
DATA STRUCTURES AND APPLICATIONS

BCS304

Course Name

Course Code

Contact Hours 50

CIE Marks 50

SEE Marks 50

Course Coordinator

Mrs. MADHU NAGARAJ
Assistant Professor
Dept of CSE-DS
ATMECE, Mysuru

CLO 1. To explain fundamentals of data structures and their
applications.

CLO 2. To illustrate representation of Different data structures such as
Stack, Queues, Linked Lists, Trees and Graphs.

Course Learning Objectives

CLO 3. To Design and Develop Solutions to problems using Linear Data
Structures

CLO 4. To discuss applications of Nonlinear Data Structures in problem
solving.

CLO 5. To introduce advanced Data structure concepts such as
Hashing and Optimal Binary
Search Trees

CO 1. Explain different data structures and their applications.

CO 3. Use the concept of linked list in problem solving.

Course Outcomes

CO 4. Develop solutions using trees and graphs to model the real-
world problem.

CO 5. Explain the advanced Data Structures concepts such as
Hashing Techniques and Optimal Binary Search Trees.

CO 2. Apply Arrays, Stacks and Queue data structures to
solve the given problems.

Ellis Horowitz and Sartaj Sahni, Fundamentals of Data
Structures in C, 2nd Ed, Universities Press,
2014.

Text Book

Seymour Lipschutz, Data Structures Schaum's Outlines,
Revised 1st Ed, McGraw Hill, 2014.

Reference Books Seymour Lipschutz, Data Structures Schaum's Outlines, Revised 1st
Ed, McGraw Hill, 2014.

Reema Thareja, Data Structures using C, 3rd Ed, Oxford press, 2012.

Jean-Paul Tremblay & Paul G. Sorenson, An Introduction to Data
Structures with Applications, 2nd Ed, McGraw Hill, 2013

A M Tenenbaum, Data Structures using C, PHI, 1989

Robert Kruse, Data Structures and Program Design in C, 2nd Ed, PHI,
1996.

The question paper will have ten questions.

Each full Question consisting of 20 marks.

Question Paper Pattern

There will be 2 full questions (with a maximum of four sub questions) from each
module.

Each full question will have sub questions covering all the topics under a module.

The students will have to answer 5 full questions, selecting one full question from
each module.

• "Get your data structures correct first, and the rest of the program
will write itself."

• -Davids Johnson

“What is data? “
– data is a piece of information or simply set of values and data as such may not

convey any meaning.
– The quantities, characters, or symbols on which a computer performs operations

may be stored and transmitted in the form of electrical signals and recorded on
magnetic, optical, or mechanical recording media.

• DATA and INFORMATION are often confusing, and we often interchange these
two terms.

• UHDAM SI EMAN YM

What is information?”
• If data is arranged systematically, then it gets a structure and becomes

meaningful.

The need for Data Structures?
• We can understand very well that the data needs to be managed in such a

way so that it can produce some meaningful information.
• Data structures give us the way to manage the data appropriately so that

we can use it effectively whenever possible.

Data Structures
Data Structure is a way to store and organize data so that
it can be used efficiently in terms of time as well as space.

There are many ways of organizing the data in the
memory, i.e., array.

Array is a collection of memory elements in which data is
stored sequentially, i.e., one after another.

There are also other ways to organize the data in memory.
Let's see the different types of data structures.

• Deals with how
• - organization of data in memory
• - efficient Storage of data in memory
• - efficient Retrieved & manipulated
• - logical relationships among different data items

Classification (Primitive and Non
Primitive)

Data Types in C

Integer
Float
Double
Character
Void

typedef
enum

Type Casting:
float div=float(a/b); //a & b are integer variables

Arrays
Functions
Pointers

Derived
Data Types

Data type Purpose No. of bytes
allocated

Range

int To hold integer
constant

2 bytes -32768 to +32767

float To hold real constant 4 bytes -3.4e38 to +3.4e38

double To hold real
constant

8 bytes -1.7e308 to
+1.7e308

char To hold character
constant

1 byte -128 to +127

void non-specific No memory is
allocated

• An array is a data structure for
storing more than one data item
that has a similar data type.

• The items of an array are
allocated at adjacent memory
locations.

Array
Lower bound (lb) Upper bound (ub)

Base address

Stack is a linear data structure which follows a particular order in which the operations are
performed. The order may be LIFO(Last In First Out) or FILO(First In Last Out)

Stack

A Queue is a linear structure which follows a particular order in which the operations are
performed. The order is First In First Out (FIFO). A good example of a queue is any queue of
consumers for a resource where the consumer that came first is served first.

Queue

A linked list is a linear data structure, in which the elements are not stored at contiguous
memory locations. The elements in a linked list are linked using pointers as shown in the
below image:

Linked List

Data frequently contain a hierarchical relationship between various elements. The data
structure which reflects this relationship is called a rooted tree graph or a tree.

Tree

• A Graph is a non-linear data structure
consisting of nodes and edges. The nodes are
sometimes also referred to as vertices and the
edges are lines or arcs that connect any two
nodes in the graph.

• A Graph consists of a finite set of vertices(or
nodes) and set of Edges which connect a pair
of nodes.

Graph

Traversing: Traversing a Data Structure means to visit the element stored in it. This can be
done with any type of DS.
Searching: Searching means to find a particular element in the given data-structure. It is
considered as successful when the required element is found.
Insertion: It is the operation which we apply on all the data-structures. Insertion means to
add an element in the given data structure.
Deletion: It is the operation which we apply on all the data-structures. Deletion means to
delete an element in the given data structure.
Sorting: Sorting means arranging the data either in ascending or on decending.

Data Structure Operations

Pointers

->Pointer is a variable which can hold the address of
another variable

->An alternative method to access the content of a
memory location

1) Direct method

int num;
num=26;
printf("the content of the num is %d", num);
Printf("the address of the num is %x", &num); .

2. Indirect method (by using a pointer)

a. Creation of a pointer (declaration)

b. Assigning the created pointer the address

c. De-referencing the pointer access to the data
int n;
int *p;
n=24;
p=&n;
printf("%d", *p);

n

n

p

p

100
?

?

24

100
Output: 24

24

100

n

p
100
101

*p

100
101

Syntax for declaring a pointer

datatype * variable;

Ex: int *p;
 float *q;
 double *r;

float num;

float *q;

num=385.2367;

q=#

100 101 102 103

100 101 102 103

num

num

q

q

10
0

? ?

385.2367

Dangling pointers: Created pointers are not pointing to any particular variable

In indirect method * is used for 2 purpose

1) To create a pointer

 int *p;

2) To de reference a pointer

 *p;

In C language * is used for 3 purpose

1) To create a pointer

 int *p;

2) To de reference a pointer

 *p;

3) To multiply 2 variables

 a * b;

int a;
a=10;

int a=10;

int *p;
p=&a;

int *p=&a;

or

Pointer can be declared and initialized in the same line

1.
 int n=5;
 int p;
 p=&n;
 printf("%d", *p);

2.
 int n=5;
 int *p;
 p=n;
 printf("%d", *p);

3.
 int n=5;
 int *p;
 p=&n;
 printf("%d", p);

4.
 int n=5;
 float *p;
 p=&n;
 printf("%d", *p);

Accessing variables through pointer

#include <stdio.h>
void main()
{
 int a,b,c;
 int *p, *q;
 a=5;
 b=10;

 p=&a;
 q=&b;
 c=*p+*q;
 printf("c is:%d",c);
}

Output:
c is: 15

a b c

p q

a b c

p q

? ? ?

? ?

5 10 ?

1000 2000 3000

5000 6000

1000 2000 3000

1000 2000

#include <stdio.h>
void main()
{
 int a;
 int *p,*q,*r;

 a=365;

 p=&a;
 q=&a;
 r=&a;

 printf("the value of a is:%d\n", a);
 printf("the value of p is:%d\n",*p);
 printf("the value of q is:%d\n",*q);
 printf("the value of r is:%d\n",*r);
}

Can there be more than one pointer to a variable?

p q? ?
5000 6000

?
7000

r

a ?
1000

a 365
1000

p q1000 1000
5000 6000

1000
7000

r

Pointer Variable Normal Variable

1. Pointer Variable holds the address 1. A normal variable holds data

2. int *p; 2. int a;

3. We must de-reference a pointer to
access data

3. There is no need to de-refernce a
normal variable to access data

Difference between pointer variable and normal variable

Pointers and Arrays

 int a[5]={10,20,30,40,50};

a

 0 1 2 3
4

100 101 102 103
104

 10 20 30 40 50

int *p;

p=&a[0]; or p=a;
p

*p

for(int i=0; i<4; i++)
 {
 printf("%d\t", *p);
 p++;
 }

a

 0 1 2 3
4

100 101 102 103
104

p
*p

 10 20 30 40 50

a

 0 1 2 3
4

100 101 102 103
104

p

*p

1.1 1.2 1.3

sum = sum + *(p+i)
Sum=0.0+1.1=1.1
Sum=1.1+1.2=2.3
sum=2.3+1.3=dfkdj

Dynamic memory allocation

Compilation Execution

Static Memory Allocation Dynamic Memory Allocation

• Conversion from HLL to
MLL

• Decision to allocate
memory to variable

• Execution of machine
level instructions

• Decision to allocate
memory to variable

Dynamic Memory Allocation

• malloc()

• calloc()

• realloc()

• free()

• Static Memory Allocation

• Wastage of memory

• Reediting is a time consuming

process

malloc()
• malloc stands for Memory allocation

• General form of memory allocation using malloc is,

 datatype *ptr = (datatype *) malloc(RequiredAmountOfMemory *
sizeof(datatype));
 If malloc() is unable to find the required amount of memory, it returns NULL

void main()
{
 int n,i;
 printf("enter the
number of elements\n");
 scanf("%d",&n);

 int *p = (int
*)malloc(n*sizeof(int));

 if(p == NULL)
 {
 printf("enough
memory not available");
 exit(0);
 }

 printf("enter array elements\n");
 for(i=0; i<n; i++)
 {
 scanf("%d", p+i);
 }

printf("array elements are\n");
 for(i=0; i<n; i++)
 {
 printf("%d\t", *(p+i));
 }
}

calloc()
• calloc stands for Contiguous allocation

• General form of memory allocation using calloc is,

 datatype *ptr = (datatype *) calloc(RequiredAmountOfMemoryForElements,
sizeof(datatype));
 If calloc() is unable to find the required amount of memory, it returns NULL

void main()
{
 int n,i;
 printf("enter the number of
elements\n");
 scanf("%d",&n);
 int *p = (int
*)calloc(n,sizeof(int));

 if(p == NULL)
 {
 printf("enough memory not
available");
 exit(0);
 }

printf("enter array elements\n");
 for(i=0; i<n; i++)
 {
 scanf("%d", p+i);
 }
 printf("array elements are\n");
 for(i=0; i<n; i++)
 {
 printf("%d\t", *(p+i));
 }
}

realloc()
• realloc stands for re allocation

• General form of memory allocation using realloc is,

 ptr = (datatype *) realloc(p, newsize*sizeof(datatype));

void main()
{
 int n,i,new;
 printf("enter the number of elements\n");
 scanf("%d",&n);
 int *p = (int *)malloc(n*sizeof(int));
 if(p == NULL)
 {
 printf("enough memory not available");
 exit(0);
 }
 printf("enter array elements\n");
 for(i=0; i<n; i++)
 {
 scanf("%d", p+i);
 }
 printf("array elements are\n");

 for(i=0; i<n; i++)
 {
 printf("%d\t", *(p+i));
 }
 printf("\nenter the new number of elements\n");
 scanf("%d",&new);
 p=(int *)realloc(p,new*sizeof(int));
 printf("enter array elements\n");
 for(i=0; i<new; i++)
 {
 scanf("%d", p+i);
 }
 printf("array elements are\n");
 for(i=0; i<new; i++)
 {
 printf("%d\t", *(p+i)); }}

free()

Dynamically allocated memory form calloc() or malloc() should be freed(released)

using free().

General format:

void free(void *ptr);

Or

free(ptr);

void main()
{
 int n,i;
 printf("enter the number of
elements\n");
 scanf("%d",&n);
 int *p = (int
*)malloc(n*sizeof(int));
 if(p == NULL)
 {
 printf("enough memory
not available");
 exit(0);
 }
 printf("enter array
elements\n");

for(i=0; i<n; i++)
 {
 scanf("%d", p+i);
 }
 printf("array elements are\n");
 for(i=0; i<n; i++)
 {
 printf("%d\t", *(p+i));
 }
 free(p);
}

Dynamically allocated Arrays #include <stdio.h>
#include <stdlib.h>
 void main()
{
 int r = 3, c = 4, i; //Taking number of Rows and Columns
 int *ptr; //creating pointer
 ptr = (int *)malloc((r * c) * sizeof(int)); //Dynamically Allocating Memory (12*2=24)
 for(i = 0; i < r * c; i++)
 {
 ptr[i] = i + 1; //Giving value to the pointer and simultaneously printing it.
 printf("%d ", ptr[i]);
 if ((i + 1) % c == 0)
 {
 printf("\n");
 }
 }
 free(ptr);
}

Tree Array of trees

Student Array of students

Review of Arrays

Array means, a series of entities or a sequence of entities of the same type (homogeneous).
In C language entities can be char, int, float and double type data

35 23 45 20 100 70

35.5 11.5 46.790.615.934.3

m a rwut

Declaration of 1-D array

Syntax:
datatype arrayname[size];
Ex: int a[5];
 float b[5];

A declaration statement tells the compiler,
->data type of the array
->name of the array
->size of the array

Compiler then allocate memory depending upon the declaration.

a[1] a[2] a[4]a[3]a[0]

b[1] b[2] b[4]b[3]b[0]

 a

 b

b[1] b[2] b[3]b[0]

Initialization of 1-D array

1) Direct Initialization (Compile time initialization)

2) Initialization using a for loop (Run time initialization)

a[1] a[2] a[4]a[3]a[0]

b[1] b[2] b[4]b[3]b[0]

1) Direct Initialization : Mentioning array size is not compulsory.

Ex: int a[5] = {29, 47, 132, 229, 50 };

29 47 132 229 50

Ex: float b[5] = {29.3, 47.1, 132.4, 229.6, 50.3 };

47.129.3 132.4 229.6 50.3

29 47 132

2) Initialization using a for loop:
->Using a for loop to initialize the array blocks
->Mentioning array size is compulsory

int a[5];
int i;
printf(" Enter an integer");
for(i=0; i<=4; i++)
{
 scanf("%d", &a[i]);
}

a[1] a[2] a[4]a[3]a[0]

a[1] a[2] a[4]a[3]a[0]

29 47 132 229 5029 47 132 229 50

How do we store single integer in memory and how do we store array of
integers in memory?

To store single integer,

int a = 35;

35

To store array of integers,

int a[5] = {35,39,87,53,28};

35 39 87 53 28

a[0] a[1] a[2] a[3] a[4]

Note: Array is a Indexed Data Structure
Total size of the array=size of the array * number of bytes per block
 =5*2
 =10 bytes

 a a

To find the number of elements in an array
ub - lb +1

To find the location of a particular index
Loc(a[i] = base(a) + w * (i - lb)
Where, w is the word length
 w = 2 or 4 or 8 for integers
 w = 4 for float point values
 w = 8 for double values

1. A car manufacturing company uses an array car to record number of cars sold each year
starting from 1965 to 2015
i) Find the total number of years(elements)
ii) Suppose base address = 500, word length (w) = 4, find address of car[1967], car[1969]
and car[2015]

2. Consider the linear arrays AAA(5:50), BBB(-5:10) and CCC(1:18)
i) Find the total number of elements in each array
ii) Suppose the Base(AAA) = 300 and w=4 for AAA. Find the adress of AAA[15], AAA[35],
AAA[55]

Student 1-D array of Students

2-D array of Student

Two Dimensional Array

Int a;

Int a[50];

Int a[3][4];

a[1] a[2] a[4]a[3]a[0]

Why we need 2-D array?

To store matrices in the memory of a computer.

 a

 a

Declaration of 2-D array

General Syntax:
datatype array name[no.of rows][no.of columns];

Declaration statement tell the compiler that
->the datatype of the array
->the name of the array
->the number of rows in the array
->the number of columns in the array

Ex:
int a[4][3];

Col 0 Col 1 Col 2

row 0

row 1

row 3

row 2

Initialization of 2-D array -> Direct Initialization
-> Using for-loops

1.Direct Initialization:

int a[4][3] = {{10,80,60},{30,5,19},{20,3,16},{18,15,100}};

10 80 60

30 5 19

20 3 16

18 15 100

Col 0 Col 1 Col 2

row 0

row 1

row 3

row 2

int a[4][3] = {10,80,60,30,5,19,20,3,16,18,15,100};

10 80 60

30 5 19

20 3 16

18 15 100

int a[][3] = {10,80,60,30,5,19,20,3,16,18,15,100};

Mentioning the column dimension is important wheras row is optional

int a[4][] = {10,80,60,30,5,19,20,3,16,18,15,100};

int a[][] = {10,80,60,30,5,19,20,3,16,18,15,100};

Illegal:

2. Using a for loop to initialize the array blocks

int a[4][3];
for(i=0;i<4;i++)
{
 for(j=0;j<3;j++)
 {
 scanf("%d", &a[i][j]);
 }
}

[0][0] [0][1] [0][2]

[1][0] [1][1] [1][2]

[2][0] [2][1] [2][2]

[3][0] [3][1] [3][2]

Col 0 Col 1 Col 2

row 0

row 1

row 3

row 2

i
j

C program to read 2 matrices A (mxn) and B (mxn) and perform addition or subtraction and print the matrices
A,B and output matrix

5 10 15

1 3 9

6 2 8

3 5 1

7 2 9

5 3 5

8 15 16

8 5 18

11 5 13

+ =

- =

5 10 15

1 3 9

6 2 8

3 5 1

7 2 9

5 3 5

2 5 14

-6 1 0

1 -1 3

#include<stdio.h>
void main()
{
 int i,j,a[3][3],b[3][3],c[3][3];

 printf("enter the elements for array A:\n");
 for(i=0;i<3;i++)
 {
 for(j=0;j<3;j++)
 {
 scanf("%d",&a[i][j]);
 }
 }
 printf("enter the elements for array B:\n");
 for(i=0;i<3;i++)
 {
 for(j=0;j<3;j++)
 {
 scanf("%d",&b[i][j]);
 }
 }

//adding 2 matrices
 for(i=0;i<3;i++)
 {
 for(j=0;j<3;j++)
 {
 c[i][j]=a[i][j]+b[i][j];
 }
 }

//printing resultant matrix
 printf("array after addition :\n");
 for(i=0;i<3;i++)
 {
 for(j=0;j<3;j++)
 {
 printf("%d\t",c[i][j]);
 }
 printf("\n");
 }
}

//printing matrix A
 printf("array A is :\n");
 for(i=0;i<3;i++)
 {
 for(j=0;j<3;j++)
 {
 printf("%d\t",a[i][j]);
 }
 printf("\n");
 }
//printing matrix B
 printf("array B is :\n");
 for(i=0;i<3;i++)
 {
 for(j=0;j<3;j++)
 {
 printf("%d\t",b[i][j]);
 }
 printf("\n");
 }

Structures

int a;

float b;

Student:
Name
Age
Marks
USN

Tree:
Name
No. of branches
height

struct student
{

char name[5];
int age;
int marks;
char USN;

};
struct tree
{

char name[5];
int No.of branches;
float height;

};

Structures

struct student
{

char name[20];
int age;
int marks;
float height;

};

Structure provides a mechanism for the programmer to create his/her own
data type called "user defined date type"

Name of the
structure

Keyword for
creating
structure Structure

members/d
ata

Syntax

struct student
{

char name[20];
int age;
int marks;
float height;

};

struct structure_name
{

datatype member variable 1;
datatype member variable 2;
datatype member variable 3;
datatype member variable 4;

};

Ex. 1 Ex. 2

struct tree
{

char name[5];
int No.of
branches;
float height;

};

Structures

struct student
{

char name[5];
int age;
int marks;
float height;

};

struct tree
{

char name[5];
int No.of branches;
float height;

};

struct student s1; struct tree t1;

To access members of a structure, a structure variable has to be created

struct student
{

char name[5];
int age;
int marks;
float height;

};

struct student s1;

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15

Memory to
store name

Memory to store age

Memory to store marks

Memory to store
height

Fig: Memory for structure member

s1

struct student
{

char name[5];
int age;
int marks;
float height;

};
struct student s1;

s1.name="Raju";
s1.age=23;
s1.marks=80;
s1.height=5.5;
.(dot) -> Member access operator

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15

R
a
J
u
/0

23

80

5.5

s1

struct tree
{

char name[5];
int noofbranches;
float height;

};

struct tree t1;

t1.name="teak";
t1.noofbranches=23;
t1.height=31.71;
.(dot) -> Member access operator

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15

t
e
a
k
/0

23

31.71

t1

//program to read and display student details using structures
#include <stdio.h>
struct student
{
 char name[20];
 int age;
 int marks;
 float height;
};

void main()
{
 struct student s1;
 printf("Enter Student Details\n");
 printf("enter the name of the student\n");
 scanf("%s", s1.name);
 printf("enter student age\n");
 scanf("%d", &s1.age);
 printf("enter student marks\n");
 scanf("%d", &s1.marks);
 printf("enter student height\n");
 scanf("%f", &s1.height);
 printf("Student details you entered:\n");
 printf("Student name is: %s\n",s1.name);
 printf("Student age is: %d\n",s1.age);
 printf("Student marks is: %d\n", s1.marks);
 printf("student height is: %.2f\n",s1.height);
}

//program to read and display tree details using structures
#include <stdio.h>
struct tree
{
 char name[20];
 float height;
 int noofbranches;
};
void main()
{
 struct tree t1;

 printf("enter the name of the tree\n");
 scanf("%s", t1.name);
 printf("enter tree height\n");
 scanf("%f", &t1.height);
 printf("enter number of noofbranches\n");
 scanf("%d", &t1.noofbranches);

 printf("the tree name is: %s\n",t1.name);
 printf("the tree height is: %f\n",t1.height);
 printf("noofbranches in the tree are: %d\n",t1.noofbranches);

}

Array Structure

Array is a collection of related data elements
of same data type. (homogeneous data)

Structure is collection of logically related
data elements of different data types.
(heterogeneous data)

Array data are accessed using index Structure data are accessed using structure
name and dot operator

No key word is used to create array Struct keyword is used create structure

Each element will be of same size Size of the elements can be different

Structures and Functions

#include <stdio.h>
struct tree
{
 char name[20];
 float height;
 int noofbranches;
};
void disp(struct tree tr)
{
 printf("the tree name is: %s\n",tr.name);
 printf("the tree height is: %f\n",tr.height);
 printf("noofbranches in the tree are:
%d\n",tr.noofbranches);
 }

void main()
{
 struct tree t1;

 printf("enter the name of the tree\n");
 scanf("%s", t1.name);
 printf("enter tree height\n");
 scanf("%f", &t1.height);
 printf("enter number of noofbranches\n");
 scanf("%d", &t1.noofbranches);

 disp(t1);
}

Array of Structures

s

Aftab

hhs235

80 90

dsd23

Amulya

70

USN

Name

1000 2000 3000

 0 1 2 3 4 5 6 7 8

1000 2000 3000

Array of Structures

#include <stdio.h>
struct tree
{
 char name[20];
 float height;
 int noofbranches;
};

void main()
{
 struct tree t1[2];

 for(int i=0; i<=1; i++)
 {
 printf("enter the name of the tree\n");
 scanf("%s", t1[i].name);
 printf("enter tree height\n");
 scanf("%f", &t1[i].height);
 printf("enter number of noofbranches\n");
 scanf("%d", &t1[i].noofbranches);
 }

 for(int i=0; i<=1; i++)
 {
 printf("the tree name is: %s\n",t1[i].name);
 printf("the tree height is: %f\n",t1[i].height);
 printf("noofbranches in the tree are: %d\n",t1[i].noofbranches);
 }
}

Typedefing a Structures

typedef struct
{
 char name[10];
 int usn;
}student;

#include<stdio.h>
typedef struct
{
 char name[10];
 int usn;
}student;
void main()
{
 student s1;
 printf("enter student name:\n");
 scanf("%s", s1.name);
 printf("enter student usn:\n");
 scanf("%d", &s1.usn);
 printf("student name is %s",s1.name);
 printf("student usn is %d", s1.usn);
}

Different ways of writing a program using structure

#include<stdio.h>
struct student
{
 char name[10];
 int usn;
};

void main()
{
 struct student s1;
 printf("enter student name:\n");
 scanf("%s", s1.name);
 printf("enter student usn:\n");
 scanf("%d", &s1.usn);
 printf("student name is
%s\n",s1.name);
 printf("student usn is %d", s1.usn);
}

#include<stdio.h>
struct student
{
 char name[10];
 int usn;
}s1;

void main()
{
 printf("enter student name:\n");
 scanf("%s", s1.name);
 printf("enter student usn:\n");
 scanf("%d", &s1.usn);
 printf("student name is
%s\n",s1.name);
 printf("student usn is %d",
s1.usn);
}

#include<stdio.h>
typedef struct
{
 char name[10];
 int usn;
}student;

void main()
{
 student s1;
 printf("enter student name:\n");
 scanf("%s", s1.name);
 printf("enter student usn:\n");
 scanf("%d", &s1.usn);
 printf("student name is
%s\n",s1.name);
 printf("student usn is %d", s1.usn);
}

typedef struct {
 int month;
 int day;
 int year;
}date;

typedef struct {
 char name[10];
 int age;
 float salary;
 date dob;
} humanBeing;

humanBeing person1;

Structure within a
structure

typedef struct {
 char name[10];
 int age;
 float salary;
 struct {
 int month;
 int day;
 int year;
 } date;
} humanBeing;

OR

#include<stdio.h>
struct address
{
 char city[20];
 int pin;
 char phone[14];
};
struct employee
{
 char name[20];
 struct address add;
};
void main ()
{
 struct employee emp;
 printf("Enter employee information?\n");
 scanf("%s %s %d %s",emp.name,emp.add.city, &emp.add.pin, emp.add.phone);
 printf("Printing the employee information....\n");
 printf("name:%s\nCity:%s\nPincode:%d\nPhone:%s",emp.name,emp.add.city,emp.add.pin,emp.add.phon
e); }

Self-Referential Structures
A self-referential structure is one in which one or more of its components is a pointer
to itself. Self referential structures usually require dynamic storage management
routines (malloc and free) to explicitly obtain and release memory.

typedef struct {

char data;
struct list *link ;

} list;

Each instance of the structure list will have two components data and link.
• Data: is a single character,
• Link: link is a pointer to a list structure. The value of link is either the address in memory
of an instance of list or the null pointer.

Self-Referential Structures

Union

A union is similar to a structure, it is collection of data similar data type or dissimilar.

Syntax:

union tag_name{
 data_type member 1;
 data_type member 2;
 ………………………
 ………………………
 data_type member n;
}variable_name;

Union

typedef union
{
 int i;
 double d;
 char c;
}item;

union item
{
 int i;
 double d;
 char c;
};

item x; x

c

i

d

any time

Difference between Structure and Union

#include<stdio.h>
void main()
{
 typedef struct
 {
 int marks;
 char grade;
 float percentage;
 }student;

student s;

s.marks=90;
s.grade='A';
s.percentage=90.0;

printf("marks:%d\n",s.marks);
printf("Grade:%c\n",s.grade);
printf("percentage:%f\n",s.percent
age);
}

#include<stdio.h>
void main()
{
 typedef union
 {
 int marks;
 char grade;
 float percentage;
 }student;

student s;

S.marks=90;
printf("marks:%d\n",s.marks);

s.grade='A';
printf("Grade:%c\n",s.grade);

s.percentage=90.0;
printf("percentage:%f\n",s.percentage);
}

marks: 90
grade: A
percentage: 90.0

Bubble Sort Program

Bubble Sort is the simplest sorting algorithm that works by repeatedly swapping
the adjacent elements if they are in wrong order.

7 2 8 5 4

2 4 5 7 8

Input array

Output array

0 1 2 3 4

0 1 2 3 4

Pass/cycle 1 Pass 2 Pass 3 Pass 4

for() //for the passes
{
 for() //for the operation
 {
 If(no. on left > no. on right)
 {
 Exchange or swap the numbers
 }
 }
}

for() //for the passes
{
 for() //for the operation
 {
 If(no. on left > no. on right)
 {
 Exchange or swap the numbers
 }
 }
}

Example to swap 2 numbers

a=10, b=20

temp=a;
a=b;
b=temp;

If there are 5 elements in array then it will take 4 cycles to sort
the array
If there are n elements then it will take n-1 cycles to sort the
array
i.e from cycle 1 to less than n

for(j=1; j<n; j++)
{
 for(i=0; i<n-j; i++)
 {
 If(a[i] > a[i+1])
 {
 temp=a[i];
 a[i]=a[i+1];
 a[i+1]=temp;
 }
 }
}

#include<stdio.h>
void main()
{
int a[10], n, i;
printf("Enter the number of elements\n");
scanf("%d",&n);
printf("Enter the array elements\n");
for(i=0; i<n; i++)
{
 scanf("%d", &a[i]);
 }

bubble_sort(a,n);

printf("The sorted array is\t");
for(i=0; i<n; i++)
{
 printf("%d\t", a[i]);
 }
}

void bubble_sort(int a[], int n)
{
 Int i,j,temp;
 for(j=1; j<n; j++)
 {
 for(i=0; i<n-j; i++)
 {
 if(a[i]> a[i+1])
 {
 temp=a[i];
 a[i]=a[i+1];
 a[i+1]=temp;
 }
 }
 }
}

#include<stdio.h>
void main()
{
 int a[100], n, i, pos, key;
 printf("\nEnter the number of elements\n");
 scanf("%d",&n);
 printf("\nEnter the elements in ascending order\n");
 for(i=0; i<n; i++)
 {
 scanf("%d", &a[i]);
 }
 printf("\nEnter the key element\n");
 scanf("%d", &key);
 pos = binary_search(key, a, n);
 if(pos == -1)
 printf("Key element not found\n");
 else
 printf("\nKey element %d found at position %d\n", key, pos);
}

int binary_search(int key, int a[], int n)
{
 int low = 0;
 int high = n-1;
 while(low <= high)
 {
 mid = (low+high)/2;
 if(key == a[mid])
 return mid;
 else if(key < a[mid])
 high = mid-1;
 else
 low = mid+1;
 }
 return -1;
}

Advantages:
* Simple Technique
* Very efficient searching technique

Disadvantages
* The list of elements to be searched should be sorted.
* It is necessary to obtain the middle element which is possible only if elements are stored in the array. If
the elements are stored in linked list, this method can not be used.

Multidimensional Arrays

Two-dimensional arrays are called matrices in mathematics and tables in business applications.
There is a standard way of drawing a two-dimensional m x n array A where the elements of a
form a rectangular array with m rows and n columns and where the element A[J, K] appears in
row J and column K.

Representation of Two-Dimensional Arrays in Memory

Let A be a two-dimensional m x n array. Although A is pictured as a rectangular array of
elements with m rows and n columns, the array will be represented in memory by a block of m . n
sequential memory locations.

The programming language will store the array A either (1) column by column, is called
column-major order, or (2) row by row, in row-major order.

(Column-major order) LOC(A[J, K]) = Base(A) + w[M(K - 1)+ (J - 1)]
(Row-major order) LOC(A[J, K]) = Base(A) + w[N(J - 1) + (K - 1)]

Polynomials

• A polynomial is a sum of terms, where each term has a form axe , where x is the
variable, a is the coefficient and e is the exponent

A(x) = 3x20 + 2x5 + 4
B(x) = x4 + 10x3 + 3x2+1

The largest (or leading) exponent of a polynomial is called its degree. Coefficients that are zero
are not displayed. The term with exponent equal to zero does not show the variable since x
raised to a power of zero is 1.

Polynomial Representation

One way to represent polynomials in C is to use typedef to create the type polynomial as below:

#define MAX_TERMS 100 /*size of terms array*/
typedef struct
{
 float coef;
 int expon;
} polynomial;

polynomial terms[MAX-TERMS];
int avail = 0;

3 20 2 5 4 0

cf ex cf ex cf ex

term[0] term[1] term[2]

3x20 + 2x5 + 4

Consider the two polynomials

A(x) = 2xl000+ 1
B(x) = x4 + 10x3 + 3x2 +1

The above figure shows how these polynomials are stored in the array terms. The index of the first
term of A and B is given by startA and startB, while finishA and finishB give the index of the last term
of A and B.
• The index of the next free location in the array is given by avail.
• For above example, startA=0, finishA=1, startB=2, finishB=5, & avail=6.

#include<stdio.h>
typedef struct
{
 int cf; //used to hold coefficient
 int px; //used to hold power of x
}poly;
//function to read a polynomial with n terms

void read_poly(poly p[], int n)
{
 int i,cf,px;
 for(i=0; i<n; i++)
 {
 printf("enter Coefficient and exponent:");
 scanf("%d%d", &p[i].cf, &p[i].px););
 }
}

//function to display a polynomial with n terms
void print_poly(poly p[], int n)
{
 int i;
 for(i=0; i<n; i++)
 {
 if(p[i].cf < 0)
 printf("%d",p[i].cf);
 else
 printf("+%d",p[i].cf);

 if(p[i].px != 0)
 printf("x^%d",p[i].px);
 }
 printf("\n");
}
void main()
{
 int n;
 poly p[10];
 printf("enter number of terms:\n");
 scanf("%d", &n);
 read_poly(p, n);
 print_poly(p,n);
}

Program to read and display Polynomial

void main()
{
 int m, n, k;
 poly p1[20], p2[20], p3[40];

 printf("enter number of terms in polynomial 1:\n");
 scanf("%d", &m);
 read_poly(p1, m); //function call to read a polynomial with n terms

 printf("enter number of terms in polynomial 2:\n");
 scanf("%d", &n);
 read_poly(p2, n); //function call to read a polynomial with n terms

 printf("Poly 1: \n");
 Print_poly(p1,m); //function call to display a polynomial with n terms

 printf("poly 2: \n");
 Print_poly(p2,n); //function call to display a polynomial with n terms

 printf("\n***********\n");
 k = add_poly(p1, m, p2, n, p3); //Function call to add 2 polynomials
 printf("polynomial 3: ");
 print_poly(p3, k); //function call to display a polynomial with n terms
}

#include<stdio.h>
typedef struct
{
 int cf; //used to hold coefficient
 int px; //used to hold power of x
}poly;

Program to add 2 Polynomials

//function to read a polynomial with n terms
void read_poly(poly p[], int n)
{
 int i,cf,px;
 for(i=0; i<n; i++)
 {
 printf("enter Coefficient and exponent:");
 scanf("%d%d", &p[i].cf, &p[i].px);
 }
}

//function to display a polynomial with n terms
void print_poly(poly p[], int n)
{
 int i;
 for(i=0; i<n; i++)
 {
 if(p[i].cf < 0)
 printf("%d",p[i].cf);
 else
 printf("+%d",p[i].cf);
 if(p[i].px != 0)
 printf("x^%d",p[i].px);
 }
 printf("\n");
}

//Function to search for term of poly 1 in
poly2
int search(int px1, poly p2[], int n)
{
 int j, px2;
 for(j=0; j<n; j++)
 {
 px2 = p2[j].px;
 if(px1 == px2)
 return j;
 }
 return -1;
}

//Function to add 2 polynomials
int add_poly(poly p1[],int m, poly p2[], int n, poly p3[])
{
 int i, k, cf1, px1, pos, sum;
 k=0;
 for(i=0; i<m; i++)
 {
 cf1 = p1[i].cf;
 px1 = p1[i].px;

 pos = search(px1, p2, n);//function call to search for term of poly
1 in poly 2
 if(pos>0)
 {
 sum = cf1 + p2[pos].cf;
 p3[k].cf = sum;

 p2[pos].cf = -999;
 }
 else
 p3[k].cf = cf1;
 p3[k].px = px1;
 k++;
 }
 k = copy_poly(p3, k, p2, n); //function call to copy remaining terms
of poly 2 into poly 3
 return k;
}

//Function to copy remaining terms of poly 2 into poly 3
int copy_poly(poly p3[], int k, poly p2[], int n)
{
 int j;
 for(j=0; j<n; j++)
 {
 if(p2[j].cf != -999)
 {
 p3[k].cf = p2[j].cf;
 p3[k].px = p2[j].px;
 k++;
 }
 }
 return k;
}

SPARSE MATRICES

What is Sparse Matrix?

A matrix which contains many zero entries or very few non-zero entries is called as Sparse matrix.
In the figure B contains only 8 of 36 elements are nonzero and that is sparse.

A sparse matrix can be represented in 1-Dimension, 2- Dimension and 3- Dimensional array.
When a sparse matrix is represented as a two-dimensional array as shown in Figure B, more
space is wasted.

Sparse Matrix Representation

• An element within a matrix can characterize by using the triple <row, col, val> This means
that, an array of triples is used to represent a sparse matrix.
• Organize the triples so that the row indices are in ascending order.
• The operations should terminate, so we must know the number of rows and columns,
and the number of nonzero elements in the matrix.

#define MAX_TERMS 100 /* maximum number of terms */
typedef struct
{
 int col;
 int row;
 int value;
} TERM;

//1- dimensional array representing array of triples<row,col,val>
TERM a[MAX_TERMS];

The below figure shows the representation of matrix in the array “a” a[0].row contains the
number of rows, a[0].col contains the number of columns and a[0].value contains the total
number of nonzero entries.

6X6 is the size and 8 non zero
values in given matrix

Row 0

Row 1

Row 2

Row 4

Row 5

Row Col Val

//Function to read the sparse matrix as a triple

void read_sparse_matrix(TERM a[], int m, int n)
{
 int i,j,k,item;
 a[0].row=m, a[0].col=n, k=1;
 for(i=0; i<m; i++)
 {
 for(j=0; j<n; j++)
 {
 scanf("%d",&item);
 if(item==0)
 continue;
 a[k].row=i, a[k].col=j, a[k].val=item;
 k++;
 }
 }
 a[0].val=k-1;
}

Row Col Val 6X6 is the size and 8 non zero
values in given matrix

Row 0

Row 1

Row 2

Row 4

Row 5

Transpose of a matrix

Row Col
Val

6X6 is the size and 8 non zero values in
given matrix

Col 5

Col 3

Col 2

Col 1

Col 0

Row Col Val

//Function to find the transpose of a given sparse matrix matrix

void transpose(TERM a[], TERM b[])
{
 int i,j,k;
 b[0].row=a[0].col;
 b[0].col=a[0].row;
 b[0].val=a[0].val;
 k=1;
 for(i=0; i<a[0].col; i++)
 {
 for(j=1; j<a[0].val; j++)
 {
 if(a[j].col==i)
 {
 b[k].row=a[j].col;
 b[k].col=a[j].row;
 b[k].val=a[j].val;
 k++;
 }
 }
 }
}

Row Col Val

Col Val Row

Character array - Strings

Array which has character in it is called as String

Strings end with special character called null character(\0).

Declaration:
char a[8];

Initialization:
char a[8] = {'H','e','l','l','o','\0'};

Or

char a[]="HelloHi";

0 1 2 3 4 5 6 7

a

H e l l o \0

H e l l o H i \0a

a

0 1 2 3 4 5 6 7

0 1 2 3 4 5 6 7

BASIC TERMINOLOGY:

String: A finite sequence S of zero or more Characters is called string.

Length: The number of characters in a string is called length of string.

Empty or Null String: The string with zero characters.

Concatenation: Let S1 and S2 be the strings. The string consisting of the characters of S1
followed by the character S2 is called Concatenation of S1 and S2.
Ex: ‘THE’ // ‘END’ = ‘THEEND’
‘THE’ // ‘ ’ // ‘END’ = ‘THE END’

Substring: A string Y is called substring of a string S if there exist string X and Z such that
S = X // Y // Z
If X is an empty string, then Y is called an Initial substring of S, and Z is an empty string then
Y is called a terminal substring of S.
Ex: ‘BE OR NOT’ is a substring of ‘TO BE OR NOT TO BE’
‘THE’ is an initial substring of ‘THE END’

STORING STRINGS

STORING STRINGS - How strings are stored in memory?

Strings are stored in three types of structures

1. Fixed length storage structures
2. Variable length structures
3. Linked storage structures

1. Fixed length storage structures

In this storage structure, each line of text to be manipulated is viewed as a record where all
records have same length.

R A M A

K R I S H N A

M I T H I L

A B

A B C D E F G H

0

1

2

3

5

Disadvantages:

1. Time wasted in reading entire record if more spaces are present

2. Certain records may require more space than available to store a string

3. If the length reserved for string is too small, it is not possible to store larger data

4. If the length reserved for string is too large, too much memory is wasted

5. Once the string is defined, the length of the string can't be changed

R A M A \0

K R I S H N A \0

String

String

delimiter

delimiter

5 bytes

8 bytes

2. Variable length structures

->The storage structure for a string can expand or
shrink to accommodate any size of data.
->But there should be a mechanism to indicate the
end of the data

->In C language strings end with a special character
called NULL (denoted by \0)

char a[]="RAMA";

char a[]="KRISHNA";

3. Linked storage structures

\0

String Operations:

Substring

Indexing

Concatenation

Length

STRING OPERATIONS

Substring
Accessing a substring from a given string requires three pieces of information:
(1) The name of the string or the string itself
(2) The position of the first character of the substring in the givenstring
(3) The length of the substring or the position of the last character of the substring.
Syntax: SUBSTRING (string, initial, length)
The syntax denote the substring of a string S beginning in a position K and having a length
L.
Ex: SUBSTRING ('TO BE OR NOT TO BE’, 4, 7) = 'BE OR N’
SUBSTRING ('THE END', 4, 4) = ' END'

Indexing
Indexing also called pattern matching, refers to finding the position where a string pattern P
first appears in a given string text T. This operation is called INDEX
Syntax: INDEX (text, pattern)
If the pattern P does not appears in the text T, then INDEX is assigned the value 0.

Concatenation
Let S1 and S2 be string. The concatenation of S1 and S2 which is denoted by S1 // S2, is the string
consisting of the characters of S1 followed by the character of S2.
Ex:
(a) Suppose S1 = 'MARK' and S2= ‘TWAIN' then
S1 // S2 = ‘MARKTWAIN’
Concatenation is performed in C language using strcat function as shown below
strcat (S1, S2);
Concatenates string S1 and S2 and stores the result in S1
strcat () function is part of the string.h header file; hence it must be included at the time of
pre- processing

Length
The number of characters in a string is called its length.
Syntax: LENGTH (string)
Ex: LENGTH (‘computer’) = 8

Printing and Reading Strings

Formatted - printf (for output)
 - scanf (for input)

Ex. for reading string using
formatted input function:
char c[20];
scanf("%s", c);

Un formatted - puts (for output)
 - gets (for input)

#include<stdio.h>
Void main()
{
 char name[20];
 Printf("enter your name:");
 Scanf("%s", name);
 Printf("your name is %s:", name);
}

O/p:
enter your name: Sachin Tendulkar
your name is: Sachin

#include<stdio.h>
Void main()
{
 char name[20];
 printf("enter your name:");
 gets(name);
 printf("your name is:");
 puts(name);
}

O/p:
enter your name: Sachin Tendulkar
your name is: Sachin Tendulakar

String Manipulation Functions

STRING HANDLING FUNCTIONS IN C

Design Functions to implement following string functions
i) strlen()
ii) strcmp()
iii) strcat()
iv) strcpy()
v) strrev()

String Length

#include<stdio.h>
void main()
{
 char str[6]="Hello";
 int len = my_strlen(str);
 printf("length of str is %d",len);
}
int my_strlen(char str[])
{
 int i=0;
 while(str[i] != '\0')
 {
 i++;
 }
 return i;
}

#include<stdio.h>
#include<string.h>
void main()
{
 char str[6]="Hello";
 int len = strlen(str);
 printf("length of str is %d",len);
}

String copy

#include<stdio.h>
void main()
{
 char str1[6]="HELLO";
 char str2[6];
 My_strcpy(str1, str2);

}
void my_strcpy(char str1[], char str2[])
{
 int i=0;
 while(str1[i] != '\0')
 {
 str2[i]=str1[i];
 i++;
 }
 str2[i]='\0';
}

#include<stdio.h>
#include<string.h>
void main()
{
 char str1[6]="HELLO";
 char str2[6];
 strcpy(str1,str2);
 printf("string 2 is %s",str2);
}

String concatenation
#include<stdio.h>
void main()
{
 char str1[6]="HELLO";
 char str2[6]="WORLD";
 My_strcat(str1, str2);
}
void my_strcat(char str1[], char str2[])
{
 int i,j;
 i=0,j=0;
 while(str1[i] != '\0')
 {
 i++;
 }
 while(str2[j]!='\0')
 {
 str1[i++]=str2[j++];
 }
 str1[i++] = '\0';
}

#include<stdio.h>
#include<string.h>
void main()
{
 char str1[6]="HELLO";
 char str2[6]="WORLD";
 strcat(str1,str2);
 printf("str1 is %s",str1);
}

String compare

#include<stdio.h>
void main()
{
 char str1[6]="Hello";
 char str2[6]="Hello";
 int res = my_strcmp(str1, str2);
 if(res==0) { printf("strings are equal\n"); }
 else if(res < 0) { printf("string 1 is smaller than string 2");
 else { printf("string 1 is greater than string 2"); }
}
Int my_strcmp(char str1[], char str2[])
{
 int i;
 i=0;
 while(str1[i] == str2[i])
 {
 if(str1[i] == '\0')
 break;
 i++;
 }
 return str1[i] - str2[i];
}

If 2 strings are equal, the function returns 0
If string 1 is greater than string 2, a positive value is returned.
If String 1 is less than string 2, a negative value is returned.

String Reverse

#include<stdio.h>
#include<string.h>
void main()
{
 char str1[6]="Hello";
 char str2[6];
 my_strrev(str1, str2);

}
void my_strrev(char str1[], char str2[])
{
 int i,n;
 n = strlen(str1)
 for(i=0; i<n; i++)
 {
 str2[n-1-i] = str1[i];
 }
 str2[n] = '\0';
}

PATTERN MATCHING ALGORITHM

->Pattern matching is the problem of deciding whether or not a given string pattern P appears in a
string text T. The length of P does not exceed the length of T.

The first pattern matching algorithm is one in which comparison is done by a given pattern P with each of
the substrings of T, moving from left to right, until a match is found.
WK = SUBSTRING (T, K, LENGTH (P))
• Where, WK denote the substring of T having the same length as P and beginning with the Kth
character of T.
• First compare P, character by character, with the first substring, W1. If all the characters are the same,
then P = W1 and so P appears in T and INDEX (T, P) = 1.
• Suppose it is found that some character of P is not the same as the corresponding character of W1.
Then P ≠ W1
• Immediately move on to the next substring, W2 That is, compare P with W2. If P ≠ W2 then compare P
with W3 and so on.
• The process stops, When P is matched with some substring WK and so P appears in T and
INDEX(T,P) = K or When all the WK'S with no match and hence P does not appear in T.
• The maximum value MAX of the subscript K is equal to LENGTH(T) -LENGTH(P) +1.

Brute Force Algorithm

Algorithm: (Pattern Matching_Brute Force)

P and T are strings with lengths R and S, and are stored as arrays with one character per

element. This algorithm finds the INDEX of P in T.

1. [Initialize.] Set K: = 1 and MAX: = S - R + 1

2. Repeat Steps 3 to 5 while K ≤ MAX

3. Repeat for L = 1 to R: [Tests each character of P]

 If P[L] ≠ T[K + L – l], then: Go to Step 5

 [End of inner loop.]

4. [Success.] Set INDEX = K, and Exit

5. Set K := K + 1

 [End of Step 2 outer loop]

6. [Failure.] Set INDEX = O

7. Exit

PATTERN MATCHING ALGORITHM - KMP algorithm(Knuth Morris Pratt)

Algm PatternMatching_KMP(s, p) return int
{
 k=1, s1=q0, n=length(s)
 While(k<=n && sk!=p)
 {
 Read tK
 sk+1 = F(sk,tk)
 k=k+1
 }
 If(k>n)
 {
 index=0
 }
 else
 {
 Index=k-length(p)
 }
 return index
}

 1 2 3 4 5 6 7 8 9 10 11

String s: a a a a a a a a a a b
Pattern p: a a a b

Pattern p: a a b a

Stacks: Definition, Stack Operations, Array Representation of Stacks, Stacks using Dynamic
Arrays, Stack Applications: Polish notation, Infix to postfix conversion, evaluation of postfix
Expression

Recursion - Factorial, GCD, Fibonacci Sequence, Tower of Hanoi, Ackerman's Function.

Queues: Definition, Array Representation, Queue Operations, Circular Queues,
Circular queues using Dynamic arrays, Dequeues, Priority Queues, A Mazing Problem.
Multiple Stacks and Queues. Programming Examples.

Module-2

Stacks and Queues

STA CK

-> Stack is a linear data structure which follows a particular order in which the operations are
performed.

->The order may be LIFO(Last In First Out) or FILO(First In Last Out).

-> A stack can be implemented by means of Array,
Structure, Pointer, and Linked List.

-> Here, we are going to implement stack using
arrays, which makes it a fixed size stack
implementation.

->At any given time, we can only access the top
element of a stack.

ARRAY REPRESENTATION OF STACKS

• Stacks may be represented in the computer in various ways such as one-way linked list
(Singly linked list) or linear array.
• Stacks are maintained by the two variables such as TOP and MAX_STACK_SIZE.
• TOP which contains the location of the top element in the stack. If TOP= -1, then it
indicates stack is empty.
• MAX_STACK_SIZE which gives maximum number of elements that can be stored in
stack.
Stack can represented using linear array as shown below

STACK
OPERATIONS

#define Max_Size 4
void push()
{
 if (top >= Max_Size-1)
 Stack overflow
 Else
 top++
 stack[top] = item;
}

3

2

1

0

3

2

1

0

3

2

1

0

3

2

1

0

3

2

1

0

push() − Pushing (storing) an element on the stack.

->Check for overflow condition i.e top = Max_Size-1
->Increment top by 1
->Push an element

void push(int item, int top, int s[])
{
 If(top == Max_Size - 1)
 {
 Printf("Stack Overflow");
 Return;
 }
 top++;
 s[top] = item;
}

void push()
{
 If(top == Max_Size - 1)
 {
 printf("Stack Overflow");
 exit(0);
 }
 top++;
 s[top] = item;
}

Function to push an integer item
(using global variables)

Function to push an integer item
(by passing parameter)

pop()

 Deleting an element from the stack is called pop operation. The element is deleted only from

the top of the stack and only one element is deleted at a time.

Removing an element from the stack.
 Check underflow condition i.e top=-1
 Item=s[top]
 Decrement top by 1

int pop()
{
 int item_deleted;

 If(top==-1)
 Return 0;

 item_deleted=s[top--];
 Return item_deleted;
}

int pop(int top, int s[])
{
 int item_deleted;

 If(top==-1)
 Return 0;

 item_deleted=s[(top)--];
 Return item_deleted;
}

Function to pop an integer item
(using global variables)

Function to pop an integer item
(by passing parameter)

Display()

->Display the elements of stack
->Check for underflow condition
->Display using for loop

void display()
{
 Int i;
 If(top==-1)
 {
 Printf("stack is empty\n");
 Return;
 }
 Printf("Contents of the stack are:\n");
 For(i=0; i<=top; i++)
 {
 Printf("%d\n",s[i]);
 }
}

void display(int top, int s[])
{
 Int i;
 If(top==-1)
 {
 Printf("stack is empty\n");
 Return;
 }
 Printf("Contents of the stack are:\n");
 For(i=0; i<=top; i++)
 {
 Printf("%d\n",s[i]);
 }
}

Display Stack content using global variables Display Stack content by pass by parameter

Applications/Advantages of Stack

• Stacks can be used for expression evaluation.

• Stacks can be used to check parenthesis matching in an expression

• Stacks can be used for Conversion from one form of expression to another.

• Stacks can be used for Memory Management

Expression can be represented in in different format such as
• Prefix Expression or Polish notation
• Infix Expression
• Postfix Expression or Reverse Polish notation

Infix Expression: In this expression, the binary operator is placed in-between the operand.
The expression can be parenthesized or un- parenthesized.
Example: A + B
Here, A & B are operands and + is operator

Prefix or Polish Expression: In this expression, the operator appears before its operand.
Example: + A B
Here, A & B are operands and + is operator

Postfix or Reverse Polish Expression: In this expression, the operator appears after its
operand.
Example: A B +
Here, A & B are operands and + is operator

Steps to evaluate postfix expression

Step 1: If operand - push
Step2: If operator -
 * Pop the top of the stack and make it operand 2
 * Pop the next top of the stack and make operand 1
 * Perform operation
 * Push the result

Infix -> 4 + 2 * 3 postfix -> 4 2 3 * +

Infix -> (8 + 5) * (6 / 3) postfix -> 8 5 + 6 3 / *

postfix -> 4 2 $ 3 * 3 - 8 4 / 1 1 + / +Infix -> 4 $ 2 *3 -3 + 8 / 4 / (1 + 1)

Steps to convert infix to postfix expression

Step 1: If operand - send it to postfix expression
Step2: If operator -
 Check the Priority of current operator (PCO) VS Priority of top of stack(POTS)
 If(PCO > POTS) then PUSH
 If(PCO = POTS) then POP
 If(PC0 < POTS) then POP
Step3: Parenthesis
 If (PUSH
 If) PUSH
 Permitted to push any symbol above the brackets
 POP all the symbols between (and)

Priorities:
1. $, ^
2. *, /
3. +, -

#include<stdio.h>
#include<ctype.h>
#define SIZE 50
char s[SIZE];
int top=-1;
void push(char elem)
{

s[++top]=elem;
}
char pop()
{

return s[top--];
}
int pr(char elem)
{

switch(elem) {
case '#':return 0;
case '(':return 1;
case '+’:
case '-':return 2;
case '*’:
case '/’:
case '%':return 3;
case '^':return 4;

}
}

void main() {
char infix[50],postfix[50],ch,elem;
int i=0,k=0;
printf("enter the infix expression\n"); gets(infix);
push('#’);
while((ch=infix[i++])!='\0’)
{

if(ch=='(‘)
push(ch);

else if(isalnum(ch))
postfix[k++]=ch;

else if(ch==')’)
{

while(s[top]!='(‘)
 postfix[k++]=pop();
elem=pop();

}
else
{

while(pr(s[top])>=pr(ch))
 postfix[k++]=pop();
push(ch);

}
}
while(s[top]!='#’)

postfix[k++]=pop();
postfix[k]='\0’;
printf("infix expression is %s\n postfix expression is %s\n",infix,postfix);

}

Enumeration (or enum) is a user defined data type in C. It is mainly used to assign names to
integral constants, the names make a program easy to read and maintain.

typedef enum { lparen, rparen, plus,
minus, times, divide, mod, eos,
operand } precedence;

precedence getToken(char *symbol, int *n)
{
 *symbol = expr[(*n)++];
 switch (*symbol)
 {
 case '(' : return lparen;
 case ')' : return rparen;
 case '+' : return plus;
 case '-' : return minus;
 case '/' : return divide;
 case '*' : return times;
 case '%' : return mod;
 case ' ' : return eos;
 default: return operand;
 }
}

/* Function to evaluate postfix expression */
int eval(void)
{
 precedence token;
 char symbol;
 int opl,op2, n=0;
 int top= -1;
 token = getToken(&symbol, &n);
 while(token! = eos)
 {
 if (token == operand)
 push(); /* stack insert */
 else
 {
 op2 = pop(); /* stack delete */
 opl = pop();
 switch(token)
 {
 case plus: push(opl+op2); break;
 case minus: push(opl-op2); break;
 case times: push(opl*op2); break;
 case divide: push(opl/op2); break;
 case mod: push(opl%op2); break;
 }
 }
 token = getToken(&symbol, &n);
 }
 return pop(); /* return result */
}

void postfix(void)
{
 char symbol;
 precedence token;
 int n = 0,top = 0; /* place eos on stack */
 stack[0] = eos;
 for (token = getToken(&symbol, &n); token != eos; token = getToken(&symbol,& n))
 {
 if (token == operand)
 printf("%c", symbol);
 else if (token == rparen)
 {
 while (stack[top] != lparen)
 printToken(pop());
 pop();
 }
 else
 {
 while(isp[stack[top]] >= icp[token])
 printToken(pop());
 push(token);
 }
 }
 while((token = pop ())!= eos)
 printToken(token);
 printf("\n");
}

/* Function to convert infix to postfix */

Recursion

A process of a function calling itself is what
is called Recursion

Recursion refers to the process where a
function calls itself directly or indirectly

Recursion

Indirect
Recursion

Direct
Recursion

Direct Recursion

Function calls itself directly

func1()
{

func1();

}

Indirect Recursion

func2();

}

func1()
{

func2()
{

func1();

}

Direct Recursion Indirect Recursion

Example:
#include<stdio.h>
void main()
{
 printf("I LOVE MY COUNTRY\n");
 main();
}

Output:
I LOVE MY COUNTRY
I LOVE MY COUNTRY
...
...
...
(infinte number of times I LOVE MY
COUNTRY will printed)

Example:
#include<stdio.h>
void fun(void);
void main()
{
 printf("I LOVE MY COUNTRY\n");
 fun();
}
fun()
{
 main();
}
Output:
I LOVE MY COUNTRY
I LOVE MY COUNTRY
...
(infinte number of times I LOVE MY
COUNTRY will printed)

rec-fun()

is exit
condition
satisfied?

Stop

body No

Yes

General format of recursive function:

factorial of a given number

Factorial of a number 5!=5*4*3*2*1=120

#inlcude<stdio.h>
void main()
{
 fact=1;
 Printf("enter the no\n");
 Scanf("%d",&n);
 For(i=1;i<=n;i++)
 {
 fact=fact*i;
 }
 printf("factorial of a number is %d", fact);
}

Write a program to compute the factorial of a given
number n using recursion.

 {fact(n) =
1 if n==0

n*fact(n-1) if n>0

0! = 1
1! = 1*(1-1)! = 1*1 =1
2! = 2*(2-1)! = 2*1 = 2
3! = 3*(3-1)! = 3*2 = 6
4! = 4*(4-1)! = 4*6 = 24
.
.
.
n! = n*(n-1)!

#include<stdio.h>
int fact(int);
void main()
{
 int n,ans;
 printf("enter the value of n\n");
 scanf("%d",&n);
 ans=fact(n);
 printf("answer is %d",ans);
}
int fact(int n)
{
 if(n==0)
 {
 return 1;
 }
 else
 {
 return n*fact(n-1);
 }
}

GCD
The greatest common divisor (GCD) of two integers m and n is the greatest integer that
divides both m and n with no remainder.

#include<stdio.h>
int gcd(int a, int b)
{
 if(b==0)
 return a;
 elseif(a<b)
 return gcd(b,a);
 else
 return gcd(b, a%b);
}
Void main()
{
 Int a,b;
 Printf("enter a and b\n");
 Scanf("%d%d", &a,&b);
 Result=gcd(a,b);
 Printf("result is = %d", Result);
}

n 1 2 3 4 5 6 7 8 9 10

fib(n) 0 1 1 2 3 5 8 13 21 34

{fib(n) =

0 if n==1

1 if n==2

fib(n-1)+fib(n-2) if n>2

a series of numbers in which each number (Fibonacci number) is the sum of
the two preceding numbers.

Fibonacci Sequence

#include<stdio.h>
int fib(int);
void main()
{
 int n,ans;
 printf("enter the value of n\n");
 scanf("%d",&n);
 ans=fib(n);
 printf("answer is %d",ans);
}

int fib(int n)
{
 if(n==1)
 {
 return 0;
 }
 if(n==2)
 {
 return 1;
 }
 if(n>2)
 {
 return fib(n-1)+fib(n-2);
 }
}

Tower of Hanoi

Suppose three pegs, labeled A, Band C, are given, and suppose on peg A a finite number
n of
disks with decreasing size are placed.
The objective of the game is to move the disks from peg A to peg C using peg B as an
auxiliary.
The rules of the game are as follows:
1. Only one disk may be moved at a time. Only the top disk on any peg may be moved to
any other peg.
2. At no time can a larger disk be placed on a smaller disk

1. Move top disk from peg A to peg C.

2. Move top disk from peg A to peg B.

3. Move top disk from peg C to peg B.

4. Move top disk from peg A to peg C.

5. Move top disk from peg B to peg A.

6. Move top disk from peg B to peg C.

7. Move top disk from peg A to peg C.

In other words,

n=3: A→C, A→B, C→B, A→C, B→A, B→C,

A→C

the solution to the Towers of Hanoi problem for n = 1 and n = 2
n=l: A→C
n=2: A→B, A→C, B→C

The general notation
• TOWER (N, BEG, AUX, END) to denote a procedure which moves the top n disks
from
the initial peg BEG to the final peg END using the peg AUX as an auxiliary.
• When n = 1, the solution:
TOWER (1, BEG, AUX, END) consists of the single instruction BEG→END
• When n > 1, the solution may be reduced to the solution of the following three sub
problems:
(a) TOWER (N - I, BEG, END, AUX)
(b) TOWER (l, BEG, AUX, END) or BEG → END
(c) TOWER (N - I, AUX, BEG, END)

The Towers of Hanoi problem for n > 1 disks may be reduced to the following sub-problems:
(1) Move the top n - 1 disks from peg A to peg B
(2) Move the top disk from peg A to peg C:A→C.
(3) Move the top n - 1 disks from peg B to peg C

Procedure: TOWER (N, BEG, AUX, END)
This procedure gives a recursive solution to the Towers of Hanoi problem for N disks.
1. If N=l,then:
 (a) Write: BEG →END.
 (b) Return.
 [End of If structure.]
2. [Move N - 1 disks from peg BEG to peg AUX.]
 Call TOWER (N - 1, BEG, END, AUX).
3. Write: BEG →END.
4. [Move N - 1 disks from peg AUX to peg END.]
 Call TOWER (N - 1, AUX, BEG, END).
5. Return.

#include<stdio.h>
void tower(int n,char frompeg,char topeg,char auxpeg);
int n;
void main()
{
 printf("Enter the no. of discs: \n");
 scanf("%d",&n);
 printf("the number of moves in tower of henoi problem\n");
 tower(n,'A','C','B');
}
void tower(int n,char frompeg,char topeg,char auxpeg)
{
 if(n==1)
 {
 printf("move disk1 from %C to %C\n ",frompeg,topeg);
 return;
 }
 tower(n-1,frompeg,auxpeg,topeg);
 printf("move disk%d from %C to %C\n",n,frompeg,topeg);
 tower(n-1,auxpeg,topeg,frompeg);
}

• A Queue is a special type of data structure where elements are inserted from
one end and deleted from other end.

• The end at which elements are added is called rear
• The end at which elements are deleted is called front
• The first element inserted is the first element to be deleted out. Hence it is First

In First Out (FIFO) or Last In Last Out (LILO) data structure.

Queues

FIFO/LILO

Or ordinaryor
linear

Array Representation

F=-1, r= -1

Operations on Queues

1. Queue Create
Queue CreateQ(maxQueueSize) ::=
 #define MAX_QUEUE_ SIZE 100 /* maximum queue size */
 typedef struct
 {
 int key; /* other fields */
 } element;
 element queue[MAX_QUEUE_ SIZE];
 int rear = -1;
 int front = -1;

2. Boolean IsEmptyQ(queue) ::= front == -1 || front > rear

3. Boolean IsFullQ(queue) ::= rear == MAX_QUEUE_SIZE-1

4. addq(item)
void addq(element item)
{ /* add an item to the queue */
 if (rear == MAX_QUEUE_SIZE-1)
 queueFull();
 queue [++rear] = item;
}

5. deleteq()
element deleteq()
{ /* remove element at the front of the queue */
 if (front == -1 || front > rear)
 return queueEmpty(); /* return an error key */
 return queue[++front];
}

6. queueFull()
The queueFull function which prints an error message and
terminates execution

void queueFull()
{
 printf("Queue is full, cannot add element");
 exit(0);
}

#define MAX 10
int queue[MAX];
int f=-1;
int r=-1;

void insert()
{
 if(rear==MAX-1)
 printf("overflow");
 else
 if(f==-1)
 {
 f++;
 }
 printf("enter element to be inserted");
 scanf("%d", &ele);
 Queue[++r]=ele;
}

void delete()
{
 If(front==-1 || front>rear)
 printf("underflow");
 else
 Printf("element deleted is %d", queue[front]);
 front++;
}

void display()
{
 if(front==-1 || front>rear)
 Printf("display not possible");
 else
 Printf("queue elements are:");
 For(int i=f; i<=r; i++)
 Printf("%d\t", queue[i]);
}

Functions to insert, delete and display operations on linear queue

Disadvantage of queue
Solution 1:

Circular QueuesSolution 2:

(front+1)%MAX_QUEUE_SIZE

Functions to insert, delete and display operations on Circular queue

#define MAX 10
int queue[MAX];
int f=-1;
int r=-1;

void enqueue(int n)
{
 If(f==-1 && r==-1)
 f=r=0;
 queue[r]=n;
 r=(r+1)%MAX;
 If(r==f)
 Printf("queue is full");
 Else
 queue[rear]=n;

void dequeue()
{
 If(f==-1 && r==-1)
 Printf("queue is empty")

 Else
 Printf(element deleted %d", queue[f]);
 f=(f+1)%MAX;
.

void display()
{
 If(f==-1 && r==-1)
 Printf("queue is empty")
 else
 Printf("Queue elements are:");
 for(i=f; i!=r; (i+1)%MAX)
 printf("%d\t", queue[i]);
}
Printf("%d", queue[i]);

Double ended queue (Dequeue)

Operations performed on dequeues:

-> insert an item from front end
-> insert an item from rear end
-> delete an item from front end
-> delete an item from rear end
-> display the contents of queue

void insertfront()
{
 If(f==-1 && r==-1)
 f++;
 q[++rear]=item;

 Else If(f!=-1)
 q[--f]=item;

 Else
 Printf("front insertion not possible");
}

30

10 20 30

q

q

q

-1 0 1 2 3 4

-1 0 1 2 3 4

-1 0 1 2 3 4

f,r

f,r

 f r

void deleterear()
{
 If(f==-1 && r==-1)
 Printf("no items");

 Else
 Printf("item deleted is %d", q[r]);
 r--;
}

 10 20 30

q

q

-1 0 1 2 3 4

-1 0 1 2 3 4

f,r

 f r

There are two variations of a deque

1. Input-restricted deque is a deque which allows insertions at only one end of the list

but allows deletions at both ends of thelist

2. Output-restricted deque is a deque which allows deletions at only one end of the list

but allows insertions at both ends of the list.

PRIORITY QUEUES

A queue in which we are able to insert items or remove items from any position based on some
priority is often referred to as priority queue.
(1) An element of higher priority is processed before any element of lower priority.
(2) Two elements with the same priority are processed according to the order in which
they were added to the queue.
One way to maintain a priority queue in memory is by means of a
one-way list, as follows:
1. Each node in the list will contain three items of information: an information field INFO,
a priority number PRN and a link number LINK.
2. A node X precedes a node Y in the list
a. When X has higher priority than Y
b. When both have the same priority but X was added to the list before Y. This means
that the order in the one-way list corresponds to the order of the priority queue.

Algorithm to deletes and processes the first element in a priority queue
Algorithm: This algorithm deletes and processes the first element in a priority
queue which
appears in memory as a one-way list.
1. Set ITEM:= INFO[START] [This saves the data in the first node.]
2. Delete first node from the list.
3. Process ITEM.
4. Exit.

Algorithm to add an element to priority
queue
.
Algorithm: This algorithm adds an
ITEM with priority number N to a
priority queue which is
maintained in memory as a one-way
list.
1. Traverse the one-way list until
finding a node X whose priority
number exceeds N. Insert
ITEM in front of node X.
2. If no such node is found, insert ITEM
as the last element of thelist.

Array Representation of Priority Queue
• Another way to maintain a priority queue in memory is to use a separate queue for each
level of priority (or for each priority number).
• Each such queue will appear in its own circular array and must have its own pair of
pointers, FRONT and REA R.
• If each queue is allocated the same amount of space, a two-dimensional array QUEUE
can be used instead of the linear arrays.

Algorithm: This algorithm deletes and processes the first element in a priority queue
maintained by a two-dimensional array QUEUE.
1. [Find the first non-empty queue.]
Find the smallest K such that FRONT[K] ≠ NULL.
2. Delete and process the front element in row K of QUEUE.
3. Exit.

Algorithm: This algorithm adds an ITEM with priority number M to a priority queue
maintained by a two-dimensional array QUEUE.
1. Insert ITEM as the rear element in row M ofQUEUE.
2. Exit.

