
ATME COLLEGE OF ENGINEERING 

13thKM Stone, Bannur Road, Mysore - 570028 
 

 

                                                      

 

 

 

Department of Computer Science & Engineering – Cyber Security 

 

        (ACADEMIC YEAR 2025-26) 

 

 

LABORATORY MANUAL 

 
SUBJECT: DEVOPS 

SUBJECT CODE: BCSL657D 

 

SEMESTER: VI 

Outcome Based Education (OBE) and Choice Based Credit System (CBCS) 

(Effective from the academic year 2025-26) 

Composed by Verified by Approved by 
 

 

 

PRADEEPU J Ms. Sandhya G Dr. NASREEN FATHIMA 

PROGRAMMER FACULTY CO-ORDINATOR HOD, CSD 



INSTITUTIONAL MISSION AND VISION 

Objectives 

• To provide quality education and groom top-notch professionals, entrepreneurs and leaders for 

different fields of engineering, technology and management. 

• To open a Training-R & D-Design-Consultancy cell in each department, gradually introduce 

doctoral and postdoctoral programs, encourage basic & applied research in areas of social 

relevance, and develop the instituteas a center of excellence. 

• To develop academic, professional and financial alliances with the industry as well as the 

academia at national and transnational levels. 

• To cultivate strong community relationships and involve the students and the staff in local 

community service. 

• To constantly enhance the value of the educational inputs with the participation of students, 

faculty, parents and industry. 

 

 

Vision 

• Development of academically excellent, culturally vibrant, socially responsible and 

globally competent human resources. 

 

 

Mission 

• To keep pace with advancements in knowledge and make the students competitive and 

capable at the global level. 

• To create an environment for the students to acquire the right physical, intellectual, 

emotional and moral foundations and shine as torch bearers of tomorrow’s society. 

• To strive to attain ever-higher benchmarks of educational excellence. 



DEPARTMENT MISSION AND VISION 

 
Vision  

To be a global leader in Computer Science and Design Engineering, striving for design 

excellence, cultural awareness, a profound commitment to environmental stewardship, and 

societal responsibility. 

 

Mission  

• To establish a technology-enabled experiential learning environment, prioritizing and 

cultivating problem-solving and design thinking skills among students. 

• To foster collaboration with industries, research and development organizations, jointly 

addressing socially relevant challenges in Computer Science with a core emphasis on design. 

 

Program Specific Outcomes:  

PSO1: To develop stand-alone, embedded, and web-based solutions with easy-to-operate 

interfaces using software engineering practices and contemporary programming languages. 

PSO2: Design and develop computer-based systems in various areas of Multimedia, Graphics 

data visualization and computer vision. 



 

DEVOPS 

 Subject Code : BCS657D CIE Marks : 50 

Teaching Hours/Week (L:T:P: S) : 0:0:2:0 SEE Marks : 50 

Credits : 01 Total Marks : 100 

Examination type (SEE)  Theory/Practical Exam Hours : 02 

Course objectives: 

• To introduce DevOps terminology, definition & concepts 

• To understand the different Version control tools like Git, Mercurial 

• To understand the concepts of Continuous Integration/ Continuous Testing/ Continuous Deployment) 

• To understand Configuration management using Ansible 

• Illustrate the benefits and drive the adoption of cloud-based Devops tools to solve real world problems 
 

 

 

 
 

 

 

 

 

 

 

 

 



 
 

 



 
 

 

 



CONTENTS 

 

Sl.No. EXPERIMENT NAME CO’s Page No 

1. 
Introduction to Maven and Gradle: Overview of Build Automation Tools, 

Key Differences Between Maven and Gradle, Installation and Setup 

CO1 

CO2 1-3 

2. 
Working with Maven: Creating a Maven Project, Understanding the POM 
File, Dependency Management and Plugins. CO2 4-9 

3. 
Working with Gradle: Setting Up a Gradle Project, Understanding Build 

Scripts (Groovy and Kotlin DSL), Dependency Management and Task 

Automation 

CO2 10-12 

4. Practical Exercise: Build and Run a Java Application with Maven, Migrate 

the Same Application to Gradle. 
CO2 13-15 

5. 
Introduction to Jenkins: What is Jenkins?, Installing Jenkins on Local or 

Cloud Environment, Configuring Jenkins for First Use CO2 16-20 

 

6. 

Continuous Integration with Jenkins: Setting Up a CI Pipeline, Integrating 

Jenkins with Maven/Gradle, Running Automated Builds and Tests CO2 21-24 

7. 
Configuration Management with Ansible: Basics of Ansible: Inventory, 
Playbooks, and Modules, Automating Server Configurations with 
Playbooks, Hands-On: Writing and Running a Basic Playbook 

CO3 25-29 

8. 
Practical Exercise: Set Up a Jenkins CI Pipeline for a Maven Project, Use 

Ansible to Deploy Artifacts Generated by Jenkins 
CO2 

CO3 

 

9. 
Introduction to Azure DevOps: Overview of Azure DevOps Services, 

Setting Up an Azure DevOps Account and Project 
CO4 30-33 

 

10. 

Creating Build Pipelines: Building a Maven/Gradle 
Project with Azure Pipelines, Integrating Code 
Repositories (e.g., GitHub, Azure Repos), Running Unit 
Tests and Generating Reports 

CO4 34-42 

 

11 

Creating Release Pipelines: Deploying Applications to Azure App Services, 

Managing Secrets and Configuration with Azure Key Vault, Hands-On: 

Continuous Deployment with Azure Pipelines 

CO4 
 

 

12 

Practical Exercise and Wrap-Up: Build and Deploy a Complete DevOps 

Pipeline, Discussion on Best Practices and Q&A 
CO2 

CO3 

CO4 

 



DEVOPS LAB BCSL657D 

Page 1 DEPT OF CSE - CY, ATMECE, MYSURU 

 

 

1. Introduction to Maven and Gradle: Overview of Build Automation 

Tools, Key Differences Between Maven and Gradle, Installation and 

Setup. 

 
Introduction to Maven and Gradle 

Overview of Build Automation Tools 

Build automation tools help developers streamline the process of building, testing, and 

deploying software projects. They take care of repetitive tasks like compiling code, 

managing dependencies, and packaging applications, which makes development more 

efficient and error-free. 

Two popular tools in the Java ecosystem are Maven and Gradle. Both are great for 

managing project builds and dependencies, but they have some key differences. 

 

Maven 

 
• What is Maven? Maven is a build automation tool primarily used for Java projects. It 

uses an XML configuration file called pom.xml (Project Object Model) to define project 

settings, dependencies, and build steps. 

• Main Features: 

• Predefined project structure and lifecycle phases. 

• Automatic dependency management through Maven Central. 

• Wide range of plugins for things like testing and deployment. 

• Supports complex projects with multiple modules. 

 

Gradle 

 
• What is Gradle? Gradle is a more modern and versatile build tool that supports multiple 

programming languages, including Java, Groovy, and Kotlin. It uses a domain-specific 

language (DSL) for build scripts, written in Groovy or Kotlin. 

 

• Main Features: 

• Faster builds thanks to task caching and incremental builds. 

• Flexible and customizable build scripts. 

• Works with Maven repositories for dependency management. 

• Excellent support for multi-module and cross-language projects. 

• Integrates easily with CI/CD pipelines. 



DEVOPS LAB BCSL657D 

Page 2 DEPT OF CSE - CY, ATMECE, MYSURU 

 

 

Key Differences Between Maven and Gradle 

 

Aspect Maven Gradle 

Configuration XML (pom.xml) Groovy or Kotlin DSL 

Performance Slower Faster due to caching 

Flexibility Less flexible Highly customizable 

Learning Curve Easier to pick up Slightly steeper 

Script Size Verbose More concise 

Dependency 

Management 

Uses Maven 

Central 
Compatible with Maven too 

Plugin Support Large ecosystem Extensible and versatile 

Installation and Setup & How to Install Maven: 

 
1. Download Maven: 

Go to the Maven Download Page and download the latest binary ZIP file. 

2. Extract the ZIP File: 

Right-click the downloaded ZIP file and select Extract All… or use any extraction tool like 

WinRAR or 7-Zip. 

3. Move the Folder: 

After extraction, move the extracted Maven folder (usually named apache-maven-x.x.x) to 

a convenient directory like C:\Program Files\. 

4. Navigate to the bin Folder: 

• Open the Maven folder, then navigate to the bin folder inside. 

• Copy the path from the File Explorer address bar(e.g., C:\Program Files\apache- 

maven-x.x.x\bin). 

5. Set Environment Variables: 

• Open the Start Menu, search for Environment Variables, and select Edit the 

system environment variables. 

• Click Environment Variables. 

• Under System Variables: 

• Find the path, double click on it and click New. 

• Paste the full path to the bin folder of your Maven directory 

(e.g., C:\Program Files\apache-maven-x.x.x\bin). 



DEVOPS LAB BCSL657D 

Page 3 DEPT OF CSE - CY, ATMECE, MYSURU 

 

 

6. Save the Changes: 

• Click OK to close the windows and save your changes. 

7. Verify the Installation: 

• Open Command Prompt and run: mvn -v If Maven is correctly installed, it will 

display the version number. 

 

How to install Gradle 

 
1. Download Gradle: 

Visit the Gradle Downloads Page and download the latest binary ZIP file. 

2. Extract the ZIP File: 

Right-click the downloaded ZIP file and select Extract All… or use any extraction tool 

like WinRAR or 7-Zip. 

3. Move the Folder: 

After extraction, move the extracted Gradle folder (usually named gradle-x.x.x) to a 

convenient directory like C:\Program Files\. 

4. Navigate to the bin Folder: 

• Open the Gradle folder, then navigate to the bin folder inside. 

• Copy the path from the File Explorer address bar (e.g., C:\Program Files\gradle- 

x.x\bin). 

5. Set Environment Variables: 

• Open the Start Menu, search for Environment Variables, and select Edit the 

system environment variables. 

• Click Environment Variables. 

• Under System Variables: 

• Find the path, double click on it and click New. 

• Paste the full path to the bin folder of your Gradle directory 

(e.g., C:\Program Files\gradle-x.x.x\bin). 

6. Save the Changes: 

• Click OK to close the windows and save your changes. 

7. Verify the Installation: 

• Open a terminal or Command Prompt and run: gradle -v If it shows the Gradle 

version, the setup is complete. 

 

Install the Java JDK 

• If you haven’t installed the Java JDK yet, you can follow the link below to download 

and install it. Download Java JDK from Oracle 



DEVOPS LAB BCSL657D 

Page 4 DEPT OF CSE - CY, ATMECE, MYSURU 

 

 

2. Working with Maven: Creating a Maven Project, Understanding the POM 

File, Dependency Management and Plugins. 

Working with Maven is a key skill for managing Java-based projects, particularly in the areas of 

build automation, dependency management, and project configuration. Below is a guide on 

creating a Maven project, understanding the POM file, and using dependency management and 

plugins: 

Creating a Maven Project 

There are a few ways to create a Maven project, such as using the command line, IDEs like 

IntelliJ IDEA or Eclipse, or generating it via an archetype. 

Step 1: Create a New Maven Project: 

Open IntelliJ IDEA. 

Go to file -> new -> project 

Select maven from the project types 

Set the project name and location, then click Finish . 

Understanding the POM File 

The POM (Project Object Model) file is the heart of a Maven project. It is an XML file that 

contains all the configuration details about the project 

Step 2: set up the pom.xml file 

Add dependencies in the pom file 

Add selenium java and TestNG dependencies by creating a tag called <dependencies> section 

1 <dependencies> 

2 <dependency> 

3 <groupId>org.seleniumhq.selenium</groupId> 

4 <artifactId>selenium-java</artifactId> 

5 <version>3.141.59</version> 

6 </dependency> 

7 <dependency> 

8 <groupId>org.testng</groupId> 

9 <artifactId>testng</artifactId> 

10 <version>7.4.0</version> 

11 <scope>test</scope> 

12 </dependency> 

13 </dependencies> 



DEVOPS LAB BCSL657D 

Page 5 DEPT OF CSE - CY, ATMECE, MYSURU 

 

 

Dependency Management 

Maven uses the <dependencies> tag in the pom.xml to manage external libraries or dependencies 

that your project needs. When Maven builds the project, it will automatically download these 

dependencies from a repository (like Maven Central). 

• Transitive Dependencies 

Maven automatically resolves transitive dependencies. For example, if you add a library 

that depends on other libraries, Maven will also download those. 

• Scopes 

• Dependencies can have different scopes that determine when they are available: 

• compile (default): Available in all build phases. 

• provided: Available during compilation but not at runtime (e.g., a web 

server container). 

• runtime: Needed only at runtime, not during compilation. 

• test: Required only for testing. 

Plugins 

Maven plugins are used to perform tasks during the build lifecycle, such as compiling code, 

running tests, packaging, and deploying. You can specify plugins within the <build> section of 

your pom.xml. The maven-compiler-plugin is used to compile Java code and specify the source 

and target JDK versions. 

1. Common Plugins 

• maven-compiler-plugin: Compiles Java code. 

• maven-surefire-plugin: Runs unit tests. 

• maven-jar-plugin: Packages the project as a JAR file. 

• maven-clean-plugin: Cleans up the target/ directory. 

2. Plugin Goals Each plugin consists of goals, which are specific tasks to be executed. For 

example: 

• mvn clean install: This will clean the target directory and then install the package 

in the local repository. 

• mvn compile: This will compile the source code. 

3. mvn test: This will run unit tests. 



DEVOPS LAB BCSL657D 

Page 6 DEPT OF CSE - CY, ATMECE, MYSURU 

 

 

Step 3: To do test under the Main Create new package in Src-main-java-org.example. 

1. Copy LoginTest Code in Org.Example 

import org.openqa.selenium.By; 

import org.openqa.selenium.WebDriver; 
import org.openqa.selenium.chrome.ChromeDriver; 

public class LoginTest { 

public static void main(String[] args) throws InterruptedException { 

WebDriver driver = new ChromeDriver(); 

driver.get("https://www.saucedemo.com/"); 

driver.manage().window().maximize(); 

Thread.sleep(2000); 

driver.findElement(By.id("user-name")).sendKeys("standard_user"); 

Thread.sleep(2000); 

driver.findElement(By.id("password")).sendKeys("secret_sauce"); 

Thread.sleep(2000); 

driver.findElement(By.id("login-button")).click(); 

Thread.sleep(2000); 

driver.quit(); 

} 

} 

 

Step 4: Next To create the Docs file Copy this Plugine Code after Dependencies, which creates 

new directory Docs 

Build /Plugin Code to create Docs file 

<build> 

<plugins> 

<plugin> 

<groupId>org.apache.maven.plugins</groupId> 

<artifactId>maven-resources-plugin</artifactId> 

<version>3.2.0</version> 

<executions> 

<execution> 

<phase>prepare-package</phase> 

<goals> 

<goal>copy-resources</goal> 

</goals> 

<configuration> 

<outputDirectory>${project.basedir}/docs</outputDirectory> <!-- Deploy to 

/docs folder -->  

<resources> 

<resource> 

<directory>src/main/resources</directory> 

<includes> 

<include>*/</include> <!-- Copy all files in src/main/resources --> 

</includes> 

http://www.saucedemo.com/


DEVOPS LAB BCSL657D 

Page 7 DEPT OF CSE - CY, ATMECE, MYSURU 

 

 

</resource> 

</resources> 

</configuration> 

</execution> 

</executions> 

</plugin> 

</plugins> 

</build> 

Step 5: Create a Simple Website (HTML, CSS, and Logo): 

Index.html: 

<!DOCTYPE html> 

<html lang="en"> 

<head> 

<meta charset="UTF-8"> 

<meta name="viewport" content="width=device-width, initial-scale=1.0"> 

<title>My Simple Website</title> 

<link rel="stylesheet" href="style.css"> 

</head> 

<body> 

<header> 

<img src="logo.png" alt="Logo"> 

</header> 

<h1>Welcome to My Simple Website</h1> 

</body> 

</html> 

 

Styles.css: 

body { 
background-color: #f4f4f4; 
text-align: center; 
} 

header img { 

width: 100px; 
} 

 

Step 6: 

Upload the Website to GitHub: 

Initialize a Git repository in your project folder: 

git init 

Add your files and commit them: 

git add . 

git commit -m "Initial commit" 

Create a GitHub repository and push the local project to GitHub: 



DEVOPS LAB BCSL657D 

Page 8 DEPT OF CSE - CY, ATMECE, MYSURU 

 

 

git remote add origin <your-repository-url> 

git push -u origin master 

Step 7: Write a Simple Selenium Test with TestNG: 

Create a new java class WebpageTest,java in the src/test/java directory. 

 
package org.test; 

import org.openqa.selenium.WebDriver; 

import org.openqa.selenium.chrome.ChromeDriver; 

import org.testng.Assert; 

import org.testng.annotations.AfterTest; 

import org.testng.annotations.BeforeTest; 

import org.testng.annotations.Test; 

import static org.testng.Assert.assertTrue; 

public class WebpageTest { 

private static WebDriver driver; 

@BeforeTest 

public void openBrowser() throws InterruptedException { 

driver = new ChromeDriver(); 

driver.manage().window().maximize(); 

Thread.sleep(2000); 

driver.get(""); 

} 

@Test 

public void titleValidationTest(){ 

String actualTitle = driver.getTitle(); 

String expectedTitle = "Tripillar Solutions"; 

Assert.assertEquals(actualTitle, expectedTitle); 

} 

@AfterTest 

public void closeBrowser() throws InterruptedException { 

Thread.sleep(1000); 

driver.quit(); 

} 

} 

 

Run the Test: 

In IntelliJ, right-click the 'WebPageTest' class and select Run 'WebPageTest' . 

 The test will launch Chrome, open the webpage, and validate the title. 

Deployment : 

To deploy your Maven project to GitHub Pages using the /docs 



DEVOPS LAB BCSL657D 

Page 9 DEPT OF CSE - CY, ATMECE, MYSURU 

 

 

Step 8: Create Java Archive file. Using that executes simple program 

Plugins code to create Maven Jar files 

<plugin>  

<groupId>org.apache.maven.plugins</groupId> 

<artifactId>maven-jar-plugin</artifactId> 

<version>3.1.0</version> 

<configuration> 

<!-- Specify the main class to be executed --> 

<archive> 

<manifestEntries> 

<Main-Class>org.example.Main</Main-Class> 

<!-- Replace with your actual main class --> 

</manifestEntries> 

</archive> 

</configuration> 

</plugin> 

 

Step 9: Create new Java class called Main under 

Src-main-java-org.example- Main 

package org.example; 

 

public class Main { 

public static void main(String[] args) { 

System.out.println("Hello from maven!"); 

} 

Step 10: To deploy site copy below code in POM file 

Maven Site Plugin code 

<plugin>  

<groupId>org.apache.maven.plugins</groupId> 

<artifactId>maven-site-plugin</artifactId> 

<version>3.12.1</version> <!-- Use the latest version --> 

</plugin> 



DEVOPS LAB BCSL657D 

Page 10 DEPT OF CSE - CY, ATMECE, MYSURU 

 

 

3. Working with Gradle: Setting Up a Gradle Project, Understanding Build 

Scripts (Groovy and Kotlin DSL), Dependency Management and Task 

Automation 

Creating a Gradle Project in IntelliJ IDEA 

Step 1: Open IntelliJ IDEA and Create a New Project 

Click on "New Project". 

Select "Gradle" (under Java). 

Choose Groovy for the build script. 

Set the Group ID (e.g., com.example ). 

Click Finish. 

 

Step 2: Build and Run a Simple Java Application 

Copy the Plugin code in build.gradle file 

 
plugins { 

id 'application' 
} 

repositories { 

mavenCentral() 
} 

dependencies { 

testImplementation 'org.junit.jupiter:junit-jupiter:5.8.1' 

testImplementation 'org.seleniumhq.selenium:selenium-java:4.28.1' // use the latest stable version 

testImplementation 'org.testng:testng:7.4.0' // use the latest stable version 
} 

test { 

useTestNG() 

} 

application { 

mainClass = 'com.example.Main' 
} 

 

Step 3: Create new Package com.example 

Src-main-java-com.example-Main(java class) 

package org.example; 

 
public class Main { 

public static void main(String[] args) { 

System.out.println("Hello from Gradle!"); 

} 

} 

 

Step 4: Hosting Static Website on Github pages 

Manually create new directory docs . copy and paste the index.html, logo and .css files. 

Testing Website using selenium and TestNG dependencies in build.gradle 



DEVOPS LAB BCSL657D 

Page 1

11 
DEPT OF CSE - CY, ATMECE, MYSURU 

 

 

 
dependencies { 

testImplementation 'org.seleniumhq.selenium:selenium-java:4.28.1' // use the latest stable version 

testImplementation 'org.testng:testng:7.4.0' // use the latest stable version 

} 

 

test { 

useTestNG() 
} 

 

 

Step 5: Then create New Package org.test 

Src-test-org.test 

Create new java WebpageTest file under org.test 

package org.test; 

import org.openqa.selenium.WebDriver; 

import org.openqa.selenium.chrome.ChromeDriver; 

import org.testng.Assert; 

import org.testng.annotations.AfterTest; 

import org.testng.annotations.BeforeTest; 

import org.testng.annotations.Test; 

import static org.testng.Assert.assertTrue; 

public class WebpageTest { 

private static WebDriver driver; 

@BeforeTest 

public void openBrowser() throws InterruptedException { 

driver = new ChromeDriver(); 

driver.manage().window().maximize(); 

Thread.sleep(2000); 

driver.get("https://sauravsarkar-codersarcade.github.io/CA-MVN/"); 

} 

 

@Test 

public void titleValidationTest(){ 

String actualTitle = driver.getTitle(); 

String expectedTitle = "Tripillar Solutions"; 

Assert.assertEquals(actualTitle, expectedTitle); 

assertTrue(true, "Title should contain 'Tripillar'"); 

} 

 
@AfterTest 

public void closeBrowser() throws InterruptedException { 

Thread.sleep(1000); 

driver.quit(); 

} 

} 

 



DEVOPS LAB BCSL657D 

Page 1

12 
DEPT OF CSE - CY, ATMECE, MYSURU 

 

 

Step 6: 

To Create Gradle jar 

 

plugins { 

id 'java' 
id 'application' 

} 

application { 

mainClass = 'com.example.Main' 

} 

 

jar { 

manifest { 

attributes 'Main-Class': 'com.example.Main' // This tells Java where to start execution 

} 

} 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



DEVOPS LAB BCSL657D 

Page 1

13 
DEPT OF CSE - CY, ATMECE, MYSURU 

 

 

4. Practical Exercise: Build and Run a Java Application with Maven, Migrate 

the Same Application to Gradle. 

Step 1: Create a Maven Project in IntelliJ IDEA 

1. Open IntelliJ IDEA 

Launch IntelliJ IDEA and click on File → New → Project. 

2. Select Maven 

• In the New Project window, choose Maven from the options on the left. 

• Check Create from archetype and select maven-archetype-quickstart. 

• Click Next. 

3. Enter Project Details 

• GroupId: com.example 

• ArtifactId: MVNGRDLDEMO 

• Click Next and then Finish. 

4. Wait for IntelliJ to Load Dependencies 

IntelliJ will automatically download the Maven dependencies, so just relax for a moment. 

 

 

Step 2: Update pom.xml to Add Build Plugin 

To compile and package your project into a .jar file, you need to add the Maven Compiler and Jar 

plugins. 

1. Open the pom.xml file. 

2. Add the following inside the <project> tag: 

<build> 

<plugins> 

<!-- Compiler Plugin --> 

<plugin> 

<groupId>org.apache.maven.plugins</groupId> 

<artifactId>maven-compiler-plugin</artifactId> 

<version>3.8.1</version> 

<configuration> 

<source>1.8</source> 

<target>1.8</target> 

</configuration> 

</plugin> 

<!-- Jar Plugin --> 

 

 



DEVOPS LAB BCSL657D 

Page 1

14 
DEPT OF CSE - CY, ATMECE, MYSURU 

 

 

<plugin> 

<groupId>org.apache.maven.plugins</groupId> 

<artifactId>maven-jar-plugin</artifactId> 

<version>3.2.0</version> 

<configuration> 

<archive> 

<manifest> 

<mainClass>com.example.App</mainClass> 

</manifest> 

</archive> 

</configuration> 

</plugin> 

</plugins> 

</build> 

Step 3: Build and Run the Maven Project 

1. Open IntelliJ IDEA Terminal 

Press Alt + F12 to open the terminal. 

2. Compile and Package the Project 

Run the following commands to build the project: 

1 mvn clean compile 

2 mvn package 

 

Step 4: .Locate the JAR File 

After running the above, your .jar file will be located at: 

D:\Idea Projects\MVNGRDLDEMO\target\MVNGRDLDEMO-1.0-SNAPSHOT.jar 

Run the JAR File 

To run the generated JAR file, use: 

java -jar target\MVNGRDLDEMO-1.0-SNAPSHOT.jar 

Part 2: Migrate Maven Project to Gradle 



DEVOPS LAB BCSL657D 

Page 20 DEPT OF CSE - CY, ATMECE, MYSURU 

 

 

Step 1: Initialize Gradle in Your Project 

1. Open Terminal in IntelliJ IDEA 

Make sure you're in the project directory 

2. Run Gradle Init Command 

Execute the following command to migrate your Maven project to Gradle: 

gradle init --type pom 

This command will convert your Maven pom.xml into a Gradle build.gradle file. 

Step 2: Review and Update 

1. Open build.gradle in IntelliJ IDEA. 

2. Ensure the following configurations are correct: 

plugins { 

id 'java' 

} 

group = 'com.example' 

version = '1.0-SNAPSHOT' 

repositories { 

mavenCentral() 

} 

dependencies { 

testImplementation 'junit:junit:4.13.2' 

} 

jar { 

manifest { 

attributes( 

'Main-Class': 'com.example.App' 

) 

} 

} 

Step 3: Build and Run the Gradle Project 

1. Clean and Build the Project 

To clean and build your Gradle project, run: gradle clean build 

2. Run the Generated JAR File 

Now, run the generated JAR file using: 

java -jar build/libs/MVNGRDLDEMO-1.0-SNAPSHOT.jar 

 



DEVOPS LAB BCSL657D 

Page 20 DEPT OF CSE - CY, ATMECE, MYSURU 

 

 

5.Introduction to Jenkins: What is Jenkins?, Installing Jenkins on Local 

or Cloud Environment, Configuring Jenkins for First Use 

 
 

 

 



DEVOPS LAB BCSL657D 

Page 20 DEPT OF CSE - CY, ATMECE, MYSURU 

 

 

 
 

 

 



DEVOPS LAB BCSL657D 

Page 20 DEPT OF CSE - CY, ATMECE, MYSURU 

 

 

 

On browser goto localhost:8080 and 

 

 

 



DEVOPS LAB BCSL657D 

Page 20 DEPT OF CSE - CY, ATMECE, MYSURU 

 

 

 
 

 

 

 

 



DEVOPS LAB BCSL657D 

Page 20 DEPT OF CSE - CY, ATMECE, MYSURU 

 

 

 
 

 



DEVOPS LAB BCSL657D 

Page 21 
DEPT OF CSE - CY, ATMECE, MYSURU 

 

 

5. Introduction to Jenkins: What is Jenkins?, Installing Jenkins on Local or 

Cloud Environment, Configuring Jenkins for First Use 

 

• Login into Jenkins by giving credentials 
 

• Select new item 

 



DEVOPS LAB BCSL657D 

Page 22 
DEPT OF CSE - CY, ATMECE, MYSURU 

 

 

• Add github credentials 

 

 

• Select any maven /gradle project 
 



DEVOPS LAB BCSL657D 

Page 23 
DEPT OF CSE - CY, ATMECE, MYSURU 

 

 

• Give command to run with respect to the project 

 

 

 



DEVOPS LAB BCSL657D 

Page 24 
DEPT OF CSE - CY, ATMECE, MYSURU 

 

 

• Build the project 
 

 

 

• At console output you can see successfully 

 



DEVOPS LAB BCSL657D 

Page 25 
DEPT OF CSE - CY, ATMECE, MYSURU 

 

 

6. Configuration Management with Ansible: Basics of Ansible: Inventory, 

Playbooks, and Modules, Automating Server Configurations with Playbooks, 

Hands-On: Writing and Running a Basic Playbook 
 

 

 

 

 

 



DEVOPS LAB BCSL657D 

Page 26 
DEPT OF CSE - CY, ATMECE, MYSURU 

 

 

 

 
 

 

 



DEVOPS LAB BCSL657D 

Page 27 
DEPT OF CSE - CY, ATMECE, MYSURU 

 

 

 

 

 
 

 

 



DEVOPS LAB BCSL657D 

Page 28 
DEPT OF CSE - CY, ATMECE, MYSURU 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 



DEVOPS LAB BCSL657D 

Page 29 
DEPT OF CSE - CY, ATMECE, MYSURU 

 

 

 

 

 

 

 

 

 



DEVOPS LAB BCSL657D 

Page 30 DEPT OF CSD, ATMECE, MYSURU 

 

 

9. Introduction to Azure DevOps: Overview of Azure DevOps Services, 

Setting Up an Azure DevOps Account and Project 

Topics Covered: 

• Overview of Azure DevOps Services 

• Setting Up an Azure DevOps Account and Project 

1. Overview of Azure DevOps 

Azure DevOps is a comprehensive suite of cloud-based services that supports the entire software 

development lifecycle. It provides tools for planning, developing, testing, delivering, and 

monitoring applications. The primary services offered include: 

1.1 Azure Repos 

Version control tools that allow you to host Git repositories or use Team Foundation Version 

Control (TFVC). Features include: 

• Pull requests 

• Branch policies 

• Code reviews 

1.2 Azure Pipelines 

A CI/CD service that automates builds, tests, and deployments. It supports: 

• Multiple programming languages 

• Multiple platforms (Linux, Windows, macOS) 

• Integration with popular build systems 

1.3 Azure Boards 

A work tracking system to manage: 

• Work items 

• Sprints and backlogs 

• Kanban boards and agile reports 

1.4 Azure Test Plans 

A solution for managing and executing tests. Provides: 

• Manual and exploratory testing tools 



DEVOPS LAB BCSL657D 

Page 31 DEPT OF CSE - CY, ATMECE, MYSURU 

 

 

• Defect tracking 

• Test case management 

1.5 Azure Artifacts 

A package management service that enables you to: 

• Create, host, and share packages (e.g., Maven, npm, NuGet, Python) 

• Integrate with CI/CD pipelines 

These services are integrated with each other and with third-party tools, providing a cohesive and 

extensible DevOps ecosystem. 

2. Setting Up an Azure DevOps Account 

Before using Azure DevOps, you must create an account and set up your organization. 

Step 1: Sign Up for an Azure DevOps Account 

1. Open Your Web Browser: 

Navigate to https://dev.azure.com 

2. Sign In or Create a Microsoft Account: 

o If you already have a Microsoft account (e.g., Outlook, Hotmail, Office 365), 

click “Sign in” 

o If not, click “Create one!” and follow the instructions 

3. Accept Terms and Conditions: 

o If prompted, review and accept Microsoft’s terms of service 

 

 

Step 2: Create an Azure DevOps Organization 

1. Create a New Organization: 

o After signing in, you’ll be prompted to create a new organization 

o Enter a unique name (e.g., MyPersonalOrg or YourCompanyDevOps) 

o Select a Region closest to your location 

o Click “Continue” or “Create” 

2. Review Your Organization’s Dashboard: 

o After creation, you’ll land on the dashboard with navigation to: 

▪ Repos 



DEVOPS LAB BCSL657D 

Page 32 DEPT OF CSE - CY, ATMECE, MYSURU 

 

 

▪ Pipelines 

▪ Boards 

▪ Test Plans 

▪ Artifacts 

3. Creating an Azure DevOps Project 

A project in Azure DevOps is a container for all your source code, pipelines, work items, and 

other DevOps resources. 

Step 1: Create a New Project 

1. Navigate to "New Project": 

o From your organization’s dashboard, click “New Project” 

2. Configure Your Project: 

o Project Name: Enter a descriptive name (e.g., HelloDevOps) 

o Description: Optionally provide a short summary 

o Visibility: 

▪ Choose “Private” to restrict access 

▪ Choose “Public” if it can be viewed by anyone 

o Advanced Options: 

▪ Choose a version control system (default: Git) 

▪ Select a work item process (Agile, Scrum, Basic, CMMI – Agile 

recommended for beginners) 

o Click “Create” 

 

Step 2: Explore Your Project Dashboard 

1. Project Overview: 

After creation, you’ll see a dashboard with access to: 

o Repos: Manage source code 

o Pipelines: Set up CI/CD 

o Boards: Track and plan work 

o Test Plans: Manage tests 



DEVOPS LAB BCSL657D 

Page 33 DEPT OF CSE - CY, ATMECE, MYSURU 

 

 

o Artifacts: Package management 

2. Familiarize Yourself with the Interface: 

o Click through each section (e.g., Repos, Pipelines, Boards) to understand its 

features 
 



DEVOPS LAB BCSL657D 

Page 34 DEPT OF CSE - CY, ATMECE, MYSURU 

 

 

10. Building a Maven/Gradle Project with Azure Pipelines, Integrating Code 

Repositories (e.g.GitHub, Azure Repos), Running Unit Tests and Generating 

Reports. 

Step 1: After logging into Azure Devops, click your organization name (top-left) 
 

 

 



DEVOPS LAB BCSL657D 

Page 35 DEPT OF CSE - CY, ATMECE, MYSURU 

 

 

Step 2: From your Azure Devops homepage, create a new project (e.g., demo1). 

This is where your pipeline and linked services will reside. 

 

 

 

Step 3: Inside the project, go to Pipelines > Pipelines and click Create Pipeline to start the 

CI/CD setup wizard. 

 



DEVOPS LAB BCSL657D 

Page 36 DEPT OF CSE - CY, ATMECE, MYSURU 

 

 

Step 4: Connect to Your GitHub Repository: When prompted for your code source, select 

GitHub. You’ll be redirected to authenticate and allow access 
 

 

 

 

Step 5: Choose Your Repository : Select the Maven project repository you want to build, for . 
 



DEVOPS LAB BCSL657D 

Page 37 DEPT OF CSE - CY, ATMECE, MYSURU 

 

 

Steps:6 Approve GitHub Integration: Approve access for Azure Pipelines to your GitHub 

repository. Choose “Only select repositories” and confirm access for First Project. 

 

 

 

 

Step 7: Select Maven Pipeline Template: When prompted to configure the pipeline, choose 

Maven/Gradle to auto-generate a pipeline template suitable for building and testing 

Maven/Gradle project. 

 



DEVOPS LAB BCSL657D 

Page 38 DEPT OF CSE - CY, ATMECE, MYSURU 

 

 

Step 8: Review and Customize YAML: Review the auto-generated azure-pipelines.yml. 

Ensure it contains the Maven/Gradle task with appropriate goals like clean install and test result 

file paths. 

 

Step 9: Click Save and Run to trigger the pipeline. 

 If the run fails with a message like "No hosted parallelism has been purchased," you must 

request free hosted agent access. 

 



DEVOPS LAB BCSL657D 

Page 39 DEPT OF CSE - CY, ATMECE, MYSURU 

 

 

Azure DevOps is refusing to run your pipeline because: 

• Your organization doesn't have permission to use Microsoft-hosted agents (virtual machines 

that run your pipeline). 

• By default, new organizations created after certain limits must request access to free 

parallel jobs, even for public projects. 

Solution: 

 Request Free Parallelism 

 

 

1. Go to this Microsoft form: 

https://aka.ms/azpipelines-parallelism-request 

2. Fill in the required details: 
 

3. Wait for approval (usually within 2-5 business days). 

Step 10: 

1. Go to project settings on the left 

2. Go to agent pools, under this select the default agent, and click on the new agent to 

create a new agent 

3. Download agents and copy the downloaded zip file from downloads and paste it to C 

drive 



DEVOPS LAB BCSL657D 

Page 40 
DEPT OF CSE - CY, ATMECE, MYSURU 

 

 

 

 

4. Go to windows power shell to execute the agent 

5. Give the following commands to create a directly calledagent and extract the download file. 
 

 

 

 

 

 

 

6. Configure the agent by .\config.cmd 
 



DEVOPS LAB BCSL657D 

Page 41 
DEPT OF CSE - CY, ATMECE, MYSURU 

 

 

7. Give the organization URL for the server URL 
 

8. For Personal Access Token, go to user settings, select PAT and clink on new token 
 



DEVOPS LAB BCSL657D 

Page 42 
DEPT OF CSE - CY, ATMECE, MYSURU 

 

 

9. Under PAT, provide the username and select full access, and create 
 

10. Copy the PAT number and paste it on the terminal 

1. After the configuration of the agent, the agent will be in offline. To activate the agent, 

enter the command .\run.cmd 

2. It will connect to the server, now the agent is online and listening to the Job. 

Step 11: After accepting the parallelism request, rerun the previously build job. 

 


