BATME

atme | College of Engineering

13t KM Stone, Bannur Road, Mysore - 560 028

Department of CSE-Artificial Intelligence & Machine Learning

(Academic Year 2025-26)

LABORATORY MANUAL

SUBJECT: Generative Al Laboratory
SUB CODE: BAIL657C

SEMESTER: VI

SCHEME: 2022

Prepared By Verified By Approved by
Ms. GEETHA.B Dr. ANIL KUMAR CJ Dr. ANIL KUMAR CJ
Instructor Assoc. Professor &Head Assoc. Professor & Head

Dept. of CSE-AI ML Dept. of CSE-AI &ML

Institute Vision

Development of academically excellent, culturally vibrant, socially

responsible and globally competent human resources.

Institute Mission

« To keep pace with advancements in knowledge and make the students

competitive and capable at the global level.

« To create an environment for the students to acquire the right physical,
intellectual, emotional and moral foundations and shine as torch

bearers of tomorrow’s society.

« Tostrive to attain ever-higher benchmarks of educational excellence.

Department Vision

To impart technical education in the field of Artificial intelligence and
machine learning of topnotch quality with a high level of professional

competence, social obligation, and global cognizance among the students.

Department Mission

« To impart technical education that is up to date, relevant and makes
students to compete at global level

« Fostering an ambiance where students can adopt the suitable moral,
intellectual, emotional, and physical attributes to shine as the leaders
of tomorrow’s society.

« Tostrive to meet ever higher educational standard.

Program Outcomes (PO’s)

1. Engineering knowledge: Apply the knowledge of mathematics, science, engineering
fundamentals, and an engineering specialization to the solution of complex engineering problems.

2. Problem analysis: Identify, formulate, review research literature, and analyze complex engineering
problems reaching substantiated conclusions using first principles of mathematics, natural sciences,
and engineering sciences.

3. Design/development of solutions: Design solutions for complex engineering problems and design
system components or processes that meet the specified needs with appropriate consideration for the
public health and safety, and the cultural, societal, and environmental considerations.

4. Conduct investigations of complex problems: Use research-based knowledge and research
methods including design of experiments, analysis and interpretation of data, and synthesis of the
information to provide valid conclusions.

5. Modern tool usage: Create, select, and apply appropriate techniques, resources, and modern
engineering and IT tools including prediction and modeling to complex engineering activities with an
understanding of the limitations.

6. The engineer and society: Apply reasoning informed by the contextual knowledge to assess
societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the
professional engineering practice.

7. Environment and sustainability: Understand the impact of the professional engineering solutions
in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable
development.

8. Ethics: Apply ethical principles and commit to professional ethics and responsibilities and norms
of the engineering practice.

9. Individual and team work: Function effectively as an individual, and as a member or leader in

diverse teams, and in multidisciplinary settings.

https://atme.edu.in/ai-ml/#1676279442279-c674fd07-a3e2

10. Communication: Communicate effectively on complex engineering activities with the
engineering community and with society at large, such as, being able to comprehend and write
effective reports and

design documentation, make effective presentations, and give and receive clear instructions.

11. Project management and finance: Demonstrate knowledge and understanding of the engineering
and management principles and apply these to one’s own work, as a member and leader in a team, to
manage projects and in multidisciplinary environments.

12. Life-long learning: Recognize the need for, and have the preparation and ability to engage in

independent and life-long learning in the broadest context of technological change

Program Educational Objectives (PEO’s):

PEOL1: Graduates will be able to hone their problem-solving abilities and capacity to offer solutions to
challenges that arise in the actual world.

PEO2: Able to design and develop Al based solutions to real-world problems in a business, research,
or social environment.

PEO3: Graduates shall acquire and inculcate corporate culture, core attributes, and leadership qualities

as well as professional etiquette’s and lifelong learning.

Program Specific Outcomes (PSO’s)

PSO1: Ability to design and develop artificial intelligent based solutions by applying optimal
algorithms to solve real world issues.
PSO2: Ability to apply suitable Al tools and techniques to offer solutions in the various domains of

engineering.

Generative Al Semester 6
Course Code BAIL657C CIE Marks 50
Teaching Hours/Week (L:T:P: S) 0:0:1:0 SEE Marks 50
Credits 01 Exam Hours 100
Examination type (SEE) Practical

Course objectives:

Understand the principles and concepts behind generative Al models

Explain the knowledge gained to implement generative models using Prompt design frameworks.
Apply various Generative Al applications for increasing productivity.

Develop Large Language Model-based Apps.

SI.
NO

Experiments

Explore pre-trained word vectors. Explore word relationships using vector arithmetic. Perform
arithmetic operations and analyze results.

Use dimensionality reduction (e.g., PCA or t-SNE) to visualize word embeddings for Q 1. Select 10
words from a specific domain (e.g., sports, technology) and visualize their embeddings. Analyze
clusters and relationships. Generate contextually rich outputs using embeddings. Write a program to
generate 5 semantically similar words for a given input.

Train a custom Word2Vec model on a small dataset. Train embeddings on a domain-specific corpus
(e.g., legal, medical) and analyze how embeddings capture domain-specific semantics.

Use word embeddings to improve prompts for Generative Al model. Retrieve similar words using
word embeddings. Use the similar words to enrich a GenAl prompt. Use the Al model to generate
responses for the original and enriched prompts. Compare the outputs in terms of detail and relevance.

Use word embeddings to create meaningful sentences for creative tasks. Retrieve similar words for a
seed word. Create a sentence or story using these words as a starting point. Write a program that: Takes
a seed word. Generates similar words. Constructs a short paragraph using these words.

Use a pre-trained Hugging Face model to analyze sentiment in text. Assume a real-world application,
Load the sentiment analysis pipeline. Analyze the sentiment by giving sentences to input.

Summarize long texts using a pre-trained summarization model using Hugging face model.
Load the summarization pipeline. Take a passage as input and obtain the summarized text.

Install langchain, cohere (for key), langchain-community. Get the api key(By logging into Cohere
and obtaining the cohere key). Load a text document from your google drive . Create a prompt
template to display the output in a particular manner.

Take the Institution name as input. Use Pydantic to define the schema for the desired output and
create a custom output parser. Invoke the Chain and Fetch Results. Extract the below Institution
related details from Wikipedia: The founder of the Institution. When it was founded. The current
branches in the institution . How many employees are working in it. A brief 4-line summary of
the institution.

10

Build a chatbot for the Indian Penal Code. We'll start by downloading the official Indian Penal Code
document, and then we'll create a chatbot that can interact with it. Users will be able to ask questions
about the Indian Penal Code and have a conversation with it.

Course outcomes (Course Skill Set):
At the end of the course the student will be able to:
o Develop the ability to explore and analyze word embeddings, perform vector arithmetic to investigate
word relationships, visualize embeddings using dimensionality reduction techniques
e Apply prompt engineering skills to real-world scenarios, such as information retrieval, text generation.

o Utilize pre-trained Hugging Face models for real-world applications, including sentiment analysis and
text summarization.

e Apply different architectures used in large language models, such as transformers, and understand their
advantages and limitations.

Assessment Details (both CIE and SEE)

The weightage of Continuous Internal Evaluation (CIE) is 50% and for Semester End Exam (SEE) is 50%. The
minimum passing mark for the CIE is 40% of the maximum marks (20 marks out of 50) and for the SEE
minimum passing mark is 35% of the maximum marks (18 out of 50 marks). A student shall be deemed to have
satisfied the academic requirements and earned the credits allotted to each subject/ course if the student secures
a minimum of 40% (40 marks out of 100) in the sum total of the CIE (Continuous Internal Evaluation) and SEE
(Semester End Examination) taken together

Continuous Internal Evaluation (CIE):
CIE marks for the practical course are 50 Marks.
The split-up of CIE marks for record/ journal and test are in the ratio 60:40.

e Each experiment is to be evaluated for conduction with an observation sheet and record write-up. Rubrics
for the evaluation of the journal/write-up for hardware/software experiments are designed by the faculty
who is handling the laboratory session and are made known to students at the beginning of the practical
session.

e Record should contain all the specified experiments in the syllabus and each experiment write-up will be
evaluated for 10 marks.

Total marks scored by the students are scaled down to 30 marks (60% of maximum marks).

Weightage to be given for neatness and submission of record/write-up on time.

Department shall conduct a test of 100 marks after the completion of all the experiments listed in the
syllabus.

e In atest, test write-up, conduction of experiment, acceptable result, and procedural knowledge will carry a
weightage of 60% and the rest 40% for viva-voce.

e The suitable rubrics can be designed to evaluate each student’s performance and learning ability.

e The marks scored shall be scaled down to 20 marks (40% of the maximum marks).

The Sum of scaled-down marks scored in the report write-up/journal and marks of a test is the total CIE marks
scored by the student.

Semester End Evaluation (SEE):
e SEE marks for the practical course are 50 Marks.
SEE shall be conducted jointly by the two examiners of the same institute, examiners are appointed by the
Head of the Institute.

e The examination schedule and names of examiners are informed to the university before the conduction
of the examination. These practical examinations are to be conducted between the schedule mentioned
in the academic calendar of the University.

All laboratory experiments are to be included for practical examination.

(Rubrics) Breakup of marks and the instructions printed on the cover page of the answer script to be
strictly adhered to by the examiners. OR based on the course requirement evaluation rubrics shall be
decided jointly by examiners.

Students can pick one question (experiment) from the questions lot prepared by the examiners jointly.

e FEvaluation of test write-up/ conduction procedure and result/viva will be conducted jointly by
examiners.

General rubrics suggested for SEE are mentioned here, writeup-20%, Conduction procedure and result in -

60%, Viva-voce 20% of maximum marks. SEE for practical shall be evaluated for 100 marks and scored

marks shall be scaled down to 50 marks (however, based on course type, rubrics shall be decided by the

examiners)
Change of experiment is allowed only once and 15% of Marks allotted to the procedure part are to be
made zero.

The minimum duration of SEE is 02 hours

CONTENTS

Sl.

No.

EXPERIMENT NAME

Page
No.

Introduction

1-7

Program 1 : Explore pre-trained word vectors. Explore word relationships using vector
arithmetic. Perform arithmetic operations and analyze results.

8-11

Program 2 : Use dimensionality reduction (e.g., PCA or t-SNE) to visualize word embeddings
for Q 1. Select 10 words from a specific domain (e.g., sports, technology) and visualize their
embeddings. Analyze clusters and relationships. Generate contextually rich outputs using
embeddings. Write a program to generate 5 semantically similar words for a given input.

12-14

Program 3 : Train a custom Word2Vec model on a small dataset. Train embeddings on a
domain-specific corpus (e.g., legal, medical) and analyze how embeddings capture domain-
specific semantics.

15-36

Program 4 : Use word embeddings to improve prompts for Generative Al model. Retrieve
similar words using word embeddings. Use the similar words to enrich a GenAl prompt. Use the
Al model to generate responses for the original and enriched prompts. Compare the outputs in
terms of detail and relevance.

37-39

Program 5 : Use word embeddings to create meaningful sentences for creative tasks. Retrieve
similar words for a seed word. Create a sentence or story using these words as a starting point.
Write a program that: Takes a seed word. Generates similar words. Constructs a short paragraph
using these words.

40-41

Program 6 : Use a pre-trained Hugging Face model to analyze sentiment in text. Assume a real-
world application, Load the sentiment analysis pipeline. Analyze the sentiment by giving
sentences to input.

42-44

Program 7 : Summarize long texts using a pre-trained summarization model using
Hugging face model. Load the summarization pipeline. Take a passage as input and obtain
the summarized text.

45-47

Program 8 : Install langchain, cohere (for key), langchain-community. Get the api key(By
logging into Cohere and obtaining the cohere key). Load a text document from your google
drive. Create a prompt template to display the output in a particular manner.

48-49

10

Program 9 : Take the Institution name as input. Use Pydantic to define the schema for the
desired output and create a custom output parser. Invoke the Chain and Fetch Results. Extract
the below Institution related details from Wikipedia: The founder of the Institution. When it
was founded. The current branches in the institution . How many employees are working
in it. A brief 4-line summary of the institution.

50-53

11

Program 10 : Build a chatbot for the Indian Penal Code. We'll start by downloading the official
Indian Penal Code document, and then we'll create a chatbot that can interact with it. Users will
be able to ask questions about the Indian Penal Code and have a conversation with it.

54-66

12

Viva Questions With Answers

67-69

Generative Al Laboratou BAIL657C

INTRODUCTION

* Installation Guide
* First Install Python 3.11 then follow these steps
» Download the GloVe 6B model used for the first four experiments from the following link:
GloVe 6B Model.
* Once the GloVe model is downloaded, extract all the files to the directory where your Jupyter
notebooks are located.
 Install the required libraries. (Please restart the kernel after each installation.)
a. Experiments 1, 2, 3:
— Ipip install gensim
— Ipip install --upgrade transformers
b. Experiment 4:
— Ipip install --upgrade langchain
— Ipip install langchain-core
— Ipip install langchain-community
— Ipip install -qU langchain-google-genai
— Note: This part will be covered during the FDP: Obtain a Google APl Key — Google API Key.
— Ipip install faiss-cpu
c. Experiments 5, 6, 7:
— Note: This part will be covered during the FDP: Obtain a Hugging Face APl Key —
Hugging Face API Key.
— Ipip install sentence_transformers
— Ipip install langchain-huggingface
— Ipip install --user tf-keras
— Ipip install --user numpy==1.24.4
— Ipip install --upgrade --quiet huggingface _hub
d. Experiment 8:
— Note: This part will be covered during the FDP: Obtain a Cohere APl Key — Cohere AP Key.
— Ipip install langchain-cohere
— Ipip install gdown
e. Experiment 9:
— Ipip install --upgrade --quiet wikipedia

f. Experiment 10: Ipip install gradio
IntroductiontoAtrtificial Intelligence lex_8840337130015322000
Introductiontoreinforcementlearning lex_auth_01350196693139456075
IntroductiontoDeep learning lex_auth_012782105116811264219
GenerativeEcosystem lex_auth_01402940631726489655
IntroductiontoLang chain lex_auth_013838826667655168805
H IntroductiontoPrompt Engineering lex_auth_013719953643773952304

Dept OF CSE-AI & ML, ATMECE, MYSURU Page 1

https://nlp.stanford.edu/data/glove.6B.zip
https://nlp.stanford.edu/data/glove.6B.zip
https://ai.google.dev/gemini-api/docs/api-key
https://huggingface.co/settings/profile
https://dashboard.cohere.com/api-keys

Generative Al Laboratou BAIL657C

Introduction to Natural Language Processing
Structured Data
* Quantitative Data
» Ex: Data base, table
» Can be indexed, processed using conventional technique like SQL
Unstructured Data
» Qualitative Data which is typically text-heavy, contain date, facts etc..
» Ex: email, multimedia files, photos etc..
« Can’t indexed and processed using conventional technique like SQL
% of structured and Unstructured data

What is NLP
Natural language processing (NLP) is a subfield of linguistics, computer science, information engineering,
and artificial intelligence concerned with the interactions between computers and human (natural)

Linguis
tic

languages

Artific

¢

Important Libraries for NLP (python)

Scikit-learn: Machine learning in Python

Natural Language Toolkit (NLTK): The complete toolkit for all NLP techniques.
Pattern — A web mining module for the with tools for NLP and machine learning.
TextBlob — Easy to use nl p tools API, built on top of NLTK and Pattern.

spaCy — Industrial strength N LP with Python and Cython.

Gensim — Topic Modelling for Humans

Stanford Core NLP — NLP services and packages by Stanford NLP Group.

Python library with simple API to access its methods and perform basic NLP tasks.

Text Pre-processing
Textblo
b, Spcy,

NLTK

Stop Tokenizati Regular
word, B on, e expressi g
punctuat Lemmatiza

Python

Word embeddings
Goal of Word Embeddings is to:

Dept OF CSE-AI & ML, ATMECE, MYSURU Page 2

Generative Al Laborato BAIL657C
1. reduce dimensionality of the output vector
2. use a word to predict the words around it
3. Preserve/capture the word semantics
What’s an embedding?

Machine learning algorithms can only take low-dimensional numerical data as inputs.

i

Corpus

ML Model

* Word embedding- Aims to gather the features of the natural Language Text data.
» ltis called - feature engineering of natural language processing models.
Word2Vec is one most used Word embedding technique
lets first state the objective Word2Vec.
1. Convert the natural language word to vector
2. Preserve the context and the relation between the words.
. Let’s analyze with an example:
“Infosys is the second largest Indian IT company. It is headquartered in Bangalore.”
How do we make machine to understand “It” means “Infosys”.

Word2Vec
* Word2vec generates embeddings from words.
» Words are encoded into one-hot vectors.
» Fed into a hidden layer that generates hidden weights.
* Those hidden weights are then used to predict other nearby words.
* Hidden weights are returned as embeddings and the model is tossed out.
e Given sufficient data and the context, it can make accurate prediction of the words with context.
e Like “King” is a “man” and “Queen” is “women”.
Context of a word- W;is nothing but the words surrounding it.

Dept OF CSE-AI & ML, ATMECE, MYSURU Page 3

Generative Al Laboratog BAIL657C

In the given window, context
words are the input and output is the Centre
word

Suitable large dataset

Hidden

=

Input
Output

Skipgram word embedding CBOW model representation

“Second”

“largest” e D\
“Indian” MD sumr
? “" . I:|> |:|\—+|:| “Indian”

oy S

Input Layer Hidden Layer OutputLayer Input Layer Hidden Layer OutputLayer|
central word closer to the neighboring words. Surrounding word closer to the central word.
Discriminative Al Decsriminative Al

Test Image as input

o
o) :
Rt Learning process ,
& = | MLModel gy Classifyas cat
/Gﬁ‘dﬁf;mt:i\‘: Can also Classify/ discriminate between zebra and

A el ki A horse. Can predict the we:

Y- andZebra.Can N/

\—\luesxmalh ¢/ o
? P ‘ Learns the decision boundry

hetween the classes using the set

_ 4 Cat and Dog images for of features to predict the class
N training label

1.

Dept OF CSE-AI & ML, ATMECE, MYSURU Page 4

Generative Al Laborato BAIL657C

Generative skill in Human

waiio [K
MEEEE
iy el
o S

Learning process | g ML Model =Y

s 1 Learns tIe actual Probability
distribution of the class

Cat and dog images for

N training New cat images generated
Painting Generating music Writing the content gesg

Inspired from such a generative skill, new generation of artificial intelligence techniques have

evolved which are called as “Generative Models”.

A significant amount of data from different domains such as images, text or voice have made it possible to train the
generative models so that, they can generate similar data instances.

pretrained models

fc_3 fe_a
Fully-Connected Fully-Connected

Newreal Network Neural Network
Corlv_l_ tonv_z' RelU activation
Recurrent neural netwo S _ o g
volid padding valid padding @ o
® @0
® @o:
‘o @2
@ ¢

- INPUT n1 channels n1 channels a2channels n2channels | 3 ® o
-\& (28x28x1) {24 x 24 xn1) {12x12xnl) Bx8xn2) [Ax4xn2) .‘, PR

n3 units

What do you think are techniques that make Al models to generates new data?
Deep Learning techniques:
* Convolutional Neural networks
* Recurrent Neural Networks and Long Short-Term Memory
Each Problem requires the model to be trained Instead of building a model from scratch to solve a similar problem,
you use the model trained on other problem as a starting point.
Transfer learning v/s traditional learning

ransfer learn ng v/s traditional learning Training data (Corpus)
| e -
init ode| b e
neis (Weightss _ Knowledge Base
Biases) -
Task A — Pretrained model |— | Extracted Features

|

Training(Fine Tuning) | 0 - specific @w TBSI(e New model
Data New Model

* Inthe context of NLP, it is a method in which deep learning model trained on a large corpus,.
* Is used to perform similar tasks on another dataset.
» Such a deep learning model is also called as pre-trained model.

Dept OF CSE-AI & ML, ATMECE, MYSURU Page 5

Generative Al Laboratou BAIL657C

Text Generation Models (LLMs - Large Language Models)

Model Developer Key Features

GPT-4 OpenAl Advanced LLM for text generation, reasoning,
and multimodal tasks.

GPT-35 OpenAl High-quality text generation, coding Assistance,
and chatbots.

LLaMA 2 Meta Al Open-source LLM for research and
commercial use.

Claude 2 Anthropic Al model focused on safety, reasoning, and
large- context understanding.

PaLM 2 Google DeepMind Google's LLM, optimized for reasoning and
multilingual tasks.

Mistral 7B Mistral Al Lightweight, open-source LLM with high
efficiency.

BLOOM BigScience Open multilingual model with 176B
parameters.

T5 (Text-to-Text Transfer Google Converts all NLP tasks into text-to-text format.

Transformer)

BERT Google Bi-directional transformer for understanding
context in text.

Vectorization

It is the process of converting words into numbers.
It is a methodology in NLP to map words or phrases from vocabulary to a corresponding vector of real

numbers which is used to find word predictions, similarities etc.

eSS TN
e e
/ Infosys Limited is an Indian)

\\
& Multinational IT company A

/ 7
(that provides business) [:> 1111011011011 1111
\/‘~»~ consulting, IT, and \\ //
b outsourcing services. /}"" 0110001110111100
TR =
\,,_____.\\\»7 s /

Input: Natural language Text

Word Embedding | 10111011111011

output: Vector form of the word

Embeddings are dense numerical representations of real-world objects and semantic relationships

expressed as a Feature vector.

Word embedding technique aims to gather the features of the natural Laungage Text data. So, it is the
feature engineering of natural language processing models. Some of the word embedding techniques are:

e PCA
e SVD

Dept OF CSE-AI & ML, ATMECE, MYSURU

Page 6

Generative Al Laboratou BAIL657C

e TF-IDF
e Word2Vec
One-Hot Encoding

* unsupervised technique maps a single category to a vector and generates a binary representation

» Each unique word in vocabulary by setting a unique token with value 1 and rest O at other positions
in the vector.

» OHE vector represents in the form of 1, and 0 where 1 stands for the position where the word exists
and 0 everywhere else.

Label Encoding One Hot Encoding

Food Name Categorical # Calories Chicken Broccoli Calories

Apple
Chicken

Broccoli

Drawbacks: Sparsity

One-Hot Encoding

Ex: “Probability and statistics is foundation for ML”

Tokens= [“Probability” ,“and”, “statistics”, “foundation”, “ML"]

Vector for “Probability” : [1 00 0 0]

Vector for “statistics”:[00 1 0 0]

Disadvantages

1. The Size of the vector = count of unique words in the vocabulary.
2. Does not capture the relationships between different words. Therefore, it does not convey

information about the context.

Pre-trained word embedding model

GloVe is a pre-trained word embedding model developed by researchers at Stanford University.

It captures semantic meaning and word relationships using word co-occurrence statistics from a large text

corpus

Where is GloVe Used?

NLP Applications — Sentiment analysis, machine translation, chatbots.

Search Engines — Improving query understanding.

Recommendation Systems — Enhancing personalized content.

Text Classification — Spam detection, topic modeling.

Pre-trained GloVe Models

50, 100, 200,
300
300

glove.840B . 300

glove. twitter.27| 1.2 25, 50, 100,
B 200

Dept OF CSE-AI & ML, ATMECE, MYSURU Page 7

Generative Al Laboratou BAIL657C

Program 1: Explore pre-trained word vectors. Explore word relationships using vector arithmetic.
Perform arithmetic operations and analyze results.

Soln:

Ipip install gensim
#Gensim: A Python library for NLP and word embeddings.

from gensim.scripts.glove2word2vec import glove2word2vec
from gensim.models import KeyedVectors

Paths to the GloVe file and output Word2Vec file
glove_input_file = "/content/glove.6B.100d.txt" # Path to GloVe file
word2vec_output_file = "/content/glove.6B.100d.word2vec.txt" # Output file in Word2Vec format

Convert GloVe format to Word2Vec format
glove2word2vec(glove_input_file, word2vec output_file)

Load the converted Word2Vec model
model = KeyedVectors.load_word2vec_format(word2vec_output_file, binary=False)

Test the loaded model
print(model.most_similar("king™))

#GloVe embeddings are converted to Word2Vec format for compatibility with libraries like Gensim, which
require the Word2Vec format for efficient vector operations and model functionality.

Output:

[(prince’, 0.7682328820228577), (‘queen’, 0.7507690787315369), ('son’, 0.7020888328552246), (‘brother’,
0.6985775232315063), (‘monarch’, 0.6977890729904175), (‘throne', 0.6919989585876465), (‘kingdom’,
0.6811409592628479), (‘father’, 0.6802029013633728), (‘emperor, 0.6712858080863953), ('ii',
0.6676074266433716)]

Explore Word Relationships

Example 1: Find Similar Words

similar_to_mysore = model.similar_by vector(model['mysore'], topn=5)
print(f*Words similar to 'mysore": {similar_to_mysore}")

Output: Words similar to 'mysore: [(‘'mysore’, 1.0), (‘cochin’, 0.6752076148986816), (‘hyderabad’,
0.6592637896537781), (‘jaipur', 0.6591896414756775), (‘perak’, 0.6516631245613098)]

Example 2: Gender Analogy (king - man + woman = queen)

Perform vector arithmetic
result_vector_1 = model['actor] - model['man’] + model['woman']

Find the most similar word

Dept OF CSE-AI & ML, ATMECE, MYSURU Page 8

BAIL657C

Generative Al Laboratory

~ result_1 =model.similar_by vector(result_vector_1, topn=1)
print(f"'actor - man + woman' = {result_1}")
Output: 'actor - man + woman' = [(‘actress’, 0.9160683155059814)]

Example 3: Country-City Relationship (India - Delhi + Bangalore)

Perform vector arithmetic
result_vector_2 = model['india’] - model['delhi’] + model['washington']

Find the most similar word

result_2 =model.similar_by vector(result_vector 2, topn=3)

print(f"'India - Delhi + Washington' = {result_2}")

Output: 'India - Delhi + Washington' = [('states’, 0.8375228643417358), (‘united’, 0.8281229734420776),
(‘washington', 0.8155243396759033)]

Perform Arithmetic Operations

scaled vector = model['hotel'] * 2 # Scales the 'king' vector by a factor of 2
result_2 = model.similar_by vector(scaled_vector, topn=3)

result 2

[(hotel', 1.0),

(‘hotels', 0.7933705449104309),

(‘restaurant’, 0.7762866020202637)]

Example 2: Normalizing Vectors

import numpy as np

normalized_vector = model['fish'] / np.linalg.norm(model[‘fish'])

result_2 = model.similar_by vector(normalized_vector, topn=3)

result 2

[(‘fish', 1.0), (‘shrimp’, 0.7793381810188293), (‘salmon’, 0.760814368724823)]

Example 3: Averaging Vectors

average_vector = (model['king'] + model['woman'] + model['man']) / 3
result_2 = model.similar_by_vector(average_vector, topn=3)

result_2

[('man', 0.9197071194648743),

(‘woman', 0.8637868165969849),

(‘father', 0.8270207047462463)]

Model Comparision

Paths to the GloVe file and output Word2Vec file
glove_input_file = "/content/glove.6B.50d.txt" # Path to GloVe file
word2vec_output_file = "/content/glove.6B.50d.word2vec.txt" # Output file in Word2Vec format

Convert GloVe format to Word2Vec format
glove2word2vec(glove_input_file, word2vec_output_file)

Load the converted Word2Vec model

Dept OF CSE-AI & ML, ATMECE, MYSURU Page 9

Generative Al Laboratory BAIL657C

model_50d = KeyedVectors.load_word2vec_format(word2vec_output_file, binary=False)

Paths to the GloVe file and output Word2Vec file
glove_input_file = "/content/glove.6B.100d.txt" # Path to GloVe file
word2vec_output_file = "/content/glove.6B.100d.word2vec.txt" # Output file in Word2Vec format

Convert GloVe format to Word2Vec format
glove2word2vec(glove_input_file, word2vec_output_file)

Load the converted Word2Vec model
model_100d = KeyedVectors.load_word2vec_format(word2vec_output_file, binary=False)

Calculate similarity between two words

word1 ="hospital"
word2 = "doctor"

Similarity in 50d
similarity_50d = model_50d.similarity(wordl, word?2)

Similarity in 100d
similarity_100d = model_100d.similarity(wordl, word?2)

Results
print(f"Similarity (50d) between '{word1}' and ‘{word2}": {similarity_50d:.4f}")
print(f"Similarity (100d) between '{word1}' and '{word2}": {similarity _100d:.4f}")

Output : Similarity (50d) between 'hospital’ and 'doctor': 0.6724

Similarity (100d) between 'hospital’ and 'doctor’: 0.6901

Calculate distance between two words

Calculate distance between two words
distance_50d = model_50d.distance(word1, word?2)
distance_100d = model_100d.distance(word1, word?2)

Results
print(f"Distance (50d) between ‘{word1}' and '{word2}": {distance_50d:.4f}")
print(f'Distance (100d) between ‘{word1}' and ‘{word2}" {distance_100d:.4f}")

Distance (50d) between 'hospital’ and ‘doctor': 0.3276
Distance (100d) between 'hospital’ and 'doctor": 0.3099

Dept OF CSE-AI & ML, ATMECE, MYSURU Page 10

Generative Al Laboratory BAIL657C

~ Analysis of Results

1. ‘actor - man + woman' = actress (0.916)

o The result confirms that the model has captured gender analogies, where subtracting "man"
and adding "woman™ to "actor" produces the semantically related word "actress."

2. 'India - Delhi + Washington' = ['states’, 0.838], ['united’, 0.828], ['washington', 0.816]

o The arithmetic operation shows that "India - Delhi + Washington” produces words like
"states™ and "united,” suggesting a shift from a city to broader political entities, such as
countries or states.

3. Scaling Vectors (‘hotel’ * 2) = [(*hotel’, 1.0), ("hotels’, 0.793), (‘restaurant’, 0.776)]

o The scaled vector results in "hotel” being the most similar to itself, and its plural form
"hotels™ is the second most similar, followed by related terms like "restaurant.”

4. Normalizing Vectors ('fish’) = [(*fish", 1.0), (‘shrimp’, 0.779), (‘salmon’, 0.761)]

o Normalizing the vector for "fish" leads to very similar words like "shrimp"” and "salmon,"
which are semantically related types of fish.

5. Averaging Vectors (‘king" + 'woman' + 'man‘) / 3 = [(*‘man’, 0.920), (‘woman’, 0.864), (‘father",
0.827)]

o Averaging the vectors of "king," "woman," and "man" results in "man" and "woman" being
the most similar words, indicating that the averaged vector represents a central concept of
human relationships.

6. Similarity and Distance Calculation for "hospital' and ‘doctor":

o Similarity: 0.6724 (50d) vs. 0.6901 (100d)
= The similarity between "hospital” and "doctor" is higher in the 100d model,
indicating that the higher-dimensional model captures the relationship between these
words more accurately.
o Distance: 0.3276 (50d) vs. 0.3099 (100d)
= The distance between "hospital” and "doctor" is smaller in the 100d model,
confirming that the 100d model finds them closer in the vector space, aligning with
the similarity results.

Conclusion
e Higher-dimensional models (100d) generally provide more accurate and nuanced word
relationships, both in terms of similarity and distance.

« Arithmetic operations like scaling, averaging, and vector shifts (analogies) allow deeper exploration
of word meanings and relationships, and these can vary slightly with model dimensions.

Dept OF CSE-AI & ML, ATMECE, MYSURU Page 11

BAIL657C

Generative Al Laboratou

Program 2: Use dimensionality reduction (e.g., PCA or t-SNE) to visualize word embeddings for
program 1. Select 10 words from a specific domain (e.g., sports, technology) and visualize their
embeddings. Analyze clusters and relationships.

Generate contextually rich outputs using embeddings. Write a program to generate 5 semantically
similar words for a given input

Soln:

Ipip install gensim
#Gensim: A Python library for NLP and word embeddings.

Use dimensionality reduction (e.g., PCA or t-

SNE) to visualize word embeddings for PG1. Select 10 words from a specific domain (e.g., sports,
technology) and visualize their embeddings. Analyze clusters and relationships. Generate contextually
rich outputs using embeddings. Write aprogram to generate 5 semantically similar words for a given
input.

import numpy as np

import matplotlib.pyplot as plt

from sklearn.decomposition import PCA

from sklearn.manifold import TSNE

from gensim.models import KeyedVectors

Load pre-trained GloVe embeddings (100d model)
model_100d = KeyedVectors.load_word2vec_format("/content/glove.6B.100d.word2vec.txt",
binary=False,limit=500000)

Select 10 words from a specific domain (sports) # Included other words to show how embeddings are
different

words = ['football’, 'soccer’, 'basketball’, ‘tennis’,'engineer’,'information’, 'baseball’, ‘coach’, 'goal’, ‘player’,
'referee’, ‘team’]

word_vectors = np.array([model_100d[word] for word in words])

Dimensionality reduction using PCA

Using PCA to reduce to 2D for visualization
pca = PCA(n_components=2)

pca_result = pca.fit_transform(word_vectors)

Plotting the words in 2D space

plt.figure(figsize=(10, 8))

for i, word in enumerate(words):

plt.scatter(pca_result[i, 0], pca_result[i, 1])

plt.text(pca_result[i, 0] + 0.02, pca_result[i, 1], word, fontsize=12)
plt.title("PCA Visualization of Sports-related Word Embeddings (100d)™)
plt.xlabel("PCA Dimension 1")

plt.ylabel("PCA Dimension 2")

plt.show()

5 Semantically Similar Words Generator Function

Dept OF CSE-AI & ML, ATMECE, MYSURU Page 12

Generative Al Laboratory BAIL657C .

def get_similar_words(word, model, topn=5):
similar_words = model.similar_by_word(word, topn=topn)
return similar_words

Example: Get 5 words similar to “football"
similar_words_football = get_similar_words(‘football’, model_100d, topn=5)
print(f*Words similar to 'football’: {similar_words_football}")

Output:
PCA Visualization of Sports-related Word Embeddings (100d)
3 :
¢=nnis gnformation
5
nginegr
baseball e
1 _
ghasketball
~ gsoccer
c
S
2 07
S gootball
a eplayer
§ Jfeam
__.1 -
ecoach
...2 -
deferee
_3 -
goal
= =1 5 : : : :

PCA Dimension 1

Output:Words similar to ‘football": [('soccer’, 0.8732221722602844), (‘basketball’, 0.8555637001991272),
('league’, 0.815336287021637), (‘'rugby’, 0.8007532954216003), (‘hockey', 0.7833694815635681)]

Select the words you want to print embeddings for
words_to_print = ['football’, 'soccer’]

Print their embeddings

for word in words_to_print:

if word in model_100d:

print(f*Vector embedding for ‘{word}":\n{model_100d[word]}\n")
else:

print(f*"Word '{word}' not found in the embeddings model.")

Dept OF CSE-AI & ML, ATMECE, MYSURU Page 13

Generative Al Laboratou BAIL657C

Output:

Vector embedding for ‘football’:

[0.43865 0.10537 0.45972 -1.0724 -1.2471 0.76351
0.47528 0.083857 -0.9127 -0.27328 -0.018591 -1.184
0.22748 0.16847 -0.52158 0.11339 1.3757 0.11892
-0.37683 0.51149 -0.8833 0.96259 0.18143 -0.407
0.036181 -0.74432 -0.0027401-0.70068 0.53103 0.45114
-0.72884 1.0631 -0.28008 -0.63848 0.15645 -0.46927
-1.0071 1.033 -1.4354 -0.27485 0.048984 0.13951
0.43072 -0.78791 0.41097 0.58509 1.0155 -0.1839
0.27487 -0.90866 -0.30441 -0.17396 0.020941 0.62813
0.10978 -2.3885 -0.56364 -0.27193 0.98728 0.70608
-0.512 052636 -0.78503 -0.68714 0.38121 0.097582
-0.20237 0.43208 -0.30527 0.57925 0.62619 -0.47415
0.33834 -0.28421 -0.097465 0.19597 0.54849 0.59918
-0.41576 0.1021 0.6766 0.0042009 -0.12354 -0.76613
-0.27436 -0.68248 -1.0789 -0.16708 0.81671 0.026999
-0.38707 0.40448 -1.0995 0.64718 -0.12802 -0.26084
-0.96701 0.88078 1.012 -0.022223]

Vector embedding for 'soccer":

[8.3777e-01 5.1890e-01 6.4015e-01 -6.2606e-01 -9.7474e-01 1.0127e+00
6.2729e-02 4.4316e-01 -8.3299e-01 7.9888e-02 -1.1815e-02 -1.1265e+00
1.2554e-01 -3.4206e-01 -5.1422e-01 3.8526e-01 1.0032e+00 -1.5172e-03
-2.2684e-01 3.5658e-01 -6.2449¢e-01 8.7271e-01 3.6670e-01 4.6462e-01
-1.0046e-01 -4.4798e-01 -2.1813e-01 -5.6423e-01 5.6665e-01 5.1601e-01
-5.6511e-01 7.1919e-01 -6.5347e-01 -9.5952e-02 5.6028e-01 -4.9956e-01
-7.4757e-01 6.8516e-01 -1.4518e+00 -1.1207e-01 1.0241e-01 3.0537e-02
1.1326e-02 -8.6873e-01 6.3622e-01 4.9539e-01 3.0538e-01 7.7133e-02
7.4048e-02 -7.1163e-01 -1.9159¢e-01 -3.4168e-01 -4.7185e-01 5.6794e-01
3.7454e-01 -1.9207e+00 -8.6040e-01 5.7058e-01 1.0700e+00 9.2101e-01
-6.4825e-01 5.3516e-01 -1.5556e-01 -9.0021e-01 -1.7459e-01 3.3146e-02
-5.7512e-01 2.9963e-01 -4.0008e-01 -1.0765e-01 4.1384e-01 -7.2178e-01
1.1442e-01 -2.1291e-01 5.4949e-02 1.3213e-01 7.8766e-01 8.9291e-02
-6.6689¢e-01 3.3998e-01 9.7163e-01 -8.4871e-02 1.7542e-01 -4.6039¢-01
-8.5885e-02 -7.5960e-01 -1.5071e+00 2.1545e-01 2.1209e-01 -4.4837e-01
-2.5882e-01 3.3814e-01 -4.7979%-01 2.1059e-01 2.3621e-01 -3.6699e-01
-8.1440e-01 5.4515e-01 9.7946e-01 2.3367e-01]

Dept OF CSE-AI & ML, ATMECE, MYSURU Page 14

Generative Al Laboratou BAIL657C

Program 3:Train a custom Word2Vec model on a small dataset. Train embeddings on a domain-
specific corpus (e.g., legal, medical) and analyze how embeddings capture domain-specific semantics

Soln:

Ipip install gensim
#Gensim: A Python library for NLP and word embeddings.
Important Steps

1. Tokenization: Converts sentences into lists of lowercase tokens for processing.
2. Word2Vec Training:
o vector_size: Sets the embedding dimension to 50.
o window: Uses a context window of 3 words.
o sg: Skip-gram (sg=1) is used, which works better for smaller datasets.
o epochs: The number of training iterations.
3. Visualization: PCA reduces the high-dimensional word vectors to 2D for visualization, helping to
understand semantic relationships.
4. Semantic Analysis: The most_similar method identifies words that are semantically similar based on
embeddings.

Example: Legal Corpus

from gensim.models import Word2Vec
from gensim.utils import simple_preprocess
from sklearn.decomposition import PCA
import matplotlib.pyplot as plt

legal _corpus = [

"The court ruled in favor of the plaintiff.",

"The defendant was found guilty of negligence.",

"A breach of contract case was filed.",

"The agreement between parties must be honored.",
"The lawyer presented compelling evidence.",
"Legal documents must be drafted carefully.”,

"The jury deliberated for several hours.",

"A settlement was reached between the parties.",
"The plaintiff claimed damages for losses incurred.”,
"The contract outlined the obligations of both parties.
]

Example legal corpus

legal _corpus = [

"The court ruled in favor of the plaintiff.",

"The defendant was found guilty of negligence."”,

"A breach of contract case was filed.",

"The agreement between parties must be honored.",
"The lawyer presented compelling evidence.",
"Legal documents must be drafted carefully.”,

Dept OF CSE-AI & ML, ATMECE, MYSURU Page 15

Generative Al Laboratory BAIL657C

~ "The jury deliberated for several hours.",
"A settlement was reached between the parties.",
"The plaintiff claimed damages for losses incurred.”,
"The contract outlined the obligations of both parties.”

]

Preprocess the corpus
tokenized_corpus = [simple_preprocess(sentence) for sentence in legal_corpus]

Train the Word2Vec model legal_word2vec = Word2Vec(sentences=tokenized_corpus,
vector_size=50,

Embedding dimension window=3,

Context window size min_count=1,

Minimum word frequency sg=1,

Skip-gram model epochs=100

Training epochs

)

Save the model for later use
legal_word2vec.save("legal_word2vec.model™)

Analyze embeddings: Display vector for a specific word

word = "lawyer"

if word in legal_word2vec.wv:

print(f"Vector embedding for '{word}":\n{legal_word2vec.wv[word]}\n")
else:

print(f"Word '‘{word}' not found in the Word2Vec model."”)

Output:

Vector embedding for 'lawyer":

[0.00373483 0.01353383 0.00585796 -0.01324683 0.01500349 -0.01261986
0.01892563 0.00698961 -0.0087639 -0.01023367 -0.00875896 -0.01318524
0.01972703 -0.00463062 0.01525868 -0.01837575 0.0055629 -0.00126356
0.01417167 -0.01969541 0.01564029 -0.00948072 -0.0107858 -0.01128642
-0.00610619 -0.00604345 -0.00693252 -0.01396556 0.00086967 -0.00136903
-0.00358557 0.00685404 -0.01432065 -0.00657563 0.00952303 0.01720192
-0.01858611 0.01418636 0.01038651 -0.00818817 0.01832661 -0.01858529
0.01404059 0.01154918 0.00326395 -0.01036671 -0.00841038 -0.00736812
0.00374052 0.00413726]

Visualize embeddings using PCA
words_to_visualize = ["court", "
"settlement”, "jury"”, "damages"]

word_vectors = [legal_word2vec.wv[word] for word in words_to_visualize]

word_vectors

plaintiff*, "defendant"”, "agreement", "lawyer", "evidence", "contract",

Dept OF CSE-AI & ML, ATMECE, MYSURU Page 16

Generative Al Laboratou BAIL657C

Output:

[array([-0.01018794, -0.0037532 , -0.01479373, 0.00535417, 0.00549183,
-0.00194653, -0.00904275, -0.00120178, 0.01239534, 0.005502 ,
-0.01752885, -0.00888894, 0.00678894, 0.00598825, -0.01972261,
0.01158325, -0.01438892, -0.01200779, 0.00463451, -0.01056976,
0.00906795, 0.01991566, -0.00384839, 0.01845003, 0.00452612,
0.02153785, 0.0106156, -0.0164802 , -0.0075984 , 0.01259563,
0.01069134, 0.01610584, 0.01608272, 0.01619358, -0.02157517,
0.00898223, -0.00762749, 0.00642556, 0.01106042, 0.00757853,
0.01795846, 0.00227335, -0.00347768, 0.01356644, -0.00962057,
0.00016249, 0.01841913, -0.01246461, 0.00897428, -0.01424266], dtype=float32),
array([-0.01382369, 0.0011437 , -0.01449836, -0.00296123, 0.00624782,
0.00982854, 0.00482432, 0.00674102, -0.01035763, 0.0125059,
-0.01251031, 0.00691753, -0.01420641, 0.00583739, -0.01051113,
-0.00608784, -0.00284186, 0.01448168, 0.00904517, -0.01370935,
0.00321437, -0.01510567, 0.01918532, 0.01829434, -0.00426899,
0.00343321, 0.00058916, 0.01309333, -0.0183534, 0.00069488,
0.0132396, 0.0028656 , 0.00451153, -0.01875341, 0.01468391,
-0.01201477, -0.00313035, 0.00620906, -0.0025351, 0.00151398,
0.0066815 , -0.01435055, -0.02045849, 0.01987134, 0.01433266,
-0.01331776, 0.00661788, -0.00128313, 0.01081608, -0.01213262],
dtype=float32),

array([-0.01735372, 0.00324048, -0.00153466, -0.01745638, -0.01992291,
-0.00444436, 0.01032289, 0.00879421, -0.01455397, -0.01536747,
-0.01001598, -0.00653257, -0.0128883 , -0.01829896, -0.0059358 ,
-0.01495283, -0.00974466, -0.00899372, -0.00697665, -0.00573702,
-0.01700949, 0.0003172, 0.01874463, 0.01480774, -0.01384414,
-0.00612229, 0.00565069, -0.01732042, 0.00195022, 0.01274919,
0.01080692, -0.01920946, -0.00795812, -0.01638088, -0.00148547,
0.01870203, 0.01399906, 0.00958245, 0.00941055, -0.00658938,
0.02153141, -0.01520018, -0.01545056, -0.00327682, 0.00024155,
-0.00606883, -0.00135896, 0.01406399, 0.00023136, -0.00163963],
dtype=float32),

array([0.00544287, 0.01555425, -0.00307019, 0.01717134, 0.00693973,
-0.0170452 , -0.00679161, -0.00333116, 0.00903156, -0.00295565,
-0.00578579, 0.01436892, 0.02001157, -0.00213262, -0.01079166,
-0.007799 , -0.00751752, -0.01736892, 0.00095211, -0.01050753,
0.00615652, 0.01262798, -0.00638232, -0.01966911, 0.003948009,
-0.01237557, 0.0045896 , -0.00610946, 0.01346509, 0.00106505,
0.00631289, -0.00667795, -0.00218376, 0.01535427, 0.00144457,
-0.0117866 , -0.01405202, 0.00186158, 0.0125593, 0.0105592,
-0.01650265, 0.01693893, 0.0074757, 0.0163192, 0.02056517,
-0.01457632, -0.01834234, 0.01092377, 0.01994778, 0.00864314],
dtype=float32),

array([0.00373483, 0.01353383, 0.00585796, -0.01324683, 0.01500349,
-0.01261986, 0.01892563, 0.00698961, -0.0087639 , -0.01023367,
-0.00875896, -0.01318524, 0.01972703, -0.00463062, 0.01525868,
-0.01837575, 0.0055629 , -0.00126356, 0.01417167, -0.01969541,
0.01564029, -0.00948072, -0.0107858 , -0.01128642, -0.00610619,

Dept OF CSE-AI & ML, ATMECE, MYSURU Page 17

Generative Al Laboratory

BAIL657C

- -0.00604345, -0.00693252, -0.01396556, 0.00086967, -0.00136903,
-0.00358557, 0.00685404, -0.01432065, -0.00657563, 0.00952303,
0.01720192, -0.01858611, 0.01418636, 0.01038651, -0.00818817,
0.01832661, -0.01858529, 0.01404059, 0.01154918, 0.00326395,
-0.01036671, -0.00841038, -0.00736812, 0.00374052, 0.00413726],
dtype=float32),
array([0.00550566, 0.00103798, -0.00515228, 0.01945088, 0.00499871,
0.00736707, -0.0011947, 0.00298867, 0.01247635, -0.00248031,
0.00660107, -0.00238972, 0.01178223, 0.00798718, 0.00505932,
-0.00936528, -0.00755702, 0.00989482, -0.01304692, -0.00193519,
-0.00039899, 0.0078729, -0.01549838, 0.01741308, -0.0023178,
-0.00983727, 0.00754468, -0.0027872 , -0.01603217, -0.00921708,
-0.00134961, -0.01871502, 0.002125 , 0.00480915, -0.00744796,
0.00537565, 0.00629158, 0.01973929, 0.0024904 , 0.00340102,
0.00710946, -0.00441335, -0.01761757, 0.01698 , -0.0031966 ,
-0.0194808 , -0.01307702, -0.00849545, 0.00867249, 0.01145031],
dtype=float32),
array([0.00298495, -0.00700375, -0.01431873, -0.01400242, -0.01991
-0.01428693, -0.00105788, -0.00551727, -0.0153189 , -0.0100668 ,
0.00858984, -0.01069687, 0.01958971, 0.00508815, -0.01531299,
0.02237322, 0.01962719, 0.01488377, -0.01710452, 0.00707861,
0.01021231, 0.01304598, 0.01277774, 0.00337116, -0.00486931,
0.01909359, 0.01800028, 0.01032766, -0.00758116, -0.00048564,
0.00164387, -0.0189941 , -0.01410591, -0.00047871, -0.00010738,
-0.01102702, -0.0061726 , -0.01550268, 0.0161471 , -0.00069464,
-0.00545253, 0.01093123, 0.01718066, -0.00617879, 0.0186232,
0.01143978, 0.01163601, -0.00062903, 0.01886317, -0.0114121],
dtype=float32),
array([-0.00976338, -0.00780081, 0.019559 , 0.01830878, -0.00654693,
0.01011876, 0.01784409, -0.00301464, 0.01761319, 0.01262996,
0.00393919, -0.00980376, -0.00886089, -0.00519702, 0.01557352,
-0.01077065, -0.00356288, 0.02101176, 0.00479641, 0.01005143,
-0.01529913, 0.00012613, 0.01357427, -0.01018804, 0.01573833,
0.02000298, -0.00148577, -0.00239202, -0.00189635, -0.01172749,
-0.01742925, -0.00479667, -0.00404787, 0.00869905, -0.01522061,
0.01094797, -0.01160657, -0.0163735, 0.01649981, 0.01770434,
-0.00497504, 0.00637913, -0.01261914, -0.0161758 , -0.00964475,
0.01381735, 0.01255536, 0.01808335, 0.01568656, 0.01504712],
dtype=float32),
array([0.01492715, 0.01934095, 0.01774599, -0.00747902, 0.01891196,
-0.0020531, 0.01053821, 0.00635226, -0.00197045, 0.00632444,
-0.01059867, -0.01259004, -0.01428318, 0.00465197, 0.01267453,
0.0028981, 0.00384051, 0.00779968, 0.01519439, -0.01727828,
0.00548228, -0.01392599, 0.00899558, 0.01923842, 0.01556924,
0.01372755, 0.01566461, 0.01412691, 0.01313736, 0.01728814,
-0.01028677, 0.01760968, 0.01114872, -0.00440745, 0.01607866,
0.01023387, 0.02058647, 0.00533376, 0.01917837, 0.00176341,
0.01960336, 0.0070012, 0.01266869, -0.00624314, 0.01447076,
0.01456392, -0.00432669, -0.00459186, 0.00780778, -0.01304201],

Dept OF CSE-AI & ML, ATMECE, MYSURU

Page 18

BAIL657C

Generative Al Laboratory

~ dtype=float32),
array([0.0158812, 0.0174168, 0.00195527, -0.01554414, 0.01595952,
-0.00898288, 0.0134456, 0.01096715, 0.01782416, -0.02043355,
0.01853634, -0.02043897, -0.01187125, -0.01672532, -0.01152777,
0.01697107, 0.02129747, -0.00410723, 0.0053023 , -0.01103053,
0.017639 , 0.01337754, 0.0028419, -0.00731513, -0.01343816,
0.01128781, 0.00173393, -0.00338352, 0.01469343, -0.00834176,
-0.01866035, -0.00566033, 0.00234445, -0.0135692 , -0.0126051 ,
-0.01704373, 0.02071049, 0.0147259 , -0.00145971, 0.01323994,
0.01840546, -0.0020906 , 0.0126531, 0.0093615, 0.01196339,
0.01458218, -0.00961088, -0.00608193, 0.00305689, 0.01033708],
dtype=float32)]
Dimensionality reduction
pca=PCA(n_components=2)
reduced_vectors = pca.fit_transform(word_vectors)
reduced_vectors

Output:

array([[0.02688162, -0.00792018],
[0.00493226, -0.04934309],
[-0.00377306, -0.04936944],
[0.02256997, 0.03808062],
[-0.0355795 , -0.01066101],
[0.02682294, -0.01050709],
[0.01486912, 0.0443972],
[0.04605154, 0.01166099],
[-0.0482769 , -0.0079725],
[-0.05449799, 0.04163451])

Plot embeddings

plt.figure(figsize=(10, 8))

for i, word in enumerate(words_to_visualize):
plt.scatter(reduced vectors[i, 0], reduced_vectors[i, 1])
plt.text(reduced_vectors[i, 0] + 0.002, reduced_vectors[i, 1], word, fontsize=12)
plt.title("PCA Visualization of Legal Word Embeddings")
plt.xlabel("PCA Dimension 1")

plt.ylabel("PCA Dimension 2")

plt.show()

Output:

array([[0.02688162, -0.00792018],

[0.00493226, -0.04934309],

[-0.00377306, -0.04936944],

[0.02256997, 0.03808062],

[-0.0355795 , -0.01066101],

[0.02682294, -0.01050709],

[0.01486912, 0.0443972],

[0.04605154, 0.01166099],

[-0.0482769 , -0.0079725],

[-0.05449799, 0.04163451])

Dept OF CSE-AI & ML, ATMECE, MYSURU Page 19

Generative Al Laboratory

BAIL657C

PCA Visualization of Legal Word Embeddings

contract
damages
0.04 e agreement
0.02
o Sel
™~
c
k=]
2 0.00 A
5
E
e jury e court
Q o lawyer e €vidence
—0.02
—0.04
o defendabdintiff
T T T T T
—-0.04 -0.02 0.00 0.02 0.04

PCA Dimension 1

Find similar words

similar_words = legal_word2vec.wv.most_similar("lawyer", topn=>5)

print(f"Words similar to 'lawyer": {similar_words}")

Output:

tlement

Words similar to 'lawyer": [(‘carefully’, 0.29186686873435974), (‘claimed’, 0.27888569235801697),
(jury',0.21892617642879486),('damages',0.1961500644683838),('negligence’, 0.1820133775472641)]

Example: Legal and Medical / Healthcare Corpus

Example: Legal and Medical / Healthcare Corpus

from gensim.models import Word2Vec
from gensim.utils import simple_preprocess
from sklearn.decomposition import PCA
import matplotlib.pyplot as plt

Enhanced legal and medical corpus

enhanced_corpus = [
Legal domain

Dept OF CSE-AI & ML, ATMECE, MYSURU

Page 20

Generative Al Laboratory BAIL657C

~ "The court ordered the immediate release of the detained individual due to lack of evidence.",
"A new amendment was introduced to ensure the protection of intellectual property rights.",
"The defendant pleaded not guilty, citing an alibi supported by credible witnesses.",
"The plaintiff accused the company of violating environmental regulations.”,
"A settlement agreement was reached through arbitration, avoiding a lengthy trial.",
"The legal team presented a compelling argument to overturn the previous judgment.”,
"Contractual obligations must be fulfilled unless waived by mutual consent.”,
"The jury found the accused guilty of fraud and embezzlement.",
"The appeal was dismissed as the evidence presented was deemed inadmissible.",
"The attorney emphasized the importance of adhering to constitutional rights.",

Medical domain

"The patient was admitted to the emergency department with severe chest pain.",

"The surgeon successfully performed a minimally invasive procedure to remove the tumor.",
"Clinical trials showed significant improvement in patients treated with the experimental drug.",
"Regular screening is essential for early detection of chronic illnesses such as diabetes.",

"The doctor recommended physical therapy to improve mobility after surgery.”,

"The hospital implemented stringent protocols to prevent the spread of infectious diseases.",
"The nurse monitored the patient's vital signs hourly to ensure stability.",

"Vaccination campaigns have drastically reduced the prevalence of polio worldwide.",

"The radiologist identified a small abnormality in the CT scan requiring further investigation.”,
"Proper nutrition and exercise are vital components of a healthy lifestyle.”

]

Preprocess the corpus
tokenized_corpus = [simple_preprocess(sentence) for sentence in enhanced_corpus]
tokenized_corpus

Output :

[['the’,
‘court’,
‘ordered’,
'the’,
'immediate’,
'release’,
‘of,

'the’,
'detained,
‘individual’,

lack’,

‘of,
‘evidence'],
['new’,

Dept OF CSE-AI & ML, ATMECE, MYSURU Page 21

Generative Al Laboratou BAIL657C

‘amendment’,
'was',
‘introduced,
'to’,

‘ensure’,
'the’,
‘protection’,
'of',
'intellectual’,
‘property’,
'rights],
[the’,
'defendant’,
‘pleaded’,
'not’,

‘guilty’,
‘citing’,

‘an’,

‘alibi’,
'supported’,
by,
‘credible’,
'witnesses'],
[the’,
‘plaintiff’,
‘accused',
'the’,
‘company’,
‘of,
'violating',
‘environmental’,
‘regulations],
['settlement’,
‘agreement’,
'was',
'reached’,
‘through’,
‘arbitration’,
‘avoiding’,
‘lengthy’,
‘trial’],

['the’,

legal’,

Dept OF CSE-AI & ML, ATMECE, MYSURU Page 22

Generative Al Laboratou BAIL657C

‘team’,
‘presented’,
‘compelling’,
‘argument’,
10',
‘overturn’,
'the’,
‘previous’,
‘judgment’],
[‘contractual’,
‘obligations’,
‘must’,

'be’,
fulfilled',
‘unless’,
'waived',
by,
'mutual’,
‘consent’],
[the’,

jury,
‘found',

'the’,
‘accused,
‘guilty’,

‘of,

"fraud’,

‘and’,
‘embezzlement’],
[the',
‘appeal’,
'was',
'dismissed’,
'as’,

'the’,
‘evidence',
‘presented’,
'was',
'deemed!,
‘inadmissibleT,
['the’,
‘attorney’,
‘emphasized’,

Dept OF CSE-AI & ML, ATMECE, MYSURU Page 23

Generative Al Laboratou BAIL657C
'the',—
‘importance’,
'of',
‘adhering’,
'to’,
‘constitutional’,
'rights'],
[the',
‘patient’,
'was',
‘admitted’,
o',
'the’,
‘emergency’,
'department’,
'with',
'severe’,
‘chest’,
‘painT,
[the’,
'surgeon’,
'successfully’,
‘performed’,
‘minimally’,
‘invasive',
‘procedure’,
'to',
remove’,
'the’,
‘tumor’],
[clinical’,
'trials’,
'showed’,
'significant’,
‘improvement’,
in’,
‘patients’,
'treated’,
'with',
'the’,
‘experimental’,
‘drugT],
['regular’,

Dept OF CSE-AI & ML, ATMECE, MYSURU Page 24

Generative Al Laboratou BAIL657C

- ‘screening,
is',
‘essential’,
'for’,
‘early’,
'detection’,
'of',
‘chronic’,
illnesses’,
'such’,
as’,
‘diabetes],
[the’,
'doctor’,
‘recommended’,
‘physical’,
‘therapy’,
o',
‘improve’,
'mobility’,
‘after’,
'surgery'],
[the’,
‘hospital’,
‘implemented’,
'stringent’,
‘protocols’,
'to',
‘prevent’,
'the’,
'spread’,
'of',
'infectious’,
'diseases’],
[the’,
'nurse’,
'monitored',
'the’,
‘patient’,
'vital',
'signs’,
‘hourly’,
'to’,

Dept OF CSE-AI & ML, ATMECE, MYSURU Page 25

Generative Al Laboratou BAIL657C

‘ensure’,
‘'stability],
['vaccination’,
‘campaigns’,
'have',
'drastically’,
‘reduced’,
'the’,
‘prevalence’,
‘of',

‘polio’,
‘worldwide'],
[the’,
‘radiologist’,
'identified’,
‘small’,
‘abnormality’,

'scan’,
‘requiring’,
'further’,
‘investigationT,
['proper’,
‘nutrition’,
‘and',
'exercise’,
‘are’,

'vital',
‘components’,
‘of,

‘healthy’,
lifestyle']

Train Word2Vec

domain_word2vec = Word2Vec(sentences=tokenized_corpus,vector_size=100,
Higher embedding dimension for better representation window=5,

Wider context window

min_count=1,

Include all words sg=1,

Skip-gram model

epochs=150

More training iterations

Dept OF CSE-AI & ML, ATMECE, MYSURU Page 26

Generative Al Laboratory BAIL657C

)

Save the model
domain_word2vec.save("enhanced_domain_word2vec.model™)

Analyze embeddings: Get vectors for specific words
words_to_analyze = ["court”, "
for word in words_to_analyze:
if word in domain_word2vec.wv:

print(f"Vector embedding for '{word}":\n{domain_word2vec.wv[word] }\n")
else:

print(f"Word '{word}' not found in the Word2Vec model.")

plaintiff”, "doctor"”, "patient™, "guilty", "surgery"]

Output :

Vector embedding for 'court":

[-0.00520213 0.05436571 0.0196009 0.00766893 0.04851889 -0.22194375
0.15068555 0.2671535 -0.16717364 -0.04062838 -0.054865 -0.17729442
-0.06285486 0.16066416 0.00799252 0.00430546 -0.04130681 -0.11852198
-0.11586928 -0.32001996 0.07377547 0.00634967 0.01555517 -0.04018658
-0.05180506 -0.06574838 0.01809591 -0.04998898 -0.05094941 0.00987862
0.17092119 -0.03111312 0.12419216 -0.07877786 -0.07952873 0.22328345
0.12608306 -0.0951244 -0.07667849 -0.1501351 0.04725789 -0.15457962
-0.06896634 0.13114625 0.11142956 0.03642106 -0.06946036 -0.02198208
0.01422113 0.05933676 0.09983439 -0.12603386 0.07056595 0.02597529
-0.02668819 0.0757888 -0.00033602 0.05289464 -0.16172495 0.12800941
0.07429419 0.10103885 0.08504409 -0.01794797 -0.06241613 0.14987893
0.15474467 0.18398537 -0.17408288 0.13962157 -0.11823418 0.09919562
0.07957372 -0.05181967 0.15559544 0.0681076 -0.0985308 0.02557893
-0.11090399 -0.02128516 -0.01085772 0.11211726 -0.14611867 0.20995773
-0.10311343 0.06910679 0.14604773 0.10655196 0.10023539 -0.02284993
0.14183174 0.13799591 0.00409749 0.11127966 0.21348046 0.03055387
0.11364785 -0.1445034 0.11242675 -0.04190433]

Vector embedding for 'plaintiff":

[-0.03223411 0.06478627 0.00088969 -0.00806353 0.05694845 -0.21240263
0.13640128 0.26523107 -0.13281158 -0.04770363 -0.02368818 -0.1402928
-0.03685566 0.12257947 0.00039671 0.00741028 -0.01043882 -0.11464308
-0.09540985 -0.3000543 0.0647751 0.00074026 0.00411286 -0.05273201
-0.02684729 -0.04762366 0.02497391 -0.04300669 -0.04396778 -0.00184753
0.14383827 -0.04924785 0.08860843 -0.08550214 -0.06152922 0.24551614
0.10724474 -0.13455397 -0.05984696 -0.15700217 0.02755019 -0.14089336
-0.07535081 0.0659988 0.11539416 0.020872 -0.05348673 -0.02727061
0.01346072 0.03318129 0.09382757 -0.10529419 0.0414049 0.07656677
-0.01830849 0.07164428 0.01196256 0.05545417 -0.13542365 0.1291954
0.08052401 0.06550701 0.09594982 -0.03788032 -0.07346537 0.16846505

Dept OF CSE-AI & ML, ATMECE, MYSURU Page 27

Generative Al Laborato BAIL657C

0.13681169 0.14530386 -0.15170906 0.14640196 -0.09068518 0.0789521
0.05557212 -0.02400086 0.11684093 0.06631403 -0.11164055 0.01440321
-0.10535935 -0.00458972 -0.02664629 0.1090111 -0.12968238 0.18052402
-0.09392222 0.08443088 0.12474449 0.09482376 0.11001488 -0.01367659
0.12273199 0.1101999 0.02236929 0.09491293 0.19617565 0.01282949
0.11568122 -0.1593218 0.10664962 -0.04113806]

Vector embedding for 'doctor":

[-3.76006439%¢-02 8.11468363e-02 -1.18198330e-02 1.22082625e-02
5.35595044e-03 -2.21441105e-01 1.31108329e-01 3.10447901e-01
-2.11071640e-01 7.52886664e-03 -6.67306557e-02 -1.76628768e-01
-4.83631082e-02 1.88437983e-01 -2.80619003e-02 3.20329741e-02
-2.19840016e-02 -1.36392176e-01 -1.02166705e-01 -3.58890593e-01
4.39012572e-02 4.81801666e-03 1.11632412e-02 -6.98464885e-02
-4.50425185e-02 -4.01994735e-02 -6.03534980e-04 -7.15099052¢-02
-7.36634061e-02 2.14629583e-02 2.10165456e-01 -6.25279024e-02
1.19931854e-01 -1.26935437e-01 -8.21741298e-02 2.74210095e-01
9.49538499¢-02 -1.17289513e-01 -9.49264839e-02 -1.75545543e-01
3.37264240e-02 -2.08480164e-01 -8.98559391e-02 1.35834515e-01
1.21459514e-01 5.26671447e-02 -7.85357356e-02 -1.38883330e-02
3.44770006e-03 5.95685691e-02 1.30519092e-01 -1.28386602e-01
9.01534930e-02 7.31256530e-02 -1.94634255e-02 1.17376871e-01
1.67697188e-04 4.33479100e-02 -1.57258630e-01 1.38467610e-01
8.46170783e-02 7.77027458e-02 8.34437460e-02 -2.43678018e-02
-8.29226896e-02 1.89361051e-01 1.67503580e-01 2.07188442e-01
-1.92358971e-01 1.90954044e-01 -8.66395757e-02 8.63512680e-02
8.16990361e-02 -2.30716318e-02 1.48350254e-01 9.33871120e-02
-1.03444301e-01 3.32759172e-02 -1.03499167e-01 2.95007881e-02
-4.18480560e-02 1.48850128e-01 -1.25358477e-01 2.33333096e-01
-1.20942295e-01 1.06142171e-01 1.28692985e-01 1.23203449¢-01
1.00113675e-01 -1.41250789¢-02 1.63177848e-01 1.50014937e-01
-1.95683893e-02 1.19940504e-01 2.54336447e-01 2.12510210e-02
1.35626718e-01 -1.89367294e-01 1.02768317e-01 -7.30541497e-02]

Vector embedding for ‘patient”:

[0.00135616 0.06625096 0.02714886 -0.03324671 0.05406597 -0.2076351
0.14450136 0.27830392 -0.1474757 -0.05214735 -0.02860676 -0.218962
-0.05803476 0.11022121 -0.03196976 0.0245685 0.0070367 -0.12605277
-0.11396559 -0.3183468 0.07659787 0.01132763 0.00593386 -0.04407553
-0.05708291 -0.05022431 0.03657781 -0.05108569 -0.0220301 0.00680075
0.14817646 -0.03874053 0.13069744 -0.11300313 -0.10196024 0.2306353
0.13352849 -0.12474146 -0.07811124 -0.14196448 0.03165774 -0.15317255
-0.04029788 0.10843351 0.11978162 0.03644174 -0.07184896 -0.00125591
0.01996329 0.04686815 0.12031849 -0.13361286 0.07784432 0.03898075

Dept OF CSE-AI & ML, ATMECE, MYSURU Page 28

Generative Al Laborato

-0.05535794 0.07788541 0.02375661 0.06319185 -0.13593689 0.13807625
0.04011758 0.07736681 0.10920981 -0.01097703 -0.08413535 0.1694132

0.1142689 0.17812304 -0.16391632 0.13841556 -0.08013699 0.09719803

0.07872047 -0.04311903 0.14359443 0.06323478 -0.05998136 0.03068179
-0.10644887 0.00854869 -0.04508544 0.13762434 -0.12336963 0.1855616
-0.11391655 0.09752344 0.1405091 0.12214459 0.11253129 -0.01929942
0.13898279 0.15566415 0.01292162 0.08838749 0.19901091 0.03416261
0.12509196 -0.13636002 0.11566975 -0.02010318]

Vector embedding for 'guilty":

[-0.01413389 0.06656995 -0.00734866 -0.03095385 0.06509437 -0.2517697
0.14954449 0.29895368 -0.15728544 -0.07182206 -0.06310162 -0.20050046
-0.08547995 0.15693647 -0.0186175 0.01778842 -0.05446635 -0.12549472
-0.11124176 -0.31952748 0.03580405 0.01365704 0.03395955 -0.03605738
-0.06030127 -0.04814158 0.03859452 -0.09555041 -0.05513439 0.0372526
0.19865839 -0.07835107 0.10888778 -0.11142128 -0.10577497 0.29005775
0.11180676 -0.13126965 -0.07538164 -0.1596524 0.06402622 -0.17310387
-0.09087672 0.04137763 0.09426072 0.02597058 -0.06627226 -0.02641308
0.03379544 0.0561525 0.13159601 -0.16362782 0.08867155 0.10736878
-0.04391972 0.10295371 0.04891674 0.00565069 -0.163432 0.08589575
0.1108232 0.05997586 0.11241774 -0.04420831 -0.06642649 0.15975468
0.1490166 0.12801382 -0.21193038 0.1502985 -0.10489336 0.09517636
0.0673286 -0.03900745 0.15302955 0.0800889 -0.13577344 0.05731111
-0.12092727 0.00424497 -0.00455176 0.11054221 -0.15298396 0.20722686
-0.15278348 0.03610937 0.10936919 0.14354476 0.09363212 -0.00813364
0.1714467 0.15730394 -0.02156785 0.11239511 0.24912179 0.03659537
0.0892475 -0.202413 0.11249497 -0.05155509]

Vector embedding for 'surgery':

[-3.12990844e-02 6.58327192e-02 2.85430159e-03 1.10345073e-02
-7.04743201e-03 -2.36223593e-01 1.33402810e-01 3.03116202e-01
-2.05681935e-01 6.48758421e-03 -8.28733593e-02 -1.69779241e-01
-5.81854694e-02 1.80510432e-01 -4.00698669e-02 3.47116366e-02
-1.62971541e-02 -1.29537463e-01 -9.92213637e-02 -3.68670791e-01
4.55319285e-02 8.06765445e-03 -1.78291200e-04 -6.00495152¢-02
-5.73267005e-02 -4.28762138e-02 -3.84912407e-03 -6.40033185e-02
-7.08072856e-02 4.36537573e-03 2.26468816e-01 -4.98397388e-02
1.30335823e-01 -1.16139121e-01 -8.42535719e-02 2.86336660e-01
1.00505255e-01 -1.20256521e-01 -9.17292535e-02 -1.76113561e-01
2.96843071e-02 -2.00398415e-01 -9.28441510e-02 1.45912632e-01
1.11865871e-01 5.49624115e-02 -6.89490139e-02 -1.83873083e-02
-1.00601949e-02 6.59109801e-02 1.25353217e-01 -1.26397550e-01
9.62558836e-02 5.71697466e-02 -2.06405111e-02 1.16529934e-01

Dept OF CSE-AI & ML, ATMECE, MYSURU

BAIL657C

Page 29

Generative Al Laborato

-8.17977940e-04 2.92389747e-02 -1.62125885e-01 1.34710684e-01
6.75722361e-02 8.40188041e-02 8.42126012e-02 -1.94504112e-02

-1.00880139%¢-01 1.89215228e-01 1.60290688e-01 2.12331533e-01
-2.03707144e-01 2.01542258e-01 -9.25249755e-02 9.14819315e-02
8.59961137e-02 -2.71495730e-02 1.61703631e-01 9.22792554e-02

-1.11497119e-01 5.09562343e-02 -1.00743666e-01 3.40460427e-02
-5.15895225e-02 1.68939248e-01 -1.28210068e-01 2.49226272e-01
-1.33621320e-01 1.16187118e-01 1.42963469e-01 1.47219375e-01
1.09663606e-01 5.80039807e-03 1.60661057e-01 1.45263568e-01

-1.83158442¢-02 1.16535008e-01 2.47885883e-01 1.26237087e-02
1.36337191e-01 -1.75651938e-01 1.01963326e-01 -7.20273107e-02]

Visualization using PCA

selected_words = ["court™, "plaintiff", "defendant”, "guilty"”, "jury",

"patient”, "doctor", "hospital”, "surgery"”, "emergency"]

word_vectors = [domain_word2vec.wv[word] for word in selected_words]
word_vectors

Output:

[array([-0.00520213, 0.05436571, 0.0196009, 0.00766893, 0.04851889,
-0.22194375, 0.15068555, 0.2671535, -0.16717364, -0.04062838,
-0.054865 , -0.17729442, -0.06285486, 0.16066416, 0.00799252,
0.00430546, -0.04130681, -0.11852198, -0.11586928, -0.32001996,
0.07377547, 0.00634967, 0.01555517, -0.04018658, -0.05180506,
-0.06574838, 0.01809591, -0.04998898, -0.05094941, 0.00987862,
0.17092119, -0.03111312, 0.12419216, -0.07877786, -0.07952873,
0.22328345, 0.12608306, -0.0951244 , -0.07667849, -0.1501351 ,
0.04725789, -0.15457962, -0.06896634, 0.13114625, 0.11142956,
0.03642106, -0.06946036, -0.02198208, 0.01422113, 0.05933676,
0.09983439, -0.12603386, 0.07056595, 0.02597529, -0.02668819,
0.0757888 , -0.00033602, 0.05289464, -0.16172495, 0.12800941,
0.07429419, 0.10103885, 0.08504409, -0.01794797, -0.06241613,
0.14987893, 0.15474467, 0.18398537, -0.17408288, 0.13962157,
-0.11823418, 0.09919562, 0.07957372, -0.05181967, 0.15559544,
0.0681076 , -0.0985308 , 0.02557893, -0.11090399, -0.02128516,
-0.01085772, 0.11211726, -0.14611867, 0.20995773, -0.10311343,
0.06910679, 0.14604773, 0.10655196, 0.10023539, -0.02284993,
0.14183174, 0.13799591, 0.00409749, 0.11127966, 0.21348046,
0.03055387, 0.11364785, -0.1445034 , 0.11242675, -0.04190433],
dtype=float32),

array([-0.03223411, 0.06478627, 0.00088969, -0.00806353, 0.05694845,
-0.21240263, 0.13640128, 0.26523107, -0.13281158, -0.04770363,
-0.02368818, -0.1402928 , -0.03685566, 0.12257947, 0.00039671,

Dept OF CSE-AI & ML, ATMECE, MYSURU

BAIL657C

Page 30

Generative Al Laborato

0.00741028, -0.01043882, -0.11464308, -0.09540985, -0.3000543 ,
0.0647751, 0.00074026, 0.00411286, -0.05273201, -0.02684729,
-0.04762366, 0.02497391, -0.04300669, -0.04396778, -0.00184753,
0.14383827, -0.04924785, 0.08860843, -0.08550214, -0.06152922,
0.24551614, 0.10724474, -0.13455397, -0.05984696, -0.15700217,
0.02755019, -0.14089336, -0.07535081, 0.0659988 , 0.11539416,
0.020872 , -0.05348673, -0.02727061, 0.01346072, 0.03318129,
0.09382757, -0.10529419, 0.0414049, 0.07656677, -0.01830849,
0.07164428, 0.01196256, 0.05545417, -0.13542365, 0.1291954 ,
0.08052401, 0.06550701, 0.09594982, -0.03788032, -0.07346537,
0.16846505, 0.13681169, 0.14530386, -0.15170906, 0.14640196,
-0.09068518, 0.0789521, 0.05557212, -0.02400086, 0.11684093,
0.06631403, -0.11164055, 0.01440321, -0.10535935, -0.00458972,
-0.02664629, 0.1090111 , -0.12968238, 0.18052402, -0.09392222,
0.08443088, 0.12474449, 0.09482376, 0.11001488, -0.01367659,
0.12273199, 0.1101999, 0.02236929, 0.09491293, 0.19617565,
0.01282949, 0.11568122, -0.1593218, 0.10664962, -0.04113806],
dtype=float32),

array([0.00656709, 0.07256435, -0.0084228 , -0.02586134, 0.07641555,
-0.2732658 , 0.1540303, 0.32865882, -0.17496191, -0.06661771,
-0.06085587, -0.22411431, -0.08474998, 0.18789086, -0.02127556,
0.03096173, -0.05577651, -0.12937057, -0.11135948, -0.36175218,
0.04432205, 0.00878906, 0.02296932, -0.05328603, -0.07712711,
-0.06075291, 0.04381331, -0.10575836, -0.06409874, 0.04152325,
0.21431115, -0.08531993, 0.14578514, -0.11424538, -0.11725931,
0.29418284, 0.10676998, -0.15401532, -0.09160217, -0.16645099,
0.06118093, -0.19756706, -0.08612581, 0.06556768, 0.1085471,
0.04415575, -0.06776308, -0.04802901, 0.04284215, 0.0638606 ,
0.13356939, -0.17036071, 0.08767819, 0.10464148, -0.03167466,
0.11624619, 0.03233933, 0.01407737, -0.15678538, 0.10963659,
0.11469187, 0.07420997, 0.09665452, -0.03110271, -0.07621247,
0.17188032, 0.18252161, 0.14339091, -0.22514871, 0.18041831,
-0.12061799, 0.07872933, 0.06301736, -0.04593184, 0.16801536,
0.08114434, -0.13756713, 0.06104114, -0.13863237, 0.01738747,
-0.01658883, 0.13528904, -0.1735411, 0.24808215, -0.17541201,
0.04516907, 0.11772847, 0.14438275, 0.12152614, -0.00914207,
0.16980448, 0.15530077, -0.0296784 , 0.13635741, 0.24644977,
0.03516944, 0.11169897, -0.21215999, 0.10724142, -0.03329436],
dtype=float32),

array([-0.01413389, 0.06656995, -0.00734866, -0.03095385, 0.06509437,
-0.2517697 , 0.14954449, 0.29895368, -0.15728544, -0.07182206,
-0.06310162, -0.20050046, -0.08547995, 0.15693647, -0.0186175,
0.01778842, -0.05446635, -0.12549472, -0.11124176, -0.31952748,

Dept OF CSE-AI & ML, ATMECE, MYSURU

BAIL657C

Page 31

Generative Al Laborato BAIL657C
0.03580405, 0.01365704, 0.03395955, -0.03605738, -0.06030127,
-0.04814158, 0.03859452, -0.09555041, -0.05513439, 0.0372526 ,
0.19865839, -0.07835107, 0.10888778, -0.11142128, -0.10577497,
0.29005775, 0.11180676, -0.13126965, -0.07538164, -0.1596524 ,
0.06402622, -0.17310387, -0.09087672, 0.04137763, 0.09426072,
0.02597058, -0.06627226, -0.02641308, 0.03379544, 0.0561525,
0.13159601, -0.16362782, 0.08867155, 0.10736878, -0.04391972,
0.10295371, 0.04891674, 0.00565069, -0.163432 , 0.08589575,
0.1108232, 0.05997586, 0.11241774, -0.04420831, -0.06642649,
0.15975468, 0.1490166, 0.12801382, -0.21193038, 0.1502985 ,
-0.10489336, 0.09517636, 0.0673286 , -0.03900745, 0.15302955,
0.0800889 , -0.13577344, 0.05731111, -0.12092727, 0.00424497,
-0.00455176, 0.11054221, -0.15298396, 0.20722686, -0.15278348,
0.03610937, 0.10936919, 0.14354476, 0.09363212, -0.00813364,
0.1714467, 0.15730394, -0.02156785, 0.11239511, 0.24912179,
0.03659537, 0.0892475, -0.202413 , 0.11249497, -0.05155509],
dtype=float32),

array([-0.00793692, 0.04061861, -0.01272589, -0.0216382 , 0.05832693,
-0.20959468, 0.1335544, 0.23678838, -0.1236183 , -0.03556946,
-0.02290245, -0.1449683 , -0.06467045, 0.1215817 , -0.01873406,
0.01126286, -0.01548086, -0.10774158, -0.09506714, -0.26566857,
0.04896098, -0.00084279, 0.01825006, -0.05337542, -0.03144738,
-0.05701503, 0.03505556, -0.05904163, -0.04336127, -0.00061382,
0.16488056, -0.05326047, 0.09773479, -0.07977082, -0.06476859,
0.22621374, 0.09030687, -0.11633091, -0.06397521, -0.13930038,
0.04200654, -0.13733749, -0.06120953, 0.06062739, 0.0891199 ,
0.02058195, -0.06635275, -0.00753717, 0.01779128, 0.05422449,
0.10981765, -0.1124575, 0.06291748, 0.08702539, -0.03922568,
0.08803029, 0.03010272, 0.03673965, -0.13025954, 0.10378475,
0.07686505, 0.06131725, 0.09677017, -0.02306653, -0.05867948,
0.14983074, 0.11522046, 0.13194208, -0.16845842, 0.130707 ,
-0.09688476, 0.0888531, 0.05799359, -0.03768088, 0.1355294 ,
0.04766061, -0.1006932 , 0.02873053, -0.10280664, -0.01355723,
-0.0322897, 0.125441 , -0.13379173, 0.1888993, -0.1090064 ,
0.05351871, 0.11118538, 0.09934786, 0.08427987, -0.01916844,
0.11553331, 0.12629525, -0.00194136, 0.09477089, 0.19319633,
0.01517526, 0.08618706, -0.15499583, 0.09854038, -0.04697568],
dtype=float32),

array(] 0.00135616, 0.06625096, 0.02714886, -0.03324671, 0.05406597,
-0.2076351, 0.14450136, 0.27830392, -0.1474757 , -0.05214735,
-0.02860676, -0.218962 , -0.05803476, 0.11022121, -0.03196976,
0.0245685, 0.0070367 , -0.12605277, -0.11396559, -0.3183468 ,
0.07659787, 0.01132763, 0.00593386, -0.04407553, -0.05708291,

Dept OF CSE-AI & ML, ATMECE, MYSURU Page 32

Generative Al Laborato BAIL657C

-0.05022431, 0.03657781, -0.05108569, -0.0220301 , 0.00680075,
0.14817646, -0.03874053, 0.13069744, -0.11300313, -0.10196024,
0.2306353, 0.13352849, -0.12474146, -0.07811124, -0.14196448,
0.03165774, -0.15317255, -0.04029788, 0.10843351, 0.11978162,
0.03644174, -0.07184896, -0.00125591, 0.01996329, 0.04686815,
0.12031849, -0.13361286, 0.07784432, 0.03898075, -0.05535794,
0.07788541, 0.02375661, 0.06319185, -0.13593689, 0.13807625,
0.04011758, 0.07736681, 0.10920981, -0.01097703, -0.08413535,
0.1694132, 0.1142689, 0.17812304, -0.16391632, 0.13841556,
-0.08013699, 0.09719803, 0.07872047, -0.04311903, 0.14359443,
0.06323478, -0.05998136, 0.03068179, -0.10644887, 0.00854869,
-0.04508544, 0.13762434, -0.12336963, 0.1855616 , -0.11391655,
0.09752344, 0.1405091, 0.12214459, 0.11253129, -0.01929942,
0.13898279, 0.15566415, 0.01292162, 0.08838749, 0.19901091,
0.03416261, 0.12509196, -0.13636002, 0.11566975, -0.02010318],
dtype=float32),

array([-3.76006439e-02, 8.11468363e-02, -1.18198330e-02, 1.22082625e-02,
5.35595044e-03, -2.21441105e-01, 1.31108329e-01, 3.10447901e-01,
-2.11071640e-01, 7.52886664e-03, -6.67306557¢e-02, -1.76628768e-01,
-4.83631082e-02, 1.88437983e-01, -2.80619003e-02, 3.20329741e-02,
-2.19840016e-02, -1.36392176e-01, -1.02166705e-01, -3.58890593e-01,
4.39012572e-02, 4.81801666e-03, 1.11632412e-02, -6.98464885e-02,
-4.50425185e-02, -4.01994735e-02, -6.03534980e-04, -7.15099052¢-02,
-7.36634061e-02, 2.14629583e-02, 2.10165456e-01, -6.25279024e-02,
1.19931854e-01, -1.26935437e-01, -8.21741298e-02, 2.74210095¢-01,
9.49538499¢-02, -1.17289513e-01, -9.49264839¢-02, -1.75545543e-01,
3.37264240e-02, -2.08480164e-01, -8.98559391e-02, 1.35834515e-01,
1.21459514e-01, 5.26671447e-02, -7.85357356€-02, -1.38883330e-02,
3.44770006e-03, 5.95685691e-02, 1.30519092e-01, -1.28386602e-01,
9.01534930e-02, 7.31256530e-02, -1.94634255e-02, 1.17376871e-01,
1.67697188e-04, 4.33479100e-02, -1.57258630e-01, 1.38467610e-01,
8.46170783e-02, 7.77027458e-02, 8.34437460e-02, -2.43678018e-02,
-8.29226896e-02, 1.89361051e-01, 1.67503580e-01, 2.07188442e-01,
-1.92358971e-01, 1.90954044e-01, -8.66395757e-02, 8.63512680e-02,
8.16990361e-02, -2.30716318e-02, 1.48350254e-01, 9.33871120e-02,
-1.03444301e-01, 3.32759172e-02, -1.03499167e-01, 2.95007881e-02,
-4.18480560e-02, 1.48850128e-01, -1.25358477e-01, 2.33333096e-01,
-1.20942295e-01, 1.06142171e-01, 1.28692985e-01, 1.23203449¢-01,
1.00113675e-01, -1.41250789e-02, 1.63177848e-01, 1.50014937e-01,
-1.95683893e-02, 1.19940504e-01, 2.54336447e-01, 2.12510210e-02,
1.35626718e-01, -1.89367294e-01, 1.02768317e-01, -7.30541497e-02],
dtype=float32),

array([-0.02265889, 0.05778723, -0.01179005, -0.00284239, 0.04882376,

Dept OF CSE-AI & ML, ATMECE, MYSURU Page 33

Generative Al Laborato

-0.23377152, 0.13176689, 0.3085964 , -0.16563822, -0.00594464,
-0.06069683, -0.16251391, -0.04316762, 0.19339406, -0.00984798,
0.00349556, -0.03423214, -0.15440044, -0.15881209, -0.36713216,
0.0536154 , -0.02835809, -0.01769544, -0.04901092, -0.05845137,
-0.06207271, 0.01982044, -0.07527879, -0.0646024 , 0.04246312,
0.17291646, -0.03934861, 0.15174052, -0.11018316, -0.1073219 ,
0.25728288, 0.10440008, -0.15727909, -0.0763182 , -0.1741864 ,
0.02225032, -0.2151592 , -0.09898599, 0.08515406, 0.14156315,
0.04146844, -0.080073 , -0.02897993, 0.03221606, 0.05149914,
0.13052906, -0.13760065, 0.0776631, 0.07678478, -0.00785946,
0.10275181, -0.01308092, 0.06987558, -0.16492371, 0.15031946,
0.07514932, 0.06996216, 0.08479748, 0.00843247, -0.08604642,
0.19633524, 0.18013164, 0.14563482, -0.19318359, 0.18252854,
-0.10180707, 0.07443867, 0.04677813, -0.07124216, 0.16272344,
0.05405647, -0.0953992, 0.04183496, -0.10839124, -0.01641163,
-0.00933946, 0.11554954, -0.13658553, 0.22137882, -0.13358647,
0.06070266, 0.13194123, 0.11046906, 0.12901476, -0.01263191,
0.16108233, 0.17001428, 0.02732584, 0.10106397, 0.21696223,
0.00993073, 0.13067529, -0.19392748, 0.11318995, -0.02350748],
dtype=float32),

array([-3.12990844e-02, 6.58327192e-02, 2.85430159e-03, 1.10345073e-02,
-7.04743201e-03, -2.36223593e-01, 1.33402810e-01, 3.03116202e-01,
-2.05681935e-01, 6.48758421e-03, -8.28733593e-02, -1.69779241e-01,
-5.81854694e-02, 1.80510432e-01, -4.00698669¢-02, 3.47116366e-02,
-1.62971541e-02, -1.29537463e-01, -9.92213637e-02, -3.68670791e-01,
4.55319285e-02, 8.06765445e-03, -1.78291200e-04, -6.00495152¢-02,
-5.73267005e-02, -4.28762138e-02, -3.84912407e-03, -6.40033185e-02,
-7.08072856e-02, 4.36537573e-03, 2.26468816e-01, -4.98397388e-02,
1.30335823e-01, -1.16139121e-01, -8.42535719¢-02, 2.86336660e-01,
1.00505255e-01, -1.20256521e-01, -9.17292535e-02, -1.76113561e-01,
2.96843071e-02, -2.00398415e-01, -9.28441510e-02, 1.45912632e-01,
1.11865871e-01, 5.49624115e-02, -6.89490139%¢-02, -1.83873083e-02,
-1.00601949e-02, 6.59109801e-02, 1.25353217e-01, -1.26397550e-01,
9.62558836e-02, 5.71697466e-02, -2.06405111e-02, 1.16529934e-01,
-8.17977940e-04, 2.92389747e-02, -1.62125885e-01, 1.34710684e-01,
6.75722361e-02, 8.40188041e-02, 8.42126012e-02, -1.94504112¢-02,
-1.00880139%¢-01, 1.89215228e-01, 1.60290688e-01, 2.12331533e-01,
-2.03707144e-01, 2.01542258e-01, -9.25249755e-02, 9.14819315e-02,
8.59961137e-02, -2.71495730e-02, 1.61703631e-01, 9.22792554e-02,
-1.11497119e-01, 5.09562343e-02, -1.00743666e-01, 3.40460427e-02,
-5.15895225e-02, 1.68939248e-01, -1.28210068e-01, 2.49226272¢-01,
-1.33621320e-01, 1.16187118e-01, 1.42963469e-01, 1.47219375e-01,
1.09663606e-01, 5.80039807e-03, 1.60661057e-01, 1.45263568e-01,

Dept OF CSE-AI & ML, ATMECE, MYSURU

BAIL657C

Page 34

Generative Al Laborato

-1.83158442¢-02, 1.16535008e-01, 2.47885883e-01, 1.26237087¢e-02,
1.36337191e-01, -1.75651938e-01, 1.01963326e-01, -7.20273107e-02],
dtype=float32),

array([-0.01135001, 0.05962004, 0.03272124, -0.01768819, 0.04998965,
-0.20870571, 0.14685056, 0.2836007 , -0.18323691, -0.03109219,
-0.03263121, -0.22973996, -0.04514541, 0.15115191, -0.02573079,
0.00774679, -0.00233633, -0.1304845 , -0.14386515, -0.31636477,
0.06311441, 0.00088838, -0.02058102, -0.03525062, -0.05741948,
-0.08361816, 0.04948161, -0.06476792, -0.02724299, 0.00202177,
0.18204965, -0.03211843, 0.15414716, -0.11622933, -0.12767726,
0.25150353, 0.13327569, -0.16982682, -0.09414072, -0.16327456,
0.01518478, -0.16644533, -0.0390787, 0.10758833, 0.1320721,
0.01700985, -0.06482255, -0.01300713, 0.01951688, 0.04992113,
0.12908201, -0.15448081, 0.05776305, 0.0506245 , -0.04097727,
0.08827188, 0.02562736, 0.04502805, -0.13268901, 0.15970598,
0.0415643, 0.10894849, 0.1138011, -0.03124123, -0.09126465,
0.17592564, 0.11290699, 0.18183088, -0.17974737, 0.15896654,
-0.07602367, 0.10534283, 0.06435065, -0.05782789, 0.17650633,
0.06925058, -0.07527371, 0.04818593, -0.11926682, -0.00753901,
-0.03426384, 0.13999003, -0.1504484 , 0.19165526, -0.14357014,
0.09853069, 0.1328372, 0.13577645, 0.12897931, -0.0323601 ,
0.11762244, 0.17293827, -0.00854158, 0.07778574, 0.22550419,
0.03845395, 0.1585336, -0.14676552, 0.14424598, -0.03719835],
dtype=float32)]

pca = PCA(n_components=2)
reduced_vectors = pca.fit_transform(word_vectors)

reduced_vectors

array([[0.06908131, 0.0287464],
[0.14953919, -0.01964696],
[-0.16693931, -0.13033459],
[-0.0674262 , -0.16882876],
[0.1574409 , -0.07644414],
[0.11961383, 0.04956438],
[-0.1142199, 0.10011148],
[-0.06259862, 0.0240761],
[-0.12848931, 0.12535115],

[0.04399811, 0.06740492]])
plt.figure(figsize=(12, 8))
for i, word in enumerate(selected_words):

plt.scatter(reduced_vectors[i, 0], reduced_vectors[i, 1])

Dept OF CSE-AI & ML, ATMECE, MYSURU

BAIL657C

Page 35

Generative Al Laboratory BAIL657C .

plt.text(reduced_vectors[i, 0] + 0.002, reduced_vectorsJi, 1], word, fontsize=12)
plt.title("PCA Visualization of Legal and Medical Word Embeddings™)
plt.xlabel("PCA Dimension 1")

plt.ylabel("PCA Dimension 2")

plt.show()
output:
PCA Visualization of Legal and Medical Word Embeddings
surgery
0.10 - doctor
sEMergency
0.05 | epatient
ghospital scourt
~
= 0001
S
@ -
5 plaintiff
E
=]
<<
£ 0051
elury
—0.10 A
edefendant
-0.15 |
uilty
—015 0,10 —0.05 0.00 0.03 0.10 015

PCA Dimension 1

Dept OF CSE-AI & ML, ATMECE, MYSURU Page 36

Generative Al Laboratou BAIL657C

Program 4: Use word embeddings to improve prompts for Generative Al model. Retrieve similar
words using word embeddings. Use the similar words to enrich a GenAl prompt. Use the Al model to
generate responses for the original and enriched prompts. Compare the outputs in terms of detail
and relevance.

Soln:
pip install transformers —U

from gensim.scripts.glove2word2vec import glove2word2vec
from gensim.models import KeyedVectors

Paths to the GloVe file and output Word2Vec file
glove_input_file = "/content/glove.6B.100d.txt"

Path to GloVe file

word2vec_output_file = "/content/glove.6B.100d.word2vec.txt"
Output file in Word2Vec format

Convert GloVe format to Word2Vec format
glove2word2vec(glove_input_file, word2vec output_file)

Load the converted Word2Vec model
model = KeyedVectors.load_word2vec_format(word2vec_output_file, binary=False)

Test the loaded model
print(model.most_similar('king™))

Output:

[(prince’, 0.7682328820228577), (‘queen’, 0.7507690787315369), ('son’', 0.7020888328552246), (‘brother",
0.6985775232315063), (‘monarch’, 0.6977890729904175), (‘throne, 0.6919989585876465),
(‘’kingdom',0.6811409592628479), (‘father', 0.6802029013633728), (‘'emperor’, 0.6712858080863953), ('ii',
0.6676074266433716)]

Define the original medical prompt
original_prompt = "Explain the importance of vaccinations in healthcare."

Define key terms extracted from the original prompt

key terms = ["vaccinations", "healthcare"]

Initialize an empty list to store similar terms
similar_terms = []

Loop through each key term to find similar words for term in key_terms:

Check if the key term exists in the vocabulary of the 'model’ (word embedding model)

Assuming 'model.key to_index' is a way to check for term existence in the model's vocabulary
if term in model.key_to_index:

If the term exists, find the top 3 most similar words using 'model.most_similar(term, topn=3)'
and extend the 'similar_terms' list with these words.

Dept OF CSE-AI & ML, ATMECE, MYSURU Page 37

Generative Al Laboratory BAIL657C
~ # Assuming 'model.most_similar' returns a list of tuples, where each tuple is (word, similarity_score)

We are extracting only the 'word' part using a set comprehension for potential deduplication.

similar_terms.extend({word for word, _ in model.most_similar(term, topn=3)})

Enrich the original prompt with the retrieved similar terms

if similar_terms:

If similar terms were found, create an enriched prompt by appending

"Consider aspects like: " followed by a comma-separated string of similar terms.
enriched_prompt = f"{original_prompt} Consider aspects like: {', .join(similar_terms)}."
else:

If no similar terms were found, the enriched prompt is the same as the original prompt.
enriched_prompt = original_prompt

Output the original and enriched prompts
print("Original Prompt:", original_prompt)
print("Enriched Prompt:", enriched_prompt)

Output:

Original Prompt: Explain the importance of vaccinations in healthcare.
Enriched Prompt: Explain the importance of vaccinations in healthcare. Consider aspects like: vaccines,

vaccination, measles, services, care, health.

import getpass

import 0s

GOOGLE_API_KEY= os.environ["GOOGLE_API_KEY"] = getpass.getpass("Enter your Google Al API
key: ")

Enter your Google Al APl key: ----------

Ipip install langchain_google_genai

from langchain_google_genai import ChatGoogleGenerativeAl

IIm = ChatGoogleGenerativeAl(
model="gemini-2.0-flash-exp",
temperature=0,
api_key=GOOGLE_API_KEY,
max_tokens=256,
timeout=None,

max_retries=2,

other params...

)

lIm.invoke("Hi")

Dept OF CSE-AI & ML, ATMECE, MYSURU Page 38

Generative Al Laboratou BAIL657C

Output:

AlMessage(content="Hi there! How can I help you today?,additional_kwargs={},
response_metadata={"'prompt_feedback": {'block reason": 0, 'safety ratings"[]}, finish_reason" 'STOP’,
'safety ratings':[]},id="run-88300c57-17bd-4b38-9eea-1d454793adc1-0',
usage_metadata={"input_tokens":1,'output_tokens':11,'total_tokens":12,'input_token_details": {'cache_read"

03}

print(lim.invoke(original_prompt).content)

Output:

Vaccinations are a cornerstone of modern healthcare and play a vital role in protecting individuals and
communities from infectious diseases. Their importance can be summarized in several key areas:

1. Disease Prevention and Eradication:

Individual Protection: Vaccines work by exposing the body to a weakened or inactive form of a disease-
causing agent (virus or bacteria). This triggers the immune system to produce antibodies, which provide
protection against future infections. If the individual is later exposed to the real disease, their immune
system is primed to fight it off quickly and effectively, often preventing illness or significantly reducing its
severity.

Herd Immunity: When a large percentage of a population is vaccinated, it creates "herd immunity.” This
means that even those who cannot be vaccinated (e.g., infants too young, individuals with certain medical
conditions) are protected because the disease has difficulty spreading. Herd immunity is crucial for
protecting vulnerable populations.

Disease Eradication/Elimination: Vaccination campaigns have successfully eradicated diseases like
smallpox and have significantly reduced the incidence of others, such as polio and measles. Continued
vaccination efforts are essential to maintain these achievements and prevent the resurgence of these
diseases.

2. Reduced Morbidity and Mortality:

print(Iim.invoke(enriched_prompt).content)

Output:

The Vital Importance of Vaccinations in Healthcare

Vaccinations are a cornerstone of modern healthcare, playing a crucial role in preventing infectious
diseases and promoting overall public health. They represent a powerful and cost-effective intervention that
has dramatically reduced the incidence and severity of many life-threatening illnesses.

Here's a breakdown of their importance, considering the aspects you mentioned:

1. Vaccines: The Foundation of Protection

Definition:Vaccines are biological preparations that provide active acquired immunity to a particular
infectious disease. They typically contain weakened or inactive forms of the disease-causing agent (virus or
bacteria), or parts of it (antigens).

Mechanism:Vaccines work by stimulating the body's immune system to recognize and remember the
specific pathogen. This "memory™ allows the body to mount a rapid and effective immune response upon
future exposure to the actual disease, preventing or mitigating its severity.

Variety: A wide range of vaccines exist, targeting diseases like measles, mumps, rubella, polio, tetanus,
diphtheria, pertussis, influenza, and COVID-19, among others.

2.Vaccination: The Act of Immunization

Definition:Vaccination is the process of administering a vaccine

Dept OF CSE-AI & ML, ATMECE, MYSURU Page 39

Generative Al Laboratou BAIL657C

Program 5: Use word embeddings to create meaningful sentences for creative tasks. Retrieve similar
words for a seed word. Create a sentence or story using these words as a starting point. Write a
program that: Takes a seed word. Generates similar words. Constructs a short paragraph using
these words.

Soln:
Ipip install sentence_transformers

Ipip install langchain-huggingface

Ipip install tf-keras --user

Ipip install numpy==1.24.4 --user

from sentence_transformers import SentenceTransformer, util

Load a pretrained SentenceTransformer model
model = SentenceTransformer(‘all-MiniLM-L6-v2")

Define an expanded finance-related corpus

corpus = [

"The stock market saw significant gains today, driven by strong earnings reports.”,

"Investing in diversified portfolios helps mitigate risk and maximize returns.",

"The Federal Reserve's decision to raise interest rates could impact market liquidity.",
"Cryptocurrency has become an increasingly popular asset class among investors.",
"Financial analysts predict that the global economy will face challenges in the coming years.",
"Bonds are considered a safer investment option compared to stocks.",

"Banks are adopting blockchain technology to improve the efficiency of financial transactions.”,
"The economic impact of the pandemic has been severe, but recovery is underway.",
"Inflation rates have been rising steadily, leading to higher costs for consumers.",

"Corporate governance and transparency are crucial for investor confidence.",

"The real estate market is experiencing a boom as demand outstrips supply in many areas.",
"Investors should be aware of market volatility and adjust their strategies accordingly.",
"Diversification is a key principle in reducing risk in investment portfolios.",

"Hedge funds use complex strategies to generate high returns, often with higher risks.",
"Stock buybacks are often seen as a sign of confidence by corporate executives."

]

Encode the corpus into embeddings
corpus_embeddings = model.encode(corpus, convert_to_tensor=True)
corpus_embeddings

Dept OF CSE-AI & ML, ATMECE, MYSURU Page 40

Generative Al Laboratou BAIL657C

Output:

tensor([[0.0129, 0.0182, -0.0129, ..., -0.0351, -0.0190, 0.0443], [0.0329, 0.0204, -0.0503, ..., -0.0383, -
0.0037, 0.0154], [-0.0168, -0.0174, -0.05086, ..., -0.0439, 0.0390, -0.0251], ..., [0.0668, 0.0304, -0.0115, ...,
-0.0700, -0.0742, -0.0177], [-0.0069, -0.0231, -0.0392, ..., -0.0815, 0.0679, 0.0207], [-0.0347, -0.0332,
0.0320, ..., -0.0874, -0.0046, 0.0356]])

Function to generate a story using contextual embeddings

def generate_paragraph(seed_word, corpus, corpus_embeddings, model, top_n=5):
Encode the seed word as a sentence

seed_sentence = f"Tell me more about {seed_word} in finance."

seed_embedding = model.encode(seed_sentence, convert_to_tensor=True)

Find the most similar sentences in the corpus to the seed sentence
similarities = util.pytorch_cos_sim(seed_embedding, corpus_embeddings)[0]
top_results = similarities.topk(top_n)

print(‘top_results:',top_results)

Construct a more coherent story using the most similar sentences

story = f"The topic of '{seed_word}" is crucial in the finance industry. "

for idx in top_results.indices:
similar_sentence = corpus[idx]
story +=f"{similar_sentence} "

story += f"These concepts highlight the importance of {seed_word} in understanding financial markets and
investment strategies."
return story

Example usage

seed_word ="bonds"

story = generate_paragraph(seed_word, corpus, corpus_embeddings, model, top_n=5)
print(story)

Output:

top_results: torch.return_types.topk(

values=tensor([0.6597, 0.4536, 0.4218, 0.4031, 0.3689]),

indices=tensor([5, 3, 2, 13, 1]))

The topic of 'bonds' is crucial in the finance industry. Bonds are considered a safer investment option
compared to stocks. Cryptocurrency has become an increasingly popular asset class among investors. The
Federal Reserve's decision to raise interest rates could impact market liquidity. Hedge funds use complex
strategies to generate high returns, often with higher risks. Investing in diversified portfolios helps mitigate
risk and maximize returns. These concepts highlight the importance of bonds in understanding financial
markets and investment strategies.

Dept OF CSE-AI & ML, ATMECE, MYSURU Page 41

Generative Al Laboratou BAIL657C

Program 6: Use a pre-trained Hugging Face model to analyze sentiment in text. Assume a real-world
application, Load the sentiment analysis pipeline. Analyze the sentiment by giving sentences to input.
Soln:

%pip install --upgrade --quiet huggingface_hub

%pip install --upgrade langchain

from transformers import pipeline

Load the sentiment analysis pipeline

sentiment_analyzer = pipeline("sentiment-analysis™)

Example sentences for analysis

sentences = [

"The product quality is amazing! I'm very satisfied.",

"l had a terrible experience with customer service.",

"The delivery was quick, but the packaging was damaged.",

"Absolutely love this! Best purchase I've made.",

"Not worth the money, very disappointed.”

]

Analyze sentiment for each sentence

results = sentiment_analyzer(sentences)

Print the results for sentence, result in zip(sentences, results):

print(f"Sentence: {sentence}\nSentiment: {result['label']}, Confidence: {result['score’]:.2f}\n")
Output:

Sentence: The product quality is amazing! I'm very satisfied.
Sentiment: POSITIVE, Confidence: 1.00

Sentence: | had a terrible experience with customer service.
Sentiment: NEGATIVE, Confidence: 1.00

Sentence: The delivery was quick, but the packaging was damaged.
Sentiment: NEGATIVE, Confidence: 1.00

Sentence: Absolutely love this! Best purchase I've made.
Sentiment: POSITIVE, Confidence: 1.00

Dept OF CSE-AI & ML, ATMECE, MYSURU Page 42

Generative Al Laboratou BAIL657C

Sentence: Not worth the money, very disappointed.
Sentiment: NEGATIVE, Confidence: 1.00
Results

Output:

[{'label’; 'POSITIVE', 'score’; 0.9998825788497925},
{'label': 'NEGATIVE', 'score’; 0.9993104934692383},
{'label': 'NEGATIVE', 'score’; 0.9997345805168152},
{'label': 'POSITIVE', 'score’; 0.9998751878738403},

{'label'; 'NEGATIVE', 'score’; 0.9998034834861755}]

Ipip install langchain-huggingface
Approach 2: Using API calls

from langchain_huggingface import HuggingFaceEndpoint

get atoken: https://huggingface.co/docs/api-inference/quicktour
#get-your-api-token

from getpass import getpass

HUGGINGFACEHUB_API_TOKEN = getpass()

import 0s

os.environ["HUGGINGFACEHUB_API_TOKEN"] = HUGGINGFACEHUB_API_TOKEN
from langchain.chains import LLMChain

from langchain_core.prompts import PromptTemplate

text = ["The product quality is amazing! I'm very satisfied."”,

"l had a terrible experience with customer service.",

"The delivery was quick, but the packaging was damaged.",
"Absolutely love this! Best purchase I've made.",

"Not worth the money, very disappointed.”]

template = """'Perform the sentiment analysis for the following:{text}.
Answer: Following is the sentiment for the given text:""

prompt = PromptTemplate.from_template(template)

repo_id = "meta-llama/Llama-3.2-3B-Instruct” #"mistralai/Mistral-7B-Instruct-v0.2"
IIm = HuggingFaceEndpoint(

repo_id=repo_id,

max_length=256,

temperature=0.5,

huggingfacehub_api_token=HUGGINGFACEHUB_API_TOKEN,

)

IIm_chain = prompt | lIm

print(llm_chain.invoke({"text": text}))

Dept OF CSE-AI & ML, ATMECE, MYSURU Page 43

https://huggingface.co/docs/api-inference/quicktour

Generative Al Laboratog BAIL657C

Output:
["Positive", "Negative", "Neutral", "Positive", "Negative"]

Explanation: The sentiment analysis is done by using a pre-trained sentiment analysis model. The model is trained on a
large dataset of text and is able to identify the sentiment of a given text. Here is how the sentiment is analyzed for
each text:

1. "The product quality is amazing! I'm very satisfied." - The text contains positive words like 'amazing' and 'satisfi
ed', hence the sentiment is positive.

2. "I had a terrible experience with customer service." - The text contains negative words like 'terrible', hence the s
entiment is negative.

3. "The delivery was quick, but the packaging was damaged." - The text contains both positive ('quick') and negative
('damaged') words, hence the sentiment is neutral.

4, "Absolutely love this! Best purchase I've made." - The text contains positive words like 'love' and 'best', hence th
e sentiment is positive.

5. "Not worth the money, very disappointed.” - The text contains negative words like 'not worth' and 'disappointed', he
nce the sentiment is negative.

Dept OF CSE-AI & ML, ATMECE, MYSURU Page 44

Generative Al Laboratou BAIL657C

Program 7: Summarize long texts using a pre-trained summarization model using Hugging face
model. Load the summarization pipeline. Take a passage as input and obtain the summarized text.

Soln:

from transformers import pipeline

Load the summarization pipeline
summarizer = pipeline("summarization")
Expanded input passage

text =""

Artificial Intelligence (Al) is transforming education by introducing adaptive learning techniques,
automating administrative processes, and enabling intelligent tutoring systems. Al-driven learning
platforms analyze vast amounts of student data, including learning habits, strengths, and weaknesses, to
personalize educational experiences. This customization allows students to progress at their own pace,
ensuring that they receive content suited to their proficiency level. Additionally, Al chatbots and virtual
assistants are becoming common in academic institutions, providing real-time support to students. These
tools answer frequently asked questions, guide students through complex topics, and help with scheduling
and reminders. Educators also benefit from Al-powered grading systems that assess assignments, quizzes,
and exams, significantly reducing workload and providing instant feedback. Moreover, Al enhances
accessibility in education by offering language translation services, speech-to-text conversion, and assistive
technologies for students with disabilities. By breaking language barriers and supporting diverse learning
needs, Al makes education more inclusive. However, challenges remain in implementing Al in education.
Data privacy concerns arise as student information is collected and analyzed, requiring robust security
measures. There is also the risk of Al biases, where algorithmic decisions may favor certain groups over
others due to biased training data. Additionally, educators must undergo proper training to integrate Al
effectively into their teaching methods. To fully harness AI’s potential in education, institutions must adopt
ethical Al frameworks, ensure transparency in algorithmic decision-making, and continuously update their
technological infrastructure. Collaboration between educators, policymakers, and Al developers is crucial
in shaping the future of education and ensuring that Al serves as an enabler rather than a disruptor.”™"

Generate the summary with longer output

summary = summarizer(long_text, max_length=100, min_length=50, do_sample=False)

Print the summarized text

print("Summarized Text:\n", summary[0]['summary_text])

Output:

Summarized Text:

Artificial Intelligence (Al) is transforming education by introducing adaptive learning techniques,
automating administrative processes, and enabling intelligent tutoring systems . Al chatbots and virtual

assistants are becoming common in academic institutions, providing real-time support to students . Data
privacy concerns arise as student information is collected and analyzed, requiring robust security measures

from langchain_huggingface import HuggingFaceEndpoint

get a token: https://huggingface.co/docs/api-inference/quicktour#get-your-api-token
from getpass import getpass

Dept OF CSE-AI & ML, ATMECE, MYSURU Page 45

Generative Al Laboratou BAIL657C

HUGGINGFACEHUB_API_TOKEN = getpass()

import 0s

os.environ["HUGGINGFACEHUB_API_TOKEN"] = HUGGINGFACEHUB_API_TOKEN

text = f""Artificial Intelligence (Al) has emerged as a cornerstone of innovation in education,
fundamentally reshaping how knowledge is delivered, personalized, and assessed. As institutions
increasingly integrate Al into their pedagogical frameworks, the impact extends beyond automation to the
creation of intelligent learning environments that foster engagement, accessibility, and efficiency.

One of the most profound contributions of Al to education is adaptive learning, a paradigm that leverages
data-driven insights to customize educational content for individual students. Unlike traditional one-size-
fits-all approaches, Al-powered platforms analyze student performance, learning patterns, and cognitive
preferences to adjust the difficulty level, pace, and mode of instruction in real-time. This ensures that
students who struggle with certain concepts receive targeted reinforcement, while advanced learners can
progress without unnecessary repetition.

Intelligent tutoring systems (ITS) represent another significant advancement, providing students with
personalized, Al-driven guidance outside of traditional classroom settings. These systems, built on natural
language processing and machine learning, simulate human tutors by offering step-by-step explanations,
identifying gaps in understanding, and adapting instructional methods accordingly. Al tutors are
particularly valuable in disciplines such as mathematics, science, and language learning, where real-time
feedback and iterative problem-solving are crucial to mastery.

Beyond individualized learning, Al enhances collaborative education by fostering interactive, technology-
driven experiences. Virtual reality (VR) and augmented reality (AR) applications, powered by Al
algorithms, create immersive simulations that enable students to explore historical events, conduct virtual
science experiments, and engage in role-based learning. These innovations bridge the gap between
theoretical knowledge and practical application, making complex concepts more tangible and accessible.

Al also plays a critical role in automating administrative functions, thereby allowing educators to allocate
more time to teaching and mentorship. Automated grading systems can evaluate assignments, quizzes, and
even subjective responses with increasing accuracy, while Al-driven scheduling tools streamline academic
operations. Additionally, Al chatbots and virtual assistants handle routine queries from students, reducing
response times and improving administrative efficiency.

One of the most significant yet underexplored benefits of Al in education is its potential to enhance
accessibility and inclusivity. Speech-to-text and text-to-speech technologies enable students with
disabilities to engage with learning materials more effectively. Al-driven translation services remove
language barriers, allowing students from diverse linguistic backgrounds to access high-quality educational
content. Moreover, Al-powered predictive analytics can identify students at risk of falling behind, enabling
early interventions to prevent academic disengagement.

Despite these advantages, Al's integration into education is not without challenges. Ethical concerns
surrounding data privacy, bias in Al algorithms, and the digital divide must be addressed to ensure
equitable access to Al-driven education. Institutions must adopt transparent Al governance policies,
emphasizing accountability and inclusivity in algorithmic decision-making. Additionally, educators must

Dept OF CSE-AI & ML, ATMECE, MYSURU Page 46

Generative Al Laboratou BAIL657C

be equipped with the necessary training to effectively implement Al tools within their instructional
practices, ensuring that technology serves as an enabler rather than a disruptor.

As Al continues to evolve, its role in education will extend beyond content delivery to fostering critical
thinking, creativity, and problem-solving skills. The future of education lies not in replacing human
educators but in augmenting their capabilities, enabling a more engaging, efficient, and personalized
learning experience for students worldwide. By striking a balance between technological innovation and
ethical responsibility, Al has the potential to democratize education and bridge learning gaps on a global
scale.

import requests

API_URL = "https://api-inference.huggingface.co/models/facebook/bart-large-cnn”

headers = {"Authorization": "Bearer hf_LNzYgzNcsguYpAZXOfmpJbgCHYpEHO0XxS"}
def query(payload):

response = requests.post(AP1_URL, headers=headers, json=payload)

return response.json()

output = query({"inputs": text}) # Remove the curly braces

Output

[{'summary_text" 'Artificial Intelligence (Al) has emerged as a cornerstone of innovation in education. As
institutions increasingly integrate Al into their pedagogical frameworks, the impact extends beyond
automation to the creation of intelligent learning environments. The future of education lies not in
replacing human educators but in augmenting their capabilities, enabling a more engaging, efficient, and
personalized learning experience.'}]

output[O]['summary_text"]

‘Artificial Intelligence (Al) has emerged as a cornerstone of innovation in education. As institutions
increasingly integrate Al into their pedagogical frameworks, the impact extends beyond automation to the
creation of intelligent learning environments. The future of education lies not in replacing human educators
but in augmenting their capabilities, enabling a more engaging, efficient, and personalized learning
experience.’

Dept OF CSE-AI & ML, ATMECE, MYSURU Page 47

Generative Al Laboratou BAIL657C

program 8:

Install langchain, cohere (for key), langchaincommunity. Get the api key

(By logging into Cohere and obtaining the cohere key).

Load a text document from your google drive .Createa prompt template to display the output in a pa
rticular manner.

Soln:

#!pip install langchain langchain-cohere langchain-community

#!pip install gdown

import getpass
import 0s

if not os.environ.get("COHERE_API_KEY"):
os.environ["COHERE_API_KEY"] = getpass.getpass("Enter API key for Cohere: ")

from langchain_cohere import ChatCohere

model = ChatCohere(model="command-r7b-12-2024")

from langchain_core.prompts import ChatPromptTemplate

prompt = ChatPromptTemplate.from_template("Tell me a quote on the {topic}")
chain = prompt | model

chain.invoke({"topic": "Al"}).content

import gdown

Google Drive file ID (Extract from the URL)
file_id = "1BPgmF8od-gvK0GeDyaeAWCrSGpgvwXFN"
file_path = "ai_agents_info.txt"

Download the file
gdown.download(f"https://drive.google.com/uc?export=download&id={file_id}" file_path, quiet=False)

Read the file
with open(file_path, "r", encoding="utf-8") as file:
document_text = file.read()

print(document_text)

Dept OF CSE-AI & ML, ATMECE, MYSURU Page 48

Generative Al Laboratou BAIL657C

Output :

1. Reactive Agents: These agents do not store past experiences and make decisions solely based on the
current situation.
Examples include chess-playing programs that evaluate only the present board state.

2. Deliberative Agents: These agents build models of the world and use planning to achieve their goals.
They use reasoning mechanisms to determine the best course of action.

3. Learning Agents: These agents improve their performance over time using machine learning
techniques.
Reinforcement learning-based robots are an example of learning agents.

4. Multi-Agent Systems (MAS): A system where multiple Al agents interact, collaborate, or compete to
complete tasks.
Applications include swarm robotics and distributed Al.

5. Utility-Based Agents: These agents maximize a utility function, ensuring optimal decision-making.
They are widely used in economics and game theory.

Al agents are applied in various domains, including healthcare, finance, robotics, and natural language
processing.
Their ability to adapt and learn from data makes them crucial in modern Al applications.

from langchain_core.prompts import ChatPromptTemplate

prompt = ChatPromptTemplate.from_template("Extract and list the types of Al agents as bullet points from
the following text:{document_text}")

chain = prompt | model

print(chain.invoke({"document_text": document_text}).content)

Output:

Here are the types of Al agents listed from the text:
- Reactive Agents

- Deliberative Agents

- Learning Agents

- Multi-Agent Systems (MAS)

- Utility-Based Agents

Dept OF CSE-AI & ML, ATMECE, MYSURU Page 49

BAIL657C

Generative Al Laboratou

Program 9:Take the Institution name as input. Use Pydantic to define the schema for the desired
output and create a custom output parser. Invoke the Chain and Fetch Results. Extract the below
Institution related details from Wikipedia: The founder of the Institution. When it was founded. The
current branches in the institution . How many employees are working in it. A brief 4-line summary
of the institution

Soln:
Approach 1: Using Cohere and LangChain

Install the langchain-cohere library (command to be run in the terminal, not Python code)
pip install -U langchain-cohere

Import necessary modules from langchain and pydantic

from langchain.prompts import PromptTemplate

For creating prompt templates from langchain.chains import LLMChain

For creating chains that link LLMs and prompts from pydantic import BaseModel
For defining data schemas

Define Pydantic schema for the desired output class InstitutionDetails(BaseModel):
Pydantic model to structure the output data for institution details.

founder: str

Founder of the institution (string)

founded: str # Year/date when the institution was founded (string)

branches: int # Number of current branches (integer)

employees: int # Number of employees working in the institution (integer)

summary: str # A 4-line brief summary of the institution (string)

Define the prompt template for GPT-3

prompt_template = """

Given the name of an institution, extract the following details from Wikipedia:
1. Founder of the institution

2. When it was founded

3. Current branches of the institution

4. How many employees work in it

5. A 4-line brief summary of the institution

Institution: {institution_name}

import getpass
Ipip install langchain-cohere

import 0s
Check if the COHERE_API_KEY environment variable is already set
if not os.environ.get("COHERE_API_KEY"):

If not set, prompt the user to enter their Cohere API key and set it as an environment variable
os.environ["COHERE_API_KEY"] = getpass.getpass(Enter API key for Cohere: ™)

Dept OF CSE-AI & ML, ATMECE, MYSURU Page 50

Generative Al Laboratory BAIL657C

Import the ChatCohere class from the langchain_cohere library
from langchain_cohere import ChatCohere

Initialize the ChatCohere model with a specific model version (command-r7b-12-2024)
model = ChatCohere(model="command-r7b-12-2024")

Setup Langchain with the prompt and model

Create a PromptTemplate object, specifying input variables and the template
prompt = PromptTemplate(input_variables=["institution_name"], template=prompt_template)

Create an LLMChain object, linking the Cohere language model (‘'model’) and the prompt
chain = LLMChain(llm=model, prompt=prompt)

Function to fetch institution details using GPT-3
def fetch_institution_details(institution_name: str):

Fetches institution details using the Langchain chain and GPT-3 model.

Args:
institution_name (str): The name of the institution to fetch details for.

Returns:
str: The result from the LLMChain run, containing institution details.

Run the LLMChain with the institution name as input and get the result
result = chain.run(institution_name=institution_name)
return result

Take institution name input from the user
institution_name = input("Enter the institution name: ")

Call the function to fetch institution details, passing the user input
institution_details = fetch_institution_details(institution_name)

Print the fetched institution details
print(institution_details)

Output:

Enter the institution name:

ATME College of Engineering

<ipython-input-5-dfOc7c7de135>:21: LangChainDeprecationWarning: The method “Chain.run” was
deprecated in langchain 0.1.0 and will be removed in 1.0. Use :meth: ~invoke" instead.

result = chain.run(institution_name=institution_name)

Dept OF CSE-AI & ML, ATMECE, MYSURU Page 51

Generative Al Laboratory BAIL657C

~ Here are the details extracted from Wikipedia for ATME College of Engineering:

1. Founder:

The information about the founder of ATME College of Engineering is not readily available in the
provided context. You would need to search for specific Wikipedia pages or sources related to the college
to find this information.

2. Founding Date:

Similarly, the founding date is not mentioned in the given text.
3. Current Branches:

The source doesn't explicitly state the current branches. You would need to consult the college's Wikipedia
page or other reliable sources for this information.

4. Number of Employees:
Employee count is not provided in the context.
5. Brief Summary:

Unfortunately, a concise summary cannot be generated based on the information given.

Important Note:

The above information is based solely on the content you provided. To obtain accurate and up-to-date
details, it's crucial to consult the official Wikipedia page for ATME College of Engineering or other
reliable sources.

Approach 2 Using WikiPediaAPIWrapper

%pip install --upgrade --quiet wikipedia
from langchain_community.tools import WikipediaQueryRun
from langchain_community.utilities import WikipediaAPIWrapper

from pydantic import BaseModel, Field
import re

Step 1: Define the Pydantic schema

class InstitutionDetails(BaseModel):

founder: str = Field(..., description="Founder of the institution")

founded_year: str = Field(..., description="Year the institution was founded")
branches: list[str] = Field(..., description="Current branches in the institution™)
employees: str = Field(..., description="Number of employees in the institution™)
summary: str = Field(..., description="A brief 4-line summary of the institution™)

Dept OF CSE-AI & ML, ATMECE, MYSURU Page 52

Generative Al Laboratory BAIL657C

Step 2: Create a custom output parser

def parse_wikipedia_content(content: str) -> InstitutionDetails:
founder_match = re.search(r"Founded by\s*([\w\s,]+)", content)
founded_year_match = re.search(r"Established in\s*(\d{4})", content)
branches_match = re.findall(r"(\o[A-Z][a-zA-Z\s]+ Campus\b)", content)
employees_match = re.search(r"(\d{3,6})\s*employees", content)

summary_sentences = content.split(". ")[:4] # Extract first 4 sentences

return InstitutionDetails(

founder=founder_match.group(1) if founder_match else "Not Found",
founded_year=founded_year match.group(1) if founded year_match else "Not Found",
branches=branches_match if branches_match else ["Not Found"],
employees=employees match.group(1) if employees_match else "Not Found",

summary=". ".join(summary_sentences)

)

Step 3: Fetch details from Wikipedia

wiki = WikipediaQueryRun(api_wrapper=WikipediaAPIWrapper())
institution_name = "Apple Company"

wiki_content = wiki.run(institution_name)

Step 4: Parse and display results
institution_details = parse_wikipedia_content(wiki_content)
print(institution_details.model_dump_json(indent=4))

Output:
{

"founder": "Not Found",
"founded_year": "Not Found",
"branches": [

"Not Found"

1
"employees": "Not Found",

"summary": "Page: Apple Inc.\nSummary: Apple Inc. is an American multinational corporation and
technology company headquartered in Cupertino, California, in Silicon Valley. It is best known for its
consumer electronics, software, and services. Founded in 1976 as Apple Computer Company by Steve
Jobs, Steve Wozniak and Ronald Wayne, the company was incorporated by Jobs and Wozniak as Apple
Computer, Inc"

¥

Dept OF CSE-AI & ML, ATMECE, MYSURU Page 53

BAIL657C

Generative Al Laboratou

Program 10: Build a chatbot for the Indian Penal Code. We'll start by downloading the official
Indian Penal Code document, and then we'll create a chatbot that can interact with it. Users will be
able to ask questions about the Indian Penal Code and have a conversation with it.

Soln:
Ipip install gradio
Ipip install faiss-cpu

Ipip install pypdf
from langchain.text_splitter import RecursiveCharacterTextSplitter
, SentenceTransformersTokenTextSplitter # Import text splitters from langchain

import numpy as np # Import NumPy for numerical operations
from pypdf import PdfReader # Import PdfReader to read PDF files
from tqdm import tgdm # Import tqdm for progress bar visualization

def word_wrap(string, n_chars=72):

Wraps a long string to a specified number of characters per line.

Args:
string (str): The string to wrap.
n_chars (int, optional): The maximum number of characters per line. Defaults to 72.

Returns:

str: The word-wrapped string.

if len(string) < n_chars:

return string # Return the string directly if it's shorter than the character limit
else:

Find the last space before the character limit and insert a newline

return string[:n_chars].rsplit(" ', 1)[0] + "\n" +\
word_wrap(string[len(string[:n_chars].rsplit(" ', 1)[0]) + 1:], n_chars)

from pypdf import PdfReader # Import PdfReader from the pypdf library

reader = PdfReader(*/content/202406281710564823BNS_IPC_Comparative.pdf") # Create a PdfReader
object to read the PDF file "BNS (IPC).pdf"

pdf_texts = [p.extract_text().strip() for p in reader.pages] # Extract text from each page of the PDF, strip
whitespace, and store in a list

Filter out empty strings from the list of extracted texts
pdf_texts = [text for text in pdf_texts if text]

Dept OF CSE-AI & ML, ATMECE, MYSURU Page 54

Generative Al Laboratory BAIL657C

~ print(word_wrap(pdf_texts[0])) # Print the word-wrapped version of the first text element extracted from
the PDF

Output:

Corresponding Section Table Of Bharatiya Nyaya Sanhita 2023, (BNS)
New Addition Change Deletedp

Bharatiya Nyaya Sanhita,

2023 (BNS)

Indian Penal Code,

1860 (IPC)

CHAPTER |- PRELIMINARY CHAPTER

I — INTRODUCTION

1. Short title, commencement and application.

1. Title and extent of operation of the Code.
1(2)New Sub-Section

1(3) 2. Punishment of offences committed within India.
1(4) 3Punishment of offences committed beyond, but which by law may be tried within, India.
1(5) 4. Extension of Code to extra-territorial offences.
1(6) 5. Certain laws not to be affected by this Act.
2. Definitions.

2(1) ‘act’

33. “Act”. “Omission”

2(2) ‘animal’

47. “Animal”.

2(3) “child’ New Sub-Section

2(4) ‘counterfeit’

28.“Counterfeit”.

2(5) ‘Court’

20. “Court of Justice”.

2(6) ‘death’

46.“Death”.

2(7) “dishonestly’

24. “Dishonestly”.

2(8) ‘document’

29. “Document”.Deleted

29A. “Electronic record”.

2(9)’fraudulently’

25. “Fraudulently”

2(10) ‘gender’

8. Gender.

2(11) ‘good faith’

52. “Good faith”

2(12) ‘Government’

17.“Government”.Deleted

18. “India”.

2(13) ‘harbour’

52A. “Harbour*.

2(14) ‘injury’

Dept OF CSE-AI & ML, ATMECE, MYSURU Page 55

Generative Al Laboratou BAIL657C

44, “Injury”.

2(15) ‘illegal’and “legally bound to do”.
43. “Illegal”. “Legally bound to do”.
2(16) ‘Judge’

19. “Judge”.

2(17) “lfe’

45, “Life”.

2(18) ‘local law’

42. “Local law”.
2(19)‘'man’

10. “Man”. “Woman”.
2(20) ‘month’ and ‘year’
49. “Year”.“Month”.
2(21) ‘movable property’
22. “Movable property”
2(22) ‘number’

9. Number.

2(23) ‘oath’

51. “Oath”.

2(24) ‘offence’

40. “Offence”.

2(25) ‘omission’

33. “Act”. “Omission”
2(26) ‘person’

11. “Person”.

2(27) ‘public’

12. “Public”.

Deleted 14- “Servant of Government”.
2(28) ‘public servant’
21. “Public servant”.
2(29)‘reason to believe’
26. “Reason to believe”
Deleted 50. “Section”.
2(30) ‘special law’

41. “Special law”.

[5]: from langchain.text_splitter import RecursiveCharacterTextSplitter,
SentenceTransformersTokenTextSplitter # Import text splitters from langchain

character_splitter = RecursiveCharacterTextSplitter(# Initialize RecursiveCharacterTextSplitter
separators=["\n\n", "\n", ". ", " ", "], # Define separators to split text by priority (double newline, newline,
sentence end, space, character)

chunk_size=1000, # Define the maximum chunk size in characters

chunk_overlap=20 # Define the overlap between adjacent chunks in characters

)

character_split_texts = character_splitter.split_text(\n\n'.join(pdf_texts))
Split the PDF texts into chunks using the defined character splitter, joining the pdf texts with double
newlines first

Dept OF CSE-AI & ML, ATMECE, MYSURU Page 56

Generative Al Laboratory BAIL657C

print(word_wrap(character_split_texts[10]))

Print the word-wrapped version of the 11th chunk (index 10)
print(f"\nTotal chunks: {len(character_split_texts)}")

Print the total number of chunks created

Output :

other than death.

104. When such right extends to causing any harm

other than death.
43. Commencement and continuance of right of

private defence of property.

105. Commencement and continuance of the
right of

private defence of property.

44. Right of private defence

against deadly assault

when there is risk of harm to innocent person.

106. Right of private defence against deadly assault

when there is

risk of harm to innocent person.

CHAPTER IV

OF ABETMENT, CRIMINAL

CONSPIRACY AND

ATTEMPT

Of abetment

CHAPTER V

OF ABETMENT

45. Abetment of a thing.

107. Abetment of a thing.

46. Abettor.

108. Abettor.

47. Abetment in India of offences outside India.
108A.Abetment in India of offences outside India.

48. Abetment outside India for offence in India. New Section
49. Punishment of abetment if act abetted is committed in consequence and where no express
provision is made for its punishment.

109. Punishment of abetment if the act abetted is

Total chunks: 76
Ipip install langchain-community

from getpass import getpass # Import getpass for secure password input

#from Langchain import HuggingFaceHub # commented out line, likely an old import statement

Dept OF CSE-AI & ML, ATMECE, MYSURU Page 57

Generative Al Laboratory BAIL657C

from langchain_community.llms import HuggingFaceHub # Import HuggingFaceHub from
langchain_community for language models
import os # Import os module for environment variables

inference_api_key = getpass() # Prompt user to enter their Hugging Face API key securely

#place your huggingface API key after running this cell
os.environ["HUGGINGFACEHUB_API_TOKEN"] = inference_api_key # Set the Hugging Face API key
as an environment variable

inference_api_key # Display the API key (for debugging or confirmation, but generally not recommended
to print API keys)

from langchain_community.embeddings import HuggingFacelnferenceAPIEmbeddings # Import
HuggingFacelnference APIEmbeddings for embeddings

embedding_function = HuggingFacelnferenceAPIEmbeddings(# Initialize
HuggingFacelnferenceAPIEmbeddings

api_key=inference_api_key, # Pass the API key for authentication
model_name="sentence-transformers/all-MiniLM-16-v2" # Specify the model to use for embeddings (all-
MiniLM-16-v2)

)

from langchain_community.vectorstores import FAISS # Import FAISS for vector storage
db = FAISS.from_texts(character_split_texts, embedding_function) # Create a FAISS vector database from
the split texts and embedding function

print(db.index.ntotal) # Print the total number of vectors in the FAISS index

query = "What does BNS Section 72 talks about ?" # Define the query string to search for in the vector
database

retrieved_documents = db.similarity_search(query) # Perform a similarity search in the vector database ‘db’
using the defined query
and store the retrieved documents in the 'retrieved_documents' variable

retrieved _documents

Output:

[Document(id='4a103413-5d76-4a97-962c-3achd19420ab’, metadata={}, page_content='"Bharatiya Nyaya
Sanhita, \n2023 (BNS) \nindian Penal Code, \n1860 (IPC) \n341 (4) New Sub-Section \n342.
Counterfeiting device or mark used for \nauthenticating documents described in section 338, \nor
possessing counterfeit marked material. \n342(1) \n475. Counterfeiting device or mark used for
\nauthenticating documents described in section 467, \nor possessing counterfeit marked material. \n342(2)
476. Counterfeiting device or mark used for \nauthenticating documents other than those \ndescribed in
section 467, or possessing counterfeit \nmarked material. \n343. Fraudulent cancellation, destruction, etc.,
of \nwill, authority to adopt, or valuable security. \n477. Fraudulent cancellation, destruction, etc., of

Dept OF CSE-AI & ML, ATMECE, MYSURU Page 58

Generative Al Laboratory BAIL657C

“\nwill, authority to adopt, or valuable security. \n344. Falsification of accounts. 477A. Falsification of
accounts. \nOf property marks Of Property and Other Marks \n345. Property mark. \n345 (1) \n479.
Property mark. \n345 (2) 481. Using a false property mark."),
Document(id='ab84c414-3953-4acf-9836-83999e22f6d8', metadata={}, page_ content="Bharatiya Nyaya
Sanhita, \n2023 (BNS) \nIndian Penal Code, \n1860 (IPC) \n36. Right of private defence against act of a
person \nof unsound mind, etc. \n98. Right of private defence against the act of a \nperson of unsound
mind, etc. \n37. Acts against which there is no right of private \ndefence. \n99. Acts against which there is
no right of private \ndefence. \n38. When right of private defence of body extends \nto causing death.
\n100. When the right of private defence of the body \nextends to causing death. \n39. When such right
extends to causing any harm \nother than death. \n101. When such right extends to causing any harm
\nother than death. \n40. Commencement and continuance of right of \nprivate defence of body. \n102.
Commencement and continuance of the right of \nprivate defence of the body. \n41. When right of private
defen ce of property \nextends to causing death. \n103. When the right of private defence of property
\nextends to causing death. \n42. When such right extends to causing any harm’),
Document(id="'cbb8de09-9066-4811-b2cd-70d16¢c72cebb’, metadata={}, page_content="other than death.
\n104. When such right extends to causing any harm \nother than death. \n43. Commencement and
continuance of right of \nprivate defence of property. \n105. Commencement and continuance of the right
of \nprivate defence of property. \n44. Right of private defence against deadly assault \nwhen there is risk
of harm to innocent person. \n106. Right of private defence against deadly assault \nwhen there is risk of
harm to innocent person. \nCHAPTER IV \nOF ABETMENT, CRIMINAL CONSPIRACY AND
\nATTEMPT \nOf abetment \nCHAPTER V \nOF ABETMENT \n45. Abetment of a thing. 107. Abetment
of a thing. \n46. Abettor. 108. Abettor. \n47. Abetment in India of offences outside India. 108A. Abetment
in India of offences outside India. \n48. Abetment outside India for offence in India. New Section \n49.
Punishment of abetment if act abetted is \ncommitted in consequence and where no express \nprovision is
made for its punishment. \n109. Punishment of abetment if the act abetted is’),
Document(id="5efd3561-80d2-4010-babb-808f6cbeeOb7', metadata={}, page_content="146. Unlawful
compulsory labour. 374. Unlawful compulsory labour. \nCHAPTER VII \nOF OFFENCES AGAINST
THE STATE \nCHAPTER VI \nOF OFFENCES AGAINST THE STATE \n147. Waging, or attempting to
wage war, or \nabetting waging of war, against Government of \nindia. \n121. Waging, or attempting to
wage war, or abetting \nwaging of war, against the Government of India. \n148. Conspiracy to commit
offences punishable by \nsection 147. \n121A. Conspiracy to commit offences punishable by \nsection 121.
\n149. Collecting arms, etc., with intention of waging \nwar against Government of India. \n122. Collecting
arms, etc., with intention of waging \nwar against the Government of India. \n150. Concealing with intent
to facilitate design to \nwage war. \n123. Concealing with intent to facilitate design to \nwage war. \n151.
Assaulting President, Govern or, etc., with \nintent to compel or restrain exercise of any lawful \npower.
\n124. Assaulting President, Governor, etc., with intent)]

Ipip install gradio
Ipip install cohere
Bharathiya Nyay Sanhita - IPC Chatbot

import cohere # Import the Cohere library for language model interaction
import gradio as gr # Import Gradio for creating a user interface

from langchain_community.vectorstores import FAISS # Import FAISS for vector storage

Initialize the Cohere client

Dept OF CSE-AI & ML, ATMECE, MYSURU Page 59

Generative Al Laboratory BAIL657C

co = cohere.Client('eA50e27b8807ycXim4jLv5BxMJurbufz9e1AMINZ') # Replace "YOUR API' with
your actual Cohere API key

Initialize the FAISS vector store
db = FAISS.from_texts(character_split_texts, embedding_function) # Create a FAISS index from the text
chunks and embedding function

print("Total indexed documents in FAISS:", db.index.ntotal) # Print the number of documents indexed in
the FAISS vector store

Output:
Total indexed documents in FAISS: 76

def rag(query, retrieved_documents, model="command"):
Performs Retrieval-Augmented Generation (RAG) to answer a query based on retrieved documents using
Cohere's chat model.

Args:

query (str): The user's question or query.

retrieved_documents (list): A list of documents retrieved from a vector database that are relevant to the
query.

model (str, optional): The Cohere chat model to use. Defaults to "command".

Returns:

str: The generated answer from the Cohere chat model.

Extract the page content from each retrieved document and join them into a single string with double
newlines as separators.

information = "\n\n".join([docs.page_content for docs in retrieved_documents])

Define the messages to be sent to the Cohere chat model.

This includes a system message to set the context and a user message with the query and retrieved
information.

messages = [

{

"role": "system",

"content™: """"You are a helpful expert in Bharatiya Nyay Sanhita (BNS).

Your users are asking questions about information contained in Bharatiya Nyay Sanhita document.

You will be shown the user's question, and the relevant information from given document.

Note that if asked for section get BNS section number.
Answer the user's question using only this information.
as a BNS expert.

I

{

"role": "user",

System message to guide the model's behavior

Dept OF CSE-AI & ML, ATMECE, MYSURU Page 60

Generative Al Laboratory BAIL657C .

- "content": f"Question: {query}. \n Information: {information}" # User message containing the user's query
and the retrieved information.

¥
]

Call the Cohere chat API to get a response based on the provided messages.
response = co.chat(# Using the ‘co’ Cohere client (assumed to be initialized elsewhere)
model=model, # Specify the model to use

message=query, # Pass the user's query as the main message

documents=messages # Pass the list of messages including system and user prompts

)

return response.text # Return the text of the generated response from the Cohere chat model.

Define the chatbot function
def chatbot(query):

Chatbot function to answer user queries based on retrieved documents using RAG.

Args:
query (str): The user's question or query.

Returns:
tuple: A tuple containing the response from the RAG model and the source text from retrieved documents.
Returns an error message and empty source text if an exception occurs.

try:

Query FAISS to get retrieved documents

retrieved_documents = db.similarity_search(query, k=5) # Perform similarity search in FAISS database ‘db’
using the query and retrieve top 5 documents

Debug: print retrieved documents
print("Retrieved Documents:", retrieved_documents) # Commented out debug print statement

Call the RAG function
response = rag(query, retrieved_documents) # Call the rag function (defined previously) to generate a
response using the query and retrieved documents

source_text = "\n\n".join([doc.page_content for doc in retrieved_documents]) # Combine the page content
of retrieved documents into a single string separated by double newlines
return response, source_text # Return the generated response and the combined source text

except Exception as e: # Catch any exceptions that might occur during the process

Debug: print exception details

print("Error:", €) # Print the error message to the console

return str(e), "" # Return the error message as a string and an empty string for source text in case of error

Dept OF CSE-AI & ML, ATMECE, MYSURU Page 61

Generative Al Laboratou BAIL657C

Set up the Gradio interface
iface = gr.Interface(# Create a Gradio Interface object

fn=chatbot, # Pass the user query to the chatbot function. 'chatbot’ is assumed to be a function defined
elsewhere in the code.

inputs=gr.Textbox(lines=2, placeholder="Ask a Bharatiya Nyay Sanhita (BNS /IPC) question..."), # Define
the input component as a textbox with 2 lines and a placeholder text.

outputs=[# Define the output components as a list

gr.Textbox(label="Response", lines=4), # First output is a textbox labeled "Response™ with 4 lines.
gr.Textbox(label="Source Text", lines=10) # Second output is a textbox labeled "Source Text" with 10
lines.

1

title="Bharatiya Nyay Sanhita", # Set the title of the Gradio interface.

description="Ask any Bharathiya Nyay Sanhita related question, and I will provide answers based on the
relevant information.” # Set the description of the Gradio interface.

)

Launch the Gradio interface
iface.launch() # Launch the Gradio interface to start the chatbot application.

Output :

Query

Kidnapping

Response

In the Bharatiya Nyay Sanhita (BNS), kidnapping is defined as below:

- Kidnapping or abducting in order to murder or for ransom etc.

- Kidnapping or abducting in order to subject a person to grievous hurt, slavery, etc Importation of a girl or
boy from a foreign country (Section 141)

- Wrongfully concealing or keeping in confinement, kidnapped or abducted person Trafficking of person

- Exploitation of a trafficked person - Habitual dealing in slaves

The BNS also outlines punishments for those found guilty of kidnapping.

363A. Kidnapping or maiming a minor for purposes of begging.

140. Kidnapping or abducting in order to murder or for ransom etc.

364. Kidnapping or abducting in order to murder.

364A. Kidnapping for ransom, etc.

365. Kidnapping or abducting with intent secretly and wrongfully to confine person.
367. Kidnapping or abducting in order to subject person to grievous hurt, slavery, etc.
141. Importation of girl or boy from foreign country.

366B. Importation of girl from foreign country.

142. Wrongfully concealing or keeping in confinement, kidnapped or abducted person.

Dept OF CSE-AI & ML, ATMECE, MYSURU Page 62

Generative Al Laboratou BAIL657C

368. Wrongfully concealing or keeping in confinement, kidnapped or abducted person.
143. Trafficking of person.

370. Trafficking of person.

144. Exploitation of a trafficked person

370A. Exploitation of a trafficked person

145. Habitual dealing in slaves.

371. Habitual dealing in slaves.

Bharatiya Nyaya Sanhita,

2023 (BNS)

Indian Penal Code,

provocation. provocation.

134. Assault or criminal force in attempt to comm it theft of property carried by a person.
356. Assault or criminal force in attempt to commit theft of property carried by a person.
135. Assault or criminal force in attempt to wrongfully to confine a person.

357. Assault or criminal force in attempt wrongfully to confine a person.

136. Assault or criminal force on grave provocation.

358. Assault or criminal force on grave provocation. Of kidnapping, abduction, slavery and forced labour
Of Kidnapping, Abduction, Slavery and Forced Labour

137. Kidnapping.

359. Kidnapping.

360. Kidnapping from India.

361. Kidnapping from lawful guardianship.

363. Punishment for kidnapping.

138. Abduction.

362. Abduction.

139. Kidnapping or maiming a child for purposes of begging.

Bharatiya Nyaya Sanhita,

2023 (BNS)

Indian Penal Code,

379. Punishment for theft.

304. Snatching. New Section

305. Theft in a dwelling house, or means of transportation or place of worship, etc.

380. Theft in dwelling house, etc.

306. Theft by clerk or servant of property in possession of master.

381. Theft by clerk or servant of property in possession of master.

307. Theft after preparation made for causing death, hurt or restraint in order to committing of theft.
382. Theft after preparation made for causing death, hurt or restraint in order to the committing of the theft.
Of extortion Of Extortion

308. Extortion.

383. Extortion.

384. Punishment for extortion.

385. Putting person in fear of injury in order to commit extortion.

387. Putting person in fear of death or of grievous hurt, in order to commit extortion.
386. Extortion by putting a person in fear of death or

398. Attempt to commit robbery o r dacoity when armed with deadly weapon.

313. Punishment for belonging to gang of robbers, dacoits, etc.

401. Punishment for belonging to gang of thieves. Of criminal misappropriation of property Of Criminal
Misappropriation of Property

Dept OF CSE-AI & ML, ATMECE, MYSURU Page 63

Generative Al Laboratou BAIL657C

314. Dishonest misappropriation of property.

403. Dishonest misappropriation of property.

315. Dishonest misappropriation of property possessed by deceased person at the time of his death.
404. Dishonest misappropriation of property possessed by deceased person at the time of his
death. Of criminal breach of trust Of Criminal Breach of Trust others.

336. Act endangering life or personal safety of others.

337. Causing hurt by act endangering life or personal safety of others.

338. Causing grievous hurt by act endangering life or personal safety of others. Of wrongful restraint and
wrongful confinement Of wrongful restraint and wrongful confinement

126. Wrongful restraint.

339. Wrongful restraint.

341. Punishment for wrongful restraint.

127. Wrongful confinement.

340. Wrongful confinement.

342. Punishment for wrongful confinement.

343. Wrongful confinement for three or more days.

344. Wrongful confinement for ten or more days.

345. Wrongful confinement of person for whose liberation writ has been issued.

346. Wrongful confinement in secret.

347. Wrongful confinement to extort property, or constrain to illegal act.

348. Wrongful confinement to extort confession, or compel restoration of property.

Query

Kidnapping

Response

In the Bharatiya Nyay Sanhita (BNS), kidnapping is defined as below:

- Kidnapping or abducting in order to murder or for ransom etc-

Kidnapping or abducting in order to subject a person to grievous hurt, slavery, etc. Importation of a girl or
boy from a foreign country - Wrongfully concealing or keeping in confinement, kidnapped or abducted
person - Trafficking of person - Exploitation of a trafficked person

- Habitual dealing in slaves

The BNS also outlines punishments for those found guilty of kidnapping.

363A. Kidnapping or maiming a minor for purposes of begging.

140. Kidnapping or abducting in order to murder or for ransom etc.

364. Kidnapping or abducting in order to murder.

364A. Kidnapping for ransom, etc.

365. Kidnapping or abducting with intent secretly and wrongfully to confine person.
367. Kidnapping or abducting in order to subject person to grievous hurt, slavery, etc.
141. Importation of girl or boy from foreign country.

366B. Importation of girl from foreign country.

142. Wrongfully concealing or keeping in confinement, kidnapped or abducted person.
368. Wrongfully concealing or keeping in confinement, kidnapped or abducted person.
143. Trafficking of person.

370. Trafficking of person.

Dept OF CSE-AI & ML, ATMECE, MYSURU Page 64

Generative Al Laboratou BAIL657C

144. Exploitation of a trafficked person.
370A. Exploitation of a trafficked person
145. Habitual dealing in slaves.
371. Habitual dealing in slaves.

Bharatiya Nyaya Sanhita,

2023 (BNS)

Indian Penal Code,

provocation. provocation.

134. Assault or criminal force in attempt to comm it theft of property carried by a person.

356. Assault or criminal force in attempt to commit theft of property carried by a person.

135. Assault or criminal force in attempt to wrongfully to confine a person. (Change)

357. Assault or criminal force in attempt wrongfully to confine a person.

136. Assault or criminal force on grave provocation. 358. Assault or criminal force on grave provocation.
Of kidnapping, abduction, slavery and forced labour Of Kidnapping, Abduction, Slavery and Forced
Labour

137. Kidnapping.

359. Kidnapping.

360. Kidnapping from India.

361. Kidnapping from lawful guardianship.

363. Punishment for kidnapping.

138. Abduction.

362. Abduction.

139. Kidnapping or maiming a child for purposes of begging.

Bharatiya Nyaya Sanhita,

2023 (BNS)

Indian Penal Code,

379. Punishment for theft.

304. Snatching. New Section

305. Theft in a dwelling house, or means of transportation or place of worship, etc.

380. Theft in dwelling house, etc.

306. Theft by clerk or servant of property in possession of master.

381. Theft by clerk or servant of property in possession of master.

307. Theft after preparation made for causing death, hurt or restraint in order to committing of theft.
382. Theft after preparation made for causing death, hurt or restraint in order to the committing of the theft.
Of extortion Of Extortion

308. Extortion.

383. Extortion.

384. Punishment for extortion.

385. Putting person in fear of injury in order to commit extortion.

387. Putting person in fear of death or of grievous hurt, in order to commit extortion.

386. Extortion by putting a person in fear of death or

398. Attempt to commit robbery o r dacoity when armed with deadly weapon.

313. Punishment for belonging to gang of robbers, dacoits, etc.

401. Punishment for belonging to gang of thieves. Of criminal misappropriation of property Of Criminal
Misappropriation of Property

314. Dishonest misappropriation of property.

403. Dishonest misappropriation of property.

Dept OF CSE-AI & ML, ATMECE, MYSURU Page 65

Generative Al Laboratou BAIL657C

315. Dishonest misappropriation of property possessed by deceased person at the time of his
death.

404. Dishonest misappropriation of property possessed by deceased person at the time of his
death. Of criminal breach of trust Of Criminal Breach of Trust others.

336. Act endangering life or personal safety of others.

337. Causing hurt by act endangering life or personal safety of others.

338. Causing grievous hurt by act endangering life or personal safety of others. Of wrongful restraint and
wrongful confinement Of wrongful restraint and wrongful confinement

126. Wrongful restraint.

339. Wrongful restraint.

341. Punishment for wrongful restraint.

127. Wrongful confinement.

340. Wrongful confinement.

342. Punishment for wrongful confinement.

343. Wrongful confinement for three or more days.

344. Wrongful confinement for ten or more days.

345. Wrongful confinement of person for whose liberation writ has been issued.

346. Wrongful confinement in secret.

347. Wrongful confinement to extort property, or constrain to illegal act.

348. Wrongful confinement to extort confession, or compel restoration of property.

Dept OF CSE-AI & ML, ATMECE, MYSURU Page 66

Generative Al Laboratou BAIL657C

Viva Questions With Answers
1. What is Generative Al?
Generative Al refers to a type of artificial intelligence that can generate new data, such as text, images,
audio, or code, based on the patterns it has learned from the training data.

2. How does Generative Al differ from traditional Al?
Traditional Al focuses on classification, prediction, and decision-making, whereas Generative Al creates
new content or data similar to its training set.

3. What are some applications of Generative Al?
Applications include natural language generation (e.g., chatbots), image synthesis, code generation, music
composition, and drug discovery.

4. What are GANs?
GANSs (Generative Adversarial Networks) are a class of machine learning frameworks where two neural
networks (generator and discriminator) compete to improve the quality of generated data.

5. What is the difference between GANs and VAEs?
GANSs generate data using a generator-discriminator approach, while VAEs (Variational Autoencoders) use
probabilistic methods to encode and decode data, emphasizing data distribution.

Technical Questions

6. What are the components of a GAN?

GAN:Ss consist of a Generator (creates synthetic data) and a Discriminator (evaluates the authenticity of the
data).

7. What is the role of the loss function in Generative Al models?
The loss function helps optimize the model by reducing the difference between the generated output and
the expected data.

8. What is prompt engineering in language models?
Prompt engineering is the process of crafting specific input prompts to guide a generative language model
to produce desired outputs.

9. Explain the difference between GPT and BERT.

GPT (Generative Pre-trained Transformer) is a unidirectional model focused on text generation, while
BERT (Bidirectional Encoder Representations from Transformers) is a bidirectional model designed for
understanding and classification tasks.

10. What are transformers in Generative Al?
Transformers are neural network architectures that use self-attention mechanisms to process sequential
data, making them efficient for language and sequence modeling.

11. How does reinforcement learning improve Generative Al models?

Reinforcement Learning with Human Feedback (RLHF) fine-tunes models to align their outputs with
human preferences, improving quality and relevance.

Dept OF CSE-AI & ML, ATMECE, MYSURU Page 67

Generative Al Laboratou BAIL657C

12. What are diffusion models in Generative Al?
Diffusion models are probabilistic methods that generate high-quality images by iteratively denoising
random noise.

13. What is the significance of the latent space in generative models?
The latent space represents a compressed encoding of input data, enabling models to manipulate and
generate similar but novel data.

14. What are the challenges in training GANs?
Challenges include mode collapse (limited diversity in output), unstable training, and difficulty in
balancing the generator and discriminator.

15. How do zero-shot and few-shot learning relate to Generative Al?
Zero-shot learning enables models to perform tasks without specific training, while few-shot learning
allows them to adapt with minimal examples.

16. How are Generative Al models trained for text generation?
They are trained on large text datasets using transformer architectures, focusing on predicting the next
word in a sequence.

17. What is the role of pre-training and fine-tuning in large language models?
Pre-training helps the model learn general patterns from large datasets, and fine-tuning adapts it for specific
tasks or domains.

18. How do image generation models like DALL-E work?
DALL-E uses a transformer architecture to generate images from textual descriptions by learning text-
image relationships.

19. What are the ethical concerns in Generative Al?
Concerns include bias, misinformation, copyright infringement, and misuse for creating deepfakes or
harmful content.

20. How is Generative Al used in video synthesis?
It generates video content frame by frame using models like GANs or diffusion-based techniques, trained
on motion and style patterns.

Trends and Future Prospects

21. What is fine-tuning in the context of generative models?

Fine-tuning involves adapting a pre-trained model to a specific task or domain by training it on a smaller,
task-specific dataset.

22. What are ethical Al principles for Generative Al?
Principles include fairness, transparency, accountability, privacy protection, and minimizing harm.

23. What advancements are driving the growth of Generative Al?

Key advancements include improved transformer models, larger datasets, better hardware, and innovations
in self-supervised learning.

Dept OF CSE-AI & ML, ATMECE, MYSURU Page 68

Generative Al Laboratou BAIL657C

24. What are token embeddings in Generative Al models?
Token embeddings are vector representations of input data (e.g., words or pixels) that models use to
understand relationships and context.

25. What is the future of Generative Al?
Generative Al is expected to evolve with better efficiency, multimodal capabilities, personalized outputs,

and real-world applications like healthcare and education.

Dept OF CSE-AI & ML, ATMECE, MYSURU Page 69

	SEMESTER: VI SCHEME: 2022
	Program Outcomes (PO’s)
	Program Educational Objectives (PEO’s):
	Program Specific Outcomes (PSO’s)

	CONTENTS
	• Installation Guide
	a. Experiments 1, 2, 3:
	b. Experiment 4:
	c. Experiments 5, 6, 7:
	d. Experiment 8:
	e. Experiment 9:
	Introduction to Natural Language Processing
	% of structured and Unstructured data
	Important Libraries for NLP (python)
	Python library with simple API to access its methods and perform basic NLP tasks.
	Word2Vec
	Skipgram word embedding CBOW model representation
	Discriminative AI Decsriminative AI
	pretrained models
	Transfer learning v/s traditional learning
	Text Generation Models (LLMs - Large Language Models)
	 Word2Vec One-Hot Encoding
	One-Hot Encoding
	Disadvantages
	Pre-trained word embedding model
	Where is GloVe Used?
	Example 2: Normalizing Vectors
	Example 3: Averaging Vectors
	1. 'actor - man + woman' = actress (0.916)
	2. 'India - Delhi + Washington' = ['states', 0.838], ['united', 0.828], ['washington', 0.816]
	3. Scaling Vectors ('hotel' * 2) = [('hotel', 1.0), ('hotels', 0.793), ('restaurant', 0.776)]
	4. Normalizing Vectors ('fish') = [('fish', 1.0), ('shrimp', 0.779), ('salmon', 0.761)]
	5. Averaging Vectors ('king' + 'woman' + 'man') / 3 = [('man', 0.920), ('woman', 0.864), ('father', 0.827)]
	6. Similarity and Distance Calculation for 'hospital' and 'doctor':
	Output:
	Program 3:Train a custom Word2Vec model on a small dataset. Train embeddings on a domain- specific corpus (e.g., legal, medical) and analyze how embeddings capture domain-specific semantics
	Example: Legal Corpus
	Output: (1)
	Output: (2)
	Output: (3)
	Output: (4)
	Output: (5)
	Example: Legal and Medical / Healthcare Corpus
	Output :
	Output : (1)
	Output: (6)
	Output: (7)
	Output: (8)
	Output: (9)
	1. Disease Prevention and Eradication:
	2. Reduced Morbidity and Mortality:
	Output: (10)
	Program 5: Use word embeddings to create meaningful sentences for creative tasks. Retrieve similar words for a seed word. Create a sentence or story using these words as a starting point. Write a program that: Takes a seed word. Generates similar word...
	Output: (11)
	Output: (12)
	Program 6: Use a pre-trained Hugging Face model to analyze sentiment in text. Assume a real-world application, Load the sentiment analysis pipeline. Analyze the sentiment by giving sentences to input.
	Output: (13)
	Results Output:
	Approach 2: Using API calls
	Output: (14)
	Output
	output[0]['summary_text']
	Output : (2)
	Output: (15)
	Program 9:Take the Institution name as input. Use Pydantic to define the schema for the desired output and create a custom output parser. Invoke the Chain and Fetch Results. Extract the below Institution related details from Wikipedia: The founder of ...
	Output: (16)
	1. Founder:
	2. Founding Date:
	3. Current Branches:
	4. Number of Employees:
	5. Brief Summary:
	Important Note:
	Output: (17)
	Program 10: Build a chatbot for the Indian Penal Code. We'll start by downloading the official Indian Penal Code document, and then we'll create a chatbot that can interact with it. Users will be able to ask questions about the Indian Penal Code and h...
	Output: (18)
	Output : (3)
	Output: (19)
	Output: (20)
	1. What is Generative AI?
	2. How does Generative AI differ from traditional AI?
	3. What are some applications of Generative AI?
	4. What are GANs?
	5. What is the difference between GANs and VAEs?
	Technical Questions
	7. What is the role of the loss function in Generative AI models?
	8. What is prompt engineering in language models?
	9. Explain the difference between GPT and BERT.
	10. What are transformers in Generative AI?
	11. How does reinforcement learning improve Generative AI models?
	12. What are diffusion models in Generative AI?
	13. What is the significance of the latent space in generative models?
	14. What are the challenges in training GANs?
	15. How do zero-shot and few-shot learning relate to Generative AI?
	16. How are Generative AI models trained for text generation?
	17. What is the role of pre-training and fine-tuning in large language models?
	18. How do image generation models like DALL E work?
	19. What are the ethical concerns in Generative AI?
	20. How is Generative AI used in video synthesis?
	Trends and Future Prospects
	22. What are ethical AI principles for Generative AI?
	23. What advancements are driving the growth of Generative AI?
	24. What are token embeddings in Generative AI models?
	25. What is the future of Generative AI?

