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INSTITUTIONAL MISSION AND VISION 
 

 

Objectives 

To provide quality education and groom top-notch professionals, entrepreneurs and leaders 

for different fields of engineering, technology and management. 

To open a Training-R & D-Design-Consultancy cell in each department, gradually introduce 

doctoral and postdoctoral programs, encourage basic & applied research in areas of social 

relevance, and develop the institute as a center of excellence. 

To develop academic, professional and financial alliances with the industry as well as the 

academia at national and transnational levels 

To develop academic, professional and financial alliances with the industry as well as the 

academia at national and transnational levels. 

To cultivate strong community relationships and involve the students and the staff in local 

community service. 

To constantly enhance the value of the educational inputs with the participation of students, 

faculty, parents and industry. 

Vision 

Development of academically excellent, culturally vibrant, socially responsible and 

globally competent human resources. 

Mission 

 To keep pace with advancements in knowledge and make the students competitive and 

capable at the global level. 

 To create an environment for the students to acquire the right physical, intellectual, 

emotional and moral foundations and shine as torch bearers of tomorrow’s society. 

 To strive to attain ever-higher benchmarks of educational excellence. 



DEPARTMENT OF COMPUTER SCIENCE ENGINEERING AND ENGINEERING 

 

(DATA SCIENCE &ENGINEERING) 

 

 

Vision of The Department 

 
• To impart technical education in the field of data science of excellent quality with a high 

level of professional competence, social responsibility, and global awareness among the 

students 

 

 

 

Mission 

• To impart technical education that is up to date, relevant and makes students competitive 

and employable at global level 

• To provide technical education with a high sense of discipline, social relevance in an 

intellectually, ethically and socially challenging environment for better tomorrow 

• Educate to the global standards with a benchmark of excellence and to kindle the spirit of 

innovation. 

 

 

 

Program Outcomes(PO) 

 

 
 Engineering knowledge: Apply the knowledge of mathematics, science, engineering 

fundamentals, and an engineering specialization to the solution of complex engineering 

problems. 

 

 Problem analysis: Identify, formulate, review research literature, and analyze complex 

engineering problems reaching substantiated conclusions using first principles of 

mathematics, natural sciences, and engineering sciences.



 Design/development of solutions: Design solutions for complex engineering problems 

and design system components or processes that meet the specified needs with appropriate 

consideration for the public health and safety, and the cultural, societal, and environmental 

considerations.

 Conduct investigations of complex problems: Use research-based knowledge and 

research methods including design of experiments, analysis and interpretation of data, and 

synthesis of the information to provide valid conclusions.

 

 Modern tool usage: Create, select, and apply appropriate techniques, resources, and 

modern engineering and IT tools including prediction and modeling to complex 

engineering activities with an understanding of the limitations.

 

 The engineer and society: Apply reasoning informed by the contextual knowledge to 

assess societal, health, safety, legal and cultural issues and the consequent responsibilities 

relevant to the professional engineering practice

 Environment and sustainability: Understand the impact of the professional engineering 

solutions in societal and environmental contexts, and demonstrate the knowledge of, and 

need for sustainable development.

 

 Ethics: Apply ethical principles and commit to professional ethics and responsibilities and 

norms of the engineering practice.

 

 Individual and team work: Function effectively as an individual, and as a member or 

leader in diverse teams, and in multidisciplinary settings.

 

 Communication: Communicate effectively on complex engineering activities with the 

engineering community and with society at large, such as, being able to comprehend and 

write effective reports and design documentation, make effective presentations, and give 

and receive clear instructions.



 Project management and finance: Demonstrate knowledge and understanding of the 

engineering and management principles and apply these to one’s own work, as a member 

and leader in a team, to manage projects and in multidisciplinary environments.

 Life-long learning: Recognize the need for, and have the preparation and ability to engage 

in independent and life-long learning in the broadest context of technological change.

 

Program Specific Outcomes (PSOs) 

 
 PSO1: Develop relevant programming skills to become a successful data scientist

 

 PSO2: Apply data science concepts and algorithms to solve real world problems of the 

society

 

 PSO3: Apply data science techniques in the various domains like agriculture, education 

healthcare for better society

 

Program Educational Objectives (PEOs): 

 
PEO1: Develop cutting-edge skills in data science and its related technologies, such as machine 

learning, predictive analytic, and data engineering. 

PEO2: Design and develop data-driven solutions to real-world problems in a business, research, 

or social environment. 

PEO3: Apply data engineering and data visualization techniques to discover, investigate, and 

interpret data. 

PEO4: Demonstrate ethical and responsible data practices in problem solving 

PEO5: Integrate fields within computer science, optimization, and statistics to develop better 

solutions 



Machine Learning lab Semester 6 

Course Code BCSL606 CIE Marks 50 

Teaching Hours/Week (L:T:P: S) 0:0:2:0 SEE Marks 50 

Credits 01 Exam Hours 100 

Examination type (SEE) Practical 

Course objectives: 

1. To become familiar with data and visualize univariate, bivariate, and multivariate data using 

statistical techniques and dimensionality reduction. 

2. To understand various machine learning algorithms such as similarity-based learning, regression, 

decision trees, and clustering. 

3. To familiarize with learning theories, probability-based models and developing the skills 

required for decision-making in dynamic environments. 

Sl.NO Experiments 

 

 

 

1 

Develop a program to create histograms for all numerical features and analyze the distribution of each 

feature. Generate box plots for all numerical features and identify any outliers. Use California 

Housing dataset. 

Book 1: Chapter 2 

 

 

 

2 

Develop a program to Compute the correlation matrix to understand the relationships between pairs 

of features. Visualize the correlation matrix using a heatmap to know which variables have strong 

positive/negative correlations. Create a pair plot to visualize pairwise relationships between features. 

Use California Housing dataset. 

Book 1: Chapter 2 

 

 

3 

Develop a program to implement Principal Component Analysis (PCA) for reducing the 

dimensionality of the Iris dataset from 4 features to 2. 

Book 1: Chapter 2 

 

4 

For a given set of training data examples stored in a .CSV file, implement and demonstrate the Find- 

S algorithm to output a description of the set of all hypotheses consistent with the training examples. 

Book 1: Chapter 3 



 

 

 

 

5 

Develop a program to implement k-Nearest Neighbour algorithm to classify the randomly generated 

100 values of x in the range of [0,1]. Perform the following based on dataset generated. 

Label the first 50 points {x1,……,x50} as follows: if (xi ≤ 0.5), then xi ∊ Class1, else xi ∊ Class1 

Classify the remaining points, x51,……,x100 using KNN. Perform this for k=1,2,3,4,5,20,30 

Book 2: Chapter – 2 

 

6 

Implement the non-parametric Locally Weighted Regression algorithm in order to fit data 

points. Select appropriate data set for your experiment and draw graphs 

Book 1: Chapter – 4 

 

7 

Develop a program to demonstrate the working of Linear Regression and Polynomial Regression. 

Use Boston Housing Dataset for Linear Regression and Auto MPG Dataset (for vehicle fuel 

efficiency prediction) for Polynomial Regression. 

Book 1: Chapter – 5 

 

8 

Develop a program to demonstrate the working of the decision tree algorithm. Use Breast Cancer 

Data set for building the decision tree and apply this knowledge to classify a new sample. 

Book 2: Chapter – 3 

 

9 

Develop a program to implement the Naive Bayesian classifier considering Olivetti Face Data set 

for training. Compute the accuracy of the classifier, considering a few test data sets. 

Book 2: Chapter – 4 

 

10 

Develop a program to implement k-means clustering using Wisconsin Breast Cancer data set and 

visualize the clustering result. 

Book 2: Chapter – 4 



 

Sl.NO Experiments 

 

Page No. 

 

 

1 

Develop a program to create histograms for all numerical features and analyze the 

distribution of each feature. Generate box plots for all numerical features and 

identify any outliers. Use California Housing dataset. 

 

1-15 

 

 

 

2 

Develop a program to Compute the correlation matrix to understand the 

relationships between pairs of features. Visualize the correlation matrix using a 

heatmap to know which variables have strong positive/negative correlations. Create 

a pair plot to visualize pairwise relationships between features. Use California 

Housing dataset. 

 

 

16-20 

 

3 

Develop a program to implement Principal Component Analysis (PCA) for 

reducing the dimensionality of the Iris dataset from 4 features to 2. 

 

21-28 

 

4 

For a given set of training data examples stored in a .CSV file, implement and 

demonstrate the Find-S algorithm to output a description of the set of all 

hypotheses consistent with the training examples. 

 

29-32 

 

 

 

 

5 

Develop a program to implement k-Nearest Neighbour algorithm to classify the 

randomly generated 100 values of x in the range of [0,1]. Perform the following 

based on dataset generated. 

1. Label the first 50 points {x1,……,x50} as follows: if (xi ≤ 0.5), then xi ∊ 
Class1, else xi ∊ Class1 

2. Classify the remaining points, x51,……,x100 using KNN. Perform this for 

k=1,2,3,4,5,20,30 

 

 

 

 

33-40 

 

6 

Implement the non-parametric Locally Weighted Regression algorithm in 

order to fit data points. Select appropriate data set for your experiment and draw 

graphs 

41-49 

 

7 

Develop a program to demonstrate the working of Linear Regression and 

Polynomial Regression. Use Boston Housing Dataset for Linear Regression and 

Auto MPG Dataset (for vehicle fuel efficiency prediction) for Polynomial 

Regression. 

 

50-57 

 

8 

Develop a program to demonstrate the working of the decision tree algorithm. 

Use Breast Cancer Data set for building the decision tree and apply this 

knowledge to classify a new sample. 

 

58-64 



 

9 

Develop a program to implement the Naive Bayesian classifier considering 

Olivetti Face Data set for training. Compute the accuracy of the classifier, 

considering a few test data sets. 

 

65-66 

 

10 
Develop a program to implement k-means clustering using Wisconsin Breast 

Cancer data set and visualize the clustering result. 
67-71 
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Experiment 1 

Develop a program to create histograms for all numerical features and analyze the 

distribution of each feature. Generate box plots for all numerical features and identify any 

outliers. Use California Housing dataset. 

Introduction 

 

Data visualization is a crucial step in exploratory data analysis (EDA), enabling data scientists to 

understand the distribution and spread of numerical features. Two widely used visualization 

techniques for analyzing numerical data are histograms and box plots. These plots help identify 

patterns, trends, and potential anomalies in datasets, making them valuable tools for data 

preprocessing and feature engineering. 

Distribution 

In statistics, distribution refers to how data values are spread across a range. Understanding the 

distribution of numerical features in a dataset helps in identifying patterns, detecting outliers, and 

making informed decisions. The two primary ways to visualize distribution are histograms and 

box plots. 

1. Histograms 

A histogram is a graphical representation of the distribution of a numerical feature. It divides the 

data into bins (intervals) and counts the number of observations in each bin. 

Importance of Histograms: 

 Detecting Skewness: A histogram can reveal whether a distribution is symmetric, left- 

skewed, right Skewed. 

 Identifying Modal Patterns: Some distributions are unimodal (single peak), while others 

may be bimodal or multimodal. 

 Assessing Normality: If the histogram resembles a bell curve, the data may be normally distributed. 

 Understanding Data Spread: Helps in detecting whether data is evenly distributed or 

concentrated in certain regions. 

2. Box Plots (Box-and-Whisker Plots) 

A box plot provides a summary of the distribution of numerical data using five key statistics: 
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 Minimum: The smallest value (excluding outliers). 

 First Quartile (Q1): 25th percentile. 

 Median (Q2): 50th percentile (middle value). 

 Maximum: The largest value (excluding outliers). 

 Outliers are detected using the Interquartile Range (IQR) rule: Outliers = Values outside Q1 - 

1.5 * IQR or Q3 + 1.5 * IQR. 

Importance of Box Plots 

 Identifying Outliers: Points lying outside the whiskers indicate potential outliers.

 Comparing Distributions: Box plots allow easy comparison of multiple features or groups.

 Understanding Skewness: If the median is closer to one end, the distribution may be skewed.

 Measuring Data Spread: The length of the box and whiskers provides insight into data variability.

 

Outlier 

An outlier is an observation or data point that significantly differs from the rest of the data in a dataset. 

Outliers can skew statistical analyses and distort the interpretation of results, making it important to 

identify and understand them. 

Key Characteristics of Outliers: 

 

 Deviation from the Norm:

 Outliers exhibit values that deviate substantially from the typical or expected range of values in a 

dataset. 

 Impact on Statistical Measures:

 Outliers can heavily influence summary statistics such as the mean and standard deviation, leading 

to misleading representations of central tendency and dispersion. 

 Identification:

 Outliers are often identified through statistical methods or visual inspection of graphs; such as box 

plots or scatter plots. 

 Causes of Outliers:

 Outliers can arise from measurement errors, data entry mistakes, natural variability, or genuine 

extreme observations in the population.
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Ways to Identify Outliers: 

 Visual Inspection:

Plotting the data using graphs like box plots, scatter plots, or histograms can reveal observations 

that stand out from the majority. 

 Statistical Methods:

Z-Score: Identifying data points with z-scores beyond a certain threshold (e.g., |z| > 3) as 

potential outliers. 

Z = (x-µ)/σ 

 

 Interquartile Range (IQR): Using the IQR to identify observations outside a defined range. 

IQR = Q3 - Q1

LF = Q1 - (1.5*IQR) 

UF = Q3 + (1.5*IQR) 

Dealing with Outliers: 

Retaining Outliers: 

 In some cases, it may be appropriate to retain outliers, especially if they represent genuine extreme 

values in the data.

 Retaining outliers allows for an inclusive analysis, considering the full range of variability in 

the dataset.

Removing Outliers: 

 Removing outliers involves excluding extreme values from the dataset before analysis.

 Common methods include using statistical criteria (e.g., Z-scores, IQR) to identify and exclude 

observations beyond a certain threshold.

 Reduces the impact of extreme values on summary statistics and model results

 Loss of information: Excluding outliers may discard meaningful data points.

 

Transformation: 

 Transformation involves applying mathematical functions to the data to modify its distribution 

and reduce the impact of outliers.

 Common transformations include logarithmic, square root, or Cube root transformations.
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Application in Data Analysis 

 Histograms and box plots play a crucial role in: 

 Data Cleaning: Detecting anomalies and erroneous values. 

 Feature Engineering: Identifying transformations needed for better model performance. 

 Understanding Dataset Characteristics: Providing insight into feature distributions,which 

informs modeling decisions. 

About Datasets 

Context 

This is the dataset used in the second chapter of Aurélien Géron's recent book 'Hands-On Machine 

learning with Scikit-Learn and TensorFlow'. It serves as an excellent introduction to implementing 

machine learning algorithms because it requires rudimentary data cleaning, has an easily understandable 

list of variables and sits at an optimal size between being to toyish and too cumbersome. 

The data contains information from the 1990 California census. So although it may not help you with 

predicting current housing prices like the Zillow Zestimate dataset, it does provide an accessible 

introductory dataset for teaching people about the basics of machine learning. 

Content 

The data pertains to the houses found in a given California district and some summary stats about 

them based on the 1990 census data. Be warned the data aren't cleaned so there are some 

preprocessing steps required! The columns are as follows, their names are pretty self explanitory: 

longitude latitude 

housing_median_age 

total_rooms total_bedrooms 

population households 

median_income 

median_house_value(Target) 

ocean_proximity 
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Import Necessary Libraries 

Import all libraries which are required for our analysis, such as Data Loading, Statistical analysis, 

Visualizations, Data Transformations, Merge and Joins, etc. 

 

Longitude: The dataset contains houses located in specific regions (possibly coastal areas or urban zones) 

as indicated by the bimodal peaks. Houses are not uniformly distributed across all longitudes. 

Latitude: Similar to longitude, the latitude distribution shows houses concentrated in particular zones. 

This suggests geographic clustering, possibly around major cities. 

Housing Median Age: Most houses are relatively older, with the majority concentrated in a specific range 

of median ages. This might imply that housing development peaked during certain decades. 

Total Rooms: The highly skewed distribution shows most houses have a lower total number of rooms. A few 

properties with a very high number of rooms could represent outliers (e.g., mansions or multi-unit 

buildings). 

Median Income: Most households fall within a low-to-mid income bracket. The steep decline after the 

peak suggests a small proportion of high-income households in the dataset. 

Most areas in the dataset have a relatively low population. However, there are some highly populated 

areas, as evidenced by the long tail. These may represent urban centers. 

Median House Value: The sharp peak at the end of the histogram suggests that house prices in the dataset 

are capped at a maximum value, which could limit the variability in predictions. 

 

Population: Most areas in the dataset have a relatively low population. However, there are some highly 

populated areas, as evidenced by the long tail. These may represent urban centers. 

Median House Value: The sharp peak at the end of the histogram suggests that house prices in the dataset 

are capped at a maximum value, which could limit the variability in predictions. 

 

Outlier Analysis for Each Feature: 

 

1. Total Rooms: There are numerous data points above the upper whisker, indicating a significant number 

of outliers. 



Machine Learning Lab [BCSL606] 

Dept. of CSE-Data Science, ATMECE, Mysuru 6 

 

 

2. Total Rooms: There are numerous data points above the upper whisker, indicating a significant 

number of outliers. 

3. Total Bedrooms: Numerous data points above the upper whisker indicate a significant presence 

of outliers with very high total_bedrooms values. 

1. Population: There are numerous outliers above the upper whisker, with extreme population 

values reaching beyond 35,000. 

2. Households There is a significant number of outliers above the upper whisker. These values 

represent areas with an unusually high number of households. 

3. Median Income: There are numerous data points above the upper whisker, marked as circles. 

These are considered potential outliers. 

4. Median House Value: A small cluster of outliers is visible near the maximum value of 500,000. 

 

General Actions for Outlier Handling: 

 Transformation: Apply log or square root transformations to reduce skewness for features like 

total rooms, population, and median income. 

 Removal: If outliers are due to data errors or are not relevant, consider removing them. 

 

Program 

#Import Necessary libraries : 

import numpy as np 

import pandas as pd 

import matplotlib.pyplot as plt 

import seaborn as sns 

#import warnings 

warnings.filterwarnings(‘ignore’) 

df = pd.read_csv("C:/Users/student/Desktop/4AD22CD042/housing.csv") 

df.head() 
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df.info() 

 

 

df.nunique() 
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#Data Cleaning 

df.isnull().sum() 
 

 

df.duplicated().sum() 
 

 

df['total_bedrooms'].median() 

 

 

#Handling missing Values 

df['total_bedrooms'].fillna(df['total_bedrooms'].median(),inplace=True) 

 

#Feature Engineering 

for i in df.iloc[:,2:7]: 

df[i] = df[i].astype('int') 

df.head() 
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#Discriptive Statistics 

df.describe().T 

 

Numerical = df.select_dtypes(include=[np.number]).columns 

print(Numerical) 

 
 

#Histogram of all Numerical Features 

for col in Numerical: 

plt.figure(figsize=(10, 6)) 

df[col].plot(kind='hist', title=col, bins=60, edgecolor='black') plt.ylabel('Frequency') 

plt.show() 
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#Box plot of all numerical Features 

for col in Numerical: 
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plt.figure(figsize=(6, 6)) 

sns.boxplot(df[col], color='blue') 

plt.title(col) 

plt.ylabel(col) 

plt.show() 

 

 

 



Machine Learning Lab [BCSL606] 

Dept. of CSE-Data Science, ATMECE, Mysuru 13 

 

 

 

 
 

 

 

 

 



Machine Learning Lab [BCSL606] 

Dept. of CSE-Data Science, ATMECE, Mysuru 14 

 

 

 

 
 

 

 

 



Machine Learning Lab [BCSL606] 

Dept. of CSE-Data Science, ATMECE, Mysuru 15 

 

 

 

 
 

 

 

 



Machine Learning Lab [BCSL606] 

Dept. of CSE-Data Science, ATMECE, Mysuru 16 

 

 

Experiment 2 

Develop a program to Compute the correlation matrix to understand the relationships 

between pairs of features. Visualize the correlation matrix using a heatmap to know which 

variables have strong positive/negative correlations. Create a pair plot to visualize pairwise 

relationships between features. Use California Housing dataset. 

Introduction 

In data analysis and machine learning, understanding the relationships between features is crucial 

for feature selection, multicollinearity detection, and data interpretation. Correlation and pair plots 

are two essential techniques to analyze these relationships. 

Correlation Matrix 

A correlation matrix is a table showing correlation coefficients between variables. It helps 

in understanding how strongly features are related to each other. 

Types of Correlation 

 Positive Correlation (+1 to 0): As one feature increases, the other also increases. 

 Negative Correlation (0 to -1): As one feature increases, the other decreases. 

 No Correlation (0): No linear relationship between the variables. 

Why Should You Use a Correlation Matrix? 

 Identifies relationships between features. 

 Helps in detecting multicollinearity in machine learning models. 

 Highlights redundant features that may not add value to the model. 

 

In data analysis and machine learning, understanding the relationships between features is 

crucial for feature selection, multicollinearity detection, and data interpretation. Correlation 

and pair plots are two essential techniques to analyze these relationships. 

1. Correlation Matrix 

A correlation matrix is a table showing correlation coefficients between variables. 

It helps in understanding how strongly features are related to each other. 

Types of Correlation 

 Positive Correlation (+1 to 0): As one feature increases, the other also increases. 
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 Negative Correlation (0 to -1): As one feature increases, the other decreases. 

 No Correlation (0): No linear relationship between the variables. 

 

Why Should You Use a Correlation Matrix? 

 Identifies relationships between features. 

 Helps in detecting multicollinearity in machine learning models. 

 Highlights redundant features that may not add value to the model. 

 

Heatmap for Correlation Matrix: 

A heatmap is a visual representation of the correlation matrix. It uses color coding to indicate the 

strength of relationships between variables. 

Benefits of Using a Heatmap 

 Easy to interpret relationships between features. 

 Quickly identifies highly correlated variables. 

 Helps in feature selection and data preprocessing 

3.Pair Plot 

 

A pair plot (also known as a scatterplot matrix) is a collection of scatter plots for every pair of 

numerical variables in the dataset. It helps in visualizing relationships between variables. 

Why Use a Pair Plot? 

 Shows the distribution of individual features along the diagonal. 

 Displays relationships between features using scatter plots. 

 Helps in identifying clusters, trends, and potential outliers. 

 

Summary Statistics Explanation: 

The summary statistics table provides key percentiles and other descriptive metrics for each 

numerical feature: 

-**25% (First Quartile - Q1):** This represents the value below which 25% of the data 

falls. 

It helps in understanding the lower bound of typical data values. 

- **50% (Median - Q2):** This is the middle value when the data is sorted. 

- It provides the central tendency of the dataset. 



Machine Learning Lab [BCSL606] 

Dept. of CSE-Data Science, ATMECE, Mysuru 18 

 

 

- **75% (Third Quartile - Q3):** This represents the value below which 75% of the data 

falls. 

- It helps in identifying the upper bound of typical values in the dataset. 

- These percentiles are useful for detecting skewness, data distribution, and identifying 

potential outliers (values beyond Q1 - 1.5*IQR or Q3 + 1.5*IQR). 

 

Program  

#import necessary Libraries 

import numpy as np 

import pandas as pd 

import matplotlib.pyplot as plt 

import seaborn as sns 

from sklearn.datasets import fetch_california_housing 

#load California Housing dataset 

df = fetch_california_housing() 
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#convert to Dataframe 

df = pd.DataFrame(data.data, columns=data.feature_names) 

df['Target'] = data.target 

df.head() 

 

# Correlation Matrix 

plt.figure(figsize=(10, 6)) 

corr_matrix = df.corr() 

sns.heatmap(corr_matrix, annot=True, cmap='coolwarm', fmt='.2f') 

plt.title("Feature correlatin heatmap") 

plt.show() 
 



Machine Learning Lab [BCSL606] 

Dept. of CSE-Data Science, ATMECE, Mysuru 20 

 

 

#pairplot to analyze feature relationships 

sns.pairplot(df[['MedInc', 'HouseAge', 'AveRooms', 'Target']], diag_kind='kde') 

plt.show() 
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Experiment 3 

 

Develop a program to implement Principal Component Analysis (PCA) for reducing the 

dimensionality of the Iris dataset from 4 features to 2. 

Introduction to Principal Component Analysis (PCA) 

 

What is PCA? 

Principal Component Analysis (PCA) is a dimensionality reduction technique used to transform a 

high-dimensional dataset into a lower-dimensional space while retaining as much variance as possible. 

It is an unsupervised learning method commonly used in machine learning and data visualization. 

Importance of PCA 

 Reduces computational complexity by lowering the number of features. 

 Helps in visualizing high-dimensional data. 

 Removes redundant or correlated features, improving model performance. Reduces overfitting 

by eliminating noise in the data. 

How Does PCA Work? 

PCA follows these key steps: 

 

1. Standardization: The data is normalized so that all features have a mean of zero and a standard 

deviation of one. 

2. Compute the Covariance Matrix: This step helps in understanding 

how different features relate to each other. 

3. Eigenvalue & Eigenvector Calculation: Eigenvectors represent the direction of the new 

feature axes, and eigenvalues determine the importance of these axes. 

4. Selecting Principal Components: The eigenvectors corresponding to the highest eigenvalues 

are chosen to form the new feature space. 

5. Transforming Data: The original dataset is projected onto the new feature space with reduced 

dimensions. 

Applying PCA to the Iris Dataset 

The Iris dataset consists of 4 numerical features (sepal length, sepal width, petal length, 

petal width) used to classify flowers into 3 species (Setosa, Versicolor, and Virginica). 

 Goal: Reduce the 4-dimensional feature space to 2 principal components while 
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retaining most of the variance. 

 Benefit: Enables 2D visualization of the dataset, making it easier to interpret classification 

results. 

Understanding PCA Output 

1. Variance Explained by Each Principal Component 

PCA provides explained variance ratios, which indicate how much information each principal 

component retains. 

 If PC1 explains 70% and PC2 explains 20%, then the first two principal components capture 

90% of the variance in the dataset. 

 

Scatter Plot of PCA-Reduced Data 

A 2D scatter plot of PCA-transformed features allows us to visualize how well PCA 

separates different species in the Iris dataset. 

Impact of PCA on Classification 

 

 If PCA preserves most of the variance, classification algorithms (e.g., k-NN, SVM) 

can achieve similar performance with fewer features. 

 If too much information is lost, classification accuracy may decrease. 

 

Benefits of PCA 

 

 Feature Reduction: Reduces the number of variables without significant loss of information. 

 Noise Reduction: Removes redundant or less informative features. 

 Improved Visualization: Enables easier interpretation of high-dimensional data. 

 

Better Model Performance: Enhances efficiency in training machine learning models. 

Explanation of Features in the Iris Dataset 

The Iris dataset consists of 4 features, which represent different physical characteristics of iris 

flowers: 

 

Sepal Length (cm) 

Sepal Width (cm) 

Petal Length (cm) 

Petal Width (cm) 
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These features were chosen because they effectively differentiate between the three iris 

species (Setosa, Versicolor, and Virginica). 

In the 3D visualizations, we select three features for plotting, which are: 

 

Feature 1 → Sepal Length 

Feature 2 → Sepal Width 

Feature 3 → Petal Length 

These features are chosen arbitrarily for visualization, but all four features are used in the PCA 

computation. Why is the Iris Dataset Important? 

The Iris dataset is a benchmark dataset in machine learning because: 

 

It is small yet diverse, making it easy to analyze. 

It has clearly separable classes, which makes it ideal for classification tasks. 

It is preloaded in Scikit-learn, making it accessible for learning and experimentation. 

 

Since the dataset contains three classes (Setosa, Versicolor, and Virginica), PCA helps visualize 

how well the classes can be separated in a lower-dimensional space. 

 

Program 

#import necessary libraries: 

from sklearn.datasets import load_iris 

from sklearn.decomposition import PCA 

from sklearn.preprocessing import StandardScaler 

import pandas as pd 

import matplotlib.pyplot as plt 

 

#load the iris dataset: 

iris = load_iris() 

features = iris.data 

target = iris.target 

print(iris.target_names) 

iris_df = pd.DataFrame(data=features,columns=['sepal length','sepal width','petal length','petal 

width']) 

iris_df['Target']=target 
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iris_df.head() 

 

 

#Standardize the features 

scaler=StandardScaler() 

features_standardized=scaler.fit_transform(features) 

features_standardized=StandardScaler().fit_transform(features) 

iris_std_df=pd.DataFrame(data=features_standardized,columns=['sepal length','sepal width','petal 

length','petal width']) 

iris_std_df['Target']=target 

iris_std_df.head() 

 



Machine Learning Lab [BCSL606] 

Dept. of CSE-Data Science, ATMECE, Mysuru 25 

 

 

#create a dataframe for the reduced data 

pca=PCA(n_components=2) 

features_pca=pca.fit_transform(features_standardized) 

pca_df=pd.DataFrame(data=features_pca,columns=["Principal Component1","Principal 

Component2"]) 

pca_df["Target"]=target 

print(pca_df) 

 

#Visualize the results plt.scatter (x,y,label,,,) 

scaler=StandardScaler() 

features_standardized=scaler.fit_transform(features) 

features_standardized=StandardScaler().fit_transform(features) 

iris_std_df=pd.DataFrame(data=features_standardized,columns=['sepal length','sepal width','petal 

length','petal width']) 

iris_std_df['Target']=target 

iris_std_df.head() 
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plt.figure(figsize=(8,6)) 

for label,color in zip(iris.target_names,["red","green","blue"]): 

plt.scatter( 

pca_df.loc[pca_df["Target"]==list(iris.target_names).index(label),"Principal Component1"], 

pca_df.loc[pca_df["Target"]==list(iris.target_names).index(label),"Principal Component2"], 

label=label,color=color,alpha=0.7 

) 

plt.xlabel("Principal Component1",fontsize=12) 

plt.ylabel("Principal Component2",fontsize=12) 

plt.title('PCA on Iris Dataset',fontsize=14) 

plt.legend(title="species") 

plt.grid() 

plt.show() 
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colors=['red','green','blue'] 

labels=iris.target_names 

plt.figure(figsize=(8,6)) 

for i in range (len(colors)): 

 

plt.scatter(features_pca[target==i,0],features_pca[target==i,1],color=colors[i],label=labels[i],alph 

a=0.7) 

plt.xlabel("Principal Component1") 

plt.ylabel("Principal Component2") 

plt.title('PCA on Iris Dataset') 

plt.legend() 

plt.grid() 

plt.show() 
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#Explaines Variance by each principal component 

explained_variance = pca.explained_variance_ratio_ 

print("principal component1:", explained_variance[0]) 

print("principal component2:", explained_variance[1]) 

print("total variance retained:",sum(explained_variance)) 
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Experiment 4 

 
For a given set of training data examples stored in a .CSV file, implement and demonstrate 

the Find-S algorithm to output a description of the set of all hypotheses consistent with the 

training examples. 

Introduction to the Find-S Algorithm 

What is the Find-S Algorithm? 

The Find-S algorithm is a supervised learning algorithm used in concept learning to find the 

most specific hypothesis that is consistent with a given set of positive training examples. It is one 

of the simplest algorithms for learning from examples in a hypothesis space. 

Importance of Find-S Algorithm 

 Helps in understanding how hypotheses are learned from training data. 

 Provides a structured way to generalize from specific instances. 

 Forms the foundation for more advanced machine learning algorithms. 

Working of the Find-S Algorithm 

 

The Find-S algorithm follows these steps: 

 

Initialize the Hypothesis: Start with the most specific hypothesis (i.e., all attributes set to the most 

restrictive value). 

Iterate Through Each Training Example: 

 If the example is positive (output = "Yes"), update the hypothesis: 

 Replace any attribute value in the hypothesis that is not consistent with the example with a 

more general value ( ? ). 

If the example is negative (output = "No"), ignore it. 

 

1. Final Hypothesis: 

 

After processing all positive examples, the final hypothesis represents the most 

specific generalization of the training data. 
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Understanding the Output Hypothesis 

1. Initial Hypothesis 

 The algorithm starts with the most specific hypothesis: 

 h = ("Ø", "Ø", "Ø", "Ø") (empty hypothesis). 

 

1. Iterative Learning Process 

 

 It generalizes step by step based on the positive training examples. 

 Attributes that differ among positive examples are replaced with  ? (wildcard). 

 

Final Hypothesis 

 

 The final hypothesis is the most specific generalization covering all positive examples. 

 It represents a logical rule derived from the dataset. 

The algorithm will generate the most specific hypothesis that covers all positive instances. 

Limitations of Find-S 

 Only considers positive examples: It ignores negative examples, which 

may lead to an incomplete hypothesis. 

 Cannot handle noise or missing data: Works only when training data is perfect. 

Finds only one hypothesis: 

 Does not provide alternative consistent hypotheses. 

 Understanding Find-S Algorithm and Hypothesis Concept 

 

 The Find-S algorithm is a simple machine-learning algorithm used in concept learning. It 

finds the most specific hypothesis that is consistent with all positive examples in a given 

training dataset. The algorithm assumes. 

 The target concept is represented in a binary classification (yes/no, true/false, etc.). 

 

 The hypothesis space uses conjunctive attributes (each attribute in a hypothesis must match 

exactly). There is at least one positive example in the dataset. 
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#import necessary libraries 

import pandas as pd 

#Read the csv file 

data = pd.read_csv(r'training_data.csv') 

print(data) 

 

 

 

#write/create user defined function for find S algorithm 

def find_s_algorithm(data): 

"""Implements the Find_S algorithm to find the most specific hypothesis""" 

#Extract feature columns and target column 

attributes=data.iloc[:,:-1].values 

target=data.iloc[:,-1].values 

#Initialize hypothesis with first positive example 

for i in range (len(target)): 

if target[i]=="Yes": 

hypothesis=attributes[i].copy() 

break 
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#update hypothesis based on other positive examples 

for i in range (len(target)): 

if target[i]=="Yes": 

for j in range(len(hypothesis)): 

if hypothesis[j]!=attributes[i][j]: 

hypothesis[j]='?' 

print(i,hypothesis) 

return hypothesis 

#Run/Call Find-S-Algorithm 

final_hypothesis = find_s_algorithm(data) 

#Print the learned hypothesis 

print("most specific hypothesis:",final_hypothesis) 
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Experiment 5 

Develop a program to implement k-Nearest Neighbour algorithm to classify the randomly 

generated 100 values of x in the range of [0,1]. Perform the following based on dataset 

generated. 

1. Label the first 50 points {x1,……,x50} as follows: if (xi ≤ 0.5), then xi ε Class1, else xi 

ε Class2 

2. Classify the remaining points, x51,……,x100 using KNN. Perform this for 

k=1,2,3,4,5,20,30 

Introduction to k-Nearest Neighbors (k-NN) 

What is k-NN? 

 The k-Nearest Neighbors (k-NN) algorithm is a supervised learning algorithm used for 

both classification and regression. It classifies a data point based on the majority class among 

its nearest neighbors. 

 It is also called a lazy learner algorithm because it does not learn from the training set 

immediately instead it stores the dataset and at the time of classification, it performs an action 

on the dataset. 

Importance of k-NN 

 

 Simple and effective for classification tasks. 

 Non-parametric (makes no assumptions about the data distribution). 

 Handles multi-class classification with ease. 

 

How k-NN Works? 

 

The k-NN algorithm follows these steps: 

 

1. Choose the value of k (number of nearest neighbors). 

2. Compute the distance between the test sample and all training samples using a distance metric (e.g., 

Euclidean distance). 

3. Select the k nearest neighbors (data points with the smallest distance to the test sample). 

 

4. Assign the majority class among the k neighbors to the test sample. 
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Working of the k-NN Algorithm Choose a Value for k: 

 

 A small k (e.g., k=1) makes the model sensitive to noise and results in high variance. 

 A large k (e.g., k=30) smooths the decision boundary but may lead to high bias. 

 The optimal k is usually found by cross-validation. 

 

Compute Distance Between Data Points: The algorithm relies on a distance metric to determine 

similarity between data points. Common distance measures include: 

`- Euclidean Distance (Most commonly used) 

Manhattan Distance 

Minkowski Distance 

 `Cosine Similarity** (Used in text-based applications) 

 

  The most common method is Euclidean Distance: 

 d =√ [(x2 – x1)2 + (y2 – y1)2] 

 

 

3. Decision Rule for Classification 

 Majority Voting: The most common class among the k neighbors determines the predicted 

class. 

 

Weighted Voting: Closer neighbors have higher influence on the prediction 

than farther neighbors. 

 

Dataset Generation and Classification Task 

 
Step 1: Generate 100 Random Points in the Range [0,1] 

 

  The dataset consists of 100 random values of  x uniformly distributed between 0 and 1. 
 

 

Step 2: Assign Labels to the First 50 Points 

 

 The first 50 points (x₁, x₂, ..., x₅₀) are labeled as: 
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 Class 1 if x_i <= 0.5 

 Class 2 if x_i > 0.5 

Step 3: Classify Remaining Points (x₅₁, ..., x₁₀₀) using k-NN 

 

 The k-NN algorithm is used to classify the next 50 points based on the first 50 labeled 

points. 

Step 4: Experiment with Different k Values 

 Classification is performed for multiple values of  k: 

 k = 1, 2, 3, 4, 5, 20, 30 

 Observing how different values of  kaffect classification accuracy and decision 

boundaries. 

Bias-Variance Tradeoff in k-NN 

 

  Smaller k values (e.g., k=1) → Low bias, high variance (more flexible but prone to noise). 

  Larger k values (e.g., k=20, 30) → High bias, low variance (less flexible but 

smoother decision boundary). 

Advantages of k-NN 

 
 Simple and easy to implement. 

 No training phase—all computation happens during prediction. 

 Works well for multi-class classification problems. 

 Can model complex decision boundaries when k is appropriately chosen. 

 

Limitations of k-NN 

 
 Computationally expensive for large datasets. 

 Performance depends on the choice of k. 

 Sensitive to irrelevant or redundant features. 

 Memory-intensive since all training data needs to be stored. 

 

#import Necessary Libraries 

import numpy as np 

import pandas as pd 

from sklearn.model_selection import train_test_split 
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from sklearn.neighbors import KNeighborsClassifier 

from sklearn.metrics import accuracy_score 

import warnings 

warnings.filterwarnings('ignore') 

Generate dataset 

values=np.random.rand(100) 

labels =[] 

for i in values[:50]: 

if i<=0.5: 

labels.append('Class1') 

else: 

labels.append('Class2') 

labels += [None]*50 

print(labels) 

 

 

data = { 

"Point": [f"x{i+1}"for i in range(100)], 

"Value": values, 

"Label": labels 

} 

print(data) 

type(data) 

df=pd.DataFrame(data) 

df.head() 
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#split data into labeled and unlabeled 

labeled_df=df[df["Label"].notna()] 

x_train=labeled_df[["Value"]] 

y_train=labeled_df["Label"] 

 

unlabeled_df=df[df["Label"].isna()] 

X_test=unlabeled_df[["Value"]] 

 

#Generate true lsbels for testing (for accuracy calculation) 

true_labels=["Class1" if x<=0.5 else "Class2" for x in values[50:]] 

#Perform KNN classification for different values of K 

k_values=[1,2,3,4,5,20] 

results={} 

accuracies={} 

for k in k_values: 

knn=KNeighborsClassifier(n_neighbors=k) 

knn.fit(x_train,y_train) 

predictions=knn.predict(X_test) 

results[k]=predictions 

 

#accuracy calculation 

accuracy=accuracy_score(true_labels,predictions)*100 

accuracies[k]=accuracy 

print(f"Accuracy for k={k}:{accuracy:.2f}%") 

print(predictions) 
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#assign predictions back to the dataframe for this k 

unlabeled_df[f"Label_k{k}"]=predictions 

df1=unlabeled_df.drop(columns=['Label'],axis=1) 

df1 
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Experiment 6 

Implement the non-parametric Locally Weighted Regression algorithm in order 

to fit data points. Select appropriate data set for your experiment and draw 

graphs 

Introduction to Locally Weighted Regression (LWR) 

What is Locally Weighted Regression? 

Locally Weighted Regression (LWR) is a non-parametric machine learning algorithm that fits a 

regression model to a local subset of data points. Unlike traditional regression techniques, LWR 

does not assume a fixed set of parameters for the entire dataset but instead assigns different weights to data 

points based on their distance from the target point. 

Importance of Locally Weighted Regression 

 Handles non-linearity effectively. 

 Provides better flexibility compared to global regression models. 

 More robust to outliers due to localized weighting. 

 Suitable for datasets where relationships between variables vary locally. 

 

How Locally Weighted Regression Works 

 

1. Define the Weighting Function 

 

 A kernel function (e.g., Gaussian kernel) is used to assign weights to data points: 

 Here,  τ (tau) is the bandwidth parameter that controls the locality of weighting. 

Compute Localized Weights 

For a given query point  x, assign weights to training points based on proximity. 

Fit a Local Model 

 

 Solve a weighted least squares problem using the locally weighted dataset. 

1. Make Predictions: Compute the predicted value at  x using the locally trained model. 

Dataset Selection: 

For this experiment, we need a dataset with a clear non-linear relationship between independent 

and dependent variables. Some possible datasets include: 
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Synthetic Data: Randomly generated non-linear data points.  

Real-World Data: 

 Auto MPG Dataset: Predict fuel efficiency based on engine displacement, horsepower, etc. 

 California Housing Dataset: Predict house prices based on features like location and area. 

 

 Temperature vs. Time Series Data: Forecast weather trends. 

 

Steps for Implementing Locally Weighted Regression 

1. Load the Dataset 

 Choose a dataset with one independent variable (x) and one dependent variable (y). 

2. Apply the Locally Weighted Regression Algorithm 

 Assign weights to each data point using a Gaussian kernel. 

 Solve the weighted linear regression equation. 

 

3. Experiment with Different Bandwidth Parameters (τ) 

 

 Small τ: Model focuses on very close neighbors → More variance, less bias (risk of 

overfitting). 

 Large τ: Model considers a broader range of points → More bias, less variance 

(risk of underfitting). 

 

Visualize the Results: 

 Scatter Plot of Data Points to observe the actual distribution. 

 Fitted Curve from LWR with different values of  τ to compare model performance. 

Advantages of Locally Weighted Regression 

✔ Captures complex relationships between input and output variables. 

✔ Works well with small datasets where global linear regression may not be suitable. 

✔ Does not assume a fixed functional form, making it highly flexible. 

Limitations of Locally Weighted Regression 

 

+ Computationally expensive: Must compute a separate model for each query point. 

+ Sensitive to bandwidth parameter ((\tau)): Choosing the wrong value can lead to 

overfitting or underfitting. 

+ Not suitable for large datasets: As the dataset size increases, the algorithm becomes 
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impractical due to high computation time. 

 

 
The tau (τ) parameter in your code is the bandwidth for the Gaussian kernel, which controls 

how much influence nearby points have in the Locally Weighted Regression (LWR). Here's 

what it does: 

Determines the Weight Decay: 

If τ is small, only very nearby points contribute 

significantly, making LWR behave like a very local model (more sensitive to noise). If τ is large, 

more distant points contribute significantly, 

making LWR behave more like global linear regression. 

 

Controls the Model Complexity: 

A small τ → Highly flexible model, more prone to overfitting. 

A large τ → More smoothing, leading to a simpler model (can underfit if too large). 

 

Example Effect of Tau 

 

τ = 0.1 → LWR behaves almost like a nearest-neighbor model (highly local, very 

wiggly curve). 

τ = 1.0 → Moderate smoothing, a good balance between flexibility and generalization. 

τ = 10 → LWR behaves like ordinary least squares regression (all points are weighted 

almost equally). 

Program  

 

import numpy as np 

import matplotlib.pyplot as plt 

def gk(x,xq,tau): 

return np.exp(-(x-xq)**2/(2*tau**2)) 

def lwr(x,y,xq,tau): 

xb = np.c_[np.ones(len(x)), x] 

xqb = np.array([1,xq]) 
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w = np.diag(gk(x,xq,tau)) 

theta = np.linalg.inv(xb.T @ w @ xb) @ xb.T @ w @ y 

return xqb @ theta 

x = np.array([1,2,3,4,5]) 

y = np.array([1,2,1.3,3.75,2.25]) 

xq = 3 

tau = 1.0 

yp = lwr(x,y,xq,tau) 

 

 

plt.figure(figsize=(8,6)) 

plt.scatter(x,y,color = 'blue',label = 'data points') 

plt.scatter(xq,yp,color = 'red',label = f'prediction at x = {xq}') 
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weights = gk(x,xq,tau) 

for i in range(len(x)): 

plt.plot([x[i],x[i]],[y[i],y[i]-weights[i]],'k-',lw =1) 

plt.scatter(x[i],y[i],s=weights[i]*200,color = 'green',alpha =0.5) 

plt.title("locally weighted regression(LWR)") 

plt.xlabel("x") 

plt.ylabel("y") 

plt.show() 

 

 

import matplotlib.pyplot as plt 

from sklearn.linear_model import LinearRegression 

 

 

def gk(x,xq,tau): 

return np.exp(-(x-xq)**2/(2*tau**2)) 
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def lwr(x,y,xq,tau): 

xb = np.c_[np.ones(len(x)), x] 

xqb = np.array([1,xq]) 

w = np.diag(gk(x,xq,tau)) 

theta = np.linalg.inv(xb.T @ w @ xb) @ xb.T @ w @ y 

return xqb @ theta 

 

x = np.array([1,2,3,4,5,6,7,8,9,10]) 

y = np.array([1,3,2,4,3.5,5,6,7,6.5,8]) 

 

 

xq = np.linspace(1,10,100) 

tau = 1.0 

y_lwr = np.array([lwr(x,y,xq,tau) for xq in xq]) 

lr = LinearRegression() 

xr = x.reshape(-1,1) 

lr.fit(xr,y) 

yl = lr.predict(xq.reshape(-1,1)) 

 

 

plt.figure(figsize=(10,6)) 

plt.scatter(x,y,color = 'blue',label='datapoints') 

plt.plot(xq,yl,color='black',linestyle='dashed',label='simple linear regression') 

plt.plot(xq,y_lwr,color='red',label='locally weighted regression') 

plt.title("comparison:simple linear regression v/s locally weighted regression") 

plt.xlabel("x") 

plt.ylabel("y") 

plt.legend() 

plt.show() 
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def gk(x,xq,tau): 

return np.exp(-(x-xq)**2/(2*tau**2)) 

def lwr(x,y,xq,tau): 

xb = np.c_[np.ones(len(x)), x] 

xqb = np.array([1,xq]) 

w = np.diag(gk(x,xq,tau)) 

theta = np.linalg.pinv(xb.T @ w @ xb) @ xb.T @ w @ y 

return xqb @ theta 

 

x = np.array([1,2,3,4,5,6,7,8,9,10]) 

y = np.array([1,3,2,4,3.5,5,6,7,6.5,8]) 

 

 

xq = np.linspace(1,10,100) 

tau_v = [0.1,0.5,1.0,5.0,10.0] 

 

lr = LinearRegression() 
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xr = x.reshape(-1,1) 

lr.fit(xr,y) 

yl = lr.predict(xq.reshape(-1,1)) 

 

 

plt.figure(figsize=(12,8)) 

plt.scatter(x,y,color = 'blue',label='datapoints') 

plt.plot(xq,yl,color='black',linestyle='dashed',label='simple linear regression') 

 

 

colors = ['red','green','purple','orange','brown'] 

for tau,color in zip(tau_v,colors): 

y_lwr = np.array([lwr(x,y,xq,tau)for xq in xq]) 

plt.plot(xq,y_lwr,color=color,label = f'LWR(τ={tau})') 

plt.title("effect of different τ values in locally weighted regression") 

plt.xlabel("x") 

plt.ylabel("y") 

plt.legend() 
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plt.show() 
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Experiment 7  

 

Develop a program to demonstrate the working of Linear Regression and Polynomial Regression. 

Use Boston Housing Dataset for Linear Regression and Auto MPG Dataset (for vehicle fuel 

efficiency prediction) for Polynomial Regression. 

7a. Develop a program to demonstrate the working of Linear Regression. Use Boston Housing 

Dataset.  

Introduction to Regression Analysis What is Regression? 

 

Regression is a fundamental statistical and machine learning technique used to model relationships 

between variables. It helps in predicting a dependent variable (target) based on one or more 

independent variables (features). 

Types of Regression Models: 

 

1. Linear Regression – Assumes a linear relationship between independent and dependent variables. 

 

2. Polynomial Regression – Extends linear regression by introducing polynomial terms to capture 

non-linearity. 

Terms to capture non-linearity. Linear Regression 

Definition: 

Linear Regression models the relationship between an independent variable ( x ) and a dependent 

variable ( y ) using a straight-line equation: 

y = mx + c 

 

m is the slope (coefficient) of the line, 

c is the intercept, 

x is the independent variable, 

 

y is the dependent variable (predicted value). 

 

Working of Linear Regression 

1. Identify the best-fitting line: Uses the least squares method to minimize the error between 

actual and predicted values. 

Compute the cost function: Measures how well the model fits the data using Mean Squared Error 

(MSE) 
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Optimize the model parameters: Uses Gradient Descent or other optimization techniques to find 

the best m and c . 

Applications of Linear Regression 

 Predicting sales revenue based on advertising spend. 

 Estimating house prices based on size and location. 

 Forecasting demand in supply chain management. 

Data Cleaning 

Checking Null values 

data.isnull() - Returns a DataFrame of the same shape as data, where each element 

is True if it's NaN and False otherwise. 

.sum() - Sums up the True values (which are treated as 1 in Python) column-wise, 

giving the total count of missing values for each column. 

 

#import necessary Libraries 

import pandas as pd 

import numpy as np 

import matplotlib.pyplot as plt 

import seaborn as sns 

from sklearn.model_selection import train_test_split 

from sklearn.linear_model import LinearRegression 

from sklearn.metrics import mean_squared_error,r2_score 

from sklearn.preprocessing import StandardScaler 

#import Boston housing dataset 

data = pd.read_csv(r"Boston housing dataset.csv") 

data.head() 
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data.shape 

 

 

data.info() 

 

 

data.isnull().sum() 
 

 

df=data.copy() 

df['CRIM'].fillna(df['CRIM'].mean(),inplace=True) 

df['ZN'].fillna(df['ZN'].mean(),inplace=True) 
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df['CHAS'].fillna(df['CHAS'].mode()[0],inplace=True) 

df['INDUS'].fillna(df['INDUS'].mean(),inplace=True) 

df['AGE'].fillna(df['AGE'].median(),inplace=True) 

df['LSTAT'].fillna(df['LSTAT'].median(),inplace=True) 

 

df.isnull().sum() 

 

df.head() 

 

 

x = df.drop('MEDV',axis=1) 

y = df['MEDV'] 

sc = StandardScaler() 

x_s = sc.fit_transform(x) 

x_train,x_test,y_train,y_test = train_test_split(x_s, y, test_size=0.2,random_state=42) 
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m = LinearRegression() 

m.fit(x_train,y_train) 

y_p = m.predict(x_test) 

y_p 

 

mse = mean_squared_error(y_test,y_p) 

print(f'Mean Squared Error:{mse}') 

 

rmse = np.sqrt(mse) 

print(f'Root mean squared error:{rmse}') 

 

 

r2 = r2_score(y_test,y_p) 

print(f'R-squared{r2}') 

 



Machine Learning Lab [BCSL606] 

Dept. of CSE-Data Science, ATMECE, Mysuru 55 

 

 

7b. Develop a program to demonstrate the working of Polynomial Regression. 

Use Auto MPG Dataset (for vehicle fuel efficiency prediction)  

Polynomial Regression 

Definition 

Polynomial regression is a type of regression analysis used in statistics and machine learning when 

the relationship between the independent variable (input) and the dependent variable (output) is not 

linear. While simple linear regression models the relationship as a straight line, polynomial 

regression allows for more flexibility by fitting a polynomial equation to the data. 

Polynomial Regression is an extension of Linear Regression where the relationship between 

variables is modeled using a polynomial equation: where n represents the degree of the polynomial. 

Importance of Polynomial Regression. When the relationship between variables is non-linear and a 

straight line does not fit well. Captures curved patterns in data by introducing higher-degree 

polynomial terms. 

Working of Polynomial Regression 

1. Transform the input features by introducing polynomial terms. 

2. Apply Linear Regression to fit the transformed dataset. 

3. Choose the optimal polynomial degree to balance underfitting and overfitting. 

Choosing the Right Degree (n) 

Degree 1: Equivalent to Linear Regression. 

Degree 2-3: Captures slight curves in data while preventing overfitting. 

Degree >3: More flexible but risks overfitting (too much complexity).71 

Applications of Polynomial Regression 

 

 Predicting fuel efficiency based on vehicle characteristics. 

 Modeling economic growth trends over time. 

 Analyzing the effect of temperature on crop yields. 

 

#import necessary libraries 

import numpy as np 

import matplotlib.pyplot as plt 

import pandas as pd 

import seaborn as sns 

from sklearn.preprocessing import PolynomialFeatures 
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from sklearn.linear_model import LinearRegression 

from sklearn.metrics import mean_squared_error, r2_score 

from sklearn.model_selection import train_test_split 

import warnings 

warnings.filterwarnings("ignore") 

data = pd.read_csv(r'auto-mpg.csv') 

data.shape 

data.head() 

 

data.isnull().sum() 

 

 
 

 

df = data.copy() 

df['horsepower'].fillna(df['horsepower'].median(), inplace=True) 

 

X = df[['horsepower']] 

y = df['mpg'] 

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
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degree = 2 

poly = PolynomialFeatures(degree) 

X_poly_train = poly.fit_transform(X_train) 

model = LinearRegression() 

model.fit(X_poly_train, y_train) 

 

 

plt.scatter(X, y, color='red', label='Data') 

X_range = np.linspace(X.min(), X.max(), 100) 

X_range_poly = poly.transform(X_range) 

y_range_pred = model.predict(X_range_poly) 

plt.plot(X_range, y_range_pred, color='red', label='Polynomial Fit') 

plt.xlabel('Horsepower') 

plt.ylabel('MPG') 

plt.legend() 

plt.title(f'Polynomial Regression (degree {degree})') 

plt.show()
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Experiment 8 

Develop a program to demonstrate the working of the decision tree algorithm. Use Breast 

Cancer Data set for building the decision tree and applying this knowledge to classify a new 

sample. 

Introduction to Decision Trees 

What is a Decision Tree? 

A Decision Tree is a supervised machine learning algorithm used for classification and regression 

tasks. It models decisions using a tree-like structure where: 

Nodes represent decision points based on feature values. 

Edges represent possible outcomes (branches). 

Leaves represent the final decision or classification. 

 

Decision trees work by recursively splitting data into subsets based on the most significant feature, 

ensuring maximum information gain at each step. 

Working of the Decision Tree Algorithm 

1. Selecting the Best Feature for Splitting 

At each step, the algorithm selects the feature that best separates the data. Common methods for 

choosing the best feature include: 

Gini Impurity 

Gini = 1- ∑Pi2 

Measures how often a randomly chosen element would be incorrectly classified. Entropy 

(Information Gain) 

Entropy = ∑p(X)log p(X) 

Measures the uncertainty in a dataset and selects splits that maximize information gain. 

 

Chi-Square Test Evaluates the statistical significance of the feature split. 

1. Splitting the Data: 

 The dataset is divided into subsets based on the selected feature.

 The process continues recursively until:

 A stopping condition is met (e.g., pure classification, max depth).
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 The tree reaches a predefined depth.

 

2. Making Predictions 

For a new sample, traverse the tree from the root to a leaf node. The leaf node contains the 

predicted class label. 

Advantages of Decision Trees 

 Easy to interpret – Mimics human decision-making.

 Handles both numerical & categorical data.

 Requires little data preprocessing – No need for feature scaling.

 Works well with missing values.

Challenges of Decision Trees 

 Overfitting – Deep trees may memorize noise instead of patterns.

 Bias towards dominant features – Features with more categories can lead to biased splits.

 Instability – Small data variations can lead to different trees.

 

Optimizing Decision Trees 

1. Pruning 

Pre-Pruning: Stop the tree early using conditions (e.g., min samples per split). 

Post-Pruning: Remove unnecessary branches after the tree is built. 

2. Setting Tree Depth 

Limiting maximum depth prevents overfitting. 

3. Using Ensemble Methods 

Random Forest: Combines multiple trees for better generalization. Gradient 

Boosting: Sequentially improves predictions. 

Applications of Decision Trees 

 Medical Diagnosis – Classifying diseases based on symptoms. 

 Fraud Detection – Identifying fraudulent transactions. 

 Customer Segmentation – Categorizing users based on behavior. 
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Program  

# Importing necessary libraries 

import pandas as pd 

import numpy as np 

import matplotlib.pyplot as plt 

import seaborn as sns 

from sklearn.model_selection import train_test_split 

from sklearn.tree import DecisionTreeClassifier, plot_tree 

from sklearn.metrics import accuracy_score, classification_report, confusion_matrix 

from sklearn.tree import export_graphviz 

from IPython.display import Image 

import pydotplus 

import warnings 

warnings.filterwarnings('ignore') 

#Load Dataset 

data = pd.read_csv(r'Breast Cancer Datset’) 

pd.set_option('display.max_columns', None) 

data.head() 

 

 

data.shape() 

(569, 32) 

data.info() 
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data.diagnosis.unique() 

array(['M', 'B'], dtype=object) 

#Data Preprocessing 

#Data Cleaning 

data.duplicated().sum() 

np.int64(0) 

df = data.drop(['id'], axis=1) 
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df['diagnosis'] = df['diagnosis'].map({'M':1, 'B':0}) # Malignant:1, Benign:0 

Discriptive Statistics 

df.describe().T 

 

 

# Export the tree to DOT format 

dot_data = export_graphviz(model, out_file=None, 

feature_names=X_train.columns, 

rounded=True, proportion=False, 

precision=2, filled=True) 

# Convert DOT data to a graph 

graph = pydotplus.graph_from_dot_data(dot_data) 
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# Display the graph 

Image(graph.create_png()) 

 

 

 

# Visualize the Decision Tree (optional) 

plt.figure(figsize=(12, 8)) 

plot_tree(model, filled=True, feature_names=X.columns, class_names=['Benign', 'Mali 

plt.show() 
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y_pred = model.predict(X_test) 

y_pred 

 

 

# Evaluate the model 

accuracy = accuracy_score(y_test, y_pred) * 100 

classification_rep = classification_report(y_test, y_pred) 

# Print the results 

print("Accuracy:", accuracy) 

print("Classification Report:\n", classification_rep) 

 

 

new = [[12.5, 19.2, 80.0, 500.0, 0.085, 0.1, 0.05, 0.02, 0.17, 0.06, 

0.4, 1.0, 2.5, 40.0, 0.006, 0.02, 0.03, 0.01, 0.02, 0.003, 

16.0, 25.0, 105.0, 900.0, 0.13, 0.25, 0.28, 0.12, 0.29, 0.08]] 

y_pred = model.predict(new) 

# Output the prediction (0 = Benign, 1 = Malignant) 

if y_pred[0] == 0: 

print("Prediction: Benign") 

else: 

print("Prediction: Malignant") 

Prediction: Benign 
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Experiment 9 

Develop a program to implement the Naive Bayesian classifier, considering the Olivetti Face 

Data set for training. Compute the accuracy of the classifier, considering a few test data set. 

The Olivetti Face Dataset is a collection of images of faces, used primarily for face recognition 

tasks. The dataset contains 400 images of 40 different individuals, with 10 images per person. The 

dataset was created for research in machine learning and pattern recognition, especially in the 

context of facial recognition. 

The Olivetti dataset provides the following key features: 

*400 Images: Each image is a grayscale photo of a person's face. 

*40 People: The dataset contains 40 different individuals, and each individual Has 10 different 

images. 

*Image Size: Each image is 64x64 pixels, resulting in 4096 features (flattened vector) per image. 

 

*Target Labels: Each image is associated with a label representing the individual (0 to 39) 

 

 

Introduction to Naive Bayes Classification 

What is Naive Bayes? 

Naïve Bayes is a probabilistic classification algorithm based on Bayes' Theorem with the naïve 

assumption that features are independent of each other. Despite this strong assumption, it performs 

well in many real-world scenarios. 

It is widely used for text classification, spam detection, medical diagnosis, and facial recognition. 

 

Program  
 

#import necessary libraries: 

import numpy as np 

import matplotlib.pyplot as plt 

from sklearn.model_selection import train_test_split 

from sklearn.naive_bayes import GaussianNB 

from sklearn.metrics import accuracy_score 

#Load the dataset locally 

data=np.load('Olivetti_faces_offline.npz') 
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images=data['images'] 

targets=data['target'] 

#Display first t faces with 1Ds 

plt.figure(figsize=(10,8)) 

for i in range(20): 

plt.subplot(4,5,i+1) 

plt.imshow(images[i],cmap='gray') 

plt.title(f"ID:{targets[i]}") 

plt.axis('off') 

plt.tight_layout() 

plt.show() 

 
 

#Flatten the images for training (convert 3D to 2D) 

x=images.reshape((images.shape[0],-1)) 

y=targets 

#Train _test Split 

x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=0.25,stratify=y,random_state=42) 

model=GaussianNB() 

model.fit(x_train,y_train) 
 

#Predict and Evalute 

y_pred=model.predict(x_test) 

accuracy=accuracy_score(y_test,y_pred) 

print(f"Accuracy:{accuracy*100:.2f}%") 
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Experiment 10 

Develop a program to implement k-means clustering using Wisconsin Breast Cancer data set 

and visualize the clustering result. 

What is Clustering? 

 

Clustering is an unsupervised machine learning technique used to group data points into clusters 

based on their similarity. The goal is to identify hidden patterns or natural groupings in the data. 

One of the most widely used clustering algorithms is K-Means Clustering, which divides the dataset 

into K clusters, where each data point belongs to the nearest cluster center. 

What is K-Means Clustering? 

 

K-Means is a centroid-based clustering algorithm that partitions data into K clusters by minimizing 

the variance within each cluster. 

Working of K-Means Algorithm 

1. Choose the number of clusters (K). 

2. Randomly initialize K cluster centroids. 

3. Assign each data point to the nearest centroid based on distance (e.g., Euclidean distance). 

 

4. Update the centroids by computing the mean of all points assigned to each cluster. 

5. Repeat Steps 3 and 4 until convergence (when centroids no longer change significantly). 

 

Mathematical Representation 

 

The objective is to minimize the sum of squared distances (SSD) between data points and their 

assigned cluster centroid: where: 

K = Number of clusters 

xj = Data point 

μi = Centroid of cluster Ci 

Choosing the Optimal Number of Clusters (K) 

Selecting the right value of K is crucial. Some common methods include: 

Elbow Method: 

 

Plots the within-cluster sum of squares (WCSS) for different K values. 
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The "elbow point" where WCSS stops decreasing significantly is chosen as the optimal K. 

 
1. Silhouette Score: Measures how well-separated the clusters are. A higher score indicates better 

clustering. 

2. Gap Statistics: 

Compares clustering performance to randomly generated reference data. Distance Metrics in K- 

Means typically uses Euclidean Distance to measure how close a data point is to a centroid: 

Other distance metrics include: 

Manhattan 

Distance Cosine 

Similarity 

Mahalanobis 

Distance 

Advantages of K-Means Clustering 

✔ Efficient and Scalable – Works well with large datasets. 

✔ Easy to Implement – Simple and interpretable. 

✔ Handles High-Dimensional Data – Can work on complex datasets. 

Program  

#Import necessary libraries 

import numpy as np 

import matplotlib.pyplot as plt 

import seaborn as sns 

from sklearn.datasets import load_breast_cancer 

from sklearn.decomposition import PCA 

from sklearn.preprocessing import StandardScaler 

from sklearn.cluster import KMeans 

import pandas as pd 

#load the dataset 

data=load_breast_cancer() 

df=pd.DataFrame(data.data,columns=data.feature_names) 

print(df) 
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#Standardize the dataset 

scaler=StandardScaler() 

df_scaled=scaler.fit_transform(df) 

#Apply K-means clustering 

k=2 

kmeans=KMeans(n_clusters=k, random_state=42,n_init=10) 

kmeans.fit(df_scaled) 

labels=kmeans.labels_ 

print(labels) 

 

 

#Reduce dimensions using PCA for visualization 

pca=PCA(n_components=2) 

df_pca=pca.fit_transform(df_scaled) 

#Create a dataframe for visualization 

df_visual=pd.DataFrame(df_pca,columns=['PC1','PC2']) 

df_visual['cluster']=labels 

#plot the clusters 

plt.figure(figsize=(8,6)) 

sns.scatterplot(x='PC1',y='PC2',hue=df_visual['cluster'],palette='Set1',data=df_visual) 

plt.title("K_means Clustering") 

plt.xlabel('PC1') 
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plt.ylabel('PC2') 

plt.legend(title='cluster') 

plt.show() 

 


