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Module -1
Introduction

1.1 What Is Digital Image Processing?

An image may be defined as a two-dimensional function, f(x, y), where x and y are
spatial (plane) coordinates, and the amplitude of f at any pair of coordinates (X, y) is
called the intensity or gray level of the image at that point. When X, y, and the amplitude
values of f are all finite, discrete quantities, we call the image a digital image. The field of
digital image processing refers to processing digital images by means of a digital
computer. Note that a digital image is composed of a finite number of elements, each of
which has a particular location and value. These elements are referred to as picture
elements, image elements, pels, and pixels. Pixel is the term most widely used to denote

the elements of a digital image.

1.2 Fundamental Steps in Digital Image Processing

It is helpful to divide the material covered in the following chapters into the two broad
categories defined in Section 1.1: methods whose input and output are images, and
methods whose inputs may be images, but whose outputs are attributes extracted from
those images..The diagram does not imply that every process is applied to an image.
Rather, the intention is to convey an idea of all the methodologies that can be applied to
images for different purposes and possibly with different objectives.

Image acquisition is the first process acquisition could be as simple as being given an
image that is already in digital form. Generally, the image acquisition stage involves
preprocessing, such as scaling.

Image enhancement is among the simplest and most appealing areas of digital image
processing. Basically, the idea behind enhancement techniques is to bring out detail that is
obscured, or simply to highlight certain features of interest in an image. A familiar

example of enhancement is when we increase the contrast of an image because “it looks
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better.” It is important to keep in mind that enhancement is a very subjective area of

Digital Image Processing
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Image restoration is an area that also deals with improving the appearance of an image.

However, unlike enhancement, which is subjective, image restoration is objective, in the

sense that restoration techniques tend to be based on mathematical or probabilistic

models of image degradation. Enhancement, on the other hand, is based on human

subjective preferences regarding what constitutes a “good” enhancement result.

Color Digital Image Processing is an area that has been gaining in importance because of

the significant increase in the use of digital images over the Internet. fundamental concepts

in color models and basic color processing in a digital domain. Color is used also in

later chapters as the basis for extracting features of interest in an image.

Dept. of ECE, ATMECE , MYSURU

Page 2



Digital Image Processing BEC613C

Wavelets are the foundation for representing images in various degrees of resolution. In
particular, this material is used in this book for image data compression and for
pyramidal representation, in which images are subdivided successively into smaller
regions.

Compression, as the name implies, deals with techniques for reducing the storage
required to save an image, or the bandwidth required to transmit it. Although storage
technology has improved significantly over the past decade, the same cannot be said for
transmission capacity. This is true particularly in uses of the Internet, which are
characterized by significant pictorial content. Image compression is familiar (perhaps
inadvertently) to most users of computers in the form of image file extensions, such as
the jpg file extension used in the JPEG(Joint Photographic Experts Group) image
compression standard.

Morphological processing deals with tools for extracting image components that are
useful in the representation and description of shape. The material in this chapter begins a
transition from processes that output images to processes that output image attributes,
Segmentation procedures partition an image into its constituent parts or objects. In
general, autonomous segmentation is one of the most difficult tasks in digital image
processing. A rugged segmentation procedure brings the process a long way toward
successful solution of imaging problems that require objects to be identified individually.
On the other hand, weak or erratic segmentation algorithms almost always guarantee
eventual failure. In general, the more accurate the segmentation, the more
likely recognition is to succeed.

Representation and description almost always follow the output of a segmentation stage,
which usually is raw pixel data, constituting either the boundary of a region (i.e., the set of
pixels separating one image region from another) or all the points in the region itself. In
either case, converting the data to a form suitable for computer processing is
necessary. The first decision that must be made is whether the data should be represented as
a boundary or as a complete region. Boundary representation is appropriate when the focus
is on external shape characteristics, such as corners and inflections. Regional
representation is appropriate when the focus is on internal properties, such as texture or

skeletal shape. In some applications, these representations complement each other.
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Choosing a representation is only part of the solution for transforming raw data into a
form suitable for subsequent computer processing. A method must also be specified for
describing the data so that features of interest are highlighted. Description, also called
feature selection, deals with extracting attributes that result in some
quantitative information of interest or are basic for differentiating one class of objects from

another.

Recognition is the process that assigns a label (e.g., “vehicle”) to an object based on its
descriptors. As detailed in Section 1.1, we conclude our coverage of digital image
processing with the development of methods for recognition of individual objects. So far we
have said nothing about the need for prior knowledge or about the interaction between the
knowledge base and Knowledge about a problem domain is coded into an image
processing system in the form of a knowledge database. This knowledge may be as
simple as detailing regions of an image where the information of interest is known to be
located, thus limiting the search that has to be conducted in seeking that information. The
knowledge base also can be quite complex, such as an interrelated list of all major
possible defects in a materials inspection problem or an image database containing high-

resolution satellite images of a region in connection with change-detection applications.

In addition to guiding the operation of each processing module, the knowledge base also
controls the interaction between modules. This distinction is made in Fig. 1.23 by the use of
double headed arrows between the processing modules and the knowledge base, as
opposed to single-headed arrows linking the processing modules. Although we do not
discuss image display explicitly at this point, it is important to keep in mind that viewing the

results of Digital Image Processing can take place at the output of any stage.

1.3 Components of an Digital Image Processing System

Although large-scale Digital Image Processing systems still are being sold for massive
imaging applications, such as processing of satellite images, the trend
continues toward miniaturizing and blending of general-purpose small computers with

specialized image processing hardware.
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The function of each component is discussed in the following paragraphs, starting with
image sensing. With reference to sensing, two elements are required to acquire digital
images. The first is a physical device that is sensitive to the energy radiated by the object
we wish to image. The second, called a digitizer, is a device for converting the output of the
physical sensing device into digital form. For instance, in a digital video camera, the
sensors produce an electrical output proportional to light intensity. The digitizer converts
these outputs to digital data.

Specialized Digital Image Processing hardware usually consists of the digitizer just
mentioned, plus hardware that performs other primitive operations, such as an arithmetic
logic unit (ALU), which performs arithmetic and logical operations in parallel on entire
images. One example of how an ALU is used is in averaging images as quickly as
they are digitized, for the purpose of noise reduction. This type of hardware sometimes is
called a front-end subsystem, and its most
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distinguishing characteristic is speed. In other words, this unit performs functions that
require fast data throughputs (e.g., digitizing and averaging video images at 30 frames_s)
that the typical main computer cannot handle.

The computer in an image processing system is a general-purpose computer and can

range from a PC to a supercomputer. In dedicated applications, sometimes specially
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designed computers are used to achieve a required level of performance, but our interest
here is on general-purpose Digital Image Processing systems. In these systems, almost any

well- equipped PC-type machine is suitable for offline Digital Image Processing tasks.

Software for image processing consists of specialized modules that perform specific
tasks. A well-designed package also includes the capability for the user to write code that,
as a minimum, utilizes the specialized modules. More sophisticated software packages
allow the integration of those modules and general- purpose software commands from at

least one computer language.

Mass storage capability is a must in image processing applications.An image of size
1024*1024 pixels, in which the intensity of each pixel is an 8-bit quantity, requires one
megabyte of storage space if the image is not compressed. When dealing with thousands, or
even millions, of images, providing adequate storage in an Digital Image Processing
system can be a challenge. Digital storage for image processing applications falls into
three principal categories: (1) short term storage for use during processing, (2) on-line
storage for relatively fast recall, and (3) archival storage, characterized by infrequent
access. Storage is measured in bytes (eight bits), Kbytes (one thousand bytes), Mbytes
(one million bytes), Gbytes (meaning giga, or one billion, bytes), and T bytes (meaning

tera, orone trillion, bytes).

One method of providing short-term storage is computer memory.Another is
by specialized boards, called frame buffers, that store one or more images and can
be accessed rapidly, usually at video rates (e.g., at 30 complete images per second).The
latter method allows virtually instantaneous image zoom, as well as scroll (vertical shifts)
and pan (horizontal shifts). Frame buffers usually are housed in the specialized image
processing hardware unit. Online storage generally takes the form of magnetic disks or
optical-media storage. The key factor characterizing on-line storage is frequent access to
the stored data. Finally, archival storage is characterized by massive storage requirements
but infrequent need for access. Magnetic tapes and optical disks housed in “jukeboxes”

are the usual media for archival applications.
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Image displays in use today are mainly color (preferably flat screen) TV monitors.
Monitors are driven by the outputs of image and graphics display cards that are an
integral part of the computer system. Seldom are there requirements for image display
applications that cannot be met by display cards available commercially as part of the
computer system. In some cases, it is necessary to have stereo displays, and these are
implemented in the form of headgear containing two small displays embedded in goggles

worn by the user.

Hardcopy devices for recording images include laser printers, film cameras, heat-
sensitive devices, inkjet units, and digital units, such as optical and CD-ROM disks. Film
provides the highest possible resolution, but paper is the obvious medium of choice for
written material. For presentations, images are displayed on film transparencies or in a
digital medium if image projection equipment is used. The latter approach is gaining
acceptance as the standard for image presentations.

Networking is almost a default function in any computer system in use today. Because of
the large amount of data inherent in Digital Image Processing applications, the key
consideration in image transmission is bandwidth. In dedicated networks, this
typically is not a problem, but communications with remote sites via the Internet
are not always as efficient. Fortunately, this situation is improving quickly as a result
of optical fiber and other broadband technologies.

Dept. of ECE , ATMECE , MYSURU Page 7



Digital Image Processing BEC613C

1.4 Image Sensing and Acquisition

The types of images in which we are interested are generated by the combination of an
“illumination” source and the reflection or absorption of energy from that source by the
elements of the “scene” being imaged. We enclose illumination and scene in quotes to
emphasize the fact that they are considerably more general than the familiar situation in
which a visible light source illuminates a common everyday 3-D (three-dimensional)
scene. For example, the illumination may originate from a source of electromagnetic
energy such as radar, infrared, or X-ray energy. But, as noted earlier, it could originate
from less traditional sources, such as ultrasound or even a computer-
generated illumination pattern. Similarly, the scene elements could be familiar objects,
but they can just as easily be molecules, buried rock formations, or a human brain. We

could even image a source, such as acquiring images of the sun.

Depending on the nature of the source, illumination energy is reflected from, or
transmitted through, objects. An example in the first category is light reflected from a
planar surface. An example in the second category is when X-rays pass through a
patient’s body for thepurpose of generating a diagnostic X-ray film. In
some applications, the reflected or transmitted energy is focused onto a photo converter
(e.g., a phosphor screen), which converts the energy into visible light. Electron
microscopy and some applications of gamma imaging use this approach.

The idea is simple: Incoming energy is transformed into a voltage by the combination of
input electrical power and sensor material that is responsive to the particular type of

energy being detected.

The output voltage waveform is the response of the sensor(s), and a digital quantity is
obtained from each sensor by digitizing its response. In this section, we look at the

principal modalities for image sensing and generation.
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1.4.1 Image Acquisition Using a Single Sensor

The components of a single sensor. Perhaps the most familiar sensor of this type is the
photodiode, which is constructed of silicon materials and whose output
voltage waveform is proportional to light. The use of a filter in front of a sensor
improves selectivity. For example, a green (pass) filter in front of a light sensor favors light
in the green band of the color spectrum. As a consequence, the sensor output will be
stronger for green light than for other components in the visible spectrum. In order to
generate a 2-D image using a single sensor, there has to be relative displacements in both
the x- and y-directions between the sensor and the area to be imaged. Figure 2.13
shows an arrangement used in high-precision scanning, where a film negative is
mounted onto a drum whose mechanical rotation provides displacement in one
dimension. The single sensor is mounted on a lead screw that provides motion in the
perpendicular direction. Since mechanical motion can be controlled with high
precision, this method is an inexpensive (but slow) way to obtain high-resolution
images. Other similar mechanical arrangements use a flat bed, with the sensor moving in
two linear directions. These types of mechanical digitizers sometimes are referred to as

microdensitometers.
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1.4.2 Image Acquisition Using Sensor Strips

A geometry that is used much more frequently than single sensors consists of an in-line
arrangement of sensors in the form of a sensor strip, shows. The strip provides imaging
elements in one direction. Motion perpendicular to the strip provides imaging in the
other direction. This is the type of arrangement used in most flat bed scanners. Sensing
devices with 4000 or more in-line sensors are possible. In-line sensors are used routinely in
airborne imaging applications, in which the imaging system is mounted on an aircraft that
flies at a constant altitude and speed over the geographical area to be imaged. One-
dimensional imaging sensor strips that respond to various bands of the electromagnetic
spectrum are mounted perpendicular to the direction of flight. The imaging strip gives
one line of an image at a time, and the motion of the strip completes the other dimension of
a two-dimensional image. Lenses or other focusing schemes are used to project area to be

scanned onto the sensors.

Sensor strips mounted in a ring configuration are used in medical and industrial imaging to

obtain cross-sectional (“slice”) images of 3-D objects\

One image line out per

increment of linear motion
N S —
—
A
i -

/,)-*" - Image
reconstruction " )
{ Cross-sectional images:

of 3-D object

3-D object

‘ ey
%’

e
A o

Sensor ring, —|

Dept. of ECE, ATMECE , MYSURU Page 11



Digital Image Processing BEC613C

1.4.3 Image Acquisition Using Sensor Arrays

The individual sensors arranged in the form of a 2-D array. Numerous electromagnetic
and some ultrasonic sensing devices frequently are arranged in an array format. This is
also the predominant arrangement found in digital cameras. A typical sensor for these
cameras is a CCD array, which can be manufactured with a broad range of sensing
properties and can be packaged in rugged arrays of elements or more. CCD sensors are
used widely in digital cameras and other light sensing instruments. The response of each
sensor is proportional to the integral of the light energy projected onto the surface of the
sensor, a property that is used in astronomical and other applications requiring low noise
images. Noise reduction is achieved by letting the sensor integrate the input light signal
over minutes or even hours. The two dimensional, its key advantage is that a complete
image can be obtained by focusing the energy pattern onto the surface of the array.

Motion obviously is not necessary, as is the case with the sensor arrangements

This figure shows the energy from an illumination source being reflected from a scene
element, but, as mentioned at the beginning of this section, the energy also could be
transmitted through the scene elements. The first function performed by the imaging
system is to collect the incoming energy and focus it onto an image plane. If the
illumination is light, the front end of the imaging system is a lens, which projects the
viewed scene onto the lens focal plane. The sensor array, which is coincident with the
focal plane, produces outputs proportional to the integral of the light received at each
sensor. Digital and analog circuitry sweep these outputs and convert them to a video

signal, which is then digitized by another section of the imaging system.
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To create a digital image, we need to convert the continuous sensed data into digital

form. This involves two processes: sampling and quantization. A continuous image, f(x,

y), that we want to convert to digital form. An image may be continuous with respect to the

x- and y-coordinates, and also in amplitude. To convert it to digital form, we have to

sample the function in both coordinates and in amplitude. Digitizing the coordinate

values is called sampling. Digitizing the amplitude values is called quantization.
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The one-dimensional function shown in Fig. 2.16(b) is a plot of amplitude (gray level)
values of the continuous image along the line segment AB. The random variations are
due to image noise. To sample this function, we take equally spaced samples along line
AB, The location of each sample is given by a vertical tick mark in the bottom part of
the figure. The samples are shown as small white squares superimposed on the function.
The set of these discrete locations gives the sampled function. However, the values of
the samples still span (vertically) a continuous range of gray-level values. In order to
form a digital function, the gray-level values also must be converted (quantized) into
discrete quantities. The right side gray-level scale divided into eight discrete levels,
ranging from black to white. The vertical tick marks indicate the specific value assigned to
each of the eight gray levels. The continuous gray levels are quantized simply by
assigning one of the eight discrete gray levels to each sample. The assignment is made
depending on the vertical proximity of a sample to a vertical tick mark. The digital
samples resulting from both sampling and quantization.

1.6 Some Basic Relationships Between Pixels
In this section, we consider several important relationships between pixels in a digital
image.As mentioned before, an image is denoted by f(x, y).When referring in this

section to a particular pixel, we use lowercase letters, such as p and g.

Neighbors of a Pixel
A pixel p at coordinates (x, y) has four horizontal and vertical neighbors whose
coordinates are given by

(x+1,y), (x-1,y), (x, y+1), (x, y-1)

This set of pixels, called the 4-neighbors of p, is denoted by N4(p). Each pixel is a unit
distance from (X, y), and some of the neighbors of p lie outside the digital image if (x, y) is
on the border of the image.

The four diagonal neighbors of p have coordinates
(x+1, y+1), (x+1, y-1), (x-1, y+1), (x-1, y-1)
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and are denoted by ND(p). These points, together with the 4-neighbors, are called the 8-
neighbors of p, denoted by N8(p). As before, some of the points in ND(p) and N8(p) fall

outside the image if (X, y) is on the border of the image.

Adjacency, Connectivity, Regions, and Boundaries

Connectivity between pixels is a fundamental concept that simplifies the definition of
numerous digital image concepts, such as regions and boundaries. To establish if two
pixels are connected, it must be determined if they are neighbors and if their gray levels
satisfy a specified criterion of similarity (say, if their gray levels are equal).For instance, in
a binary image with values 0 and 1, two pixels may be 4-neighbors, but they are said to be
connected only if they have the same value.

Let V be the set of gray-level values used to define adjacency. In a binary image, V={1} if
we are referring to adjacency of pixels with value 1. In a grayscale image, the idea is the
same, but set V typically contains more elements. For example, in the adjacency of
pixels with a range of possible gray-level values 0 to 255, set V could be any subset of
these 256 values. We consider three types of adjacency:

(a) 4-adjacency. Two pixels p and g with values from V are 4-adjacent if q is in the set

N4(p).
(b) 8-adjacency. Two pixels p and q with values from V are 8-adjacent if q is in the set

N8(p).
(c) m-adjacency (mixed adjacency).Two pixels p and g with values from V are m-

adjacent if
(i) g is in N4(p), or
(ii) g is in ND(p) and the set has no pixels whose values are from V.

1.7 Linear and Nonlinear Operations
Let H be an operator whose input and output are images. H is said to be a linear operator

if, for any two images f and g and any two scalars a and b,
H(af + bg) = aH(f) + bH(g).
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In other words, the result of applying a linear operator to the sum of two images (that
have been multiplied by the constants shown) is identical to applying the operator to the
images individually, multiplying the results by the appropriate constants, and then
adding those results. For example, an operator whose function is to compute the sum of K
images is a linear operator. An operator that computes the absolute value of the
difference of two images is not.

Linear operations are exceptionally important in image processing because they are
based on a significant body of well-understood theoretical and practical
results. Although nonlinear operations sometimes offer better performance, they are not
always predictable, and for the most part are not well understood theoretically.

Recommended Questions
What is digital image processing? Explain the fundamental steps in digital image
processing.
Briefly explain the components of an Digital Image Processing system.
How is image formed in an eye? Explain with examples the perceived brightness is
not a simple function of intensity.
Explain the importance of brightness adaption and discrimination  in image
processing.
Define spatial and gray level resolution. Briefly discuss the effects resulting from a
reduction in number of pixels and gray levels.
What are the elements of visual perception?
Explain the concept of sampling and quantization of an image.
Explain i) false contouring ii) checkboard pattern
How image is acquired using a single sensor? Discuss.

10. Explain zooming and shrinking digital images.

. Define 4-adjacency, 8 — adjacency and m — adjacency.
. With a suitable diagram, explain how an image is acquired using a circular sensor strip.
. Explain the relationships between pixels . and also the image operations on a pixel basis.

14. Explain linear and nonlinear operations.
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Module - 2

Image Transforms

2.1 Two-dimensional orthogonal & unitary transforms
One dimensional signals:

For a one dimensional sequence {f(x),0<x<N -1} represented as a vector
f =[f(0) f@)...f(N-] ofsize N, a transformation may be written as

g=T-f =) = ST(u ¥f().0<u<N-1

where g(u) is the transform (or transformation) of f(x), and T (u, x) is the so called

Forward transformation kernel. Similarly, the inverse transform is the relation
f@)=E1(xu) & § 0<x<N-1
u=0

or written in a matrix form
f=19g=T"g
where 1(x,u) is the so called inverse transformation kernel.

If

—

-1 =T.

the matrix T is called_unitary, and the transformation is called unitary as well. It can be
proven (how?) that the columns (or rows) of an N xN unitary matrix are orthonormal
and therefore, form a complete set of basis vectors in the N —dimensional vector space.

In that case

£=7 g=> =270 &)
u=q
The columns of 7, that is, the vectors T;_ =[T*(u,0) T"w))... T"(u,N —1)} are called the
basis vectors of T .

Two dimensional signals (images)

As a one dimensional signal can be represented by an orthonormal set of basis vectors,
an image can also be expanded in terms of a discrete set of basis arrays called basis
images through a two dimensional (image) transform.

Foran N xN image f(x,y) the forward and inverse transforms are given below
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-IN

g(u ) _1 (v x ¥ (f )
Y -1N-
oY= 100y Uy g uy

where, again, T(u,v,x,y) and I(xy \7)3 are called the forward and inverse
transformation kernels, respectively.

=0 MZ

Qﬂ

C

The forward kernel is said to be separable if
T(uyvu Xy y) :-rl(u! X)TZ(V’ y)
It is said to be symmetric if T, is functionally equal to T, such that

T, v, Y) =T.(u,X)T.(v,y)
The same comments are valid for the inverse kernel.
If the kernel T(u,v, X, y) of an image transform is separable and symmetric, then the
Transform

-1N-1

g(H,V)— 2Ty, x,0)f(x,y)= Z ETI(M L (v, 9) (. )

x= 0\ =0 x=0 y=0
can be written in matrix form as follows ¢=L:-/°L'

where f is the original image of size NxN, and T.is an N xN transformation matrix
with elements t;, =T.(i, j). If, in addition, T._is a unitary matrix then the transform is
called separable unitary and the original image is recovered through the relationship

f=L7gT
2.2 properties of unitary transforms
The property of energy preservation

In the unitary transforation
9-T.f
it is easily proven (try the proof by using the relation T* =T) that
Jolf <[
Thus, a unitary transformation preserves the signal energy. This property is called energy

preservation property.
This means that every unitary transformation is simply a rotation of the vector f in the
N - dimensional vector space.
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For the 2-D case the energy preservation property is

N-1N-1 2 N-1N-1 2
Y Ty =2 3 |g(uv)
=0 1=0 w=0 v=0

The property of energy compaction

Most unitary transforms pack a large fraction of the energy of the image into relatively
few of the transform coefficients. This means that relatively few of the transform
coefficients have significant values and these are the coefficients that are close to the origin

(small index coefficients).
This property is very useful for compression purposes. (Why?)

2.3 Two dimensional discrete Fourier transform

Continuous space and continuous frequency

The Fourier transform is extended to a function f(x,y) of two variables. If f(x,y) is
continuous and integrable and F(u,v) is integrable, the following Fourier transform pair
exists:
F(uv)=1 [ f(x,y)e =) dxdy
f(x )zLT jF(u y e W) dydy
@Qr) =
In general F(u,v) is a complex-valued function of two real frequency variables u,v and
hence, it can be written as:
F(u,v)=R(u,v)+ jl(u,v)
The amplitude spectrum, phase spectrum and power spectrum, respectively, are defined
as follows.

IF(u,v) |= \/RZ(u, V)+ 12(u, V)
¢(u’ ‘j =tan-! ’Vw—"

R(u,
P(u,v)= |F (u, v)2| = )?i(u, V)+ ‘}ﬁ(u, V)

Discrete space and continuous frequency

For the case of a discrete sequence f(x,y) of infinite duration we can define the 2-D
discrete space Fourier transform pair as follows
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F(U,V) _ i if(x’y)e _ixu +Vy)

fox,y)__ 1 Tj Tu(vei) e v dudv g

F(u,v) is again a complex-valued function of two real frequency variables u,v and it is

periodic with a period 2 x 2, that is to say
F(u,v)= F(u+2r,v)= F(u,v+2mr)

The Fourier transform of f (x, y) is said to converge uniformly when F(u,v) is finite and

. ] Ny Ny V.
lim lim > S f(x,3)e?™™ =F(u,v) forall u,v.
1‘\"1 — o0 .-\'rz —C .\'=—_N1 _1‘=_1-I\72
When the Fourier transform off(x,y) converges uniformly, F(u,v) is an analytic

function and is infinitely differentiable with respect to u and v.

Discrete space and discrete frequency: The two dimensional Discrete Fourier
Transform (2-D DFT)

If f(x,y) isan M xN array, such as that obtained by sampling a continuous function of
two dimensions at dimensions M and N on a rectangular grid, then its two dimensional
Discrete Fourier transform (DFT) is the array given by

( ):LMZE El 71211( //\/14r [ N)
MN

—_

and the inverse DFT (IDFT) is
X Yy s e F UV e o
= 2 4+ )
=5 250Y

When images are sampled in a square array, M =N and

F uv N-1N-1 /'nux vw N
Co=Txy () o
SfExye
N - N-1 .
f(x, n=1L 1 Fom ey

;)FZF(ux)ez( !

N @

It is straightforward to prove that the two dimensional Discrete Fourier Transform is
separable, symmetric and unitary.

Properties of the 2-D DFT
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Most of them are straightforward extensions of the properties of the 1-D Fourier

Transform. Advise any introductory book on Digital Image Processing.

The importance of the phase in 2-D DFT. Image reconstruction from amplitude or
phase only.

The Fourier transform of a sequence is, in general, complex-valued, and the unique
representation of a sequence in the Fourier transform domain requires both the phase and
the magnitude of the Fourier transform. In various contexts it is often desirable to

reconstruct a signal from only partial domain information. Consider a 2-D sequence
f (x,y) with Fourier transform F(u,v) = 3{f (x,y)} so that

Fuv)=3(f(xy}= Ruve’t ©

It has been observed that a straightforward signal synthesis from the Fourier transform

phase ¢, (u,v) alone, often captures most of the intelligibility of the original image
f(x,y) (why?). A straightforward synthesis from the Fourier transform magnitude
F(u,v) | alone, however, does not generally capture the original signal’s intelligibility.

The above observation is valid for a large number of signals (or images). To illustrate

this, we can synthesise the phase-only signal f,(x,y) and the magnitude-only signal

f.(x,y) by

and observe the two results (Try this exercise in MATLAB).

An experiment which more dramatically illustrates the observation that phase-only signal
synthesis captures more of the signal intelligibility than magnitude-only synthesis, can be
performed as follows.

Consider two images f(x,y) and g(x,y) . From these two images, we synthesise two
other images f.(x,y) and g.(x,y) by mixing the amplitudes and phases of the original
images as follows:

ACSIER ﬂG(u,v)‘ej ¢ (“'”')]
gl(xa V)= 57! hF(u,V)|ej¢g (u.\'):l
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In this experiment f,(x,y) captures the intelligibility of f(x,y), while g.(x,y) captures the
intelligibility of g(x,y) (Try this exercise in MATLAB).

THE DISCRETE COSINE TRANSFORM (DCT)
One dimensional signals

This is a transform that is similar to the Fourier transform in the sense that the new
independent variable represents again frequency. The DCT is defined below.

C(uy= a(”);fol f(x)cosr%} , u=0,1...,N—-1

with a(u) a parameter that is defined below.

( NTIY u=0
a(u) :j

L\/2/ N u=1..,N-1
The inverse DCT (IDCT) is defined below.

=3 atw L)cos[%N;}

Two dimensional signals (images)

For 2-D signals it is defined as

9 ali) v)g N- lf(x, y)cos[(2x2+]\lf)un lcos{ 2 V2+N1)vn i

f( )= ZVZJ ga(“) Ay )\cos[(zxi?”“ Jcos[(z V;NDW]

a(u) is defined as above and u,v=01,...,N -1
Properties of the DCT transform

¢ The DCT is a real transform. This property makes it attractive in comparison to the
Fourier transform.

¢ The DCT has excellent energy compaction properties. For that reason it is widely
used in image compression standards (as for example JPEG standards).

+ There are fast algorithms to compute the DCT, similar to the FFT for computing the
DFT.
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Recommended Questions

1. Define two-dimensional DFT. Explain the following properties of 2-DFT.

) Translation ii) rotation iii) distributivity and scaling iv) separability

2. What are basis vectors?

3. Derive the expression for 2D circular convolution theorem.

4. Define two — dimensional unitary transform. Check whether the unitary DFT

matrix is unitary or not for N = 4.
5. For the 2 X 2 transform A and the image U

1 1 1 2
A=1111 -1 andU= |8 4

Calculate the transformed image V and the basis images.
6. Consider the image segment shown in fig
) Let V = {0, 1}. Compute the lengths of shortest 4 - , 8 — and m — paths between p
and g.
i) Repeat for V = {1, 2}.
3121 |(q
3202
(p) 1211
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Module — 3

IMAGE ENHANCEMENT

3.1 Image Enhancement in Spatial domain

Suppose we have a digital image which can be represented by a two dimensional
random field f(x,y).

An Digital Image Processing operator in the spatial domain may be expressed as a
mathematical function T[] applied to the image f(x,y) to produce a new image g(x, y)
=T[f(x,y)] as
follows.

9(x, V) =T[f(x y)]

The operator T applied on f(x,y) may be defined over:

(i) A single pixel (x,y). In this case T is a grey level transformation (or mapping)
function.

(i)  Some neighbourhood of (x,y).

(il) T may operate to a set of input images instead of a single image.

Example 1

The result of the transformation shown in the figure below is to produce an image of
higher contrast than the original, by darkening the levels below m and brightening the

levels above m in the original image. This technique is known as contrast stretching.

s=T(r) i

o

L J
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Example 2

The result of the transformation shown in the figure below is to produce a binary image.

s=T(n) ,

k
-

Frequency domain methods m

Let g(x,y) be a desired image formed by the convolution of an image f(x,y) and a
linear, position invariant operator h(x,y), that is:

g(x,y) =h(x,y)* f(x,y)
The following frequency relationship holds:

G(u,v) =H(u,v)F(u,v)
We can select H (u,v) so that the desired image

a(x,y) = Sfl{H (u,v)F(u,v)}
exhibits some highlighted features of f(x,y) . For instance, edges in f(x,y) can be

accentuated by using a function H(u,v) that emphasises the high frequency components
of F(u,v).

Spatial domain: Enhancement by point processing

We are dealing now with Digital Image Processing methods that are based only on the

intensity of single pixels.

Intensity transformations

Image Negatives

The negative of a digital image is obtained by the transformation function
s =T(r) =L-1-r shown in the following figure, where L is the number of grey levels.
The idea is that the intensity of the output image decreases as the intensity of the input

increases. This is useful in numerous applications such as displaying medical images.
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S=T(I’) A

Contrast Stretching

contrast images occur often due to poor or non uniform lighting conditions, or due to
nonlinearity, or small dynamic range of the imaging sensor. In the figure of Example 1
above you have seen a typical contrast stretching transformation.

Histogram processing. Definition of the histogram of an image.

By processing (modifying) the histogram of an image we can create a new image with
specific desired properties.

Suppose we have a digital image of size N xN with grey levels in the range [0,L-1].
The histogram of the image is defined as the following discrete function:

Where

r, isthe kth grey level, k =01,...,L-1
n,_is the number of pixels in the image with grey level r,
N? is the total number of pixels in the image

The histogram represents the frequency of occurrence of the various grey levels in the
image. A plot of this function for all values of k provides a global description of the

appearance of the image.

Question: Think how the histogram of a dark image, a bright image and an image of

very low contrast would like. Plot its form in each case.

Global histogram equalisation
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In this section we will assume that the image to be processed has a continuous intensity
that lies within the interval [0,L -1]. Suppose we divide the image intensity with its
maximum value L-1. Let the variable r represent the new grey levels (image intensity) in
the image, where now 0<r<1 and let p,(r) denote the probability density function

(pdf) of the variable r . We now apply the following transformation function to the
intensity

s=T(r)=] p.(wydw , 0<r<1
(1) By observing the transformation of equation (1) we immediately see that it possesses
the following properties:

(1) 0<s<l.
@iy »>n=T@)=T(), ie., the function T(r) is increase ng with r .

0 1
(iii) s=T@=jp Gaw=" and s=T (=[p & pw=1. Moreover, if the original
0 0

image has intensities —only within a certain  range  [ru, ] then
= i = i =0 = :rmax =

s = T(sinin) £p,(w)dw and = () £ Ev,.)w 7l since
p,(r)=0,r<r. andr>r,__ . Therefore, the new intensity s takes always all values

within the available range [0 1].

Suppose that P(r) , P(s) are the probability distribution functions (PDF’s) of the
variables r and s respectively.

Let us assume that the original intensity lies within the values r and » +dr with dr a
small quantity. dr can be assumed small enough so as to be able to consider the function
p.(w) constant within the interval [r,r+dr] and equal to p.(r). Therefore,

Pr[r, T4 dr]: r}d;)r(W)dw; p.(r )r]‘d;'w =D (r )dr.
Now suppose that s=T(r) and s =T(r+dr). The quantity dr can be assumed small
enough so as to be able to consider that s, =s+ds with ds small enough so as to be able to
consider the function p.(w) constant within the interval [s,s +ds] and equal to p.(s) .
Therefore,

P[s,s+ds]= ATE)S(W)dW =p,s )ﬁjﬁw =p. 6 Ms
Since s=T(r), s+ds=T(r+dr) and the function of equation (1) is increasing with r, all
and only the values within the interval [r,r +dr] will be mapped within the interval [s,s
+ds] . Therefore,
=0
P[r,r+dr]=P[s,s+ds] = p, G )ar =" ps(s )ds=> ps(s )= pr(r)%
r=T79
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From equation (1) we see that

ds
E=Pr(l’)
and hence,
11
p (s )=(p C)r——] -1, 0<s<l
) |_ p. ) a0

From the above analysis it is obvious that the transformation of equation (1) converts the
original image into a new image with uniform probability density function. This means
that in the new image all intensities are present [look at property (iii) above] and with
equal probabilities. The whole range of intensities from the absolute black to the
absolute white are explored and the new image will definitely have higher contrast

compared to the original image.

Unfortunately, in a real life scenario we must deal with digital images. The discrete form of

histogram equalisation is given by the relation

=01,..., -1

k n. k
s =T(r)=X—5=2X 'y

(), 0< <1,
A A /:ON ,':OP 7 }'1( k

(2) The quantities in equation (2) have been defined in Section 2.2. To see results of
histogram equalisation look at any introductory book on Digital Image Processing.

The improvement over the original image is quite evident after using the technique of
histogram equalisation. The new histogram _is not flat because of the
discrete approximation of the probability density function with the histogram function.
Note, however, that the grey levels of an image that has been subjected to
histogram equalisation are spread out and always reach white. This process increases the

dynamic range of grey levels and produces an increase in image contrast.

Local histogram equalisation

Global histogram equalisation is suitable for overall enhancement. It is often necessary
to enhance details over small areas. The number of pixels in these areas my have
negligible influence on the computation of a global transformation, so the use of this

type of transformation does not necessarily guarantee the desired local enhancement.

Dept. of ECE , ATMECE , MYSURU Page 28



Digital Image Processing BEC613C

The solution is to devise transformation functions based on the grey level distribution —

or other properties — in the neighbourhood of every pixel in the image. The histogram
processing technique previously described is easily adaptable to local enhancement. The
procedure is to define a square or rectangular neighbourhood and move the centre of this
area from pixel to pixel. Ateach location the histogram of the points
in the neighbourhood is computed and a histogram equalisation transformation function
Is obtained. This function is finally used to map the grey level of the pixel centred in the

neighbourhood.

The centre of the neighbourhood region is then moved to an adjacent pixel location and

the procedure is repeated. Since only one new row or column of the neighbourhood
changes during a pixel-to-pixel translation of the region, updating the histogram
obtained in the previous location with the new data introduced at each motion step is
possible quite easily. This approach has obvious advantages over repeatedly computing

the histogram over all pixels in the neighbourhood region each time the region is moved

one pixel location. Another approach often used to reduce computation is to utilise non
overlapping regions, but this methods usually produces an undesirable checkerboard

effect.

Histogram specification

Suppose we want to specify a particular histogram shape (not necessarily uniform)
which is capable of highlighting certain grey levels in the image.
Let us suppose that:

p.(r) is the original probability density function

p.(z) is the desired probability density function
Suppose that histogram equalisation is first applied on the original image r
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s=T0)=[p, (waw
Suppose that the desired image z is available and histogram equalisation is applied as
well

v:G(z):IpZ(w)dw

0
p.(s) and p,(v) are both uniform densities and they can be considered as identical.

Note that the final result of histogram equalisation is independent of the density inside
the integral. So in equation ,=¢( ) = fpz(w) 4w We can use the symbol s instead of v.
0

The inverse process z=G+(s) will have the desired probability density function.
Therefore, the process of histogram specification can be summarised in the following

steps.
(i) We take the original image and equalise its intensity using the

sTeltion =, (g =I

(i) Froron the given probability density function p.(z) we specify the probability
distribution function G(z).

(iii)  We apply the inverse transformation function z=G"(s)=G"[T(r)]

Spatial domain: Enhancement in the case of many
realisations of an image of interest available

Image averaging

Suppose that we have an image f(x,y) of size M xN pixels corrupted by noise n(x,y), so
we obtain a noisy image as follows.

g(x,y)= f(x,y) +n(x,y)

For the noise process n(x,y) the following assumptions are made. (i)
The noise process n(x,y) is ergodic

(i)  Itiszeromean,ie., { (, ))} Aﬁ; zn(x, =0
E'n x M 0
@iy It is white, i.e., the autocorreiatlon functjon of the noise process defined as
_— n(x, ) & *k,y+1[)
R[kﬁEnx (njxky”)} M-k _N-I 22 is zero, apart
( )( ) x 0 y 0
for the pair [k,1]=[0,0].
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Therefore, R[k J: a)

S ) ) (
“PN=F L L onxyntkytl= 2.8 k'l where oz,
is the variance of noise. ¥0 370

Suppose now that we have L different noisy realisations of the same image f(x,y) as g
x,y)= f(x,y)+n(x,y) , i=0L...,L . Each noise process n(x,y) satisfies the

properties (i)-(iii) given above. Moreover, c:., =c:. We form the image—g(x,y) by
averaging these L noisy images as follows:

- _1X _1X _ 1Xx
)™ el )T e T le DTl )T e )
L L L
Therefore, the new image is again a noisy realisation of the original image f (x,y) with

: 1
AR i ).

The mean value of the noise n(x,y) is found below.

1 1
{GHy_ {8 G0 ZE{( )} 0
Enxy E Anxy ; xy
L L
The variance of the noise n(x,y) is now found below.

: _ g2 [( ﬁ 2]
S noy =t 200 b= ( ) n(x y
Enxy EJ[KL'Zl f {Z )T

=—E{(Zn2(x. 9)}+%E{(22(n(>c ) n(x 9)}_%25{ (x 9} + ZZZE{n(x ) n(x
i=1j=1 i= i=1j=1
i#j i#]

Therefore, we have shown that image averaging produces an image—g(x,y), corrupted
by noise with variance less than the variance of the noise of the original noisy images.

Note that if L—>o we have 63, —0, the resulting noise is negligible.
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Recommended Questions

1. What is the importance of image enhancement in Digital Image Processing? Explain in
brief any two point processing techniques implemented in Digital Image Processing.

2. Explain histogram equalization technique.

3. What is histogram matching? Explain the development and implementation of the
method.

4. Highlight the importance of histograms in image processing and develop a
procedure to perform histogram equalization.

5. Explain the following image enhancement techniques, highlighting their area of
application.

) Intensity level slicing

i) Power — law transformation

6. Explain the following image enhancement techniques, highlighting their area of
application.

i) Bit — plane slicing.

i) AND and OR operation
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MODULE-4

4.1 Basics of Spatial Filtering Image enhancement in the Frequency
Domain

Many image enhancement techniques are based on spatial operations performed on local
neighbourhoods of input pixels. The image is usually convolved with a finite impulse
response filter called spatial mask. The use of spatial masks on a digital image is called
spatial filtering. Suppose that we have an image f(x,y) of size Nz and we define a
neighbourhood around each pixel. For example let this neighbourhood to be

a rectangular window of size 3x3

If we replace each pixel by a weighted average of its neighbourhood pixels then the

response of the linear mask for the pixel zis Y ? w;z; . We may repeat the same process

El

for the whole image.

Lowpass and highpass spatial filtering

A 3x3 spatial mask operating on an image can produce (a) a smoothed version of the
image (which contains the low frequencies) or (b) it can enhance the edges and suppress
essentially the constant background information. The behaviour is basically dictated by

the signs of the elements of the mask.

Let us suppose that the mask has the following form

lalb]c]
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—
o
=

To be able to estimate the effects of the above mask with relation to the sign of the

coefficients a,b,c,d.e, f,g,h, we will consider the equivalent one dimensional mask

[ dla1]e]

Let us suppose that the above mask is applied to a signal x(n). The output of this
operation will be a signal y(n) as

y(n) =dx(n=2)+ x(n)+ex(n+1) =Y (z) =dz*X (2) + X (2)+ezX (z2) =

Y (2) =(dz* +1+e2) X (2) = ﬂ=H (z)=dz ' +1+ez
X @)

This is the transfer function of a system that produces the above input-
output relationship. In the frequency domain we have H(e*)=dexp(- jo)+1+eexp(jo) .

The values of this transfer function at frequencies » =0 and o == are:

(O]

H e =—d+ —e

If a lowpass filtering (smoothing) effect is required then the following condition must
hold
H( e/m)‘mzo 51-1( e’w)‘

= =

W=7

If a highpass filtering effect is required then

<H ei,

Ny, = E 0

The most popular masks for lowpass filtering are masks with all their coefficients

‘ d =ewtr <

positive and for highpass filtering, masks where the central pixel is positive and the

surrounding pixels are negative or the other way round.

Popular techniques for lowpass spatial filtering

Uniform filtering
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The most popular masks for lowpass filtering are masks with all their coefficients
positive and equal to each other as for example the mask shown below. Moreover, they
sum up to 1 in order to maintain the mean of the image.

1 1 1
1
9 1 1 1
1 1 1

Gaussian filtering

The two dimensional Gaussian mask has values that attempts to approximate the
continuous function

G(x )=
In theory, the Gaussian distribution is non-28R everywhere, which would require an
infinitely large convolution kernel, but in practice it is effectively zero more than about

three standard deviations from the mean, and so we can truncate the kernel at this point.
The following shows a suitable integer-valued convolution kernel that approximates a

Gaussian with a o of 1.0.

273
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Median filtering

The median m of a set of values is the value that possesses the property that half the
values in the set are less than m and half are greater than m. Median filtering is the
operation that replaces each pixel by the median of the grey level in the neighbourhood of

that pixel.

Median filters are non linear filters because for two sequences x(n) and
y(n) median{x(n)+ y(n)}= median{x(n) }+median{y(n)}

Median filters are useful for removing isolated lines or points (pixels) while preserving
spatial resolutions. They perform very well on images containing binary (salt and
pepper) noise but perform poorly when the noise is Gaussian. Their performance is also
poor when the number of noise pixels in the window is greater than or half the number of

pixels in the window (why?)

Isolated
0 | | o jbint 0|log| O
e Median filterin
o | 14T 0 S ,lololo
0ol oo ololo

Directional smoothing
To protect the edges from blurring while smoothing, a directional averaging filter can be

useful. Spatial averages g(x,y:0) are calculated in several selected directions (for

example could be horizontal, vertical, main diagonals)

(,:)=2

] =— fX_k, I
gxyeN%L%( y

0

and a direction 0- is found such that }f(x, y)—g(x,y:0°) i$ minimum. (Note that W, is the
neighbourhood along the direction 6 and N, is the number of pixels within this
neighbourhood). Then by replacing g(x,y:0) with g(x,y:06-) we get the desired result.

High Boost Filtering
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A high pass filtered image may be computed as the difference between the original

image and a lowpass filtered version of that image as follows:

(Highpass part of image) = (Original) - (Lowpass part of image)
Multiplying the original image by an amplification factor denoted by A, yields the so
called high boost filter:

(Highboost image) =(A) (Original)-(Lowpass) = (A-1)(Original)+(Original)-(Lowpass)
=(A-1)(Original) + (Highpass)

The general process of subtracting a blurred image from an original as given in the first
line is called unsharp masking. A possible mask that implements the above procedure

could be the one illustrated below.
0 0| O 1] -1 -1
0| AloO +§>< a1
0 0 0 101 -1
-1 -1 -1

The high-boost filtered image looks more like the original with a degree of edge
enhancement, depending on the value of A.
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Popular technigues for highpass spatial filtering. Edge detection using derivative
filters

About two dimensional high pass spatial filters

An edge is the boundary between two regions with relatively distinct grey level
properties. The idea underlying most edge detection techniques is the computation of a
local derivative operator. The magnitude of the first derivative calculated within a
neighbourhood around the pixel of interest, can be used to detect the presence of an edge in
an image.

The gradient of an image f (x,y) at location (x,y) is a vector that consists of the partial

derivatives of f(x,y) as follows.

d x.y)
OX
VI Y=
d (x.y)
Loy
The magnitude of this vector, generally referred to simE)Iy as the gradient v is
i G -y) (,)
of 6 y)_mag( ot 6.y _| [ R yu
- 0 0
Common practice is to approximate the graLﬁent 6vitk/ abéolutg vallies which is simpler

to implement as follows.

AN | af(x,)%
Vs )= ox oy

(1) Consider a pixel of interest f(x,y)=z. and a rectangular neighbourhood of size

3x3=9 pixels (including the pixel of interest) as shown below.

>y

zy | zs | zg

Zy
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Roberts operator

Equation (1) can be approximated at point z, in a number of ways. The simplest is to
use the difference (z,—z) in the x direction and (z —z) in the y direction. This
approximation is known as the Roberts operator, and is expressed mathematically as

follows.

Vi = |zs—za +1z, -2,

(2) Another approach for approximating (1) is to use cross differences

\%i ;| Zg —zJ+ |26—28|

(3) Equations (2), (3) can be implemented by using the following masks. The original
image is convolved with both masks separately and the absolute values of the two

outputs of the convolutions are added.
1] -1
1 0
0] 0
110

Roberts operator
1 0 0ol 1

g -1 11 0

Roberts operator

Prewitt operator

Another approximation of equation (1) but using now a 3x 3 mask is the following.
Vi =|(z+z+2)-(+2 +z) flz+2 +z)—-(2+z +2) 4)

This approximation is known as the Prewitt operator. Equation (4) can be implemented by

using the following masks. Again, the original image is convolved with both masks

separately and the absolute values of the two outputs of the convolutions are added.

Sobel operator.

Definition and comparison with the Prewitt operator
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The most popular approximation of equation (1) but using a 3x 3 mask is the following.
Vf =|(z, +22, +2.)— (2. +22, + 2.) + d23 |+226 +2)—(2.+22, +2) | (5)

This approximation is known as the Sobel operator.

>y
1] 01 1] 1) -1
1] 0|1 0| 0|0
1101 1111
v Prewitt operator
X
>y
1] 01 1] 2] -1
21 0|2 0| 0|0
1001 1121
v Sobel operator

If we consider the left mask of the Sobel operator, this causes differentiation along the y

direction. A guestion that arises is the following: What is the effect caused by the same
mask along the x direction?

If we isolate the following part of the mask

and treat it as a one dimensional mask, we are interested in finding the effects of that
mask. We will therefore, treat this mask as a one dimensional impulse response h[n] of the

form
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h[n]
-» 2
_________ 1 -—————
-1 0 1 r?

(1 n=-1
2 n=0
or h[n]=1

11 n=1
0 otherwise

The above response applied to a signal x[n] yields a signal y[n]=x[n-1]+2x[n]+x[n+1] or
in z-transform domain Y (z) =(z: +2+2)X (2) = Y (jo) = 2(cosm +)X (jo) . Therefore, h[n]

is the impulse response of a system with transfer function
H(jo) =2(coso+1) = H(jo) |shown in the figure below for [0,x]. This is a lowpass
filter type of response. Therefore, we can claim that the Sobel operator has
a differentiation effect along one of the two directions and a smoothing effect along the

other direction.

35

25

15

05

oo

0.5 1 1.5 2 2.5 3 35

The same analysis for the Prewitt operator would give
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Y (2)=(z* +1+ 2)X(2) =Y (jo)=(2c0sw+)X (jo)= H(jd) = 2cpsdp +1 |

shown in the|figure be\ow for [0,x]. This response looks “strange” since it decreases up to
the point 2cosw +1 =0=>cosw =-0.5 and then starts increasing.

25

15

05

oo

0.5 1 15 2 25 3 35

Based on the above analysis it is stated in the literature that the Sobel operator have the
advantage of providing both a differencing a smoothing effect while Prewitt does not.

However, if you implement both operators you cannot see any visual difference.

Laplacian operator

The Laplacian of a 2-D function f (x,y) is a second order derivative defined as

&

In practice it can be also implemented using a 3x3 mask as follows (why?)

Vif =4z, — (2, +2, + 2, + 2,)

The main disadvantage of the Laplacian operator is that it produces double edges
(why?).
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Recommended Questions

1. Explain the smoothing of images in frequency domain using:

) Ideal low pass filter

i) Butterworth lowpass filter

2. With a block diagram and equations, explain the homomorphic filtering. How
dynamic range compression and contrast enhancement is simultaneously achieved?

3. Discuss homomorphic filtering.

4. Explain sharpening filters in the frequency domain

5. Explain the basic concept of spatial filtering in image enhancement and hence
explain the importance of smoothing filters and median filters.
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Module-5

IMAGE RESTORATION

5.1 What is image restoration?

Image Restoration refers to a class of methods that aim to remove or reduce the
degradations that have occurred while the digital image was being obtained. All natural
images when displayed have gone through some sort of degradation:

o during display mode

o during acquisition mode, or

o during processing mode

The degradations may be due to

o Sensor noise

o blur due to camera misfocus

o relative object-camera motion

o random atmospheric turbulence
o others

In most of the existing image restoration methods we assume that the degradation
process can be described using a mathematical model.

How well can we do?

Depends on how much we know about
e the original image

e the degradations

(how accurate our models are)

5.2 Image restoration and image enhancement differences

o Image restoration differs from image enhancement in that the latter is concerned
more with accentuation or extraction of image features rather than restoration of

degradations.
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o Image restoration problems can be quantified precisely, whereas enhancement
criteria are difficult to represent mathematically.
Image observation models

Typical parts of an imaging system: image formation system, a detector and a recorder. A
general model for such a system could be:
y(i, ) =rfw(i, D]+n. j)
wi, )=H[f @i, D]=[FhG, §.i, ()F @, J)did)
n(i, )= girlw@i, DInG, j)+ndi, j)

Where y(i, j) is the degraded image, f (i, j) is the original image and h(i, j,i’, j’) is an
operator that represents the degradation process, for example a blurring
process. Functions g() and r() are generally nonlinear, and represent the
characteristics of

detector/recording mechanisms. n(i, j) is the additive noise, which has an image-

dependent random component g{r[H[f (i, j)I][n(, j) and an image-independent random

component n.(i, j).

Detector and recorder models

The response of image detectors and recorders in general is nonlinear. An example is the

response of image scanners

r(i, j) =ow(i, j)°
where o and B are device-dependent constants and w(i, j) is the input blurred image.
For photofilms

[ r(i, j) =y logy, W(i, J)—ro
where y is called the gamma of the film, w(i, j) is the incident light intensity and r(i, j) is

called the optical density. A film is called positive if it has negativey .

7.3 Noise models

The general noise model
n(i, §) = girlwi, DInd, D+ndi, J)
is applicable in many situations. Example, in photoelectronic systems we may have

Dept. of ECE , ATMECE , MYSURU Page 45



Digital Image Processing BEC613C

g(x)= /x . Therefore,
n@, j) = vow(i, j) n(i, j)+n(i, j)
where n, and n, are zero-mean, mutually independent, Gaussian white noise fields. The

term n,(i, j) may be referred as thermal noise. In the case of films there is no thermal

noise and the noise model is

n(i, )= v log.w(i, j) - i, j)

Because of the signal-dependent term in the noise model, restoration algorithms are
quite
difficult. Often w(i, j) is replaced by its spatial average, ., giving

n(i, §) = glr[u.InG. p+ndi. j)

which makes n(i, j) a Gaussian white noise random field. A lineal observation model for
photoelectronic devicesis  y(i, j)=w(i, j)+ u.nd, j)+n.(, j)

For photographic films with y =-1

y(i, j) =—log. w(i, j)—r +an(x,y)
where r,a are constants and r, can be ignored.

The light intensity associated with the observed optical density y(i, j) is

1@, ) =10 =w(i, )10~ =w(i, j)n(i, J)
where n(i, j)=10=»  now appears as multiplicative noise having a log-
normal distribution.

Keep in mind that we are just referring to the most popular image observation
models. In the literature you can find a quite large number of different image
observation models. Image restoration algorithms are based on the above image
formation models.

A general model of a simplified digital image degradation process

A simplified version for the image restoration process model is

y(i, ) =H[f (i, D+nG. J)
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Where y(i, j) the degraded image
f (i, j) the original image
H an operator that represents the degradation process
n(i, j) the external noise which is assumed to be image-

independent
Possible classification of restoration methods

Restoration methods could be classified as follows:

o deterministic: we work with sample by sample processing of the observed
(degraded) image

o stochastic - we work with the statistics of the images involved in the process
o non-blind : the degradation process H is known
o blind : the degradation process H is unknown

o semi-blind  : the degradation process H could be considered partly known

From the viewpoint of implementation:

e direct
e terative
e recursive

Linear position invariant deqgradation models

Definition
We again consider the general degradation model
y(i, ))=H[f G, Dl+nG j)

If we ignore the presence of the external noise n(i, j) we get
y(i, ) =H[f G D]
H is linear if
HIk ., j)+k. (i, )] =kH[ ., j)]+kH[ LG, j)]

H is position (or space) invariant if

H[f(i-a, j-b)]= y(i-a j-b)
From now on we will deal with linear, space invariant type of degradations.
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In a real life problem many types of degradations can be approximated by linear,
position invariant processes.
Advantage: Extensive tools of linear system theory become available.
Disadvantage: In some real life problems nonlinear and space
variant models would be more appropriate for the description of the degradation

phenomenon.
Typical linear position invariant degradation models

e  Motion blur. It occurs when there is relative motion between the object and the
camera during exposure.

[l < <t

LO, otherwise
e  Atmospheric turbulence. It is due to random variations in the reflective index of

the medium between the object and the imaging system and it occurs in the imaging of

astronomical objects.

o
h(z',j>=1<exp,—l 7 )

2
\ )
e Uniform out of focus blur
[L 1 i ti <
h(é]):inR’ if i ,J R
0, otherwise
e Uniform 2-D blur L
-
h(ij):[—Ll—2 —— = JS£

, if ,
10, ) othedwise 2
Some characteristic metrics for degradation models

e Blurred Signal-to-Noise Ratio (BSNR): a metric that describes the degradation
model.

[MINZZ[g(i,j)_g(i,j)]”‘
BSNR=101og10T — i F

" 'J

9@, j)=y(i, ))-n(, J)

g@, j)=E{9(, D}
[
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h, (0) h(M-1) ... h ()
h. (1) h.(0) o (2
(MFXIM)Z : : I
h(M-1) h(M-=2) ... h(0)
We define A(k) to be
2

k()z O+ ( -Dexp( "7 )+ ( —2)exp( .2_752k)+...

k h h M Pk h M
G N T

+h (Dexplj (M —DkL, k=0, M ~1
‘ ﬁ Y Y
- = = wehave that
- ,_mM,M l‘_k, /29 =MH (k)
H (k) is the discrete Fourier transform of h.(i).

| define w(k) to be
1 1

2
exp(j == k)
wk)=|. M
L
eXP[JE(M ~1K]
It can be seen that
Hw(K) = A(k)w(K)
This implies that A(k) is an eigenvalue of the matrix H and w(k) is its corresponding
eigenvector.

We form a matrix w whose columns are the eigenvectors of the matrix H, that is to say

W=[w@0) w@) ... wM -1)]

2 1

. = .1ki—| ]( 2 .) _eXp .2_7-[
wk i J w ki J

(,) exp- M “and - =M {— Mki}

We can then diagonalize the matrix H as follows

H=WDW: =D=WHW
where
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A (0) 0 —’
A QD) |

0 | x(M—l)J

Obviously D is a diagonal matrix and
D(k,k) = 1(K) = MH (K)
If we go back to the degradation model we can write
y =Hf =y = WDW:f = W2y =DWf = Y (k)= MH (k)F(k),k =01,...,M —1
Y (k), H(k), F(k),k =0,1,...,M -1 are the M — sample discrete Fourier transforms of
y(i), h(i), f (i), respectively. So by choosing A(k) and w(k) as above and assuming that h,

(i) is periodic, we start with a matrix problem and end up with M scalar problems.

Two dimensional discrete degradation model. Circular convolution

Suppose we have a two-dimensional discrete signal f (i, j) of size AxB samples which is
due to a degradation process. The degradation can now be modeled by a two
dimensional discrete impulse response h(i, j) of size CxD samples. We form the
extended versions of f(i, j) and h(i, j), both of size M xN , where M > A+C-1 and N
>B+D-1, and periodic with period M xN . These can be denoted as f.(i, j) and hd(i, j).

For a space invariant degradation process we obtain

M-1N-1

v, )= 2f(men) RG—ms j=n)+n.(isj)

m=0 n=0

Using matrix notation we can write the following form

y=Hf+n
where f and y are MN —dimensional column vectors that represent the lexicographic

ordering of images f.(i, j) and h(i, j) respectively.

HO HM—l Hl
H = Hl H0 H2
HMfl HM72 . HO
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h.(7,0) h(j, N=1) ... h.(j,])
g |G h,(j,0) e h(G52)
h(jy N-1)  h(j N=2) ... h(;j0)

The analysis of the diagonalisation of H is a straightforward extension of the one-

dimensional case. In that case we end up with the following set of M xN scalar
problems.

Y (u,v) = MNH (u, v)F(u, v)(+N(u,V))
u=0%...M -1Lv=01...,N -1

In the general case we may have two functions f (i), A<i<B and h(i),C <i<D, where
A,C can be also negative (in that case the functions are non-causal). For the periodic
convolution we have to extend the functions from both sides knowing that

the convolution is g(i)=h(i) * f (i), A+C<i<B+D.

Direct deterministic approaches to restoration

Inverse filtering

The objective is to minimize
()= [neh)[ = |y -Hf [
We set the first derivative of th@z&&) fudictionr Byu@l tamdro =

f=@iH)Hy- =0

If M =N and H exists then
f=Hwy
According to the previous analysis if H (and therefore H+) is block circulant the above

[
problem can be solved as a set of M xN scalar problems as follows

HIWOY WY o B @) My |

()=
Flu 2
|H (u, ) i |H(u’ v)| |

Computational issues concerning inverse filtering
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(I)  Suppose first that the additive noise n(i, j) is negligible. A problem arises if

H(u,v) becomes very small or zero for some point (u,v) or for a whole region in the
(u,v) plane. In that region inverse filtering cannot be applied. Note that in most real
applications H(u,v) drops off rapidly as a function of distance from the origin. The

solution is that if these points are known they can be neglected in the computation of

F(u,v).
(1) In thepresence of external noise we have that (
) H @ YOy NGy H ¥y H @y Ruy
= | u vj ): |H(1/L \)| |H u v|

F‘(u’ Y= F G M
If H(uyv) becomes verstﬁﬁaﬂ, the term N(u,v) dominates the result. The solution is
again to carry out the restoration process in a limited neighborhood about the origin
where H(u,v) is not very small. This procedure is called pseudoinverse filtering. In
that case we set
H U, v)Y(uy

|H(U )|2 H(Uy\)ZT
\Y

Fu y=
0 H(uy ¥y<T

The threshold T is defined by the user. In general, the noise may very well possess large
components at high frequencies (u,v) , while H(uyv) and Y(u,yv) normally will be

dominated by low frequency components.

Constrained least squares (CLS) restoration

It refers to a very large number of restoration algorithms.The problem can be formulated as

follows.
minimize
IO = O] =y -Hr [
subject to
flf <e
where Cf is a high pass filtered version of the image. The idea behind the above

constraint is that the highpass version of the image contains a considerably large
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amount of noise! Algorithms of the above type can be handled using optimization
techniques. Constrained least squares (CLS) restoration can be formulated by choosing

an f to minimize the Lagrangian

minly -+ § +acf)
Typical choice for C is the 2-D Laplacian operator given by

0.00 -0.25 0.00
C=(-025 100 -0.25

0.00 -0.25 0.00

o represents either a Lagrange multiplier or a fixed parameter known as regularisation
parameter and it controls the relative contribution between the term I y_HIT = and the
term |Ff [ The minimization of the above leads to the following estimate for the

original image f= (HTH+0LCTC)1HTy

Computational issues concerning the CLS method

Choice of a

The problem of the choice of a has been attempted in a large number of studies and
different techniques have been proposed. One possible choice is based on a set theoretic
approach: a restored image is approximated by an image which lies in the intersection of

the two ellipsoids defined by
Q, ={f |||y—Hf||2 <E?} and

Q ={f |[cfl <&}
The center of one of the ellipsoids which bounds the intersection of Q, and Q , IS
given by the equation
f =(HH+aC'C)Hy
with a = (E/e)?. Another problem is then the choice of E: and ¢2. One choice
[could be

1
“BSNR

a

Comments
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With larger values of o, and thus more regularisation, the restored image tends to have
more ringing. With smaller values of o , the restored image tends to have more
amplified noise effects. The variance and bias of the error image in frequency domain

are

Var( )= 5MN |H(% ‘)|2 -
;:%‘(:°|H(u W 4alClu ‘9|2)
0 1N |F(u, \)|20L2|C(u, ‘5|4

n

O w0 1 H (w2 T o w2

o
Bzas(a) =

The minimum MSE is encountered close to the intersection of the above functions. A
good choice of o is one that gives the best compromise between the variance and bias

of the error image.

Iterative deterministic approaches to restoration

They refer to a large class of methods that have been investigated extensively over the
last decades. They possess the following advantages.

o There is no need to explicitly implement the inverse of an operator. The
restoration process is monitored as it progresses. Termination of the algorithm may take
place before convergence.

o The effects of noise can be controlled in each iteration.

o The algorithms used can be spatially adaptive.

o The problem specifications are very flexible with respect to the type of
degradation. Iterative techniques can be applied in cases of spatially varying
or nonlinear degradations or in cases where the type of degradation is completely unknown
(blind restoration).

In general, iterative restoration refers to any technique that attempts to minimize a

function of the form M (f) using an updating rule for the partially restored image.

Least squares iteration

In that case we seek for a solution that minimizes the function
M(f)= ",/—Hf "
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A necessary condition for M (f) to have a minimum is that its gradient with respect to f

is equal to zero. This gradient is given below
aM (f) ' v
- _v.M()=2(_
=V, M()=2(-p v H Hp
and by using the steepest descent type of optimization we can formulate an iterative rule as

follows:
f, = BH"y
oM (f
fof pMED_ T g T (g T,
. G f H y Hf Hy I HHf

Constrained least squares iteration

In this method we attempt to solve the problem of constrained restoration iteratively. As

already mentioned the following functional is minimized
M(f,)= f—Hf | +o[CF
The necessary condition for a minimum is that the gradient of M (f,a) is equal to zero.
That gradient is
O(f) =V, M (f,0) =2[(H'H +aC C)f —Hy]
The initial estimate and the updating rule for obtaining the restored image are now given
by
f, = BH"y
fo.=f. +B[HY—(HH+aC C)f.]
It can be proved that the above iteration (known as Iterative CLS or Tikhonov-Miller
Method) converges if
2

P
where ., is the maximum eigenvalue of the matrix
(H'H+0C™C)
If the matrices H and C are block-circulant the iteration can be implemented in the
frequency domain.

<P <

Projection onto convex sets (POCYS)

The set-based approach described previously can be generalized so that any number of
prior constraints can be imposed as long as the constraint sets are closed convex. If the
constraint sets have a non-empty intersection, then a solution that belongs to the
intersection set can be found by the method of POCS. Any solution in the intersection

set is consistent with the a priori constraints and therefore it is a feasible solution.
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Let Q,Q.,....Q. be closed convex sets in a finite dimensional vector space, with

P.P,,...,P, their respective projectors. The iterative procedure

fk+l = P].PZ""mek
converges to a vector that belongs to the intersection of the sets Q,i=1,2,...,m, for any
starting vector f,. An iteration of the form f.. = RRf, can be applied in the problem
described previously, where we seek for an image which lies in the intersection of the

two ellipsoids defined by

Qv ={f||y-Hf|:<E3} and Q ={f ||Cf|- <&}
The respective projections Pf and Rf are defined by
Rf = + A(1+ AH™H ) Hr(y — Hf)

Pf =[1-4(1+ ACC)CC
[
Spatially adaptive iteration

The functional to be minimized takes the form , ,
M o= = ol ]

where y v
|p/—||-|f fwl =(y —Hf) Wy —Hf)
Cf 3, =(CfyW,(Cf)

W, W, are diagonal matrices, the choice of which can be justified in various ways. The
entries in both matrices are non-negative values and less than or equal to unity. In that
case

O(f)=V,M(f,a) =(H'W,H + aC'W,C)f —H"Wy
A more specific case is
M =ly —wi|” +efor],

where the weighting matrix is incorporated only in the regularization term. This method is
known as weighted regularised image restoration. The entries in matrix W will be
chosen so that the high-pass filter is only effective in the areas of low activity and a very

little smoothing takes place in the edge areas.
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Robust functionals

Robust functionals allow for the efficient supression of a wide variety of noise processes
and permit the reconstruction of sharper edges than their quadratic counterparts. We are
seeking to minimize

M (f,a) = R.(y —Hf) + oaR.Cf

R.(),R.() are referred to as residual and stabilizing functionals respectively.
Computational issues concerning iterative techniques

()  Convergence

The contraction mapping theorem usually serves as a basis for
establishing convergence of iterative algorithms. According to it iteration

fo :O
fk+1 :fk + B(D(fk) = lI’(fk)
converges to a unigue fixed point f-, that is, a point such that ¥(f) =f-, for any

initial vector, if the operator or transformation W (f) is a contraction. This means
that for any two vectors f, and f, in the domain of W (f) the following relation

holds

[ (F)—w(R,) fen , —f, |
withn <1 and || any norm. The above condition is norm dependent.

(I1)  Rate of convergence
The termination criterion most frequently used compares the normalized change in

energy at each iteration to a threshold such as

It o &
—*f—S 10- ¢

2
[l

Stochastic approaches to restoration

Wiener estimator (stochastic regularisation)

The image restoration problem can be viewed as a system identification problem as
follows:
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(i J) - CD RN m— ()
n(i J

The objective is to minimize the following function

E{(f —f)r(f -}
To do so the following conditions should hold:

()  E{fy=E{f}=E{f}=WE{}
(i) The error must be orthogonal to the observation about the mean

E{(f -f)(y —E{y})'}=0
From (i) and (ii) we have that
E{(Wy-f)(y -E{yD}=0= E{(Wy+E{f}-WE{y}-f)(y —E{y})}=0= E{[W(y
—E{y}) - (f —E{fHlI(y-E{yH}=0
If =y—E{y} and f =f —E{f} then
E(Wy-T)y}=0= EWyy }=E{fy }=WEY }=E{F} =WR; =R;

If the original and the degraded image are both zero meanthen R; =R, and R; =R,
In that case we have that WR,, =R, . If we go back to the degradation model and find
the autocorrelation matrix of the degraded image then we get that

y=Hf+n=y" =fTH" +n"
E{yy'}=HR H"+R..=R,
E{fy"}=R ;H' =R,
From the above we get the foIIowinglresuIts . . .
W=RR ~*“=RH'(HRH" +R )
f =RH'(HRH" +R,.)y

Note that knowledge of R, and R,, is assumed. In frequency domain

(o) 57 Y
o) = 0"
Sﬁ(u ’V)|H (ua V)| +Snn(uav)
1;(” )}_ Sﬁr(uw)hf(w\) Y(u’v)

TR U RSO
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Computational issues

The noise variance has to be known, otherwise it is estimated from a flat region of the
observed image. In practical cases where a single copy of the degraded image is
available, it is quite common to use S, (u,v) as an estimate of S, (u,v). This is very

often a poor estimate.

Wiener smoothing filter

In the absence of any blur, H(u,v)=1 and
S (u,v) _ (SNR)
SpV*S,, (v NR)*I

nn

W (u,v)=

0] (SNR) >>1=W (u,v) =1

(i)  (SNR)<<1=W (u,v) =(SNR)

(SNR) is high in low spatial frequencies and low in high spatial frequencies so W (u,v)
can be implemented with a lowpass (smoothing) filter.

5.1.3 Relation with inverse filtering

If g (u,v)zojW(u,v):; which is the inverse filter
Hou )
[ 1
|H(u,v) HuY*o
If S.(u,v)—>0= |iTOW(u,v)=4|
I 0 H(u,v) =0

which is the pseudoinverse filter.
Iterative Wiener filters

They refer to a class of iterative procedures that successively use the Wiener filtered
signal as an improved prototype to update the covariance estimates of the original image as

follows.
Step O: Initial estimate of R,
R“ (O) = Ryy = E{ny}
Step 1: Construct the i» restoration filter
W(i +1) =R, ()H"(HR, ()H™ +R,,)*
Step 2: Obtain the (i+1) estimate of the restored image
f(i+1) = W(i+1y
Step 3: Use f(i+1) to compute an improved estimate of R, given by
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Ry (i +1) = E{f(i +D)f (i +1)}
Step 4: Increase i and repeat steps 1,2,3,4.

Recommended Questions

1. Explain the importance process in image restoration process in Digital Image Processing.
Explain any four important noise probability density functions.

2. Discuss the importance of adaptive filters in image restoration system. Highlight
the working of adaptive median filters.

3. Explain adaptive median filter and its advantages.

4. How do you reduce the periodic noise using frequency domain filters?

5. Derive the expression for observed image when the degradations are linear
position invariant.

6. With a block diagram, briefly explain the image model of degradation- restoration
process.

7. Explain notch reject filters. How can we obtain the notch filter that pass rather than
suppressing the frequency in notch area?

8. Explain the Weiner filtering method of restoring images.
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Module — 4B
4.1 Color Fundamentals

The characteristics generally used to distinguish one color from another are brightness,
hue, and saturation

brightness: the achromatic notion of intensity.

hue: dominant wavelength in a mixture of light waves, represents dominant color as
perceived by an observer.
saturation: relative purity or the amount of white light mixed with its hue.

Color Fundamentals

FIGURE 6.1 Color
spectrum seen by
passing white
light through a

§ prism. (Courtesy
of the General
Electric Co.,
OPTICAL PRISM Lamp Business
Division.)
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* Due to the absorption characteristics of the human eye, all colors perceived by the human can
be considered as a variable combination of the so called three primary colors:

* Red (R) (700 nm)

* Green (QG) (546.1 nm)

* Blue (B) (435.8 nm)

* The wavelengths for the three primary colors are established by standardization by the CIE
(International Commission on Illumination). They correspond to the experimental curve only

approximately.
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Color Fundamentals

» Tristimulus

Red, green, and blue are denoted X, Y, and Z,
respectively. A color is defined by its trichromatic
coefficients, defined as

'y
r=—
X+ ¥+ =

. ¥
4 X+ ¥V+ 7

=
z’z—
A+ ¥+ F

4.2 Color Models

A color model is an abstract mathematical model that describes how colors can be
represented as a set of numbers (e.g., a triple in RGB or a quad in CMYK). Color
models can usually be described using a coordinate system, and each color in the system
is represented by a single point in the coordinate space.For a given color model, to
interpret a tuple or quad as a color, we can define a set of rules and definitions used to
accurately calibrate and generate colors, i.e. a mapping function. A color space identifies
a specific combination of color models and mapping functions. Identifying the color
space automatically identifies the associated color model. For example, Adobe RGB and

SRGB are two different color spaces, both based on the RGB color model.

RGB

RGB color model stores individual values for red, green, and blue. With a color space
based on the RGB color model, the three primaries are added together to create colors

from completely white to completely black.
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B
Blue (0, 0. 1) Cyan
|
|
Magenta : ~[White
| R
1 K
|
1 B
1 G T |
Black 1.~ rayseae) (0,1,0)
P Green
P ”~
(1,0,0) L~
Red Yellow
R
= . h
The RGB Color Model

The RGB color space is associated with the device. Thus, different scanners get different
color image data when scanning the same image; different monitors have different color
display results when rendering the same image.There are many different RGB color

spaces derived from this color model, standard RGB (sSRGB) is a popular example.

HSV

HSV (hue, saturation, value), also known as HSB (hue, saturation, brightness), is often
used by artists because it is often more natural to think about a color in terms of hue and
saturation than in terms of additive or subtractive color components.

The system is closer to people’s experience and perception of color than RGB. For
example, in painting terms, hue, saturation, and values are expressed in terms of color,

shading, and toning.

The HSV model space can be described as an inverted hexagonal pyramid.
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. The top surface is a regular hexagon, showing the change in hue in the H
direction, from 0 ° to 360 ° is the entire spectrum of visible light. The six corners of the
hexagon represent the positions of the six colors of red, yellow, green, cyan, blue, and
magenta, each of which is 60 ° apart.

. The saturation S is represented by the S direction from the center to the hexagonal
boundary, and the value varies from 0 to 1. The closer to the hexagonal boundary, the
higher the color saturation. The color of the hexagonal boundary is the most saturated, i.e.
S =1, the color saturation at the center of the hexagon is 0, i.e. S =0.

. The height of the hexagonal pyramid (also known as the central axis) is denoted
by V, which represents a black to white gradation from bottom to top. The bottom of V is
black, V = 0; the top of V is white, V = 1.

YUV

The Y'UV model defines a color space in terms of one luma component (Y') and two
chrominance (UV) components. The Y’ channel saves black and white data. If there is
only the Y component and there are no U and VV components, then the graph represented is
grayscale.

The Y component can be calculated with the following equation: Y = 0. 299R+ 0. 587G+
0. 114*B, which is the commonly used grayscale formula. The color difference U and V
are compressed by B-Y and R-Y in different proportions.

Intensity Slicing

flx.y)

Intensity axis

(White) L — 1 4+

Slicing plane

ki

(Black) 0

The technique of intensity slicing or density slicing or color coding is one of the simplest example
of Pseudo-color image processing

Gray level to color assignments are made according to the relation: f(x,y)= ck if f(x,y)€vk
Where ck is the color associated with the kth intensity interval vk defined by the partition planes
at I=k-1 and I=k
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4.3 Pseudo color Digital Image Processing.,

Gray level to Color Transformation

flxy) [

=

Red
transformation

Tr(*, )

Green
transformation

felx,y)

Blue
transformation

fe(x,y)

g1(x. ¥)
Fi(x. »v) I:> Transformation 77

hR(x, y)

82059 | 4 aaitional
3 ) . itiona
fa(x, ¥v) I:> Transformation 75 processing he(x, y)

gr(x. ¥)
Fr(x, ¥) I:> Transformation Tg

hp(x. y)

4.4 Processing basics of full color Digital Image Processing

Full-color image processing approaches fall into two major categories: - Approaches that process

each component image individually and then form a composite processed color image from the

individually processed components. - Approaches that work with color pixels directly. In full-

color images, color pixels really are vectors. For example, in the RGB system, each color pixel

can be expressed as
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cr(x,y) R(x,y)
c(x,y) = [ec(x,y)| = |G(x,¥)
cg(x,¥y) B(x,y)

|
|

P

¥ /!
(x,y)

/ (*x,¥)
Spatial mask Spatial mask
Gray-scale image RGB color image —
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RGB MODEL

he secondary colours of RGB — cyan, magenta, and yellow — are formed by mixing two of
the primary colours (red, green or blue) and excluding the third colour. Red and green
combine to make yellow, green and blue to make cyan, and blue and red form magenta.

The combination of red, green, and blue in full intensity makes white.

In Photoshop using the “screen” mode for the different layers in an image will make the
intensities mix together according to the additive colour mixing model. This

is analogous to stacking slide images on top of each other and shining light through them.

YELLOW
RED GREEN
MAGENTA CYAN
BLUE

CMYK The 4-colour CMYK model used in printing lays down overlapping layers of
varying percentages of transparent cyan (C), magenta (M) and yellow (Y) inks. In
addition a layer of black (K) ink can be added. The CMYK model uses the subtractive

colour model.

BLUE
CYAN ’ MAGENTA
RED

GREEN

YELLOW
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Gamut The range, or gamut, of human colour perception is quite large. The two colour
spaces discussed here span only a fraction of the colours we can see. Furthermore the
two spaces do not have the same gamut, meaning that converting from one colour space to

the other may cause problems for colours in the outer regions of the gamuts.

RGE GAMUT

The HSI color space
The HSI color space is very important and attractive color model for Digital Image
Processing applications because it represents color s similarly how the human eye senses

colors.

The HSI color model represents every color with three components: hue ( H ), saturation (
S ), intensity ( | ). The below figure illustrates how the HIS color space represents

colors.
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Black

The Hue component describes the color itself in the form of an angle between [0,360]
degrees. 0 degree mean red, 120 means green 240 means blue. 60 degrees is yellow, 300

degrees is magenta.

The Saturation component signals how much the color is polluted with white color. The

range of the S component is [0,1].

The Intensity range is between [0,1] and 0 means black, 1 means white.

As the above figure shows, hue is more meaningful when saturation approaches 1 and
less meaningful when saturation approaches 0 or when intensity approaches 0 or 1.

Intensity also limits the saturation values.

To formula that converts from RGB to HSI or back is more complicated than with other
color models, therefore we will not elaborate on the detailed specifics involved in this

process.

RGB CMY CMYK
HSI HSV L*a*b
XYZ YIQ YUV
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Digital Image Processing

Conversion from RGB to HSI

BEC613C
Given the intensities of the three primaries RGB of a color, we can find its HSV

representation using different models. Here we use the RGB plane of the cube to find the

corresponding HSV. The three vertices are represented by

P, F, B
: and , and the
F = (R , G, B)
three components of the given color is represented by a 3D point
also assume the intensities are normalized so that the

0 and 1, so that point £ is inside or on the surface of the color cube.

F, G and B values are between

Blue

Magenta

Pb=(00 1)

Green
Pr=(100) P Pa—(0 10)
. Determine the intensity I:
One of the definitions of intensity is
ol .
I=-(R+G+ B)
. Determine the hue H:
R, G, B)
First find the intersection of the color vector with the RGB
F+G4+E=1
triangle :
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r=R/(R+G+ B) = R/3I
g = G;’(R—F G+ B) = G/3I
b= B;"(R—I— G+ B) = B/3I
p=(rg,b) r+g4+b=1
This point is on the RGB triangle as . Here we assume
F, F

F is inside the triangle formed by points W, "and 7. The hueis the

b
angle Z£H formed by the vectors ~ and

vectors:

the point
. Consider the dot product of these two

cos/H

P pw=(B—w) (p—w) = |P | [p—w

w=(1/3,1/3,1/3)
, and

where
(JP:- - w:] = (]-:D:[]) _ (lfga ]-f:gn lfg) = (9};3, _lf:ga _]-;'"3)
(p—w)=(r—1/3,9—1/3,b—1/3)
2 1, 1 1, 1 1 2R—- G- E
—an e rn—an| = —(r—m—]— — == = My _a—} =
(F—w) (p—w) = 5r=3)=5(0—3)~5(b~3) = 2r—9—b= 525
[ 1 1 1 [2
Po—w|=y(1=202+(0=22+(0—2)2= /=
| 1 L£| \Ill( 3) +( 3) +( 3) \‘Illg
1 QR*+G*+ B))-3(R+G+ B)?
P — wl \a(?——) +(g—3) +(b——)q:J ( +Gg—(|_R+)G+EB)j )
\/6(R?+ G2+ B> — RG — GB — BR)
3(E+G + B)
Page72
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Now the hue angle can be found to be

P—w-(p—w R— G- B
LH - cos_l[( ) (p L'E)]:r:.os_l[ : . ]
[P —w| [p— vl \/2/3,/6(R? + G2 + B2 — RG — GB — BR)
N 3R— (R+ G+ B) N (R—G)+(R— B)
cos [ 2 2 2 ]: cos [ ! ]
2vR*+G?*+ B>~ RG—-GB— BR 2y/(R—G)*+(R— B)(G — B)

E =G /H=360-/H
If , then .

. Determine S:

Pr=(1,0,0)

The saturation of the colors on any of the three edges of the RGB
triangle is defined as 1 (100% saturated)
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Recommended Questions

Explain the colour models.

Explain the following order statistics filters, indicating their uses.

Median filter ii) max filter iii) min filter.

Explain the RGB colour model.

Write a note on the following pseudo Digital Image Processing techniques.
Intensity slicing

Graylevel to colour transformations.

Write steps involved in converting colours from RGB to HSI and vice versa.

Explain pseudocolour Digital Image Processing in brief.
Write short notes on i) weiner filtering ii) Inverse filtering
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