A I MNA E S»

o Clollege of Engincerimg

Departmment of Computer Sciemnoce & Engimeering (Data- Sciemce)

DATA STRUCTURES AND APPLICATIONS

Course Name

Course Code

50 Mrs. MADHU NAGARAJ
Contact Hours Assistant Professor
50 Dept of CSE-DS

ATMECE, Mysuru

CIE Marks

50
SEE Marks

- L College of Engincerinmgs

IDepartmeent of Compuater Scieimnoc = S Emnmgimeaerinm

INTRODUCTION TO DATA STRUCTU RES
Module 1

Mrs. Madhu Nagaraj
Assistant Professor

Dept of CSE-Data Science
ATMECE

‘ ;}-1:- - ; - E-R-‘r Ei
iz] College of Engi

e CriTes

IDepartmuent of Compuater Sciemnocs S Engimeeringg (IData- Sciemnce))

) — CLO 1. To explain fundamentals of data structures and their
Course Leaming Objectives applications.

CLO 2. To illustrate representation of Different data structures such as
Stack, Queues, Linked Lists, Trees and Graphs.

CLO 3. To Design and Develop Solutions to problems using Linear Data
Structures

CLO 4. To discuss applications of Nonlinear Data Structures in problem
solving.

CLO 5. To introduce advanced Data structure concepts such as
Hashing and Optimal Binary
Search Trees

College of Engincerinmgs

IDepartmuent of Compuater Sciemnocs S Engimeeringg (IData- Sciemnce))

CO 1. Explain different data structures and their applications.

CO 2. Apply Arrays, Stacks and Queue data structures to
solve the given problems.

CO 3. Use the concept of linked list in problem solving.

CO 4. Develop solutions using trees and graphs to model the real-
word problem.

CO 5. Explain the advanced Data Structures concepts such as
Hashing Techniques and Optimal Binary Search Trees.

o College of Engimnacoerinmge e

IDepartmuent of Compuater Sciemnocs S Engimeeringg (IData- Sciemnce))

Text Book

Ellis Horowitz and Sartaj Sahni, Fundamentals of Data
Structures in C, 2nd Ed, Universities Press,
2014.

Seymour Lipschutz, Data Structures Schaum's Outlines,
Revised 1st Ed, McGraw Hill, 2014.

AL E I—
College of Engineering 7 ’

Question Paper Pattern The question paper will have ten questions.

Each full Question consisting of 20 marks.

There will be 2 full questions (with a maximum of four sub questions) from each
module.

Each full question will have sub questions covering all the topics under a module.

The students will have to answer 5 full questions, selecting one full question from
each module.

College of Engineering 3

* "Get your data structures correct first, and the rest of the program
will write 1tself."

. -Davids Johnson

/

Program = Data Structure + Algorithm

saewe ey [
College of Engineering

“What is data? “

DICT definition - The quantities, characters, or symbols on which a computer
performs operations may be stored and transmitted in the form of electrical signals
and recorded on magnetic, optical, or mechanical recording media.

* DATA and INFORMATION are often confusing, and we often interchange these
two terms.

« UHDAM SI EMAN YM is just data because it is merely a collection of characters,
and from this, the user cannot understand anything properly

College of Engineering

What is information?”

 If data 1s arranged systematically, then 1t gets a structure and becomes
meaningful.

The need for Data Structures?

* We can understand very well that the data needs to be managed in such a
way so that it can produce some meaningful information.

* Data structures give us the way to manage the data appropriately so that
we can use 1t whenever possible.

ALM E I 4
College of Engineering

Data Structures

Data Structure 1s a way to store and organize data so that

it can be used efficiently . 11001
s - 10001 11100110
There are many ways of organizing the data in the 0010 110001 11000110
memory, i.e., array. 00101001 01011010 1100
010101 1100000100 100
00011111 101001110
Array 1s a collection of memory elements in which data 1s ﬂﬂ‘:%‘:]:['; [}I:}'E'I 10
stored sequentially, 1.e., one after another. 00100
01001
00110
There are also other ways to organize the data in memory. 0000110

Let's see the different types of data structures. Data St]‘uctu re

ALLM E I {
College of Engineering

* Deals with how

- organization of data in memory
- efficient Storage of data in memory
- efficient Retrieved & manipulated

- logical relationships among different data items

—

AT M E EE

College of Engineering

h

Primitive Data
Structure

int

char

float

double

Data Structure

—»

of
el 7S

(G

= SigTo Y
Classification (Primitive and Non
= Primitive)
‘ Mon-Primitive ‘
Data Structure
|
v 1 |
Linear ‘ ‘ Mon-Linear |
|)
. v
Array ‘ Tree ‘ l Graphs ‘
Stack
Queue
Linked List

AT M E

se| College of Engmeerﬁata Types in C
E Data Types
Primitive Isata Types User DefineéI Data Types
! }
Integer Derived typedef
Float Data Types enum
Double |
Character Arrays
Void Functions
Type Casting: Pointers

float div=float(a/b); //a & b are integer variables

ATME

College of Engineering

o J)}EDJ_!-{-F B, s@;\ﬂj’“;;f} . @ @m' .’ 2

To hold integer 2 bytes -32768 to +32767
constant
To hold real constant 4 bytes -3.4e38 to +3.4e38
To hold real 8 bytes -1.7e308 to
constant +1.7e308
To hold character 1 byte -128 to +127
constant
non-specific No memoryis --——--

allocated

College of Engineering A A

Array

Lower bound (lb) Upper bound (ub)

“¥Index of array element.

* Anarrayis a data structure for
storing more than one data item
that has a similar data type.

. Array name
allocated at adjacent memory
locations. \ 1
Memory location Array element

AT M E

College of Engineering

Stack

Stack is a linear data structure which follows a particular order in which the operations are
performed. The order may be LIFO(Last In First Out) or FILO(First In Last Out)

peek (top of stack)

push

o) P i

Real Life Stack Stack Data Structure

| 4.5 M E I |
| College of Engineering

Queue

A Queue is a linear structure which follows a particular order in which the operations are
performed. The order is First In First Out (FIFO). A good example of a queue is any queue of
consumers for a resource where the consumer that came first is served first.

$ A\ QUENE
\' - | insert delete
. ' mﬂ n s 3 m £ | % E
FIFO (First In First Out)

s ey 0 .
College of Engineering

Linked List

A linked list is a linear data structure, in which the elements are not stored at contiguous
memory locations. The elements in a linked list are linked using pointers as shown in the
below image:

Head

| A 3| &)] ¢ 3 o — nuwn

Data MNext

In simple words, a linked list consists of nodes where each node contains a data field
and a reference(link) to the next node in the list.

Licsaor ooy N (5
College of Engineering g i

Tree

Data frequently contain a hierarchical relationship between various elements. The data
structure which reflects this relationship is called a rooted tree graph or a tree.

Tree data structure
Lavel O

Lewel 1

Lawel 2,

Siblings

Leaf node

Lowel 3

Sub-lpee —

Bty I %
| College of Engineering | . A

Graph

e A Grqph is a non-linear data structure Vert }-EEE_.. Vertex/Node
consisting of nodes and edges. The nodes are \ l'
sometimes also referred to as vertices and the
edges are lines or arcs that connect any two

nodes in the graph. \ Edge

* A Graph consists of a finite set of vertices(or
nodes) and set of Edges which connect a pair T
of nodes. Edges

e I ¢
College of Engineering

 Linear and Non- Linear Data Structure

 In a linear data structure, the data items are arranged in a linear sequence. Example

1S array.
* n anon-Linear data structure, the data items are not in a sequence. Example is tree.

* homogeneous and Non- homogenous Data Structure In homogeneous Structure, all

the elements are of same type. Example is arrays.

* In Non-homogeneous structure, the elements may or may not be of same type.

* Example is records.

Static and Dynamic Data Structure

* Static structures are ones whose sizes and structures, associated memory

location are fixed at compile time.

* Dynamic structures are ones which expand or shrink as required during the

program execution and there associated memory location change.

College of Engineering o

Data Structure Operations

Traversing: Traversing a Data Structure means to visit the element stored in it.
This can be done with any type of DS.

Searching: Searching means to find a particular element in the given data-
structure. It 1s considered as successful when the required element is found.
Insertion: It is the operation which we apply on all the data-structures. Insertion
means to add an element in the given data structure.

Deletion: It is the operation which we apply on all the data-structures. Deletion
means to delete an element in the given data structure.

Sorting: Sorting means arranging the data either in ascending or on decending.

AT M E

College of Engineering

Pointers

->Pointer is a variable which can hold the address of
another variable

Pointer Variable
->An alternative method to access the content of a "
memory location ptr num
A
1) Direct method 26
int num;
num=26;

printf("the content of the num is %d", num);
Printf("the address of the num is %x", &num); .

AT M E

College of Engineering

a. Creation of a pointer (declaration) 100 101

b. Assigning the created pointer the address

c. De-referencing the pointer access to the data
int n;
int *p;
n=24;
p=&n;
printf("%d", *p);

Output: 24

AT M E

College of Engineering

100 101 102 103

Syntax for declaring a pointer float num; hum --

?
foat *q o IIR—
100 101 102 103

Ex:int *p; num
num=385.2367;
float *q;

double *r o [N

g=# 0

Dangling pointers: Created pointers are not pointing to any particular variable

sy |
College of Engineering ;

Pointer can be declared and initialized in the same line’

int a; int a=10;
a=10;
or
int *p; int *p=&a;
p=&a;
In C language * is used for 3 purpose
In indirect method * is used for 2 purpose 1) To create a pointer
1) To create a pointer int *p;
int *p; 2) To de reference a pointer
2) To de reference a pointer *p;
*p; 3) To multiply 2 variables

a*b;

sy |
College of Engineering ;

1. 2.

int n=5; int n=5;

int p; int *p;

p=&n; p=n;

printf("%d", *p); printf("%d", *p);
3. a

!n: :=_5; int n=5;

m_& p', float *p;

p_ n,; p=&n;

printf("%d", p); printf("%d", *p);

- WO —
College of Engineering o

Accessing variables through pointer

#include <stdio.h>
void main()
{

int a,b,c;

int *p, *q;

a=5;

b=10;

p=&a;

q=&b;

C=*p+¥q;
printf("cis:%d",c);

Can there be more than one pointer to a variable?

#include <stdio.h> 1000
void main() 3

{ N
int a;
int *p,*q,*r;
P q r

a=365;

1000
p=&a;
q=&a;
r=&a;
printf("the value of ais:%d\n", a); 7000
printf("the value of p is:%d\n",*p);
printf("the value of q is:%d\n",*q);
printf("the value of r is:%d\n",*r);

e
- iy

Difference between pointer variable and normal variable

Pointer Variable Normal Variable

1. Pointer Variable holds the address 1. A normal variable holds data

2.int *p; 2.int a;

3. We must de-reference a pointerto 3. There is no need to de-refernce a
access data normal variable to access data

AT M E

College of Engineering

Pointers and Arrays

int a[5]={10,20,30,40,50}; a

7'<p
int *p;

p=&al[0]; or p=a;

101 102 103 104

for(int i=0; i<4; i++) a
{
printf("%d\t", *p);
p++;

) P

c’&ggp nf%

)

S
(o [

sum = sum + *(p+i)
Sum=0.0+1.1=1.1
Sum=1.1+1.2=2.3
sum=2.3+1.3=3.6

AT M E

Source File Compiler

abo. 1 Tl

College of Engineering _

Dynamic memory allocation

Ohject File

ardd

Sample.obj

Sample.c |
List of Errors
. Conversion from HLL to
MLL \
« Decision to allocate Y
memory to variable o
Compilation

Linker Executahle File Processor User Screen

=5 LR Y e |

— y . " A+ FE

T Sample.exe Qutput

Header Files

Y .

Execution

NBA

AICTE
< "

Aecrepmeo®

o
o\\zﬁ-" ok &,

£

.:

c, \
) e

Execution of machine
level instructions
Decision to allocate
memory to variable

AT M E

College of Engineering

* Wastage of memory

* malloc()

* Reediting 1s a time consuming
» calloc()

process

* realloc()

* free()

Bicatorermere NI 3
College of Engineering .
malloc()

 malloc stands for Memory allocation

* General form of memory allocation using malloc is,

datatype *ptr = (datatype *) malloc(RequiredAmountOfMemory *
sizeof(datatype));
If malloc() is unable to find the required amount of memory, it returns NULL

Malloc()

int* ptr = (int*) malloc (5* sizeof (int));

|

SN —

«— 20 bytes of memory —»

College of Engineering

Example
p = (int *) malloc(100 * sizeof(int));

* A memory space equivalent to 100 times the size of an int bytes is reserved

* The address of the first byte of the allocated memory is assigned to
the pointer p of type int

* On successful allocation, the function returns the address of first byte
of allocated memory.

* Since address 1s returned, the return type 1s a void pointer. By type
casting appropriately we can use it to store integer, float etc.

o
L gwee f &,

- f

A
Src 1o v

Licsaor oy I %
College of Engineering ol

e cptr = (char *) malloc (20);

* Allocates 20 bytes of space for the pointer cptr of type char

e sptr = (struct stud *) malloc(10*sizeof(struct stud));

* Allocates space for a structure array of 10 elements. sptr

* points to a structure element of type struct stud

. Always use sizeof operator to find number of bytes for a data
type, as it can vary from machine to machine

College of Engineering

void main() printf("enter array elements\n");
{ _) for(i=0; i<n; i++)
int n,i;
‘ ’ r" {
| prlnti(\erlt)(.er the number of scanf("%d", p+i):
elements\n");)

scanf("%d",&n);

int *p = (int *)malloc(n*sizeof(int)); orintf("array elements are\n");

for(i=0; i<n; i++)

if(p == NULL) {
{ printf("%d\t", *(p+i));
printf("enough memory not)
available");)
exit(0);
}

SAED Wz,
4 %
b
<\

calloc()

calloc stands for Contiguous allocation of multiple blocks.

General form of memory allocation using calloc is,

datatype *ptr = (datatype *) calloc(n, sizeof(datatype));
If calloc() is unable to find the required amount of memory, it returns NULL

Calloc()

int* ptr = (int*) calloc (5, sizeof (int));

piREN | | | | SRR

«4b+

- 20 bytes of memory —»

College of Engincerinmgs

IDepartmuent of Compuater Sciemnocs S Engimeeringg (IData- Sciemnce))

printf("enter array elements\n");

void main() e
{ for(i=0; i<n; i++)
intn,i; { _
printf("enter the number of scanf("%d", p+i);
elements\n"); !
scanf("%d",&n); printf("array elements are\n");
int *p = (int *)calloc(n,sizeof(int)); for(i=0; i<n; i++)
{
if(p == NULL) printf("%d\t", *(p+i));
{ }
printf("enough memory not }
available");
exit(0);
}

= W —
College of Engineering .

realloc()

* realloc stands for re allocation
* General form of memory allocation using realloc is,

ptr = (datatype *) realloc(p, newsize*sizeof(datatype));

Realloc()

int* ptr = (int*) malloc (5* sizeof (int));

-
S

-~ 20 bytes of memory —»

'

ptr = realloc (ptr, 10* sizeof(int });

- ___________ |

40 bytes of memory

ne. College of Engineering |

 realloc() changes the size of the block by extending or deleting the memory at
* the end of the block.

If the existing memory can be extended, ptr value will not be changed

If the memory cannot be extended, this function allocates a completely new

block and copies the contents of existing memory block into new memory

block and then deletes the old memory block.

g'i%lt?ge of Engineering : P
for(i=0; i<n; i++)

int n,i,new; {

printf("enter the number of elements\n"); printf("%d\t", *(p+i));

scanf("%d",&n); }

int *p = (int *)malloc(n*sizeof(int)); printf("\nenter the new number of elements\n");

if(p == NULL) scanf("%d",&new);

{ p=(int *)realloc(p,new*sizeof(int));
printf("enough memory not available"); printf("enter array elements\n");
exit(0); for(i=0; i<new; i++)

} {

printf("enter array elements\n"); scanf("%d", p+i);

for(i=0; i<n; i++) }

{ printf("array elements are\n");
scanf("%d", p+i); for(i=0; i<new; i++)

} {

printf("array elements are\n"); printf("%d\t", *(p+i)); }}

A LM E I
College of Engineering

free()

Dynamically allocated memory form calloc() or malloc() should be freed(released)

using free().

General format: Free()

. . W
void free(void *ptr); int* ptr = (int*) calloc (5, sizeof (int));

Or

erE(ptr); +—— 20 bytes of memory ——»
|

v

operation on ptr

gl free(ptr)
v

College of Engineering

void main()
{ for(i=0; i<n; i++)
int n,i; {
printf("enter the number of scanf("%d", p+i);
elements\n"); }
scanf("%d",&n); printf("array elements are\n");
int *p = (int for(i=0; i<n; i++)
*)malloc(n*sizeof(int)); {
if(p == NULL) printf("%d\t", *(p+i));
{
printf("enough memory iree(p);
not available"); }
exit(0);
}

printf("enter array
elements\n");

Tree Array of trees

&
oWeTe
aeAa

Student Array of students

College of Engineering

Array is a container which can hold a fix number of items and these items should be of the

A
Src 1o v

same type. Most of the data structures make use of arrays to implement their algorithms.
Following are the important terms to understand the concept of Array.
Element — Each item stored in an array is called an element.

Index — Each location of an element in an array has a numerical index, which is used to
identify the element.

Array Representation - Arrays can be declared in various ways in different languages.

* Imagine that we have 100 scores. Weneed to read them, process them and print
them. Wemust also keep these 100 scores in memory for the duration of the
program. Wecan define a hundred variables, each with a different name.

scorel

score2

score100

College of Engineering

But having 100 different names creates other problems. Weneed 100 references
to read them, 100 references to process them and 100 references to write them.

Start ?
W W
l Read scorel ' | Process scorel ' ' Write scorel '

' Read scorel00 ' l Process score100 ' Write scorel 00

AT M E

College of Engineering

* An array is a sequenced collection of elements, normally of the same data type,
although some programming languages accept arrays in which elements are of
different types. Wecan refer to the elements in the array as the first element, the
second element and so forth, until we get to the last element.

scores | 1]

scores [2]

An array

scores [100]

SCOTES

e I ¢
College of Engineering

Multi-dimensional arrays

* The arrays discussed so far are known as one-dimensional arrays because the
data 1s organized linearly in only one direction. Many applications require that
data be stored in more than one dimension. Figure shows a table, which is
commonly called a two-dimensional array

Second dimension
(columns) scores[2][3]
I |
(11 2] [3] (4]

[1]
[2] o |

First dimension

(rows) [3]

[4]
[5]

College of Engineering ¢

Memory Layout

* The indexes in a one-dimensional array directly define the relative positions of the
element in actual memory. Figure shows a two-dimensional array and how it 1s
stored in memory using row-major or column-major storage. Row- major storage
1S more common.

“Aw] B “A”
Column 1
“B” R l “E”
ow -
r.cC” [I] [2] [3] [4] C 1 2 -:-‘.Bn
“D” [1] r.cAn r.cBn r.cC” “D” olumn “F”
“E” [2] r.cEn ch” r.cG” r.cH” B “C”
“F” | | Row 2 User’s View Colurmn 3 i
G Column 4 D
un “H”
Row-major Column-major

storage storage

e
College of Engineering

Dynamically allocated Arrays

#include <stdio.h>
#include <stdlib.h>
void main()
{
intr =3, c=4,i;//Taking number of Rows and Columns
int *ptr; //creating pointer
ptr = (int *)malloc((r * ¢) * sizeof(int)); /Dynamically Allocating Memory (12*2=24)
for(i=0;i<r*c;i++)
{
ptr[i] =i + 1; //Giving value to the pointer and simultaneously printing it.
printf("%d ", ptr]i]);
if (I+1)% c==0)
{
printf("\n");
}

¥
free(ptr);

35 23 45 20 100 70

35.5 11.5 34.3 15.9 90.6 46.7

Array means, a series of entities or a sequence of entities of the same type (homogeneous).
In C language entities can be char, int, float and double type data

ey 2000000 [~
College of Engineering

Declaration of 1-D array

Syntax:

Ex: int a[5];
float b[5];

A declaration statement tells the compiler,
->data type of the array

->name of the array

->size of the array

Compiler then allocate memory depending upon the declaration.

a .---

a[o0] a[1] a[2] a[3] a[4]

- BIIIEIINIENI

b[0] b[1] b[2] b[3] b[4]

1) Direct Initialization : Mentioning array size is not compulsory.

Ex: int a[S] = {29, 47, 132, 229, 50 };

Y9 47 132 229 5¢

a[0] a[1] a[2] a[3] a[4]

Ex: float b[5] = {29.3, 47.1, 132.4, 229.6, 50.3 };

b[0] b[1] b[2] b[3] b[4]

College of Engineering :

2) Initialization using a for loop:

->Using a for loop to initialize the array blocks

->Mentioning array size is compulsory

inta[5];

inti;
printf(" Enter an integer");
for(i=0; i<=4; i++)

{
scanf("%d", &ali]); — 29 47 132 229 5

} a[0] a1l a[2] a[3] a[4]

a[2] a[3] a[4]

AT M E

College of Engineering

To store single integer, To store array of integers,

int a = 35: int a[5] = {35,39,87,53,28};

, :

a[0] a[1] a[2] a[3] a[4]

Note: Array is a Indexed Data Structure

AT M E

College of Engineering

#define N20

#define M 10 4

int main() Tendulkar

{

char word[N], *w[M]; Souray Khan
inti, n; e
scanf("%d",&n); India

for (i=0; i<n; ++i) { scanf("%s", word); w[0] = Tendulkar

w(i] = (char *) malloc
((strlen(word)+1)*sizeof(char));
strcpy (w[i], word) ;

}

for (i=0; i<n; i++)

{ printf("w[%d] = %s

\n",i,w[i]); return O;

w|[1] = Sourav
w|[2] = Khan

AT M E

College of Engineering

w N = O

(I ull |k \0
TS a|v|\0

TK 0

(L al\0

saewe ey [
College of Engineering

1. A car manufacturing company uses an array car to record number of cars sold each year
starting from 1965to 2015

i) Find the total number of years(elements)

ii) Suppose base address = 500, word length (w) = 4, find address of car[1967],

car[1969] and car[2015]

Two Dimensional Array

-D array of Students

1

Student

2-D array of Student

AL LE I
College of Engineering s

Two-dimensional arrays are called matrices in mathematics and tables in business applications.
There is a standard way of drawing a two-dimensional m x n array A where the elements of a

form a rectangular array with m rows and n columns and where the element A[J, K] appears in
row J and column K.

ITwo-Dimensional 3 x 4 Array A

= WO E —
College of Engineering e :

Representatlon of Two-Dimensional Arrays in Memory

Let A be a two-dimensional m x n array. Although A is pictured as a rectangular array of

elements with m rows and n columns, the array will be represented in memory by a block of m . n
sequential memory locations.

The programming language will store the array A either (1) column by column, is called
column-major order, or (2) row by row, in

A Subscript A Subscript

(1, 1)) (1, 1)

(2 1]"C0|umn1 l1-2):
‘ > Row 1

(3, 1)) | (1,3)

(1.2)) (1.4) |

52,2)5-' Column 2 (2,1)

(3,2)) (2,2)

iy @3 Row 2 - .

' —— Two-Dimensional 3 x 4 Array A

(2, 3) r Column 3 | (2,4))

(3, 3) ‘ (8, 1J.

(1,4)° (3, 21‘ (Column-major order) LOC(A[J, K]) = Base(A) + w[M(K - 1)+ (J - 1)]
| ¢ Row3

(2. 4) ’cw 4 3.9) (Row-major order) LOC(A[J, K]) = Base(A) + W[N(J - 1) + (K - 1)]

(3, 4)) (3, 4))

(a) COIumn-maiDJ order (D) Row-malor order _

he| College of Engineering

* A two dimensional array 1s represented as one- dlmensmnal array of
pointers where each pointer contains address of one-dimensional array.

* For example, consider the following declaration: int a[3][5];

* Recall that address of [1][j]-th element 1s found by first finding the

address of first element of 1-th row, then adding j to it.

AT M E

| College of Engineering

* Now think of a 2-d array of dimension [M][N] as M 1-d arrays, each with N
elements, such that the starting address of the M arrays are contiguous (so the
starting address of k-th row can be found by adding 1 to the starting address of
(k-1)-th row)

 This 1s done by allocating an array p of M pointers, the pointer p[k] to store the

starting address of the k-th row

Licsaor ooy N (5
College of Engineering g i

Structures

struct student

Student: {
Name char namel[5];
Age int age;
Marks int marks;
USN char USN;

5

struct tree
Tree: {
Name char name[5];
NO_' of branches int No.of branches;
height

float height;

'.,: :

Structures

struct stud{_

ceyword for Name of the
structure
creating char name[20];
structure int age; Structbure |
int marks; members/data

float height;

AT M E

College of Engineering

Syntax

struct structure_name

{
datatype member variable 1;
datatype member variable 2;
datatype member variable 3;
datatype member variable 4;
)

Ex. 1 Ex. 2
struct student struct tree
{ {
char name[20]; char name([5];
int age; int No.of
int marks; branches;
float height; float height;
JA b

AT M E

College of Engineering

Structures

struct student struct tree

{ {
char name[5]; char name[5];
int age; int No.of branches;
int marks; float height;
float height; I

)

struct student s1; struct tree t1;

struct student
{ sl
char name/[5];
int age;
int marks;
float height;
I
struct student s1;

A W N - O

N o

— Memory to
store name

} Memory to store age

} Memory to store marks

— Memory to store
height

AT M E

College of Engineering

0059

struct student 0
{ sl 1
char name[5]; g

int age;
int marks; 4
float height; >
J y
struct student s1; 7
8
s1l.name="Ramu"; 20
sl.age=23; 11
12

s1.marks=80;
s1.height=5.5;

.(dot) -> Member access operator

AT M E

College of Engineering

struct tree
{ 0
1
charname(5];
. 2
int noofbranches; ;
float height; 4
) :
’ 6
7
struct tree t1; 8
9
tl.name="teak"; 10
tl.noofbranches=23; E
tl.height=31.71; 13
14

.(dot) -> Member access operator 15

College of Engincerinmgs & E L=10= 2 =] g

Department of Computer Scien ﬁﬁ.;"fi}ﬁﬁ’.ﬁﬁ‘éf‘Sf‘Jdéfﬁ Bt@ttr’,;ps—\‘ﬁ&/p,euce)
//program to read and display student details printf{"enter the name of the student\n");
using structures scanf("%s", s1.name);
#include <stdio.h> printf{"enter student age\n");
struct student scanf{*%d", &s1.age);
{ printf{"enter student marks\n");
char namel[20]: scqnf(':% g &sl.marks?;]
_ printf{"enter student height\n");
l_nt age, scanf("%f", &s1.height);
int marks; printf("Student details you entered:\n");
float height; printf("Student name is: %s\n",s1.name);
I printf("Student ageis: %d\n",s1.age);
void main() printf("'Student marks is: %d\n", s1.marks);
{ printf("'student height is: %.2f\n",s1.height);
struct student s1; /

College of Engineering

//program to read and display tree
details using structures
#include <stdio.h>

scanf("%s", t1.name);

printf("enter tree height\n");
?tl’ ucttree scanf("%f", &t1.height);
char name [20]; printf("enter number of noofbranches\n");
ﬂOGt height; scanf{"%d", &t1.noofbranches);
int noofbranches; printf("the tree name is: %s\n",t1.name);
Koo printf{"the tree height is: %f\n",t1.height);
¥OId main() printf("noofbranches in the tree are:

%d\n",t1.noofbranches);
struct tree t1;

printf{"enter the name of the tree\n");

AT M E

College of Engineering

’ =N v, o .
& 2 B2,
SAED Wor, 2 Y e %,
e)
o B 3
g iz NBAY
% & AICTE 1
- s B RECISTRARS e
4 7 ACCheneD! Velo sene’i SR 2
S - 1S0 9001:2008 0059

Array is a collection of related data elements | Structure is collection of logically related

of same data type. (homogeneous data) data elements of different data types.
(heterogeneous data)

Array data are accessed using index Structure data are accessed using structure
name and dot operator

No key word is used to create array Struct keyword is used create structure

Each element will be of same size Size of the elements can bedifferent

College of Engineering

#include <stdio.h> Structures and Functions
struct tree
{ void main()
char name[20]; {
float height; struct tree t1;
int noofbranches;
k printf{"enter the name of the tree\n");
void disp(struct tree tr) scanf("%s", t1.name);
{ printf{("enter tree height\n");
printf("the tree name is: %s\n", tr.name); scanf("%f", &t1.height);
printf("the tree height is: %f\n",tr.height); printf{"enter number of noofbranches\n");
printf("noofbranches in the tree are: scanf("%d", &t1.noofbranches);
%d\n" tr.noofbranches); disp(t1);
} }

Bt I 5
College of Engineering

Array of Structures
0 1 2 3 4 5 6 7 8

College of Engineering

printf("enter the name of the tree\n");

#include <stdio.h> scanf("%s", t1[i].name);
struct tree printf("enter tree height\n");
{ scanf("%f", &t1[i].height);
char name[20]; printf("enter number of noofbranches\n");
float height; scanf("%d", &t1[i].noofbranches);
int noofbranches; }
7
void main() for(int i=0; i<=1; i++)
{ {
struct tree t1[2]; printf("the tree name is: %s\n",t1[i].name);
printf("the tree height is: %f\n",t1[i].height);
for(int i=0; i<=1; i++) printf("noofbranches in the tree are:
{ %d\n",t1[i].noofbranches);
}
}

C::lilr:gc e 5 &]:_ng1r1cr:ring & E i g

Fypede o Pemra e o Comparar sctan HREMIEESINODR S (o men- mcroncey
2 typedef struct

* The typedefis a keyword that is used to char namel[10];

provide existing data types with a new int usn;

name. Jstudent;
* The C typedef keyword is used to redefine void main()

the name of already existing data types. {

student s1;

printf{("enter student name:\n");
scanf("%s", s1.name);

printf{("enter student usn:\n");
scanf("%d", &s1.usn);
printf("student name is %s",s1.name);
printf("student usn is %d", s1.usn);

e

i I S
College of Engineering v’

Different ways of writing a program using structure

#include<stdio.h> #include<stdio h> #include<stdio.h>
struct student struct student Eypedef struct
{
char name[10]; { char name[10]; char name[10];
int usn; int usn: int usn;
}; 151 }student;
void main() void main() _ _
{ { void main()
struct student s1; printf("enter student name:\n"); {
printf("enter student name:\n"); scanf("%s", s1.name); stl_Jdent s1;
scanf("%s", s1.name); printf("enter student usn:\n"); printf("enter student name:\n");
printf("enter student usn:\n"); scanf("%d", &s1.usn); sc_anf("%s", s1.name);
scanf("%d", &s1.usn); printf("student name is printf("enter student usn:\n");
printf("student name is %s\n",s1.name); sc_anf(:%d", &s1.usn);
%s\n",s1.name); printf("student usn is %d", s1.usn);_ printf(*student name is
printf("student usn is %d", s1.usn); } /0S\n ,su1.name), . |
) }prlntf(student usn is %d", s1.usn);

AT M E

College of Engineering

#include<stdio.h>
struct address
{
char city[20];
int pin;
char phone[14];
}
struct employee
{
char name[20];
struct address add,;
}
void main ()
{
struct employee emp;
printf("Enter employee information?\n");
scanf("%s %s %d %s",emp.name,emp.add.city, &emp.add.pin, emp.add.phone);
printf("Printing the employee information....\n");
printf("name:%s\nCity:%s\nPincode:%d\nPhone:%s",emp.name,emp.add.city,emp.add.pin,emp.add.phone)

Self-Referential Structures

A self-referential structure is one in which one or more of its components is a pointer
to itself. Self referential structures usually require dynamic storage management
routines (malloc and free) to explicitly obtain and release memory.

Self Referential Structures

typedef struct { 4
struct node {
char data; int data1;
struct list *link ; char data2;
) struct node* link;
} list;

Each instance of the structure list will have two components data and link.

 Data: is a single character,

* Link: link is a pointer to a list structure. The value of link is either the address in memory
of an instance of list or the null pointer.

AT M E

College of Engineering

list item1, item2, item3;

item].data ='a’'

item2.data ='b'";

item3.data = 'c';

item].link = item2.1ink = item3.link = NULL;

a / b C

iteml.link = &item?2;
item2.1ink = &item3;

AT M E

College of Engineering

A union is similar to a structure, it is collection of data similar data type or dissimilar.

Syntax:

union tag_name{
data_type member 1;
data_type member 2;

data_type member n;
}variable_name;

AT M E

College of Engineering

typedef union union item

{ {
int i; inti;
double d; double d;
charc; charc;

fitem; |

- —
C
I

AT M E

College of Engineering 2 o 5 _
Difference between Structure and Union
STRUCTURE UNICN
Keyword The kevword structis usedto define a structure The keyword union is usedto define a union.

Size When avariable is associated with a structure, the when avariable is associated with a union, the compiler
compiler allocates the memory for each member. The allocates the memaory by considerngthe size of the
size of structure is greater than or equal to the sum of largest memory. So, size of union is equal to the size
sizes of its members. of largest member.

Memory Each memberwithin a structure is assigned unigue Memaory allocated is shared by individual members of

storage area of location. union.
Value Altering the value of a member will not affed other Altering the value of any of the member will alter other

Altering members of the structure. membervalues.

Accessing . _ _

SR Individual member can be accessed atatime. Only one membercan be accessed atatime.
Initialization W . : T
o Minbes Several members of a structure caninitialize at once. Cnly the first member of a union can be initialized.

1

AT M E

aime| College of Engineering - y ’k '
void main() void main()
{ {
typedef struct typedef union
{yp Structure {yp
int marks; int marks;
char grade; char grade;
float percentage; float percentage;
}student; }student;
students; students;
s.marks=90; S.marks=90;
s.grade='A’; marks: 90 printf("marks:%d\n",s.marks);

grade: A
percentage: 90.0

s.percentage=90.0;
s.grade="'A’;
printf("marks:%d\n",s.marks); printf("Grade:%c\n",s.grade);
printf("Grade:%c\n",s.grade);
printf("percentage:%f\n",s.percent

age);

s.percentage=90.0;
printf("percentage:%f\n",s.percentage);

saeweecy)
College of Engineering

Polynomials

* A polynomial is a sum of terms, where each term has a form where x is the
variable, a is the coefficient and e is the exponent

A(X) =3x20 +2x5 +4
B(Xx) =x4 +10x3 +3x2+1

The largest (or leading) exponent of a polynomial is called its degree. Coefficients that are zero
are not displayed. The term with exponent equal to zero does not show the variable since x
raised to a power of zero is 1.

e‘g\.}Ee'!!_{;y.
2l
AN iy

Polynomial Representation

One way to represent polynomials in Cis to use typedef to create the type polynomial as
below:

#define MAX_TERMS 100 /*size of t *
ine . size of terms array éxzo + 236 + 4

typedef struct
{
float coef;
int expon;

} polynomial,

term[0] term[1] term[2]

polynomial terms[MAX-TERMS];
int avail = 0;

AT M E

College of Engineering

Consider the two polynomials -
startA finishA startB finishB avail
e 2 1 1 10 3 1
= 1000 0 4 3 2 0
0 1 2 3 4 5 6

The above figure shows how these polynomials are stored in the amray terms. The index of the first
termm of A and B is given by startA and startB, while finishA and finishB give the indeXx of the last term
of A and B.

* The index of the next free location in the array is given by avail.

* For above example, startA=0, finishA=1, startB=2, finishB=5, & avail=6.

AL LE I
College of Engineering <

inti;
for(i=0; i<n; i++)
#include<stdio.h> {
typedef struct if(p[i].cf < 0)
{ printf("%d",p[i].cf);
int cf; /lused to hold coefficient

int px; /lused to hold power of x if(p[i].px != 0)

}poly; printf("x*%d" pl[i].px); }
/Ffunction to read a polynomial with n terms printf("\n");}
Eloid read_poly(poly p[], int n) void main()

{

int i,cf,px; int n;

for(i=0; i<n; i++) poly p[10];

{ printf("enter number of terms:\n");
printf("enter Coefficient and exponent:"); scanf("%d", &n);
scanf("%d%d", &pli].cf, &p[i].px);); read_poly(p, n);

: } print_poly(p,n);
}

/function to display a polynomial with n terms
void print_poly(poly p[], int n)

T

What is Sparse Matrix?

A matrix which contains many zero entries or very few non-zero entries is called as Sparse matrix.
In the figure B contains only 8 of 36 elements are nonzero and that is sparse.

row 0
row 1
row 2
row 3

row 4

A sparse matrix can be represented in 1-Dimension, 2- Dimension and 3- Dimensional array.
When a sparse matrix is represented as a two-dimensional array as shown in Figure B, more

space is wasted.

col0 coll

- 2
‘2 ! 2

Figure A

SPARSE MATRICES

col2

4

rowl(
rowl
row2
row3d
row4

rows

col0

15
0
0
0
91

coll

0
11

c o o O

col2 col3 col4 colS

0 22 0 -15

3 0 0 0

0 -6 0 0

0 0 0 0

0 0 0 0

28 0 0 0
Figure B N

AT M E

College of Engineering

* An element within a matrix can characterize by using the triple This means
that, an amray of triples is used to represent a sparse matrix.

» Organize the triples so that the row indices are in ascending order.

 The operations should terminate, so we must know the number of rows and columns,
and the number of nonzero elements in the matrix.

#define MAX_TERMS 100 /* maximum number of terms */
typedef struct
{
int col;
int row;
int value;
} TERM;

//1- dimensional amray representing amray of triples<row,col,val>
TERM a[MAX_TERMS];

gge of &,

| NEA CSE
A_;J'”“!g AJA | R

REGISTRARS
Accrepen® ot AN PP

Licsaor ooy N (5
College of Engineering %

150 9004:2008 D059

Row Col Val

col0 coll col2 col3 cold4 col5 6X6 is the size and 8 non zero

il & @ @ © 45) a[[l] g g ?5 B \alues in given matrix
rowl [0 11 3 0 0 0 [] 0 3 22 Row 0
row2 |0 0 0 -6 0 0 3] 0 5 15
rowd 0 0 0 0 0 0
(4] 1 1 11 Row 1
rows 3 0 28 0 0 0 B [6] 2 % -6 =sssm) Row 2
Figure B [7] 4 0 0] =) Row4
[8] 5 B 28 oossssm) Row5

Fig (a): Sparse matrix storedas triple

L I
College of Engineering

* The various information can be accessed using as shown below:

The size of the matrix using : a[0].row, a[0].col
The number of non-zero elements using : a[0].val
The row index of a non-zero element : a[j].row —

The column index of a non-zero element : a[j].col |forj=1 to a[0].col

The index of non-zero element : a[j].val]

4 a‘zge of &,

vea | = (§ g.

Fo— EA

col0 coll c¢o0l2 col3 cold col5

] pa"&

void read_sparse_matrix(TERM a[], int m, int n) il @ 0 &= 2 B
{ rowl |0 11 3 0 0 0
int i,j,k,item; l'o“:z 0 0 0 -6 0 0
a[0].row=m, a[0].col=n, k=1; “"“_; 21 g z 3 g 2
for(i=0; i<m; i++) S
{ rows 3 0 28 0 0 0]
. . . Figure B
for(j=0; j<n; j++) fow Col val
{
scanf("%d",&item); — 6X6 is the size and 8 non zero
if(item==0) a[0] 6 6 8 values in given matrix
. [1] O 0 15 Row 0
continue; 2] o 5 p
a[k].row=i, a[k].col=j, a[k].val=item; 3] 0 5 15
} [5] 1 2 3 =) Row 2
) CI R g
a[O].vaI=k-1; {8} 5 5 28 mmsssm) Row 5
}

Fig (a): Sparse matrix stored as triple

sy |
College of Engineering

Transpose of a matrix

a[0] 6 6 8
col0 coll col2 col3 col4d col5 [;] 8 g ;g
rowd[15 0 0 22 0 -15 | {3} 5 p 5
rowl |0 11 3 0 0 0 [4] 1 1 11
row2 0 0 0 -6 0 0 [5] 1 2 3
row3 |0 0 0 0 0 0 [6] 2 3 -6
rowd|91 0 0 0O O 0 [7] 4 0 91
rows |0 0 28 0 0 0 [8] 3 L 28
— Figure B . Fig (a): Sparse matrix storedas triple
- Row Col
Val
6X6 is the size and 8 non zero values in
bﬁ]] g g ?5 given matrix
2] © 4 91 Col 0
[3] 1 1 11 Col1
[4] 2 1 3
5] 2 5 38 Col 2
[6] 3 0 22
M 3 2 -6 col
[8] 5 0 -15

I

Fig (b): Transpose matrix stored as triple

AL LE I
College of Engineering

a[0] 6 6 8
void transpose(TERM a[], TERM b[]) Bj 8 2 ;

{ o [31 0 5 -15
inti,j,k; [4] 1 1 11
b[0].row=a[0].col; [5] 1 2 3
b[0].col=a[0].row; 6] 2 3 b
b[0].val=a[0].val; L A <
oy [8] 5 2 28
for(i=0; i<a[0].col; i++) Fig (a): Sparse matrix storedas triple
{ . .] Row Col Val

for(j=1; j<a[0].val; j++)
(b[0] 6 6 8
if(a[j].col==i) Ei g 2 ;i
{
. 3] 1 1 11
b[k].row=alj].col; {4} o) 1 3
b[k].col=a[j].row; [5] 2 5 28
b[k].val=al[j].val; [6] 3 0 22
k++; [71 3 2 -6
} [8] 5 0 -15

Fig (b): Transpose matrix stored as triple

SAER Ware

4 X

| J
AN S

Character array - Strings String in C

char str[] = "Geeks"

index — , , , 3 4
Array which has character in it is called as String str —|[G[e[e[k[s] |
Address —-[l J | | []
. DG)

Strings end with special character called null character(\0).
0 1 2 3 4 5 6 7
char als]; - NI
e e 0 1 2 3 4 5 6 7
Initialization:
char a[8] = {H' e’ 1, 1,'0'\0') M e 1 1 o 0 | | |
Or

0 1 2 3 4 5 6 7
char al]="HelloHi"; - e [[fo [i [|
e

College of Engineering
BASIC TERMINOLOGY: k=

String: A finite sequence S of zero or more Characters is called string.
Length: The number of characters in a string is called length of string.

Empty or Null String: The string with zero characters.

Concatenation: Let S1 and S2 be the strings. The string consisting of the characters of S1
followed by the character S2 is called Concatenation of S1 and S2.

Ex: ‘THE’ // ‘END’ = ‘THEEND’

‘THE’ // ¢’ /| ‘END’ = ‘THE END’

Substring: A string Y is called substring of a string S if there exist string X and Z such that
S=X/IY/IZ

If X is an empty string, then Y is called an Initial substring of S, and Z is an empty string then
Y is called a terminal substring of S.

Ex: ‘BE OR NOT” is a substring of ‘TO BE OR NOT TO BE’

‘THE”’ is an initial substring of ‘THE END’

ALOLE I
) College of Engineering |

1. Fixed length storage structures

In this storage structure, each line of text to be manipulated is viewed as a record
where all records have same length.

0 I
| mme
, [N N
d

g W oo
e

Licsaorcivmeory I (%
College of Engineering

Time wasted in reading entire record if more spaces are present

Certain records may require more space than available to store a string

1
2
3. [If the length reserved for string is too small, it is not possible to store larger data
4. If the length reserved for string is too large, too much memory is wasted

5

Once the string is defined, the length of the string can't be changed

AT M E

College of Engineering

i e &0 A
. o’ £ i oot S i GISTRARS
K CREDITED'
< 150 9001:2008

g
 variable-length strings don’t have a pre- ““ 2

defined length. In this string, neither the 5 bytes
precise length nor
e maximum length is known at creation n_“
time.
* The storage structure for a string can \ } \—r/
expand or shrink to accommodate any |
size of data. String delimiter
* ->In C language strings end with a 8 bytes
special character called NULL (denoted
by \0)

char a[]="RAMA";

char a[]="KRISHNA";

ALM E I {
College of Engineering

3. Linked storage structures

* In most of the word processing applications, the strings are represented using linked
lists.

» Using linked lists inserting/deleting a character/word 1s much easier.

* The string “MITHIL” can be represented using linked list as shown below:

M

5
|
M
T
|
y
|
y

W0

String Operations

=
=
=
=

SVER Wir,
4 -
EAN /=

Substring is a string obtained by extracting a part of a given string, given the position and length
of the substring.

Ex: SUBSTRING ('TO BE ORNOT TO BE’, 4,7)='BE OR N’

SUBSTRING ('THE END', 4, 4) ="' END'

Indexing

The process of finding the position of pattern string in a given text t is called indexing.

It is also called pattern matching.

If the paatern string is present in text t, the position of the first occurrence of the pattern string is
returned otherwise, 0 is returned.

Let, text t = “RAMA IS THE KING OF AYODHYA?”, the pattern string pattern is “KING”.
Then, INDEX(t, pattern) =13

* The process of appending the second string to the end of first string is called concatenation.

* We can denote the concatenation symbol by “+”.
For example, let first string is s1I="SEETA” and the second string s2 =" RAMA”.
Then, s1+ s2 = “SEETA RAMA”

Length

The number of characters in a string is called length of the string. For example,
Length(“RAMA”) =4

Formatted - printf (for output) Un formatted - puts (for ?UtPUt)
- scanf (for input) - gets (for input)

#include<stdio.h>

Void main()
{
har name[20]; .
char c[20]; ¢ _ [20]) O/p:
oy o Printf("enter your name:"); enter your name: Sachin Tendulkar
scanf("%s", c); . .
Scanf("%s", name); your name is: Sachin

Printf("your name is %s:", name);

AT M E

College of Engineering

String functions Description of each function

strlen(str) Returns length of the string str

strcpy(dest, src) Copies the source string src to destination string dest
strcat(strl,str2) Append string str2 to string strl

strcmp(strl,str2) Compare two strings strl and str2

strrev(str) Reverse the contents of string stored in str

‘] | A I I | E

College of Engincerinmgs

IDepartment of Comypaeites

String Length

#include<stdio.h>
void main()

{
char str[6]="Hello";
int len = my_strlen(str);
printf("length of str is %d",len);
}
int my_strlen(char str[])
{
int i=0;
while(str[i] !="'\0")
{
i++;
}
return i;

index
value

address

| el ISt |

T e o

char str[6] = “Hello”;
[} 1 2 3 4 5
H e | 1 0 \@

1000 1001 1002 1003 1004 1005

#include<stdio.h>
#include<string.h>
void main()
{
char str[6]="Hello";
int len = strlen(str);
printf("length of str is %d",len);

}

#include<stdio.h>

void main()

{
char str1[6]="HELLO";
char str2[6];
My _strcpy(strl, str2);

}
void my_strcpy(char str1[], char str2[])
{
int i=0;
while(str1[i] !="\0")
{
str2[i]=stri[i];
i++;
}
str2[i]="\0';
}

#include<stdio.h>
#include<string.h>
void main()
{
char str1[6]="HELLO";
char str2[6];
strcpy(strl,str2);
printf("string 2 is %s",str2);

. B — ¢
College of Engineering %

B Je<stdio.h> Strlng concatenation

void main() 0 1 2 3 4 5 6 7 & 9 1 11 1z 13 ‘14
{ strl 1 r ¥ t o [t
char str1[6]="HELLO";
char str2[6]="WORLD";

str2 | p r o E r i m M

My _strcat(strl, str2); streat(strl, str2);
} strl | t r ¥ t o P e £ T a m |
void my_strcat(char str1[], char str2[]) ' I
{ MNull character (A) of strl is replaced by the first character of ste?
inti,j;
i=0,j=0;
while(str1[i] !="\0') #include<stdio.h>
{ #include<string.h>
i++; void main()
} {
while(str2[j]!'="\0") char str1[6]="HELLO";
{ char str2[6]="WORLD";
stri[i++]=str2[j++]; strcat(strl,str2);
} printf("strl is %s",strl);
stri[i++] ="\0"; }

#include<stdio.h>
void main()
{
char str1[6]="Hello";
char str2[6]="Hello";
int res = my_strcmp(strl, str2);
if(res==0) { printf("strings are equal\n"); }
else if(res < 0) { printf("string 1 is smaller than string 2");
else { printf("string 1 is greater than string 2"); }

}

Int my_strcmp(char stril[], char str2[])

{
inti;
i=0;
while(str1[i] == str2][i])
{
if(stri[i] =="'\0')
break;
i++;
}
return strl[i] - str2[i];
}

= WO E "’
College of Engineering s i

String compare

str1

str2

Memory

Index 0 1 2 3 4 5 6

Memory

Index

AT M E

College of Engineering

String Reverse

#Hinclude<stdio.h>
#include<string.h>
void main()
{
char str1[6]="Hello";
char str2[6];
my_strrev(strl, str2);

}

void my_strrev(char strl[], char str2[])
{

inti,n;

n = strlen(strl)

for(i=0; i<n; i++)

{

str2[n-1-i] = strl[i];

}
str2[n] ="'\0';

Brute Force Algorithm

The first pattern matching algorithm is one in which comparison is done by a given pattern P with each of
the substrings of T, moving from left to right, until a match is found.

WK = SUBSTRING (T, K, LENGTH (P))

» Where, WK denote the substring of T having the same length as P and beginning with the Kth character
of T.

AT M E

College of Engineering

* First compare P, character by character, with the first substring, W1. If all the characters
are the same, then P= W1 and so P appears in T and INDEX (T, P) = 1.

* Suppose it is found that some character of P is not the same as the corresponding character
of W1. Then P # W1

» Immediately move on to the next substring, W2 That is, compare P with W2. If P # W2
then compare P with W3 and so on.

* The process stops, When P 1s matched with some substring WK and so P appears in T and
INDEX(T,P) = K or When all the WK'S with no match and hence P does not appear in T.

* The maximum value MAX of the subscript K i1s equal to LENGTH(T) -LENGTH(P) +1.

e
College of Engineering

| Algorithm: (Pattern Matching_Brute Force)

P and T are strings with lengths R and S, and are stored as arrays with one character per
element. This algorithm finds the INDEX of P in T.
1. [Initialize.] Set K: =1 and MAX: =S-R +1

2. Repeat Steps 3 to 5 while K <MAX
3.Repeat for L =1 to R: [Tests each character of P]

If P[L] # T[K +L -], then: Go to Step 5
[End of inner loop.]
4. [Success.] Set INDEX =K, and Exit
5.SetK =K +1
[End of Step 2 outer loop]
6. [Failure.] Set INDEX =0
7. Exit

A L M E I
College of Engineering

PATTERN MATCHING ALGORITHM - KMP algorithm(Knuth Morris Pratt)
1234567891011
Strings: aaaaaaaaaab

{
Patternp: aaab
k=1, s1=qo, n=length(s) P

While(k<=n && sy!=p)

Algm PatternMatching_KMP(s, p) return int

{
Read tx
Ske1 = F(s,t
kk=|1<+1 . Patternp: aaba
}
If(k>n) (a) Pattern matching table
{
index=0 . . /Ez\\ = Q : _____
}
else B e 5 _
{ et
Index=k—|ength(p) b Pattern matching graph
}

return index

Stacks

Stacks: Definition, Stack Operations, Array Representation of Stacks, Stacks using Dynamic
Arrays, Stack Applications: Polish notation, Infix to postfix conversion, evaluation of postfix
Expression

Recursion - Factorial, GCD, Fibonacci Sequence, Tower of Hanoi, Ackerman's Function.

Queues: Definition, Array Representation, Queue Operations, Circular Queues,

Circular queues using Dynamic arrays, Dequeues, Priority Queues, A Mazing Problem.
Multiple Stacks and Queues. Programming Examples.

STACK

_ A+
4
N,

-> Stack is a linear data structure which follows a particular order in which the operations are

performed.

->The order may be LIFO(Last In First Out) or FILO(First In Last Out).

-> A stack can be implemented by means of Array,
Structure, Pointer, and Linked List.

-> Here, we are going to implement stack using
amrays, which makes it a fixed size stack
implementation.

->At any given time, we can only the top
element of a stack.

Top

’F—'\I Push item

m Pop item

Bicatoreiory NI
College of Engineering o

ARRAY REPRESENTATION OF STACKS

* Stacks may be represented in the computer in various ways such as one-way linked

list

(Singly linked list) or linear array.
 Stacks are maintained by the two variables such as TOP and MAX STACK SIZE.
* TOP which contains the location of the top element in the stack. If TOP=-1, then it

indicates stack is empty.

* MAX STACK SIZE which gives maximum number of elements that can be stored

in stack.

Stack can represented using linear array as shown below

A B C
0 1 2 3 4 5 6 7
TOP MAX_STACK_SIZE

AT M E

College of Engineering

STACK push() - Pushing (storing) an element on the stack
OPERATIONS

->Check for overflow condition i.e

->Increment top by 1

->Push an element

Empty PUSH PUSH PUSH PUSH
Stack 10 20 12 33
; . .- - - - -') ' g
3 3 3 3 33 <top
S — S . ; — #define Max_Size 4
;. 1 e : ; \ , | (I void push()
2 2 2 212 <€wp | 32 {
— e — \—J PR if (top >= Max_Size-1)
.. \ . ~ (| (" (': Stack overfiow
1 1 D0 |€wp 20 %0 Else
—_— N PR SR— o top++
, \ : \ (([) stack]top] = item;
i 010 €wp | 90 40 90 }
| I W I e S

[—I: ’ i e —
- ‘-‘}-.:- ; :?\‘t\r ; -
e College of Engincering

IDepartmuent of Compuater Sciemnocs S Engimeeringg (IData- Sciemnce))

\{/oid push() void push(int item, int top, int s[])
I{f(top == Max_Size - 1) { If(top == Max_Size - 1)
z)r(ii:('gf.‘Stack Overflow"); { Printf("Stack Overflow");
} ; Return;
top++; iop++;

s[top] = item;

s[top] = item;

AL LE I
College of Engineering

pop()

Deleting an element from the stack is called pop operation. The element is deleted only from
the top of the stack and only one element is deleted at a time.

top=3| D
C top=2| C
B B top=1| B
A A A top=0| A
pop() i
pop() pop() top=1
pop() Stack Underflow

AT M E

College of Engineering

int pop() int pop(int top, int s[])
{ {
int item_deleted; int item_deleted;
If(top==-1) If(top==-1)
Return O; Return O;
item_deleted=s[top--]; item_deleted=s[(top)--];
Return item_deleted; Return item_deleted;

A T ™M E R

2 College of Engincerinmgs

Department of Computer Science & Enginecering {(IDat=— !
Display() 4
->Display the elements of stack 3| 2 |<otop
->Check for underflow condition 2|9
->Display using for loop
Display Stack content using global variables Display Stack content by pass by parameter 1|6
void display() void display(int top, int s[]) G198
{ { Stack
Int i; Inti;
If(top==-1) If(top==-1)
{ {
Printf("stack is empty\n"); Printf("stack is empty\n");
Return; Return;
} }
Printf("Contents of the stack are:\n"); Printf("Contents of the stack are:\n");
For(i=0; i<=top; i++) For(i=0; i<=top; i++)
{ {
Printf("%d\n",s[i]); Printf("%d\n",s[i]);
} }

e .y |
College of Engineering

Applications/Advantages of Stack

Stacks can be used for expression evaluation.

Stacks can be used to check parenthesis matching in an expression

Stacks can be used for Conversion from one form of expression to another.

Stacks can be used for Memory Management

Licsaorcivmeory I (%
College of Engineering

Infix Expression: In this expression, the binary operator is placed in-between the operand.
The expression can be parenthesized or un- parenthesized.

Example: A +B

Here, A & B are operands and + is operator

Prefix or Polish Expression: In this expression, the operator appears before its operand.
Example: + A B
Here, A & B are operands and + is operator

Postfix or Reverse Polish Expression: In this expression, the operator appears after its
operand.
Example: AB+ Here, A & B are operands and + is operator

AT M E

College of Engineering
teps to evaluate postfix expre

Step 1: If operand - push
Step2: If operator -
* Pop the top of the stack and make it operand 2
* Pop the next top of the stack and make operand 1
* Perform operation
* Push the result

Infix ->4+2*3 postfix->4 23 * +
Infix -> (8 +5) *(6/3) postfix->85+63/*
Infix->452*3-3+8/4/(1+1) postfix->42$3*3-84/11+/+

Steps to convert infix to postfix exprés‘sion

Step 1: If operand - send it to postfix expression
Step2: If operator -

Check the Priority of current operator (PCO) VS Priority of top of stack(POTS)
If(PCO > POTS) then PUSH
If(PCO = POTS) then POP
If(PCO < POTS) then POP

Step3: Parenthesis

If (PUSH

If) PUSH

Permitted to push any symbol above the brackets

POP all the symbols between (and)

10

11

12

13

Example : ((4+(8*2))-10)

Scanned element

10

Input Expression

(4+(B8~2))-10)

4+(872))-10)

+(8*2))-10)

(872))-10)

8*2))-10)

*2))-10)

2))-10)

))-10)

)-10)

-10)

10)

Operator Stack

|

Output Expression

482

482"

482"+

482"+

482"+10

482*+10-

Description

Push ‘(' to stack

Push ‘(" to stack

Output value

Push “+ to stack

Push *(* to stack

Qutput value

Push " to stack

Output value

Pop till (" is found

Pop till ‘(" is found

Push *-* to stack

Output value

Pop till *(" is found

is_empty()

ALLM E I {
College of Engineering

/* Function to convert infix to posffix J

void main() void infix postfix(char infix[], char postfix[])

{
éhar infix[20]; int top; /* points to top of the stack */
char postfix[20]; int j; /* Index for postfix expression */
Input and output int 1; /* Index to access infix expression*/
printf("Enter a valid infix expression\n"); char s[30]; /* Acts as storage for stack elements */
scanf("%s",infix); char symbol /* Holds scanned char from infix exprn */
/* Convert infix to postfix expression */ top =-1; /* Stack 1s empty */
infix_postfix(infix, postfix); s[++top] = ‘#’; /* Initialize stack to # */
printf(" The postfix expression is\n");]=0; /* Output is empty. So, j =0 */
printf("%s\n",postfix);
b

Lioter ooy I
College of Engineering

for(1= 0; 1 < strlen(infix); 1++)

{

symbol = infix[1]; /* Scan the next symbol */
while (F(s[top]) > G(symbol)) /* if stack precedence is greater */
postfix[j++] = s[top--]; /* Pop and place into postfix*/
if (F(s[top]) != G(symbol))

s[++top] = symbol; /* push the input symbol */
else

top--; /* discard ‘(* from stack */

b

while (s[top] != ‘#")

postfix [j++] = s[top--]; /*pop and place in postfix */
postfix[j] ="0"; /* NULL terminate */

h

- C::lilr:gc e 5 &]:_ng1r1cr:r1rlg & E i g

Department of Computer Science & Engineering {(Data- Science])

/ Function to evaluate pOStTIX EXPFESSIOI'I "‘/

int eval(void) switch(token)
{ {
precedence token; case plus: push(opl+op2);
char symbol; break;
int opl,op2, n=0; case minus: push(opl-op2);
int top=-1; break;
token = getToken(&symbol, &n); case times: push(opl*op2);
while(token! = eos) break;
{ case divide: push(opl/op2);
if (token == operand) break;
push(); /* stack insert */ case mod: push(opl%op2);
else break;
{ }
op2 = pop(); /* stack delete */ }
opl = pop(); token = getToken(&symbol, &n);
}

return pop(); /* return result */

AL M.E I
College of Engineering TN

Postfix Evaluation Example

009

Example :1210-96 +*

- @@ - -@-@-- 8-

g & g B

AL M E
College of Engineering

Recursion

|
|

Direct Indirect
Recursion Recursion

Recursion

AT M E

College of Engineering

Direct Recursion

Function calls itself directly

funci()
{

}«-H«-‘-

-
c
>
0
—

—~

N

Direct Recursion Indirect Recursion

Example:
#include<stdio.h> #include<stdio.h>
void main() void fun(void);
{ void main()
printf("| LOVE MY COUNTRY\n"); {
main(); printf("| LOVE MY COUNTRY\n");
} fun();
) D
fun()
Output: {
main();
}
Output:

| LOVE MY COUNTRY
| LOVE MY COUNTRY

(infinte number of times | LOVE MY

General format of recursive function:

rec-fun()

is exit
condition
satisfied?

Factorial of a number 5!=5*4*3%2%1=120

#inlcude<stdio.h>
void main()
{
fact=1;
Printf("enter the no\n");
Scanf("%d",&n);
For(i=1;i<=n;i++)

{
fact=fact*i;
}
printf("factorial of a number is %d", fact);

}

AT M E

College of Engineering

Example

int sum(int k);
int main() {
int result = sum(10);
printf("%d", result);
return 0;
}
int sum(int k)
{if (k>0){
return k + sum(k - 1);
} else
{return
0;

e

AL E I—
College of Engineering 7 ’

Writ . te the factorial of a ei #include<stdio.h>
rite a program to compute the factorial of a given int fact(int);
number n using recursion.])
void main()
{

int n,ans;

printf("'enter the value of n\n");
scanf(" %d",&n);

ans=fact(n);

printf(""answer is %d",ans);

}
int fact(int n)
{
if(n==0)
{
1 if n== return 1;
fact(n) = }
n*fact(n-1) if n>0 else

{ return n*fact(n-1);} }

:' s

Fibonacci Sequence

A series of numbers in which each number (Fibonacci number) 1s the sum of the
two preceding numbers.

n 123456 7 8 9 10 Fo—0, F -1,

fibn) 011 2 3 5 8 13 21 34
() FH=FHI+FI.I.2

Default 0,1, 1,2, 3,5, 8, 13, 21, 34, 55, 89, 144, ...

0 .
fib(n) =)
0

if n==2

fib(n-1)+fib(n-2) if n>2

1 2 3 5 0 if n==1
1
1
1

College of Engineering

NBA
».
#include<stdio.h>
int fib(int); int fib(int n)
void main() {
{ if(n==1)
int n,ans; {
printf("enter the value of n\n"); retum 0;
scanf("%d",&n);
ans=fib(n); :
5= ; _ if(n==2)
printf("answer is %d",ans); {
} retum 1;
}
if(n>2)
{
retumn fib(n-1)+fib(n-2);
}

}

A.LME I |
College of Engineering %

Tower of Hanoi

Suppose three pegs, labeled A, Band C, are given, and suppose on peg A a finite number n of
disks with decreasing size are placed.

The objective of the game is to move the disks from peg A to peg C using peg B as an auxiliary.
The rules of the game are as follows:

1. Only one disk may be moved at a time. Only the top disk on any peg may be moved to any
other peg.

2. At no time can a larger disk be placed on a smaller disk

A B C

Imtial Setup of Towers of Hanoi with n = 6

ATM E memsssssnn)
College of Engineering

Example: Towers of Hanoi problem for n = 3. 1

.Move top disk from peg A to peg C.
.Move top disk from peg A to peg B.

Solution: Observe that it consists of the following seven moves

3 DISKS

.Move top disk from peg C to peg B.

2
3
{1}
A_I_l_ 4. Move top disk from peg A to peg C.
5
6

N

@ R @) | | ’ | i {4]1: .Move top d?sk from peg B to peg A.
TR e . L—-L-B - . Move top disk from peg B to peg C.
() 6 | | | @ I | 7.Move top disk from peg A to peg C.
A B C A B C A B C In other words,
n=3: A—C, A—B, C—B, A—C, B—A, B—C,
A—C
the solution to the Towers of Hanoi problemforn=1and n=2

n=I: A—C
n=2: A—B, A—~C, B—C

150 9001:2008

The Towers of Hanoi problem for n > 1 disks may be reduced to the following sub-problems:
(1) Move the top n - 1 disks from peg A to peg B
(2) Move the top disk from peg A to peg C:A—C.
(3) Move the top n - 1 disks from peg B to peg C

The general notation

* TOWER (N, BEG, AUX, END) to denote a procedure which moves the top n disks from
the initial peg BEG to the final peg END using the peg AUX as an auxiliary.

* When n = 1, the solution:

TOWER (1, BEG, AUX, END) consists of the single instruction BEG—END

* When n > 1, the solution may be reduced to the solution of the following three sub
problems:

(a) TOWER (N - I, BEG, END, AUX)

(b) TOWER (1, BEG, AUX, END) or BEG — END

(c) TOWER (N - 1, AUX, BEG, END)

NBA

AICTE
< "

. Aecrepmeo®

LZ
150 9001:2008

College of Engineering

#include<stdio.h>
void tower(int n,char frompeg,char

void tower(int n,char frompeg,char topeg,char

topeg,char auxpeg); E{Luxpeg)

int n; o

void main() 1{f(n——1)

{ printf("Enter the no. of discs: \n") printf("move disk1 from %C to %C\n",
scanf("%d" &n); ’ frompeg, topeg);
printf("the number of moves in tower return;

of henoi problem\n"); J
tOWCf(Il 'ACY 'B')' tOWCr(n-l,frompeg,auxpeg,topeg);

) T printf("move disk%d from %C t0%C\n" n,

frompeg,topeg);
tower(n-1,auxpeg,topeg,frompeg);
b

