
DATA STRUCTURES AND APPLICATIONS

BCS304

Course Name

Course Code

Contact Hours
50

CIE Marks
50

SEE Marks
50

Course Coordinator

Mrs. MADHU NAGARAJ
Assistant Professor
Dept of CSE-DS
ATMECE, Mysuru

INTRODUCTION TO DATA STRUCTURES
Module 1

Mrs. Madhu Nagaraj
Assistant Professor
Dept of CSE-Data Science
ATMECE

CLO 1. To explain fundamentals of data structures and their
applications.

CLO 2. To illustrate representation of Different data structures such as
Stack, Queues, Linked Lists, Trees and Graphs.

CLO 3. To Design and Develop Solutions to problems using Linear Data
Structures

CLO 4. To discuss applications of Nonlinear Data Structures in problem
solving.

CLO 5. To introduce advanced Data structure concepts such as
Hashing and Optimal Binary
Search Trees

Course Learning Objectives

CO 1. Explain different data structures and their applications.

CO 2. Apply Arrays, Stacks and Queue data structures to
solve the given problems.

CO 3. Use the concept of linked list in problem solving.

CO 4. Develop solutions using trees and graphs to model the real-
world problem.

CO 5. Explain the advanced Data Structures concepts such as
Hashing Techniques and Optimal Binary Search Trees.

Course Outcomes

Ellis Horowitz and Sartaj Sahni, Fundamentals of Data
Structures in C, 2nd Ed, Universities Press,
2014.

Text Book

Seymour Lipschutz, Data Structures Schaum's Outlines,
Revised 1st Ed, McGraw Hill, 2014.

The question paper will have ten questions.

Each full Question consisting of 20 marks.

There will be 2 full questions (with a maximum of four sub questions) from each
module.

Each full question will have sub questions covering all the topics under a module.

The students will have to answer 5 full questions, selecting one full question from
each module.

Question Paper Pattern

• "Get your data structures correct first, and the rest of the program
will write itself."

• -Davids Johnson

“What is data? “
DICT definition - The quantities, characters, or symbols on which a computer
performs operations may be stored and transmitted in the form of electrical signals
and recorded on magnetic, optical, or mechanical recording media.

• DATA and INFORMATION are often confusing, and we often interchange these
two terms.

• UHDAM SI EMAN YM is just data because it is merely a collection of characters,
and from this, the user cannot understand anything properly

What is information?”
• If data is arranged systematically, then it gets a structure and becomes

meaningful.

The need for Data Structures?
• We can understand very well that the data needs to be managed in such a

way so that it can produce some meaningful information.
• Data structures give us the way to manage the data appropriately so that

we can use it whenever possible.

Data Structures
Data Structure is a way to store and organize data so that
it can be used efficiently .
There are many ways of organizing the data in the
memory, i.e., array.

Array is a collection of memory elements in which data is
stored sequentially, i.e., one after another.

There are also other ways to organize the data in memory.
Let's see the different types of data structures.

• Deals with how
• - organization of data in memory
• - efficient Storage of data in memory
• - efficient Retrieved & manipulated
• - logical relationships among different data items

Classification (Primitive and Non
Primitive)

Data Types in C

Integer
Float
Double
Character
Void

typedef
enum

Type Casting:
float div=float(a/b); //a & b are integer variables

Arrays
Functions
Pointers

Derived
Data Types

Data type Purpose No. of bytes
allocated

Range

int To hold integer
constant

2 bytes -32768 to +32767

float To hold real constant 4 bytes -3.4e38 to +3.4e38

double To hold real
constant

8 bytes -1.7e308 to
+1.7e308

char To hold character
constant

1 byte -128 to +127

void non-specific No memory is
allocated

• An array is a data structure for
storing more than one data item
that has a similar data type.

• The items of an array are
allocated at adjacent memory
locations.

Array
Lower bound (lb) Upper bound (ub)

Base address

Stack is a linear data structure which follows a particular order in which the operations are
performed. The order may be LIFO(Last In First Out) or FILO(First In Last Out)

Stack

A Queue is a linear structure which follows a particular order in which the operations are
performed. The order is First In First Out (FIFO). A good example of a queue is any queue of
consumers for a resource where the consumer that came first is served first.

Queue

Linked List

A linked list is a linear data structure, in which the elements are not stored at contiguous
memory locations. The elements in a linked list are linked using pointers as shown in the
below image:

In simple words, a linked list consists of nodes where each node contains a data field
and a reference(link) to the next node in the list.

Tree

Data frequently contain a hierarchical relationship between various elements. The data
structure which reflects this relationship is called a rooted tree graph or a tree.

• A Graph is a non-linear data structure
consisting of nodes and edges. The nodes are
sometimes also referred to as vertices and the
edges are lines or arcs that connect any two
nodes in the graph.

• A Graph consists of a finite set of vertices(or
nodes) and set of Edges which connect a pair
of nodes.

Graph

• Linear and Non- Linear Data Structure

• In a linear data structure, the data items are arranged in a linear sequence. Example

is array.

• n a non-Linear data structure, the data items are not in a sequence. Example is tree.

• homogeneous and Non- homogenous Data Structure In homogeneous Structure, all

the elements are of same type. Example is arrays.

• In Non-homogeneous structure, the elements may or may not be of same type.

• Example is records.

Static and Dynamic Data Structure

• Static structures are ones whose sizes and structures, associated memory

location are fixed at compile time.

• Dynamic structures are ones which expand or shrink as required during the

program execution and there associated memory location change.

Traversing: Traversing a Data Structure means to visit the element stored in it.
This can be done with any type of DS.
Searching: Searching means to find a particular element in the given data-
structure. It is considered as successful when the required element is found.
Insertion: It is the operation which we apply on all the data-structures. Insertion
means to add an element in the given data structure.
Deletion: It is the operation which we apply on all the data-structures. Deletion
means to delete an element in the given data structure.
Sorting: Sorting means arranging the data either in ascending or on decending.

Data Structure Operations

Pointers

->Pointer is a variable which can hold the address of
another variable

->An alternative method to access the content of a
memory location

1) Direct method

int num;
num=26;
printf("the content of the num is %d", num);
Printf("the address of the num is %x", &num); .

2. Indirect method (by using a pointer)

a. Creation of a pointer (declaration)

b. Assigning the created pointer the address

c. De-referencing the pointer access to the data
int n;
int *p;
n=24;
p=&n;
printf("%d", *p);

Output: 24

24

100

n

p

*p

100 101

Syntax for declaring a pointer

datatype * variable;

Ex: int *p;
float *q;
double *r;

float num;

float *q;

num=385.2367;

q=#

100 101 102 103
num

num

0

?q ?

100 101 102 103
385.2367

q 10

Dangling pointers: Created pointers are not pointing to any particular variable

In indirect method * is used for 2 purpose

1) To create a pointer

int *p;

2) To de reference a pointer

*p;

In C language * is used for 3 purpose

1) To create a pointer

int *p;

2) To de reference a pointer

*p;

3) To multiply 2 variables

a * b;

int a;
a=10;

int a=10;

int *p;
p=&a;

int *p=&a;

or

Pointer can be declared and initialized in the same line

1.
int n=5;
int p;
p=&n;
printf("%d", *p);

2.
int n=5;
int *p;
p=n;
printf("%d", *p);

3.
int n=5;
int *p;
p=&n;
printf("%d", p);

4.
int n=5;
float *p;
p=&n;
printf("%d", *p);

Accessing variables through pointer

#include <stdio.h>
void main()
{

int a,b,c;
int *p, *q;
a=5;
b=10;

p=&a;
q=&b;
c=*p+*q;
printf("c is:%d",c);

}
Output:
c is: 15

a b c

p q

a b c

q

? ? ?

? ?

5 10 ?

1000 2000 3000

5000 6000

1000

p 1000

2000 3000

2000

#include <stdio.h>
void main()
{

int a;
int *p,*q,*r;

a=365;

p=&a;
q=&a;
r=&a;

printf("the value of a is:%d\n", a);
printf("the value of p is:%d\n",*p);
printf("the value of q is:%d\n",*q);
printf("the value of r is:%d\n",*r);

}

Can there be more than one pointer to a variable?

p q? ?
5000 6000

?
7000

r

a ?
1000

a 365
1000

p q1000 1000
5000 6000

1000
7000

r

Pointer Variable Normal Variable

1. Pointer Variable holds the address 1. A normal variable holds data

2. int *p; 2. int a;

3. We must de-reference a pointer to
access data

3. There is no need to de-refernce a
normal variable to access data

Difference between pointer variable and normal variable

Pointers and Arrays

int a[5]={10,20,30,40,50}; a

0 1 2 3 4

10 20 30 40 50

int *p;

p=&a[0]; or p=a;

100 101 102 103 104
*p

p

0

for(int i=0; i<4; i++)
{

printf("%d\t", *p);
p++;

}

a

1 2 3 4

100 101 102 103 104

p
*p

10 20 30 40 50

a
0 1 2 3 4

1.1 1.2 1.3

100 101 102 103 104

*p

p

sum = sum + *(p+i)
Sum=0.0+1.1=1.1
Sum=1.1+1.2=2.3
sum=2.3+1.3=3.6

Dynamic memory allocation

Compilation Execution

Static Memory Allocation Dynamic Memory Allocation

• Conversion from HLL to
MLL

• Decision to allocate
memory to variable

• Execution of machine
level instructions

• Decision to allocate
memory to variable

Dynamic Memory Allocation

• malloc()

• calloc()

• realloc()

• free()

• Static Memory Allocation

• Wastage of memory

• Reediting is a time consuming

process

malloc()
• malloc stands for Memory allocation

• General form of memory allocation using malloc is,

datatype *ptr = (datatype *) malloc(RequiredAmountOfMemory *
sizeof(datatype));

If malloc() is unable to find the required amount of memory, it returns NULL

Example
p = (int *) malloc(100 * sizeof(int));

• A memory space equivalent to 100 times the size of an int bytes is reserved
• The address of the first byte of the allocated memory is assigned to

the pointer p of type int
• On successful allocation, the function returns the address of first byte

of allocated memory.
• Since address is returned, the return type is a void pointer. By type

casting appropriately we can use it to store integer, float etc.

• cptr = (char *) malloc (20);

• Allocates 20 bytes of space for the pointer cptr of type char

• sptr = (struct stud *) malloc(10*sizeof(struct stud));

• Allocates space for a structure array of 10 elements. sptr
• points to a structure element of type struct stud

• Always use sizeof operator to find number of bytes for a data
type, as it can vary from machine to machine

void main()
{

int n,i;
printf("enter the number of

elements\n");
scanf("%d",&n);

int *p = (int *)malloc(n*sizeof(int));

if(p == NULL)
{

printf("enough memory not
available");

exit(0);
}

printf("enter array elements\n");
for(i=0; i<n; i++)
{

scanf("%d", p+i);
}

printf("array elements are\n");
for(i=0; i<n; i++)
{

printf("%d\t", *(p+i));
}

}

calloc()
• calloc stands for Contiguous allocation of multiple blocks.

• General form of memory allocation using calloc is,

datatype *ptr = (datatype *) calloc(n, sizeof(datatype));
If calloc() is unable to find the required amount of memory, it returns NULL

void main()
{

int n,i;
printf("enter the number of

elements\n");
scanf("%d",&n);
int *p = (int *)calloc(n,sizeof(int));

if(p == NULL)
{

printf("enough memory not
available");

exit(0);
}

printf("enter array elements\n");
for(i=0; i<n; i++)
{

scanf("%d", p+i);
}
printf("array elements are\n");
for(i=0; i<n; i++)
{

printf("%d\t", *(p+i));
}

}

realloc()
• realloc stands for re allocation

• General form of memory allocation using realloc is,

ptr = (datatype *) realloc(p, newsize*sizeof(datatype));

• realloc() changes the size of the block by extending or deleting the memory at
• the end of the block.
• If the existing memory can be extended, ptr value will not be changed
• If the memory cannot be extended, this function allocates a completely new
• block and copies the contents of existing memory block into new memory
• block and then deletes the old memory block.

void main()
{

int n,i,new;
printf("enter the number of elements\n");
scanf("%d",&n);
int *p = (int *)malloc(n*sizeof(int));
if(p == NULL)
{

printf("enough memory not available");
exit(0);

}
printf("enter array elements\n");
for(i=0; i<n; i++)
{

scanf("%d", p+i);
}
printf("array elements are\n");

for(i=0; i<n; i++)
{

printf("%d\t", *(p+i));
}

printf("\nenter the new number of elements\n");
scanf("%d",&new);
p=(int *)realloc(p,new*sizeof(int));
printf("enter array elements\n");
for(i=0; i<new; i++)
{

scanf("%d", p+i);
}
printf("array elements are\n");
for(i=0; i<new; i++)
{

printf("%d\t", *(p+i)); }}

free()

Dynamically allocated memory form calloc() or malloc() should be freed(released)

using free().

General format:

void free(void *ptr);

Or

free(ptr);

void main()
{

int n,i;
printf("enter the number of

elements\n");
scanf("%d",&n);
int *p = (int

*)malloc(n*sizeof(int));
if(p == NULL)
{

printf("enough memory
not available");

exit(0);
}
printf("enter array

elements\n");

for(i=0; i<n; i++)
{

scanf("%d", p+i);
}
printf("array elements are\n");
for(i=0; i<n; i++)
{

printf("%d\t", *(p+i));
}
free(p);

}

Tree Array of trees

Student Array of students

Arrays

• Array is a container which can hold a fix number of items and these items should be of the

same type. Most of the data structures make use of arrays to implement their algorithms.

Following are the important terms to understand the concept of Array.

• Element − Each item stored in an array is called an element.

• Index − Each location of an element in an array has a numerical index, which is used to
identify the element.

• Array Representation - Arrays can be declared in various ways in different languages.

• Imagine that we have 100 scores. We need to read them, process them and print
them. We must also keep these 100 scores in memory for the duration of the
program. We can define a hundred variables, each with a different name.

But having 100 different names creates other problems. We need 100 references
to read them, 100 references to process them and 100 references to write them.

• An array is a sequenced collection of elements, normally of the same data type,
although some programming languages accept arrays in which elements are of
different types. We can refer to the elements in the array as the first element, the
second element and so forth, until we get to the last element.

Multi-dimensional arrays
• The arrays discussed so far are known as one-dimensional arrays because the

data is organized linearly in only one direction. Many applications require that
data be stored in more than one dimension. Figure shows a table, which is
commonly called a two-dimensional array

Memory Layout
• The indexes in a one-dimensional array directly define the relative positions of the

element in actual memory. Figure shows a two-dimensional array and how it is
stored in memory using row-major or column-major storage. Row- major storage
is more common.

Dynamically allocated Arrays
#include <stdio.h>
#include <stdlib.h>
void main()
{

int r = 3, c = 4, i; //Taking number of Rows and Columns
int *ptr; //creating pointer
ptr = (int *)malloc((r * c) * sizeof(int)); //Dynamically Allocating Memory (12*2=24)
for(i = 0; i < r * c; i++)
{

ptr[i] = i + 1; //Giving value to the pointer and simultaneously printing it.
printf("%d ", ptr[i]);
if ((i + 1) % c == 0)
{

printf("\n");
}

}
free(ptr);

}

Array means, a series of entities or a sequence of entities of the same type (homogeneous).
In C language entities can be char, int, float and double type data

35 23 45 20 100 70

35.5 11.5 46.790.615.934.3

m a rwut

Declaration of 1-D array

Syntax:
datatype arrayname[size];
Ex: int a[5];

float b[5];

A declaration statement tells the compiler,
->data type of the array
->name of the array
->size of the array

Compiler then allocate memory depending upon the declaration.

a

a[1] a[2] a[4]a[3]a[0]

b[4]

b

b[1] b[2] b[3]b[0]

Initialization of 1-D array

1) Direct Initialization (Compile time initialization)

2) Initialization using a for loop (Run time initialization)

a[2] a[4]a[3]

b[1] b[2] b[4]b[3]b[0]

229 50

1) Direct Initialization : Mentioning array size is not compulsory.

Ex: int a[5] = {29, 47, 132, 229, 50 };

29 47

a[0] a[1]

Ex: float b[5] = {29.3, 47.1, 132.4, 229.6, 50.3 };

47.129.3 132.4 229.6 50.3

132

2) Initialization using a for loop:
->Using a for loop to initialize the array blocks
->Mentioning array size is compulsory

int a[5];
int i;
printf(" Enter an integer");
for(i=0; i<=4; i++)
{

scanf("%d", &a[i]);
}

a[0] a[1] a[2] a[3] a[4]

29 47 132 229 50

a[0] a[1] a[2] a[3] a[4]

How do we store single integer in memory and how do we store array of
integers in memory?

To store single integer, To store array of integers,

int a = 35; int a[5] = {35,39,87,53,28};

35 35 39 87 53 28

a[0] a[1] a[2] a[3] a[4]

Note: Array is a Indexed Data Structure
Total size of the array=size of the array * number of bytes per block

=5*2
=10 bytes

aa

#define N20
#define M 10
int main()
{
char word[N], *w[M];
int i, n;
scanf("%d",&n);
for (i=0; i<n; ++i) { scanf("%s", word);
w[i] = (char *) malloc
((strlen(word)+1)*sizeof(char));
strcpy (w[i], word) ;
}
for (i=0; i<n; i++)
{ printf("w[%d] = %s
\n",i,w[i]); return 0;
}

4
Tendulkar
Sourav Khan
Khan
India
w[0] = Tendulkar
w[1] = Sourav
w[2] = Khan

w
0
1
2
3

T e n d u l k a r \0

S o u r a v \0

K h a n \0

I n d i a \0

1.A car manufacturing company uses an array car to record number of cars sold each year
starting from 1965 to 2015
i) Find the total number of years(elements)
ii) Suppose base address = 500, word length (w) = 4, find address of car[1967],
car[1969] and car[2015]

Student 1-D array of Students

2-D array of Student

Two Dimensional Array

Multidimensional Arrays

Two-dimensional arrays are called matrices in mathematics and tables in business applications.
There is a standard way of drawing a two-dimensional m x n array A where the elements of a
form a rectangular array with m rows and n columns and where the element A[J, K] appears in
row J and column K.

Representation of Two-Dimensional Arrays in Memory

Let A be a two-dimensional m x n array. Although A is pictured as a rectangular array of
elements with m rows and n columns, the array will be represented in memory by a block of m . n
sequential memory locations.

The programming language will store the array A either (1) column by column, is called
column-major order, or (2) row by row, in row-major order.

(Column-major order) LOC(A[J, K]) = Base(A) + w[M(K - 1)+ (J - 1)]
(Row-major order) LOC(A[J, K]) = Base(A) + w[N(J - 1) + (K - 1)]

• A two dimensional array is represented as one-dimensional array of
pointers where each pointer contains address of one-dimensional array.

• For example, consider the following declaration: int a[3][5];

• Recall that address of [i][j]-th element is found by first finding the

address of first element of i-th row, then adding j to it.

• Now think of a 2-d array of dimension [M][N] as M 1-d arrays, each with N

elements, such that the starting address of the M arrays are contiguous (so the

starting address of k-th row can be found by adding 1 to the starting address of

(k-1)-th row)

• This is done by allocating an array p of M pointers, the pointer p[k] to store the

starting address of the k-th row

Structures

int a;

float b;

Student:
Name
Age
Marks
USN

Tree:
Name
No. of branches
height

struct student
{

char name[5];
int age;
int marks;
char USN;

};
struct tree
{

char name[5];
int No.of branches;
float height;

};

Structures

struct student
{

char name[20];
int age;
int marks;
float height;

};

Structure provides a mechanism for the programmer to create his/her own
data type called "user defined date type"

Keyword for
creating
structure

Name of the
structure

Structure
members/data

Syntax

struct student
{

char name[20];
int age;
int marks;
float height;

};

struct structure_name
{

datatype member variable 1;
datatype member variable 2;
datatype member variable 3;
datatype member variable 4;

};

Ex. 1 Ex. 2

struct tree
{

char name[5];
int No.of
branches;
float height;

};

Structures

struct student
{

char name[5];
int age;
int marks;
float height;

};

struct tree
{

char name[5];
int No.of branches;
float height;

};

struct student s1; struct tree t1;

To access members of a structure, a structure variable has to be created

struct student
{

char name[5];
int age;
int marks;
float height;

};

struct student s1;

0
1
2
3
4

5
6
7

8
9
10
11

12

Memory to
store name

Memory to store age

Memory to store marks

Memory to store
height

Fig: Memory for structure member

s1

struct student
{

char name[5];
int age;
int marks;
float height;

};
struct student s1;

s1.name="Ramu";
s1.age=23;
s1.marks=80;
s1.height=5.5;
.(dot) -> Member access operator

4
5
6

7
8
9
10
11
12

R
a

0
1
2
3 m

u
/0

23

80

5.5

s1

struct tree
{

char name[5];
int noofbranches;
float height;

};

struct tree t1;

t1.name="teak";
t1.noofbranches=23;
t1.height=31.71;
.(dot) -> Member access operator

t0
1 e
2 a
3 k
4 /0
5
6
7
8
9
10
11
12
13
14
15

23

31.71

t1

//program to read and display student details
using structures
#include <stdio.h>
struct student
{

char name[20];
int age;
int marks;
float height;

};
void main()
{

struct student s1;

printf("Enter Student Details\n");
printf("enter the name of the student\n");
scanf("%s", s1.name);

printf("enter student age\n");
scanf("%d", &s1.age);
printf("enter student marks\n");
scanf("%d", &s1.marks);
printf("enter student height\n");
scanf("%f", &s1.height);
printf("Student details you entered:\n");
printf("Student name is: %s\n",s1.name);
printf("Student age is: %d\n",s1.age);
printf("Student marks is: %d\n", s1.marks);
printf("student height is: %.2f\n",s1.height);

}

//program to read and display tree
details using structures
#include <stdio.h>
struct tree
{

char name[20];
float height;
int noofbranches;

};
void main()
{

struct tree t1;
printf("enter the name of the tree\n");

scanf("%s", t1.name);
printf("enter tree height\n");
scanf("%f", &t1.height);

printf("enter number of noofbranches\n");
scanf("%d", &t1.noofbranches);
printf("the tree name is: %s\n",t1.name);
printf("the tree height is: %f\n",t1.height);
printf("noofbranches in the tree are:
%d\n",t1.noofbranches);

}

Array Structure

Array is a collection of related data elements
of same data type. (homogeneous data)

Structure is collection of logically related
data elements of different data types.
(heterogeneous data)

Array data are accessed using index Structure data are accessed using structure
name and dot operator

No key word is used to create array Struct keyword is used create structure

Each element will be of same size Size of the elements can be different

#include <stdio.h>
struct tree
{

char name[20];
float height;
int noofbranches;

};
void disp(struct tree tr)
{

printf("the tree name is: %s\n",tr.name);
printf("the tree height is: %f\n",tr.height);
printf("noofbranches in the tree are:

%d\n",tr.noofbranches);
}

void main()
{

struct tree t1;

printf("enter the name of the tree\n");
scanf("%s", t1.name);
printf("enter tree height\n");
scanf("%f", &t1.height);
printf("enter number of noofbranches\n");
scanf("%d", &t1.noofbranches);
disp(t1);

}

s

Aftab

hhs235

80 90

dsd23

Amulya

70

USN

Name

1000 2000 3000

0 1

Array of Structures
2 3 4 5 6 7 8

1000 2000 3000

Array of Structures
#include <stdio.h>
struct tree
{

char name[20];
float height;
int noofbranches;

};
void main()
{

struct tree t1[2];

for(int i=0; i<=1; i++)
{

printf("enter the name of the tree\n");
scanf("%s", t1[i].name);
printf("enter tree height\n");
scanf("%f", &t1[i].height);
printf("enter number of noofbranches\n");
scanf("%d", &t1[i].noofbranches);
}

for(int i=0; i<=1; i++)
{
printf("the tree name is: %s\n",t1[i].name);
printf("the tree height is: %f\n",t1[i].height);
printf("noofbranches in the tree are:

%d\n",t1[i].noofbranches);
}

}

Typedefing a Structures

• The typedef is a keyword that is used to
provide existing data types with a new
name.

• The C typedef keyword is used to redefine
the name of already existing data types.

#include<stdio.h>
typedef struct
{

char name[10];
int usn;

}student;
void main()
{

student s1;
printf("enter student name:\n");
scanf("%s", s1.name);
printf("enter student usn:\n");
scanf("%d", &s1.usn);
printf("student name is %s",s1.name);
printf("student usn is %d", s1.usn);

}

Different ways of writing a program using structure
#include<stdio.h>
struct student
{

char name[10];
int usn;

};
void main()
{

struct student s1;
printf("enter student name:\n");
scanf("%s", s1.name);
printf("enter student usn:\n");
scanf("%d", &s1.usn);
printf("student name is

%s\n",s1.name);
printf("student usn is %d", s1.usn);

}

#include<stdio.h>
struct student
{

char name[10];
int usn;

}s1;
void main()
{

printf("enter student name:\n");
scanf("%s", s1.name);
printf("enter student usn:\n");
scanf("%d", &s1.usn);
printf("student name is

%s\n",s1.name);
printf("student usn is %d", s1.usn);

}

#include<stdio.h>
typedef struct
{

char name[10];
int usn;

}student;

void main()
{

student s1;
printf("enter student name:\n");
scanf("%s", s1.name);
printf("enter student usn:\n");
scanf("%d", &s1.usn);
printf("student name is

%s\n",s1.name);
printf("student usn is %d", s1.usn);

}

#include<stdio.h>
struct address
{

char city[20];
int pin;
char phone[14];

};
struct employee
{

char name[20];
struct address add;

};
void main ()
{

struct employee emp;
printf("Enter employee information?\n");
scanf("%s %s %d %s",emp.name,emp.add.city, &emp.add.pin, emp.add.phone);
printf("Printing the employee information....\n");

printf("name:%s\nCity:%s\nPincode:%d\nPhone:%s",emp.name,emp.add.city,emp.add.pin,emp.add.phone)
}

Self-Referential Structures
A self-referential structure is one in which one or more of its components is a pointer
to itself. Self referential structures usually require dynamic storage management
routines (malloc and free) to explicitly obtain and release memory.

typedef struct {

char data;
struct list *link ;

} list;

Each instance of the structure list will have two components data and link.
• Data: is a single character,
• Link: link is a pointer to a list structure. The value of link is either the address in memory
of an instance of list or the null pointer.

Self-Referential Structures

Union
A union is similar to a structure, it is collection of data similar data type or dissimilar.

Syntax:

union tag_name{
data_type member 1;
data_type member 2;
………………………
………………………
data_type member n;

}variable_name;

Union
typedef union
{

int i;
double d;
char c;

}item;

union item
{

int i;
double d;
char c;

};

item x; x

c

i

d

Difference between Structure and Union

void main()
{

typedef struct
{

int marks;
char grade;
float percentage;

}student;

student s;

s.marks=90;
s.grade='A';
s.percentage=90.0;

printf("marks:%d\n",s.marks);
printf("Grade:%c\n",s.grade);
printf("percentage:%f\n",s.percent
age);
}

void main()
{

typedef union
{

int marks;
char grade;
float percentage;

}student;

student s;

S.marks=90;
printf("marks:%d\n",s.marks);

s.grade='A';
printf("Grade:%c\n",s.grade);

s.percentage=90.0;
printf("percentage:%f\n",s.percentage);
}

marks: 90
grade: A
percentage: 90.0

Polynomials

• A polynomial is a sum of terms, where each term has a form axe , where x is the
variable, a is the coefficient and e is the exponent

A(x) = 3x20 + 2x5 + 4
B(x) = x4 + 10x3 + 3x2+1

The largest (or leading) exponent of a polynomial is called its degree. Coefficients that are zero
are not displayed. The term with exponent equal to zero does not show the variable since x
raised to a power of zero is 1.

Polynomial Representation

One way to represent polynomials in C is to use typedef to create the type polynomial as
below:

#define MAX_TERMS 100 /*size of terms array*/
typedef struct
{

float coef;
int expon;

} polynomial;

polynomial terms[MAX-TERMS];
int avail = 0;

3 20 2 5 4 0

cf excf ex

term[0]

cf ex

term[2]term[1]

20 53x + 2x + 4

Consider the two polynomials

A(x) = 2xl000+ 1
B(x) = x4 + 10x3 + 3x2 +1

The above figure shows how these polynomials are stored in the array terms. The index of the first
term of A and B is given by startA and startB, while finishA and finishB give the index of the last term
of A and B.
• The index of the next free location in the array is given by avail.
• For above example, startA=0, finishA=1, startB=2, finishB=5, & avail=6.

#include<stdio.h>
typedef struct
{

int cf; //used to hold coefficient
int px; //used to hold power of x

}poly;
//function to read a polynomial with n terms
void read_poly(poly p[], int n)
{

int i,cf,px;
for(i=0; i<n; i++)
{

printf("enter Coefficient and exponent:");
scanf("%d%d", &p[i].cf, &p[i].px););

}
}
//function to display a polynomial with n terms
void print_poly(poly p[], int n)
{

int i;
for(i=0; i<n; i++)

{
if(p[i].cf < 0)

printf("%d",p[i].cf);

if(p[i].px != 0)
printf("x^%d",p[i].px); }

printf("\n");}
void main()
{

int n;
poly p[10];
printf("enter number of terms:\n");
scanf("%d", &n);
read_poly(p, n);
print_poly(p,n);

}

Program to read and display Polynomial

SPARSE MATRICES
What is Sparse Matrix?

A matrix which contains many zero entries or very few non-zero entries is called as Sparse matrix.
In the figure B contains only 8 of 36 elements are nonzero and that is sparse.

A sparse matrix can be represented in 1-Dimension, 2- Dimension and 3- Dimensional array.
When a sparse matrix is represented as a two-dimensional array as shown in Figure B, more
space is wasted.

Sparse Matrix Representation
• An element within a matrix can characterize by using the triple <row, col, val> This means
that, an array of triples is used to represent a sparse matrix.
• Organize the triples so that the row indices are in ascending order.
• The operations should terminate, so we must know the number of rows and columns,
and the number of nonzero elements in the matrix.

#define MAX_TERMS 100 /* maximum number of terms */
typedef struct
{

int col;
int row;
int value;

} TERM;

//1- dimensional array representing array of triples<row,col,val>
TERM a[MAX_TERMS];

The below figure shows the representation of matrix in the array “a” a[0].row contains the
number of rows, a[0].col contains the number of columns and a[0].value contains the total
number of nonzero entries.

6X6 is the size and 8 non zero
values in given matrix

Row 0

Row 1

Row 2

Row 4

Row 5

Row Col Val

• The various information can be accessed using as shown below:
• The size of the matrix using : a[0].row, a[0].col
• The number of non-zero elements using : a[0].val
• The row index of a non-zero element : a[j].row
• The column index of a non-zero element : a[j].col
• The index of non-zero element : a[j].val

for j = 1 to a[0].col

//Function to read the sparse matrix as a triple
void read_sparse_matrix(TERM a[], int m, int n)
{

int i,j,k,item;
a[0].row=m, a[0].col=n, k=1;
for(i=0; i<m; i++)
{

for(j=0; j<n; j++)
{

scanf("%d",&item);
if(item==0)

continue;
a[k].row=i, a[k].col=j, a[k].val=item;
k++;

}
}
a[0].val=k-1;

}

Row Col Val

6X6 is the size and 8 non zero
values in given matrix

Row 0

Row 1

Row 2

Row 4

Row 5

Transpose of a matrix

Row Col
Val

6X6 is the size and 8 non zero values in
given matrix

Col 0

Col 1

Col 2

Col 3

Col 5

Row Col Val

//Function to find the transpose of a given sparse matrix matrix

void transpose(TERM a[], TERM b[])
{

int i,j,k;
b[0].row=a[0].col;
b[0].col=a[0].row;
b[0].val=a[0].val;
k=1;
for(i=0; i<a[0].col; i++)
{

for(j=1; j<a[0].val; j++)
{

if(a[j].col==i)
{

b[k].row=a[j].col;
b[k].col=a[j].row;
b[k].val=a[j].val;
k++;

}
}

Row Col Val

Col ValRow

Character array - Strings

Array which has character in it is called as String

Strings end with special character called null character(\0).

Declaration:
char a[8];

Initialization:
char a[8] = {'H','e','l','l','o','\0'};

Or

char a[]="HelloHi";

0 1 2 3 4 5 6 7

a

0 1 2 3 4 5 6 7

a H e l l o \0

0 1 2 3 4 5 6 7

a H e l l o H i \0

BASIC TERMINOLOGY:
String: A finite sequence S of zero or more Characters is called string.
Length: The number of characters in a string is called length of string.
Empty or Null String: The string with zero characters.
Concatenation: Let S1 and S2 be the strings. The string consisting of the characters of S1
followed by the character S2 is called Concatenation of S1 and S2.
Ex: ‘THE’ // ‘END’ = ‘THEEND’
‘THE’ // ‘ ’ // ‘END’ = ‘THE END’
Substring: A string Y is called substring of a string S if there exist string X and Z such that
S = X // Y // Z
If X is an empty string, then Y is called an Initial substring of S, and Z is an empty string then
Y is called a terminal substring of S.
Ex: ‘BE OR NOT’ is a substring of ‘TO BE OR NOT TO BE’
‘THE’ is an initial substring of ‘THE END’

1. Fixed length storage structures
In this storage structure, each line of text to be manipulated is viewed as a record
where all records have same length.

R A M A

K R I S H N A

M I T H I L

A B

A B C D E F G H

0

1

2

3

5

Disadvantages:

1. Time wasted in reading entire record if more spaces are present

2. Certain records may require more space than available to store a string

3. If the length reserved for string is too small, it is not possible to store larger data

4. If the length reserved for string is too large, too much memory is wasted

5. Once the string is defined, the length of the string can't be changed

R A M A \0

K R I S H N A \0

String

String

delimiter

delimiter

5 bytes

8 bytes

2. Variable length structures

• variable-length strings don’t have a pre-
defined length. In this string, neither the
precise length nor

• maximum length is known at creation
time.

• The storage structure for a string can
expand or shrink to accommodate any
size of data.

• ->In C language strings end with a
special character called NULL (denoted
by \0)

char a[]="RAMA";

char a[]="KRISHNA";

3. Linked storage structures

• In most of the word processing applications, the strings are represented using linked
lists.

• Using linked lists inserting/deleting a character/word is much easier.
• The string “MITHIL” can be represented using linked list as shown below:

String Operations

Substring

Indexing

Concatenation

Length

Substring
Substring is a string obtained by extracting a part of a given string, given the position and length
of the substring.
Ex: SUBSTRING ('TO BE OR NOT TO BE’, 4, 7) = 'BE OR N’
SUBSTRING ('THE END', 4, 4) = ' END'

Indexing
The process of finding the position of pattern string in a given text t is called indexing.
It is also called pattern matching.

If the paatern string is present in text t, the position of the first occurrence of the pattern string is
returned otherwise, 0 is returned.
Let, text t = “RAMA IS THE KING OF AYODHYA”, the pattern string pattern is “KING”.
Then, INDEX(t, pattern) = 13

Concatenation
• The process of appending the second string to the end of first string is called concatenation.
• We can denote the concatenation symbol by “+”.
For example, let first string is s1=”SEETA” and the second string s2 =” RAMA”.
Then, s1+ s2 = “SEETA RAMA”

Length
The number of characters in a string is called length of the string. For example,
Length(“RAMA”) = 4

Printing and Reading Strings

Formatted - printf (for output)
- scanf (for input)

Ex. for reading string using
formatted input function:
char c[20];
scanf("%s", c);

Un formatted - puts (for output)
- gets (for input)

#include<stdio.h>
Void main()
{

char name[20];
Printf("enter your name:");
Scanf("%s", name);
Printf("your name is %s:", name);

}

O/p:
enter your name: Sachin Tendulkar
your name is: Sachin

STRING HANDLING FUNCTIONS IN C

String functions Description of each function

strlen(str) Returns length of the string str

strcpy(dest, src) Copies the source string src to destination string dest

strcat(str1,str2) Append string str2 to string str1

strcmp(str1,str2) Compare two strings str1 and str2

strrev(str) Reverse the contents of string stored in str

String Length

#include<stdio.h>
void main()
{

char str[6]="Hello";
int len = my_strlen(str);
printf("length of str is %d",len);

}
int my_strlen(char str[])
{

int i=0;
while(str[i] != '\0')
{

i++;
}
return i;

}

i n c l u d e < s t d i o . h >
#include<string.h>
void main()
{

char str[6]="Hello";
int len = strlen(str);
printf("length of str is %d",len);

}

String copy
#include<stdio.h>
void main()
{

char str1[6]="HELLO";
char str2[6];
My_strcpy(str1, str2);

}
void my_strcpy(char str1[], char str2[])
{

int i=0;
while(str1[i] != '\0')
{

str2[i]=str1[i];
i++;

}
str2[i]='\0';

}

i n c l u d e < s t d i o . h >
#include<string.h>
void main()
{

char str1[6]="HELLO";
char str2[6];
strcpy(str1,str2);
printf("string 2 is %s",str2);

}

String concatenation#include<stdio.h>
void main()
{

char str1[6]="HELLO";
char str2[6]="WORLD";
My_strcat(str1, str2);

}
void my_strcat(char str1[], char str2[])
{

int i,j;
i=0,j=0;
while(str1[i] != '\0')
{

i++;
}
while(str2[j]!='\0')
{

str1[i++]=str2[j++];
}
str1[i++] = '\0';

}

i n c l u d e < s t d i o . h >
#include<string.h>
void main()
{

char str1[6]="HELLO";
char str2[6]="WORLD";
strcat(str1,str2);
printf("str1 is %s",str1);

}

String compare
#include<stdio.h>
void main()
{

char str1[6]="Hello";
char str2[6]="Hello";
int res = my_strcmp(str1, str2);
if(res==0) { printf("strings are equal\n"); }
else if(res < 0) { printf("string 1 is smaller than string 2");
else { printf("string 1 is greater than string 2"); }

}
Int my_strcmp(char str1[], char str2[])
{

int i;
i=0;
while(str1[i] == str2[i])
{

if(str1[i] == '\0')
break;

i++;
}
return str1[i] - str2[i];

}

String Reverse

i n c l u d e < s t d i o . h >
#include<string.h>
void main()
{

char str1[6]="Hello";
char str2[6];
my_strrev(str1, str2);

}
void my_strrev(char str1[], char str2[])
{

int i,n;
n = strlen(str1)
for(i=0; i<n; i++)
{

str2[n-1-i] = str1[i];
}
str2[n] = '\0';

}

PATTERN MATCHING ALGORITHM

->Pattern matching is the problem of deciding whether or not a given string pattern P
appears in a string text T. The length of P does not exceed the length of T.

Brute Force Algorithm

The first pattern matching algorithm is one in which comparison is done by a given pattern P with each of
the substrings of T, moving from left to right, until a match is found.
WK = SUBSTRING (T, K, LENGTH (P))
• Where, WK denote the substring of T having the same length as P and beginning with the Kth character
of T.

• First compare P, character by character, with the first substring, W1. If all the characters
are the same, then P = W1 and so P appears in T and INDEX (T, P) = 1.
• Suppose it is found that some character of P is not the same as the corresponding character
of W1. Then P ≠ W1
• Immediately move on to the next substring, W2 That is, compare P with W2. If P ≠ W2
then compare P with W3 and so on.
• The process stops, When P is matched with some substring WK and so P appears in T and
INDEX(T,P) = K or When all the WK'S with no match and hence P does not appear in T.
• The maximum value MAX of the subscript K is equal to LENGTH(T) -LENGTH(P) +1.

Algorithm: (Pattern Matching_Brute Force)
P and T are strings with lengths R and S, and are stored as arrays with one character per
element. This algorithm finds the INDEX of P in T.

1. [Initialize.] Set K: = 1 and MAX: = S - R + 1
2. Repeat Steps 3 to 5 while K ≤ MAX
3. R e p e a t f o r L = 1 t o R : [T e s t s e a c h c h a r a c t e r o f P]

If P[L] ≠ T[K + L – l], then: Go to Step 5
[End of inner loop.]

4. [Success.] Set INDEX = K, and Exit
5. Set K := K + 1

[End of Step 2 outer loop]
6. [Failure.] Set INDEX = O
7. Exit

PATTERN MATCHING ALGORITHM - KMP algorithm(Knuth Morris Pratt)

Algm PatternMatching_KMP(s, p)
{

k=1, s1=q0, n=length(s)
While(k<=n && sk!=p)
{

Read tK

sk+1 = F(sk,tk)
k=k+1

}
If(k>n)
{

index=0
}
else
{

Index=k-length(p)
}
return index

}

return int String s:
1 2 3 4 5 6 7 8 9 10 11

a a a a a a a a a a b
Pattern p: a a a b

Pattern p: a a b a

Stacks: Definition, Stack Operations, Array Representation of Stacks, Stacks using Dynamic
Arrays, Stack Applications: Polish notation, Infix to postfix conversion, evaluation of postfix
Expression

Recursion - Factorial, GCD, Fibonacci Sequence, Tower of Hanoi, Ackerman's Function.

Queues: Definition, Array Representation, Queue Operations, Circular Queues,

Circular queues using Dynamic arrays, Dequeues, Priority Queues, A Mazing Problem.
Multiple Stacks and Queues. Programming Examples.

Stacks

STACK

-> Stack is a linear data structure which follows a particular order in which the operations are
performed.

->The order may be LIFO(Last In First Out) or FILO(First In Last Out).

-> A stack can be implemented by means of Array,
Structure, Pointer, and Linked List.

-> Here, we are going to implement stack using
arrays, which makes it a fixed size stack
implementation.

->At any given time, we can only access the top
element of a stack.

ARRAY REPRESENTATION OF STACKS

• Stacks may be represented in the computer in various ways such as one-way linked
list
(Singly linked list) or linear array.
• Stacks are maintained by the two variables such as TOP and MAX_STACK_SIZE.
• TOP which contains the location of the top element in the stack. If TOP= -1, then it
indicates stack is empty.
• MAX_STACK_SIZE which gives maximum number of elements that can be stored
in stack.
Stack can represented using linear array as shown below

STACK
OPERATIONS

#define Max_Size 4
void push()
{

if (top >= Max_Size-1)
Stack overflow

Else
top++
stack[top] = item;

}

3 3 3 3 3

2 2 2 2 2

1 1 1 1 1

0 0 0 0 0

push() − Pushing (storing) an element on the stack.

->Check for overflow condition i.e top = Max_Size-1
->Increment top by 1
->Push an element

void push(int item, int top, int s[])
{

If(top == Max_Size - 1)
{

Printf("Stack Overflow");
Return;

}
top++;
s[top] = item;

}

void push()
{

If(top == Max_Size - 1)
{

printf("Stack Overflow");
exit(0);

}
top++;
s[top] = item;

}

Function to push an integer item
(using global variables)

Function to push an integer item
(by passing parameter)

pop()

Deleting an element from the stack is called pop operation. The element is deleted only from
the top of the stack and only one element is deleted at a time.

Removing an element from the stack.
Check underflow condition i.e top=-1
Item=s[top]
Decrement top by 1

int pop()
{

int item_deleted;

If(top==-1)
Return 0;

item_deleted=s[top--];
Return item_deleted;

}

int pop(int top, int s[])
{

int item_deleted;

If(top==-1)
Return 0;

item_deleted=s[(top)--];
Return item_deleted;

}

Function to pop an integer item
(using global variables)

Function to pop an integer item
(by passing parameter)

Display()

}

->Display the elements of stack
->Check for underflow condition
->Display using for loop
Display Stack content using global variables

void display()
{

Int i;
If(top==-1)
{

Printf("stack is empty\n");
Return;

}
Printf("Contents of the stack are:\n");
For(i=0; i<=top; i++)
{

Printf("%d\n",s[i]);
}

}

Display Stack content by pass by parameter

void display(int top, int s[])
{

Int i;
If(top==-1)
{

Printf("stack is empty\n");
Return;

}
Printf("Contents of the stack are:\n");
For(i=0; i<=top; i++)
{

Printf("%d\n",s[i]);
}

Applications/Advantages of Stack

• Stacks can be used for expression evaluation.

• Stacks can be used to check parenthesis matching in an expression
• Stacks can be used for Conversion from one form of expression to another.
• Stacks can be used for Memory Management

Expression can be represented in in different format such as
• Prefix Expression or Polish notation
• Infix Expression
• Postfix Expression or Reverse Polish notation

Infix Expression: In this expression, the binary operator is placed in-between the operand.
The expression can be parenthesized or un- parenthesized.
Example: A + B
Here, A & B are operands and + is operator

Prefix or Polish Expression: In this expression, the operator appears before its operand.
Example: + A B
Here, A & B are operands and + is operator

Postfix or Reverse Polish Expression: In this expression, the operator appears after its
operand.
Example: A B + Here, A & B are operands and + is operator

Steps to evaluate postfix expression
Step 1: If operand - push
Step2: If operator -

* Pop the top of the stack and make it operand 2
* Pop the next top of the stack and make operand 1
* Perform operation
* Push the result

Infix -> 4 + 2 * 3 postfix -> 4 2 3 * +

Infix -> (8 + 5) * (6 / 3) postfix -> 8 5 + 6 3 / *

postfix -> 4 2 $ 3 * 3 - 8 4 / 1 1 + / +Infix -> 4 $ 2 *3 -3 + 8 / 4 / (1 + 1)

Steps to convert infix to postfix expression

Step 1: If operand - send it to postfix expression
Step2: If operator -

Check the Priority of current operator (PCO) VS Priority of top of stack(POTS)
If(PCO > POTS) then PUSH
If(PCO = POTS) then POP
If(PC0 < POTS) then POP

Step3: Parenthesis
If (PUSH
If) PUSH
Permitted to push any symbol above the brackets
POP all the symbols between (and)

Priorities:
1.
2.
3.

$, ^
*, /
+, -

void main()
{
char infix[20];
char postfix[20];
Input and output
printf("Enter a valid infix expression\n");
scanf("%s",infix);
/* Convert infix to postfix expression */
infix_postfix(infix, postfix);
printf("The postfix expression is\n");
printf("%s\n",postfix);
}

/* Function to convert infix to postfix */

void infix_postfix(char infix[], char postfix[])
{
int top;
int j;
int i;
char s[30];
char symbol
top = -1;

/* points to top of the stack */
/* Index for postfix expression */

/* Index to access infix expression*/
/* Acts as storage for stack elements */

/* Holds scanned char from infix exprn */
/* Stack is empty */

s[++top] = ‘#’;
j = 0;

/* Initialize stack to # */
/* Output is empty. So, j = 0 */

for(i = 0; i < strlen(infix); i++)
{
symbol = infix[i];
while (F(s[top]) > G(symbol))
postfix[j++] = s[top--];
if (F(s[top]) != G(symbol))
s[++top] = symbol;
else
top--;
}
while (s[top] != ‘#’)
postfix [j++] = s[top--];
postfix[j] = '\0';
}

/* Scan the next symbol */
/* if stack precedence is greater */
/* Pop and place into postfix*/

/* push the input symbol */

/* discard ‘(‘ from stack */

/*pop and place in postfix */
/* NULL terminate */

/* Function to evaluate postfix expression */

int eval(void)
{

precedence token;
char symbol;
int opl,op2, n=0;
int top= -1;
token = getToken(&symbol, &n);
while(token! = eos)
{

if (token == operand)
push(); /* stack insert */
else
{

op2 = pop(); /* stack delete */
opl = pop();

switch(token)
{

case plus: push(opl+op2);
break;

case minus: push(opl-op2);
break;

case times: push(opl*op2);
break;

case divide: push(opl/op2);
break;

case mod: push(opl%op2);
break;

}
}

token = getToken(&symbol, &n);
}
return pop(); /* return result */

}

Recursion

A process of a function calling itself is what
is called Recursion

Recursion refers to the process where a
function calls itself directly or indirectly

Recursion

Indirect
Recursion

Direct
Recursion

Direct Recursion

Function calls itself directly

func1()
{

func1();

}

Indirect Recursion

func2();

}

func1()
{

func2()
{

func1();

}

Direct Recursion

Example:
#include<stdio.h>
void main()
{

printf("I LOVE MY COUNTRY\n");
main();

}

Indirect Recursion

Example:
#include<stdio.h>
void fun(void);
void main()
{

printf("I LOVE MY COUNTRY\n");
fun();

}
fun()
{

main();
}
Output:
I LOVE MY COUNTRY
I LOVE MY COUNTRY
...
(infinte number of times I LOVE MY
COUNTRY will printed)

Output:
I LOVE MY COUNTRY
I LOVE MY COUNTRY
...
...
...
(infinte number of times I LOVE MY
COUNTRY will printed)

rec-fun()

is exit
condition
satisfied?

Stop

body No

Yes

General format of recursive function:

factorial of a given number

Factorial of a number 5!=5*4*3*2*1=120

#inlcude<stdio.h>
void main()
{

fact=1;
Printf("enter the no\n");
Scanf("%d",&n);
For(i=1;i<=n;i++)
{

fact=fact*i;
}

printf("factorial of a number is %d", fact);
}

Example
int sum(int k);
int main() {
int result = sum(10);
printf("%d", result);
return 0;

}
int sum(int k)
{ if (k > 0) {
return k + sum(k - 1);

} else
{ return
0;

}}

Write a program to compute the factorial of a given
number n using recursion.

0! = 1
1! = 1*(1-1)! = 1*1 =1
2! = 2*(2-1)! = 2*1 = 2
3! = 3*(3-1)! = 3*2 = 6
4! = 4*(4-1)! = 4*6 = 24
.
.
.
n! = n*(n-1)!

{fact(n) =
1 if n==0

if n>0n*fact(n-1)

#include<stdio.h>
int fact(int);
void main()
{

int n,ans;
printf("enter the value of n\n");
scanf("%d",&n);
ans=fact(n);
printf("answer is %d",ans);

}
int fact(int n)
{

if(n==0)
{

return 1;
}
else
{ return n*fact(n-1);} }

n 1 2 3 4 5 6 7 8 9 10

fib(n) 0 1 1 2 3 5 8 13 21 34

{fib(n) =

0 if n==1

1 if n==2

fib(n-1)+fib(n-2) if n>2

A series of numbers in which each number (Fibonacci number) is the sum of the
two preceding numbers.

Fibonacci Sequence

#include<stdio.h>
int fib(int);
void main()
{

int n,ans;
printf("enter the value of n\n");
scanf("%d",&n);
ans=fib(n);
printf("answer is %d",ans);

}

int fib(int n)
{

if(n==1)
{

return 0;
}
if(n==2)
{

return 1;
}
if(n>2)
{

return fib(n-1)+fib(n-2);
}

}

Tower of Hanoi
Suppose three pegs, labeled A, Band C, are given, and suppose on peg A a finite number n of
disks with decreasing size are placed.
The objective of the game is to move the disks from peg A to peg C using peg B as an auxiliary.
The rules of the game are as follows:
1. Only one disk may be moved at a time. Only the top disk on any peg may be moved to any
other peg.
2. At no time can a larger disk be placed on a smaller disk

1.Move top disk from peg A to peg C.

2.Move top disk from peg A to peg B.

3.Move top disk from peg C to peg B.

4.Move top disk from peg A to peg C.

5.Move top disk from peg B to peg A.

6.Move top disk from peg B to peg C.
7.Move top disk from peg A to peg C.

In other words,

n=3: A→C, A→B, C→B, A→C, B→A, B→C,

A→C
the solution to the Towers of Hanoi problem for n = 1 and n = 2
n=l: A→C
n=2: A→B, A→C, B→C

The Towers of Hanoi problem for n > 1 disks may be reduced to the following sub-problems:
(1) Move the top n - 1 disks from peg A to peg B
(2) Move the top disk from peg A to peg C:A→C.
(3) Move the top n - 1 disks from peg B to peg C

The general notation
• TOWER (N, BEG, AUX, END) to denote a procedure which moves the top n disks from
the initial peg BEG to the final peg END using the peg AUX as an auxiliary.
• When n = 1, the solution:
TOWER (1, BEG, AUX, END) consists of the single instruction BEG→END
• When n > 1, the solution may be reduced to the solution of the following three sub
problems:
(a) TOWER (N - I, BEG, END, AUX)
(b) TOWER (l, BEG, AUX, END) or BEG → END
(c) TOWER (N - I, AUX, BEG, END)

Procedure: TOWER (N, BEG, AUX, END)
This procedure gives a recursive solution to the Towers of Hanoi problem for N disks.
1. If N=l,then:

(a) Write: BEG →END.
(b) Return.

[End of If structure.]
2. [Move N - 1 disks from peg BEG to peg AUX.]

Call TOWER (N - 1, BEG, END, AUX).
3. Write: BEG →END.
4. [Move N - 1 disks from peg AUX to peg END.]

Call TOWER (N - 1, AUX, BEG, END).
5. Return.

#include<stdio.h>
void tower(int n,char frompeg,char
topeg,char auxpeg);
int n;
void main()
{

printf("Enter the no. of discs: \n");
scanf("%d",&n);
printf("the number of moves in tower

of henoi problem\n");
tower(n,'A','C','B');

}

void tower(int n,char frompeg,char topeg,char
auxpeg)
{

if(n==1)
{

printf("move disk1 from %C to %C\n",
frompeg,topeg);

return;
}

tower(n-1,frompeg,auxpeg,topeg);
printf("move disk%d from %C to%C\n",n,

frompeg,topeg);
tower(n-1,auxpeg,topeg,frompeg);

}

