
ATME COLLEGE OF ENGINEERING
13th KM Stone, Bannur Road, Mysore - 560 028

DEPARTMENT OF COMPUTER SCIENCE ENGINEERING

(DATA SCIENCE)

(ACADEMIC YEAR 2024-25)

LABORATORY MANUAL

SUBJECT: MACHINE LEARNING LABORATORY

SUB CODE: BCSL606

Prepared By Approved By

Dr.Anitha D B

Dr. Anitha D B

Associate professor & HoD

Ms. Bhoomika A L

 Instructor

HOD, CSE-DSE

INSTITUTIONAL MISSION AND VISION

Objectives

To provide quality education and groom top-notch professionals, entrepreneurs and leaders

for different fields of engineering, technology and management.

To open a Training-R & D-Design-Consultancy cell in each department, gradually introduce

doctoral and postdoctoral programs, encourage basic & applied research in areas of social

relevance, and develop the institute as a center of excellence.

To develop academic, professional and financial alliances with the industry as well as the

academia at national and transnational levels

To develop academic, professional and financial alliances with the industry as well as the

academia at national and transnational levels.

To cultivate strong community relationships and involve the students and the staff in local

community service.

To constantly enhance the value of the educational inputs with the participation of students,

faculty, parents and industry.

Vision

Development of academically excellent, culturally vibrant, socially responsible and

globally competent human resources.

Mission

 To keep pace with advancements in knowledge and make the students competitive and

capable at the global level.

 To create an environment for the students to acquire the right physical, intellectual,

emotional and moral foundations and shine as torch bearers of tomorrow’s society.

 To strive to attain ever-higher benchmarks of educational excellence.

DEPARTMENT OF COMPUTER SCIENCE ENGINEERING AND ENGINEERING

(DATA SCIENCE &ENGINEERING)

Vision of The Department

• To impart technical education in the field of data science of excellent quality with a high

level of professional competence, social responsibility, and global awareness among the

students

Mission

• To impart technical education that is up to date, relevant and makes students competitive

and employable at global level

• To provide technical education with a high sense of discipline, social relevance in an

intellectually, ethically and socially challenging environment for better tomorrow

• Educate to the global standards with a benchmark of excellence and to kindle the spirit of

innovation.

Program Outcomes(PO)

 Engineering knowledge: Apply the knowledge of mathematics, science, engineering

fundamentals, and an engineering specialization to the solution of complex engineering

problems.

 Problem analysis: Identify, formulate, review research literature, and analyze complex

engineering problems reaching substantiated conclusions using first principles of

mathematics, natural sciences, and engineering sciences.

 Design/development of solutions: Design solutions for complex engineering problems

and design system components or processes that meet the specified needs with appropriate

consideration for the public health and safety, and the cultural, societal, and environmental

considerations.

 Conduct investigations of complex problems: Use research-based knowledge and

research methods including design of experiments, analysis and interpretation of data, and

synthesis of the information to provide valid conclusions.

 Modern tool usage: Create, select, and apply appropriate techniques, resources, and

modern engineering and IT tools including prediction and modeling to complex

engineering activities with an understanding of the limitations.

 The engineer and society: Apply reasoning informed by the contextual knowledge to

assess societal, health, safety, legal and cultural issues and the consequent responsibilities

relevant to the professional engineering practice

 Environment and sustainability: Understand the impact of the professional engineering

solutions in societal and environmental contexts, and demonstrate the knowledge of, and

need for sustainable development.

 Ethics: Apply ethical principles and commit to professional ethics and responsibilities and

norms of the engineering practice.

 Individual and team work: Function effectively as an individual, and as a member or

leader in diverse teams, and in multidisciplinary settings.

 Communication: Communicate effectively on complex engineering activities with the

engineering community and with society at large, such as, being able to comprehend and

write effective reports and design documentation, make effective presentations, and give

and receive clear instructions.

 Project management and finance: Demonstrate knowledge and understanding of the

engineering and management principles and apply these to one’s own work, as a member

and leader in a team, to manage projects and in multidisciplinary environments.

 Life-long learning: Recognize the need for, and have the preparation and ability to engage

in independent and life-long learning in the broadest context of technological change.

Program Specific Outcomes (PSOs)

 PSO1: Develop relevant programming skills to become a successful data scientist

 PSO2: Apply data science concepts and algorithms to solve real world problems of the

society

 PSO3: Apply data science techniques in the various domains like agriculture, education

healthcare for better society

Program Educational Objectives (PEOs):

PEO1: Develop cutting-edge skills in data science and its related technologies, such as machine

learning, predictive analytic, and data engineering.

PEO2: Design and develop data-driven solutions to real-world problems in a business, research,

or social environment.

PEO3: Apply data engineering and data visualization techniques to discover, investigate, and

interpret data.

PEO4: Demonstrate ethical and responsible data practices in problem solving

PEO5: Integrate fields within computer science, optimization, and statistics to develop better

solutions

Machine Learning lab Semester 6

Course Code BCSL606 CIE Marks 50

Teaching Hours/Week (L:T:P: S) 0:0:2:0 SEE Marks 50

Credits 01 Exam Hours 100

Examination type (SEE) Practical

Course objectives:

1. To become familiar with data and visualize univariate, bivariate, and multivariate data using

statistical techniques and dimensionality reduction.

2. To understand various machine learning algorithms such as similarity-based learning, regression,

decision trees, and clustering.

3. To familiarize with learning theories, probability-based models and developing the skills

required for decision-making in dynamic environments.

Sl.NO Experiments

1

Develop a program to create histograms for all numerical features and analyze the distribution of each

feature. Generate box plots for all numerical features and identify any outliers. Use California

Housing dataset.

Book 1: Chapter 2

2

Develop a program to Compute the correlation matrix to understand the relationships between pairs

of features. Visualize the correlation matrix using a heatmap to know which variables have strong

positive/negative correlations. Create a pair plot to visualize pairwise relationships between features.

Use California Housing dataset.

Book 1: Chapter 2

3

Develop a program to implement Principal Component Analysis (PCA) for reducing the

dimensionality of the Iris dataset from 4 features to 2.

Book 1: Chapter 2

4

For a given set of training data examples stored in a .CSV file, implement and demonstrate the Find-

S algorithm to output a description of the set of all hypotheses consistent with the training examples.

Book 1: Chapter 3

5

Develop a program to implement k-Nearest Neighbour algorithm to classify the randomly generated

100 values of x in the range of [0,1]. Perform the following based on dataset generated.

Label the first 50 points {x1,……,x50} as follows: if (xi ≤ 0.5), then xi ∊ Class1, else xi ∊ Class1

Classify the remaining points, x51,……,x100 using KNN. Perform this for k=1,2,3,4,5,20,30

Book 2: Chapter – 2

6

Implement the non-parametric Locally Weighted Regression algorithm in order to fit data

points. Select appropriate data set for your experiment and draw graphs

Book 1: Chapter – 4

7

Develop a program to demonstrate the working of Linear Regression and Polynomial Regression.

Use Boston Housing Dataset for Linear Regression and Auto MPG Dataset (for vehicle fuel

efficiency prediction) for Polynomial Regression.

Book 1: Chapter – 5

8

Develop a program to demonstrate the working of the decision tree algorithm. Use Breast Cancer

Data set for building the decision tree and apply this knowledge to classify a new sample.

Book 2: Chapter – 3

9

Develop a program to implement the Naive Bayesian classifier considering Olivetti Face Data set

for training. Compute the accuracy of the classifier, considering a few test data sets.

Book 2: Chapter – 4

10

Develop a program to implement k-means clustering using Wisconsin Breast Cancer data set and

visualize the clustering result.

Book 2: Chapter – 4

Sl.NO Experiments

Page No.

1

Develop a program to create histograms for all numerical features and analyze the

distribution of each feature. Generate box plots for all numerical features and

identify any outliers. Use California Housing dataset.

1-15

2

Develop a program to Compute the correlation matrix to understand the

relationships between pairs of features. Visualize the correlation matrix using a

heatmap to know which variables have strong positive/negative correlations. Create

a pair plot to visualize pairwise relationships between features. Use California

Housing dataset.

16-20

3

Develop a program to implement Principal Component Analysis (PCA) for

reducing the dimensionality of the Iris dataset from 4 features to 2.

21-28

4

For a given set of training data examples stored in a .CSV file, implement and

demonstrate the Find-S algorithm to output a description of the set of all

hypotheses consistent with the training examples.

29-32

5

Develop a program to implement k-Nearest Neighbour algorithm to classify the

randomly generated 100 values of x in the range of [0,1]. Perform the following

based on dataset generated.

1. Label the first 50 points {x1,……,x50} as follows: if (xi ≤ 0.5), then xi ∊
Class1, else xi ∊ Class1

2. Classify the remaining points, x51,……,x100 using KNN. Perform this for

k=1,2,3,4,5,20,30

33-40

6

Implement the non-parametric Locally Weighted Regression algorithm in

order to fit data points. Select appropriate data set for your experiment and draw

graphs

41-49

7

Develop a program to demonstrate the working of Linear Regression and

Polynomial Regression. Use Boston Housing Dataset for Linear Regression and

Auto MPG Dataset (for vehicle fuel efficiency prediction) for Polynomial

Regression.

50-57

8

Develop a program to demonstrate the working of the decision tree algorithm.

Use Breast Cancer Data set for building the decision tree and apply this

knowledge to classify a new sample.

58-64

9

Develop a program to implement the Naive Bayesian classifier considering

Olivetti Face Data set for training. Compute the accuracy of the classifier,

considering a few test data sets.

65-66

10
Develop a program to implement k-means clustering using Wisconsin Breast

Cancer data set and visualize the clustering result.
67-71

Machine Learning Lab [BCSL606]

Dept. of CSE-Data Science, ATMECE, Mysuru 1

Experiment 1

Develop a program to create histograms for all numerical features and analyze the

distribution of each feature. Generate box plots for all numerical features and identify any

outliers. Use California Housing dataset.

Introduction

Data visualization is a crucial step in exploratory data analysis (EDA), enabling data scientists to

understand the distribution and spread of numerical features. Two widely used visualization

techniques for analyzing numerical data are histograms and box plots. These plots help identify

patterns, trends, and potential anomalies in datasets, making them valuable tools for data

preprocessing and feature engineering.

Distribution

In statistics, distribution refers to how data values are spread across a range. Understanding the

distribution of numerical features in a dataset helps in identifying patterns, detecting outliers, and

making informed decisions. The two primary ways to visualize distribution are histograms and

box plots.

1. Histograms

A histogram is a graphical representation of the distribution of a numerical feature. It divides the

data into bins (intervals) and counts the number of observations in each bin.

Importance of Histograms:

 Detecting Skewness: A histogram can reveal whether a distribution is symmetric, left-

skewed, right Skewed.

 Identifying Modal Patterns: Some distributions are unimodal (single peak), while others

may be bimodal or multimodal.

 Assessing Normality: If the histogram resembles a bell curve, the data may be normally distributed.

 Understanding Data Spread: Helps in detecting whether data is evenly distributed or

concentrated in certain regions.

2. Box Plots (Box-and-Whisker Plots)

A box plot provides a summary of the distribution of numerical data using five key statistics:

Machine Learning Lab [BCSL606]

Dept. of CSE-Data Science, ATMECE, Mysuru 2

 Minimum: The smallest value (excluding outliers).

 First Quartile (Q1): 25th percentile.

 Median (Q2): 50th percentile (middle value).

 Maximum: The largest value (excluding outliers).

 Outliers are detected using the Interquartile Range (IQR) rule: Outliers = Values outside Q1 -

1.5 * IQR or Q3 + 1.5 * IQR.

Importance of Box Plots

 Identifying Outliers: Points lying outside the whiskers indicate potential outliers.

 Comparing Distributions: Box plots allow easy comparison of multiple features or groups.

 Understanding Skewness: If the median is closer to one end, the distribution may be skewed.

 Measuring Data Spread: The length of the box and whiskers provides insight into data variability.

Outlier

An outlier is an observation or data point that significantly differs from the rest of the data in a dataset.

Outliers can skew statistical analyses and distort the interpretation of results, making it important to

identify and understand them.

Key Characteristics of Outliers:

 Deviation from the Norm:

 Outliers exhibit values that deviate substantially from the typical or expected range of values in a

dataset.

 Impact on Statistical Measures:

 Outliers can heavily influence summary statistics such as the mean and standard deviation, leading

to misleading representations of central tendency and dispersion.

 Identification:

 Outliers are often identified through statistical methods or visual inspection of graphs; such as box

plots or scatter plots.

 Causes of Outliers:

 Outliers can arise from measurement errors, data entry mistakes, natural variability, or genuine

extreme observations in the population.

Machine Learning Lab [BCSL606]

Dept. of CSE-Data Science, ATMECE, Mysuru 3

Ways to Identify Outliers:

 Visual Inspection:

Plotting the data using graphs like box plots, scatter plots, or histograms can reveal observations

that stand out from the majority.

 Statistical Methods:

Z-Score: Identifying data points with z-scores beyond a certain threshold (e.g., |z| > 3) as

potential outliers.

Z = (x-µ)/σ

 Interquartile Range (IQR): Using the IQR to identify observations outside a defined range.

IQR = Q3 - Q1

LF = Q1 - (1.5*IQR)

UF = Q3 + (1.5*IQR)

Dealing with Outliers:

Retaining Outliers:

 In some cases, it may be appropriate to retain outliers, especially if they represent genuine extreme

values in the data.

 Retaining outliers allows for an inclusive analysis, considering the full range of variability in

the dataset.

Removing Outliers:

 Removing outliers involves excluding extreme values from the dataset before analysis.

 Common methods include using statistical criteria (e.g., Z-scores, IQR) to identify and exclude

observations beyond a certain threshold.

 Reduces the impact of extreme values on summary statistics and model results

 Loss of information: Excluding outliers may discard meaningful data points.

Transformation:

 Transformation involves applying mathematical functions to the data to modify its distribution

and reduce the impact of outliers.

 Common transformations include logarithmic, square root, or Cube root transformations.

Machine Learning Lab [BCSL606]

Dept. of CSE-Data Science, ATMECE, Mysuru 4

Application in Data Analysis

 Histograms and box plots play a crucial role in:

 Data Cleaning: Detecting anomalies and erroneous values.

 Feature Engineering: Identifying transformations needed for better model performance.

 Understanding Dataset Characteristics: Providing insight into feature distributions,which

informs modeling decisions.

About Datasets

Context

This is the dataset used in the second chapter of Aurélien Géron's recent book 'Hands-On Machine

learning with Scikit-Learn and TensorFlow'. It serves as an excellent introduction to implementing

machine learning algorithms because it requires rudimentary data cleaning, has an easily understandable

list of variables and sits at an optimal size between being to toyish and too cumbersome.

The data contains information from the 1990 California census. So although it may not help you with

predicting current housing prices like the Zillow Zestimate dataset, it does provide an accessible

introductory dataset for teaching people about the basics of machine learning.

Content

The data pertains to the houses found in a given California district and some summary stats about

them based on the 1990 census data. Be warned the data aren't cleaned so there are some

preprocessing steps required! The columns are as follows, their names are pretty self explanitory:

longitude latitude

housing_median_age

total_rooms total_bedrooms

population households

median_income

median_house_value(Target)

ocean_proximity

Machine Learning Lab [BCSL606]

Dept. of CSE-Data Science, ATMECE, Mysuru 5

Import Necessary Libraries

Import all libraries which are required for our analysis, such as Data Loading, Statistical analysis,

Visualizations, Data Transformations, Merge and Joins, etc.

Longitude: The dataset contains houses located in specific regions (possibly coastal areas or urban zones)

as indicated by the bimodal peaks. Houses are not uniformly distributed across all longitudes.

Latitude: Similar to longitude, the latitude distribution shows houses concentrated in particular zones.

This suggests geographic clustering, possibly around major cities.

Housing Median Age: Most houses are relatively older, with the majority concentrated in a specific range

of median ages. This might imply that housing development peaked during certain decades.

Total Rooms: The highly skewed distribution shows most houses have a lower total number of rooms. A few

properties with a very high number of rooms could represent outliers (e.g., mansions or multi-unit

buildings).

Median Income: Most households fall within a low-to-mid income bracket. The steep decline after the

peak suggests a small proportion of high-income households in the dataset.

Most areas in the dataset have a relatively low population. However, there are some highly populated

areas, as evidenced by the long tail. These may represent urban centers.

Median House Value: The sharp peak at the end of the histogram suggests that house prices in the dataset

are capped at a maximum value, which could limit the variability in predictions.

Population: Most areas in the dataset have a relatively low population. However, there are some highly

populated areas, as evidenced by the long tail. These may represent urban centers.

Median House Value: The sharp peak at the end of the histogram suggests that house prices in the dataset

are capped at a maximum value, which could limit the variability in predictions.

Outlier Analysis for Each Feature:

1. Total Rooms: There are numerous data points above the upper whisker, indicating a significant number

of outliers.

Machine Learning Lab [BCSL606]

Dept. of CSE-Data Science, ATMECE, Mysuru 6

2. Total Rooms: There are numerous data points above the upper whisker, indicating a significant

number of outliers.

3. Total Bedrooms: Numerous data points above the upper whisker indicate a significant presence

of outliers with very high total_bedrooms values.

1. Population: There are numerous outliers above the upper whisker, with extreme population

values reaching beyond 35,000.

2. Households There is a significant number of outliers above the upper whisker. These values

represent areas with an unusually high number of households.

3. Median Income: There are numerous data points above the upper whisker, marked as circles.

These are considered potential outliers.

4. Median House Value: A small cluster of outliers is visible near the maximum value of 500,000.

General Actions for Outlier Handling:

 Transformation: Apply log or square root transformations to reduce skewness for features like

total rooms, population, and median income.

 Removal: If outliers are due to data errors or are not relevant, consider removing them.

Program

#Import Necessary libraries :

import numpy as np

import pandas as pd

import matplotlib.pyplot as plt

import seaborn as sns

#import warnings

warnings.filterwarnings(‘ignore’)

df = pd.read_csv("C:/Users/student/Desktop/4AD22CD042/housing.csv")

df.head()

Machine Learning Lab [BCSL606]

Dept. of CSE-Data Science, ATMECE, Mysuru 7

df.info()

df.nunique()

Machine Learning Lab [BCSL606]

Dept. of CSE-Data Science, ATMECE, Mysuru 8

#Data Cleaning

df.isnull().sum()

df.duplicated().sum()

df['total_bedrooms'].median()

#Handling missing Values

df['total_bedrooms'].fillna(df['total_bedrooms'].median(),inplace=True)

#Feature Engineering

for i in df.iloc[:,2:7]:

df[i] = df[i].astype('int')

df.head()

Machine Learning Lab [BCSL606]

Dept. of CSE-Data Science, ATMECE, Mysuru 9

#Discriptive Statistics

df.describe().T

Numerical = df.select_dtypes(include=[np.number]).columns

print(Numerical)

#Histogram of all Numerical Features

for col in Numerical:

plt.figure(figsize=(10, 6))

df[col].plot(kind='hist', title=col, bins=60, edgecolor='black') plt.ylabel('Frequency')

plt.show()

Machine Learning Lab [BCSL606]

Dept. of CSE-Data Science, ATMECE, Mysuru 10

Machine Learning Lab [BCSL606]

Dept. of CSE-Data Science, ATMECE, Mysuru 11

#Box plot of all numerical Features

for col in Numerical:

Machine Learning Lab [BCSL606]

Dept. of CSE-Data Science, ATMECE, Mysuru 12

plt.figure(figsize=(6, 6))

sns.boxplot(df[col], color='blue')

plt.title(col)

plt.ylabel(col)

plt.show()

Machine Learning Lab [BCSL606]

Dept. of CSE-Data Science, ATMECE, Mysuru 13

Machine Learning Lab [BCSL606]

Dept. of CSE-Data Science, ATMECE, Mysuru 14

Machine Learning Lab [BCSL606]

Dept. of CSE-Data Science, ATMECE, Mysuru 15

Machine Learning Lab [BCSL606]

Dept. of CSE-Data Science, ATMECE, Mysuru 16

Experiment 2

Develop a program to Compute the correlation matrix to understand the relationships

between pairs of features. Visualize the correlation matrix using a heatmap to know which

variables have strong positive/negative correlations. Create a pair plot to visualize pairwise

relationships between features. Use California Housing dataset.

Introduction

In data analysis and machine learning, understanding the relationships between features is crucial

for feature selection, multicollinearity detection, and data interpretation. Correlation and pair plots

are two essential techniques to analyze these relationships.

Correlation Matrix

A correlation matrix is a table showing correlation coefficients between variables. It helps

in understanding how strongly features are related to each other.

Types of Correlation

 Positive Correlation (+1 to 0): As one feature increases, the other also increases.

 Negative Correlation (0 to -1): As one feature increases, the other decreases.

 No Correlation (0): No linear relationship between the variables.

Why Should You Use a Correlation Matrix?

 Identifies relationships between features.

 Helps in detecting multicollinearity in machine learning models.

 Highlights redundant features that may not add value to the model.

In data analysis and machine learning, understanding the relationships between features is

crucial for feature selection, multicollinearity detection, and data interpretation. Correlation

and pair plots are two essential techniques to analyze these relationships.

1. Correlation Matrix

A correlation matrix is a table showing correlation coefficients between variables.

It helps in understanding how strongly features are related to each other.

Types of Correlation

 Positive Correlation (+1 to 0): As one feature increases, the other also increases.

Machine Learning Lab [BCSL606]

Dept. of CSE-Data Science, ATMECE, Mysuru 17

 Negative Correlation (0 to -1): As one feature increases, the other decreases.

 No Correlation (0): No linear relationship between the variables.

Why Should You Use a Correlation Matrix?

 Identifies relationships between features.

 Helps in detecting multicollinearity in machine learning models.

 Highlights redundant features that may not add value to the model.

Heatmap for Correlation Matrix:

A heatmap is a visual representation of the correlation matrix. It uses color coding to indicate the

strength of relationships between variables.

Benefits of Using a Heatmap

 Easy to interpret relationships between features.

 Quickly identifies highly correlated variables.

 Helps in feature selection and data preprocessing

3.Pair Plot

A pair plot (also known as a scatterplot matrix) is a collection of scatter plots for every pair of

numerical variables in the dataset. It helps in visualizing relationships between variables.

Why Use a Pair Plot?

 Shows the distribution of individual features along the diagonal.

 Displays relationships between features using scatter plots.

 Helps in identifying clusters, trends, and potential outliers.

Summary Statistics Explanation:

The summary statistics table provides key percentiles and other descriptive metrics for each

numerical feature:

-**25% (First Quartile - Q1):** This represents the value below which 25% of the data

falls.

It helps in understanding the lower bound of typical data values.

- **50% (Median - Q2):** This is the middle value when the data is sorted.

- It provides the central tendency of the dataset.

Machine Learning Lab [BCSL606]

Dept. of CSE-Data Science, ATMECE, Mysuru 18

- **75% (Third Quartile - Q3):** This represents the value below which 75% of the data

falls.

- It helps in identifying the upper bound of typical values in the dataset.

- These percentiles are useful for detecting skewness, data distribution, and identifying

potential outliers (values beyond Q1 - 1.5*IQR or Q3 + 1.5*IQR).

Program

#import necessary Libraries

import numpy as np

import pandas as pd

import matplotlib.pyplot as plt

import seaborn as sns

from sklearn.datasets import fetch_california_housing

#load California Housing dataset

df = fetch_california_housing()

Machine Learning Lab [BCSL606]

Dept. of CSE-Data Science, ATMECE, Mysuru 19

#convert to Dataframe

df = pd.DataFrame(data.data, columns=data.feature_names)

df['Target'] = data.target

df.head()

Correlation Matrix

plt.figure(figsize=(10, 6))

corr_matrix = df.corr()

sns.heatmap(corr_matrix, annot=True, cmap='coolwarm', fmt='.2f')

plt.title("Feature correlatin heatmap")

plt.show()

Machine Learning Lab [BCSL606]

Dept. of CSE-Data Science, ATMECE, Mysuru 20

#pairplot to analyze feature relationships

sns.pairplot(df[['MedInc', 'HouseAge', 'AveRooms', 'Target']], diag_kind='kde')

plt.show()

Machine Learning Lab [BCSL606]

Dept. of CSE-Data Science, ATMECE, Mysuru 21

Experiment 3

Develop a program to implement Principal Component Analysis (PCA) for reducing the

dimensionality of the Iris dataset from 4 features to 2.

Introduction to Principal Component Analysis (PCA)

What is PCA?

Principal Component Analysis (PCA) is a dimensionality reduction technique used to transform a

high-dimensional dataset into a lower-dimensional space while retaining as much variance as possible.

It is an unsupervised learning method commonly used in machine learning and data visualization.

Importance of PCA

 Reduces computational complexity by lowering the number of features.

 Helps in visualizing high-dimensional data.

 Removes redundant or correlated features, improving model performance. Reduces overfitting

by eliminating noise in the data.

How Does PCA Work?

PCA follows these key steps:

1. Standardization: The data is normalized so that all features have a mean of zero and a standard

deviation of one.

2. Compute the Covariance Matrix: This step helps in understanding

how different features relate to each other.

3. Eigenvalue & Eigenvector Calculation: Eigenvectors represent the direction of the new

feature axes, and eigenvalues determine the importance of these axes.

4. Selecting Principal Components: The eigenvectors corresponding to the highest eigenvalues

are chosen to form the new feature space.

5. Transforming Data: The original dataset is projected onto the new feature space with reduced

dimensions.

Applying PCA to the Iris Dataset

The Iris dataset consists of 4 numerical features (sepal length, sepal width, petal length,

petal width) used to classify flowers into 3 species (Setosa, Versicolor, and Virginica).

 Goal: Reduce the 4-dimensional feature space to 2 principal components while

Machine Learning Lab [BCSL606]

Dept. of CSE-Data Science, ATMECE, Mysuru 22

retaining most of the variance.

 Benefit: Enables 2D visualization of the dataset, making it easier to interpret classification

results.

Understanding PCA Output

1. Variance Explained by Each Principal Component

PCA provides explained variance ratios, which indicate how much information each principal

component retains.

 If PC1 explains 70% and PC2 explains 20%, then the first two principal components capture

90% of the variance in the dataset.

Scatter Plot of PCA-Reduced Data

A 2D scatter plot of PCA-transformed features allows us to visualize how well PCA

separates different species in the Iris dataset.

Impact of PCA on Classification

 If PCA preserves most of the variance, classification algorithms (e.g., k-NN, SVM)

can achieve similar performance with fewer features.

 If too much information is lost, classification accuracy may decrease.

Benefits of PCA

 Feature Reduction: Reduces the number of variables without significant loss of information.

 Noise Reduction: Removes redundant or less informative features.

 Improved Visualization: Enables easier interpretation of high-dimensional data.

Better Model Performance: Enhances efficiency in training machine learning models.

Explanation of Features in the Iris Dataset

The Iris dataset consists of 4 features, which represent different physical characteristics of iris

flowers:

Sepal Length (cm)

Sepal Width (cm)

Petal Length (cm)

Petal Width (cm)

Machine Learning Lab [BCSL606]

Dept. of CSE-Data Science, ATMECE, Mysuru 23

These features were chosen because they effectively differentiate between the three iris

species (Setosa, Versicolor, and Virginica).

In the 3D visualizations, we select three features for plotting, which are:

Feature 1 → Sepal Length

Feature 2 → Sepal Width

Feature 3 → Petal Length

These features are chosen arbitrarily for visualization, but all four features are used in the PCA

computation. Why is the Iris Dataset Important?

The Iris dataset is a benchmark dataset in machine learning because:

It is small yet diverse, making it easy to analyze.

It has clearly separable classes, which makes it ideal for classification tasks.

It is preloaded in Scikit-learn, making it accessible for learning and experimentation.

Since the dataset contains three classes (Setosa, Versicolor, and Virginica), PCA helps visualize

how well the classes can be separated in a lower-dimensional space.

Program

#import necessary libraries:

from sklearn.datasets import load_iris

from sklearn.decomposition import PCA

from sklearn.preprocessing import StandardScaler

import pandas as pd

import matplotlib.pyplot as plt

#load the iris dataset:

iris = load_iris()

features = iris.data

target = iris.target

print(iris.target_names)

iris_df = pd.DataFrame(data=features,columns=['sepal length','sepal width','petal length','petal

width'])

iris_df['Target']=target

Machine Learning Lab [BCSL606]

Dept. of CSE-Data Science, ATMECE, Mysuru 24

iris_df.head()

#Standardize the features

scaler=StandardScaler()

features_standardized=scaler.fit_transform(features)

features_standardized=StandardScaler().fit_transform(features)

iris_std_df=pd.DataFrame(data=features_standardized,columns=['sepal length','sepal width','petal

length','petal width'])

iris_std_df['Target']=target

iris_std_df.head()

Machine Learning Lab [BCSL606]

Dept. of CSE-Data Science, ATMECE, Mysuru 25

#create a dataframe for the reduced data

pca=PCA(n_components=2)

features_pca=pca.fit_transform(features_standardized)

pca_df=pd.DataFrame(data=features_pca,columns=["Principal Component1","Principal

Component2"])

pca_df["Target"]=target

print(pca_df)

#Visualize the results plt.scatter (x,y,label,,,)

scaler=StandardScaler()

features_standardized=scaler.fit_transform(features)

features_standardized=StandardScaler().fit_transform(features)

iris_std_df=pd.DataFrame(data=features_standardized,columns=['sepal length','sepal width','petal

length','petal width'])

iris_std_df['Target']=target

iris_std_df.head()

Machine Learning Lab [BCSL606]

Dept. of CSE-Data Science, ATMECE, Mysuru 26

plt.figure(figsize=(8,6))

for label,color in zip(iris.target_names,["red","green","blue"]):

plt.scatter(

pca_df.loc[pca_df["Target"]==list(iris.target_names).index(label),"Principal Component1"],

pca_df.loc[pca_df["Target"]==list(iris.target_names).index(label),"Principal Component2"],

label=label,color=color,alpha=0.7

)

plt.xlabel("Principal Component1",fontsize=12)

plt.ylabel("Principal Component2",fontsize=12)

plt.title('PCA on Iris Dataset',fontsize=14)

plt.legend(title="species")

plt.grid()

plt.show()

Machine Learning Lab [BCSL606]

Dept. of CSE-Data Science, ATMECE, Mysuru 27

colors=['red','green','blue']

labels=iris.target_names

plt.figure(figsize=(8,6))

for i in range (len(colors)):

plt.scatter(features_pca[target==i,0],features_pca[target==i,1],color=colors[i],label=labels[i],alph

a=0.7)

plt.xlabel("Principal Component1")

plt.ylabel("Principal Component2")

plt.title('PCA on Iris Dataset')

plt.legend()

plt.grid()

plt.show()

Machine Learning Lab [BCSL606]

Dept. of CSE-Data Science, ATMECE, Mysuru 28

#Explaines Variance by each principal component

explained_variance = pca.explained_variance_ratio_

print("principal component1:", explained_variance[0])

print("principal component2:", explained_variance[1])

print("total variance retained:",sum(explained_variance))

Machine Learning Lab [BCSL606]

Dept. of CSE-Data Science, ATMECE, Mysuru 29

Experiment 4

For a given set of training data examples stored in a .CSV file, implement and demonstrate

the Find-S algorithm to output a description of the set of all hypotheses consistent with the

training examples.

Introduction to the Find-S Algorithm

What is the Find-S Algorithm?

The Find-S algorithm is a supervised learning algorithm used in concept learning to find the

most specific hypothesis that is consistent with a given set of positive training examples. It is one

of the simplest algorithms for learning from examples in a hypothesis space.

Importance of Find-S Algorithm

 Helps in understanding how hypotheses are learned from training data.

 Provides a structured way to generalize from specific instances.

 Forms the foundation for more advanced machine learning algorithms.

Working of the Find-S Algorithm

The Find-S algorithm follows these steps:

Initialize the Hypothesis: Start with the most specific hypothesis (i.e., all attributes set to the most

restrictive value).

Iterate Through Each Training Example:

 If the example is positive (output = "Yes"), update the hypothesis:

 Replace any attribute value in the hypothesis that is not consistent with the example with a

more general value (?).

If the example is negative (output = "No"), ignore it.

1. Final Hypothesis:

After processing all positive examples, the final hypothesis represents the most

specific generalization of the training data.

Machine Learning Lab [BCSL606]

Dept. of CSE-Data Science, ATMECE, Mysuru 30

Understanding the Output Hypothesis

1. Initial Hypothesis

 The algorithm starts with the most specific hypothesis:

 h = ("Ø", "Ø", "Ø", "Ø") (empty hypothesis).

1. Iterative Learning Process

 It generalizes step by step based on the positive training examples.

 Attributes that differ among positive examples are replaced with ? (wildcard).

Final Hypothesis

 The final hypothesis is the most specific generalization covering all positive examples.

 It represents a logical rule derived from the dataset.

The algorithm will generate the most specific hypothesis that covers all positive instances.

Limitations of Find-S

 Only considers positive examples: It ignores negative examples, which

may lead to an incomplete hypothesis.

 Cannot handle noise or missing data: Works only when training data is perfect.

Finds only one hypothesis:

 Does not provide alternative consistent hypotheses.

 Understanding Find-S Algorithm and Hypothesis Concept

 The Find-S algorithm is a simple machine-learning algorithm used in concept learning. It

finds the most specific hypothesis that is consistent with all positive examples in a given

training dataset. The algorithm assumes.

 The target concept is represented in a binary classification (yes/no, true/false, etc.).

 The hypothesis space uses conjunctive attributes (each attribute in a hypothesis must match

exactly). There is at least one positive example in the dataset.

Machine Learning Lab [BCSL606]

Dept. of CSE-Data Science, ATMECE, Mysuru 31

#import necessary libraries

import pandas as pd

#Read the csv file

data = pd.read_csv(r'training_data.csv')

print(data)

#write/create user defined function for find S algorithm

def find_s_algorithm(data):

"""Implements the Find_S algorithm to find the most specific hypothesis"""

#Extract feature columns and target column

attributes=data.iloc[:,:-1].values

target=data.iloc[:,-1].values

#Initialize hypothesis with first positive example

for i in range (len(target)):

if target[i]=="Yes":

hypothesis=attributes[i].copy()

break

Machine Learning Lab [BCSL606]

Dept. of CSE-Data Science, ATMECE, Mysuru 32

#update hypothesis based on other positive examples

for i in range (len(target)):

if target[i]=="Yes":

for j in range(len(hypothesis)):

if hypothesis[j]!=attributes[i][j]:

hypothesis[j]='?'

print(i,hypothesis)

return hypothesis

#Run/Call Find-S-Algorithm

final_hypothesis = find_s_algorithm(data)

#Print the learned hypothesis

print("most specific hypothesis:",final_hypothesis)

Machine Learning Lab [BCSL606]

Dept. of CSE-Data Science, ATMECE, Mysuru 33

Experiment 5

Develop a program to implement k-Nearest Neighbour algorithm to classify the randomly

generated 100 values of x in the range of [0,1]. Perform the following based on dataset

generated.

1. Label the first 50 points {x1,……,x50} as follows: if (xi ≤ 0.5), then xi ε Class1, else xi

ε Class2

2. Classify the remaining points, x51,……,x100 using KNN. Perform this for

k=1,2,3,4,5,20,30

Introduction to k-Nearest Neighbors (k-NN)

What is k-NN?

 The k-Nearest Neighbors (k-NN) algorithm is a supervised learning algorithm used for

both classification and regression. It classifies a data point based on the majority class among

its nearest neighbors.

 It is also called a lazy learner algorithm because it does not learn from the training set

immediately instead it stores the dataset and at the time of classification, it performs an action

on the dataset.

Importance of k-NN

 Simple and effective for classification tasks.

 Non-parametric (makes no assumptions about the data distribution).

 Handles multi-class classification with ease.

How k-NN Works?

The k-NN algorithm follows these steps:

1. Choose the value of k (number of nearest neighbors).

2. Compute the distance between the test sample and all training samples using a distance metric (e.g.,

Euclidean distance).

3. Select the k nearest neighbors (data points with the smallest distance to the test sample).

4. Assign the majority class among the k neighbors to the test sample.

Machine Learning Lab [BCSL606]

Dept. of CSE-Data Science, ATMECE, Mysuru 34

Working of the k-NN Algorithm Choose a Value for k:

 A small k (e.g., k=1) makes the model sensitive to noise and results in high variance.

 A large k (e.g., k=30) smooths the decision boundary but may lead to high bias.

 The optimal k is usually found by cross-validation.

Compute Distance Between Data Points: The algorithm relies on a distance metric to determine

similarity between data points. Common distance measures include:

`- Euclidean Distance (Most commonly used)

Manhattan Distance

Minkowski Distance

 `Cosine Similarity** (Used in text-based applications)

 The most common method is Euclidean Distance:

 d =√ [(x2 – x1)2 + (y2 – y1)2]

3. Decision Rule for Classification

 Majority Voting: The most common class among the k neighbors determines the predicted

class.

Weighted Voting: Closer neighbors have higher influence on the prediction

than farther neighbors.

Dataset Generation and Classification Task

Step 1: Generate 100 Random Points in the Range [0,1]

 The dataset consists of 100 random values of x uniformly distributed between 0 and 1.

Step 2: Assign Labels to the First 50 Points

 The first 50 points (x₁, x₂, ..., x₅₀) are labeled as:

Machine Learning Lab [BCSL606]

Dept. of CSE-Data Science, ATMECE, Mysuru 35

 Class 1 if x_i <= 0.5

 Class 2 if x_i > 0.5

Step 3: Classify Remaining Points (x₅₁, ..., x₁₀₀) using k-NN

 The k-NN algorithm is used to classify the next 50 points based on the first 50 labeled

points.

Step 4: Experiment with Different k Values

 Classification is performed for multiple values of k:

 k = 1, 2, 3, 4, 5, 20, 30

 Observing how different values of kaffect classification accuracy and decision

boundaries.

Bias-Variance Tradeoff in k-NN

 Smaller k values (e.g., k=1) → Low bias, high variance (more flexible but prone to noise).

 Larger k values (e.g., k=20, 30) → High bias, low variance (less flexible but

smoother decision boundary).

Advantages of k-NN

 Simple and easy to implement.

 No training phase—all computation happens during prediction.

 Works well for multi-class classification problems.

 Can model complex decision boundaries when k is appropriately chosen.

Limitations of k-NN

 Computationally expensive for large datasets.

 Performance depends on the choice of k.

 Sensitive to irrelevant or redundant features.

 Memory-intensive since all training data needs to be stored.

#import Necessary Libraries

import numpy as np

import pandas as pd

from sklearn.model_selection import train_test_split

Machine Learning Lab [BCSL606]

Dept. of CSE-Data Science, ATMECE, Mysuru 36

from sklearn.neighbors import KNeighborsClassifier

from sklearn.metrics import accuracy_score

import warnings

warnings.filterwarnings('ignore')

Generate dataset

values=np.random.rand(100)

labels =[]

for i in values[:50]:

if i<=0.5:

labels.append('Class1')

else:

labels.append('Class2')

labels += [None]*50

print(labels)

data = {

"Point": [f"x{i+1}"for i in range(100)],

"Value": values,

"Label": labels

}

print(data)

type(data)

df=pd.DataFrame(data)

df.head()

Machine Learning Lab [BCSL606]

Dept. of CSE-Data Science, ATMECE, Mysuru 37

Machine Learning Lab [BCSL606]

Dept. of CSE-Data Science, ATMECE, Mysuru 38

#split data into labeled and unlabeled

labeled_df=df[df["Label"].notna()]

x_train=labeled_df[["Value"]]

y_train=labeled_df["Label"]

unlabeled_df=df[df["Label"].isna()]

X_test=unlabeled_df[["Value"]]

#Generate true lsbels for testing (for accuracy calculation)

true_labels=["Class1" if x<=0.5 else "Class2" for x in values[50:]]

#Perform KNN classification for different values of K

k_values=[1,2,3,4,5,20]

results={}

accuracies={}

for k in k_values:

knn=KNeighborsClassifier(n_neighbors=k)

knn.fit(x_train,y_train)

predictions=knn.predict(X_test)

results[k]=predictions

#accuracy calculation

accuracy=accuracy_score(true_labels,predictions)*100

accuracies[k]=accuracy

print(f"Accuracy for k={k}:{accuracy:.2f}%")

print(predictions)

Machine Learning Lab [BCSL606]

Dept. of CSE-Data Science, ATMECE, Mysuru 39

#assign predictions back to the dataframe for this k

unlabeled_df[f"Label_k{k}"]=predictions

df1=unlabeled_df.drop(columns=['Label'],axis=1)

df1

Machine Learning Lab [BCSL606]

Dept. of CSE-Data Science, ATMECE, Mysuru 40

Machine Learning Lab [BCSL606]

Dept. of CSE-Data Science, ATMECE, Mysuru 41

Experiment 6

Implement the non-parametric Locally Weighted Regression algorithm in order

to fit data points. Select appropriate data set for your experiment and draw

graphs

Introduction to Locally Weighted Regression (LWR)

What is Locally Weighted Regression?

Locally Weighted Regression (LWR) is a non-parametric machine learning algorithm that fits a

regression model to a local subset of data points. Unlike traditional regression techniques, LWR

does not assume a fixed set of parameters for the entire dataset but instead assigns different weights to data

points based on their distance from the target point.

Importance of Locally Weighted Regression

 Handles non-linearity effectively.

 Provides better flexibility compared to global regression models.

 More robust to outliers due to localized weighting.

 Suitable for datasets where relationships between variables vary locally.

How Locally Weighted Regression Works

1. Define the Weighting Function

 A kernel function (e.g., Gaussian kernel) is used to assign weights to data points:

 Here, τ (tau) is the bandwidth parameter that controls the locality of weighting.

Compute Localized Weights

For a given query point x, assign weights to training points based on proximity.

Fit a Local Model

 Solve a weighted least squares problem using the locally weighted dataset.

1. Make Predictions: Compute the predicted value at x using the locally trained model.

Dataset Selection:

For this experiment, we need a dataset with a clear non-linear relationship between independent

and dependent variables. Some possible datasets include:

Machine Learning Lab [BCSL606]

Dept. of CSE-Data Science, ATMECE, Mysuru 42

Synthetic Data: Randomly generated non-linear data points.

Real-World Data:

 Auto MPG Dataset: Predict fuel efficiency based on engine displacement, horsepower, etc.

 California Housing Dataset: Predict house prices based on features like location and area.

 Temperature vs. Time Series Data: Forecast weather trends.

Steps for Implementing Locally Weighted Regression

1. Load the Dataset

 Choose a dataset with one independent variable (x) and one dependent variable (y).

2. Apply the Locally Weighted Regression Algorithm

 Assign weights to each data point using a Gaussian kernel.

 Solve the weighted linear regression equation.

3. Experiment with Different Bandwidth Parameters (τ)

 Small τ: Model focuses on very close neighbors → More variance, less bias (risk of

overfitting).

 Large τ: Model considers a broader range of points → More bias, less variance

(risk of underfitting).

Visualize the Results:

 Scatter Plot of Data Points to observe the actual distribution.

 Fitted Curve from LWR with different values of τ to compare model performance.

Advantages of Locally Weighted Regression

✔ Captures complex relationships between input and output variables.

✔ Works well with small datasets where global linear regression may not be suitable.

✔ Does not assume a fixed functional form, making it highly flexible.

Limitations of Locally Weighted Regression

+ Computationally expensive: Must compute a separate model for each query point.

+ Sensitive to bandwidth parameter ((\tau)): Choosing the wrong value can lead to

overfitting or underfitting.

+ Not suitable for large datasets: As the dataset size increases, the algorithm becomes

Machine Learning Lab [BCSL606]

Dept. of CSE-Data Science, ATMECE, Mysuru 43

impractical due to high computation time.

The tau (τ) parameter in your code is the bandwidth for the Gaussian kernel, which controls

how much influence nearby points have in the Locally Weighted Regression (LWR). Here's

what it does:

Determines the Weight Decay:

If τ is small, only very nearby points contribute

significantly, making LWR behave like a very local model (more sensitive to noise). If τ is large,

more distant points contribute significantly,

making LWR behave more like global linear regression.

Controls the Model Complexity:

A small τ → Highly flexible model, more prone to overfitting.

A large τ → More smoothing, leading to a simpler model (can underfit if too large).

Example Effect of Tau

τ = 0.1 → LWR behaves almost like a nearest-neighbor model (highly local, very

wiggly curve).

τ = 1.0 → Moderate smoothing, a good balance between flexibility and generalization.

τ = 10 → LWR behaves like ordinary least squares regression (all points are weighted

almost equally).

Program

import numpy as np

import matplotlib.pyplot as plt

def gk(x,xq,tau):

return np.exp(-(x-xq)**2/(2*tau**2))

def lwr(x,y,xq,tau):

xb = np.c_[np.ones(len(x)), x]

xqb = np.array([1,xq])

Machine Learning Lab [BCSL606]

Dept. of CSE-Data Science, ATMECE, Mysuru 44

w = np.diag(gk(x,xq,tau))

theta = np.linalg.inv(xb.T @ w @ xb) @ xb.T @ w @ y

return xqb @ theta

x = np.array([1,2,3,4,5])

y = np.array([1,2,1.3,3.75,2.25])

xq = 3

tau = 1.0

yp = lwr(x,y,xq,tau)

plt.figure(figsize=(8,6))

plt.scatter(x,y,color = 'blue',label = 'data points')

plt.scatter(xq,yp,color = 'red',label = f'prediction at x = {xq}')

Machine Learning Lab [BCSL606]

Dept. of CSE-Data Science, ATMECE, Mysuru 45

weights = gk(x,xq,tau)

for i in range(len(x)):

plt.plot([x[i],x[i]],[y[i],y[i]-weights[i]],'k-',lw =1)

plt.scatter(x[i],y[i],s=weights[i]*200,color = 'green',alpha =0.5)

plt.title("locally weighted regression(LWR)")

plt.xlabel("x")

plt.ylabel("y")

plt.show()

import matplotlib.pyplot as plt

from sklearn.linear_model import LinearRegression

def gk(x,xq,tau):

return np.exp(-(x-xq)**2/(2*tau**2))

Machine Learning Lab [BCSL606]

Dept. of CSE-Data Science, ATMECE, Mysuru 46

def lwr(x,y,xq,tau):

xb = np.c_[np.ones(len(x)), x]

xqb = np.array([1,xq])

w = np.diag(gk(x,xq,tau))

theta = np.linalg.inv(xb.T @ w @ xb) @ xb.T @ w @ y

return xqb @ theta

x = np.array([1,2,3,4,5,6,7,8,9,10])

y = np.array([1,3,2,4,3.5,5,6,7,6.5,8])

xq = np.linspace(1,10,100)

tau = 1.0

y_lwr = np.array([lwr(x,y,xq,tau) for xq in xq])

lr = LinearRegression()

xr = x.reshape(-1,1)

lr.fit(xr,y)

yl = lr.predict(xq.reshape(-1,1))

plt.figure(figsize=(10,6))

plt.scatter(x,y,color = 'blue',label='datapoints')

plt.plot(xq,yl,color='black',linestyle='dashed',label='simple linear regression')

plt.plot(xq,y_lwr,color='red',label='locally weighted regression')

plt.title("comparison:simple linear regression v/s locally weighted regression")

plt.xlabel("x")

plt.ylabel("y")

plt.legend()

plt.show()

Machine Learning Lab [BCSL606]

Dept. of CSE-Data Science, ATMECE, Mysuru 47

def gk(x,xq,tau):

return np.exp(-(x-xq)**2/(2*tau**2))

def lwr(x,y,xq,tau):

xb = np.c_[np.ones(len(x)), x]

xqb = np.array([1,xq])

w = np.diag(gk(x,xq,tau))

theta = np.linalg.pinv(xb.T @ w @ xb) @ xb.T @ w @ y

return xqb @ theta

x = np.array([1,2,3,4,5,6,7,8,9,10])

y = np.array([1,3,2,4,3.5,5,6,7,6.5,8])

xq = np.linspace(1,10,100)

tau_v = [0.1,0.5,1.0,5.0,10.0]

lr = LinearRegression()

Machine Learning Lab [BCSL606]

Dept. of CSE-Data Science, ATMECE, Mysuru 48

xr = x.reshape(-1,1)

lr.fit(xr,y)

yl = lr.predict(xq.reshape(-1,1))

plt.figure(figsize=(12,8))

plt.scatter(x,y,color = 'blue',label='datapoints')

plt.plot(xq,yl,color='black',linestyle='dashed',label='simple linear regression')

colors = ['red','green','purple','orange','brown']

for tau,color in zip(tau_v,colors):

y_lwr = np.array([lwr(x,y,xq,tau)for xq in xq])

plt.plot(xq,y_lwr,color=color,label = f'LWR(τ={tau})')

plt.title("effect of different τ values in locally weighted regression")

plt.xlabel("x")

plt.ylabel("y")

plt.legend()

Machine Learning Lab [BCSL606]

Dept. of CSE-Data Science, ATMECE, Mysuru 49

plt.show()

Machine Learning Lab [BCSL606]

Dept. of CSE-Data Science, ATMECE, Mysuru 50

Experiment 7

Develop a program to demonstrate the working of Linear Regression and Polynomial Regression.

Use Boston Housing Dataset for Linear Regression and Auto MPG Dataset (for vehicle fuel

efficiency prediction) for Polynomial Regression.

7a. Develop a program to demonstrate the working of Linear Regression. Use Boston Housing

Dataset.

Introduction to Regression Analysis What is Regression?

Regression is a fundamental statistical and machine learning technique used to model relationships

between variables. It helps in predicting a dependent variable (target) based on one or more

independent variables (features).

Types of Regression Models:

1. Linear Regression – Assumes a linear relationship between independent and dependent variables.

2. Polynomial Regression – Extends linear regression by introducing polynomial terms to capture

non-linearity.

Terms to capture non-linearity. Linear Regression

Definition:

Linear Regression models the relationship between an independent variable (x) and a dependent

variable (y) using a straight-line equation:

y = mx + c

m is the slope (coefficient) of the line,

c is the intercept,

x is the independent variable,

y is the dependent variable (predicted value).

Working of Linear Regression

1. Identify the best-fitting line: Uses the least squares method to minimize the error between

actual and predicted values.

Compute the cost function: Measures how well the model fits the data using Mean Squared Error

(MSE)

Machine Learning Lab [BCSL606]

Dept. of CSE-Data Science, ATMECE, Mysuru 51

Optimize the model parameters: Uses Gradient Descent or other optimization techniques to find

the best m and c .

Applications of Linear Regression

 Predicting sales revenue based on advertising spend.

 Estimating house prices based on size and location.

 Forecasting demand in supply chain management.

Data Cleaning

Checking Null values

data.isnull() - Returns a DataFrame of the same shape as data, where each element

is True if it's NaN and False otherwise.

.sum() - Sums up the True values (which are treated as 1 in Python) column-wise,

giving the total count of missing values for each column.

#import necessary Libraries

import pandas as pd

import numpy as np

import matplotlib.pyplot as plt

import seaborn as sns

from sklearn.model_selection import train_test_split

from sklearn.linear_model import LinearRegression

from sklearn.metrics import mean_squared_error,r2_score

from sklearn.preprocessing import StandardScaler

#import Boston housing dataset

data = pd.read_csv(r"Boston housing dataset.csv")

data.head()

Machine Learning Lab [BCSL606]

Dept. of CSE-Data Science, ATMECE, Mysuru 52

data.shape

data.info()

data.isnull().sum()

df=data.copy()

df['CRIM'].fillna(df['CRIM'].mean(),inplace=True)

df['ZN'].fillna(df['ZN'].mean(),inplace=True)

Machine Learning Lab [BCSL606]

Dept. of CSE-Data Science, ATMECE, Mysuru 53

df['CHAS'].fillna(df['CHAS'].mode()[0],inplace=True)

df['INDUS'].fillna(df['INDUS'].mean(),inplace=True)

df['AGE'].fillna(df['AGE'].median(),inplace=True)

df['LSTAT'].fillna(df['LSTAT'].median(),inplace=True)

df.isnull().sum()

df.head()

x = df.drop('MEDV',axis=1)

y = df['MEDV']

sc = StandardScaler()

x_s = sc.fit_transform(x)

x_train,x_test,y_train,y_test = train_test_split(x_s, y, test_size=0.2,random_state=42)

Machine Learning Lab [BCSL606]

Dept. of CSE-Data Science, ATMECE, Mysuru 54

m = LinearRegression()

m.fit(x_train,y_train)

y_p = m.predict(x_test)

y_p

mse = mean_squared_error(y_test,y_p)

print(f'Mean Squared Error:{mse}')

rmse = np.sqrt(mse)

print(f'Root mean squared error:{rmse}')

r2 = r2_score(y_test,y_p)

print(f'R-squared{r2}')

Machine Learning Lab [BCSL606]

Dept. of CSE-Data Science, ATMECE, Mysuru 55

7b. Develop a program to demonstrate the working of Polynomial Regression.

Use Auto MPG Dataset (for vehicle fuel efficiency prediction)

Polynomial Regression

Definition

Polynomial regression is a type of regression analysis used in statistics and machine learning when

the relationship between the independent variable (input) and the dependent variable (output) is not

linear. While simple linear regression models the relationship as a straight line, polynomial

regression allows for more flexibility by fitting a polynomial equation to the data.

Polynomial Regression is an extension of Linear Regression where the relationship between

variables is modeled using a polynomial equation: where n represents the degree of the polynomial.

Importance of Polynomial Regression. When the relationship between variables is non-linear and a

straight line does not fit well. Captures curved patterns in data by introducing higher-degree

polynomial terms.

Working of Polynomial Regression

1. Transform the input features by introducing polynomial terms.

2. Apply Linear Regression to fit the transformed dataset.

3. Choose the optimal polynomial degree to balance underfitting and overfitting.

Choosing the Right Degree (n)

Degree 1: Equivalent to Linear Regression.

Degree 2-3: Captures slight curves in data while preventing overfitting.

Degree >3: More flexible but risks overfitting (too much complexity).71

Applications of Polynomial Regression

 Predicting fuel efficiency based on vehicle characteristics.

 Modeling economic growth trends over time.

 Analyzing the effect of temperature on crop yields.

#import necessary libraries

import numpy as np

import matplotlib.pyplot as plt

import pandas as pd

import seaborn as sns

from sklearn.preprocessing import PolynomialFeatures

Machine Learning Lab [BCSL606]

Dept. of CSE-Data Science, ATMECE, Mysuru 56

from sklearn.linear_model import LinearRegression

from sklearn.metrics import mean_squared_error, r2_score

from sklearn.model_selection import train_test_split

import warnings

warnings.filterwarnings("ignore")

data = pd.read_csv(r'auto-mpg.csv')

data.shape

data.head()

data.isnull().sum()

df = data.copy()

df['horsepower'].fillna(df['horsepower'].median(), inplace=True)

X = df[['horsepower']]

y = df['mpg']

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)

Machine Learning Lab [BCSL606]

Dept. of CSE-Data Science, ATMECE, Mysuru 57

degree = 2

poly = PolynomialFeatures(degree)

X_poly_train = poly.fit_transform(X_train)

model = LinearRegression()

model.fit(X_poly_train, y_train)

plt.scatter(X, y, color='red', label='Data')

X_range = np.linspace(X.min(), X.max(), 100)

X_range_poly = poly.transform(X_range)

y_range_pred = model.predict(X_range_poly)

plt.plot(X_range, y_range_pred, color='red', label='Polynomial Fit')

plt.xlabel('Horsepower')

plt.ylabel('MPG')

plt.legend()

plt.title(f'Polynomial Regression (degree {degree})')

plt.show()

Machine Learning Lab [BCSL606]

Dept. of CSE-Data Science, ATMECE, Mysuru 58

Experiment 8

Develop a program to demonstrate the working of the decision tree algorithm. Use Breast

Cancer Data set for building the decision tree and applying this knowledge to classify a new

sample.

Introduction to Decision Trees

What is a Decision Tree?

A Decision Tree is a supervised machine learning algorithm used for classification and regression

tasks. It models decisions using a tree-like structure where:

Nodes represent decision points based on feature values.

Edges represent possible outcomes (branches).

Leaves represent the final decision or classification.

Decision trees work by recursively splitting data into subsets based on the most significant feature,

ensuring maximum information gain at each step.

Working of the Decision Tree Algorithm

1. Selecting the Best Feature for Splitting

At each step, the algorithm selects the feature that best separates the data. Common methods for

choosing the best feature include:

Gini Impurity

Gini = 1- ∑Pi2

Measures how often a randomly chosen element would be incorrectly classified. Entropy

(Information Gain)

Entropy = ∑p(X)log p(X)

Measures the uncertainty in a dataset and selects splits that maximize information gain.

Chi-Square Test Evaluates the statistical significance of the feature split.

1. Splitting the Data:

 The dataset is divided into subsets based on the selected feature.

 The process continues recursively until:

 A stopping condition is met (e.g., pure classification, max depth).

Machine Learning Lab [BCSL606]

Dept. of CSE-Data Science, ATMECE, Mysuru 59

 The tree reaches a predefined depth.

2. Making Predictions

For a new sample, traverse the tree from the root to a leaf node. The leaf node contains the

predicted class label.

Advantages of Decision Trees

 Easy to interpret – Mimics human decision-making.

 Handles both numerical & categorical data.

 Requires little data preprocessing – No need for feature scaling.

 Works well with missing values.

Challenges of Decision Trees

 Overfitting – Deep trees may memorize noise instead of patterns.

 Bias towards dominant features – Features with more categories can lead to biased splits.

 Instability – Small data variations can lead to different trees.

Optimizing Decision Trees

1. Pruning

Pre-Pruning: Stop the tree early using conditions (e.g., min samples per split).

Post-Pruning: Remove unnecessary branches after the tree is built.

2. Setting Tree Depth

Limiting maximum depth prevents overfitting.

3. Using Ensemble Methods

Random Forest: Combines multiple trees for better generalization. Gradient

Boosting: Sequentially improves predictions.

Applications of Decision Trees

 Medical Diagnosis – Classifying diseases based on symptoms.

 Fraud Detection – Identifying fraudulent transactions.

 Customer Segmentation – Categorizing users based on behavior.

Machine Learning Lab [BCSL606]

Dept. of CSE-Data Science, ATMECE, Mysuru 60

Program

Importing necessary libraries

import pandas as pd

import numpy as np

import matplotlib.pyplot as plt

import seaborn as sns

from sklearn.model_selection import train_test_split

from sklearn.tree import DecisionTreeClassifier, plot_tree

from sklearn.metrics import accuracy_score, classification_report, confusion_matrix

from sklearn.tree import export_graphviz

from IPython.display import Image

import pydotplus

import warnings

warnings.filterwarnings('ignore')

#Load Dataset

data = pd.read_csv(r'Breast Cancer Datset’)

pd.set_option('display.max_columns', None)

data.head()

data.shape()

(569, 32)

data.info()

Machine Learning Lab [BCSL606]

Dept. of CSE-Data Science, ATMECE, Mysuru 61

data.diagnosis.unique()

array(['M', 'B'], dtype=object)

#Data Preprocessing

#Data Cleaning

data.duplicated().sum()

np.int64(0)

df = data.drop(['id'], axis=1)

Machine Learning Lab [BCSL606]

Dept. of CSE-Data Science, ATMECE, Mysuru 62

df['diagnosis'] = df['diagnosis'].map({'M':1, 'B':0}) # Malignant:1, Benign:0

Discriptive Statistics

df.describe().T

Export the tree to DOT format

dot_data = export_graphviz(model, out_file=None,

feature_names=X_train.columns,

rounded=True, proportion=False,

precision=2, filled=True)

Convert DOT data to a graph

graph = pydotplus.graph_from_dot_data(dot_data)

Machine Learning Lab [BCSL606]

Dept. of CSE-Data Science, ATMECE, Mysuru 63

Display the graph

Image(graph.create_png())

Visualize the Decision Tree (optional)

plt.figure(figsize=(12, 8))

plot_tree(model, filled=True, feature_names=X.columns, class_names=['Benign', 'Mali

plt.show()

Machine Learning Lab [BCSL606]

Dept. of CSE-Data Science, ATMECE, Mysuru 64

y_pred = model.predict(X_test)

y_pred

Evaluate the model

accuracy = accuracy_score(y_test, y_pred) * 100

classification_rep = classification_report(y_test, y_pred)

Print the results

print("Accuracy:", accuracy)

print("Classification Report:\n", classification_rep)

new = [[12.5, 19.2, 80.0, 500.0, 0.085, 0.1, 0.05, 0.02, 0.17, 0.06,

0.4, 1.0, 2.5, 40.0, 0.006, 0.02, 0.03, 0.01, 0.02, 0.003,

16.0, 25.0, 105.0, 900.0, 0.13, 0.25, 0.28, 0.12, 0.29, 0.08]]

y_pred = model.predict(new)

Output the prediction (0 = Benign, 1 = Malignant)

if y_pred[0] == 0:

print("Prediction: Benign")

else:

print("Prediction: Malignant")

Prediction: Benign

Machine Learning Lab [BCSL606]

Dept. of CSE-Data Science, ATMECE, Mysuru 65

Experiment 9

Develop a program to implement the Naive Bayesian classifier, considering the Olivetti Face

Data set for training. Compute the accuracy of the classifier, considering a few test data set.

The Olivetti Face Dataset is a collection of images of faces, used primarily for face recognition

tasks. The dataset contains 400 images of 40 different individuals, with 10 images per person. The

dataset was created for research in machine learning and pattern recognition, especially in the

context of facial recognition.

The Olivetti dataset provides the following key features:

*400 Images: Each image is a grayscale photo of a person's face.

*40 People: The dataset contains 40 different individuals, and each individual Has 10 different

images.

*Image Size: Each image is 64x64 pixels, resulting in 4096 features (flattened vector) per image.

*Target Labels: Each image is associated with a label representing the individual (0 to 39)

Introduction to Naive Bayes Classification

What is Naive Bayes?

Naïve Bayes is a probabilistic classification algorithm based on Bayes' Theorem with the naïve

assumption that features are independent of each other. Despite this strong assumption, it performs

well in many real-world scenarios.

It is widely used for text classification, spam detection, medical diagnosis, and facial recognition.

Program

#import necessary libraries:

import numpy as np

import matplotlib.pyplot as plt

from sklearn.model_selection import train_test_split

from sklearn.naive_bayes import GaussianNB

from sklearn.metrics import accuracy_score

#Load the dataset locally

data=np.load('Olivetti_faces_offline.npz')

Machine Learning Lab [BCSL606]

Dept. of CSE-Data Science, ATMECE, Mysuru 66

images=data['images']

targets=data['target']

#Display first t faces with 1Ds

plt.figure(figsize=(10,8))

for i in range(20):

plt.subplot(4,5,i+1)

plt.imshow(images[i],cmap='gray')

plt.title(f"ID:{targets[i]}")

plt.axis('off')

plt.tight_layout()

plt.show()

#Flatten the images for training (convert 3D to 2D)

x=images.reshape((images.shape[0],-1))

y=targets

#Train _test Split

x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=0.25,stratify=y,random_state=42)

model=GaussianNB()

model.fit(x_train,y_train)

#Predict and Evalute

y_pred=model.predict(x_test)

accuracy=accuracy_score(y_test,y_pred)

print(f"Accuracy:{accuracy*100:.2f}%")

Machine Learning Lab [BCSL606]

Dept. of CSE-Data Science, ATMECE, Mysuru 67

Experiment 10

Develop a program to implement k-means clustering using Wisconsin Breast Cancer data set

and visualize the clustering result.

What is Clustering?

Clustering is an unsupervised machine learning technique used to group data points into clusters

based on their similarity. The goal is to identify hidden patterns or natural groupings in the data.

One of the most widely used clustering algorithms is K-Means Clustering, which divides the dataset

into K clusters, where each data point belongs to the nearest cluster center.

What is K-Means Clustering?

K-Means is a centroid-based clustering algorithm that partitions data into K clusters by minimizing

the variance within each cluster.

Working of K-Means Algorithm

1. Choose the number of clusters (K).

2. Randomly initialize K cluster centroids.

3. Assign each data point to the nearest centroid based on distance (e.g., Euclidean distance).

4. Update the centroids by computing the mean of all points assigned to each cluster.

5. Repeat Steps 3 and 4 until convergence (when centroids no longer change significantly).

Mathematical Representation

The objective is to minimize the sum of squared distances (SSD) between data points and their

assigned cluster centroid: where:

K = Number of clusters

xj = Data point

μi = Centroid of cluster Ci

Choosing the Optimal Number of Clusters (K)

Selecting the right value of K is crucial. Some common methods include:

Elbow Method:

Plots the within-cluster sum of squares (WCSS) for different K values.

Machine Learning Lab [BCSL606]

Dept. of CSE-Data Science, ATMECE, Mysuru 68

The "elbow point" where WCSS stops decreasing significantly is chosen as the optimal K.

1. Silhouette Score: Measures how well-separated the clusters are. A higher score indicates better

clustering.

2. Gap Statistics:

Compares clustering performance to randomly generated reference data. Distance Metrics in K-

Means typically uses Euclidean Distance to measure how close a data point is to a centroid:

Other distance metrics include:

Manhattan

Distance Cosine

Similarity

Mahalanobis

Distance

Advantages of K-Means Clustering

✔ Efficient and Scalable – Works well with large datasets.

✔ Easy to Implement – Simple and interpretable.

✔ Handles High-Dimensional Data – Can work on complex datasets.

Program

#Import necessary libraries

import numpy as np

import matplotlib.pyplot as plt

import seaborn as sns

from sklearn.datasets import load_breast_cancer

from sklearn.decomposition import PCA

from sklearn.preprocessing import StandardScaler

from sklearn.cluster import KMeans

import pandas as pd

#load the dataset

data=load_breast_cancer()

df=pd.DataFrame(data.data,columns=data.feature_names)

print(df)

Machine Learning Lab [BCSL606]

Dept. of CSE-Data Science, ATMECE, Mysuru 69

Machine Learning Lab [BCSL606]

Dept. of CSE-Data Science, ATMECE, Mysuru 70

#Standardize the dataset

scaler=StandardScaler()

df_scaled=scaler.fit_transform(df)

#Apply K-means clustering

k=2

kmeans=KMeans(n_clusters=k, random_state=42,n_init=10)

kmeans.fit(df_scaled)

labels=kmeans.labels_

print(labels)

#Reduce dimensions using PCA for visualization

pca=PCA(n_components=2)

df_pca=pca.fit_transform(df_scaled)

#Create a dataframe for visualization

df_visual=pd.DataFrame(df_pca,columns=['PC1','PC2'])

df_visual['cluster']=labels

#plot the clusters

plt.figure(figsize=(8,6))

sns.scatterplot(x='PC1',y='PC2',hue=df_visual['cluster'],palette='Set1',data=df_visual)

plt.title("K_means Clustering")

plt.xlabel('PC1')

Machine Learning Lab [BCSL606]

Dept. of CSE-Data Science, ATMECE, Mysuru 71

plt.ylabel('PC2')

plt.legend(title='cluster')

plt.show()

