Data Structure & Applications — BCS304

MODULE 1:

INTRODUCTION TO DATA STRUCTURES

DATA STRUCTURES
Data may be organized in many different ways. The logical or mathematical model of a
particular organization of data is called a data structure.

The choice of a particular data model depends on the two considerations
1. It must be rich enough in structure to mirror the actual relationships of the data in the
real world.
2. The structure should be simple enough that one can effectively process the data
whenever necessary.

Basic Terminology: Elementary Data Organization:

Data: Data are simply values or sets of values.
Data items: Data items refers to a single unit of values.

Data items that are divided into sub-items are called Group items. Ex: An Employee Name
may be divided into three subitems- first name, middle name, and last name.

Data items that are not able to divide into sub-items are called Elementary items.
Ex: SSN

Entity: An entity is something that has certain attributes or properties which may be assigned
values. The values may be either numeric or non-numeric.

Ex:  Attributes-  Names, Age, Sex, SSN
Values- Rohland Galil, 34, F, 134-34-5533

Entities with similar attributes form an entity set. Each attribute of an entity set has a range of
values, the set of all possible values that could be assigned to the particular attribute.

The term “information” is sometimes used for data with given attributes, of, in other words
meaningful or processed data.

Field is a single elementary unit of information representing an attribute of an entity.

Record is the collection of field values of a given entity.

Eile is the collection of records of the entities in a given entity set.



Data Structure & Applications — BCS304

Each record in a file may contain many field items but the value in a certain field may uniquely
determine the record in the file. Such a field K is called a primary key and the values k1, k2,
.....insuch a field are called keys or key values.

Records may also be classified according to length.
A file can have fixed-length records or variable-length records.

e In fixed-length records, all the records contain the same data items with the same amount
of space assigned to each data item.

e Invariable-length records file records may contain different lengths.

Example: Student records have variable lengths, since different students take different numbers
of courses. Variable-length records have a minimum and a maximum length.

The above organization of data into fields, records and files may not be complex enough to maintain
and efficiently process certain collections of data. For this reason, data are also organized into more
complex types of structures.

The study of complex data structures includes the following three steps:
1. Logical or mathematical description of the structure
2. Implementation of the structure on a computer
3. Quantitative analysis of the structure, which includes determining the amount of
memory needed to store the structure and the time required to process the structure.

CLASSIFICATION OF DATA STRUCTURES

Data structures are generally classified into
e Primitive data Structures
e Non-primitive data Structures

1. Primitive data Structures: Primitive data structures are the fundamental data types which are
supported by a programming language. Basic data types such as integer, real, character and
Boolean are known as Primitive data Structures. These data types consists of characters that
cannot be divided and hence they also called simple data types.

2. Non- Primitive data Structures: Non-primitive data structures are those data structures which
are created using primitive data structures. Examples of non-primitive data structures is the
processing of complex numbers, linked lists, stacks, trees, and graphs.

Based on the structure and arrangement of data, non-primitive data structures is further
classified into
1. Linear Data Structure




Data Structure & Applications — BCS304

2. Non-linear Data Structure

1 Linear Data Structure:
A data structure is said to be linear if its elements form a sequence or a linear list. There are
basically two ways of representing such linear structure in memory.
1. One wayis to have the linear relationships between the elements represented by means
of sequential memory location. These linear structures are called arrays.
2. The other way is to have the linear relationship between the elements represented by
means of pointers or links. These linear structures are called linked lists.

The common examples of linear data structure are Arrays, Queues, Stacks, Linked lists

2. _Non-linear Data Structure:

A data structure is said to be non-linear if the data are not arranged in sequence or a linear. The
insertion and deletion of data is not possible in linear fashion. This structure is mainly used to
represent data containing a hierarchical relationship between elements. Trees and graphs are the
examples of non-linear datastructure.

Arrays:

The simplest type of data structure is a linear (or one dimensional) array. A list of a finite
number n of similar data referenced respectively by a set of n consecutive numbers, usually 1,
2,3 i n. if A is chosen the name for the array, then the elements of A are denoted by
subscript notation  ai, a, as......... an

or
by the parenthesis notation AM),A(2), AB).ccccurnn.n. A (n)
or
by the bracket notation All]l, A[2], A[3]. e A [n]

Example 1: A linear array STUDENT consisting of the names of six students is pictured in
below figure. Here STUDENT [1] denotes John Brown, STUDENT [2] denotes Sandra
Gold, and so on.

STUDENT

1 John Brown

2 | Sandra Gold
3 | TomJones
4 | June Kelly
5 | Mary Reed
6 | Alan Smith




Data Structure & Applications — BCS304

Linear arrays are called one-dimensional arrays because each element in such an array is referenced
by one subscript. A two-dimensional array is a collection of similar data elements where each
element is referenced by two subscripts.

Example 2: A chain of 28 stores, each store having 4 departments, may list its weekly sales as in
below fig. Such data can be stored in the computer using a two-dimensional array in which the
first subscript denotes the store and the second subscript the department. If SALES is the name
given to the array, then

SALES[1, 1] =2872, SALES [1, 2] - 805, SALES [1, 3] = 3211,...., SALES [28, 4] = 982

1 2872 805 n 1560
2 2196 1223 2525 1744
3 3267 1017 3686 1951
28 2618 931 2333 982

Trees

Data frequently contain a hierarchical relationship between various elements. The data structure
which reflects this relationship is called a rooted tree graph or a tree.

Some of the basic properties of tree are explained by means of examples

Example 1: Record Structure
Although a file may be maintained by means of one or more arrays a record, where one indicates

both the group items and the elementary items, can best be described by means of a tree structure.
For example, an employee personnel record may contain the following data items:
Social Security Number, Name, Address, Age, Salary, Dependents

However, Name may be a group item with the sub-items Last, First and MI (middle initial). Also
Address may be a group item with the subitems Street address and Area address, where Area itself
may be a group item having subitems City, State and ZIP codenumber.

This hierarchical structure is pictured below



Data Structure & Applications — BCS304

Emp )yHP
Soc, Sec, No, Name dres Age qalarv DCpéﬂOﬂﬂ“
Last First M Stroet Area

AN

City State ZIP
(a)

Another way of picturing such a tree structure is in terms of levels, as shown below

01 Employee
02 Social Security Number

02 Name
03 Lasl
03 First

03 Middie Initial
02 Address
03 Street
03 Area
04 City
04 State
04 ZIP
02 Age
02 Salary
02 Dependenls

(b)

Some of the data structures are briefly described below.

1 Stack: A stack, also called a fast-in first-out (LIFO) system, is a linear list in which insertions
and deletions can take place only at one end, called the top. This structure is similar in its operation
to a stack of dishes on a spring system as shown in fig.

Note that new 4 dishes are inserted only at the top of the stack and dishes can be deleted only from
the top of the Stack.

o =

(a) Stack of dishes



Data Structure & Applications — BCS304

2. Queue: A queue, also called a first-in first-out (FIFO) system, is a linear list in which deletions
can take place only at one end of the list, the "from" of the list, and insertions can take place only at
the other end of the list, the “rear” of the list.

This structure operates in much the same way as a line of people waiting at a bus stop, as pictured
in Fig. the first person in line is the first person to board the bus. Another analogy is with
automobiles waiting to pass through an intersection the first car in line is the first car through.

e & € & [N
j i 1

Queue waiting for a bus

3. Graph: Data sometimes contain a relationship between pairs of elements which is not
necessarily hierarchical in nature. For example, suppose an airline flies only between the cities
connected by lines in Fig. Thedata structure which reflects this type of relationship is called a graph

Boston _ -
New
Chicago ¢ —— e -7,' York /
—X_Philadelphiaf~—"
Los Angeles & == |
-d -
Miami

Airline flights



Data Structure & Applications — BCS304

DATASTRUCTURES OPERATIONS

Ex:

The data appearing in data structures are processed by means of certain operations. The

following four operations play a major role in this text:

1. Traversing: accessing each record/node exactly once so that certain items in the record
may be processed. (This accessing and processing is sometimes called “visiting” the

record.)

2. Searching: Finding the location of the desired node with a given key value, or finding the
locations of all such nodes which satisfy one or more conditions.

3. Inserting: Adding anew node/record to the structure.
4. Deleting: Removing a node/record from the structure.

The following two operations, which are used in special situations:
1. Sorting: Arranging the records in some logical order (e.g., alphabetically according to some
NAME key, or in numerical order according to some NUMBER key, such as social security

number or account number)

2. Merging: Combining the records in two different sorted files into a single sorted file.

ARRAYS

e AnArray is defined as, an ordered set of similar data items. All the data items of an

array are stored in consecutive memory locations.

e The data items of an array are of same type and each data items can be accessed using

the same name but different index value.

e An array is a set of pairs, <index, value >, such that each index has a value associated

with it. It can be called as corresponding or a mapping

Ex: <index, value>

<0, 25>
<1,15>
<2,20>
<3,17>
<4,35>

list[0]=25
list[1]=15
list[2]=20
list[3]=17
list[4]=35

Here, list is the name of array. By using, list [0] to list [4] the data items in list can be

accessed.

ArrayinC

Declaration: A one dimensional array in C is declared by adding brackets to the name of a

variable.

int list[5], *plist[5];



Data Structure & Applications — BCS304

e The array list[5], defines 5 integers and in C array start at index 0, so list[0], list[1],
list[2], list[3], list[4] are the names of five array elements which contains an integer
value.

e The array *plist[5], defines an array of 5 pointers to integers. Where, plist[0], plist[1],
plist[2], plist[3], plist[4] are the five array elements which contains a pointer to an

integer.
int list[5] int *plist[5]
list[0] plist[0] i R
list[1] plist[1] +—
list[2] plist[2] 1
list[3] plist[3] 1T
list[4] plist[4] 1

Implementation:

e When the complier encounters an array declaration, list[5], it allocates five consecutive
memory locations. Each memory is enough large to hold a single integer.

e The address of first element of an array is called Base Address. Ex: For list[5] the
address of list[0] is called the base address.

e |fthe memory address of list[i] need to compute by the compiler, then the size of the
int would get by sizeof (int), then memory address of list[i] is as follows:

list[i] = a + i * sizeof (int)
Where, a is base address.
list[3] = a+ 3 * sizeof{int) list[0] Gst[1] [Lst[2] Lst[3] lst[4]

=2000+ 3 * 4
list[3] =2012

2000 2004 2008 2012 2016

Difference between int *listl: & int list2[5]:

The variables listl and list2 are both pointers to an int, but in list2[5] five memory locations
are reserved for holding integers. list2 is a pointer to list2[0] and list2+i is a pointerto list2[i].




Data Structure & Applications — BCS304

int *list1 int list2[S]
[ 1 S e
list1

Note: In C the offset i do not multiply with the size of the type to get to the appropriate
element of the array. Hence (list2+1) is equal &Ilist2[i] and *(list2+i) is equal to list2[i].

How C treats an array when it is parameter to a function?

e All parameters of a C functions must be declared within the function. As various
parameters are passed to functions, the name of an array can be passed as parameter.

e The range of a one-dimensional array is defined only in the main function since new
storage for an array is not allocated within a function.

e [fthe size of a one dimensional array is needed, it must be passed into function as a
argument or accessed as a global variable.

Example: Array Program

#define MAX_SIZE 100

float sum(float [], int);

float inputfMAX_SIZE], answer;
void main(void)

{
inti;
for( i=0; i<MAX_SIZE; i++)
input[i]= 1;
answer = sum(input, MAX_SIZE);
printf(“\n The sum is: %f \n”,answer);
}

float sum(float list[], intn)
{
inti;
float tempsum = O;
for(i=0; i<n; i++)
tempsum = tempsum + list[i];
return tempsum;



Data Structure & Applications — BCS304

When sum is invoked, input=&input[0] is copied into a temporary location and associated
with the formal parameter list

A function that prints out both the address of the ith element of the array and the value found
at that address can written as shown in below program.

void printl (int *ptr, int rows)

{
inti;
printf(  Address contents \n”);
for(i=0; i<rows; i++)
printf(“% 8u %5d \n”, ptr+i, *(prt+i));
printf(‘\n”);
}
Output:
Address Content
12244868 0
12344872 1
12344876 2
12344880 3
12344884 4



Data Structure & Applications — BCS304

STRUCTURES
Ex:  struct {
char name[10];
int age;
float salary;
} Person;

The above example creates a structure and variable name is Person and that has three fields:
name = a name that is a characterarray
age = an integer value representing the age of the person
salary = a float value representing the salary of the individual

Assign values to fields

To assign values to the fields, use . (dot) as the structure member operator. This operator is
used to select a particular member of the structure

Ex: strcpy(Person.name, ‘james”);
Person.age =10;
Person.salary = 35000;

Type-Defined Structure
The structure definition associated with keyword typedef is called Type-Defined Structure.

Syntax 1: typedef struct
{

data_type member 1;
data_type member 2;

data_type member n;
}Type_name;



Data Structure & Applications — BCS304

Where,
o typedef is the keyword used at the beginning of the definition and by using typedef
user defined data type can be obtained.
e struct is the keyword which tells structure is defined to the complier
e The members are declare with their data_type
e Type _name is not a variable, it is user defined data_type.

Syntax 2: struct struct_name

{
data_type member 1;
data_type member 2;

data_type member n;

%

typedef struct struct_name Type_name;

Ex:  typedef struct{
char name[10];
int age;
float salary;
}humanBeing;

In above example, humanBeing is the name of the type and it is a user defined data type.

Declarations of structure variables:

humanBeing personl, person2;

This statement declares the variable personl and person2 are of type humanBeing.

Structure Operation

The various operations can be performed on structures and structure members.

1 Structure Equality Check:
Here, the equality or inequality check of two structure variable of same type or dissimilar type

is not allowed
typedef struct{
char name[10];
int age;
float salary;
}humanBeing;
humanBeing personl, person2;

if (personl == personz2) is invalid.



Data Structure & Applications — BCS304

The valid function is shown below
#define FALSE 0

#define TRUE 1
if (humansEqual(personl,person2))
printf("The two human beings are the same\n");

else
printf("The two human beings are not the same\n");

int humansEqual(humanBeing personl, humanBeing person2)
{ /* return TRUE if personl and person2 are the same human being otherwise

return FALSE */

if  (strcmp(personl.name, person2.name))
return FALSE;

If (personl.age !'= person2.age)
return FALSE;

if (personl.salary != person2.salary)
return FALSE;

return TRUE;

}

Program: Function to check equality of structures

2. Assignment operation on Structure variables:

personl = person2
The above statement means that the value of every field of the structure of person 2 is
assigned as the value of the corresponding field of person 1, but this is invalid statement.

Valid Statements is given below:
strcpy(personl.name, person2.name);
personl.age = person2.age;
personl.salary = person2.salary;

Structure within a structure:
There is possibility to embed a structure within a structure. There are 2 ways to embed
structure.

1. The structures are defined separately and a variable of structure type is declared inside the
definition of another structure. The accessing of the variable of a structure type that are nested
inside another structure in the same way as accessing other memberof that structure



Data Structure & Applications — BCS304

Example: The following example shows two structures, where both the structure are defined
separately.
typedef struct {
int month;
int day;
int year;
}date;

typedef struct {
char name[10];
int age;
float salary;
date dob;
} humanBeing;
humanBeing personi,

A person born on February 11, 1944, would have the values for the date struct set as:
personl.dob.month = 2;
personl.dob.day =11;
personl.dob.year = 1944;

2. The complete definition of a structure is placed inside the definition of another structure.

Example:
typedef struct {

char name[10];

int age;

float salary;

struct {
int month;
int day;
int year;

} date;
} humanBeing;



Data Structure & Applications — BCS304

SELF-REFERENTIAL STRUCTURES

A self-referential structure is one in which one or more of its components is a pointer to itself. Self-
referential structures usually require dynamic storage management routines (malloc and free) to
explicitly obtain and release memory.

Consider as an example:
typedef struct {

char data;
struct list *link ;
} list;

Each instance of the structure list will have two components data and link.
e Data: isasingle character,
e Link: linkisa pointerto a list structure. The value of link is either the address in

memory of an instance of list or the null pointer.

Consider these statements, which create three structures and assign values to their respective fields:

list item1, item2, item3;

iteml.data="a";
item2.data = b
item3.data="c";

item1.link = item2.1ink = item3.link = NULL;
a / b C

Structures iteml, item2 and item3 each contain the data item a, b, and c respectively, and the null
pointer. These structures can be attached together by replacing the null link field in item 2 with
one that points to item 3 and by replacing the null link field in item 1 with one that points to item
2.

iteml.link = &item2;
item2.1ink = &item3;




Data Structure & Applications — BCS304

Unions:
A union is similar to a structure, it is collection of data similar data type or dissimilar.

Syntax: union{
data_type member 1;
data_type member 2;

ooooooooooooooooooooooooooo

ooooooooooooooooooooooooooo

data_type member n;
}variable_name;
Example:

union{
int children;
int beard;

Ty

Union Declaration:
A union declaration is similar to a structure, but the fields of a union must share their memory
space. This means that only one field of the union is "active" at any given time.

union{
char name;
int age;
float salary;

Ju;

F ¥
Y

salary

The major difference between a union and a structure is that unlike structure members which are
stored in separate memory locations, all the members of union must share the same memaory space.
This means that only one field of the union is "active" at any given time.



Data Structure & Applications — BCS304

Example:

#include <stdio.h>

union job {
char name[32];
float salary;
int worker_no;

u;

int main( ){
printf("Enter name:\n");
scanf("%s", &u.name);
printf("Enter salary: \n");
scanf(*'%f", &u.salary);
printf("Displaying\n Name
printf("Salary: %.1f",u.salary);
return O;

Output:

Enter name: Albert
Enter salary: 45678.90

Displaying

Name: f%gupad (Garbage Value)
Salary: 45678.90

POINTERS

:%s\n",u.name);

A pointer is a variable which contains the address in memory of another variable.
The two most important operator used with the pointer type are

& - The unary operator & which gives the address of a variable
* - The indirection or dereference operator * gives the content of the object pointed to

by apointer.

Declaration
int i, *pi;

Here, i is the integer variable and pi is a pointer to an integer

pi = &i;

Here, &I returns the address of i and assigns it as the value of pi



Data Structure & Applications — BCS304

Null Pointer

The null pointer points to no object or function.

The null pointer is represented by the integer 0.

The null pointer can be used in relational expression, where it is interpreted as false.

Ex:  if (pi ==NULL) or if (Ipi)

Pointers can be Dangerous:

Pointer can be very dangerous if they are misused. The pointers are dangerous in following
situations:

1. Pointer can be dangerous when an attempt is made to access an area of memory that is either
out of range of program or that does not contain a pointer reference to a legitimate object.

Ex: main ()
{
int *p;
int pa = 10;
p = &pa;

printf(“%d”, *p);  /loutput = 10;
printf(“%d”, *(p+1)); //accessing memory which is  out of range
}
2. Itis dangerous when a NULL pointer is de-referenced, because on some computer it may return
0 and permitting execution to continue, or it may return the result stored in location zero, so it may
produce a serious error.

3. Pointer is dangerous when use of explicit type casts in converting between pointer types
Ex: pi=malloc (sizeof (int));
pf = (float*) pi;

4. In some system, pointers have the same size as type int, since int is the default type specifier,
some programmers omit the return type when defining a function. The return type defaults to int
which can later be interpreted as a pointer. This has proven to be a dangerous practice on some
computer and the programmer is made to define explicit types for functions.

Pointers to Pointers

A variable which contains address of a pointer variable is called pointer-to-pointer.
Example: int p:
mt *listl, * *list2;
p=10: list2 listl )
listl1=&p:
List2=&list1;
printf(“%d, %d, %d”, a, *listl, **list2):

Output: 10 10 10



Data Structure & Applications — BCS304

DYNAMIC MEMORY ALLOCATION FUNCTIONS

1. _malloc():

The function malloc allocates a user- specified amount of memory and a pointer to the start of
the allocated memory is returned.
If there is insufficient memory to make the allocation, the returned value is NULL.
Syntax:
data_type *x;
x= (data_type *) malloc(size);
Where,

X Is a pointer variable of data_type
size is the number of bytes

Ex: int *ptr;
ptr = (int *) malloc(100*sizeof(int));

2. calloc():

The function calloc allocates a user- specified amount of memory and initializes the allocated
memory to 0 and a pointer to the start of the allocated memory is returned.
If there is insufficient memory to make the allocation, the returned value is NULL.

Syntax:

data_type *x;

x= (data_type *) calloc(n, size);
Where,

X is a pointer variable of type int
n is the number of block to be allocated
size is the number of bytes in each block

Ex: int *x
x= calloc (10, sizeof(int));

The above example is used to define a one-dimensional array of integers. The capacity of this
array is n=10 and x [0: n-1] (x [0, 9]) are initially O
Macro CALLOC
#define CALLOC (p, n, s)\
if (! ((p) =calloc (n, s)))\

{

fprintf(stderr, “Insuffiient memory”);\
exit(EXIT_FAILURE);\

N



Data Structure & Applications — BCS304

3. realloc():

e Before using the realloc( ) function, the memory should have been allocated using malloc(
) or calloc( ) functions.

e The function relloc() resizes memory previously allocated by either mallor or calloc, which
means, the size of the memory changes by extending or deleting the allocated memory.

o Ifthe existing allocated memory need to extend, the pointer value will not change.

e If the existing allocated memory cannot be extended, the function allocates a new block and
copies the contents of existing memory block into new memory block and then deletes the
old memory block.

e When realloc is able to do the resizing, it returns a pointer to the start of the new block and
when it is unable to do the resizing, the old block is unchanged and the function returns the
value NULL

Syntax:
data_type *x;
x= (data_type *) realloc(p, s );

The size of the memory block pointed at by p changes to S. When s > p the additional s-p
memory block have been extended and when s < p, then p-s bytes of the old block are freed.

Macro REALLOC
#define REALLOC(p,S)\

if (1((p) = realloc(p,s))) \

{\
fprintf(stderr, "Insufficient memory");\
exit(EXIT_FAILURE);\
A
4 free()

Dynamically allocated memory with either malloc( ) or calloc () does not return on its own.
The programmer must use free( ) explicitly to release space.

Syntax:
free(ptr);

This statement cause the space in memory pointer by ptr to be deallocated



Data Structure & Applications — BCS304

REPRESENTATION OF LINEAR ARRAYS INMEMORY

Linear Array
A linear array is a list of a finite number %’ of homogeneous data element such that

a. The elements of the array are reference respectively by an index set consisting of n
consecutive numbers.
b. Theelement of the array are respectively in successive memory locations.

The number n of elements is called the length or size of the array. The length or the numbers
of elements of the array can be obtained from the index set by the formula

When LB =0,
Length=UB-LB+1
When LB =1,
Length = UB
Where,

UB is the largest index called the Upper Bound
LB is the smallest index, called the Lower Bound

Representation of linear arrays in memory

Let LA be a linear array in the memory of the computer. The memory of the computer is
simply a sequence of address location as shown below,

1000
1001
1002

1003
1004

LOC (LA [K]) = address of the element LA [K] of the array LA

The elements of LA are stored in successive memory cells.
The computer does not keep track of the address of every element of LA, but needs to keep
track only the address of the first element of LA denoted by,
Base (LA)
and called the base address of LA.



Data Structure & Applications — BCS304

Using the base address of LA, the computer calculates the address of any element of LA by
the formula

LOC (LA[K]) = Base(LA) + w(K — lower bound)

Where, w is the number of words per memory cell for the array LA.

DYNAMICALLY ALLOCATED ARRAYS

One Dimensional Array
While writing computer programs, if finds ourselves in a situation where we cannot determine
how large an array to use, then a good solution to this problem is to defer this decision to run

time and allocate the array when we have a good estimate of the required array size.

Example:

inti, n, *list;
printf(“Enter the number of numbers to generate:”);
scanf(“%d”, &n);
if(n<1)
{
fprintf  (stderr, “Improper value of n \n”);
exit(EXIT_FAILURE);

}
MALLOC (list, n*sizeof(int));

The programs fails only when n<1 or insufficient memory to hold the list of numbers that are
to be sorted.

Two DimensionalArrays
C uses array-of-arrays representation to represent a multidimensional array. The two

dimensional arrays is represented as a one-dimensional array in which each element is itself a
one-dimensional array.

Example: int x[3][5];
O] 1 [ Bl @

x[0]
x[1]

x[2]

* ¥

Array-of-arrays representation



Data Structure & Applications — BCS304

C find element x[i][j] by first accessing the pointer in x[i].
Where x[i] = a+ i* sizeof(int), which give the address of the zeroth element of row i of the
array.
Then adding j*sizeof(int) to this pointer ( x[i] ) , the address of the [j]th element of row i is
determined.

X[i] = a+ i* sizeof(int)

x[jl = at j* sizeof(int)

X[11[1] = x[i]+ i* sizeof(int)

Creation of Two-Dimensional Array Dynamically

int **myArray;
myArray = make2dArray(5,10);
myArray[2][4]=6;

int ** make2dArray(int rows, int cols)
{ /* create a two dimensional rows X cols array */

Int **x, i;

MALLOC(x, rows * sizeof (*x)); /*get memory for row pointers*/
for (i= O;i<rows; i++) /* get memory for each row */
MALLOC(X[i], cols *sizeof(**x));

return Xx;

¥

The second line allocates memory for a 5 by 10 two-dimensional array of integers and the
third line assigns the value 6 to the [2][4] element of this array.




Data Structure & Applications — BCS304

ARRAY OPERATIONS

1. Traversing
e Let A bea collection of data elements stored in the memory of the computer. Suppose
if the contents of the each elements of array A needs to be printed or to count the
numbers of elements of A with a given property can be accomplished by Traversing.

e Traversing is a accessing and processing each element in the array exactly once.

Algorithm 1: (Traversing a Linear Array)

Hear LA is a linear array with the lower bound LB and upper bound UB. This algorithm
traverses LA applying an operation PROCESS to each element of LA using while loop.

1. [Initialize Counter] set Ki=LB
2. Repeat step 3and 4 while K <UB
3. [Visit element] ApplyPROCESS to LA [K]
4. [Increase counter] SetKi=K+1
[End of step 2 loop]
5. Exit

Algorithm 2: (Traversing a Linear Array)

Hear LA is a linear array with the lower bound LB and upper bound UB. This algorithm
traverses LA applying an operation PROCESS to each element of LA using repeat — for loop.

1. Repeatfor K=LBtoUB

Apply PROCESS to LA [K]
[End of loop]
2. Exit.
Example:

Consider the array AUTO which records the number of automobiles sold each year from 1932
through 1984.

To find the number NUM of years during which more than 300 automobiles were sold,
involves traversing AUTO.
1. [Initialization step.] Set NUM := 0
2. Repeat for K =1932 to 1984:
If AUTO [K] > 300, then: Set NUM: = NUM + 1.
[End of loop.]
3. Return.



Data Structure & Applications — BCS304

2._Inserting

e Let A bea collection of data elements stored in the memory of the computer.
Inserting refers to the operation of adding another element to the collection A.

e Inserting an element at the ““end” of the linear array can be easily done provided the memory
space allocated for the array is large enough to accommodate the additional element.

e Inserting an element in the middle of the array, then on average, half of the elements must
be moved downwards to new locations to accommaodate the new element and keep the order
of the otherelements.

Algorithm:
INSERT (LA, N, K, ITEM)

Here LA is a linear array with N elements and K is a positive integer such that K < N. This
algorithm inserts an element ITEM into the K" position in LA.

1. [Initialize counter] setJ:=N
2. Repeat step 3and 4 while J> K
3. [Move Jth element downward] Set LA [J+1] :=LA[J]
4, [Decrease counter] setJi=J-1
[End of step 2 loop]
5. [Insert element] set LA[K]:=ITEM
6. [Reset NJ set N:= N+1
7. Exit
3. Deleting

e Deleting refers to the operation of removing one element to the collection A.
e Deleting an element at the “end” of the linear array can be easily done with difficulties.

o |Ifelement at the middle of the array needs to be deleted, then each subsequent
elements be moved one location upward to fill up the array.

Algorithm
DELETE (LA, N, K, ITEM)

Here LA is a linear array with N elements and K is a positive integer such that K < N. this
algorithm deletes the K" element from LA

1. SetITEM:=LA[K]
2. RepeatforJ=KtoN- 1
[Move J + 1 element upward] set LA[J]:= LA[J+1]
[End of loop]
3. [Reset the number N of elements in LA] set N:=N— 1
4. Exit



Data Structure & Applications — BCS304

Example: Inserting and Deleting

Suppose NAME is an 8-element linear array, and suppose five names are in the array, as in Fig.(a).
Observe that the names are listed alphabetically, and suppose we want to keep the array names
alphabetical at all times. Suppose Ford is added to the array. Then Johnson, Smith and Wagner must
each be moved downward one location, as in Fig.(b). Next suppose Taylor is added to the array;
then Wagner must be moved, as in Fig.(c). Last, suppose Davis is removed from the array. Then the
five names Ford, Johnson, Smith, Taylor and Wagner must each be moved upward one location, as
in Fig.(d).

NAME NAME NAME NAMI

Brown 1 | Brown 1 | Brown 1 | Brown
Davis 2 | Davis 2 76:’:‘.'!;77 | 2 | Fitsrdi
Johnson | 3 | Ford '_>F;r_d—-—“ 3 'JL)A!!!}&,;)VHJ
R Smith 4 Johnson 4 7Jc;hnsr(;nr 4 émxtfi‘; 7
;\/'éqn—e;r | 5 | Smith | 5 | S?mtﬁ | 5 | Tcat,Llc_vr
{ 6 h;ag—ﬂ'ef-— { *1720— f ' \4'\/;1.(;-,';:;"'
Wagner

4. Sorting
Sorting refers to the operation of rearranging the elements of a list. Here list be a set of n
elements. The elements are arranged in increasing or decreasing order.

Ex: suppose A is the list of n numbers. Sorting A refers to the operation of rearranging the
elements of A so they are in increasing order, i.e., so that,
A[l]<A[2] <A[3] <...<A|N]

For example, suppose A originally is the list
8,4,19,2,7,13,5, 16
After sorting, A is the list
2,4,5,7,8,13,16, 19



Data Structure & Applications — BCS304

Bubble Sort
Suppose the list of numbers A[l], A[2], ..., A[N] is in memory. The bubble sort algorithm
works as follows:

Algorithm: Bubble Sort —- BUBBLE (DATA, N)
Here DATA is an array with N elements. This algorithm sorts the elements in
DATA.
1. RepeatSteps2and3forK=1toN - 1.
2. Set PTR:= 1. [Initializes pass pointerPTR.]
3. Repeat while PTR <N - K: [Executes pass.]
(@) IfDATA[PTR] >DATA[P TR + 1], then:
Interchange DATA [PTR] and DATA [PTR + 1].
[End of If structure.]
(b) SetPTR:=PTR + 1.
[End of inner loop.]
[End of Step 1 outer loop.]
4. Exit.

Example:

Suppose the following numbers are stored in an array A:
32, 51,27,:85, 60, 23,:13,:57

We apply the bubble sort to the array A. We discuss each pass separately.
Pass 1. We have the following comparisons:

(@) Compare A, and A,. Since 32 < 51, the list is not altered.
(b) Compare A, and A;. Since 51 > 27, interchange 51 and 27 as follows:

32,@@ 85, 66, 23, 13, 57

(c) Compare A; and A,. Since 51 < 85, the list is not altered.
(d) Compare A, and A.. Since 85 > 66, interchange 85 and 86 as follows:

32, 21, 51,(66) (85) 23, 13, 57

(e) Compare A; and A;. Since 85 > 23, interchange 85 and 23 as follows:
32, 27, 51, 66,(23) (85)13, 57

(f) Compare A, and A,. Since 85 > 13, interchange 85 and 13 to yield:
32, 27, 51, 66, 23,(13) (85)57

(g) Compare A; and A;. Since 85 > 57, interchange 85 and 51 to yield:

32, 27, 51, 66, 23, 13,(57)



Data Structure & Applications — BCS304

At the end of this first pass, the largest number, 85, has moved to the last posi-
tion. However, the rest of the numbers are not sorted, even though some of them
have changed their positions.

For the remainder of the passes, we show only the interchanges.
Pass 2. @7,) @3)51, 66, 23, 13, 57, 85

27, 33, 51,@ @)13, 57, 85
27, 33, 51, 23,@ 57, 85
27, 33, 51, 23, 13, 67,) (66,85

At the end of Pass 2, the second largest number, 66, has moved its way down
to the next-to-last position.

Pass 3. 27, 33,23, (61)13, 57, 66, 85
B oo
M- 4 g
Ty o

Pass 6 actually has two comparisons, A, with A, and A, and A,. The second
comparison does not involve an interchange.
Pass 7. Finally, A, is compared with A,. Since 13 < 23, no interchange takes place.

Since the list has 8 elements; it is sorted after the seventh pass.

Complexity of the Bubble Sort Algorithm
The time for a sorting algorithm is measured in terms of the number of comparisons f(n). There are
n — 1 comparisons during the first pass, which places the largest element in the last position; there

are n - 2 comparisons in the second step, which places the second largest element in the next-to-

last position; and so on. Thus
fn)=(n-1)+(n-2)+... +2+1 = nn-1)= n2 O(n)= O(n?)

2 2



Data Structure & Applications — BCS304

5. Searching
e Let DATA be a collection of data elements in memory, and suppose a specific ITEM of
information is given. Searching refers to the operation of finding the location LOC of ITEM
in DATA, or printing some message that ITEM does not appear there.

e Thesearch is said to be successful if ITEMdoes appear in DATA and unsuccessful otherwise.

Linear Search

Suppose DATA is a linear array with n elements. Given no other information about DATA, The
way to search for a given ITEM in DATA is to compare ITEM with each element of DATA one by
one. That is, first test whether DATA [I] = ITEM, and then test whether DATA[2] = ITEM, and so
on. This method, which traverses DATA sequentially to locate ITEM, is called linear search or
sequential search.

Algorithm: (Linear Search) LINEAR (DATA, N, ITEM, LOC)
Here DATA is a linear array with N elements, and ITEM is a given item of information. This

algorithm finds the location LOC of ITEM in DATA, or sets LOC: = 0 if the search is
unsuccessful.
1. [Insert ITEMatthe end of DATA.]Set DATA[N + 1]: =ITEM.
2. [Initialize counter.] Set LOC: = 1.
3. [Search forITEM.]
Repeat while DATA [LOC] # ITEM:
Set LOC:=LOC + 1.
[End of loop.]
4. [Successful?] IfLOC =N + 1, then: Set LOC:=0
5. Exit.

Complexity of the Linear Search Algorithm
Worst Case: The worst case occurs when one must search through the entire array DATA,

i.e., when ITEM does not appear in DATA. In this case, the algorithm requires comparisons.
fn)=n+1
Thus, in the worst case, the running time is proportional to n.

Average Case: The average number of comparisons required to find the location of ITEM is
ap?rox)imately equal to half the number of elements in the array.

f(n): n+1

2



Data Structure & Applications — BCS304

Binary Search
Suppose DATA is an array which is sorted in increasing numerical order or, equivalently,

alphabetically. Then there is an extremely efficient searching algorithm, called binary search,
which can be used to find the location LOC of a given ITEM of information in DATA.

Algorithm: (Binary Search) BINARY (DATA, LB, UB, ITEM, LOC)
Here DATA is a sorted array with lower bound LB and upper bound UB, and ITEM is a

given item of information. The variables BEG, END and MID denote, the beginning, end and
middle locations of a segment of elements of DATA.
This algorithm finds the location LOC of ITEM in DATA or sets LOC = NULL.

1. [Initialize segment variables.]
Set BEG: = LB, END := UB and MID = INT((BEG + END)/2).
2. Repeat Steps 3 and 4 while BEG < END and DATA[MID] # ITEM.
3. If ITEM < DATA [MID], then:
Set END :=MID - 1.
Else:
Set BEG :=MID + 1.
[End of If structure.]
4. Set MID := INT((BEG + END)/2).
[End of Step 2 loop.]
5. IfDATA[MID] = ITEM, then:
Set LOC := MID.
Else:
Set LOC := NULL.
[End of If structure.]
6. Exit.

Remark: Whenever ITEM does

Complexity of the Binary Search Algorithm
The complexity is measured by the number f(n) of comparisons to locate ITEM in DATA

where DATA contains n elements. Observe that each comparison reduces the sample size in
half. Hence we require at most f(n) comparisons to locate ITEM where

2™ > n or equivalently f(n) = [logzn] + 1
That is, the running time for the worst case is approximately equal to log2 n. One can also

show that the running time for the average case is approximately equal to the running time for
the worstcase.



Data Structure & Applications — BCS304

MULTIDIMENSIONAL ARRAY

Two-Dimensional Arrays

A two-dimensional m x n array A is a collection of m . n data elements such that each element
is specified by a pair of integers (such as J, K), called subscripts, with the property that
1<J<mand1l<K<n

The element of A with first subscript j and second subscript k will be denoted by
Ak or A[J, K]

Two-dimensional arrays are called matrices in mathematics and fables in business
applications.

There is a standard way of drawing a two-dimensional m x n array A where the elements of A

form a rectangular array with m rows and n columns and where the element A[J, K] appears
in row J and column K.

-

Iwo-Dimensional 3 x 4 Array A
Representation of Two-Dimensional Arrays in Memory
Let A be a two-dimensional m x n array. Although A is pictured as a rectangular array of
elements with m rows and n columns, the array will be represented in memory by a block of
m . n sequential memory locations.
The programming language will store the array A either (1) column by column, is called

A Subscript A Subscript
| ;
(1,1)) (1.1)‘i
| (2,1) Column 1 : (1,2)]
‘ > Row 1
(3.13] (1, 3)
(1,2)) (1,4)

(2,2) ¢y Column 2 |

(

(3,2)) | 2;2)
C e i | > Row 2

(1,38)] | (2,3)

(2. 3) ¢ Column 3 (2,4)]

(3, 3‘),{ | (3,1)|

(1,4) (3,2)|
7 Row 3

(2, 4) r Column 4 (3,3)

(3,4)‘ (3, 4))

(a) Column-major order (b) Row-major order

column-major order, or (2) row by row, in row-major order



Data Structure & Applications — BCS304

The computer uses the formula to find the address of LA[K] in time independent of K.
LOC (LA[K]) = Base(LA) + w(K - 1)

The computer keeps track of Base(A)-the address of the first element A[1, 1] of A-and
computes the address LOC(A[J, K]) of A[J, K] using the formula

(Column-major order) LOC(A[J, K]) =Base(A) + w[M(K - 1)+ (J - 1)]

(Row-major order) LOC(A[J, K]) =Base(A) +w[N(J -1) + (K- 1)]

General Multidimensional Arrays
An n-dimensional mi X m2X ... X mnarray B isa collection of m1, mz... mndata elements in which

each element is specified by a list of n integers-such as K1 Kz ... , Kn called subscripts, with the
property that
1<Kismg,1<Kosmz.....1<Kh<mn

The element of B with subscripts KiKz... , Knwill be denoted by B[K1Kz... , Kn]
The programming language will store the array B either in row-major order or in column-
major order.

Let C be such an n-dimensional array. The index set for each dimension of C consists of the

consecutive integers from the lower bound to the upper bound of the dimension. The length Li

of dimension 1 of C is the number of elements in the index set, and Lican be calculated, as
Li= upper bound - lower bound + 1

For a given subscript K, the effective index E;of Liis the number of indices preceding K; in
the index set, and Eican be calculated from
Ei= Ki- lower bound

Then the address LOC(C[K1 Kz ... , K] of an arbitrary element of C can be obtained from the
formula

Base(C) + W[((( ... (EnLn-1] + E n-1])Ln-2) + ... + E3))Lo+ E2)L1 + E4]
or from the formula
Base(C) + w[( ... ((EiLz2+ E2)Ls+ E3)La+ ... + En-1)Ln+ En]

according to whether C is stored in column-major or row-major order.



Data Structure & Applications — BCS304

Page 3
| B[1,1,3] B[1, 2, 3] B[1, 3, 3] B[1, 4, 3]

& 7 g o

B[2, 1, 3] B[2, 2, 3] B[2, 3, 3] B[2, 4, 3]

B[1,1,2] B[1, 2, 2] B[1, 3, 2] B[1, 4, 2]

T — )

B[2, 1, 2] B[2, 2, 2] B2, 3, 2] B[2, 4, 2] -

Page 1

B{1;1,1] B[1,2,1] B[1,3,1] B[,4,1]
sl

B[2, 1,4] B[2, 2, 1] B[2, 3, 1] B[2, 4, 1]

B Subscripts B Subscripts
(1,1, 9) (1,1,1)
(2,1:7) (%.:1:.2)
(1,2, 1) (1,1,3)
(2,2,1) (1,2,1)
(1,3,1) (1,2, 2)
(1,4, 3) (2,4,2)
(2,4,3) (2,4,3)
(a) Column-major order (b) Row-major order

POLYNOMIALS

What is a polynomial?
“A polynomial is a sum of terms, where each term has a form ax®, where x is the variable, a is
the coefficient and e is the exponent.”

Two example polynomials are:
A(X) =3x20 + 2x° + 4
B(x) =x* + 10x3+ 3x?+1

The largest (or leading) exponent of a polynomial is called its degree. Coefficients that are
zero are not displayed. The term with exponent equal to zero does not show the variable since
x raised to a power of zero is 1.

Assume there are two polynomials,
A(X) =X aixiand B (x) =X bixi
then:
A(x) + B(x) = Z (ai + bi) Xi
A(X).B(x) =X (aixi. £ (bjxj))



Data Structure & Applications — BCS304

Polynomial Representation
One way to represent polynomials in C is to use typedef to create the type polynomial as
below:

#define MAX-DEGREE 101 [*Max degree of polynomial+1*/
typedef struct{
int degree;
float coef[MAX-DEGREE];
} polynomial,

Now if a is a variable and is of type polynomial and n < MAX_DEGREE, the polynomial
A(x) = XZaixiwould be represented as:

a.degree =n

a.coef[i] =ani, 0<i<n

In this representation, the coefficients is stored in order of decreasing exponents, such that
a.coef [i] is the coefficient of x™ provided a term with exponent n-i exists;

Otherwise, a.coef [i] =0. This representation leads to very simple algorithms for most of the
operations, it wastes a lot of space.

To preserve space an alternate representation that uses only one global array, terms to store
all polynomials.
The C declarations needed are:

MAX_TERMS 100 [*size of terms array™*/
typedef struct{
float coef;
int expon;
} polynomial;
polynomial terms[MAX-TERMS];
int avail = 0;

Consider the two polynomials
A(X) = 2x1000+ 1
B(X)=x*+10x3+3x%2+ 1



Data Structure & Applications — BCS304

startA finishA  startB finishB avail
coef 2 ] 1 10 3 1
exp 1000 0 1 3 2 0
0 1 2 3 4 5 6

e The above figure shows how these polynomials are stored in the array terms. The index
of the first term of A and B is given by startA and startB, while finishA and finishB
give the index of the last term of A and B.

e Theindex of the next free location in the array is given by avail.
e For above example, startA=0, finishA=1, startB=2, finishB=5, & avail=6.

Polynomial Addition
e C function is written that adds two polynomials, A and B to obtain D =A + B.

e Toproduce D (x), padd() is used to add A (x) and B (x) term by term. Starting at
position avail, attach( ) which places the terms of D into the array, terms.

e |f there is not enough space in terms to accommodate D, an error message is printed to
the standard error device & exits the program with an error condition

void padd(int startA, int finishA, int startB, int finishB, int *startD,int *finishD)
{ /* add A(x) and B(x) to obtain D(x) */

float coefficient;

*startD = avail,

while (startA <= finishA && startB <= finishB)
switch(COMPARE((terms[startA].expon, terms[startB].expon))

{
case -1: [* aexpon < b expon */
attach (terms [startB].coef, terms[startB].expon);
startB++;

break;

case 0: /* equal exponents */
coefficient = terms[startA].coef + terms[startB].coef;

if (coefficient)
attach  (coefficient, terms[startA].expon);
startA++;
startB++:
break;



Data Structure & Applications — BCS304

case 1: /[* aexpon > b expon */
attach (terms [startA].coef, terms[startA].expon);
startA++;

}

/* add in remaining terms of A(x) */
for(; startA <= finishA, startA++)
attach (terms[startA].coef, terms[startA].expon);

/* add in remaining terms of B(x) */
for( ; startB <= finishB; startB++)

attach (terms[startB].coef, terms[startB].expon);
*finishD = avail-i;

Function to add two polynomials

void attach(float coefficient, int exponent)
{ /* add a new term to the polynomial */

if (avail >= MAX-TERMS)

{
fprintf(stderr,"Too  many terms in the  polynomial\n");
exit(EXIT_FAILURE);

¥

terms[avail].coef = coefficient;
terms[avail++].expon = exponent;

¥

Function to add new term

Analysis of padd():

The number of non-zero terms in A and B is the most important factors in analyzing the time
complexity.

Let m and n be the number of non-zero terms in A and B, If m >0 and n > 0, the while loop is
entered. Each iteration of the loop requires O(1) time. At each iteration, the value of startA or
startB or both is incremented. The iteration terminates when either startA or startB exceeds
finishA or finishB.



Data Structure & Applications — BCS304

The number of iterations is bounded by m + n -1
AR =" X and B(x)=¥ 2%t
i=0

The time for the remaining two for loops is bounded by O(n + m) because we cannot iterate
the first loop more than m times and the second more than n times. So, the asymptotic
computing time of this algorithm is O(n +m).

SPARSE MATRICES

A matrix contains m rows and n columns of elements as illustrated in below figures. In this figure,
the elements are numbers. The first matrix has five rows and three columns and the second has six
rows and six columns. We write m x n (read "m by n") to designate a matrix with m rows and n
columns. The total number of elements in such a matrix is mn. If m equals n, the matrix is
square.

col0 coll col2 col0 coll col2 col3 col4d col5
row0 [ 27 3 4] rowd[15 0 0 2 0 -5 |
row 1 6 §2 -2 rowl |0 11 3 0 0 0
row 2 109 -64 11 row2 |0 0 0 -6 0 0
row 3 12 8 9 rowd |0 0 0 0 0 0
row 4 48 27 47 row4 |91 0 0 0 0 0
- N rows |0 0 28 0 0 0
Figure A o Figure B a

What is Sparse Matrix?
A matrix which contains many zero entries or very few non-zero entries is called as

Sparse matrix.
In the figure B contains only 8 of 36 elements are nonzero and that is sparse.

Important Note:
A sparse matrix can be represented in 1-Dimension, 2- Dimension and 3- Dimensional array.

When a sparse matrix is represented as a two-dimensional array as shown in
Figure B, more space is wasted.

Example: consider the space requirements necessary to store a 1000 x 1000 matrix that has only
2000 non-zero elements. The corresponding two-dimensional array requires space for 1,000,000
elements. The better choice is by using a representation in which only the nonzero elements are
stored.



Data Structure & Applications — BCS304

Sparse Matrix Representation

¢ An element within a matrix can characterize by using the triple <row,col,value> This
means that, an array of triples is used to represent a sparse matrix.

e Organize the triples so that the row indices are in ascending order.

e The operations should terminate, so we must know the number of rows and columns,
and the number of nonzero elements in the matrix.

Implementation of the Create operation as below:
SparseMatrix Create(maxRow, maxCol) .=

#define MAX_TERMS 101 /* maximum number of terms +1*/
typedef struct {
int  col;
int  row;
int value;
} term;

term afMAX_TERMS];

e The below figure shows the representation of matrix in the array “a” a[0].row contains the
number of rows, a[0].col contains the number of columns and a[0].value contains the total
number of nonzero entries.

e Positions 1 through 8 store the triples representing the nonzero entries. The row index is in
the field row, the column index is in the field col, and the value is in the field value. The
triples are ordered by row and within rows bycolumns.

a0] 6 6 8 b[0] 6 6 8
1] 0 0 15 [1] 0 0 15
2] 0 3 22 2] 0 4 01
Bl 0 5 15 [3] 1 1 11
4 1 1 11 [4] 2 1 3
] 1 2 3 5] 2 5 28
6] 2 3 6 [6] 3 0 22
71 4 0 91 [7] 3 2 6
B 5 2 28 [8] 5 0 15

Fig (a): Sparse matrix storedas triple Fig (b): Transpose matrix stored as triple



Data Structure & Applications — BCS304

Transposing a Matrix
To transpose a matrix, interchange the rows and columns. This means that each element

a[i][j] in the original matrix becomes element a[j][i] in the transpose matrix.

A good algorithm for transposing a matrix:

for each row i

take element <i, j, value> and store it as
element <j, i, value> of the transpose;

If we process the original matrix by the row indices it is difficult to know exactly where to
place element <j, i, value> in the transpose matrix until we processed all the elements that
precede it.

This can be avoided by using the column indices to determine the placement of elements in
the transpose matrix. This suggests the following algorithm:

for all elements in column |
place element <i, j, value> in

element <j, i, value>

The columns within each row of the transpose matrix will be arranged in ascending order. void

transpose (term a[], termb[])

{ /*Db is set to the transpose of a */
intn, i, j, currentb;
n = a[0].value; [* total number of elements */
b[0].row = a[0].col; /* rows in b = columns in a */
b[0].col = a[0].row; [* columns in b = rows in a */
b[0].value =n;
if (n>0)

{ currentb =1,
for (i = 0; i < a[O].col; i++)
for (j= 1; j<=n, j++)

if (a[j].col ==1)

{
b[currentb].row = a[j].col;
b[currentb].col = alj].row;
b[currentb].value = a[j].value;
currentb++;

¥

¥
¥

Transpose of a sparse matrix



Data Structure & Applications — BCS304

STRINGS:

Each programming languages contains a character set that is used to communicate with the
computer. The character set include the following:

Alphabet: ABCDEFGHIJKLMNOPQRSTUVWXYZ
Digits: 0123456789
Special characters: +-/*(),.$=°_(Blank space)

String: A finite sequence S of zero or more Characters is called string.
Length: The number of characters in a string is called length of string.
Empty or Null String: The string with zero characters.

Concatenation: Let S: and S2 be the strings. The string consisting of the characters of S:
followed by the character S:is called Concatenation of Siand So.
EX: ‘THE’ // ‘END’ = ‘THEEND’

‘THE’ // <’ [l ‘END’ = ‘THE END’

Substring: A string Y is called substring of a string S if there exist string X and Z such that
S=XIIYIl Z
If X is an empty string, then Y is called an Initial substring of S, and Z is an empty string then
Y is called a terminal substring of S.
Ex:  ‘BEORNOT’ isasubstring of “TO BE ORNOT TO BE’

“THE’ is an initial substring of ‘THE END’

STRINGS INC
In C, the strings are represented as character arrays terminated with the null character \0.

Declaration 1:

#define MAX_SIZE 100 /* maximum size of string */
char sSIMAX_SIZE] = {“dog”};

chartfMAX_SIZE] = {“house”};

s[0] s[1] s[2] s[3] o] fi] 2] 3] t4] t[4]
d 0 g \0 h 0 u S e \0

The above figure shows how these strings would be represented internally in memory.



Data Structure & Applications — BCS304

Declaration 2:

chars[ ] = {“dog”};
chart[ ] = {*“house”};

Using these declarations, the C compiler will allocate just enough space to hold each word
including the null character.

STORING STRINGS

Strings are stored in three types of structures
1. Fixed length structures
2. Variable length structures with fixed maximum
3. Linked structures

Record Oriented Fixed length storage:
In fixed length structures each line of print is viewed as a record, where all have the same

length i.e., where each record accommodates the same number of characters.

Example: Suppose the input consists of the program. Using a record oriented, fixed length
storage medium, the input data will appear in memory as pictured below.




Data Structure & Applications — BCS304

Suppose, if new record needs to be inserted, then it requires that all succeeding records be moved
to new memory location. This disadvantages can be easily remedied as shown in below figure.

That is, one can use a linear array POINT which gives the address of successive record, so
that the records need not be stored in consecutive locations in memory. Inserting a new record
will require only an updating of the array POINT.

The main advantages of this method are
1. Theease of accessing data from anygiven record
2. The ease of updating data in anygiven record (as long as the length of the new data
does not exceed the record length)

The main disadvantages are
1. Time is wasted reading an entire record if most of the storage consists of inessential
blank spaces.
2. Certain records may require more space thanavailable
3. When the correction consists of more or fewer characters than the original text,
changing a misspelled word requires record to be changed.

Variable length structures with fixed maximum

The storage of variable-length strings in memory cells with fixed lengths can be done in two
general ways
1. One canuse a marker, such as two dollar signs ($3), to signal the end of the string
2. One can list the length of the string—as an additional item in the pointer array



Data Structure & Applications — BCS304

Example:

The other method to store strings one after another by using some separation marker, such as
the two dollar sign ($3$) or by using a pointer giving the location of the string.

These ways of storing strings will save space and are sometimes used in secondary memory
when records are relatively permanent and require little changes.

These types of methods of storage are usually inefficient when the strings and their lengths
are frequently being changed.



Data Structure & Applications — BCS304

Linked Storage
e Most extensive word processing applications, strings are stored by means of linked
lists.

e Inaone way linked list, a linearly ordered sequence of memory cells called nodes,

where each node contains an item called a link, which points to the next node in the
list, i.e., which consists the address of the nextnode.

Strings may be Stored in linked list as follows:

Each memory cell is assigned one character or a fixed number of characters and a link
contained in the cell gives the address of the cell containing the next character or group of
character in the string.

Ex: TOBE ORNOT TO BE

CHARACTER DATA TYPE
The various programming languages handles character data type in different ways.

Constants
Many programming languages denotes string constants by placing the string in either single
or double quotation marks.
Ex:  ‘THE END’
“THE BEGINNING”
The string constants of length 7 and 13 characters respectively.

Variables
Each programming languages has its own rules for forming character variables. These
variables fall into one of three categories
1. Static: In static character variable, whose length is defined before the program is
executed and cannot change throughout the program



Data Structure & Applications — BCS304

2. Semi-static: The length of the variable may vary during the execution of the program
as long as the length does not exceed a maximum value determined by the program
before the program is executed.

3. Dynamic: The length of the variable can change during the execution of the program.

STRING OPERATION

Substring
Accessing a substring from a given string requires three pieces of information:

(1) The name of the string or the string itself
(2) The position of the first character of the substring in the givenstring
(3) The length of the substring or the position of the last character of the substring.

Syntax: SUBSTRING (string, initial, length)
The syntax denote the substring of a string S beginning in a position K and having a length L.

Ex:  SUBSTRING (TOBEORNOTTOBE’,4,7)='BEORN’
SUBSTRING (‘THEEND!, 4,4) ="'END'

Indexing

Indexing also called pattern matching, refers to finding the position where a string pattern P
first appears in a given string text T. This operation is called INDEX

Syntax: INDEX (text, pattern)

If the pattern P does not appears in the text T, then INDEX is assigned the value 0.
Thearguments “text” and “pattern” can be either string constant or string variable.

Concatenation
Let S1 and Sz be string. The concatenation of Si and Sz which is denoted by Si // Sz, is the string
consisting of the characters of S; followed by the character of S..
Ex:
(@) Suppose S1="MARK" and S;= ‘“TWAIN' then
S1/l S2= ‘MARKTWAIN’

Concatenation is performed in C language using strcat function as shown below
strcat (S1, S2);
Concatenates string S1 and S2 and stores the result in S1
strcat () function is part of the string.h header file; hence it must be included at the time of
pre- processing



Data Structure & Applications — BCS304

Length

The number of characters in a string is called its length.

Syntax:

LENGTH (string)

Ex: LENGTH (‘computer’) =8

String length is determined in C language using the strlen() function, as shown below:

X = strlen ("sunrise");

strlen function returns an integer value 7 and assigns it to the variable X

Similar to strcat, strlen is also a part of string.h, hence the header file must be included at the

time of pre-processing.

Function

Description

char *strcat(char *dest, char *src)

concatenate dest and src strings;
return result in dest

char *strncat{char *dest, char *src, int n)

char *strcmp(char *strl, char ”;:strZ )

concatenate dest and # characters
from src; return result in dest

compare two strings;
return < O if strf < str2;
0if str] = str2;

>0 if strl > str2

char *strmncmp(char *strl, char *str2, int n)

compare first # characters
return < ( if stri < str2;

0 if strl = str2;

>1if stri > str2

char *strepy(char *dest, char *src)

copy src into dest; return dest

char *strncpy(char *dest, char *src, int n)

copy » characters from src
string into dest; return dest;

size_t strlen{char *s)

return the length ofas

char *strchr(char *s, int ¢)

return pointer to the first
occurrence of ¢ in s;
return NULL if not present

char *strrchr{char *s, int ¢}

return poiater to last occurrence of
c in s; return NULL if not present

char *striok(char *s, char *delimiters)

return a token from s; token is
surrounded by delimiters

char *strstr{char *s, char *pat)

return pointer to start of
patins

size_t strspn(char *s, char *spanset)

scan s for characters in spanset;
return length of span

size—t strcspn{char *s, char *spanset)

scan s for characters not in spanset;
return length of span

char *strpbrk{char *s, char *spanset)

scan s for characters in spanset,
return pointer to first occurrence
of a character from spanset




Data Structure & Applications — BCS304

PATTERN MATCHING ALGORITHMS

Pattern matching is the problem of deciding whether or not a given string pattern P appears in a
string text T. The length of P does not exceed the length of T.

First Pattern Matching Algorithm
e The first pattern matching algorithm is one in which comparison is done by a given pattern
P with each of the substrings of T, moving from left to right, until a match is found.
Wk = SUBSTRING (T, K, LENGTH (P))
e Where, Wkdenote the substring of T having the same length as P and beginning with the
Kt character of T.

e First compare P, character by character, with the first substring, W:. If all the characters are
the same, then P = Wiand so P appears in T and INDEX (T, P) = 1.

e Suppose it is found that some character of P is not the same as the corresponding character
of Wi1. Then P # W1

e Immediately move on to the next substring, W2 That is, compare P with Wa. If P # W2 then
compare P with W3z and so on.

e The process stops, When P is matched with some substring Wk and so P appears in T and
INDEX(T,P) =K or When all the W«'S with no match and hence P does not appear in T.

e The maximum value MAX of the subscript K is equal to LENGTH(T) -LENGTH(P) +1.

Algorithm: (Pattern Matching)
P and T are strings with lengths R and S, and are stored as arrays with one character per
element. This algorithm finds the INDEX of Pin T.

1. [Initialize.] SetK:=1and MAX:=S-R+1
2. Repeat Steps 3 to 5 while K < MAX
3. Repeat for L = 1 to R: [Tests each character of P]
If P[L] # T[K + L — 1], then: Go to Step 5
[End of inner loop.]
4, [Success.] Set INDEX =K, and Exit
5. SetK:=K+1
[End of Step 2 outer loop]
6. [Failure.] Set INDEX =0
7. Exit




Data Structure & Applications — BCS304

Observation of algorithms
e Pisanr-character string and T is an s-character string

e Algorithm contains two loops, one inside the other. The outer loop runs through each
successive R-character substring Wk = T[K] T[K + 1] ... T[K+R-I] of T.

e Theinner loop compares P with Wk, character by character. If any character does not match,
then control transfers to Step 5, which increases K and then leads to the next substring of T.

e Ifall the R characters of P do match those of some Wk then P appears in T and K is the

INDEX of Pin T.
e If the outer loop completes all of its cycles, then P does not appear in T and so INDEX
=0.
Complexity

The complexity of this pattern matching algorithm is equal to O(n?)

Second Pattern Matching Algorithm
The second pattern matching algorithm uses a table which is derived from a particular pattern

P but is independent of the text T.

For definiteness, suppose
P =aaba

This algorithm contains the table that is used for the pattern P = aaba.
The table is obtained as follows.
e Let Qidenote the initial substring of P of length i, hence Q0=A,Ql=a, Q2= a2, Q3
= aab, Q4 = aaba = P (Here Q0 = A is the empty string.)
e Therows of the table are labeled by these initial substrings of P, excluding P itself.
e The columns of the table are labeled a, b and x, where x represents any character that doesn't
appear in the pattern P.
e Let f be the function determined by the table; i.e., let f(Qi, t) denote the entry in the table in
row Qi and column t (where t is any character). This entry f(Qi, t) is defined to be the largest
Q that appears as a terminal substring in the string (Qit) the concatenation of Qi and t.

For example,

a2 is the largest Q that is a terminal substring of Q2a = a3, so f(Q2, a) = Q2 A
is the largest Q that is a terminal substring of Q1b = ab, so f(Q1, b) = Q0 a is
the largest Q that is a terminal substring of QOa = a, so f(Q0, a) = Q1

Ais the largest Q that is a terminal substring of Q3a = a3bx, so f(Q3, x) = Q0



Data Structure & Applications — BCS304

i L

Qs /. 0 Qo
@ Q> Qo Qo
Q. Qs o s
Qs 52 Q Qo

(a) Pattern matching table

b Pattern matching graph

Although Q1 = a is a terminal substring of Q2a = a3, we have f(Q2, a) = Q2 because Q2 is also a
terminal substring of Q2a = a% and Q2 is larger than Q1. We note that f(Qi, x) = QO for any Q,
since x does not appear in the pattern P Accordingly, the column corresponding to x is usually
omitted from the table.

Pattern matching Graph
The graph is obtained with the table as follows.

First, a node in the graph corresponding to each initial substring Qi of P. The Q's are called the
states of the system, and QO is called the initial state.
Second, there is an arrow (a directed edge) in the graph corresponding to each entry in the table.
Specifically, if
f(Qi, ) = Q;

then there is an arrow labeled by the character t from Qi to Qj

For example, f(Q2, b) = Q3 so there is an arrow labeled b from Q2 to Q3
For notational convenience, all arrows labeled x are omitted, which must lead to the initial state

Qo.

The second pattern matching algorithm for the pattern P = aaba.
e LetT=T1T2T3... TNdenote the n-character-string text which is searched for the pattern
P. Beginning with the initial state QO and using the text T, wewill obtain a sequence of states
S1, S2, S3, ... asfollows.
e LetS1=QO0andread the first character T1. The pair (S1, T1) yields a second state S2; that
is, F(S1, T1) = S2, Read the next character T2, The pair (S2, T2) yields a state S3, and so




Data Structure & Applications — BCS304

on.

There are two possibilities:

1.

2.

Some state SK = P, the desired pattern. In this case, P does appear in T and its index is
K - LENGTH(P).
No state S1, S2, ..., SN +1 is equal to P. In this case, P does not appear in T.

Algorithm: (PATTERN MATCHING) The pattern matching table F(Q1, T) of a pattern P is in
memory, and the input is an N-character string T=T1 T2 Ts...... Tn. The algorithm finds the INDEX

of PinT.
1. [Initialize] setK:=1ansSi1=Qo
2. Repeatsteps 3to 5 while SkZPand K< N
3. Read Tk
4, Set Sk+1 : = F(Sk, Tk) [finds next state]
5. SetK: =K +1 [Updates counter]

[End of step 2 loop]
[Successful ?]
If Sk=P, then

INDEX =K — LENGTH (P)
Else

INDEX =0
[End of IF structure]
Exit.

STACKS AND QUEUES

STACKS
DEFINITION

“A stack is an ordered list in which insertions (pushes) and deletions (pops) are made at one
end called the top.”

Given a stack S= (ay, ... ,an-1), Where ag is the bottom element, a,.; is the top element, and a; is
on top of element a;.;, 0 <i<n.

Figure:

E |«top
D <+—top D D |«top
C |+top C C C
B «—top B B B B
A «top| A A A A A
Push Push Push Push Pop

Inserting and deleting elements in a stack



Data Structure & Applications — BCS304

As shown in above figure, the elements are added in the stack in the order A, B, C, D, E, then
E is the first element that is deleted from the stack and the last element is deleted from stack
is A. Figure illustrates this sequence of operations.

Since the last element inserted into a stack is the first element removed, a stack is also known
as a Last-In-First-Out (LIFO) list.

ARRAY REPRESENTATION OF STACKS

e Stacks may be represented in the computer in various ways such as one-way linked list
(Singly linked list) or linear array.
e Stacks are maintained by the two variables such as TOP and MAX_STACK_SIZE.

e TOP which contains the location of the top element in the stack. If TOP= -1, then it
indicates stack is empty.

e MAX_STACK_SIZE which gives maximum number of elements that can be stored in
stack.

Stack can represented using linear array as shown below

A B C
0 1 2 3 4 5 6 7
TOP MAX STACK SIZE
STACK OPERATIONS

Implementation of the stack operations as follows.

1. Stack Create
Stack CreateS{maxsStackSize )=

#define MAX_STACK _ SIZE 100 /* maximum stack size*/
typedef struct

{

int key;
[* other fields */
} element;

element stackl MAX_STACK_SIZE];
int top = -1;

Theelementwhich IS USed 1o InSert or delete 1S Specified as a structure thatconsists of onty a

key field.

2. Boolean IsEmpty(Stack)::= top <O0;



Data Structure & Applications — BCS304

3. Boolean IsFull(Stack)::= top >= MAX_STACK_SIZE-1;

The IsEmpty and IsFull operations are simple, and is implemented directly in the program
push and pop functions. Each of these functions assumes that the variables stack and top are
global.

4. Push()

Function push checks whether stack is full. If it is, it calls stackFull( ), which prints an error
message and terminates execution. When the stack is not full, increment top and assign item to
stack [top].

VOId pushi(efementitem)
{ /* add an item to the global stack */
if (top >= MAX_STACK_SIZE-1)
stackFull();
stack[++top] = item;

5. Pop()
Deleting an element from the stack is called pop operation. The element is deleted only from
the top of the stack and only one element is deleted at a time.

element pop ()
{ /*delete and return the top element from the stack */
if (top ==-1)
return stackEmpty(); /*returns an error key */
return stack[top--];

1. stackFull( )
The stackFull which prints an error message and terminates execution.

void stackFull()
{

fprintf(stderr, "Stack is  full, cannot add element");
exit(EXIT_FAILURE);




Data Structure & Applications — BCS304

STACKS USING DYNAMIC ARRAYS

The array is used to implement stack, but the bound (MAX_STACK _ SIZE) should be known
during compile time. The size of bound is impossible to alter during compilation hence this
can be overcome by using dynamically allocated array for the elements and then increasing
the size of array as needed.

Stack Operations using dynamic array

1. Stack CreateS( )::= typedef struct

{
int key;, [* other fields */

} element;
element *stack;
MALLOC((stack, sizeof(*stack));
int capacity= 1;
int top=-1;

2. Boolean IsEmpty(Stack)::=top < 0;

3. Boolean IsFull(Stack)::= top >= capacity-1;

4. push()
Here the MAX_STACK _SIZE is replaced with capacity

void push(element item)
{ /*addan item to the global stack */

if (top >= capacity-1)
stackFull();
stack[++top] = item;

5. pop()
In this function, no changes are made.

etementpop ()
{ /* delete and return the top element from the stack */
if (top ==-1)
return stackEmpty(); /* returns an error key */
return stack[top--];




Data Structure & Applications — BCS304

6. stackFull( )

The new code shown below, attempts to increase the capacity of the array stack so that new
element can be added into the stack. Before increasing the capacity of an array, decide what
the new capacity should be.

In array doubling, array capacity is doubled whenever it becomes necessary to increase the
capacity of an array.

void stackFull()

{
REALLOC (stack, 2*capacity*sizeof(*stack));

capacity *= 2;

Stack full—with _array doubling
Analysis

In the worst case, the realloc function needs to allocate 2*capacity*sizeof (*stack) bytes of
memory and copy capacity *sizeof (*stack)) bytes of memory from the old array into the
new one. Under the assumptions that memory may be allocated in O(1) time and that a stack
element can be copied in O(1) time, the time required by array doubling is O(capacity).
Initially, capacity is 1.

Suppose that, if all elements are pushed in stack and the capacity is 2k for some k, k>0, then
the total time spent over all array doublings is O ( YF =1 2i ) = O(2k*) = O(2X).

Since the total number of pushes is more than 2k-1, the total time spend in array doubling is
O(n), where n is the total number of pushes. Hence, even with the time spent on array
doubling added in, the total run time of push over all n pushes is O(n).



Data Structure & Applications — BCS304

STACKAPPLICATIONS: POLISHNOTATION

Expressions: It is sequence of operators and operands that reduces to a single value after
evaluation is called an expression.

X=alb-c+d*e-a*c
In above expression contains operators (+, —, /, *) operands (a, b, c, d, e).

Expression can be represented in in different format such as
e Prefix Expression or Polish notation
e Infix Expression
e Postfix Expression or Reverse Polish notation

Infix Expression: In this expression, the binary operator is placed in-between the operand.
The expression can be parenthesized or un- parenthesized.

Example: A+ B

Here, A & B are operands and + is operand

Prefix or Polish Expression: In this expression, the operator appears before its operand.
Example: + AB
Here, A & B are operands and + is operand

Postfix or Reverse Polish Expression: In this expression, the operator appears after its
operand.

Example: AB +

Here, A & B are operands and + is operand

Precedence of the operators
The first problem with understanding the meaning of expressions and statements is finding

out the order in which the operations are performed.
Example: assume that a =4, b =c =2, d =e =3 in below expression
X=alb-c+d*e-a*c
((4/2)-2) + (3*3)-(4*2) (4/ (2-2 +3)) *(3-4)*2
=0+9-8 OR =(4/3) * (-1) *2
=1 = -2.66666



Data Structure & Applications — BCS304

The first answer is picked most because division is carried out before subtraction, and
multiplication before addition. If we wanted the second answer, write expression differently
using parentheses to change the order of evaluation

X=(@al/(b-c+d))*(e-a)*c

In C, there is a precedence hierarchy that determines the order in which operators are
evaluated. Below figure contains the precedence hierarchy for C.

Token Operator Precedence | Associativity
() function call 17 left-to-nght
[] array element

— struct or union member

—+ Increment, Decrement 16 left-to-night
4+ decrement_ increment 15 right-to-left
! logical not

N one's complement

-+ unary minus or plus

& * address or indirection

sizeof size (1n bytes)

(type) type cast 14 right-to-left
* /% Multiplicative 13 left-to-nght
+- binary add or subtract 12 left-to-nght
<< > shift 11 left-to-night
>>= relational 10 left-to-night
= =

== I= equality 9 left-to-nght
& Bitwise and 8 left-to-nght
- bitwise exclusive or 7 left-to-nght
| Bitwise or 6 left-to-nght
&& logical and 5 left-to-nght
I logical or 4 left-to-nght
?: conditional 3 right-to-left
=+=-= /=%=9%= | assignment 2 right -to-lefi
<<= = &=1=|=

\ comima 1 left-to-nght

e The operators are arranged from highest precedence to lowest. Operators with highest
precedence are evaluated first.

e The associativity column indicates how to evaluate operators with the same precedence. For
example, the multiplicative operators have left-to-right associativity. This means that the
expressiona*b/c%d/eisequivalentto ((((a*b)/c)%d)/e)

e Parentheses are used to override precedence, and expressions are always evaluated from the
innermost parenthesized expression first



Data Structure & Applications — BCS304

INFIXTO POSTFIX CONVERSION

An algorithm to convert infix to a postfix expression as follows:
1. Fully parenthesize the expression.
2. Move all binary operators so that they replace their corresponding right parentheses.
3. Delete all parentheses.

Example: Infix expression: a/b -c +d*e -a*c
Fully parenthesized : ((((a/b)-c) + (d*e))-a*c))
rab/e-de*+ac*

Example [Parenthesized expression]: Parentheses make the translation process more
difficult because the equivalent postfix expression will be parenthesis-free.

The expression a*(b +c)*d which results abc +*d* in postfix. Figure shows the translation
process.

Token| Stack Top Output
[0] [1] [2]

a -1 a

& & |:. a

( * II 1 a

b * ( 1 ab

+ x ( + 2 ab

C * ( + 2 abc

) * 0 abc+

* x 0 abc +*

d * 0 abc +*d

ens * 0 abc +*d*

e The analysis of the examples suggests a precedence-based scheme for stacking and
unstacking operators.

e The left parenthesis complicates matters because it behaves like a low-precedence operator
when it is on the stack and a high-precedence one when it is not. It is placed in the stack
whenever it is found in the expression, but it is unstacked only when its matching right
parenthesis is found.

e There are two types of precedence, in-stack precedence (isp) and incoming precedence
(icp).



Data Structure & Applications — BCS304

The declarations that establish the precedence’s are:

/* isp and icp arrays-index is value of precedence Iparen rparen, plus, minus, times, divide,

mod, eos */
intisp[] ={0,19,12,12,13,13,13,0};
inticp[] ={20,19,12,12,13,13,13,0};

void postfix(void)
{
char symbol,
precedence token;
int n = O0,top = O; /* place eos on stack */
stack[0] = eos;

for (token = getToken(&symbol, &n); token
getToken(&symbol,& n))
{
if (token == operand)
printf("%c", symbol);
else if (token == rparen)
{
while (stack[top] I=
printToken(pop( ));
pop();
}
else{
while(isp[stack[top]] >=
printToken(pop());
push(token);
}
}
while((token = pop ())!= eos)
printToken(token);
printf("\n");
}

I= eos; token =

Iparen)

icp[token])

Program: Function to convert from infix to postfix

Analysis of postfix: Let n be the number of tokens in the expression. © (n) time is spent extracting
tokens and outputting them. Time is spent in the two while loops, is © (n) as the number of tokens
that get stacked and unstacked is linear in n. So, the complexity of function postfix is © (n).



Data Structure & Applications — BCS304

EVALUATION OF POSTFIX EXPRESSION

e The evaluation process of postfix expression is simpler than the evaluation of infix
expressions because there are no parentheses to consider.

e To evaluate an expression, make a single left-to-right scan of it. Place the operands on
a stack until an operator is found. Then remove from the stack, the correct number of
operands for the operator, perform the operation, and place the result back on the stack
and continue this fashion until the end of the expression. We then remove the answer
from the top of the stack.

Program: Function to evaluate a postfix expression
int eval(void)

{
precedence token;
char symbol;
int opl,op2, n=0;
int top=-1;
token = getToken(&symbol, &n);
while(token! = eos)

{
If (token == operand)
push(symbol-'0"); /* stack insert */
else {
op2 = pop(); /* stack delete */
opl = pop();
switch(token) {
case plus: push(opl+op2);
break;
case minus:  push(opl-op2);
break;
case times:  push(opl*op2);
break;
case divide:  push(opl/op2);
break;
case mod: push(opl%op?2);
}
}
token = getToken(&symbol, &n);
}

return pop(); /* return result */




Data Structure & Applications — BCS304

precedence getToken(char *symbol, int *n)

{

*symbol

expr{(*n)++];

switch (*symbol)

{

case
case
case
case
case
case
case
case

‘(" : return Iparen;
)' @ return rparen;
'+' : return plus;
. return minus;
/' . return divide;
*' . return times;
‘%' : return mod;
"' . return eos;

default: return operand;




Data Structure & Applications — BCS304

Program: Function to get a token from the input string

e The function eval () contains the code to evaluate a postfix expression. Since an operand
(symbol) is initially a character, convert it into a single digit integer.

e To convert use the statement, symbol-'0". The statement takes the ASCII value of symbol
and subtracts the ASCII value of '0', which is 48, from it. For example, suppose symbol = "1.
The character 1" has an ASCII value of 49. Therefore, the statement symbol-'0" produces as
result the number 1.

e The function getToken( ), obtain tokens from the expression string. If the token is an
operand, convert it to a number and add it to the stack. Otherwise remove two operands from
the stack, perform the specified operation, and place the result back on the stack. When the
end of expression is reached, remove the result from the stack.

RECURSION

A recursive pr [
Suppose P is a procedure containing either a Call statement to itself or a Call statement to a
second procedure that may eventually result in a Call statement back to the original procedure
P. Then P is called a recursive procedure. So that the program will not continue to run
indefinitely, a recursive procedure must have the following two properties:
1. There must be certain criteria, called base criteria, for which the procedure does not call
itself.
2. Eachtime the procedure does call itself (directly or indirectly), it must be closer to the
base criteria.

Recursive procedure with these two properties is said to be well-defined.
ive functi

A function is said to be recursively defined if the function definition refers to itself. A recursive
function must have the following two properties:
1. There must be certain arguments, called base values, for which the function does not
refer to itself.

2. Each time the function does refer to itself, the argument of the function must be closer
to a base value
A recursive function with these two properties is also said to be well-defined.

Eactorial Function
“The product of the positive integers from 1 to n, is called "n factorial” and is denoted by n!”

nl=1*2*3...(n-2)*(n -1)*n

It is also convenient to define 0! = 1, so that the function is defined for all nonnegative integers.

Definition: (Factorial Function)
a) Ifn=0,thenn!=1.



Data Structure & Applications — BCS304

b) Ifn>0, thennl=n*(n - 1)!

Observe that this definition of n! is recursive, since it refers to itself when it uses (n - 1)!

(@ Thevalue of n!is explicitly given when n = 0 (thus 0 is the base value )

(b) The value of n! for arbitrary n is defined in terms of a smaller value of n which is closer to
the base value 0.

Tower of Hanoi
Problem ription

Suppose three pegs, labeled A, Band C, are given, and suppose on peg A a finite number n of
disks with decreasing size are placed.

The objective of the game is to move the disks from peg A to peg C using peg B as an auxiliary.

The rules of the game are as follows:
1. Onlyone disk may be moved at a time. Only the top disk on any peg may be moved to
any other peg.
2. Atnotime can a larger disk be placed on a smaller disk.

A B C
[ ] M M
( )
(-
( )
G )
( f

Initial Setup of Towers of Hanoi with n = 6



Data Structure & Applications — BCS304

Example: Towers of Hanoi problem forn = 3.

Solution: Observe that it consists of the following seven moves

3 DISKS
| (1) |
o .-LJ_-_
A B T A B C
() ‘ (3) | (4) | ‘
A B C A B C A B C

{5}| ‘ ‘ {ﬁ}l ‘ (D
A B C A B C

Move top disk from peg A to peg C.
Move top disk from peg A to peg B.
Move top disk from peg C to peg B.
Move top disk from peg A to peg C.
Move top disk from peg B to peg A.
Move top disk from peg B to peg C.
Move top disk from peg A to peg C.

No akowdpe

In other words,
n=3. A—C, A—B, C—B, A—C, B—A, B—>C, A—C

For completeness, the solution to the Towers of Hanoi problem forn=21andn =2
n=1: A—C
n=2. A—B, A—~C, B—C

The Towers of Hanoi problem for n > 1 disks may be reduced to the following sub-problems:
(1) Move the top n - 1 disks from peg A to peg B
(2) Move the top disk from peg A to peg C: A—C.
(3) Move the top n - 1 disks from peg B to peg C.



Data Structure & Applications — BCS304

The general notation
e TOWER (N, BEG, AUX, END) to denote a procedure which moves the top n disks from
the initial peg BEG to the final peg END using the peg AUX as an auxiliary.

e Whenn =1, thesolution:
TOWER (1, BEG, AUX, END) consists of the single instruction BEG—END

e Whenn > 1, the solution may be reduced to the solution of the following three sub-
problems:
(@ TOWER (N - I, BEG, END, AUX)
(b) TOWER (I, BEG, AUX, END) or BEG — END
(c) TOWER(N -1, AUX, BEG, END)

Procedure: TOWER (N, BEG, AUX, END)
This procedure gives a recursive solution to the Towers of Hanoi problem for
N disks.
1. IfN=l, then:
(@ Write: BEG —END.
(b) Return.
[End of If structure.]
2. [Move N - 1 disks from peg BEG to peg AUX.]
Call TOWER (N - 1, BEG, END, AUX).
3. Write: BEG —END.
4. [Move N - 1 disks from peg AUX to peg END.]
Call TOWER (N - 1, AUX, BEG, END).
5. Return.




Data Structure & Applications — BCS304

Example: Towers of Hanoi problem for n = 4

TOWER(1, A, C.B).... A~ B

TOWER(2, A, B, C) — R Lo P A=C

| TOWER(1, B, A, C) B—C

TOWER(3, A. C. B) A-B. E—— A B

TOWER(1,C,B,A)....C=A

TOWER(2, C, A, B) C 8 C 5B

TOWER(1,A,C,B)....A—=+B

TOWER(4, A, B, C) AV 5w en sy ’ $7a e e T (T ...A—=C
TOWER(1, B, A, C) B=C

TOWER(2, B, C, A) B — A o s B A

TOWER(1,C, B, A) . C A

TOWER(3, B, A, C) B-C B-C

TOWER(1, A, C, B) A—=B
TOWER(2, A, B, C) A=3C ......... ASC

TOWER(1, B. A, C) B—-C

Ackermann function
The Ackermann function is a function with two arguments each of which can be assigned any
nonnegative integer: 0, 1, 2, ....

Definition: (Ackermann Function)
(@ Ifm=0,then A(m,n)=n+1
(b) fm#0butn=0, then A(m, n)= A(m-1, 1)
() fm#0andn#0,then A(m,n)=A(m-1, A(m, n- 1))



	MODULE 1:
	INTRODUCTION TO DATA STRUCTURES
	Basic Terminology: Elementary Data Organization:
	CLASSIFICATION OF DATA STRUCTURES
	Arrays:
	Trees

	DATA STRUCTURES OPERATIONS
	ARRAYS
	STRUCTURES
	Type-Defined Structure
	Structure Operation
	Structure within a structure:

	SELF-REFERENTIAL STRUCTURES
	Unions:
	POINTERS
	DYNAMIC MEMORY ALLOCATION FUNCTIONS
	REPRESENTATION OF LINEAR ARRAYS IN MEMORY
	Linear Array
	Representation of linear arrays in memory

	DYNAMICALLY ALLOCATED ARRAYS
	One Dimensional Array
	Two DimensionalArrays

	ARRAY OPERATIONS
	1.  Traversing
	2.  Inserting
	3.  Deleting
	4.  Sorting
	Bubble Sort
	5. Searching
	Linear Search
	Binary Search

	MULTIDIMENSIONAL ARRAY
	POLYNOMIALS
	Polynomial Representation
	Polynomial Addition
	Analysis of padd( ):

	SPARSE MATRICES
	Sparse Matrix Representation
	Transposing a Matrix

	STRINGS:
	STRINGS IN C
	STORING STRINGS
	Record Oriented Fixed length storage:
	Variable length structures with fixed maximum
	Linked Storage

	CHARACTER DATA TYPE
	STRING OPERATION
	Substring
	Indexing
	Concatenation
	Length

	PATTERN MATCHING ALGORITHMS
	First Pattern Matching Algorithm
	Second Pattern Matching Algorithm


	STACKS AND QUEUES
	DEFINITION
	ARRAY REPRESENTATION OF STACKS
	STACK OPERATIONS
	STACKS USING DYNAMIC ARRAYS
	STACK APPLICATIONS: POLISH NOTATION
	INFIX TO POSTFIX CONVERSION
	EVALUATION OF POSTFIX EXPRESSION
	Factorial Function
	Tower of Hanoi
	Ackermann function


