hz AC
powerline at the zero crossing. The absence of a pulse follows this bit value. A 0
bit is represented by the absence of a 120 kHz burst at the zero crossings, followed
by a pulse. The data rate for the X-10 protocol is typically around 20 bit/s, which
includes retransmission time and control signals. Due to the meager data rates, X-10
commands are kept simple and have limited functionalities such as on/off. Each data
frame in X-10 is transmitted twice, which although incurs redundancy also allows for
reliable data transmission over noisy channels. A new command over the powerline
is separated by at least six clear zero crossings from the previous command. An RF
protocol is also defined under X-10 to accommodate wireless remotes and switches.
This protocol operates over a 310 MHz channel in the US and a 433.92 MHz channel in
Europe. The wireless data packets from X-10 devices communicate to a radio receiver,
which acts as a bridge between the wireless devices and the powerline-based X-10
devices.

Points to ponder

A typical X-10 command may look like: “select code A5", which is followed by
the command for that device such as “turn on/off". This command signals an
X-10 device with address A5 to turn on/off.

Check yourself

X-10 applications, X-10 use cases, X-10 addressing
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9.3 Frameworks

Similar to the standards, there has been a rise in universal interoperability
frameworks. These frameworks span across platforms, devices, technologies, and
application areas. We discuss five of the most popular interoperability frameworks
in this chapter.

9.3.1 universAAL

UniversAAL is an open-source software framework designed for enabling runtime
support in distributed service oriented environments comprising mainly of the
system of systems [13]. This framework extends semantic interoperability by sharing
compatible models/ontologies with service consumers such as mobile devices,
embedded systems, and others. Managers, along with middleware, collectively form
the universAAL platform. These managers are considered low-level applications and
provide functional APIs (application programming interfaces) to final applications
utilizing universAAL. Hardware such as sensors and actuators connect to the
universAAL platform through exporters, which are specific for different technologies
such as Zigbee, Konnex, and others.

The universAAL middleware is tasked with core coordination among the nodes
within a peer-to-peer connectivity layout, referred to as the uSpace. The sharing
of various universAAL communication semantics such as the shared ontological
model, context, service interactions, and user interactions is performed in this uSpace,
which creates a logical environment for enabling communications irrespective of
the underlying device, technology, or network. The services or set of services
run by a universAAL application is human/user-centric. A coordinator node is
responsible for creating each uSpace, and subsequently keeping track of its status,
and adding/deleting new nodes to it.

A container is responsible for supporting the middleware and the code and
building rules under different environments such as Java environments, Android
environments, and other embedded systems. As of now, universAAL supports only
Bundles in OSGi (for embedded systems) and APKs in Android. The peering part
handles various instances of middleware communication and interconnections. A
UPnP-like connector is tasked with the discovery of universAAL nodes and multi-
technology bridging.

The most crucial aspect of the middleware is the communication, which provides
the logic for semantic information flow between the peers. This flow is enabled
through purpose-specific buses to which various applications connect irrespective of
the device, container, or peering technology. Buses have been defined for purposes
such as context, service and user interactions, internal strategy handling, semantics,
peer matchmaking, and others. The ontology model, encryption, and message parsing
through message serialization are defined in a representation model. A uSpace
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gateway handles communication across different uSpaces by handling message
exchanges and authentication between them.

Check yourself

Composition of universAAL ontologies, context sharing in universAAL, service
handling in universAAL, user interaction in universAAL

9.3.2 AllJoyn

The AllJoyn is an open-source software initiative proposed by Qualcomm in 2011 that
allows devices within this framework to communicate with other devices near its
vicinity [14]. The flexible AllJoyn framework encourages proximal connectivity and
even has the option of including cloud connectivity to it. It was subsequently signed
over to the Linux Foundation under the aegis of the AllSeen Alliance, which was
formed primarily to promote IoT interoperability. Major global consumer electronics
corporations such as LG, Sony, Panasonic, Haier, Cisco, HTC, Microsoft, and many
others are part of the AllSeen Alliance. In 2016, AllJoyn merged with IoTvity and
joined the Open Connectivity Forum (OCF), which allowed various open-source
projects to include it within their framework. The AllJoyn and IoTvity technologies
are currently interoperable and backward compatible with one another.

The open-source AllJoyn software framework enables interoperability amongst
connected devices and applications, resulting in the creation of dynamic proximal
networks using a D-Bus message bus. The software framework and the core
components of the system seamlessly discover, communicate, and collaborate
irrespective of platform, product, brand, or connection types, although within the
limitations of the collaborating brands only (which is quite large). As of now,
communication is only through Wi-Fi, but it includes devices concerning smart homes,
smart TVs, smart audio, gateways, and even automotive devices.

The AllJoyn framework follows a client-server model. The clients are often
referred to as “consumer” and the server as the “producer”. For example, in a
smart home environment, a proximity sensor senses the presence of humans in the
house and switches on appliances based on the occupancy of the house. If the
house is empty, the appliances are turned off. Here, the proximity sensor is the
consumer, and the appliance (maybe, a light) is a producer. In this framework,
each producer is characterized by an introspection file, which is an XML schema
of the producer’s capabilities and functionalities. The requests for each producer
are based on its introspection file. The framework’s capabilities can be extended by
incorporating other protocols with it through bridging. Complex functionalities such
as simultaneous audio streams to multiple devices can also be executed using this
framework.
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Some of the core services provided by the AllJoyn framework include onboarding
services (attaching a new device to the framework’s Wi-Fi network), configuration
service (configuring device attributes such as languages, passwords, and names),
notification service (text/view-URL based audio and image notifications), control
panel (remote app-based control of all connected devices), and common device model
service (unified monitoring of IoT devices irrespective of vendors or manufacturers).

Check yourself

Device XML schema, AllJoyn source code, AllJoyn products and services

9.3.3 loTivity

Similar to the AllJoyn, IoTvity is an open-source project which is sponsored by the OSF
(Open Science Framework) and hosted by the Linux Foundation [15]. This framework
was developed to unify billions of IoT devices, be it wired or wireless, across the
Internet, to achieve a robust and interoperable architecture for smart and thin devices.
IoTvity is interoperable and backward compatible with AllJoyn. This framework can
connect across profiles ranging from consumer, health, enterprise, industrial, and even
automotive.

The IoTvity framework uses CoAP at the application layer and is not bothered
with the physical layer requirements of devices. However, the network layer of
the connecting devices must communicate using IP. The connectivity technologies
of IoTvity connecting devices can consist of Wi-Fi, Ethernet, Bluetooth Low Energy,
Thread, Z-Wave, Zigbee, or other legacy standards.

The IoTvity architecture supports the following core functionalities: Discovery
(finding devices in one’s vicinity and offering services to them), data transmission
(standardized message transmission between devices), device management, and data
management.

Under the purview of the resource-bounded context in IoTvity’s OCF (Open
Connectivity Foundation) Native Cloud 2.0 framework, which aims to utilize and
enhance the benefits of IoT for companies fully, a resource hosting server has to be
accessible through the OCF’s native cloud. A resource is an object, which consists of
a type, associated data, resource relationships, and operational methods. A server can
only publish discoverable resources (which can be found by other connected clients),
once it is successfully connected, authenticated, and authorized. Clients can discover
resources, either based on the resource type or server identifiers.

Check yourself

loTvity services and functionalities, loTvity source code, loTvity use cases
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9.3.4 Brillo and Weave

Google introduced its IoT framework in 2015 as Project Brillo. It is primarily designed
as an operating system for IoT devices; it can be considered as a skinny version of
Android, having a minimal footprint [16]. Brillo is currently Wi-Fi and BLE (Bluetooth
low energy) enabled, with ongoing efforts for the addition of further low-power
solutions such as Thread. As the framework is Android-based, it extends scalability
in terms of rapid acceptance and portability. Brillo extends interoperability amongst
devices and platforms from various vendors and manufacturers.

The underlying communication layer of Brillo is known as Weave. Weave provides
a common language for devices such as phones to talk to the cloud. The Weave is
the communications layer by which Things can talk to one another. It provides a
common language so that devices can talk to one another, with the cloud and the
phone. The Brillo framework extends interoperability and uniformity over a diverse
range of applications such as smart farming devices, smart homes, smart parking
systems, and others. Weave devices communicate over TCP or UDP, using either IPv4
or IPv6. Interestingly, Weave is an information schema for devices that defines device
types, functionalities, and modes of communication.

The Weave stack comprises four core modules: Security manager, exchange
manager, message layer, and fabric state. Weave provides some core functionalities:
Bulk data exchange (file transfers), common (system status and error reports), data
management, echo (network connectivity testing), security, service directory, and
others. Secondary protocols built on top of the core protocols of Weave include alarm,
device control, service provisioning, network provisioning, heartbeat, and others.

Check yourself

Brillo and Weave use cases

9.3.5 HomeKit

The HomeKit software framework is designed by Apple to work with its iOS mobile
operating system for achieving a centralized device integrating and control framework
[17]. It enables device configuration, communication, and control of smart home
appliances. Home automation is achieved by incorporating room designs, items,
and their actions within the HomeKit service. Users can interact with the framework
using speech-based voice commands through Apple’s voice assistant, Siri, or through
external apps. Smart home devices such as thermostats, lights, locks, cameras, plugs,
and others, spread over a house can be controlled by a single HomeKit interface
through smartphones. HomeKit-enabled device manufacturers need to have an MFi
program, and all devices were initially required to have an encryption coprocessor.
Later, the processor-based encryption was changed to a software-based one.
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Non-HomeKit devices can have the benefits of HomeKit through the use of HomeKit
gateways and hubs.

HomeKit devices within a smart home securely connect to a hub either through
Wi-Fi or Bluetooth. However, as the range of Bluetooth is severely limited, the full
potential of the HomeKit may not be adequately exploited. This framework allows
for individual as well as grouped control of connected devices based on scenarios.
Features such as preconfigured devices settings can be collectively commanded using
voice commands to Siri.

Points to ponder

The MFi program is Apple's licensing program for hardware/software/firmware
developers. It stands for “Made For iPhone/iPad/iMAC".

Check yourself

HomeKit interfacing, HomeKit controls, HomeKit use case

Summary

This chapter introduces the concept of interoperability in the context of IoT
architectures, frameworks, and application domains. @~ We initially outline the
taxonomy of interoperability to give the readers a perspective of the challenges
and the present-day solutions or attempts to solve these challenges. We outline
the various standardization efforts to address interoperability issues in different
domains. Further, at the end of this chapter, we also provide a brief description of
the different interoperability-enabling frameworks that are under development by
various corporations across the globe.

Exercises

(i) Differentiate between semantic and syntactic interoperability.
(i) What are the various types of interoperability encountered in loT environments?

(iii) What is meant by the heterogeneity of loT devices in the context of
interoperability?

(iv) How is device interoperability different from platform interoperability?

(v) Describe the following standards:

(a) EnOcean
(b) DLNA
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(c) Konnex
(d) LonWorks
(e) UPnP
(f) X-10
(g) Insteon

vi) How does EnOcean use energy harvesting for its operations?

i
vii) What is LonTalk?

viii) What is a neuron chip in the context of LonWorks?
ix) How is X-10 different from DLNA?

x) How is the UniversAAL framework different from the Alljoyn framework?

(
(
(
(
(
(xi) How is Brillo different from Weave?
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