ATME COLLEGE OF ENGINEERING

13" KM Stone, Bannur Road, Mysore - 560 028

AT M E

College of Engineering

(ACADEMIC YEAR 2024-25)
LABORATORY MANUAL

SUBJECT: MACHINE LEARNING LABORATORY
SUB CODE: BCSL606

Prepared By Approved By

Dr. AnithaD B
HOD, CSE-DSE

Dr.AnithaD B
Associate professor & HoD

Ms. Bhoomika A L

Instructor




INSTITUTIONAL MISSION AND VISION

Objectives

C To provide quality education and groom top-notch professionals, entrepreneurs and leaders

for different fields of engineering, technology and management.

~ To open a Training-R & D-Design-Consultancy cell in each department, gradually introduce
doctoral and postdoctoral programs, encourage basic & applied research in areas of social

relevance, and develop the institute as a center of excellence.

~ To develop academic, professional and financial alliances with the industry as well as the

academia at national and transnational levels

— To develop academic, professional and financial alliances with the industry as well as the

academia at national and transnational levels.

7 To cultivate strong community relationships and involve the students and the staff in local

community service.

[0 To constantly enhance the value of the educational inputs with the participation of students,
faculty, parents and industry.
Vision
T Development of academically excellent, culturally vibrant, socially responsible and

globally competent human resources.

Mission

To keep pace with advancements in knowledge and make the students competitive and
capable at the global level.

To create an environment for the students to acquire the right physical, intellectual,
emotional and moral foundations and shine as torch bearers of tomorrow’s society.

To strive to attain ever-higher benchmarks of educational excellence.




DEPARTMENT OF COMPUTER SCIENCE ENGINEERING AND ENGINEERING

(DATA SCIENCE &ENGINEERING)

Vision of The Department

» To impart technical education in the field of data science of excellent quality with a high

level of professional competence, social responsibility, and global awareness among the
students

Mission
« To impart technical education that is up to date, relevant and makes students competitive
and employable at global level
To provide technical education with a high sense of discipline, social relevance in an
intellectually, ethically and socially challenging environment for better tomorrow
Educate to the global standards with a benchmark of excellence and to kindle the spirit of
innovation.

Program Outcomes(PO)

e Engineering knowledge: Apply the knowledge of mathematics, science, engineering
fundamentals, and an engineering specialization to the solution of complex engineering
problems.

Problem analysis: Identify, formulate, review research literature, and analyze complex
engineering problems reaching substantiated conclusions using first principles of

mathematics, natural sciences, and engineering sciences.




Design/development of solutions: Design solutions for complex engineering problems
and design system components or processes that meet the specified needs with appropriate
consideration for the public health and safety, and the cultural, societal, and environmental
considerations.

Conduct investigations of complex problems: Use research-based knowledge and
research methods including design of experiments, analysis and interpretation of data, and

synthesis of the information to provide valid conclusions.

Modern tool usage: Create, select, and apply appropriate techniques, resources, and
modern engineering and IT tools including prediction and modeling to complex

engineering activities with an understanding of the limitations.

The engineer and society: Apply reasoning informed by the contextual knowledge to
assess societal, health, safety, legal and cultural issues and the consequent responsibilities
relevant to the professional engineering practice

Environment and sustainability: Understand the impact of the professional engineering
solutions in societal and environmental contexts, and demonstrate the knowledge of, and

need for sustainable development.

Ethics: Apply ethical principles and commit to professional ethics and responsibilities and

norms of the engineering practice.

Individual and team work: Function effectively as an individual, and as a member or
leader in diverse teams, and in multidisciplinary settings.

Communication: Communicate effectively on complex engineering activities with the
engineering community and with society at large, such as, being able to comprehend and
write effective reports and design documentation, make effective presentations, and give

and receive clear instructions.




e Project management and finance: Demonstrate knowledge and understanding of the
engineering and management principles and apply these to one’s own work, as a member
and leader in a team, to manage projects and in multidisciplinary environments.

Life-long learning: Recognize the need for, and have the preparation and ability to engage
in independent and life-long learning in the broadest context of technological change.

Program Specific Outcomes (PSOs)

PSOL1: Develop relevant programming skills to become a successful data scientist

PSO2: Apply data science concepts and algorithms to solve real world problems of the
society

PSO3: Apply data science techniques in the various domains like agriculture, education
healthcare for better society

Program Educational Objectives (PEOs):

PEOL: Develop cutting-edge skills in data science and its related technologies, such as machine

learning, predictive analytic, and data engineering.

PEO2: Design and develop data-driven solutions to real-world problems in a business, research,

or social environment.

PEO3: Apply data engineering and data visualization techniques to discover, investigate, and

interpret data.
PEO4: Demonstrate ethical and responsible data practices in problem solving

PEOS: Integrate fields within computer science, optimization, and statistics to develop better
solutions




Machine Learning lab Semester

Course Code BCSL606 CIE Marks
Teaching Hours/Week (L:T:P: S) 0:0:2:0 SEE Marks

Credits 01 Exam Hours

Examination type (SEE) Practical

Course objectives:
To become familiar with data and visualize univariate, bivariate, and multivariate data using
statistical techniques and dimensionality reduction.
To understand various machine learning algorithms such as similarity-based learning, regression,
decision trees, and clustering.
To familiarize with learning theories, probability-based models and developing the skills
required for decision-making in dynamic environments.

Experiments

Develop a program to create histograms for all numerical features and analyze the distribution of each
feature. Generate box plots for all numerical features and identify any outliers. Use California

Housing dataset.

Book 1: Chapter 2

Develop a program to Compute the correlation matrix to understand the relationships between pairs

of features. Visualize the correlation matrix using a heatmap to know which variables have strong

positive/negative correlations. Create a pair plot to visualize pairwise relationships between features

Use California Housing dataset.

Book 1: Chapter 2
Develop a program to implement Principal Component Analysis (PCA) for reducing the

dimensionality of the Iris dataset from 4 features to 2.

Book 1: Chapter 2

For a given set of training data examples stored ina .CSV file, implement and demonstrate the Find-
S algorithm to output a description of the set of all hypotheses consistent with the training examples.

Book 1: Chapter 3




Develop a program to implement k-Nearest Neighbour algorithm to classify the randomly generated

100 values of x in the range of [0,1]. Perform the following based on dataset generated.

Label the first 50 points {x1, x50} as follows: if (xi <0.5), then xi € Class1, else xi € Class1
Classify the remaining points, x51, ,x100 using KNN. Perform this for k=1,2,3,4,5,20,30
Book 2: Chapter — 2

Implement the non-parametric Locally Weighted Regression algorithm in order to fit data
points. Select appropriate data set for your experiment and draw graphs

Book 1: Chapter — 4

Develop a program to demonstrate the working of Linear Regression and Polynomial Regression.
Use Boston Housing Dataset for Linear Regression and Auto MPG Dataset (for vehicle fuel

efficiency prediction) for Polynomial Regression.

Book 1: Chapter -5

Develop a program to demonstrate the working of the decision tree algorithm. Use Breast Cancer

Data set for building the decision tree and apply this knowledge to classify a new sample.

Book 2: Chapter — 3

Develop a program to implement the Naive Bayesian classifier considering Olivetti Face Data set

for training. Compute the accuracy of the classifier, considering a few test data sets.

Book 2: Chapter -4

Develop a program to implement k-means clustering using Wisconsin Breast Cancer data set and

visualize the clustering result.
Book 2: Chapter — 4




Experiments

Develop a program to create histograms for all numerical features and analyze the
distribution of each feature. Generate box plots for all numerical features and

identify any outliers. Use California Housing dataset.

Develop a program to Compute the correlation matrix to understand the
relationships between pairs of features. Visualize the correlation matrix using a
heatmap to know which variables have strong positive/negative correlations. Create
a pair plot to visualize pairwise relationships between features. Use California
Housing dataset.

Develop a program to implement Principal Component Analysis (PCA) for
reducing the dimensionality of the Iris dataset from 4 features to 2.

For a given set of training data examples stored in a .CSV file, implement and
demonstrate the Find-S algorithm to output a description of the set of all
hypotheses consistent with the training examples.

Develop a program to implement k-Nearest Neighbour algorithm to classify the
randomly generated 100 values of x in the range of [0,1]. Perform the following
based on dataset generated.

1. Label the first 50 points {x1, x50} as follows: if (xi <0.5), then xi €
Classi, else xi € Class1
Classify the remaining points, x51, ,x100 using KNN. Perform this for
k=1,2,3,4,5,20,30

Implement the non-parametric Locally Weighted Regression algorithm in
order to fit data points. Select appropriate data set for your experiment and draw
graphs

Develop a program to demonstrate the working of Linear Regression and
Polynomial Regression. Use Boston Housing Dataset for Linear Regression and
Auto MPG Dataset (for vehicle fuel efficiency prediction) for Polynomial
Regression.

Develop a program to demonstrate the working of the decision tree algorithm.
Use Breast Cancer Data set for building the decision tree and apply this
knowledge to classify a new sample.




Develop a program to implement the Naive Bayesian classifier considering
Olivetti Face Data set for training. Compute the accuracy of the classifier,
considering a few test data sets.

Develop a program to implement k-means clustering using Wisconsin Breast
Cancer data set and visualize the clustering result.




Machine Learning Lab [BCSL606]

Experiment 1

Develop a program to create histograms for all numerical features and analyze the
distribution of each feature. Generate box plots for all numerical features and identify any
outliers. Use California Housing dataset.

Introduction

Data visualization is a crucial step in exploratory data analysis (EDA), enabling data scientists to
understand the distribution and spread of numerical features. Two widely used visualization
techniques for analyzing numerical data are histograms and box plots. These plots help identify
patterns, trends, and potential anomalies in datasets, making them valuable tools for data

preprocessing and feature engineering.

Distribution

In statistics, distribution refers to how data values are spread across a range. Understanding the
distribution of numerical features in a dataset helps in identifying patterns, detecting outliers, and
making informed decisions. The two primary ways to visualize distribution are histograms and
box plots.

1. Histograms
A histogram is a graphical representation of the distribution of a numerical feature. It divides the

data into bins (intervals) and counts the number of observations in each bin.

Importance of Histograms:

e Detecting Skewness: A histogram can reveal whether a distribution is symmetric, left-
skewed, right Skewed.

e Identifying Modal Patterns: Some distributions are unimodal (single peak), while others
may be bimodal or multimodal.

e Assessing Normality: If the histogram resembles a bell curve, the data may be normally distributed.

e Understanding Data Spread: Helps in detecting whether data is evenly distributed or

concentrated in certain regions.

2.Box Plots (Box-and-Whisker Plots)

A box plot provides a summary of the distribution of numerical data using five key statistics:

Dept. of CSE-Data Science, ATMECE, Mysuru



Machine Learning Lab [BCSL606]

e Minimum: The smallest value (excluding outliers).
e First Quartile (Q1): 25th percentile.

e Median (Q2): 50th percentile (middle value).

e Maximum: The largest value (excluding outliers).

e Outliers are detected using the Interquartile Range (IQR) rule: Outliers = Values outside Q1 -
1.5* IQR or Q3 + 1.5 * IQR.

Importance of Box Plots

> ldentifying Outliers: Points lying outside the whiskers indicate potential outliers.
» Comparing Distributions: Box plots allow easy comparison of multiple features or groups.
» Understanding Skewness: If the median is closer to one end, the distribution may be skewed.

» Measuring Data Spread: The length of the box and whiskers provides insight into data variability.

Outlier

An outlier is an observation or data point that significantly differs from the rest of the data in a dataset.
Outliers can skew statistical analyses and distort the interpretation of results, making it important to

identify and understand them.

Key Characteristics of Outliers:

> Deviation from the Norm:

= Qutliers exhibit values that deviate substantially from the typical or expected range of valuesin a

dataset.

> Impact on Statistical Measures:

= Qutliers can heavily influence summary statistics such as the mean and standard deviation, leading
to misleading representations of central tendency and dispersion.

> Identification:

= Qutliers are often identified through statistical methods or visual inspection of graphs; such as box
plots or scatter plots.

» Causes of Outliers:

= Qutliers can arise from measurement errors, data entry mistakes, natural variability, or genuine

extreme observations in the population.

Dept. of CSE-Data Science, ATMECE, Mysuru



Machine Learning Lab [BCSL606]

Ways to Identify Outliers:

=  Visual Inspection:
Plotting the data using graphs like box plots, scatter plots, or histograms can reveal observations
that stand out from the majority.

= Statisticat Methods:
Z-Score: ldentifying data points with z-scores beyond a certain threshold (e.g., |z| > 3) as
potential outliers.
Z = (X-p)o

= Interquartile Range (IQR): Using the IQR to identify observations outside a defined range.
IQR=Q3-0Q1
LF = Q1 - (1.5*IQR)
UF=Q3+ (1.5*IQR)

Dealing with Outliers:

Retaining Outliers:

= |nsome cases, it may be appropriate to retain outliers, especially if they represent genuine extreme
values in the data.

= Retaining outliers allows for an inclusive analysis, considering the full range of variability in
the dataset.

Removing Outliers:
= Removing outliers involves excluding extreme values from the dataset before analysis.

= Common methods include using statistical criteria (e.g., Z-scores, IQR) to identify and exclude
observations beyond a certain threshold.
= Reduces the impact of extreme values on summary statistics and model results

= Loss of information: Excluding outliers may discard meaningful data points.

Transformation:

= Transformation involves applying mathematical functions to the data to modify its  distribution
and reduce the impact of outliers.
= Common transformations include logarithmic, square root, or Cube root transformations.

Dept. of CSE-Data Science, ATMECE, Mysuru 3



Machine Learning Lab [BCSL606]

Application in Data Analysis

e Histograms and box plots play a crucial role in:

e Data Cleaning: Detecting anomalies and erroneous values.

e Feature Engineering: ldentifying transformations needed for better model performance.

e Understanding Dataset Characteristics: Providing insight into feature distributions,which
informs modeling decisions.

About Datasets

Context

This is the dataset used in the second chapter of Aurélien Géron's recent book 'Hands-On Machine
learning with Scikit-Learn and TensorFlow'. It serves as an excellent introduction to implementing
machine learning algorithms because it requires rudimentary data cleaning, has an easily understandable
list of variables and sits at an optimal size between being to toyish and too cumbersome.

The data contains information from the 1990 California census. So although it may not help you with
predicting current housing prices like the Zillow Zestimate dataset, it does provide an accessible
introductory dataset for teaching people about the basics of machine learning.

Content

The data pertains to the houses found in a given California district and some summary stats about
them based on the 1990 census data. Be warned the data aren't cleaned so there are some
preprocessing steps required! The columns are as follows, their names are pretty self explanitory:
longitude latitude

housing_median_age

total_rooms total bedrooms

population households

median_income

median_house_value(Target)

ocean_proximity

Dept. of CSE-Data Science, ATMECE, Mysuru 4



Machine Learning Lab [BCSL606]

Import Necessary Libraries

Import all libraries which are required for our analysis, such as Data Loading, Statistical analysis,
Visualizations, Data Transformations, Merge and Joins, etc.

Longitude: The dataset contains houses located in specific regions (possibly coastal areas or urban zones)

as indicated by the bimodal peaks. Houses are not uniformly distributed across all longitudes.

Latitude: Similar to longitude, the latitude distribution shows houses concentrated in particular zones.

This suggests geographic clustering, possibly around major cities.

Housing Median Age: Most houses are relatively older, with the majority concentrated in a specific range

of median ages. This might imply that housing development peaked during certain decades.

Total Rooms: The highly skewed distribution shows most houses have a lower total number of rooms. A few
properties with a very high number of rooms could represent outliers (e.g., mansions or multi-unit

buildings).

Median Income: Most households fall within a low-to-mid income bracket. The steep decline after the

peak suggests a small proportion of high-income households in the dataset.

Most areas in the dataset have a relatively low population. However, there are some highly populated

areas, as evidenced by the long tail. These may represent urban centers.

Median House Value: The sharp peak at the end of the histogram suggests that house prices in the dataset

are capped at a maximum value, which could limit the variability in predictions.

Population: Most areas in the dataset have a relatively low population. However, there are some highly

populated areas, as evidenced by the long tail. These may represent urban centers.

Median House Value: The sharp peak at the end of the histogram suggests that house prices in the dataset

are capped at a maximum value, which could limit the variability in predictions.
Outlier Analysis for Each Feature:

1. Total Rooms: There are numerous data points above the upper whisker, indicating a significant number

of outliers.

Dept. of CSE-Data Science, ATMECE, Mysuru 5



Machine Learning Lab [BCSL606]

2. Total Rooms: There are numerous data points above the upper whisker, indicating a significant

number of outliers.

3. Total Bedrooms: Numerous data points above the upper whisker indicate a significant presence
of outliers with very high total_bedrooms values.

1. Population: There are numerous outliers above the upper whisker, with extreme population
values reaching beyond 35,000.

2. Households There is a significant number of outliers above the upper whisker. These values

represent areas with an unusually high number of households.

3. Median Income: There are numerous data points above the upper whisker, marked as circles.
These are considered potential outliers.

4. Median House Value: A small cluster of outliers is visible near the maximum value of 500,000.

General Actions for Outlier Handling:
* Transformation: Apply log or square root transformations to reduce skewness for features like
total rooms, population, and median income.

« Removal: If outliers are due to data errors or are not relevant, consider removing them.

Program

#Import Necessary libraries :

import numpy as np

import pandas as pd

import matplotlib.pyplot as plt

import seaborn as sns

#import warnings

warnings.filterwarnings(‘ignore’)

df =pd.read_csv("C:/Users/student/Desktop/4AD22CD042/housing.csv™)
df.head()

Dept. of CSE-Data Science, ATMECE, Mysuru 6



Machine Learning Lab [BCSL606]

longitude latitude housing_median_age total rooms tofal_bedrooms population households median_income median_house_value ocean_proximity

0 1228 7% 41 280
1 22 1% 21 7099
1 124 3 5 1467
IA2% Jh 52 1214
{15 W% 52 16827

df.info()

<class
Rangelndex:

1280
1106.0
190.0
2350
2800

n 126
201 1138
4% 1
558 a9
565 259

'pandas .core.frame.DataFrame’ »

28648 entries, 8 to 28639

Data columns (total 18 columns):
Mon-MNull Count

# Column

8 longitude 28648 non-null
1 latitude 2@648 non-null
2 housing median_age 28648 non-null
E] total rooms 28648 non-null
L. | total bedrooms 28433 non-null
5 population 2a648 non-null
] households 285648 non-null
F median_income 28648 non-null
2 median_house wvalue 28648 non-null
=) ocean_proximity 285648 non-null
dtypes: floated4(4), ints4(5), object(l)
memory usage: 1.5+ MB
df.nunique()
longitude 244
latitude 262
housing median_age 52
total rooms 5926
total bedrooms 1923
population 3888
households 1815
median_ income 12628
median_ house wvalue 3842
ocean_proximity 5

dtype: intb4d

Dept. of CSE-Data Science, ATMECE, Mysuru

8.3252
§.3014
12574
56431
18462

floatsed
floated
intea
intea
floats4
intaa
intea
floatse4d
intea
object

452600
358500
352100
341300
3200

NEAR BAY
NEAR BAY
NEAR BAY
NEAR BAY
NEAR BAY




Machine Learning Lab [BCSL606]

#Data Cleaning
df.isnull().sum()

Jongitude

latitude

housing median_ age
total rooms

total bedrooms 28
population
households

median_ income
median house wvalue
oCean_ proximity
ditype: intsa

QOO ONOOAQ

df.duplicated().sum()
;)
dff'total_bedrooms'].median()

435.8

#Handling missing Values

dff'total_bedrooms'].fillna(df['total_bedrooms'].median(),inplace=True)

#Feature Engineering
for i in df.iloc[:,2:7]:

dffi] = dffi].astype('int)
df.head()

longitude fafitude housing_median age total rooms foal bedrooms population households median income median house valug ocean proximity

0 128 T8 4 80 {1 I, 126 §.3202 432600 NEARBAY
{122 7 2 1099 s 24 138 g0 30300 NEARBAY
22U T 2 1447 90 4% m 12374 32100 NEARBAY
}oARn Nk i 174 B M 1 36431 3300 NEARBAY
dA0h T8 Ji 1627 c I ful 1842 3200 NEARBAY

Dept. of CSE-Data Science, ATMECE, Mysuru



Machine Learning Lab [BCSL606]

#Discriptive Statistics

df.describe().T
count mean std min 25% 50% 75% max
longitude 206400  -119.569704 2003532 1243500  -121.8000 -118.4900 -112.01000 -114.3100
latitude 20640.0 35.631861 2.135952 325400 33.9300 34.2600 37.71000 41.9500
housing_median_age 20640.0 28.630486 12 585558 1.0000 18.0000 29.0000 37.00000 52.0000
total_rooms 20640.0 2635763081  2181.615252 20000 14477500  2127.0000  3143.00000 39320.0000
total_bedrooms 20640.0 536.838857 419391878 1.0000 297.0000 435.0000 64325000 64450000
population 206400 1425476744 1132462122 3.0000 787.0000  1166.0000  1725.00000  35682.0000
households 20640.0 489 539680 382324753 1.0000 280.0000 409.0000 605.00000  G082.0000
median_income 20640.0 3.870671 18099822 0.4999 2 5634 35348 474325 15.0001
median_house_value 206400 206855.816909 115395.615874 14999.0000 119600.0000 179700.0000 26472500000 500001.0000

Numerical = df.select_dtypes(include=[np.number]).columns

print(Numerical)

Index([ "longitude”,
"total bedrooms’,

"latitude”,
'population’,

‘median_house walue'],
dtype="object")

#Histogram of all Numerical Features

for col in Numerical:

plt.figure(figsize=(10, 6))

‘housing median_age’,

‘households”,

"total rooms’,
‘median_income’,

df[col].plot(kind="hist', title=col, bins=60, edgecolor="black’) plt.ylabel('Frequency’)

plt.show()

Freguency

Dept. of CSE-Data Science, ATMECE, Mysuru

longitude

2000

1500

1000

500

-114



Machine Learning Lab [BCSL606]

longitude

2000 1

1500 4
el
=
o
g

£ 1000 1

500 1

o

-124 -122 =120 -118 -116 -114

housing_median_age
1200 |
1000
800
600
400 -
200
o

0 10 20 30 40 50

Dept. of CSE-Data Science, ATMECE, Mysuru

Freguency

10



Machine Learning Lab [BCSL606]

median_house_value

1000 -

Frequency

500000

0 100000

#Box plot of all numerical Features

for col in Numerical:

population

8000 -

7000 -

€000 -

5000 -

Frequency
5
(=]
(=]

3000 -

2000 -

1000 -

0 5000 10000 15000 20000 25000 30000 35000

Dept. of CSE-Data Science, ATMECE, Mysuru




Machine Learning Lab [BCSL606]

plt.figure(figsize=(6, 6))

sns.boxplot(df[col], color="blue’)

plt.title(col)
plt.ylabel(col)
plt.show()
latitude
3a 36 38 40 az
latitude
housing_median_age
o
I.I:II
&
=
i
EI
=4
E
2

10 20 30 40 50
housing_median_age

Dept. of CSE-Data Science, ATMECE, Mysuru

12



Machine Learning Lab [BCSL606]

total_rooms

I-mﬂiﬂ‘ * - L

5000 10000 15000 20000 25000 30000 35000 40000
total_rooms

total rooms

total bedrooms

‘|_ﬂ“l' L L

0 1000 2000 3000 4000 5000 G000
total_bedrooms

total bedrooms

Dept. of CSE-Data Science, ATMECE, Mysuru

13



Machine Learning Lab [BCSL606]

population

‘|‘IIH + *

population

=

5000 10000 15000 20000 25000 30000 35000

population
households
A
=}
[=]
'§ L *
=
B
0 1000 2000 3000 4000 5000 6000
households

Dept. of CSE-Data Science, ATMECE, Mysuru

14



Machine Learning Lab [BCSL606]

median_income

L
£
=]
S
ol L L
1=}
2
E
0 2 4 & 8B W 12 1
median_income
population
=
S
5 e ‘ ¢
=
(=8
2

0 5000 10000 15000 20000 25000 30000 35000
population

Dept. of CSE-Data Science, ATMECE, Mysuru



Machine Learning Lab [BCSL606]

Experiment 2

Develop a program to Compute the correlation matrix to understand the relationships
between pairs of features. Visualize the correlation matrix using a heatmap to know which
variables have strong positive/negative correlations. Create a pair plot to visualize pairwise

relationships between features. Use California Housing dataset.

Introduction

In data analysis and machine learning, understanding the relationships between features is crucial
for feature selection, multicollinearity detection, and data interpretation. Correlation and pair plots
are two essential techniques to analyze these relationships.

Correlation Matrix

A correlation matrix is a table showing correlation coefficients between variables. It helps

in understanding how strongly features are related to each other.

Types of Correlation

» Positive Correlation (+1 to 0): As one feature increases, the other also increases.
* Negative Correlation (0 to -1): As one feature increases, the other decreases.

* No Correlation (0): No linear relationship between the variables.

Why Should You Use a Correlation Matrix?

= |dentifies relationships between features.

= Helps in detecting multicollinearity in machine learning models.

= Highlights redundant features that may not add value to the model.

In data analysis and machine learning, understanding the relationships between features is
crucial for feature selection, multicollinearity detection, and data interpretation. Correlation

and pair plots are two essential techniques to analyze these relationships.

1. Correlation Matrix
A correlation matrix is a table showing correlation coefficients between variables.

It helps in understanding how strongly features are related to each other.

Types of Correlation

» Positive Correlation (+1 to 0): As one feature increases, the other also increases.

Dept. of CSE-Data Science, ATMECE, Mysuru 16



Machine Learning Lab [BCSL606]

» Negative Correlation (0 to -1): As one feature increases, the other decreases.

* No Correlation (0): No linear relationship between the variables.

Why Should You Use a Correlation Matrix?
* ldentifies relationships between features.
* Helps in detecting multicollinearity in machine learning models.

» Highlights redundant features that may not add value to the model.

Heatmap for Correlation Matrix:
A heatmap is a visual representation of the correlation matrix. It uses color coding to indicate the
strength of relationships between variables.

Benefits of Using a Heatmap

e Easy to interpret relationships between features.
e Quickly identifies highly correlated variables.

e Helps in feature selection and data preprocessing

3.Pair Plot

A pair plot (also known as a scatterplot matrix) is a collection of scatter plots for every pair of

numerical variables in the dataset. It helps in visualizing relationships between variables.

Why Use a Pair Plot?

e  Shows the distribution of individual features along the diagonal.
e Displays relationships between features using scatter plots.

e Helps in identifying clusters, trends, and potential outliers.

Summary Statistics Explanation:
The summary statistics table provides key percentiles and other descriptive metrics for each
numerical feature:
-**25% (First Quartile - Q1):** This represents the value below which 25% of the data
falls.

It helps in understanding the lower bound of typical data values.
- **50% (Median - Q2):** This is the middle value when the data is sorted.

- It provides the central tendency of the dataset.

Dept. of CSE-Data Science, ATMECE, Mysuru 17



Machine Learning Lab [BCSL606]

- **75% (Third Quartile - Q3):** This represents the value below which 75% of the data
falls.
- It helps in identifying the upper bound of typical values in the dataset.
- These percentiles are useful for detecting skewness, data distribution, and identifying
potential outliers (values beyond Q1 - 1.5*IQR or Q3 + 1.5*IQR).

Program

#import necessary Libraries

import numpy as np

import pandas as pd

import matplotlib.pyplot as plt

import seaborn as sns

from sklearn.datasets import fetch_california_housing
#load California Housing dataset

df = fetch_california_housing()

- _california_ housing dataset:

California Housing dataset

=*Data Set Characteristics:>=
NMumber of Instances: 28640
tMumber of Attributes: 8 numeric, predictive attributes and the target

rattribute Information:

- MedInc median income in block group

- HouseAge median house age in block group

- AwveRooms average number of rooms per household

- AveBedrms average number of bedrooms per houssehold
- Population block group population

- Avelccup average number of housshold members

- Latitude block group latitudse

- Longitude block group longitude

tMissing Attribute wvalues: MNone

This dataset was obtained from the StatLib repository.
https: S S vw.dcc.foc.up.pt/~ltorgo/Regression/cal_housing.html

The target wariable is the median house walue for California districts,
expressed in hundreds of thousands of dollars ($12@,228) .

This dataset was deriwved from the 1998 U.S5. census, using one row per census
block group. A block group is the smallest geographical wunit for which the U.s.
Census Bureau publishes sample data (a block group typically has a population
of G628 to 2,008 people).

A household is a group of people residing within & home. Since the average
number of rooms and bedrooms in this dataset are prowvided per household, these
columns may take surprisingly large wvalues for block groups with few households
and many empty houses, such as vacation resorts.

It can be downloadedsloaded wsing the
:Ffunc:” sklearn.datasets. fetch_california housing™ fTunction.

- rubric:: References

- Pace, R. Kelley and Ronald Barry, Sparse Spatial Autoregressions,
Statistics and Probability Letters, 323 (1997) 291-297

Dept. of CSE-Data Science, ATMECE, Mysuru 18



#convert to Dataframe

Machine Learning Lab [BCSL606]

df = pd.DataFrame(data.data, columns=data.feature_names)

df['Target] = data.target
df.head()

Medinc HouseAge AveRooms AveBedrms Population AveOccup Latitude Longitude Target
0 83252 M0 6984127 1.023810 3220 2555556  37.88 -12223 4526
1 83014 210 6238137 0.971880 24010 2109842 3786 -12222 3585
2 72574 520  8.288136 1.073446 496.0 2802260 37.85 -12224 3521
3 5641 520 5817352 1.073059 580 2547945 3785 -12225 3413
4 38462 520 6281853 1.081081 5650 2181467 3785 -12225 3422

# Correlation Matrix
plt.figure(figsize=(10, 6))

corr_matrix = df.corr()

sns.heatmap(corr_matrix, annot=True, cmap="coolwarm’, fmt="2f")

plt.title("Feature correlatin heatmap")

plt.show()

MedInc
HouseAge - -0.12

AveRooms - 0.33

AveBedrms - -0.06 -0.08
Population - 0.00 -0.30
AveOccup - 0.02 0.01

Latitude - -0.08 0.01
Longitude - -0.02 -0.11

rarget ﬂ om

Medinc -
HouseAge -

Feature correlatin heatmap

AveRooms -

-0.06 0.00

-0.08

-0.01
0.07
0.01
-0.05
1
-
s
< 2
g e
<

Dept. of CSE-Data Science, ATMECE, Mysuru

-0.30

-0.07

-0.07

0.02

0.01

-0.00

-0.01

0.07

o
(=)
N

AveOccup -

-0.08 -0.02

0.01 -0.11

0.11 -0.03

0.07 0.01

-0.11

[}
[
»
=}
(=]

Longitude -

4
W
5
[

1.00
I 0.75

- 0.50

- 0.25

- 0.00

-—0.25

-—0.50

-0.75

19



Machine Learning Lab [BCSL606]

#pairplot to analyze feature relationships
sns.pairplot(df[['MedInc', 'HouseAge', 'AveRooms', 'Target']], diag_kind="kde")
plt.show()

15.0 1 7
12.5 4 1
10.0 1 T

1.5 1 1

+ |
i

i

Medinc

5.0 4 1

g & 8

HouseAge

AveRooms

T T

0 20 4 60 0 50 100 150 0 2 4
HouseAge AveRooms Target

Dept. of CSE-Data Science, ATMECE, Mysuru



Machine Learning Lab [BCSL606]

Experiment 3

Develop a program to implement Principal Component Analysis (PCA) for reducing the

dimensionality of the Iris dataset from 4 features to 2.
Introduction to Principal Component Analysis (PCA)

What is PCA?

Principal Component Analysis (PCA) is a dimensionality reduction technique used to transform a
high-dimensional dataset into a lower-dimensional space while retaining as much variance as possible.
It is an unsupervised learning method commonly used in machine learning and data visualization.

Importance of PCA

» Reduces computational complexity by lowering the number of features.
» Helps in visualizing high-dimensional data.
» Removes redundant or correlated features, improving model performance. Reduces overfitting

by eliminating noise in the data.

How Does PCA Work?

PCA follows these key steps:

1. Standardization: The data is normalized so that all features have a mean of zero and a standard
deviation of one.
2. Compute the Covariance Matrix: This step helps in understanding

how different features relate to each other.

3. Eigenvalue & Eigenvector Calculation: Eigenvectors represent the direction of the new

feature axes, and eigenvalues determine the importance of these axes.

4. Selecting Principal Components: The eigenvectors corresponding to the highest eigenvalues
are chosen to form the new feature space.

5. Transforming Data: The original dataset is projected onto the new feature space with reduced
dimensions.

Applying PCA to the Iris Dataset

The Iris dataset consists of 4 numerical features (sepal length, sepal width, petal length,
petal width) used to classify flowers into 3 species (Setosa, Versicolor, and Virginica).

» Goal: Reduce the 4-dimensional feature space to 2 principal components while

Dept. of CSE-Data Science, ATMECE, Mysuru 21



Machine Learning Lab [BCSL606]

retaining most of the variance.
» Benefit: Enables 2D visualization of the dataset, making it easier to interpret classification

results.

Understanding PCA Output

1. Variance Explained by Each Principal Component

PCA provides explained variance ratios, which indicate how much information each principal

component retains.

* If PC1 explains 70% and PC2 explains 20%o, then the first two principal components capture

90% of the variance in the dataset.

Scatter Plot of PCA-Reduced Data

A 2D scatter plot of PCA-transformed features allows us to visualize how well PCA
separates different species in the Iris dataset.

Impact of PCA on Classification

» If PCA preserves most of the variance, classification algorithms (e.g., K-NN, SVM)
can achieve similar performance with fewer features.

e If too much information is lost, classification accuracy may decrease.

Benefits of PCA

» Feature Reduction: Reduces the number of variables without significant loss of information.

¢ Noise Reduction: Removes redundant or less informative features.

e Improved Visualization: Enables easier interpretation of high-dimensional data.

Better Model Performance: Enhances efficiency in training machine learning models.

Explanation of Features in the Iris Dataset

The Iris dataset consists of 4 features, which represent different physical characteristics of iris
flowers:

Sepal Length (cm)

Sepal Width (cm)

Petal Length (cm)

Petal Width (cm)

Dept. of CSE-Data Science, ATMECE, Mysuru 22



Machine Learning Lab [BCSL606]

These features were chosen because they effectively differentiate between the three iris
species (Setosa, Versicolor, and Virginica).

In the 3D visualizations, we select three features for plotting, which are:

Feature 1 — Sepal Length
Feature 2 — Sepal Width
Feature 3 — Petal Length
These features are chosen arbitrarily for visualization, but all four features are used in the PCA

computation. Why is the Iris Dataset Important?

The Iris dataset is a benchmark dataset in machine learning because:

It is small yet diverse, making it easy to analyze.
It has clearly separable classes, which makes it ideal for classification tasks.
It is preloaded in Scikit-learn, making it accessible for learning and experimentation.

Since the dataset contains three classes (Setosa, Versicolor, and Virginica), PCA helps visualize

how well the classes can be separated in a lower-dimensional space.

Program

#import necessary libraries:

from sklearn.datasets import load_iris

from sklearn.decomposition import PCA

from sklearn.preprocessing import StandardScaler
import pandas as pd

import matplotlib.pyplot as plt

#load the iris dataset:
iris = load_iris()
features = iris.data
target = iris.target
print(iris.target_names)

iris_df = pd.DataFrame(data=features,columns=['sepal length','sepal width','petal length’,'petal
width])

iris_df[' Target']=target

Dept. of CSE-Data Science, ATMECE, Mysuru



iris_df.head()

[ "setosa’ 'versicolor' 'virginica']

sepal length sepal width

petal length petal width Target

5.1
49
4.7
46
2.0

#Standardize the features

scaler=StandardScaler()

3.5
3.0
3.2
3.1
3.6

features_standardized=scaler.fit_transform(features)

14
14
1.3
1.5
14

features_standardized=StandardScaler().fit_transform(features)

0.2
0.2
0.2
0.2
0.2

0
0

iris_std_df=pd.DataFrame(data=features_standardized,columns=['sepal length’,'sepal width','petal

length’,'petal width')

iris_std_df[ Target']=target

iris_std_df.head()

sepal length sepal width petal length petal width Target

0  -0.500651
1 -1.143017
2 -1385353
3 -1.506521
4 1021849

1.019004
-0.131879
0.328414
0.098217
1.249201

-1.340227
-1.340227
-1.397064
-1.283389
-1.340227

-1.315444
-1.315444
-1.315444
-1.315444
-1.315444

0
0

Machine Learning Lab [BCSL606]

Dept. of CSE-Data Science, ATMECE, Mysuru

24



Machine Learning Lab [BCSL606]

#create a dataframe for the reduced data
pca=PCA(n_components=2)
features_pca=pca.fit_transform(features_standardized)

pca_df=pd.DataFrame(data=features_pca,columns=["Principal Component1","Principal
Component2™])

pca_df["Target"]=target
print(pca_df)

Principal Componentl Principal Component2 Target

5] -2.264703 B8.480027 4]
1 -2.888961 -0.674134 %]
2 -2.364229 -0.341988 4]
3 -2.299384 -8.597395 4]
4 -2.,389842 B©.646835 %]
145 1.878583 ©.386966 2
146 1.564580 -0.896687 2
147 1.521178 B.269869 2
148 1.372788 1.811254 2
149 0.9608656 -9.824332 2

[150 rows x 3 columns]

#Visualize the results plt.scatter (x,y,label,,,)
scaler=StandardScaler()
features_standardized=scaler.fit_transform(features)
features_standardized=StandardScaler().fit_transform(features)

iris_std_df=pd.DataFrame(data=features_standardized,columns=['sepal length','sepal width','petal
length','petal width'])

iris_std_df[ Target']=target
iris_std_df.head()

sepal length sepal width petal length petal width Target

0 -0.900681 1.019004 -1.340227  -1.315444 0
1 -1.143017 -0.131979 -1.340227  -1.315444 0
2 -1.3853563 0.328414 -1.397064  -1.315444 0
3 -1.506521 0.088217 -1.283389  -1.315444 0
4 -1.021849 1.249201 -1.340227  -1.315444 0

Dept. of CSE-Data Science, ATMECE, Mysuru

25



Machine Learning Lab [BCSL606]

plt.figure(figsize=(8,6))
for label,color in zip(iris.target_names,["red","green”,"blue"]):

plt.scatter(
pca_df.loc[pca_df["Target"]==list(iris.target_names).index(label),"Principal Component1"],
pca_df.loc[pca_df["Target"]==list(iris.target_names).index(label),"Principal Component2"],
label=label,color=color,alpha=0.7
)

plt.xlabel("Principal Component1",fontsize=12)

plt.ylabel("Principal Component2",fontsize=12)

plt.title(PCA on Iris Dataset',fontsize=14)

plt.legend(title="species")

plt.grid()
plt.show()
PCA on Iris Dataset
o ..
)
2 7 s o .
0 o
N i ® © )
o od R
= 0® ¢ o e® * @
S e *" 3 : % o
o] ® [0}
g 0 1 ..!. o &) o
> ° o'o°'-3 *F o
.8 . .:' 1 oo. ol
) o0?® “ )
= ) S ©
a__ -1 (2} 1] <
] Q o)
(=75 5
o0 ©
©
- ® e species
- v ® setosa
* @ versicolor
[6) @ virginica
-3 -2 1 0 1 2 3

Principal Componentl

Dept. of CSE-Data Science, ATMECE, Mysuru



Machine Learning Lab [BCSL606]

colors=["red’,'green’,'blue’]
labels=iris.target_names
plt.figure(figsize=(8,6))

for i in range (len(colors)):

plt.scatter(features_pca[target==i,0],features_pca[target==i,1],color=colors[i],label=labels[i],alph
a=0.7)

plt.xlabel("Principal Component1")
plt.ylabel("Principal Component2™)
plt.title(PCA on Iris Dataset’)

plt.legend()
plt.grid()
plt.show()
PCA on Iris Dataset
L ] ..
]
2 . © ®
o0
1 - -.' - .e él
S hd e 4 |® ® &
] e® _© ® e® © @,
5 ® ® e 9 e : % ®
2 fo o ® ®
5 of———%e-° ol ¥ oo :
Y ® ®_o O " ®
e o %o e 8 o0 e®®
'g ® .8 o0 d
£ eo® = i
& 1 o ® | - ®
e} ” o ®
L ™Y ®
e @
° e ®
-2 A @
® setosa
® ® versicolor
® @ virginica
-3 - -1 0 1 2 3

Principal Componentl

Dept. of CSE-Data Science, ATMECE, Mysuru



Machine Learning Lab [BCSL606]

#Explaines Variance by each principal component
explained_variance = pca.explained_variance_ratio_

print("principal componentl:"”, explained_variance[0])
print("principal component2:", explained_variance[1])

print("total variance retained:",sum(explained_variance))

principal componentl: @.7296244541329989
principal component2: ©.22850761786701768
total variance retained: ©.9581320720000166

Dept. of CSE-Data Science, ATMECE, Mysuru

28



Machine Learning Lab [BCSL606]

Experiment 4

For a given set of training data examples stored in a .CSV file, implement and demonstrate
the Find-S algorithm to output a description of the set of all hypotheses consistent with the

training examples.
Introduction to the Find-S Algorithm

What is the Find-S Algorithm?

The Find-S algorithm is a supervised learning algorithm used in concept learning to find the
most specific hypothesis that is consistent with a given set of positive training examples. It is one

of the simplest algorithms for learning from examples in a hypothesis space.

Importance of Find-S Algorithm

e Helps in understanding how hypotheses are learned from training data.
e Provides a structured way to generalize from specific instances.

e Forms the foundation for more advanced machine learning algorithms.

Working of the Find-S Algorithm

The Find-S algorithm follows these steps:

Initialize the Hypothesis: Start with the most specific hypothesis (i.e., all attributes set to the most
restrictive value).

Iterate Through Each Training Example:

If the example is positive (output ="Yes"), update the hypothesis:

e Replace any attribute value in the hypothesis that is not consistent with the example with a
more general value (?).

If the example is negative (output = "No"), ignore it.

—_

Final Hypothesis:

After processing all positive examples, the final hypothesis represents the most

specific generalization of the training data.

Dept. of CSE-Data Science, ATMECE, Mysuru 29



Machine Learning Lab [BCSL606]

Understanding the Output Hypothesis

1. Initial Hypothesis
« The algorithm starts with the most specific hypothesis:

h=("@","@", "@", "@") (empty hypothesis).

1. Iterative Learning Process

e It generalizes step by step based on the positive training examples.

e Attributes that differ among positive examples are replaced with ? (wildcard).

Final Hypothesis

e The final hypothesis is the most specific generalization covering all positive examples.

e It represents a logical rule derived from the dataset.

The algorithm will generate the most specific hypothesis that covers all positive instances.

Limitations of Find-S

*  Only considers positive examples: It ignores negative examples, which

may lead to an incomplete hypothesis.

« Cannot handle noise or missing data: Works only when training data is perfect.

Finds only one hypothesis:

Does not provide alternative consistent hypotheses.

Understanding Find-S Algorithm and Hypothesis Concept

e The Find-S algorithm is a simple machine-learning algorithm used in concept learning. It
finds the most specific hypothesis that is consistent with all positive examples in a given

training dataset. The algorithm assumes.

e Thetarget concept is represented in a binary classification (yes/no, true/false, etc.).

e The hypothesis space uses conjunctive attributes (each attribute in a hypothesis must match

exactly). There is at least one positive example in the dataset.

Dept. of CSE-Data Science, ATMECE, Mysuru

30



Machine Learning Lab [BCSL606]

#import necessary libraries

import pandas as pd

#Read the csv file

data = pd.read_csv(r'training_data.csv')

print(data)

Experience Qualification  Skill

Yes Masters Python
Yes  Bachelors Python

No Bachelors  Java
Yes Masters  Java

No Masters Python

I I = O

#write/create user defined function for find S algorithm
def find_s_algorithm(data):
""" Implements the Find_S algorithm to find the most specific hypothesis™""
#Extract feature columns and target column
attributes=data.iloc[:,:-1].values
target=data.iloc[:,-1].values
#Initialize hypothesis with first positive example
for i in range (len(target)):
if target[i]=="Yes":
hypothesis=attributes[i].copy()
break

Dept. of CSE-Data Science, ATMECE, Mysuru

Age Hired

30
25
28
49

35

Yes
Yes
No
Yes
No

31



#update hypothesis based on other positive examples
for i in range (len(target)):
if target[i]=="Yes":
for j in range(len(hypothesis)):
if hypothesis[j]!=attributes][i][j]:
hypothesis[j]='?"
print(i,hypothesis)
return hypothesis
#Run/Call Find-S-Algorithm
final_hypothesis = find_s_algorithm(data)
#Print the learned hypothesis
print("most specific hypothesis:",final_hypothesis)

@ ['Yes' 'Masters' 'Python' 30]
1 ['Yes' "?' 'Python' "?']

2 ['Yes' "?' 'Python' "?']
3['Yes' 2t "]

4 ['Yes' 2" "' Y]

most specific hypothesis: ['Yes' '?" "?' "'

Machine Learning Lab [BCSL606]

Dept. of CSE-Data Science, ATMECE, Mysuru

32



Machine Learning Lab [BCSL606]

Experiment 5

Develop a program to implement k-Nearest Neighbour algorithm to classify the randomly
generated 100 values of x in the range of [0,1]. Perform the following based on dataset

generated.
1. Label the first 50 points {x1,...... ,x50} as follows: if (xi £0.5), then xi ¢ Classl, else xi
€ Class2

2. Classify the remaining points, x51,...... ,x100 using KNN. Perform this for
k=1,2,3,4,5,20,30
Introduction to k-Nearest Neighbors (k-NN)

What is k-NN?

¢ The k-Nearest Neighbors (k-NN) algorithm is a supervised learning algorithm used for
both classification and regression. It classifies a data point based on the majority class among

its nearest neighbors.

e It is also called a lazy learner algorithm because it does not learn from the training set
immediately instead it stores the dataset and at the time of classification, it performs an action

on the dataset.

Importance of k-NN

» Simple and effective for classification tasks.
* Non-parametric (makes no assumptions about the data distribution).

+ Handles multi-class classification with ease.

How k-NN Works?

The k-NN algorithm follows these steps:

1. Choose the value of k (number of nearest neighbors).

2. Compute the distance between the test sample and all training samples using a distance metric (e.g.,
Euclidean distance).

3. Select the k nearest neighbors (data points with the smallest distance to the test sample).

4. Assign the majority class among the k neighbors to the test sample.

Dept. of CSE-Data Science, ATMECE, Mysuru 33



Machine Learning Lab [BCSL606]

Working of the k-NN Algorithm Choose a Value for k:

e Asmall k (e.g., k=1) makes the model sensitive to noise and results in high variance.
e Alarge k (e.g., k=30) smooths the decision boundary but may lead to high bias.

e The optimal k is usually found by cross-validation.

Compute Distance Between Data Points: The algorithm relies on a distance metric to determine

similarity between data points. Common distance measures include:
“- Euclidean Distance (Most commonly used)
Manhattan Distance

Minkowski Distance

* “Cosine Similarity** (Used in text-based applications)

= The most common method is Euclidean Distance:

d =V [(x2 - x1)2 + (y2 — y1)2]

3. Decision Rule for Classification

« Majority Voting: The most common class among the k neighbors determines the predicted
class.

Weighted Voting: Closer neighbors have higher influence on the prediction

than farther neighbors.

Dataset Generation and Classification Task

Step 1: Generate 100 Random Points in the Range [0,1]

* The dataset consists of 100 random values of xuniformly distributed between 0 and 1.

Step 2: Assign Labels to the First 50 Points

* The first 50 points (x1, Xz, ..., Xs0) are labeled as:

Dept. of CSE-Data Science, ATMECE, Mysuru 34



Machine Learning Lab [BCSL606]

= Classlifx i<=0.5
= Class2ifx_i>0.5

Step 3: Classify Remaining Points (xs1, ..., Xi00) using k-NN
* The k-NN algorithm is used to classify the next 50 points based on the first 50 labeled
points.
Step 4: Experiment with Different k Values
= Classification is performed for multiple values of k:
= k=1,23,4,5,20,30

= Observing how different values of kaffect classification accuracy and decision
boundaries.

Bias-Variance Tradeoff in k-NN
* Smaller k values (e.g., k=1) — Low bias, high variance (more flexible but prone to noise).

e Larger k values (e.g., k=20, 30) — High bias, low variance (less flexible but
smoother decision boundary).

Advantages of k-NN

= Simple and easy to implement.

* No training phase—all computation happens during prediction.
Works well for multi-class classification problems.

Can model complex decision boundaries when k is appropriately chosen.

Limitations of k-NN

Computationally expensive for large datasets.

Performance depends on the choice of k.

Sensitive to irrelevant or redundant features.

= Memory-intensive since all training data needs to be stored.

#import Necessary Libraries
import numpy as np
import pandas as pd

from sklearn.model_selection import train_test_split

Dept. of CSE-Data Science, ATMECE, Mysuru



Machine Learning Lab [BCSL606]

from sklearn.neighbors import KNeighborsClassifier
from sklearn.metrics import accuracy_score
import warnings
warnings.filterwarnings(‘ignore’)
Generate dataset
values=np.random.rand(100)
labels =[]
for 1invalues[:50]:
if i<=0.5:
labels.append(‘Class1’)
else:
labels.append(‘Class2’)
labels += [None]*50
print(labels)
['Class2', 'Class2', 'Classl', 'Class2', 'Class2', 'Class2', 'Classl', 'Class2', 'Class2', 'Classl', 'Classl', 'Class2', 'Class
2', 'Class2', 'Classl', 'Classl', 'Class2', 'Class2', 'Classl', 'Classl', 'Classl', 'Classl', 'Classl', 'Class2', 'Class2', '(l
assl', 'Class2', 'Classl', 'Classl', 'Class2', 'Class2', 'Class2', 'Class2', 'Class2', 'Class2’, 'Class2', 'Classl', 'Class2',
'Classl', 'Class1’, 'Class1', 'Classl', 'Classl', 'Classl', 'Classl’, 'Class2', 'Classl', 'Classl', 'Class2', 'Classl’, None, N

one, None, None, None, None, None, None, Nome, None, Nome, None, None, Nome, None, Nome, None, None, Nome, None, None, None, No
ne, Nong, None, None, None, None, Nome, None, None, None, None, Nome, None, None, None, None, Nome, None, None, None, None, Non

e, None, None, None, None, None, None]

data = {
"Point": [f"x{i+1}"for i in range(100)],
"Value": values,
"Label": labels

}

print(data)

type(data)

df=pd.DataFrame(data)

df.head()

Dept. of CSE-Data Science, ATMECE, Mysuru 36



Machine Learning Lab [BCSL606]

{"Point’: ['x1', W2, 37, W', NS, Y, T, @, N8, W0, TNILY, W2, 13, 14T, 1S, 16T, 17, A8,
W19, xae', 21, 22Y, w23, 24, 25, k26, x27', k28, w29, w30, hal', 32, 33, a3, s, e,
W37, a3, a3n', 'wde', wdl', 'xd2', w43, w44, 'S, 'wde', 'xd7', 'wd3', 'wd9', 'w9@', 'x51', 'w82', 'x53', 'wod',
'¥55', 'xse', 7', 'x58', 'x59', 'x6@', 'wel', 'w62', 'xe3', 'wb4', 'xev', 'wée', 'xe7', 'w68', 'xe8', 'w7@', "Wil', W71,
W73, T, TS, Tet, a7, Tat, et 'kBa', el 'xB2', w83, 'wB4', 'x5', 'xB6', 'x87', 'x@3', 'x89', 'x90',
1Y, N2, N8R, 4!, '85!, X6, N7, 'x8B', 'x89', 'x160'], Value': array([0.72095621, 0.76615021, 0.06775014, 0.5
1103614, 0.6869719 ,

0.55393421, 0.46737394, 0.72969114, 0.68047285, 0.16084033,

#.08040086, 0.57909295, @.70495687, 0.88929224, 6.24161365,

0.04981832, 0.66752434, 0.65973@86, 0.13324933, 0.36112965,

0.41325153, 0.8716705 , 0.2032035, 0.8544208 , 0.51307002,

8.17992753, 0.69345369, @.30810718, 0.08342543, 0.67243429,

8.567130%, 0.06407811, 0.87049266, 0.87848566, 6.85327485,

#.92391467, 0.45196583, 0.74977731, 0.22934881, 0.08803437,

0.21351729, 0.39945073, 0.21389974, 0.32312058, 0.4938461 ,

8.92433473, 0.36924282, 0.31012793, 0.73257046, 6.06952616,

§.08232899, 0.71685679, @.72489503, 0.45093625, 642243751,

8.827546460, 0.54356809, @.3118151 , 0.84734741, 6.03677823,

0.58242715, 0.35379241, 0.50049749, 0.43020334, 0.28334M47,

8.2556375 , 0.83250701, @.27517161, @.45476971, 6.73048117,

#.96502963, 0.47991932, 0.70445356, 0.28762745, 6.9830655 ,

0.38486831, 0.78643136, @.717381€1, 0.86957852, 0.03176416,

8.22518%64, 0.97803035, 0.65881176, 0.66028888, 6.43704715,

8.2940159%, 0.93905841, @.57636956, @.58551851, @.03391496,

§.82254585, 0.20896943, 0.45945065, 0.3846%9967, 0.85974416,

0.72865672, 075936767, 0.35300706, 0.27421068, 0.34959245]), 'Label's ['Class2’, 'Class2’, 'Classl', 'Class2’, 'Class
', 'Class?', 'Classl’, 'Class?’, 'Class?', 'Classl’, 'Classl', 'Class2', 'Class2’, 'Class2’, 'Classl', 'Classl', '(lass2’, 'l
552, 'Classl’, 'Classl’, 'Classl’, "Classl’, 'Classl’, 'Class2', 'Class?’, 'Classl', 'Class2', 'Classl', 'Classl’, 'Class?’,
'Class?’, 'Class2', "Class2’, 'Classd', 'Class?', 'Class2’, 'Classl', 'Class2', 'Classl’, 'Classl’, 'Classl', 'Classl', 'Class
1', 'Classl', 'Classl’, 'Class?’, 'Classl’, 'Classl', 'Class?', 'Classl’, Nome, None, None, None, None, Nome, Nome, Nome, Mone,
None, None, None, None, Mone, Mone, None, Nome, Mome, Mone, None, None, None, None, Nome, None, Mone, None, None, Mone, None, N
one, None, None, None, None, None, None, None, None, None, Nome, Nome, None, None, Nene, None, Nome, Name, None, None]}

Point ~ Value Label

0 1 072095 Class2
t 2 0766150 Class?
213 0067750 Classt
3w 05103 Class2
4 x5 0636972 Class?

Dept. of CSE-Data Science, ATMECE, Mysuru

37



Machine Learning Lab [BCSL606]

#split data into labeled and unlabeled
labeled_df=df[df[""Label"].notna()]
x_train=labeled_df[["Value"]]
y_train=labeled_df["Label"]

unlabeled_df=df[df["Label"].isna()]
X_test=unlabeled_dff["Value"]]

#Generate true Isbels for testing (for accuracy calculation)
true_labels=["Class1" if x<=0.5 else "Class2" for x in values[50:]]
#Perform KNN classification for different values of K
k values=[1,2,3,4,5,20]
results={}
accuracies={}
forkin k_values:
knn=KNeighborsClassifier(n_neighbors=Kk)
knn.fit(x_train,y_train)
predictions=knn.predict(X_test)

results[k]=predictions

#accuracy calculation
accuracy=accuracy_score(true_labels,predictions)*100
accuracies[k]=accuracy

print(f*Accuracy for k={k}:{accuracy:.2f}%")
print(predictions)

Dept. of CSE-Data Science, ATMECE, Mysuru



Machine Learning Lab [BCSL606]

Accuracy for k=1:188.88%

["Clas=sl"' "Class2' 'Class2' "Class1" 'Classl' "Classz" "Class2' 'Classl’
'Classl' "Class2" 'Class2' "Class1® 'Class2' '"Classl' "Class1' 'Classi’
"Class2"' "Class1l' 'Classl' "Class2' 'Class2' "Classl® "Class2' 'Classl’
"Class2' "Class1' 'Class2' "Class2" 'Class2' '"Classl' "Classl' 'Classz2’
'Class2' "Class2" 'Classl' "Class1® 'Class2' '"Class2' "Class2' 'Class2’
"Class2"' "Class1l' 'Classl' "Class1l' 'Class2' "Class2" "Class2' 'Classl’
"Classl' "Class2")]

accuracy for k=2:188.228%

["Class1l' 'Class2" 'Class2' "Class1® 'Class1l' 'Classz2® 'Class2 'Classl’
'"Classl' "Class2"' 'Class2' "Class1l" 'Class2' "Classl' "Class1l' 'Classl’
'Class2' "Class1" 'Classl' "Class2" 'Class2' '"Classl' "Class2' 'Classi’
"Class2"' "Classl' 'Classz2' "Class2' 'Class2' "Classl® "Classl' 'Class2’
'"Class2' "Class2" 'Class1l' "Class1" 'Class2' '"ClassZ2z' "Class2' 'Classz2’
'"Class2' "Class1" 'Class1l' "Class1l" 'Class2' "Class2z' "Class2' 'Classl’
"Class1l' "Class2']

Accuracy for k=3:188.28%

["Class1l' 'Class2" 'Class2' "Class1® 'Class1l' 'Classz2® 'Class2 'Classl’
'Classl"' "Class2" 'Class2' "Class1® 'Class2' "Classl" "Class1' 'Classi’
"Class2"' "Class1l' 'Classl' "Class2' 'Class2' "Classl® "Class2' 'Classl’
'Class2' "Class1' 'Class2' "Class2" 'Class2' '"Classl' "Classi' 'Class2’
'Class2' "Class2" 'Classl' "Class1® 'Class2' '"Class2' "Class2' 'Class2’
'"Class2' "Class1" 'Class1l' "Class1l" 'Class2' "Class2z' "Class2' 'Classl’
"Classl' "Class2"]

accuracy for k=4:188.228%

["Clas=sl"' "Class2' 'Class2' "Class1" 'Classl' "Classz" "Class2' 'Classl’
'"Classl' "Class2"' 'Class2' "Class1l" 'Class2' "Classl' "Class1l' 'Classl’
"Class2"' "Class1l' 'Classl' "Class2' 'Class2' "Classl® "Class2' 'Classl’
"Class2' "Class1" 'Class2' "Class2" 'Class2' "Classl"' "Classl' 'Classz2’
'Class2' "Class2" 'Classl' "Class1® 'Class2' '"Class2' "Class2' 'Class2’
'Class2' "Class1" 'Class1' "Class1® 'Class2' "Class2"' "Class2' 'Classl’
"Class1l' "Class2']

accuracy for k=5:98.082%

["Class1l' 'Class2" 'Class2' "Class1® 'Class1l' 'Classz2® 'Class2 'Classl’
'"Classl' "Class2"' 'Class2' "Class1l" 'Class2' "Classl' "Class1l' 'Classl’
'"Class2' "Class1" 'Class1l' "Class2" 'Class2' "Classl' "Class2' 'Classl’
'Class2' "Class1' 'Class2' "Class2" 'Class2' '"Classl' "Classi' 'Class2’
'"Class2' "Class2" 'Class2' "Class1l" 'Class2' '"ClassZz' "Class2' 'Classz2’
'"Class2' "Class1" 'Class1l' "Class1l" 'Class2' "Class2z' "Class2' 'Classl’
"Class1l' "Class2']

Accuracy for k=28:186.88%

["Clas=sl"' "Class2' 'Class2' "Class1" 'Classl' "Classz" "Class2' 'Classl’
'Classl' "Class2' 'Class2' "Class1® 'Class2' '"Classl' "Class1' 'Classl’
"Class2"' "Class1l' 'Classl' "Class2' 'Class2' "Classl® "Class2' 'Classl’
'Class2' "Class1' 'Class2' "Class2" 'Class2' '"Classl' "Classi' 'Class2’
'Class2' "Class2" 'Classl' "Class1® 'Class2' '"Class2' "Class2' 'Class2’
"Class2"' "Class1l' 'Classl' "Class1l' 'Class2' "Class2" "Class2' 'Classl’
"Classl' "Class2")]

#assign predictions back to the dataframe for this k
unlabeled_df[f"Label_k{k}"]=predictions
dfl=unlabeled_df.drop(columns=['Label],axis=1)

dfl

Dept. of CSE-Data Science, ATMECE, Mysuru



Machine Learning Lab [BCSL606]

PolmE LI LAkl B2
ST S O ORZ325 o
L | == O FaEnss L= B
S e Sk Lo D= = el = S Lo B P e
53 o Sl o b STy R o
Sl S5 Lo B e s | L= By |
55 = Sl O ST SaE Lo B B e
SE= =S 0. S4%5608 Lot B e
5T o SE O_Z11a8a1sS o
L =S O OAT 54T L= B |
5= s O SMEFTa L=t B e
(=2 5] w1 0O SaSa T Lo B P e
E1 =EZ O 35Z 7o [ B |
Bz s ] 0 S o Lo B P e
E3 = =4 Lo B © e =t e | L= B |
L= 8 mES Lo Me==t 2 i 2t B et | L= By |
B oGS Lo Pt i S o
EE BT O S350 Lo B =]
BT oG O 2FsE17T= o
EZ B Lo B0 A | L= B |
E= b b e o ) | o=t B e
T b | Lol D= 22 i ] Lo B P e
i | T Lo By == B = | Lo B =y |
T R i ] Lo g =2 Bl S Lo B P e
T3 =7 O s T [ B |
T g O SRS Lo B P e
= = T E O SRR ES L= B |
TIE A Lo I 22 S by | L=t B e
T = B O FAF3IE1 Lo B B e
= T O SEoxH T Lot B e
= P ] O O3 1FEO o
o B (o M= o B = | L= B |
&1 =B Lo J= g S Ba s | o=t B e
o s EE O SSEa1= Lo B P e
53 o g O SEo 2 Ea Lot B =)
g B Lo DR 8 2 e e oy o
55 = B Lo M=t = Rl B L= B |
o= BT Lo = Bec 2= Bt | et B e
aF o B O SFE3IT™a Lo B B e
O P ls ] O SisS1a Lo B =]
o= b= ] Lo DS B it g B Lo B B e
=T E == g ] O SN L= B
=1 = 0 2EaEs o
== = ] Lo BEES = sy | o
=53 Es O SEs o L= By |
S b= Lo DS == gt ] Lo B P e
=55 E = S O FIFERST Lot B e
== = T 07 SecaE=a Lo B P e

Dept. of CSE-Data Science, ATMECE, Mysuru

40



Machine Learning Lab [BCSL606]

Experiment 6
Implement the non-parametric Locally Weighted Regression algorithm in order

to fit data points. Select appropriate data set for your experiment and draw
graphs

Introduction to Locally Weighted Regression (LWR)

What is Locally Weighted Regression?

Locally Weighted Regression (LWR) is a non-parametric machine learning algorithm that fits a
regression model to a local subset of data points. Unlike traditional regression techniques, LWR
does not assume a fixed set of parameters for the entire dataset but instead assigns different weights to data

points based on their distance from the target point.

Importance of Locally Weighted Regression

J Handles non-linearity effectively.

o Provides better flexibility compared to global regression models.
o More robust to outliers due to localized weighting.

° Suitable for datasets where relationships between variables vary locally.

How Locally Weighted Regression Works

1. Define the Weighting Function

» Akernel function (e.g., Gaussian kernel) is used to assign weights to data points:
wi=e

* Here, t(tau) isthe bandwidth parameter that controls the locality of weighting.

Compute Localized Weights

For a given query point X, assign weights to training points based on proximity.

Fit a Local Model

« Solve a weighted least squares problem using the locally weighted dataset.

1. Make Predictions: Compute the predicted value at x using the locally trained model.

Dataset Selection:

For this experiment, we need a dataset with a clear non-linear relationship between independent

and dependent variables. Some possible datasets include:

Dept. of CSE-Data Science, ATMECE, Mysuru 41



Machine Learning Lab [BCSL606]

Synthetic Data: Randomly generated non-linear data points.

Real-World Data:

= Auto MPG Dataset: Predict fuel efficiency based on engine displacement, horsepower, etc.

= California Housing Dataset: Predict house prices based on features like location and area.

= Temperature vs. Time Series Data: Forecast weather trends.

Steps for Implementing Locally Weighted Regression
1.  Load the Dataset

e Choose a dataset with one independent variable (x) and one dependent variable (y).

2. Apply the Locally Weighted Regression Algorithm
e Assign weights to each data point using a Gaussian kernel.

e Solve the weighted linear regression equation.

3.  Experiment with Different Bandwidth Parameters (t)

e Small t: Model focuses on very close neighbors — More variance, less bias (risk of
overfitting).

e Large t: Model considers a broader range of points — More bias, less variance
(risk of underfitting).

Visualize the Results:

e Scatter Plot of Data Points to observe the actual distribution.
e Fitted Curve from LWR with different values of tto compare model performance.

Advantages of Locally Weighted Regression
v Captures complex relationships between input and output variables.
v Works well with small datasets where global linear regression may not be suitable.
v Does not assume a fixed functional form, making it highly flexible.

Limitations of Locally Weighted Regression

+ Computationally expensive: Must compute a separate model for each query point.

+ Sensitive to bandwidth parameter ((\tau)): Choosing the wrong value can lead to
overfitting or underfitting.

+ Not suitable for large datasets: As the dataset size increases, the algorithm becomes

Dept. of CSE-Data Science, ATMECE, Mysuru



impractical due to high computation time.

The tau (t) parameter in your code is the bandwidth for the Gaussian kernel, which controls
how much influence nearby points have in the Locally Weighted Regression (LWR). Here's
what it does:

Determines the Weight Decay:
If T is small, only very nearby points contribute

significantly, making LWR behave like a very local model (more sensitive to noise). If t is large,
more distant points contribute significantly,

making LWR behave more like global linear regression.

Controls the Model Complexity:
A small T — Highly flexible model, more prone to overfitting.

A large Tt — More smoothing, leading to a simpler model (can underfit if too large).

Example Effect of Tau

7= 0.1 — LWR behaves almost like a nearest-neighbor model (highly local, very

wiggly curve).

1 =1.0 — Moderate smoothing, a good balance between flexibility and generalization.
=10 — LWR behaves like ordinary least squares regression (all points are weighted

almost equally).

Program

import numpy as np
import matplotlib.pyplot as plt
def gk(x,xq,tau):
return np.exp(-(x-xq)**2/(2*tau**2))
def Iwr(x,y,xq,tau):
xb =np.c_[np.ones(len(x)), x]

xqb = np.array([1,xq])

Machine Learning Lab [BCSL606]

43

Dept. of CSE-Data Science, ATMECE, Mysuru



Machine Learning Lab [BCSL606]

w = np.diag(gk(x,xq,tau))
theta = np.linalg.inv(xb.T@w @ xb) @ xb.T@wW@ Yy
return xgb @ theta

x = np.array([1,2,3,4,5])

y =np.array([1,2,1.3,3.75,2.25])

xXg=3

tau = 1.0

yp = Iwr(x,y,xq,tau)

plt.figure(figsize=(8,6))
plt.scatter(x,y,color = 'blue’,label = 'data points’)
plt.scatter(xq,yp,color = 'red',label = f')prediction at x = {xq})

<matplotlib.collections.PathCollection at Oxleee®844518>

L
3.5 7
3.0 A1
2.5 1
e
o
2.0 1 L
1.5 A1
L ]
104 @
1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0

Dept. of CSE-Data Science, ATMECE, Mysuru

44



Machine Learning Lab [BCSL606]

weights = gk(x,xq,tau)

for i in range(len(x)):
plt.plot([x[i],x[i11.[y[i].y[i]-weights[i]],'k-",lw =1)
plt.scatter(x[i],y[i],s=weights[i]*200,color = 'green’,alpha =0.5)

plt.title("locally weighted regression(LWR)")

plt.xlabel(""x")

plt.ylabel(*"y")
plt.show()

locally weighted regression(LWR)

3.5 -
3.0 -
2.5 -

> 2.0 1
1.5
1.0 4 1

0.5 1

1.0 1 B 2.0 2.5 3.0 3.5 4.0 4.5 5.0

import matplotlib.pyplot as plt

from sklearn.linear_model import LinearRegression

def gk(x,xq,tau):
return np.exp(-(X-xq)**2/(2*tau**2))

Dept. of CSE-Data Science, ATMECE, Mysuru 45



Machine Learning Lab [BCSL606]

def Iwr(x,y,xq,tau):
xb =np.c_[np.ones(len(x)), X]
xqb = np.array([1,xq])
w = np.diag(gk(x,xq,tau))
theta = np.linalg.inv(xb.T@ w @ xb) @ xb.T@Qw @ y
return xgb @ theta

x =np.array([1,2,3,4,5,6,7,8,9,10])
y =np.array([1,3,2,4,3.5,5,6,7,6.5,8])

xq = np.linspace(1,10,100)

tau=1.0

y_lwr = np.array([lwr(x,y,xg,tau) for xg in xq])
Ir = LinearRegression()

xr =x.reshape(-1,1)

Ir.fit(xr,y)

yl = Ir.predict(xq.reshape(-1,1))

plt.figure(figsize=(10,6))

plt.scatter(x,y,color = 'blue’,label="datapoints’)
plt.plot(xq,yl,color="black’,linestyle='dashed',label="simple linear regression’)
plt.plot(xq,y_lwr,color="red',label="locally weighted regression')
plt.title("comparison:simple linear regression v/s locally weighted regression™)
plt.xlabel("x")

plt.ylabel("y")

plt.legend()

plt.show()

Dept. of CSE-Data Science, ATMECE, Mysuru

46



Machine Learning Lab [BCSL606]

comparison:simple linear regression v/s locally weighted regression

g4 @ datapoints o
=== simple linear regression
— locally weighted regression

def gk(x,xq,tau):
return np.exp(-(X-xq)**2/(2*tau**2))
def Iwr(x,y,xq,tau):
xb =np.c_[np.ones(len(x)), X]
xgb = np.array([1,xq])
w = np.diag(gk(x,xq,tau))
theta = np.linalg.pinv(xb.T @ w @ xb) @ xb.T@w @ y
return xgb @ theta

x = np.array([1,2,3,4,5,6,7,8,9,10])
y =np.array([1,3,2,4,3.5,5,6,7,6.5,8])

xq = np.linspace(1,10,100)
tau_v=[0.1,0.5,1.0,5.0,10.0]

Ir = LinearRegression()

Dept. of CSE-Data Science, ATMECE, Mysuru

47



Machine Learning Lab [BCSL606]

xr =x.reshape(-1,1)
Irfit(xr,y)
yl = Ir.predict(xq.reshape(-1,1))

plt.figure(figsize=(12,8))

plt.scatter(x,y,color = 'blue’,label="datapoints’)

plt.plot(xq,yl,color="black’,linestyle="dashed',label="simple linear regression’)

[<matplotlib.lines.Line2D at @x1lee85537c10>]

-
5 -
-
s
-
-
-
’/
-
s
-
4 ® e
d”
I, .
’l’
-
s
-
3 L -7
-
"'
-
.
’ﬂ
prs
-

-

2 - L]
,l
-
s
-
-
#
1 L ]
T T
2 4 6 10

colors =['red’,'green’,'purple’,'orange’,'brown’]
for tau,color in zip(tau_v,colors):
y_lwr = np.array([lwr(x,y,xq,tau)for xq in xq])
plt.plot(xq,y_lwr,color=color,label = fLWR(t={tau})")
plt.title("effect of different t values in locally weighted regression)
plt.xlabel("x"

plt.ylabel("y")
plt.legend()

Dept. of CSE-Data Science, ATMECE, Mysuru

48



Machine Learning Lab [BCSL606]

plt.show()
effect of different Tt values in locally weighted regression
841 —— LWR(1=0.1)
— LWR(T=0.5)
74— UNR(T=1.0)
LWR(Tt=5.0)
6] — WR(t=10.0)
5 .
>
4 .
3 .
2 .
1 -

Dept. of CSE-Data Science, ATMECE, Mysuru

49



Machine Learning Lab [BCSL606]

Experiment 7

Develop a program to demonstrate the working of Linear Regression and Polynomial Regression.
Use Boston Housing Dataset for Linear Regression and Auto MPG Dataset (for vehicle fuel

efficiency prediction) for Polynomial Regression.

7a. Develop a program to demonstrate the working of Linear Regression. Use Boston Housing
Dataset.

Introduction to Regression Analysis What is Regression?

Regression is a fundamental statistical and machine learning technique used to model relationships
between variables. It helps in predicting a dependent variable (target) based on one or more

independent variables (features).
Types of Regression Models:
1. Linear Regression — Assumes a linear relationship between independent and dependent variables.

2. Polynomial Regression — Extends linear regression by introducing polynomial terms to capture

non-linearity.

Terms to capture non-linearity. Linear Regression
Definition:
Linear Regression models the relationship between an independent variable ( x ) and a dependent

variable ('y) using a straight-line equation:
y=mx+c

m is the slope (coefficient) of the line,

c is the intercept,

X is the independent variable,

y is the dependent variable (predicted value).

Working of Linear Regression

1. Identify the best-fitting line: Uses the least squares method to minimize the error between
actual and predicted values.

Compute the cost function: Measures how well the model fits the data using Mean Squared Error
(MSE)

Dept. of CSE-Data Science, ATMECE, Mysuru 50



Machine Learning Lab [BCSL606]

Optimize the model parameters: Uses Gradient Descent or other optimization techniques to find
the bestmand c .

Applications of Linear Regression
» Predicting sales revenue based on advertising spend.
» Estimating house prices based on size and location.

» Forecasting demand in supply chain management.

Data Cleaning

Checking Null values

data.isnull() - Returns a DataFrame of the same shape as data, where each element
is True if it's NaN and False otherwise.

.sum() - Sums up the True values (which are treated as 1 in Python) column-wise,

giving the total count of missing values for each column.

#import necessary Libraries

import pandas as pd

import numpy as np

import matplotlib.pyplot as plt

import seaborn as sns

from sklearn.model_selection import train_test_split
from sklearn.linear_model import LinearRegression
from sklearn.metrics import mean_squared_error,r2_score
from sklearn.preprocessing import StandardScaler
#import Boston housing dataset

data = pd.read_csv(r"Boston housing dataset.csv")

data.head()
CRIM ZN INDUS CHAS NOX RM AGE DIS RAD TAX PTRATIO B LSTAT MEDV

0 000632 180  2.31 0.0 0538 6575 652 4.0900 1 296 153 396.90 498 240
1 002731 00 707 0.0 0469 6421 789 49671 2 242 17.86 39690 914 216
2 002729 00 7.07 0.0 0469 7.185 611 4.9671 2 242 17.86 39283 403 347
3 003237 00 218 0.0 0458 6.998 458 6.0622 3 222 18.7 39463 294 334
4 006905 00 218 0.0 0458 7.147 542 6.0622 3 222 18.7 39690 NaN 362

Dept. of CSE-Data Science, ATMECE, Mysuru



Machine Learning Lab [BCSL606]

data.shape
(506, 14)
data.info()
<class "pandas . core.frame.DataFrame" >
RangeInde>x: 586 entries, © to 585
Data columns ({(total 14 columns ) :
+F Colummn MNon—-MNMull Count Dtwpe
=] CRIM 482656 nmnon—-rmnull Floatsd
u =M 486 nmnon—-mull Floatsg
2 INDUS A825 mnmnon—-rmull Floatsa
3 CHAS 486 non—-rmull Floated
=3 MO 56 mnon—-rmull Floatsd
= RM 56 mnon—-rmnull Floatsd
(= AGE 486 non—-rmull Floated
ra DIS 5@ non—-rmnull Floatsa
= RAD 526 non—-null intsa
S T8 S26 non—-nmnull intsa
1 PTRATIO 56 mnon—-rmnull Floatsd
B B 526 non-mull Floated
i1z LSTAT 486 mnmnon—mull Floatscd
13 ME DWW 56 non—-rmull Floatsd
dtywpes: fFloatsada4(l2), inmntsa(z2)
memory usage: 55 .5 KB

data.isnull().sum()

Ly =ty | ==
= Il ==
U= = =
O = =
el =
R =
A0S e = =
I = =
| A N =
L e =
T RAST DO =
= =
L =="T &T = =
M E ™ =
A= e = d mit s

df=data.copy()
dff'CRIM fillna(df[ CRIM"].mean(),inplace=True)
df['ZN".fillna(df['’ZN'].mean(),inplace=True)

Dept. of CSE-Data Science, ATMECE, Mysuru



Machine Learning Lab [BCSL606]

df'CHAS fillna(df[ CHAS].mode()[0],inplace=True)
dff' INDUS'] fillna(df[ INDUS'].mean(),inplace=True)

df['AGE'].fillna(df['AGE'].median(),inplace=True)

df'LSTAT].fillna(df[' LSTAT].median(),inplace=True)

df.isnull().sum()

C R =_=x
= rd =»
T NI = =
CHHAo =S =_=x
Tl T 2 =]
| oy =_=x
A = ="
— I = =
R A =]
L =
T RS T IO =]
= =]
L =T 2T =]
" E ™ =]
A= = = o Ty il P B
df.head()
CRIM ZN INDUS CHAS NOX RM AGE DIS RAD TAX PTRATIO B LSTAT MEDV
0 000632 180 231 00 0538 6575 65.2 4.0900 1 2% 153 39690 498 240
1 002731 00 707 00 0469 6421 789 4.9671 2 242 178 39690 914 216
2 002729 00 707 00 0469 7185 611 4.9671 2 242 178 39283 403 347
3 003237 00 218 0.0 0458 6.998 458 6.0622 3 222 187 39463 294 334
4 006905 00 218 00 0458 7.147 542 6.0622 3 222 18.7 39690 1143 362
x = df.drop(MEDV',axis=1)
y = dfMEDV]
sc = StandardScaler()
X_s =sc.fit_transform(x)
X_train,x_test,y train,y_test = train_test_split(x_s, vy, test_size=0.2,random_state=42)
Dept. of CSE-Data Science, ATMECE, Mysuru 53



Machine Learning Lab [BCSL606]

m = LinearRegression()

m.fit(x_train,y_train)

y_p = m.predict(x_test)

y_p

array([28
23
25
25

25.

15

22,

16
14
16
21
22
22
17
28

6.

28
32
25
28
22

.99719439,
.02785726,
.15283588,
.94275348,
36124981,
.13896898,
56164985,
.65894826,
.A7721796,
.A3366912,
.91932313,
.92419633,
.76128341,
.23156773,
.89590447,
37180464,
96406016,
41962673,
94842754,
.98359505,
. 74200442,

36.
17.
18.
19.
3.
21.
25,
31.
32.
14.
33.
18.
30.
28.
26.
21.
13.
18.

5.
23,
24,

56606809 ,
95437605,
55925182,
70991322,
26007975,
61919056,
21208496,
10314158,
36053979,
25719607,
72128781,
39453126,
73955199,
15406451,
58633798,
6922679 ,
20179007,
99778065,
77674362,
77725749,
36218289])

mse = mean_squared_error(y_test,y p)

print(f'Mean Squared Error:{mse}')

rmse = np.sqrt(mse)

print(f'Root mean squared error:{rmse}")

r2 =r2_score(y_test,y p)
print(fR-squared{r2}"

14.516822883,
14.5769479 ,
-5.69168671,
5.85916585,
11.78589412,
14.51459386,
25.88782605,
20.25199863,
43.81157914,
26.0854729 ,
16.39186467,
32.81854481,
31.34386371,
26.15612066,
11.21176073,
41.74808223,
20.99146149,
25.562084885,
19.5144=21 ,
©.859856088,

Mean Squared Error:24.944071172175562

Root mean squared error:4.994403985679929

R-squared®.6598556613717499

Dept. of CSE-Data Science, ATMECE, Mysuru

25
21
48
23
16

17
19

1%
12
18
28

13

82572187,
22.

144368832,

. 71242445,
. 9668163 ,
.48186943,
23.

17246824,

.68297496,
24.

38567686,

.61473728,
. 75853278,
26.
25.
16.

36438908,
376573
27681305,

.92791361,
. 76831709,
. 64423785,
17484063,
.67383635,
15.

22571165,

.56333825,

18.
20.
19.
17.
17.
19.
16.
23.
27.
30.
39.
12.
20.
11.
23.
.82325784,
23.
19.
1@.
16.

42885474,
84584632,
o68457a7,
21528576,
35338161,
40914754,
44747174,
09800632,
68723089,
15142187,
75793372,
82224665,
36945226,
42177654,
73870867,

0811185

¥

76918944,
87671123,

1215622

¥

54



Machine Learning Lab [BCSL606]

7b. Develop a program to demonstrate the working of Polynomial Regression.

Use Auto MPG Dataset (for vehicle fuel efficiency prediction)

Polynomial Regression
Definition
Polynomial regression is a type of regression analysis used in statistics and machine learning when
the relationship between the independent variable (input) and the dependent variable (output) is not
linear. While simple linear regression models the relationship as a straight line, polynomial
regression allows for more flexibility by fitting a polynomial equation to the data.
Polynomial Regression is an extension of Linear Regression where the relationship between
variables is modeled using a polynomial equation: where n represents the degree of the polynomial.
Importance of Polynomial Regression. When the relationship between variables is non-linear and a
straight line does not fit well. Captures curved patterns in data by introducing higher-degree
polynomial terms.
Working of Polynomial Regression
1. Transform the input features by introducing polynomial terms.
2. Apply Linear Regression to fit the transformed dataset.
3.Choose the optimal polynomial degree to balance underfitting and overfitting.
Choosing the Right Degree (n)
Degree 1: Equivalent to Linear Regression.

Degree 2-3: Captures slight curves in data while preventing overfitting.
Degree >3: More flexible but risks overfitting (too much complexity).71
Applications of Polynomial Regression

» Predicting fuel efficiency based on vehicle characteristics.
» Modeling economic growth trends over time.
» Analyzing the effect of temperature on crop yields.

#import necessary libraries
import numpy as np

import matplotlib.pyplot as plt
import pandas as pd

import seaborn as sns

from sklearn.preprocessing import PolynomialFeatures

Dept. of CSE-Data Science, ATMECE, Mysuru

55



Machine Learning Lab [BCSL606]

from sklearn.linear_model import LinearRegression

from sklearn.metrics import mean_squared_error, r2_score
from sklearn.model_selection import train_test_split
import warnings

warnings.filterwarnings("ignore™)

data = pd.read_csv(r'auto-mpg.csv')

data.shape

(398, 9) .

data.head()

mpy cylinders displacement horsepower weight acceleration model year origin car name

0 180 8 070 1300 3504 120 70 1 chevrolet chevelle malibu
1 150 8 3500 165.0 3693 115 n 1 buick skylark 320
2 180 8 3180 1500 3436 110 n 1 plymouth satellte
3 160 8 3040 1500 3433 120 n 1 amc rebel sst
4 170 8 3020 1400 3449 10.5 0 1 ford torino

data.isnull().sum()

mpg
cylinders
displacement
horsepower
weight
acceleration
model wyear
origin

car name
dtype: intsa

0000000

df = data.copy()

df['horsepower'].fillna(df['horsepower].median(), inplace=True)

X =df[['horsepower]]
y = dff'mpg]
X_train, X _test,y train, y test =train_test_split(X, y, test_size=0.2, random_state=42)

Dept. of CSE-Data Science, ATMECE, Mysuru



Machine Learning Lab [BCSL606]

degree =2

poly = PolynomialFeatures(degree)
X_poly_train = poly.fit_transform(X_train)
model = LinearRegression()

model.fit(X_poly_train, y_train)

LinearRegression()

In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook.
On GitHub, the HTML representation is unable to render, please try loading this page with nbviewer.org.

plt.scatter(X, y, color="red’, label="Data’)

X_range = np.linspace(X.min(), X.max(), 100)

X_range_poly = poly.transform(X_range)

y_range_pred = model.predict(X_range_poly)

plt.plot(X_range, y_range_pred, color="red', label="Polynomial Fit")

plt.xlabel('Horsepower")

plt.ylabel'MPG’)
plt.legend()
plt.title(fPolynomial Regression (degree {degree})")
plt.show()
Polynomial Regression (degree 2)
D (=3 Data
e 8° b Polynomial Fit
40 -

35

30
)
[«
=
25
20 +
15 -1
10
v . v v v v v T
50 75 100 125 150 175 200 225
Horsepower

Dept. of CSE-Data Science, ATMECE, Mysuru

57



Machine Learning Lab [BCSL606]

Experiment 8

Develop a program to demonstrate the working of the decision tree algorithm. Use Breast
Cancer Data set for building the decision tree and applying this knowledge to classify a new

sample.

Introduction to Decision Trees
What is a Decision Tree?

A Decision Tree is a supervised machine learning algorithm used for classification and regression
tasks. It models decisions using a tree-like structure where:

Nodes represent decision points based on feature values.
Edges represent possible outcomes (branches).

Leaves represent the final decision or classification.

Decision trees work by recursively splitting data into subsets based on the most significant feature,

ensuring maximum information gain at each step.

Working of the Decision Tree Algorithm

1.  Selecting the Best Feature for Splitting

At each step, the algorithm selects the feature that best separates the data. Common methods for
choosing the best feature include:

Gini Impurity

Gini = 1- Y Pi2

Measures how often a randomly chosen element would be incorrectly classified. Entropy

(Information Gain)

Entropy =} p(X)log p(X)
Measures the uncertainty in a dataset and selects splits that maximize information gain.

Chi-Square Test Evaluates the statistical significance of the feature split.

1.  Splitting the Data:
» The dataset is divided into subsets based on the selected feature.
» The process continues recursively until:

> A stopping condition is met (e.g., pure classification, max depth).

Dept. of CSE-Data Science, ATMECE, Mysuru 58



Machine Learning Lab [BCSL606]

» The tree reaches a predefined depth.

2. Making Predictions
For a new sample, traverse the tree from the root to a leaf node. The leaf node contains the

predicted class label.

Advantages of Decision Trees
» Easy to interpret — Mimics human decision-making.
» Handles both numerical & categorical data.
» Requires little data preprocessing — No need for feature scaling.

» Works well with missing values.

Challenges of Decision Trees
» Overfitting — Deep trees may memorize noise instead of patterns.
» Bias towards dominant features — Features with more categories can lead to biased splits.

» Instability — Small data variations can lead to different trees.

Optimizing Decision Trees
1. Pruning
Pre-Pruning: Stop the tree early using conditions (e.g., min samples per split).

Post-Pruning: Remove unnecessary branches after the tree is built.

2. Setting Tree Depth

Limiting maximum depth prevents overfitting.

3. Using Ensemble Methods
Random Forest: Combines multiple trees for better generalization. Gradient

Boosting: Sequentially improves predictions.

Applications of Decision Trees
» Medical Diagnosis — Classifying diseases based on symptoms.
» Fraud Detection — Identifying fraudulent transactions.

» Customer Segmentation — Categorizing users based on behavior.

Dept. of CSE-Data Science, ATMECE, Mysuru 59



Machine Learning Lab [BCSL606]

Program

# Importing necessary libraries
import pandas as pd

import numpy as np

import matplotlib.pyplot as plt
import seaborn as sns

from sklearn.model_selection import train_test_split

from sklearn.tree import DecisionTreeClassifier, plot_tree

from sklearn.metrics import accuracy_score, classification_report, confusion_matrix

from sklearn.tree import export_graphviz
from IPython.display import Image

import pydotplus

import warnings
warnings.filterwarnings(‘ignore”)

#Load Dataset

data = pd.read_csv(r'Breast Cancer Datset)
pd.set_option(‘display.max_columns', None)

data.head()

id diagnosis radius_mean texture_ mean perimeter_mean

0 842302 M 17.99
1 842517 M 20.57
2 84300903 M 19.69
3 84348301 M 11.42
4 84358402 M 20.29
data.shape()

(569, 32)

data.info()

10.38

17.77

21.25

20.38

14.34

<class 'pandas.core.frame.DataFrame’ >

Rangelndex: 569 entries, @ to 568
Data columns (total 32 columns):

Dept. of CSE-Data Science, ATMECE, Mysuru

122.80

132.90

130.00

77.58

135.10

area_mean smoothn
1001.0
1326.0
1203.0
386.1

1297.0

60



Machine Learning Lab [BCSL606]

<class '"pandas.core.frame.DataFrame" >

RangeIndex: 569 entries, 2 to 568

Data columns (total 232 columns):

# Column Mon-Null Coumnt Dtype
a8 id 569 non-null inte4

1 diagnaosis 569 non-null abject
2 radius_mean 569 non-null floated
3 texture_mean 569 non-null Ffloatsd
4 perimeter_mean 569 non-null floated
5 area_mean 569 non-null floated
= smoothness_mean 569 non-null Ffloated
7 compactness_mean 569 non-null floated
a8 concavity_ mean 569 non-null Ffloatsd
9 concawve_points_mean 569 non-null floated
1@ symmetry_mean 569 non-null floated
11 Ffractal_dimension_mean 569 non-null Ffloated
12 radius_se 569 non-null floated
13 texture_se 569 non-null Ffloatsd
14 perimeter_se 569 non-null floated
15 area_se 569 non-null floated
16 smoothness_se 569 non-null Ffloated
17V compactness_se 569 non-null floated
18 concawvity_se 569 non-null Ffloatsd
19 concawve_points_se 569 non-null floated
28 symmetry se 569 non-null floated
21 Ffractal_dimension_se 569 non-null Ffloated
22 radius_worst 569 non-null floated
23 texture_worst 569 non-null Ffloatsd
24 perimeter_worst 569 non-null floated
25 area_worst 569 non-null floated
26 smoothness_warst 569 non-null Ffloated
2¥ compactness_worst 569 non-null floated
28 concawvity_worst 569 non-null Ffloatsd
29 concave_points_worst 569 non-null floated
38 symmetry worst 569 non-null floated
21 fractal_dimension_worst 569 non-null Ffloated
dtypes: floate4(3@), inted4(l), aobject(l)

memory UsSage:

142 .4+ KB

data.diagnosis.unique()

array(['M', 'B'], dtype=object)

#Data Preprocessing

#Data Cleaning

data.duplicated().sum()

np.int64(0)

df = data.drop(['id"], axis=1)

Dept. of CSE-Data Science, ATMECE, Mysuru

61



Machine Learning Lab [BCSL606]

df['diagnosis] = df['diagnosis].map({'M".1, 'B":0}) # Malignant:1, Benign:0

Discriptive Statistics

df.describe().T

count

diagnosis 5650

mean

0372583

radius_mean 569.0 14127292

texture mean 569.0 19289649

perimeter_ mean 5650 91969033

area_mean 569.0 654889104

smoothness mean 569.0
compactness mean 5650
concawvity mean 5690
concave_points mean 56590
symmetry mean 5650
fractal_dimension_mean 569.0
radius_se 569.0

texture se 569.0

perimeter_se 569.0

0096260
0104341
0.0BBTI9
008919
0181162
0062798
0405172
1.216853

2 866059

area_se 569.0 40337079

smoothness se 569.0
compactness_se 569.0
concawvity se 569.0
concave_points_se 569.0
symmetry se 569.0

fractal_dimension_se 569.0

0.007041
0025478
0.0321894
0.011796
0.020542

0.003795

radius_worst 569.0 16269190

texture worst 569.0 25677223

perimeter_worst 569.0 107.261213

area_worst 569.0 BB80.583128

smoothness worst 569.0
compactness worst 569.0
concavity worst 569.0
concave_points_worst 569.0

symmetry worst 5565.0

# Export the tree to DOT format

0.132369
0254265
0272188
0114806

0290076

std
0483918
3524045
4301036
24 298981
351914129
L4064
0052813
0079720
LO38803
0027414
00T 060
0277313
0551648
2021855
45491006
0002003
0017208
0030186
0.00E170
0008266
0002646
4833242
6146258
33.602542
569356953
0022832
157336
0208624
0065732

0061867

dot_data = export_graphviz(model, out_file=None,

feature_names=X_train.columns,
rounded=True, proportion=False,
precision=2, filled=True)

# Convert DOT data to a graph

graph = pydotplus.graph_from_dot_data(dot_data)

Dept. of CSE-Data Science, ATMECE, Mysuru

mmin
0000000
6. 981000
9. 710000
43 790000
1432 500000
0.,052630
0019380
0000000
0.000000
0106000
0049960
0111500
0360200
Q757000
6.802000
0001713
0002252
0.000000
0.000000
0007882
0.000895
7920000
12.020000
50.410000
185200000
0071170
0027290
0000000
0000000

0156500

25%
O.000000
11. 700000
16170000
75170000
420200000
0.085370
0.064920
0.029560
0.020310
0. 161300
Q.057 700
0.232400
0.833900
1.606000
17.850000
0.005169
0.013080
0.015090
0.007&38
0.015160
0.002248
12.010000
21.080000
84110000
515200000
0. 116600
0. 147200
0. 114500
0.064230

0.250:400

50%
0.0000:00
13370000
18 840000
B85 240000
551. 100000
0.095870
0.022630
0.0&61540
0.033500
0.179200
0.061540
0.224200

1. 108000
2.287000
24 530000
0.006380
0.020450
0.025890
0.0710930
0.018730
0.003187
14970000
25410000
a7.6&0000
S88.500000
0.131300
0.211900
0.226700
0.025930

0.282200




Machine Learning Lab [BCSL606]

# Display the graph
Image(graph.create_png())

# Visualize the Decision Tree (optional)

plt.figure(figsize=(12, 8))

plot_tree(model, filled=True, feature_names=X.columns, class_names=['Benign’, 'Mali
plt.show()

Dept. of CSE-Data Science, ATMECE, Mysuru 63



Machine Learning Lab [BCSL606]

y_pred = model.predict(X_test)

y_pred

array([®, 1, 1, 0, ¢, 1, 1, 1, 1, 8, 0, 1, 8, 0, 0, 1, 0, @0, 0, 1, O,
1J e) @} e) e) e, e) 1.' BJ @J BJ @J e) e) 1) e) 1.' e} e, 1J @J
@J e) @J e) e,’ e, 1) 1, BJ @J BJ @J e) 1) e) e,’ e, 1) 1, BJ @J
1J 1J 9) e) 1J 1, e) 1, 91 eJ 91 eJ e) GJ 1.! e) e, 1) 1, 1J 1J
eJ eJ 9) e) GJ e, e) e, 1J 1J 91 1J 1.! GJ 1.! 1J e, 9) e, 1J eJ
1, @, o, 1])

# Evaluate the model

accuracy = accuracy_score(y_test, y_pred) * 100
classification_rep = classification_report(y_test, y_pred)
# Print the results

print("Accuracy:”, accuracy)

print("Classification Report:\n", classification_rep)

Accuracy: 94.73684210526315
Classification Report:

precision recall fl-score support

(2] 0.93 Q.99 0.96 74

i U ©.97 ©.88 ©.93 43

accuracy 0.95 114
macro avg 0.95 .93 0.94 114
weighted avg 9.95 0..95 9..95 114

new = [[12.5, 19.2, 80.0, 500.0, 0.085, 0.1, 0.05, 0.02, 0.17, 0.06,
0.4,1.0,2.5, 40.0,0.006, 0.02, 0.03, 0.01, 0.02, 0.003,

16.0, 25.0, 105.0, 900.0, 0.13, 0.25, 0.28, 0.12, 0.29, 0.08]]
y_pred = model.predict(new)

# Output the prediction (0 = Benign, 1 = Malignant)

if y_pred[0] ==0:

print("Prediction: Benign™)

else:

print("Prediction: Malignant™)

Prediction: Benign

Dept. of CSE-Data Science, ATMECE, Mysuru

- - - -

L OO0

-



Machine Learning Lab [BCSL606]

Experiment 9
Develop a program to implement the Naive Bayesian classifier, considering the Olivetti Face

Data set for training. Compute the accuracy of the classifier, considering a few test data set.

The Olivetti Face Dataset is a collection of images of faces, used primarily for face recognition
tasks. The dataset contains 400 images of 40 different individuals, with 10 images per person. The
dataset was created for research in machine learning and pattern recognition, especially in the

context of facial recognition.

The Olivetti dataset provides the following key features:

*400 Images: Each image is a grayscale photo of a person's face.

*40 People: The dataset contains 40 different individuals, and each individual Has 10 different
images.

*Image Size: Each image is 64x64 pixels, resulting in 4096 features (flattened vector)  per image.

*Target Labels: Each image is associated with a label representing the individual (0 to 39)

Introduction to Naive Bayes Classification
What is Naive Bayes?

Naive Bayes is a probabilistic classification algorithm based on Bayes' Theorem with the naive
assumption that features are independent of each other. Despite this strong assumption, it performs

well in many real-world scenarios.

It is widely used for text classification, spam detection, medical diagnosis, and facial recognition.

Program

#import necessary libraries:

import numpy as np

import matplotlib.pyplot as plt

from sklearn.model_selection import train_test_split
from sklearn.naive_bayes import GaussianNB

from sklearn.metrics import accuracy_score

#Load the dataset locally

data=np.load('Olivetti_faces_offline.npz’)

Dept. of CSE-Data Science, ATMECE, Mysuru



Machine Learning Lab [BCSL606]

images=data['images’]

targets=data['target']

#Display first t faces with 1Ds

plt.figure(figsize=(10,8))

for i in range(20):
plt.subplot(4,5,i+1)
plt.imshow(images[i],cmap='gray’)

plt.title(f'ID:{targets[i]}")

plt.axis('off")

plt.tight_layout()

plt.show()
[ ag—" P P -l
Iy A h — 4 h — 4
g P o~
P — 4 Py — —

1 ==y _—
#Flatten the images for training (convert 3D to 2D)
x=images.reshape((images.shape[0],-1))
y=targets
#Train _test Split
X_train,x_test,y train,y test=train_test split(x,y,test size=0.25,stratify=y,random_state=42)
model=GaussianNB()

model.fit(x_train,y_train)

* GaussianiB

GaussianNB()

#Predict and Evalute
y_pred=model.predict(x_test)
accuracy=accuracy_score(y_test,y pred)

print(f"Accuracy:{accuracy*100:.2f}%")

Accuracy:92.00%
Dept. of CSE-Data Science, ATMECE, Mysuru

66



Machine Learning Lab [BCSL606]

Experiment 10
Develop a program to implement k-means clustering using Wisconsin Breast Cancer data set

and visualize the clustering result.
What is Clustering?

Clustering is an unsupervised machine learning technique used to group data points into clusters

based on their similarity. The goal is to identify hidden patterns or natural groupings in the data.

One of the most widely used clustering algorithms is K-Means Clustering, which divides the dataset

into K clusters, where each data point belongs to the nearest cluster center.

What is K-Means Clustering?

K-Means is a centroid-based clustering algorithm that partitions data into K clusters by minimizing

the variance within each cluster.

Working of K-Means Algorithm
1. Choose the number of clusters (K).
2. Randomly initialize K cluster centroids.

3. Assign each data point to the nearest centroid based on distance (e.g., Euclidean distance).

Update the centroids by computing the mean of all points assigned to each cluster.

5. Repeat Steps 3 and 4 until convergence (when centroids no longer change significantly).

Mathematical Representation

The objective is to minimize the sum of squared distances (SSD) between data points and their
assigned cluster centroid: where:

K = Number of clusters
Xj = Data point
ui = Centroid of cluster Ci

Choosing the Optimal Number of Clusters (K)

Selecting the right value of K is crucial. Some common methods include:

Elbow Method:

Plots the within-cluster sum of squares (WCSS) for different K values.

Dept. of CSE-Data Science, ATMECE, Mysuru

67



Machine Learning Lab [BCSL606]

The "elbow point” where WCSS stops decreasing significantly is chosen as the optimal K.

1. Silhouette Score: Measures how well-separated the clusters are. A higher score indicates better
clustering.
2. Gap Statistics:
Compares clustering performance to randomly generated reference data. Distance Metrics in K-

Means typically uses Euclidean Distance to measure how close a data point is to a centroid:

Other distance metrics include:
Manhattan

Distance  Cosine

Similarity

Mahalanobis

Distance

Advantages of K-Means Clustering

v Efficient and Scalable — Works well with large datasets.
v Easy to Implement — Simple and interpretable.

v Handles High-Dimensional Data — Can work on complex datasets.

Program

#Import necessary libraries

import numpy as np

import matplotlib.pyplot as plt

import seaborn as sns

from sklearn.datasets import load_breast_cancer
from sklearn.decomposition import PCA

from sklearn.preprocessing import StandardScaler
from sklearn.cluster import KMeans

import pandas as pd

#load the dataset

data=load_breast_cancer()

df=pd.DataFrame(data.data,columns=data.feature_names)
print(df)

Dept. of CSE-Data Science, ATMECE, Mysuru 68



Machine Learning Lab [BCSL606]

FR VTR B R ]

564
565
566
567
563

FER VT % I o ]

564
565
566
567
568

FE VTR 5 I ]

564
565
566
567
568

PWNRO

5649
565
566
567
568

mean radius
17.99
28.57
19.69
11.42
26,29
21.56
288,13
1c.68
28.68
F.76

mean compac
a.

[ I

[ BB o

mean fractal dimension

mean texture

16.38
17.77
21.25
28,38
14.34
22.39
28.25
25.08
29.33
24.54

mean perimeter
122.
132.
13a.
Fi.
135.

tness mean concawvity

27768

. B7E64
. 15998
. 28398
. 13288
. 11598
. 18348
. 18238

. 27 T7e
.B4362

a8.a7871
a8.05%667
a@.0599%
a8.05744
a@.05883

a8.05623
a8.85533
a8.05648
a.a7als
a8.05884

worst concawvity

A9
- 2416
-A45a4a
- 6869
- A6
-7
-2215
- 222
-9287
- 2020

Q0000 00000

2.3aald
2.28690
2.19746
2.24140

@.19380

8.24390
2.14480
2.99251
2.35140
8. aaaen

142.
131.
198.
14a.

47.

mean

ee. worst radius

25.
24,
23.
14.
22.

830
=1
20
58
1a
20
28
38
18
92

concave points

8@
Q9@
57a
91
54@

25.45@

23.
18.
25.

69a
cs@
748

9.4586

worst concawve poilnts

worst fractal dimension
2.1189
8 .a89c2
2.a8758

2.417

220

2.87ae78

2.a7

115

2 .86637
2.a7382e
2.12929
B.ara39

[569 rows x 3@ columns]

Dept. of CSE-Data Science, ATMECE, Mysuru

8.2654
2.1866
a.24920
2 .2575
2.1625
8.2216
2.1628
2.1418
8.26560
2.929000

mean area

lael.a

1
1

1

326.8
2e83.a
I86.1
297 .a

1475 .8

1

1

[ I T I

[ T I e

261.@
858.1
285.@
181.@

14718
L2717
L2798
. 18528
18438
. 138598
LB97Il
.B53az2
15288
. Ba0aa

worst texture

17 .33
23.41
25.53
26.58
16.567
26 .48
38.25
34.12
39.42
3a.37

PO s I ]

w

2@

DI

mean smoothness
8.
. BB4T74
18968
L 14258
18838

11848

B I B I
. 82788
. 88455
.11788
. 85263

mean symmetry
. 2415
1812
. 28659
. 2597
L1889

L1726
L1752
. 1598
. 2397
. 1587

worst symmeitry
2.a681
e.275a
2.32613
2.6638
e.2364

8.2060
2.2572
2.2218
8 .a987
2.2871

69



Machine Learning Lab [BCSL606]

#Standardize the dataset

scaler=StandardScaler()

df_scaled=scaler.fit_transform(df)

#Apply K-means clustering

k=2

kmeans=KMeans(n_clusters=k, random_state=42,n_init=10)
kmeans.fit(df_scaled)

labels=kmeans.labels_

print(labels)

[l111111111611811011000©11111111111111
PeooO0elleleloeoeolonnlloooeelellevlelel
101106011 l1l0lelelovoeelloooooooeoleolse
10000110011 06000111011010001006100001
0ePODl1o00O00loeRElleloellooneloeellenlloe
peooeleellellllelllevooeepeelelllloeellse
©looeoPlleeleovolleleololowleelelllell
1191061100000 06100000001011000006010600680
2 I~ I~ T O~ e~ I~ O~ I~ O~ O~~~ I~ O~ I O = A = e~ = I~ O~ s e At A
00101910001 00000001110000000006001101
10211001001 000600000010011000000610060286890
©1 0000000010010 00P0POOOO1O1l100000BO1®0O
01001010000 ROROE110OPOO01O00D10000BOOBOABI1
POePO1O0100ORleREPROLI11O1O01110000100R1BRO1
0001000000 0QCOERO1O1lROOOOD100DOOODOROERGROER
PO OPOOOL1I1I1I1118]

#Reduce dimensions using PCA for visualization
pca=PCA(n_components=2)
df_pca=pca.fit_transform(df scaled)

#Create a dataframe for visualization
df_visual=pd.DataFrame(df pca,columns=['PC1''PC27)
df_visual['cluster=labels

#plot the clusters

plt.figure(figsize=(8,6))
sns.scatterplot(x="PC1',y="PC2',hue=df_visual['cluster’],palette="Set1',data=df visual)
plt.title("K_means Clustering™)

plt.xlabel('PC1")

Dept. of CSE-Data Science, ATMECE, Mysuru

O P P00 RHRPROOPOPFRPRPODEOE® O L

70



Machine Learning Lab [BCSL606]

plt.ylabel('PC2")
plt.legend(title="cluster’)
plt.show()

K_means Clustering

12.5 A ®

10.0 A

7.5 T

5.0 A

2:5.7]

PC2

0.0

_2_5 <

—5.0 1

o A2 S

cluster
e O
® 1

Dept. of CSE-Data Science, ATMECE, Mysuru

15

71



