
Data Structure & Applications – BCS304

MODULE 1:

INTRODUCTION TO DATA STRUCTURES

DATA STRUCTURES
Data may be organized in many different ways. The logical or mathematical model of a

particular organization of data is called a data structure.

The choice of a particular data model depends on the two considerations

1. It must be rich enough in structure to mirror the actual relationships of the data in the

real world.

2. The structure should be simple enough that one can effectively process the data

whenever necessary.

Basic Terminology: Elementary Data Organization:

Data: Data are simply values or sets of values.

Data items: Data items refers to a single unit of values.

Data items that are divided into sub-items are called Group items. Ex: An Employee Name

may be divided into three subitems- first name, middle name, and last name.

Data items that are not able to divide into sub-items are called Elementary items.

Ex: SSN

Entity: An entity is something that has certain attributes or properties which may be assigned

values. The values may be either numeric or non-numeric.

Ex: Attributes- Names, Age, Sex, SSN
 Values- Rohland Gail, 34, F, 134-34-5533

Entities with similar attributes form an entity set. Each attribute of an entity set has a range of

values, the set of all possible values that could be assigned to the particular attribute.

The term “information” is sometimes used for data with given attributes, of, in other words

meaningful or processed data.

Field is a single elementary unit of information representing an attribute of an entity.

Record is the collection of field values of a given entity.

File is the collection of records of the entities in a given entity set.

Data Structure & Applications – BCS304

Each record in a file may contain many field items but the value in a certain field may uniquely

determine the record in the file. Such a field K is called a primary key and the values k1, k2,

….. in such a field are called keys or key values.

Records may also be classified according to length.

A file can have fixed-length records or variable-length records.

 In fixed-length records, all the records contain the same data items with the same amount

of space assigned to each data item.

 In variable-length records file records may contain different lengths.

Example: Student records have variable lengths, since different students take different numbers

of courses. Variable-length records have a minimum and a maximum length.

The above organization of data into fields, records and files may not be complex enough to maintain

and efficiently process certain collections of data. For this reason, data are also organized into more

complex types of structures.

The study of complex data structures includes the following three steps:

1. Logical or mathematical description of the structure

2. Implementation of the structure on a computer

3. Quantitative analysis of the structure, which includes determining the amount of

memory needed to store the structure and the time required to process the structure.

CLASSIFICATION OF DATA STRUCTURES

Data structures are generally classified into

 Primitive data Structures

 Non-primitive data Structures

1. Primitive data Structures: Primitive data structures are the fundamental data types which are

supported by a programming language. Basic data types such as integer, real, character and

Boolean are known as Primitive data Structures. These data types consists of characters that

cannot be divided and hence they also called simple data types.

2. Non- Primitive data Structures: Non-primitive data structures are those data structures which

are created using primitive data structures. Examples of non-primitive data structures is the

processing of complex numbers, linked lists, stacks, trees, and graphs.

Based on the structure and arrangement of data, non-primitive data structures is further

classified into

1. Linear Data Structure

Data Structure & Applications – BCS304

2. Non-linear Data Structure

1. Linear Data Structure:

A data structure is said to be linear if its elements form a sequence or a linear list. There are

basically two ways of representing such linear structure in memory.

1. One wayis to have the linear relationships between the elements represented by means

of sequential memory location. These linear structures are called arrays.

2. The other way is to have the linear relationship between the elements represented by

means of pointers or links. These linear structures are called linked lists.

The common examples of linear data structure are Arrays, Queues, Stacks, Linked lists

2. Non-linear Data Structure:

A data structure is said to be non-linear if the data are not arranged in sequence or a linear. The

insertion and deletion of data is not possible in linear fashion. This structure is mainly used to

represent data containing a hierarchical relationship between elements. Trees and graphs are the

examples of non-linear datastructure.

Arrays:

The simplest type of data structure is a linear (or one dimensional) array. A list of a finite

number n of similar data referenced respectively by a set of n consecutive numbers, usually 1,

2, 3 n. if A is chosen the name for the array, then the elements of A are denoted by

subscript notation a1, a2, a3 an

or

by the parenthesis notation A (1), A (2), A (3) A (n)

or

by the bracket notation A [1], A [2], A [3] A [n]

Example 1: A linear array STUDENT consisting of the names of six students is pictured in

below figure. Here STUDENT [1] denotes John Brown, STUDENT [2] denotes Sandra

Gold, and so on.

Data Structure & Applications – BCS304

Linear arrays are called one-dimensional arrays because each element in such an array is referenced

by one subscript. A two-dimensional array is a collection of similar data elements where each

element is referenced by two subscripts.

Example 2: A chain of 28 stores, each store having 4 departments, may list its weekly sales as in

below fig. Such data can be stored in the computer using a two-dimensional array in which the

first subscript denotes the store and the second subscript the department. If SALES is the name

given to the array, then

SALES [1, 1] = 2872, SALES [1, 2] - 805, SALES [1, 3] = 3211,…., SALES [28, 4] = 982

Trees

Data frequently contain a hierarchical relationship between various elements. The data structure

which reflects this relationship is called a rooted tree graph or a tree.

Some of the basic properties of tree are explained by means of examples

Example 1: Record Structure

Although a file may be maintained by means of one or more arrays a record, where one indicates

both the group items and the elementary items, can best be described by means of a tree structure.

For example, an employee personnel record may contain the following data items:

Social Security Number, Name, Address, Age, Salary, Dependents

However, Name may be a group item with the sub-items Last, First and MI (middle initial). Also

Address may be a group item with the subitems Street address and Area address, where Area itself

may be a group item having subitems City, State and ZIP codenumber.

This hierarchical structure is pictured below

Data Structure & Applications – BCS304

Another way of picturing such a tree structure is in terms of levels, as shown below

Some of the data structures are briefly described below.

1. Stack: A stack, also called a fast-in first-out (LIFO) system, is a linear list in which insertions

and deletions can take place only at one end, called the top. This structure is similar in its operation

to a stack of dishes on a spring system as shown in fig.

Note that new 4 dishes are inserted only at the top of the stack and dishes can be deleted only from

the top of the Stack.

Data Structure & Applications – BCS304

2. Queue: A queue, also called a first-in first-out (FIFO) system, is a linear list in which deletions

can take place only at one end of the list, the "from'' of the list, and insertions can take place only at

the other end of the list, the “rear” of the list.

This structure operates in much the same way as a line of people waiting at a bus stop, as pictured

in Fig. the first person in line is the first person to board the bus. Another analogy is with

automobiles waiting to pass through an intersection the first car in line is the first car through.

3. Graph: Data sometimes contain a relationship between pairs of elements which is not

necessarily hierarchical in nature. For example, suppose an airline flies only between the cities

connected by lines in Fig. Thedata structure which reflects this type of relationship is called a graph

Data Structure & Applications – BCS304

DATA STRUCTURES OPERATIONS
The data appearing in data structures are processed by means of certain operations. The

following four operations play a major role in this text:

1. Traversing: accessing each record/node exactly once so that certain items in the record

may be processed. (This accessing and processing is sometimes called “visiting” the

record.)

2. Searching: Finding the location of the desired node with a given key value, or finding the

locations of all such nodes which satisfy one or more conditions.

3. Inserting: Adding a new node/record to the structure.

4. Deleting: Removing a node/record from the structure.

The following two operations, which are used in special situations:

1. Sorting: Arranging the records in some logical order (e.g., alphabetically according to some

NAME key, or in numerical order according to some NUMBER key, such as social security

number or account number)

2. Merging: Combining the records in two different sorted files into a single sorted file.

ARRAYS

 An Array is defined as, an ordered set of similar data items. All the data items of an

array are stored in consecutive memory locations.

 The data items of an array are of same type and each data items can be accessed using

the same name but different index value.

 An array is a set of pairs, <index, value >, such that each index has a value associated

with it. It can be called as corresponding or a mapping

Ex: <index, value>

< 0 , 25 > list[0]=25

< 1 , 15 > list[1]=15

< 2 , 20 > list[2]=20

< 3 , 17 > list[3]=17

< 4 , 35 > list[4]=35

Here, list is the name of array. By using, list [0] to list [4] the data items in list can be

accessed.

Array in C

Declaration: A one dimensional array in C is declared by adding brackets to the name of a

variable.

Ex: int list[5], *plist[5];

Data Structure & Applications – BCS304

 The array list[5], defines 5 integers and in C array start at index 0, so list[0], list[1],

list[2], list[3], list[4] are the names of five array elements which contains an integer

value.

 The array *plist[5], defines an array of 5 pointers to integers. Where, plist[0], plist[1],

plist[2], plist[3], plist[4] are the five array elements which contains a pointer to an

integer.

Implementation:

 When the complier encounters an array declaration, list[5], it allocates five consecutive

memory locations. Each memory is enough large to hold a single integer.

 The address of first element of an array is called Base Address. Ex: For list[5] the

address of list[0] is called the base address.

 If the memory address of list[i] need to compute by the compiler, then the size of the

int would get by sizeof (int), then memory address of list[i] is as follows:

list[i] = α + i * sizeof (int)

Where, α is base address.

Difference between int *list1; & int list2[5];

The variables list1 and list2 are both pointers to an int, but in list2[5] five memory locations

are reserved for holding integers. list2 is a pointer to list2[0] and list2+i is a pointerto list2[i].

Data Structure & Applications – BCS304

Note: In C the offset i do not multiply with the size of the type to get to the appropriate

element of the array. Hence (list2+i) is equal &list2[i] and *(list2+i) is equal to list2[i].

How C treats an array when it is parameter to a function?

 All parameters of a C functions must be declared within the function. As various

parameters are passed to functions, the name of an array can be passed as parameter.

 The range of a one-dimensional array is defined only in the main function since new

storage for an array is not allocated within a function.

 If the size of a one dimensional array is needed, it must be passed into function as a

argument or accessed as a global variable.

Example: Array Program

#define MAX_SIZE 100

float sum(float [], int);

float input[MAX_SIZE], answer;

void main(void)

{

int i;

for(i=0; i<MAX_SIZE; i++)

input[i]= i;

answer = sum(input, MAX_SIZE);

printf(“\n The sum is: %f \n”,answer);

}

float sum(float list[], int n)

{

int i;

float tempsum = 0;

for(i=0; i<n; i++)

tempsum = tempsum + list[i];

return tempsum;

Data Structure & Applications – BCS304

When sum is invoked, input=&input[0] is copied into a temporary location and associated

with the formal parameter list

A function that prints out both the address of the ith element of the array and the value found

at that address can written as shown in below program.

void print1 (int *ptr, int rows)

{

int i;

printf(“ Address contents \n”);

for(i=0; i<rows; i++)

printf(“% 8u %5d \n”, ptr+i, *(prt+i));

printf(“\n”);

}

Output:

Address

Content

12244868 0

12344872 1

12344876 2

12344880 3
12344884 4

Data Structure & Applications – BCS304

STRUCTURES

Ex: struct {

char name[10];

int age;

float salary;

} Person;

The above example creates a structure and variable name is Person and that has three fields:

name = a name that is a characterarray

age = an integer value representing the age of the person

salary = a float value representing the salary of the individual

Assign values to fields

To assign values to the fields, use . (dot) as the structure member operator. This operator is

used to select a particular member of the structure

Ex: strcpy(Person.name,“james”);

Person.age =10;

Person.salary = 35000;

Type-Defined Structure
The structure definition associated with keyword typedef is called Type-Defined Structure.

Syntax 1: typedef struct

{

data_type member 1;

data_type member 2;

………………………

………………………

data_type member n;

}Type_name;

Data Structure & Applications – BCS304

Where,

 typedef is the keyword used at the beginning of the definition and by using typedef

user defined data type can be obtained.

 struct is the keyword which tells structure is defined to the complier

 The members are declare with their data_type

 Type_name is not a variable, it is user defined data_type.

Syntax 2: struct struct_name

{

data_type member 1;

data_type member 2;

………………………

………………………

data_type member n;

};

typedef struct struct_name Type_name;

Ex: typedef struct{

char name[10];

int age;

float salary;

}humanBeing;

In above example, humanBeing is the name of the type and it is a user defined data type.

Declarations of structure variables:

humanBeing person1, person2;

This statement declares the variable person1 and person2 are of type humanBeing.

Structure Operation

The various operations can be performed on structures and structure members.

1. Structure Equality Check:

Here, the equality or inequality check of two structure variable of same type or dissimilar type

is not allowed

typedef struct{

char name[10];

int age;

float salary;

}humanBeing;

humanBeing person1, person2;

if (person1 = = person2) is invalid.

Data Structure & Applications – BCS304

The valid function is shown below

#define FALSE 0

#define TRUE 1

if (humansEqual(person1,person2))

printf("The two human beings are the same\n");

else

printf("The two human beings are not the same\n");

int humansEqual(humanBeing person1, humanBeing person2)

{ /* return TRUE if person1 and person2 are the same human being otherwise

return FALSE */

if (strcmp(person1.name, person2.name))

return FALSE;

if (person1.age != person2.age)

return FALSE;

if (person1.salary != person2.salary)

return FALSE;

return TRUE;

}

Program: Function to check equality of structures

2. Assignment operation on Structure variables:

person1 = person2

The above statement means that the value of every field of the structure of person 2 is

assigned as the value of the corresponding field of person 1, but this is invalid statement.

Valid Statements is given below:

strcpy(person1.name, person2.name);

person1.age = person2.age;

person1.salary = person2.salary;

Structure within a structure:

There is possibility to embed a structure within a structure. There are 2 ways to embed

structure.

1. The structures are defined separately and a variable of structure type is declared inside the

definition of another structure. The accessing of the variable of a structure type that are nested

inside another structure in the same way as accessing other memberof that structure

Data Structure & Applications – BCS304

Example: The following example shows two structures, where both the structure are defined

separately.

typedef struct {

}date;

typedef struct {

int month;

int day;

int year;

char name[10];

int age;

float salary;

date dob;

} humanBeing;

humanBeing person1;

A person born on February 11, 1944, would have the values for the date struct set as:

person1.dob.month = 2;

person1.dob.day = 11;

person1.dob.year = 1944;

2. The complete definition of a structure is placed inside the definition of another structure.

Example:

typedef struct {

char name[10];

int age;

float salary;

struct {

} date;

} humanBeing;

int month;

int day;

int year;

Data Structure & Applications – BCS304

SELF-REFERENTIAL STRUCTURES
A self-referential structure is one in which one or more of its components is a pointer to itself. Self-

referential structures usually require dynamic storage management routines (malloc and free) to

explicitly obtain and release memory.

Consider as an example:

typedef struct {

} list;

char data;

struct list *link ;

Each instance of the structure list will have two components data and link.

 Data: is a single character,

 Link: link is a pointer to a list structure. The value of link is either the address in

memory of an instance of list or the null pointer.

Consider these statements, which create three structures and assign values to their respective fields:

list item1, item2, item3;

item1.data = 'a';

item2.data = 'b';

item3.data = 'c';

item1.link = item2.1ink = item3.link = NULL;

Structures item1, item2 and item3 each contain the data item a, b, and c respectively, and the null

pointer. These structures can be attached together by replacing the null link field in item 2 with

one that points to item 3 and by replacing the null link field in item 1 with one that points to item

2.

item1.link = &item2;

item2.1ink = &item3;

Data Structure & Applications – BCS304

Unions:

A union is similar to a structure, it is collection of data similar data type or dissimilar.

Syntax: union{

Example:

data_type member 1;

data_type member 2;

………………………

………………………

data_type member n;

}variable_name;

union{

} u;

int children;

int beard;

Union Declaration:

A union declaration is similar to a structure, but the fields of a union must share their memory

space. This means that only one field of the union is "active" at any given time.

union{

}u;

char name;

int age;

float salary;

The major difference between a union and a structure is that unlike structure members which are

stored in separate memory locations, all the members of union must share the same memory space.

This means that only one field of the union is "active" at any given time.

Data Structure & Applications – BCS304

Example:

#include <stdio.h>

union job {

char name[32];

float salary;

int worker_no;

}u;

int main(){

}

printf("Enter name:\n");

scanf("%s", &u.name);

printf("Enter salary: \n");

scanf("%f", &u.salary);

printf("Displaying\n Name :%s\n",u.name);

printf("Salary: %.1f",u.salary);

return 0;

Output:

Enter name: Albert

Enter salary: 45678.90

Displaying

Name: f%gupad (Garbage Value)

Salary: 45678.90

POINTERS

A pointer is a variable which contains the address in memory of another variable.

The two most important operator used with the pointer type are

& - The unary operator & which gives the address of a variable

* - The indirection or dereference operator * gives the content of the object pointed to

by apointer.

Declaration

int i, *pi;

Here, i is the integer variable and pi is a pointer to an integer

pi = &i;

Here, &i returns the address of i and assigns it as the value of pi

Data Structure & Applications – BCS304

Null Pointer

The null pointer points to no object or function.

The null pointer is represented by the integer 0.

The null pointer can be used in relational expression, where it is interpreted as false.

Ex: if (pi = = NULL) or if (!pi)

Pointers can be Dangerous:

Pointer can be very dangerous if they are misused. The pointers are dangerous in following

situations:

1. Pointer can be dangerous when an attempt is made to access an area of memory that is either

out of range of program or that does not contain a pointer reference to a legitimate object.

Ex: main ()

{

int *p;

int pa = 10;

p = &pa;

printf(“%d”, *p); //output = 10;

printf(“%d”, *(p+1)); //accessing memory which is out of range

}

2. It is dangerous when a NULL pointer is de-referenced, because on some computer it may return

0 and permitting execution to continue, or it may return the result stored in location zero, so it may

produce a serious error.

3. Pointer is dangerous when use of explicit type casts in converting between pointer types

Ex: pi = malloc (sizeof (int));

pf = (float*) pi;

4. In some system, pointers have the same size as type int, since int is the default type specifier,

some programmers omit the return type when defining a function. The return type defaults to int

which can later be interpreted as a pointer. This has proven to be a dangerous practice on some

computer and the programmer is made to define explicit types for functions.

Pointers to Pointers

A variable which contains address of a pointer variable is called pointer-to-pointer.

Data Structure & Applications – BCS304

DYNAMIC MEMORY ALLOCATION FUNCTIONS

1. malloc():

The function malloc allocates a user- specified amount of memory and a pointer to the start of

the allocated memory is returned.

If there is insufficient memory to make the allocation, the returned value is NULL.

Syntax:

data_type *x;

x= (data_type *) malloc(size);

Where,

x is a pointer variable of data_type

size is the number of bytes

Ex: int *ptr;

ptr = (int *) malloc(100*sizeof(int));

2. calloc():

The function calloc allocates a user- specified amount of memory and initializes the allocated

memory to 0 and a pointer to the start of the allocated memory is returned.

If there is insufficient memory to make the allocation, the returned value is NULL.

Syntax:

Where,

data_type *x;

x= (data_type *) calloc(n, size);

x is a pointer variable of type int

n is the number of block to be allocated

size is the number of bytes in each block

Ex: int *x

x= calloc (10, sizeof(int));

The above example is used to define a one-dimensional array of integers. The capacity of this

array is n=10 and x [0: n-1] (x [0, 9]) are initially 0

Macro CALLOC

#define CALLOC (p, n, s)\

if (! ((p) = calloc (n, s)))\

{\

fprintf(stderr, “Insuffiient memory”);\

exit(EXIT_FAILURE);\

}\

Data Structure & Applications – BCS304

3. realloc():

 Before using the realloc() function, the memory should have been allocated using malloc(

) or calloc() functions.

 The function relloc() resizes memory previously allocated by either mallor or calloc, which

means, the size of the memory changes by extending or deleting the allocated memory.

 If the existing allocated memory need to extend, the pointer value will not change.

 If the existing allocated memory cannot be extended, the function allocates a new block and

copies the contents of existing memory block into new memory block and then deletes the

old memory block.

 When realloc is able to do the resizing, it returns a pointer to the start of the new block and

when it is unable to do the resizing, the old block is unchanged and the function returns the

value NULL

Syntax:

data_type *x;

x= (data_type *) realloc(p, s);

The size of the memory block pointed at by p changes to S. When s > p the additional s-p

memory block have been extended and when s < p, then p-s bytes of the old block are freed.

Macro REALLOC

#define REALLOC(p,S)\

if (!((p) = realloc(p,s))) \

{ \

fprintf(stderr, "Insufficient memory");\

exit(EXIT_FAILURE);\

}\

4. free()

Dynamically allocated memory with either malloc() or calloc () does not return on its own.

The programmer must use free() explicitly to release space.

Syntax:

free(ptr);

This statement cause the space in memory pointer by ptr to be deallocated

Data Structure & Applications – BCS304

REPRESENTATION OF LINEAR ARRAYS IN MEMORY

Linear Array

A linear array is a list of a finite number ‘n’ of homogeneous data element such that

a. The elements of the array are reference respectively by an index set consisting of n

consecutive numbers.

b. The element of the array are respectively in successive memory locations.

The number n of elements is called the length or size of the array. The length or the numbers

of elements of the array can be obtained from the index set by the formula

When LB = 0,

When LB = 1,

Where,

Length = UB – LB + 1

Length = UB

UB is the largest index called the Upper Bound

LB is the smallest index, called the Lower Bound

Representation of linear arrays in memory

Let LA be a linear array in the memory of the computer. The memory of the computer is

simply a sequence of address location as shown below,

1000

1001

1002

1003

1004

LOC (LA [K]) = address of the element LA [K] of the array LA

The elements of LA are stored in successive memory cells.

The computer does not keep track of the address of every element of LA, but needs to keep

track only the address of the first element of LA denoted by,

Base (LA)

and called the base address of LA.

Data Structure & Applications – BCS304

Using the base address of LA, the computer calculates the address of any element of LA by

the formula

LOC (LA[K]) = Base(LA) + w(K – lower bound)

Where, w is the number of words per memory cell for the array LA.

DYNAMICALLY ALLOCATED ARRAYS

One Dimensional Array

While writing computer programs, if finds ourselves in a situation where we cannot determine

how large an array to use, then a good solution to this problem is to defer this decision to run

time and allocate the array when we have a good estimate of the required array size.

Example:

int i, n, *list;

printf(“Enter the number of numbers to generate:”);

scanf(“%d”, &n);

if(n<1)

{

fprintf (stderr, “Improper value of n \n”);

exit(EXIT_FAILURE);

}

MALLOC (list, n*sizeof(int));

The programs fails only when n<1 or insufficient memory to hold the list of numbers that are

to be sorted.

Two DimensionalArrays

C uses array-of-arrays representation to represent a multidimensional array. The two

dimensional arrays is represented as a one-dimensional array in which each element is itself a

one-dimensional array.

Example: int x[3][5];

Array-of-arrays representation

Data Structure & Applications – BCS304

C find element x[i][j] by first accessing the pointer in x[i].

Where x[i] = α+ i* sizeof(int), which give the address of the zeroth element of row i of the

array.

Then adding j*sizeof(int) to this pointer (x[i]) , the address of the [j]th element of row i is

determined.

x[i] = α+ i* sizeof(int)

x[j] = α+ j* sizeof(int)

x[i][j] = x[i]+ i* sizeof(int)

Creation of Two-Dimensional Array Dynamically

int **myArray;

myArray = make2dArray(5,10);

myArray[2][4]=6;

int ** make2dArray(int rows, int cols)

{ /* create a two dimensional rows X cols array */

int **x, i;

MALLOC(x, rows * sizeof (*x)); /*get memory for row pointers*/

for (i= 0;i<rows; i++) /* get memory for each row */

MALLOC(x[i], cols *sizeof(**x));

return x;

}

The second line allocates memory for a 5 by 10 two-dimensional array of integers and the

third line assigns the value 6 to the [2][4] element of this array.

Data Structure & Applications – BCS304

ARRAY OPERATIONS

1. Traversing

 Let A be a collection of data elements stored in the memory of the computer. Suppose

if the contents of the each elements of array A needs to be printed or to count the

numbers of elements of A with a given property can be accomplished by Traversing.

 Traversing is a accessing and processing each element in the array exactly once.

Algorithm 1: (Traversing a Linear Array)

Hear LA is a linear array with the lower bound LB and upper bound UB. This algorithm

traverses LA applying an operation PROCESS to each element of LA using while loop.

1. [Initialize Counter] set K:= LB

2. Repeat step 3 and 4 while K ≤ UB

3. [Visit element] Apply PROCESS to LA [K]

4. [Increase counter] Set K:= K + 1

[End of step 2 loop]

5. Exit

Algorithm 2: (Traversing a Linear Array)

Hear LA is a linear array with the lower bound LB and upper bound UB. This algorithm

traverses LA applying an operation PROCESS to each element of LA using repeat – for loop.

1. Repeat for K = LB to UB

Apply PROCESS to LA [K]

[End of loop]

2. Exit.

Example:

Consider the array AUTO which records the number of automobiles sold each year from 1932

through 1984.

To find the number NUM of years during which more than 300 automobiles were sold,

involves traversing AUTO.

1. [Initialization step.] Set NUM := 0

2. Repeat for K = 1932 to 1984:

If AUTO [K] > 300, then: Set NUM: = NUM + 1.

[End of loop.]

3. Return.

Data Structure & Applications – BCS304

2. Inserting

 Let A be a collection of data elements stored in the memory of the computer.

Inserting refers to the operation of adding another element to the collection A.

 Inserting an element at the “end” of the linear array can be easily done provided the memory

space allocated for the array is large enough to accommodate the additional element.

 Inserting an element in the middle of the array, then on average, half of the elements must

be moved downwards to new locations to accommodate the new element and keep the order

of the otherelements.

Algorithm:

INSERT (LA, N, K, ITEM)

Here LA is a linear array with N elements and K is a positive integer such that K ≤ N. This

algorithm inserts an element ITEM into the Kth position in LA.

1. [Initialize counter] set J:= N

2. Repeat step 3 and 4 while J ≥ K

3. [Move Jth element downward] Set LA [J+1] := LA[J]

4. [Decrease counter] set J:= J – 1

[End of step 2 loop]

5. [Insert element] set LA[K]:= ITEM

6. [Reset N] set N:= N+1

7. Exit

3. Deleting

 Deleting refers to the operation of removing one element to the collection A.

 Deleting an element at the “end” of the linear array can be easily done with difficulties.

 If element at the middle of the array needs to be deleted, then each subsequent

elements be moved one location upward to fill up the array.

Algorithm

DELETE (LA, N, K, ITEM)

Here LA is a linear array with N elements and K is a positive integer such that K ≤ N. this

algorithm deletes the Kth element from LA

1. Set ITEM:= LA[K]

2. Repeat for J = K to N – 1

[Move J + 1 element upward] set LA[J]:= LA[J+1]

[End of loop]

3. [Reset the number N of elements in LA] set N:= N – 1

4. Exit

Data Structure & Applications – BCS304

Example: Inserting and Deleting

Suppose NAME is an 8-element linear array, and suppose five names are in the array, as in Fig.(a).

Observe that the names are listed alphabetically, and suppose we want to keep the array names

alphabetical at all times. Suppose Ford is added to the array. Then Johnson, Smith and Wagner must

each be moved downward one location, as in Fig.(b). Next suppose Taylor is added to the array;

then Wagner must be moved, as in Fig.(c). Last, suppose Davis is removed from the array. Then the

five names Ford, Johnson, Smith, Taylor and Wagner must each be moved upward one location, as

in Fig.(d).

4. Sorting

Sorting refers to the operation of rearranging the elements of a list. Here list be a set of n

elements. The elements are arranged in increasing or decreasing order.

Ex: suppose A is the list of n numbers. Sorting A refers to the operation of rearranging the

elements of A so they are in increasing order, i.e., so that,

A[I] < A[2] < A[3] < ... < A[N]

For example, suppose A originally is the list

8, 4, 19, 2, 7, 13, 5, 16

After sorting, A is the list

2, 4, 5, 7, 8, 13, 16, 19

Data Structure & Applications – BCS304

Bubble Sort
Suppose the list of numbers A[l], A[2], ... , A[N] is in memory. The bubble sort algorithm

works as follows:

Algorithm: Bubble Sort – BUBBLE (DATA, N)

Here DATA is an array with N elements. This algorithm sorts the elements in

DATA.

1. Repeat Steps 2 and 3 for K = 1 to N - 1.

2. Set PTR: = 1. [Initializes pass pointer PTR.]

3. Repeat while PTR ≤ N - K: [Executes pass.]

(a) If DATA[P TR] > DATA[P TR + 1], then:

Interchange DATA [PTR] and DATA [PTR + 1].

[End of If structure.]

(b) Set PTR: = PTR + 1.
[End of inner loop.]

[End of Step 1 outer loop.]

4. Exit.

Example:

Data Structure & Applications – BCS304

Complexity of the Bubble Sort Algorithm

The time for a sorting algorithm is measured in terms of the number of comparisons f(n). There are

n – 1 comparisons during the first pass, which places the largest element in the last position; there

are n - 2 comparisons in the second step, which places the second largest element in the next-to-
last position; and so on. Thus

f(n) = (n - 1) + (n - 2) + ... + 2 + 1 = 𝒏(𝒏−𝟏) = 𝒏𝟐 O(n) = O(n2)
 =
𝟐 𝟐

Data Structure & Applications – BCS304

𝑛+1

5. Searching

 Let DATA be a collection of data elements in memory, and suppose a specific ITEM of

information is given. Searching refers to the operation of finding the location LOC of ITEM

in DATA, or printing some message that ITEM does not appear there.

 Thesearch is said to be successful if ITEMdoes appear in DATA and unsuccessful otherwise.

Linear Search

Suppose DATA is a linear array with n elements. Given no other information about DATA, The

way to search for a given ITEM in DATA is to compare ITEM with each element of DATA one by

one. That is, first test whether DATA [l] = ITEM, and then test whether DATA[2] = ITEM, and so

on. This method, which traverses DATA sequentially to locate ITEM, is called linear search or

sequential search.

Algorithm: (Linear Search) LINEAR (DATA, N, ITEM, LOC)

Here DATA is a linear array with N elements, and ITEM is a given item of information. This

algorithm finds the location LOC of ITEM in DATA, or sets LOC: = 0 if the search is

unsuccessful.

1. [Insert ITEM at the end of DATA.] Set DATA [N + 1]: = ITEM.

2. [Initialize counter.] Set LOC: = l.

3. [Search for ITEM.]

Repeat while DATA [LOC] ≠ ITEM:

Set LOC:= LOC + 1.

[End of loop.]

4. [Successful?] If LOC = N + 1, then: Set LOC:=0

5. Exit.

Complexity of the Linear Search Algorithm

Worst Case: The worst case occurs when one must search through the entire array DATA,

i.e., when ITEM does not appear in DATA. In this case, the algorithm requires comparisons.

f(n) = n + 1

Thus, in the worst case, the running time is proportional to n.

Average Case: The average number of comparisons required to find the location of ITEM is

approximately equal to half the number of elements in the array.
()

f(n)=
2

Data Structure & Applications – BCS304

Binary Search

Suppose DATA is an array which is sorted in increasing numerical order or, equivalently,

alphabetically. Then there is an extremely efficient searching algorithm, called binary search,

which can be used to find the location LOC of a given ITEM of information in DATA.

Algorithm: (Binary Search) BINARY (DATA, LB, UB, ITEM, LOC)

Here DATA is a sorted array with lower bound LB and upper bound UB, and ITEM is a

given item of information. The variables BEG, END and MID denote, the beginning, end and

middle locations of a segment of elements of DATA.

This algorithm finds the location LOC of ITEM in DATA or sets LOC = NULL.

1. [Initialize segment variables.]

Set BEG: = LB, END := UB and MID = INT((BEG + END)/2).

2. Repeat Steps 3 and 4 while BEG ≤ END and DATA [MID] ≠ ITEM.

3. If ITEM < DATA [MID], then:

Set END := MID - 1.

Else:

Set BEG := MID + 1.

[End of If structure.]

4. Set MID := INT((BEG + END)/2).

[End of Step 2 loop.]

5. If DATA[MID] = ITEM, then:

Set LOC := MID.

Else:

Set LOC := NULL.

[End of If structure.]

6. Exit.

Remark: Whenever ITEM does

Complexity of the Binary Search Algorithm

The complexity is measured by the number f(n) of comparisons to locate ITEM in DATA

where DATA contains n elements. Observe that each comparison reduces the sample size in

half. Hence we require at most f(n) comparisons to locate ITEM where

2f(n) > n or equivalently f(n) = [log2 n] + 1

That is, the running time for the worst case is approximately equal to log2 n. One can also

show that the running time for the average case is approximately equal to the running time for

the worstcase.

Data Structure & Applications – BCS304

MULTIDIMENSIONAL ARRAY

Two-Dimensional Arrays

A two-dimensional m x n array A is a collection of m . n data elements such that each element

is specified by a pair of integers (such as J, K), called subscripts, with the property that

1 ≤ J ≤ m and 1 ≤ K ≤ n

The element of A with first subscript j and second subscript k will be denoted by

AJ,K or A[J, K]

Two-dimensional arrays are called matrices in mathematics and tables in business

applications.

There is a standard way of drawing a two-dimensional m x n array A where the elements of A

form a rectangular array with m rows and n columns and where the element A[J, K] appears

in row J and column K.

Representation of Two-Dimensional Arrays in Memory

Let A be a two-dimensional m x n array. Although A is pictured as a rectangular array of

elements with m rows and n columns, the array will be represented in memory by a block of

m . n sequential memory locations.

The programming language will store the array A either (1) column by column, is called

column-major order, or (2) row by row, in row-major order

Data Structure & Applications – BCS304

The computer uses the formula to find the address of LA[K] in time independent of K.

LOC (LA[K]) = Base(LA) + w(K - 1)

The computer keeps track of Base(A)-the address of the first element A[1, 1] of A-and

computes the address LOC(A[J, K]) of A[J, K] using the formula

(Column-major order) LOC(A[J, K]) = Base(A) + w[M(K - 1) + (J - 1)]

(Row-major order) LOC(A[J, K]) = Base(A) + w[N(J - 1) + (K - 1)]

General Multidimensional Arrays

An n-dimensional m1 X m2 X ... X mn array B is a collection of m1, m2 ... mn data elements in which

each element is specified by a list of n integers-such as K1 K2 ... , Kn called subscripts, with the

property that

1 ≤ K1 ≤ m1 , 1 ≤ K2 ≤ m2 ….. 1 ≤ Kn ≤ mn

The element of B with subscripts K1 K2 ... , Kn will be denoted by B[K1 K2 ... , Kn]

The programming language will store the array B either in row-major order or in column-

major order.

Let C be such an n-dimensional array. The index set for each dimension of C consists of the

consecutive integers from the lower bound to the upper bound of the dimension. The length Li

of dimension i of C is the number of elements in the index set, and Li can be calculated, as

Li = upper bound - lower bound + 1

For a given subscript Ki, the effective index Ei of Li is the number of indices preceding Ki in

the index set, and Ei can be calculated from

Ei = Ki - lower bound

Then the address LOC(C[K1 K2 ... , Kn] of an arbitrary element of C can be obtained from the

formula

Base(C) + w[(((... (ENLN-1] + E N-1])LN-2) + ... + E3))L2 + E2)L1 + E1]

or from the formula

Base(C) + w[(... ((E1L2 + E2)L3 + E3)L4 + ... + EN-1)LN + EN]

according to whether C is stored in column-major or row-major order.

Data Structure & Applications – BCS304

POLYNOMIALS

What is a polynomial?

“A polynomial is a sum of terms, where each term has a form axe , where x is the variable, a is

the coefficient and e is the exponent.”

Two example polynomials are:

A(x) =3x20 + 2x5 + 4

B(x) =x4 + 10x3 + 3x2 +1

The largest (or leading) exponent of a polynomial is called its degree. Coefficients that are

zero are not displayed. The term with exponent equal to zero does not show the variable since

x raised to a power of zero is 1.

Assume there are two polynomials,

A(x) = Σ ai xi and B (x) =Σ bi xi

then:

A(x) + B(x) = Σ (ai + bi) xi

A(x).B(x) = Σ (ai xi. Σ (bj xj))

Data Structure & Applications – BCS304

Polynomial Representation

One way to represent polynomials in C is to use typedef to create the type polynomial as

below:

#define MAX-DEGREE 101 /*Max degree of polynomial+1*/

typedef struct{

int degree;

float coef[MAX-DEGREE];

} polynomial;

Now if a is a variable and is of type polynomial and n < MAX_DEGREE, the polynomial

A(x) = Σai xi would be represented as:

a.degree = n

a.coef[i] = an-i , 0 ≤ i ≤ n

In this representation, the coefficients is stored in order of decreasing exponents, such that

a.coef [i] is the coefficient of xn-i provided a term with exponent n-i exists;

Otherwise, a.coef [i] =0. This representation leads to very simple algorithms for most of the

operations, it wastes a lot of space.

To preserve space an alternate representation that uses only one global array, terms to store

all polynomials.

The C declarations needed are:

MAX_TERMS 100 /*size of terms array*/

typedef struct{

float coef;

int expon;

} polynomial;

polynomial terms[MAX-TERMS];

int avail = 0;

Consider the two polynomials

A(x) = 2xl000+ 1

B(x) = x4 + 10x3 + 3x2 + 1

Data Structure & Applications – BCS304

 The above figure shows how these polynomials are stored in the array terms. The index

of the first term of A and B is given by startA and startB, while finishA and finishB

give the index of the last term of A and B.

 The index of the next free location in the array is given by avail.

 For above example, startA=0, finishA=1, startB=2, finishB=5, & avail=6.

Polynomial Addition

 C function is written that adds two polynomials, A and B to obtain D =A + B.

 To produce D (x), padd() is used to add A (x) and B (x) term by term. Starting at

position avail, attach() which places the terms of D into the array, terms.

 If there is not enough space in terms to accommodate D, an error message is printed to

the standard error device & exits the program with an error condition

void padd(int startA, int finishA, int startB, int finishB, int *startD,int *finishD)

{ /* add A(x) and B(x) to obtain D(x) */

float coefficient;

*startD = avail;

while (startA <= finishA && startB <= finishB)

switch(COMPARE(terms[startA].expon, terms[startB].expon))

{

case -1: /* a expon < b expon */

attach (terms [startB].coef, terms[startB].expon);

startB++;

break;

case 0: /* equal exponents */

coefficient = terms[startA].coef + terms[startB].coef;

if (coefficient)

attach (coefficient, terms[startA].expon);

startA++;

startB++;

break;

Data Structure & Applications – BCS304

case 1: /* a expon > b expon */

attach (terms [startA].coef, terms[startA].expon);

startA++;

}

/* add in remaining terms of A(x) */

for(; startA <= finishA; startA++)

attach (terms[startA].coef, terms[startA].expon);

/* add in remaining terms of B(x) */

for(; startB <= finishB; startB++)

attach (terms[startB].coef, terms[startB].expon);

*finishD = avail-i;

Function to add two polynomials

void attach(float coefficient, int exponent)

{ /* add a new term to the polynomial */

if (avail >= MAX-TERMS)

{

fprintf(stderr,"Too many terms in the polynomial\n");

exit(EXIT_FAILURE);

}

terms[avail].coef = coefficient;

terms[avail++].expon = exponent;

}

Function to add new term

Analysis of padd():

The number of non-zero terms in A and B is the most important factors in analyzing the time

complexity.

Let m and n be the number of non-zero terms in A and B, If m >0 and n > 0, the while loop is

entered. Each iteration of the loop requires O(1) time. At each iteration, the value of startA or

startB or both is incremented. The iteration terminates when either startA or startB exceeds

finishA or finishB.

Data Structure & Applications – BCS304

The number of iterations is bounded by m + n -1

A(x) = ∑
𝑛

𝑖=0

𝑥2𝑖 and B(x) = ∑
𝑛

𝑖=0

𝑥2𝑖+1

The time for the remaining two for loops is bounded by O(n + m) because we cannot iterate

the first loop more than m times and the second more than n times. So, the asymptotic

computing time of this algorithm is O(n +m).

SPARSE MATRICES

A matrix contains m rows and n columns of elements as illustrated in below figures. In this figure,

the elements are numbers. The first matrix has five rows and three columns and the second has six

rows and six columns. We write m x n (read "m by n") to designate a matrix with m rows and n

columns. The total number of elements in such a matrix is mn. If m equals n, the matrix is

square.

What is Sparse Matrix?

A matrix which contains many zero entries or very few non-zero entries is called as

Sparse matrix.

In the figure B contains only 8 of 36 elements are nonzero and that is sparse.

Important Note:

A sparse matrix can be represented in 1-Dimension, 2- Dimension and 3- Dimensional array.

When a sparse matrix is represented as a two-dimensional array as shown in

Figure B, more space is wasted.

Example: consider the space requirements necessary to store a 1000 x 1000 matrix that has only

2000 non-zero elements. The corresponding two-dimensional array requires space for 1,000,000

elements. The better choice is by using a representation in which only the nonzero elements are

stored.

Data Structure & Applications – BCS304

Sparse Matrix Representation

 An element within a matrix can characterize by using the triple <row,col,value> This

means that, an array of triples is used to represent a sparse matrix.

 Organize the triples so that the row indices are in ascending order.

 The operations should terminate, so we must know the number of rows and columns,

and the number of nonzero elements in the matrix.

Implementation of the Create operation as below:

SparseMatrix Create(maxRow, maxCol) ::=

#define MAX_TERMS 101 /* maximum number of terms +1*/

typedef struct {

int col;

int row;

int value;

} term;

term a[MAX_TERMS];

 The below figure shows the representation of matrix in the array “a” a[0].row contains the

number of rows, a[0].col contains the number of columns and a[0].value contains the total

number of nonzero entries.

 Positions 1 through 8 store the triples representing the nonzero entries. The row index is in

the field row, the column index is in the field col, and the value is in the field value. The

triples are ordered by row and within rows bycolumns.

a[0] 6 6 8 b[0] 6 6 8

[1] 0 0 15 [1] 0 0 15

[2] 0 3 22 [2] 0 4 91

[3] 0 5 -15 [3] 1 1 11

[4] 1 1 11 [4] 2 1 3

[5] 1 2 3 [5] 2 5 28

[6] 2 3 -6 [6] 3 0 22

[7] 4 0 91 [7] 3 2 -6

[8] 5 2 28 [8] 5 0 -15

Fig (a): Sparse matrix stored as triple Fig (b): Transpose matrix stored as triple

Data Structure & Applications – BCS304

Transposing a Matrix

To transpose a matrix, interchange the rows and columns. This means that each element

a[i][j] in the original matrix becomes element a[j][i] in the transpose matrix.

A good algorithm for transposing a matrix:

for each row i

take element <i, j, value> and store it as

element <j, i, value> of the transpose;

If we process the original matrix by the row indices it is difficult to know exactly where to

place element <j, i, value> in the transpose matrix until we processed all the elements that

precede it.

This can be avoided by using the column indices to determine the placement of elements in

the transpose matrix. This suggests the following algorithm:

for all elements in column j

place element <i, j, value> in

element <j, i, value>

The columns within each row of the transpose matrix will be arranged in ascending order. void

transpose (term a[], termb[])

{ /* b is set to the transpose of a */

int n, i, j, currentb;

n = a[0].value; /* total number of elements */

b[0].row = a[0].col; /* rows in b = columns in a */

b[0].col = a[0].row; /* columns in b = rows in a */

b[0].value = n;

if (n > 0)

{ currentb = 1;

for (i = 0; i < a[O].col; i++)

for (j= 1; j<=n; j++)

if (a[j].col == i)

{

b[currentb].row = a[j].col;

b[currentb].col = a[j].row;

b[currentb].value = a[j].value;

currentb++;

}

}

}

Transpose of a sparse matrix

Data Structure & Applications – BCS304

 STRINGS:

Each programming languages contains a character set that is used to communicate with the

computer. The character set include the following:

Alphabet: A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

Digits: 0 1 2 3 4 5 6 7 8 9

Special characters: + - / * () , . $ = ‘ _ (Blank space)

String: A finite sequence S of zero or more Characters is called string.

Length: The number of characters in a string is called length of string.

Empty or Null String: The string with zero characters.

Concatenation: Let S1 and S2 be the strings. The string consisting of the characters of S1

followed by the character S2 is called Concatenation of S1 and S2.

Ex: ‘THE’ // ‘END’ = ‘THEEND’

‘THE’ // ‘ ’ // ‘END’ = ‘THE END’

Substring: A string Y is called substring of a string S if there exist string X and Z such that

S = X // Y // Z

If X is an empty string, then Y is called an Initial substring of S, and Z is an empty string then

Y is called a terminal substring of S.

Ex: ‘BE OR NOT’ is a substring of ‘TO BE OR NOT TO BE’

‘THE’ is an initial substring of ‘THE END’

STRINGS IN C

In C, the strings are represented as character arrays terminated with the null character \0.

Declaration 1:

#define MAX_SIZE 100 /* maximum size of string */

char s[MAX_SIZE] = {“dog”};

char t[MAX_SIZE] = {“house”};

s[0] s[1] s[2] s[3] t[0] t[1] t[2] t[3] t[4] t[4]

The above figure shows how these strings would be represented internally in memory.

d o g \0

h o u s e \0

Data Structure & Applications – BCS304

Declaration 2:

char s[] = {“dog”};

char t[] = {“house”};

Using these declarations, the C compiler will allocate just enough space to hold each word

including the null character.

STORING STRINGS

Strings are stored in three types of structures

1. Fixed length structures

2. Variable length structures with fixed maximum

3. Linked structures

Record Oriented Fixed length storage:

In fixed length structures each line of print is viewed as a record, where all have the same

length i.e., where each record accommodates the same number of characters.

Example: Suppose the input consists of the program. Using a record oriented, fixed length

storage medium, the input data will appear in memory as pictured below.

Data Structure & Applications – BCS304

Suppose, if new record needs to be inserted, then it requires that all succeeding records be moved

to new memory location. This disadvantages can be easily remedied as shown in below figure.

That is, one can use a linear array POINT which gives the address of successive record, so

that the records need not be stored in consecutive locations in memory. Inserting a new record

will require only an updating of the array POINT.

The main advantages of this method are

1. The ease of accessing data from anygiven record

2. The ease of updating data in anygiven record (as long as the length of the new data

does not exceed the record length)

The main disadvantages are

1. Time is wasted reading an entire record if most of the storage consists of inessential

blank spaces.

2. Certain records may require more space thanavailable

3. When the correction consists of more or fewer characters than the original text,

changing a misspelled word requires record to be changed.

Variable length structures with fixed maximum

The storage of variable-length strings in memory cells with fixed lengths can be done in two

general ways

1. One can use a marker, such as two dollar signs ($$), to signal the end of the string

2. One can list the length of the string—as an additional item in the pointer array

Data Structure & Applications – BCS304

Example:

The other method to store strings one after another by using some separation marker, such as

the two dollar sign ($$) or by using a pointer giving the location of the string.

These ways of storing strings will save space and are sometimes used in secondary memory

when records are relatively permanent and require little changes.

These types of methods of storage are usually inefficient when the strings and their lengths

are frequently being changed.

Data Structure & Applications – BCS304

Linked Storage

 Most extensive word processing applications, strings are stored by means of linked

lists.

 In a one way linked list, a linearly ordered sequence of memory cells called nodes,

where each node contains an item called a link, which points to the next node in the

list, i.e., which consists the address of the nextnode.

Strings may be Stored in linked list as follows:

Each memory cell is assigned one character or a fixed number of characters and a link

contained in the cell gives the address of the cell containing the next character or group of

character in the string.

Ex: TO BE OR NOT TO BE

CHARACTER DATA TYPE

The various programming languages handles character data type in different ways.

Constants

Many programming languages denotes string constants by placing the string in either single

or double quotation marks.

Ex: ‘THE END’

“THE BEGINNING”

The string constants of length 7 and 13 characters respectively.

Variables

Each programming languages has its own rules for forming character variables. These

variables fall into one of three categories

1. Static: In static character variable, whose length is defined before the program is

executed and cannot change throughout the program

Data Structure & Applications – BCS304

2. Semi-static: The length of the variable may vary during the execution of the program

as long as the length does not exceed a maximum value determined by the program

before the program is executed.

3. Dynamic: The length of the variable can change during the execution of the program.

STRING OPERATION

Substring

Accessing a substring from a given string requires three pieces of information:

(1) The name of the string or the string itself

(2) The position of the first character of the substring in the givenstring

(3) The length of the substring or the position of the last character of the substring.

Syntax: SUBSTRING (string, initial, length)

The syntax denote the substring of a string S beginning in a position K and having a length L.

Ex: SUBSTRING ('TO BE OR NOT TO BE’, 4, 7) = 'BE OR N’

SUBSTRING ('THE END', 4, 4) = ' END'

Indexing

Indexing also called pattern matching, refers to finding the position where a string pattern P

first appears in a given string text T. This operation is called INDEX

Syntax: INDEX (text, pattern)

If the pattern P does not appears in the text T, then INDEX is assigned the value 0.

The arguments “text” and “pattern” can be either string constant or string variable.

Concatenation

Let S1 and S2 be string. The concatenation of S1 and S2 which is denoted by S1 // S2, is the string

consisting of the characters of S1 followed by the character of S2.

Ex:

(a) Suppose S1 = 'MARK' and S2= ‘TWAIN' then

S1 // S2 = ‘MARKTWAIN’

Concatenation is performed in C language using strcat function as shown below

strcat (S1, S2);

Concatenates string S1 and S2 and stores the result in S1

strcat () function is part of the string.h header file; hence it must be included at the time of

pre- processing

Data Structure & Applications – BCS304

Length

The number of characters in a string is called its length.

Syntax: LENGTH (string)

Ex: LENGTH (‘computer’) = 8

String length is determined in C language using the strlen() function, as shown below:

X = strlen ("sunrise");

strlen function returns an integer value 7 and assigns it to the variable X

Similar to strcat, strlen is also a part of string.h, hence the header file must be included at the

time of pre-processing.

Data Structure & Applications – BCS304

PATTERN MATCHING ALGORITHMS

Pattern matching is the problem of deciding whether or not a given string pattern P appears in a

string text T. The length of P does not exceed the length of T.

First Pattern Matching Algorithm

 The first pattern matching algorithm is one in which comparison is done by a given pattern

P with each of the substrings of T, moving from left to right, until a match is found.

WK = SUBSTRING (T, K, LENGTH (P))

 Where, WK denote the substring of T having the same length as P and beginning with the

Kth character of T.

 First compare P, character by character, with the first substring, W1. If all the characters are

the same, then P = W1 and so P appears in T and INDEX (T, P) = 1.

 Suppose it is found that some character of P is not the same as the corresponding character

of W1. Then P ≠ W1

 Immediately move on to the next substring, W2 That is, compare P with W2. If P ≠ W2 then

compare P with W3 and so on.

 The process stops, When P is matched with some substring WK and so P appears in T and

INDEX(T,P) = K or When all the WK'S with no match and hence P does not appear in T.

 The maximum value MAX of the subscript K is equal to LENGTH(T) -LENGTH(P) +1.

Algorithm: (Pattern Matching)

P and T are strings with lengths R and S, and are stored as arrays with one character per

element. This algorithm finds the INDEX of P in T.

1. [Initialize.] Set K: = 1 and MAX: = S - R + 1

2. Repeat Steps 3 to 5 while K ≤ MAX

3. Repeat for L = 1 to R: [Tests each character of P]

If P[L] ≠ T[K + L – l], then: Go to Step 5

[End of inner loop.]

4. [Success.] Set INDEX = K, and Exit
5. Set K := K + 1

[End of Step 2 outer loop]

6. [Failure.] Set INDEX = O

7. Exit

Data Structure & Applications – BCS304

Observation of algorithms

 P is an r-character string and T is an s-character string

 Algorithm contains two loops, one inside the other. The outer loop runs through each

successive R-character substring WK = T[K] T[K + 1] ... T[K+R-l] of T.

 The inner loop compares P with WK, character by character. If any character does not match,

then control transfers to Step 5, which increases K and then leads to the next substring of T.

 If all the R characters of P do match those of some WK then P appears in T and K is the
INDEX of P in T.

 If the outer loop completes all of its cycles, then P does not appear in T and so INDEX

= 0.

Complexity

The complexity of this pattern matching algorithm is equal to O(n2)

Second Pattern Matching Algorithm

The second pattern matching algorithm uses a table which is derived from a particular pattern

P but is independent of the text T.

For definiteness, suppose

P = aaba

This algorithm contains the table that is used for the pattern P = aaba.

The table is obtained as follows.

 Let Qi denote the initial substring of P of length i, hence Q0 = A, Q1 = a, Q2 = a2, Q3

= aab, Q4 = aaba = P (Here Q0 = A is the empty string.)

 The rows of the table are labeled by these initial substrings of P, excluding P itself.

 The columns of the table are labeled a, b and x, where x represents any character that doesn't

appear in the pattern P.

 Let f be the function determined by the table; i.e., let f(Qi, t) denote the entry in the table in

row Qi and column t (where t is any character). This entry f(Qi, t) is defined to be the largest

Q that appears as a terminal substring in the string (Qi t) the concatenation of Qi and t.

For example,

a2 is the largest Q that is a terminal substring of Q2a = a3, so f(Q2, a) = Q2 A

is the largest Q that is a terminal substring of Q1b = ab, so f(Q1, b) = Q0 a is

the largest Q that is a terminal substring of Q0a = a, so f(Q0, a) = Q1

A is the largest Q that is a terminal substring of Q3a = a3bx, so f(Q3, x) = Q0

Data Structure & Applications – BCS304

Although Q1 = a is a terminal substring of Q2a = a3, we have f(Q2, a) = Q2 because Q2 is also a

terminal substring of Q2a = a3 and Q2 is larger than Q1. We note that f(Qi, x) = Q0 for any Q,

since x does not appear in the pattern P Accordingly, the column corresponding to x is usually

omitted from the table.

Pattern matching Graph

The graph is obtained with the table as follows.

First, a node in the graph corresponding to each initial substring Qi of P. The Q's are called the

states of the system, and Q0 is called the initial state.

Second, there is an arrow (a directed edge) in the graph corresponding to each entry in the table.

Specifically, if

f(Qi, t) = Qj

then there is an arrow labeled by the character t from Qi to Qj

For example, f(Q2, b) = Q3 so there is an arrow labeled b from Q2 to Q3

For notational convenience, all arrows labeled x are omitted, which must lead to the initial state

Qo.

The second pattern matching algorithm for the pattern P = aaba.

 Let T = T1 T2 T3 ... TN denote the n-character-string text which is searched for the pattern

P. Beginning with the initial state Q0 and using the text T, wewill obtain a sequence of states

S1, S2, S3, ... asfollows.

 Let S1 = Q0 and read the first character T1. The pair (S1, T1) yields a second state S2; that

is, F(S1, T1) = S2, Read the next character T2, The pair (S2, T2) yields a state S3, and so

Data Structure & Applications – BCS304

on.

There are two possibilities:

1. Some state SK = P, the desired pattern. In this case, P does appear in T and its index is

K - LENGTH(P).

2. No state S1, S2, ... , SN +1 is equal to P. In this case, P does not appear in T.

Algorithm: (PATTERN MATCHING) The pattern matching table F(Q1, T) of a pattern P is in

memory, and the input is an N-character string T = T1 T2 T3 …… TN. The algorithm finds the INDEX

of P in T.

1. [Initialize] set K: =1 ans S1 = Q0

2. Repeat steps 3 to 5 while SK ≠ P and K ≤ N

3. Read TK

4. Set SK+1 : = F(SK, TK) [finds next state]

5. Set K: = K + 1 [Updates counter]

[End of step 2 loop]

6. [Successful ?]

If SK = P, then

INDEX = K – LENGTH (P)

Else

INDEX = 0

[End of IF structure]

7. Exit.

STACKS AND QUEUES

STACKS

DEFINITION
“A stack is an ordered list in which insertions (pushes) and deletions (pops) are made at one

end called the top.”

Given a stack S= (a0, ... ,an-1), where a0 is the bottom element, an-1 is the top element, and ai is

on top of element ai-1, 0 < i < n.

Figure: Inserting and deleting elements in a stack

Data Structure & Applications – BCS304

As shown in above figure, the elements are added in the stack in the order A, B, C, D, E, then

E is the first element that is deleted from the stack and the last element is deleted from stack

is A. Figure illustrates this sequence of operations.

Since the last element inserted into a stack is the first element removed, a stack is also known

as a Last-In-First-Out (LIFO) list.

ARRAY REPRESENTATION OF STACKS

 Stacks may be represented in the computer in various ways such as one-way linked list

(Singly linked list) or linear array.

 Stacks are maintained by the two variables such as TOP and MAX_STACK_SIZE.

 TOP which contains the location of the top element in the stack. If TOP= -1, then it

indicates stack is empty.

 MAX_STACK_SIZE which gives maximum number of elements that can be stored in

stack.

Stack can represented using linear array as shown below

STACK OPERATIONS

Implementation of the stack operations as follows.

1. Stack Create

Stack CreateS(maxStackSize)::=

#define MAX_STACK_ SIZE 100 /* maximum stack size*/

typedef struct

{

int key;

} element;

/* other fields */

element stack[MAX_STACK_SIZE];

int top = -1;

The element which is used to insert or delete is specified as a structure that consists of only a

key field.

2. Boolean IsEmpty(Stack)::= top < 0;

Data Structure & Applications – BCS304

3. Boolean IsFull(Stack)::= top >= MAX_STACK_SIZE-1;

The IsEmpty and IsFull operations are simple, and is implemented directly in the program

push and pop functions. Each of these functions assumes that the variables stack and top are

global.

4. Push()

Function push checks whether stack is full. If it is, it calls stackFull(), which prints an error

message and terminates execution. When the stack is not full, increment top and assign item to

stack [top].

void push(element item)

{ /* add an item to the global stack */

if (top >= MAX_STACK_SIZE-1)

stackFull();

stack[++top] = item;

}

5. Pop()

Deleting an element from the stack is called pop operation. The element is deleted only from

the top of the stack and only one element is deleted at a time.

element pop ()

{ /*delete and return the top element from the stack */

if (top == -1)

return stackEmpty(); /*returns an error key */

return stack[top--];

 }

1. stackFull()

The stackFull which prints an error message and terminates execution.

void stackFull()

{

fprintf(stderr, "Stack is full, cannot add element");

exit(EXIT_FAILURE);

}

Data Structure & Applications – BCS304

STACKS USING DYNAMIC ARRAYS

The array is used to implement stack, but the bound (MAX_STACK_ SIZE) should be known

during compile time. The size of bound is impossible to alter during compilation hence this

can be overcome by using dynamically allocated array for the elements and then increasing

the size of array as needed.

Stack Operations using dynamic array

1. Stack CreateS()::= typedef struct

{

int key; /* other fields */

} element;

element *stack;

MALLOC(stack, sizeof(*stack));

int capacity= 1;

int top= -1;

2. Boolean IsEmpty(Stack)::= top < 0;

3. Boolean IsFull(Stack)::= top >= capacity-1;

4. push()

Here the MAX_STACK_SIZE is replaced with capacity

void push(element item)

{ /* add an item to the global stack */

if (top >= capacity-1)

stackFull();

stack[++top] = item;

}

5. pop()

In this function, no changes are made.

element pop ()

{ /* delete and return the top element from the stack */

if (top == -1)

return stackEmpty(); /* returns an error key */

return stack[top--];

}

Data Structure & Applications – BCS304

6. stackFull()

The new code shown below, attempts to increase the capacity of the array stack so that new

element can be added into the stack. Before increasing the capacity of an array, decide what

the new capacity should be.

In array doubling, array capacity is doubled whenever it becomes necessary to increase the

capacity of an array.

void stackFull()

{

REALLOC (stack, 2*capacity*sizeof(*stack));

capacity *= 2;

}

Stack full with array doubling

Analysis

In the worst case, the realloc function needs to allocate 2*capacity*sizeof (*stack) bytes of

memory and copy capacity *sizeof (*stack)) bytes of memory from the old array into the

new one. Under the assumptions that memory may be allocated in O(1) time and that a stack

element can be copied in O(1) time, the time required by array doubling is O(capacity).

Initially, capacity is 1.

Suppose that, if all elements are pushed in stack and the capacity is 2k for some k, k>O, then

the total time spent over all array doublings is O (∑𝑘
𝑖=1 2𝑖) = O(2k+l) = O(2k).

Since the total number of pushes is more than 2k-1, the total time spend in array doubling is

O(n), where n is the total number of pushes. Hence, even with the time spent on array

doubling added in, the total run time of push over all n pushes is O(n).

Data Structure & Applications – BCS304

STACK APPLICATIONS: POLISH NOTATION

Expressions: It is sequence of operators and operands that reduces to a single value after

evaluation is called an expression.

X = a / b – c + d * e – a * c

In above expression contains operators (+, –, /, *) operands (a, b, c, d, e).

Expression can be represented in in different format such as

 Prefix Expression or Polish notation

 Infix Expression

 Postfix Expression or Reverse Polish notation

Infix Expression: In this expression, the binary operator is placed in-between the operand.

The expression can be parenthesized or un- parenthesized.

Example: A + B

Here, A & B are operands and + is operand

Prefix or Polish Expression: In this expression, the operator appears before its operand.

Example: + A B

Here, A & B are operands and + is operand

Postfix or Reverse Polish Expression: In this expression, the operator appears after its

operand.

Example: A B +

Here, A & B are operands and + is operand

Precedence of the operators

The first problem with understanding the meaning of expressions and statements is finding

out the order in which the operations are performed.

Example: assume that a =4, b =c =2, d =e =3 in below expression

X = a / b – c + d * e – a * c

((4/2)-2) + (3*3)-(4*2) (4/ (2-2 +3)) *(3-4)*2

=0+9-8

=1

OR = (4/3) * (-1) * 2

= -2.66666

Data Structure & Applications – BCS304

The first answer is picked most because division is carried out before subtraction, and

multiplication before addition. If we wanted the second answer, write expression differently

using parentheses to change the order of evaluation

X= ((a / (b – c + d)) * (e – a) * c

In C, there is a precedence hierarchy that determines the order in which operators are

evaluated. Below figure contains the precedence hierarchy for C.

 The operators are arranged from highest precedence to lowest. Operators with highest

precedence are evaluated first.

 The associativity column indicates how to evaluate operators with the same precedence. For

example, the multiplicative operators have left-to-right associativity. This means that the

expression a * b / c % d / e is equivalent to ((((a * b) / c) % d) / e)

 Parentheses are used to override precedence, and expressions are always evaluated from the

innermost parenthesized expression first

Data Structure & Applications – BCS304

INFIX TO POSTFIX CONVERSION

An algorithm to convert infix to a postfix expression as follows:

1. Fully parenthesize the expression.

2. Move all binary operators so that they replace their corresponding right parentheses.

3. Delete all parentheses.

Example: Infix expression: a/b -c +d*e -a*c

Fully parenthesized : ((((a/b)-c) + (d*e))-a*c))

: a b / e – d e * + a c *

Example [Parenthesized expression]: Parentheses make the translation process more

difficult because the equivalent postfix expression will be parenthesis-free.

The expression a*(b +c)*d which results abc +*d* in postfix. Figure shows the translation

process.

 The analysis of the examples suggests a precedence-based scheme for stacking and

unstacking operators.

 The left parenthesis complicates matters because it behaves like a low-precedence operator

when it is on the stack and a high-precedence one when it is not. It is placed in the stack

whenever it is found in the expression, but it is unstacked only when its matching right

parenthesis is found.

 There are two types of precedence, in-stack precedence (isp) and incoming precedence

(icp).

Data Structure & Applications – BCS304

The declarations that establish the precedence’s are:

/* isp and icp arrays-index is value of precedence lparen rparen, plus, minus, times, divide,

mod, eos */

int isp[] = {0,19,12,12,13,13,13,0};

int icp[] = {20,19,12,12,13,13,13,0};

void postfix(void)

{

char symbol;

precedence token;

int n = 0,top = 0; /* place eos on stack */

stack[0] = eos;

for (token = getToken(&symbol, &n); token != eos; token =

getToken(&symbol,& n))

{

if (token == operand)

printf("%c", symbol);

else if (token == rparen)

{

while (stack[top] != lparen)

printToken(pop());

pop();

}

else{

while(isp[stack[top]] >= icp[token])

printToken(pop());

push(token);

}

}

while((token = pop ())!= eos)

printToken(token);

printf("\n");

}

Program: Function to convert from infix to postfix

Analysis of postfix: Let n be the number of tokens in the expression. Ө (n) time is spent extracting

tokens and outputting them. Time is spent in the two while loops, is Ө (n) as the number of tokens

that get stacked and unstacked is linear in n. So, the complexity of function postfix is Ө (n).

Data Structure & Applications – BCS304

EVALUATION OF POSTFIX EXPRESSION

 The evaluation process of postfix expression is simpler than the evaluation of infix

expressions because there are no parentheses to consider.

 To evaluate an expression, make a single left-to-right scan of it. Place the operands on

a stack until an operator is found. Then remove from the stack, the correct number of

operands for the operator, perform the operation, and place the result back on the stack

and continue this fashion until the end of the expression. We then remove the answer

from the top of the stack.

Program: Function to evaluate a postfix expression
int eval(void)

{

precedence token;

char symbol;

int opl,op2, n=0;

int top= -1;

token = getToken(&symbol, &n);

while(token! = eos)

{

if (token == operand)

push(symbol-'0'); /* stack insert */

else {

op2 = pop(); /* stack delete */

opl = pop();

switch(token) {

}

case plus: push(opl+op2);

break;

case minus: push(opl-op2);

break;

case times: push(opl*op2);

break;

case divide: push(opl/op2);

break;

case mod: push(opl%op2);

}

token = getToken(&symbol, &n);

}

return pop(); /* return result */

}

Data Structure & Applications – BCS304

precedence getToken(char *symbol, int *n)

{

*symbol = expr[(*n)++];

switch (*symbol)

{

case '(' : return lparen;

case ')' : return rparen;

case '+' : return plus;

case '-' : return minus;

case '/' : return divide;

case '*' : return times;

case '%' : return mod;

case ' ' : return eos;

default: return operand;

}

}

Data Structure & Applications – BCS304

Program: Function to get a token from the input string

 The function eval () contains the code to evaluate a postfix expression. Since an operand

(symbol) is initially a character, convert it into a single digit integer.

 To convert use the statement, symbol-'0'. The statement takes the ASCII value of symbol

and subtracts the ASCII value of '0', which is 48, from it. For example, suppose symbol = '1.

The character '1' has an ASCII value of 49. Therefore, the statement symbol-'0' produces as

result the number 1.

 The function getToken(), obtain tokens from the expression string. If the token is an

operand, convert it to a number and add it to the stack. Otherwise remove two operands from

the stack, perform the specified operation, and place the result back on the stack. When the

end of expression is reached, remove the result from the stack.

RECURSION

A recursive procedure

Suppose P is a procedure containing either a Call statement to itself or a Call statement to a

second procedure that may eventually result in a Call statement back to the original procedure

P. Then P is called a recursive procedure. So that the program will not continue to run

indefinitely, a recursive procedure must have the following two properties:

1. There must be certain criteria, called base criteria, for which the procedure does not call

itself.

2. Each time the procedure does call itself (directly or indirectly), it must be closer to the

base criteria.

Recursive procedure with these two properties is said to be well-defined.

A recursive function

A function is said to be recursively defined if the function definition refers to itself. A recursive

function must have the following two properties:

1. There must be certain arguments, called base values, for which the function does not

refer to itself.

2. Each time the function does refer to itself, the argument of the function must be closer

to a base value

A recursive function with these two properties is also said to be well-defined.

Factorial Function

“The product of the positive integers from 1 to n, is called "n factorial" and is denoted by n!”

n! = 1*2 * 3 ... (n - 2)*(n - 1)*n

It is also convenient to define 0! = 1, so that the function is defined for all nonnegative integers.

Definition: (Factorial Function)

a) If n = 0, then n! = 1.

Data Structure & Applications – BCS304

b) If n > 0, then n! = n*(n - 1)!

Observe that this definition of n! is recursive, since it refers to itself when it uses (n - 1)!

(a) The value of n! is explicitly given when n = 0 (thus 0 is the base value)

(b) The value of n! for arbitrary n is defined in terms of a smaller value of n which is closer to

the base value 0.

Tower of Hanoi

Problem description

Suppose three pegs, labeled A, Band C, are given, and suppose on peg A a finite number n of

disks with decreasing size are placed.

The objective of the game is to move the disks from peg A to peg C using peg B as an auxiliary.

The rules of the game are as follows:

1. Only one disk may be moved at a time. Only the top disk on any peg may be moved to

any other peg.

2. At no time can a larger disk be placed on a smaller disk.

Data Structure & Applications – BCS304

Example: Towers of Hanoi problem for n = 3.

Solution: Observe that it consists of the following seven moves

1. Move top disk from peg A to peg C.

2. Move top disk from peg A to peg B.

3. Move top disk from peg C to peg B.

4. Move top disk from peg A to peg C.

5. Move top disk from peg B to peg A.

6. Move top disk from peg B to peg C.

7. Move top disk from peg A to peg C.

In other words,

n=3: A→C, A→B, C→B, A→C, B→A, B→C, A→C

For completeness, the solution to the Towers of Hanoi problem for n = 1 and n = 2

n=l: A→C

n=2: A→B, A→C, B→C

The Towers of Hanoi problem for n > 1 disks may be reduced to the following sub-problems:

(1) Move the top n - 1 disks from peg A to peg B

(2) Move the top disk from peg A to peg C: A→C.

(3) Move the top n - 1 disks from peg B to peg C.

Data Structure & Applications – BCS304

The general notation

 TOWER (N, BEG, AUX, END) to denote a procedure which moves the top n disks from

the initial peg BEG to the final peg END using the peg AUX as an auxiliary.

 When n = 1, the solution:

TOWER (1, BEG, AUX, END) consists of the single instruction BEG→END

 When n > 1, the solution may be reduced to the solution of the following three sub-

problems:

(a) TOWER (N - I, BEG, END, AUX)

(b) TOWER (l, BEG, AUX, END) or BEG → END

(c) TOWER (N - I, AUX, BEG, END)

Procedure: TOWER (N, BEG, AUX, END)

This procedure gives a recursive solution to the Towers of Hanoi problem for

N disks.

1. If N=l, then:

(a) Write: BEG →END.

(b) Return.

[End of If structure.]

2. [Move N - 1 disks from peg BEG to peg AUX.]

Call TOWER (N - 1, BEG, END, AUX).

3. Write: BEG →END.

4. [Move N - 1 disks from peg AUX to peg END.]

Call TOWER (N - 1, AUX, BEG, END).

5. Return.

Data Structure & Applications – BCS304

Example: Towers of Hanoi problem for n = 4

Ackermann function

The Ackermann function is a function with two arguments each of which can be assigned any

nonnegative integer: 0, 1, 2,

Definition: (Ackermann Function)

(a) If m = 0, then A (m, n) = n + 1.

(b) If m ≠ 0 but n = 0, then A(m, n)= A(m - 1, 1)

(c) If m ≠ 0 and n ≠ 0, then A(m, n) = A(m - 1, A(m, n - 1))

	MODULE 1:
	INTRODUCTION TO DATA STRUCTURES
	Basic Terminology: Elementary Data Organization:
	CLASSIFICATION OF DATA STRUCTURES
	Arrays:
	Trees

	DATA STRUCTURES OPERATIONS
	ARRAYS
	STRUCTURES
	Type-Defined Structure
	Structure Operation
	Structure within a structure:

	SELF-REFERENTIAL STRUCTURES
	Unions:
	POINTERS
	DYNAMIC MEMORY ALLOCATION FUNCTIONS
	REPRESENTATION OF LINEAR ARRAYS IN MEMORY
	Linear Array
	Representation of linear arrays in memory

	DYNAMICALLY ALLOCATED ARRAYS
	One Dimensional Array
	Two DimensionalArrays

	ARRAY OPERATIONS
	1. Traversing
	2. Inserting
	3. Deleting
	4. Sorting
	Bubble Sort
	5. Searching
	Linear Search
	Binary Search

	MULTIDIMENSIONAL ARRAY
	POLYNOMIALS
	Polynomial Representation
	Polynomial Addition
	Analysis of padd():

	SPARSE MATRICES
	Sparse Matrix Representation
	Transposing a Matrix

	STRINGS:
	STRINGS IN C
	STORING STRINGS
	Record Oriented Fixed length storage:
	Variable length structures with fixed maximum
	Linked Storage

	CHARACTER DATA TYPE
	STRING OPERATION
	Substring
	Indexing
	Concatenation
	Length

	PATTERN MATCHING ALGORITHMS
	First Pattern Matching Algorithm
	Second Pattern Matching Algorithm

	STACKS AND QUEUES
	DEFINITION
	ARRAY REPRESENTATION OF STACKS
	STACK OPERATIONS
	STACKS USING DYNAMIC ARRAYS
	STACK APPLICATIONS: POLISH NOTATION
	INFIX TO POSTFIX CONVERSION
	EVALUATION OF POSTFIX EXPRESSION
	Factorial Function
	Tower of Hanoi
	Ackermann function

