AT M E

College of Engineering

Course Name DATA STRUCTURES AND APPLICATIONS

50 Mrs. MADHU NAGARAJ
Assistant Professor
Dept of CSE-DS
ATMECE, Mysuru

50

CLO 1. To explain fundamentals of data structures and their
Course Learning Objectives applications.

CLO 2. To illustrate representation of Different data structures such as
Stack, Queues, Linked Lists, Trees and Graphs.

CLO 3. To Design and Develop Solutions to problems using Linear Data
Structures

CLO 4. To discuss applications of Nonlinear Data Structures in problem
solving.

CLO 5. To introduce advanced Data structure concepts such as
Hashing and Optimal Binary
Search Trees

CO 1. Explain different data structures and their applications.

CO 2. Apply Arrays, Stacks and Queue data structures to
solve the given problems.

CO 3. Use the concept of linked list in problem solving.

CO 4. Develop solutions using trees and graphs to model the real-
world problem.

CO 5. Explain the advanced Data Structures concepts such as
Hashing Techniques and Optimal Binary Search Trees.

Text Book

Licsaor ooy N (0
College of Engineering :

Ellis Horowitz and Sartaj Sahni, Fundamentals of Data
Structures in C, 2nd Ed, Universities Press,
2014.

Seymour Lipschutz, Data Structures Schaum's Outlines,
Revised 1st Ed, McGraw Hill, 2014.

A LM E I
College of Engineering L

Ed, McGraw Hill, 2014.

Reema Thareja, Data Structures using C, 3rd Ed, Oxford press, 2012.

Jean-Paul Tremblay & Paul G. Sorenson, An Introduction to Data
Structures with Applications, 2nd Ed, McGraw Hill, 2013

A M Tenenbaum, Data Structures using C, PHI, 1989

Robert Kruse, Data Structures and Program Design in C, 2nd Ed, PHI,
1996.

Question Paper Pattern The question paper will have ten questions.

Each full Question consisting of 20 marks.

There will be 2 full questions (with a maximum of four sub questions) from each
module.

Each full question will have sub questions covering all the topics under a module.

The students will have to answer 5 full questions, selecting one full question from
each module.

Eicoaorcrynecrvy NN D,
College of Engineering < 3

* "Get your data structures correct first, and the rest of the program
will write 1tself."

. -Davids Johnson

/

Program = Data Structure + Algorithm

A L M E I
College of Engineering <

“What is data? “

— data is a piece of information or simply set of values and data as such may not
convey any meaning.

— The quantities, characters, or symbols on which a computer performs operations
may be stored and transmitted in the form of electrical signals and recorded on
magnetic, optical, or mechanical recording media.

* DATA and INFORMATION are often confusing, and we often interchange these
two terms.

« UHDAM SI EMAN YM

he| College of Engineering

What is information?”

 If data 1s arranged systematically, then 1t gets a structure and becomes
meaningful.

The need for Data Structures?

* We can understand very well that the data needs to be managed in such a
way so that 1t can produce some meaningful information.

* Data structures give us the way to manage the data appropriately so that
we can use 1t effectively whenever possible.

i I
College of Engineering <

Data Structures

Data Structure 1s a way to store and organize data so that

it can be used efficiently in terms of time as well as space. 11001
10001 11100110

0010 110001 11000110

There are many ways of organizing the data in the 00101001 01011010 1100
010101 1100000100 100

memory, 1.., array. 00011111 101001110

00101 1101010

: : : : : 10010 101
Array 1s a collection of memory elements in which data is 00100

) : 01001
stored sequentially, 1.e., one after another. 00110

0000110

There are also other ways to organize the data in memory.
Let's see the different types of data structures. Data Strucm re

Deals with how

* - organization of data in memory

- efficient Storage of data in memory

- efficient Retrieved & manipulated

- logical relationships among different data items

—

AT M E

College of Engineering

h

Data Structure

Primitive Data
Structure

int

char

float

double

—»

of
el 7S

G-

Classification (Primitive and Non

D 9001:2008 0059

¥ Primitive)
‘ Mon-Primitive ‘
Data Structure
Linear ‘ ‘ Mon-Linear |
Array ‘ Tree ‘ ‘ Graphs ‘
Stack
Queue
Linked List

ey 0 0 0 [
College of Engineering .
Data Typesin C ~

Data Types
Primitive Data Types User Defined Data Types
| !
Integer Derived typedef
Float Data Types enum
Double }
Character Array§
Void Fur\ctlons
Type Casting: Pointers

float div=float(a/b); //a & b are integer variables

ATME

College of Engineering

X T
é? X \;{; & 2% 4 X
o ---

To hold integer 2 bytes -32768 to +32767
constant
To hold real constant 4 bytes -3.4e38 to +3.4e38
To hold real 8 bytes -1.7e308 to
constant +1.7e308
To hold character 1 byte -128 to +127
constant
non-specific No memoryis -

allocated

Array

Lower bound (lb) Upper bound (ub)

¥Index of array element.

* Anarrayis a data structure for

storing more than one data item
that has a similar data type.

The items ofan array are Y 100 104 108 112 116 120
. Array name
allocated at adjacent memory
locations. v 1
Memory location Array element

''''''''

,,,,,,,,,,,

mPe ey [
College of Engineering

Stack

Stack is a linear data structure which follows a particular order in which the operations are
performed. The order may be LIFO(Last In First Out) or FILO(First In Last Out)

peek (top of stack)

Peek
Push Pop |

Real Life Stack Stack Data Structure

| A T M E

c| College of Engineering

Queue

A Queue is a linear structure which follows a particular order in which the operations are
performed. The order is First In First Out (FIFO). A good example of a queue is any queue of
consumers for a resource where the consumer that came first is served first.

$ ' QUEDE
\' \ | insert delete
3 ' m* n " 3 m 31 % -
TFO (First In First Out)

AT M E

College of Engineering

_ {
Th

Linked List

A linked list is a linear data structure, in which the elements are not stored at contiguous
memory locations. The elements in a linked list are linked using pointers as shown in the

below image:

Head

A

_)‘ .

_)‘ C

Data

Next

K

)NULL

Licsaor ooy N (5
College of Engineering g i

Tree

Data frequently contain a hierarchical relationship between various elements. The data
structure which reflects this relationship is called a rooted tree graph or a tree.

Tree data structure
Lavel O

Lewel 1

Lawel 2,

Siblings

Leaf node

Lawel 3

AT M E

College of Engineering

Graph

A Gr.ap.h is a non-linear data structure Vert Ef:‘f___' Vertex/Node
consisting of nodes and edges. The nodes are \ 4
sometimes also referred to as vertices and the

edges are lines or arcs that connect any two

nodes in the graph. \ Edge
A Graph consists of a finite set of vertices(or T
nodes) and set of Edges which connect a pair

of nodes. Edges

he| College of Engineering

Data Structure Operations

Traversing: Traversing a Data Structure means to visit the element stoved in it. This can be
done with any type of DS.

Searching: Searching means to find a particular element in the given data-structure. It is
considered as successful when the required element is found.

Insertion: It is the operation which we apply on all the data-structures. Insertion means to
add an element in the given data structure.

Deletion: It is the operation which we apply on all the data-structures. Deletion means to
delete an element in the given data structure.

Sorting: Sorting means arranging the data either in ascending or on decending.

AT M E

College of Engineering

Pointers

->Pointer is a variable which can hold the address of
another variable

Pointer Variable
->An alternative method to access the content of a -
memory location ptr num
A
1) Direct method 26
int num;
num=26;

printf("the content of the num is %d", num);
Printf("the address of the num is %x", &num); .

AT M E

College of Engineering

a. Creation of a pointer (declaration) 100

b. Assigning the created pointer the address

c. De-referencing the pointer access to the data
int n; "
int *p;
n=24; P
p=&n;
printf("%d", *p); n

Output: 24

AT M E

College of Engineering

100 101 102 103

Syntax for declaring a pointer float num; num --
|
q

float *q;
100 101 102 103

Ex: int *p; num
num=385.2367;
float *q;

double *r; q -

g=# 0

Dangling pointers: Created pointers are not pointing to any particular variable

Licoaor oy I (%
College of Engineering i

Pointer can be declared and initialized in the same Iiné

int a; int a=10;
a=10;
or
int *p; int *p=&a;
p=&a;
In C language * is used for 3 purpose
In indirect method * is used for 2 purpose 1) To create a pointer
1) To create a pointer int *p;
int *p; 2) To de reference a pointer
2) To de reference a pointer *p;
*p; 3) To multiply 2 variables

a*b;

AT M E

College of Engineering

1. 2.

int n=5; int n=5;

int p; int *p;

p=&n; p=n;

printf("%d", *p); printf("%d", *p);
3. a

!n: :=_5; int n=5;

m_& p., float *p;

p=an; p=&n;

printf("%d", p); printf("%d", *p);

Accessing variables through pointer

#include <stdio.h>
void main()
{

int a,b,c;

int *p, *q;

a=5;

b=10;

p=&a;
q=&b;
c="p+*q;

printf("'c is:%d",c);

RED Wip,
A

Can there be more than one pointer to a variable?

#include <stdio.h> 1000
void main() a

{

int a;
int *p,*q,*r;

P q r
a=365;

1000

p=&a;
q=&a;
r=&a;

printf("the value of a is:%d\n", a);
printf("the value of p is:%d\n",*p);
printf("the value of q is:%d\n",*q);
printf("the value of r is:%d\n",*r);

7000

Difference between pointer variable and normal variable

Pointer Variable Normal Variable

1. Pointer Variable holds the address 1. A normal variable holds data

2.int *p; 2.int a;

3. We must de-reference a pointer to 3. There is no need to de-refernce a
access data normal variable to access data

AT M E

College of Engineering

Pointers and Arrays

int a[5]={10,20,30,40,50};

int *p;

p=&al[0]; or p=a;

for(int i=0; i<4; i++) a
{
printf("%d\t", *p);
p++;

}

Lo“ggp nl%

)

S
Lo

AT M E

College of Engineering

sum = sum + *(p+i)
Sum=0.0+1.1=1.1
Sum=1.1+1.2=2.3
sum=2.3+1.3=dfkdj

AT M E

College of Engineering

Source File

CEAN
F=t
F Peryéey boeme |

Sample.c

©u

Dynamic memory allocation

NBA

ecrepmeo®

Compiler Object File Linker Executable File Processar User Screen

* it + 5
—
.

o v, ardd

1101 § ™ |+ N
LT
.

—:-L,—l-‘-

T Sample.exe

[m—

Sample.obj Output

List of Errors

. Conversion from HLL to
MLL \

Header Files

* Decision to allocate
memory to variable

Compilation

| I '

Execution

AICTE
"

o
o\\zﬁ-" ok &,

-

Execution of machine
level instructions
Decision to allocate
memory to variable

AT M E

College of Engineering

* Wastage of memory

* malloc()

 Reediting is a time consumin
s 8 * calloc()

process

* realloc()

* free()

A LOLE I 5
College of Engineering ¢
malloc()

* malloc stands for Memory allocation

* General form of memory allocation using malloc is,

datatype *ptr = (datatype *) malloc(RequiredAmountOfMemory *
sizeof(datatype));
If malloc() is unable to find the required amount of memory, it returns NULL

Malloc()

—

int* ptr = (int*) malloc (5* sizeof (int));

L —

«— 20 bytes of memory —

Liesaor oy I 4
College of Engineering <

void main()

printf("enter array elements\n");

{ - . for(i=0; i<n; i++)
int n,i; {
printf("enter the scanf("%d", p+i);
number of elements\n");)
scanf("%d",&n);
int *p = (int

printf("array elements are\n");

*)malloc(n*sizeof(int)); for(i=0; i<n; i++)

. {
'{f(p == NULL) printf("%d\t", *(p+i));
printf("enough) }
memory not available");
exit(0);
}

ALOLE I 5
College of Engineering :

calloc()

e calloc stands for Contiguous allocation
 General form of memory allocation using calloc is,
datatype *ptr = (datatype *) calloc(RequiredAmountOfMemoryForElements,

sizeof(datatype));
If calloc() is unable to find the required amount of memory, it returns NULL

Calloc()

int* ptr = (int*) calloc (5, sizeof (int));

e ynamicaly allocateg | il
- 20 bytes of memory ——»

College of Engineering <

printf("enter array elements\n");

void main()
{ for(i=0; i<n; i++)
int n,i; {
printf("enter the number of scanf("%d", p+i);
elements\n"); }
scanf("%d",&n); printf("array elements are\n");
int *p = (int for(i=0; i<n; i++)
*)calloc(n,sizeof(int)); {
printf("%d\t", *(p+i));
if(p == NULL) }
{ }
printf("enough memory not
available");
exit(0);
}

AL E I
College of Engineering

realloc()

* realloc stands for re allocation
* General form of memory allocation using realloc is,

ptr = (datatype *) realloc(p, newsize*sizeof(datatype));

Realloc()

int* ptr = (int*®) malloc (5* sizeof (int));

v
S

-~ 20 bytes of memory —»

'

ptr = realloc (ptr, 10* sizeof(int });

- |

40 bytes of memory

College of Engineering == 4
Sag ain A o
{ for(i=0; i<n; i++)

int n,i,new; {

printf("enter the number of elements\n"); printf("%d\t", *(p+i));

scanf("%d",&n); }

int *p = (int *)malloc(n*sizeof(int)); printf("\nenter the new number of elements\n");

if(p == NULL) scanf("%d",&new);

{ p=(int *)realloc(p,new*sizeof(int));
printf("enough memory not available"); printf("enter array elements\n");
exit(0); for(i=0; i<new; i++)

} {

printf("enter array elements\n"); scanf("%d", p+i);

for(i=0; i<n; i++) }

{ printf("array elements are\n");
scanf("%d", p+i); for(i=0; i<new; i++)

} {

printf("array elements are\n"); printf("%d\t", *(p+i)); }}

AL E I
College of Engineering

free()

Dynamically allocated memory form calloc() or malloc() should be freed(released)

using free().

General format: Free()
. . T l—’ g
void free(void *ptr); int* ptr = (int*) calloc (5, sizeof (int));

-
+—— 20 bytes of memory ——

v

operation on ptr

gl free(ptr)
v

free(ptr);

&AL I §
College of Engineering é‘@"‘
void main() | |
{ for(i=0; i<n; i++)
int n,i; {
printf("enter the number of scanf("%d", p+i);
elements\n"); }
scanf("%d",&n); printf("array elements are\n");
int *p = (int for(i=0; i<n; i++)
*)malloc(n*sizeof(int)); {
if(p == NULL) printf("%d\t", *(p+i));
{
printf("enough memory iree(p);
not available"); }
exit(0);
}

printf("enter array
elements\n");

College of Engineering _ 3 %

#include <stdio.h> i A |
Hinclude <stdlib.h> Dynamically allocated Arrays

void main()

{

intr=3, c=4,i;//[Taking number of Rows and Columns
int *ptr; //creating pointer
ptr = (int *)malloc((r * c) * sizeof(int)); //Dynamically Allocating Memory (12*2=24)
for(i=0;i<r*c; i++)
{
ptr[i] =i + 1; //Giving value to the pointer and simultaneously printing it.
printf("%d ", ptr[i]);
if((i+1)%c==0)
{
printf("\n");
}

}
free(ptr);

Review of Arrays

LY A
FIN

Tree Array of trees
™0
oWe¥e

A =

Student Array of students

35 23 45 20 100 70

35.5 11.5 34.3 15.9 90.6 46.7

Array means, a series of entities or a sequence of entities of the same type (homogeneous).
In C language entities can be char, int, float and double type data

College of Engineering Nl

Declaration of 1-D array

Syntax:

Ex: int a[5];
float b[5];

A declaration statement tells the compiler,
->data type of the array

->name of the array

->size of the array

Compiler then allocate memory depending upon the declaration.

a .---

a[o0] a[1] a[2] a[3] a[4]

a

b[0] b[1] b[2] b[3] b[4]

Initialization of 1-D array

1) Direct Initialization : Mentioning array size is not compulsory.

Ex: int a[5] = {29, 47, 132, 229, 50 };

29 &7 132 2P9 50
a[0] a[1] a[2] a[3] a[4]
Ex: float b[5] = {29.3, 47.1, 132.4, 229.6, 50.3 };
29.3 141 324 2916 5013
b[0] b[1] b[2] b[3] b[4]

A LM.E I
College of Engineering

2) Initialization using a for loop:

->Using a for loop to initialize the array blocks

->Mentioning array size is compulsory

int a[5]; —
inti;

printf(" Enter an integer");

for(i=0; i<=4; i++)

{

} a0l a[] al2] a3l al4]

a[2] a[3] a[4]

AT M E

College of Engineering

To store single integer, To store array of integers,

inta=35; int a[5] = {35,39,87,53,28};

] a

a[0] a[1] a[2] a[3] al[4]

Note: Array is a Indexed Data Structure

AT M E

College of Engineering

ub - 1b +1

To find the location of a particular index
Loc(a[i] = base(a) +w * (i - Ib)

Where, w is the word length

w =2 o074 or 8 forintegers

w =4 for float point values

w = 8 for double values

he| College of Engineering i

1. A car manufacturing company uses an array car to record number of cars sold each year
starting from 1965 to 2015

1) Find the total number of years(elements)

11) Suppose base address = 500, word length (w) = 4, find address of car[1967], car[1969]
and car[2015]

2. Consider the linear arrays AAA(5:50), BBB(-5:10) and CCC(1:18)
1) Find the total number of elements in each array

11) Suppose the Base(AAA) = 300 and w=4 for AAA. Find the adress of AAA[15], AAA[35],
AAA[55]

Two Dimensional Array

-D array of Students

1

Student

2-D array of Student

AT M E

College of Engineering

Why we need 2-D array?

To store matrices in the memory of a computer.

sl 4 P
a[o0] a[1] a[2] a[3] a[4]
Column 0 Column 1 Column 2 Column 3
Row 0 al0J(0] | afolr1] | a[oli2] | afo)3]
Int a[3][4]; Row 1 a[1](0] | al1)1]1 | af13(21 | a[1)(3]
Row 2 a[2][0] | al2)1] | a[2)2] | a[2](3]

Declaration of 2-D array

General Syntax:

datatype array name[no.of rows][no.of columns];

Declaration statement tell the compiler that
->the datatype of the array

->the name of the array

->the number of rows in the array

->the number of columns in the array

row 0

row 1

row 2

row 3

Ex:
int a[4][3];

Col 0

Col1l

Col 2

Initialization of 2-D array

1.Direct Initialization:

int a[4][3] = {{10,80,60},{30,5,19},{20,3,16},{18,15,100}};

Col O Col 1 Col 2
row O 10 80 60
row 1 30 5 19
fow 2 - 20 3 16
row 3 18 15 100

int a[4][3] = {10,80,60,30,5,19,20,3,16,18,15,100}:
int a[][3] = {10,80,60,30,5,19,20,3,16,18,15,100};

Mentioning the column dimension is important wheras row is optional

lllegal:

Licotorcvmeory N 75
College of Engineering i

10 80 60
30 5 19
20 3 16
18 15 100

2%

2. Using a for loop to initialize the array blocks

College of Engineering

int a[4][3];
for(i=0;i<4;i++)

{

for(j=0;j<3;j++)

{

scanf("%d", &ali][j]);

row 0

row 1

row 2

row 3

Col 0 Col 1 Col 2
[0][0] [0][1] [0](2]
[1][0] [1][1] [1](2]
[2][0] [2][1] [2](2]
[3][0] [3][1] [31(2]

A,B and output matrix

10 15
3 9
2 8
10 15
3 9
2 8

C program to read 2 matrices A (mxn) and B (mxn) and perform addition or subtraction and print the matrices

8 15 16
8 5 18
11 5 13
2 5 14
-6 1 0
1 -1 3

AL LLE I
College of Engineering ¢

#include<stdio.h> //printing matrix A //adding 2 matrices
void main() printf("array Ais :\n"); for(i=0;i<3;i++)
{ for(i=0;i<3;i++) {
inti,j,al3][3],b[31(3],c[3][3]; { for(j=0;j<3;j++)
for(j=0;j<3;j++) {
printf("enter the elements for array A:\n"); { clilljl=alilljl+b[illjl;
for(i=0;i<3;i++) printf("%d\t",a[il[j]); }
{ } }
for(j=0;j<3;j++) printf("\n");
{ } //printing resultant matrix
scanf("%d",&alil[j]); //printing matrix B printf("array after addition :\n");
} printf("array B is :\n"); for(i=0;i<3;i++)
} for(i=0;i<3;i++) {
printf("enter the elements for array B:\n"); { for(j=0;j<3;j++)
for(i=0;i<3;i++) for(j=0;j<3;j++) {
{ { printf("%d\t",c[i][jl);
for(j=0j<3;j++) printf("%d\t",b{il[j]); }
{ } printf("\n");
scanf("%d",&bli][j]); printf("\n"); }
} } }
}

Structures

struct student

Student: {
Name Fhar name[5];
Age !nt age;
Marks int marks;
USN char USN;

|5

struct tree
Tree: {
Name char name[5];
No. of branches int No.of branches;
height

float height;

Structures

struct stum

ceyword for Name of the
structure
creating char name[20];
structure int age: Struc:)ure |
int marks; members/

float height; ate

Syntax

struct structure_name

{

datatype membervariable 1;

datatype membervariable 2;
datatype membervariable 3,
datatype membervariable 4;

| ALALE I
College of Engineering :

Ex. 1 Ex. 2
struct student struct tree
{ {
char name[20]; char name[s];
int age; int No.of
int marks; branches;
float height; float height;
I I3

4 a‘gge of &,

AT M E

College of Engineering

A
Src 1o v

Structures

struct student struct tree

{ {
char name[s]; char name[5];
int age; int No.of branches;
int marks; float height;
float height; i;

55

struct student s1; struct tree t1;

A.LME I
College of Engineering

struct student 0
1
{ s1. — Memory to
char name[5]; 3 store name
int age; . -
int marks; 6 } Memory to store age
float height; /
7. : } Memory to store marks
10 —
11
12
struct student si1; 13 — Memory to store
ig height

AT M E

College of Engineering

struct student
{ s1 0
char name[s]; ;
int age; 3
int marks; 4
float height; Z
I 7
struct student s1; 8
9
sl.name="Raju"; 1(1)
sl.age=23; 12
13
s1.marks=80; 14
s1.height=s.5; 15

.idoti -> Member access Oﬁemtor

AT M E

College of Engineering

struct tree

{ 0

char name[s]; X

. 2

int noofbranches; 3

float height; 4

I :

; 6

7

struct tree t1; 8

9
t1.name="teak"; 10
 — [11
t1.noofbranches=23; 12
t1.height=31.71; 13
14

.(dot) -> Member access operator 15

boall v b e), (-

el <stdio. : o=,
struct student void mainG
{

{

f:: (: ;Zme[zoj; Str'uct student s1; |

int ma;’ks- prz'ntf("Enter Student Details\n");

float hei gizt- printf("enter the name of the student\n");
1 ’ scanf("%s", s1.name);

printf("enter student age\n");

scanf("%d", &s1.age);

printf("enter student marks\n");
scanf("%d", &s1.marks);

printf("enter student height\n");
scanf("%f", &s1.height);

printf("Student details you entered:\n");
printf("Student name is: %s\n",s1.name);
printf("Student age is: %d\n",s1.age);
printf("Student marks is: %d\n", s1. marks);
printf("student height is: %.2f\n",s1. height);

= .y
College of Engineering

//program to read and display tree details using structures
#tinclude <stdio.h>
struct tree
{
char name[20];
float height;
int noofbranches;
2
void main()

{

struct tree t1;

150 9001:2008

printf("enter the name of the tree\n");
scanf("%s", t1.name);

printf("enter tree height\n");

scanf("%f", &t1.height);

printf("enter number of noofbranches\n");
scanf("%d", &tl.noofbranches);

printf("the tree name is: %s\n",t1.name);
printf("the tree height is: %f\n",t1.height);
printf("noofbranches in the tree are: %d\n",t1.noofbranches);

A.LME I
College of Engineering

Arrayis a collection of related data elements | Structure is collection of logically related

of same data type. (homogeneous data) data elements of different data types.
(heterogeneous data)

Array data are accessed using index Structure data are accessed using structure
name and dot operator

No key word is used to create array Struct keyword is used create structure

Each element will be of same size Size of the elements can be different

College of Engineering

Lo o=
finclude <stdio. h> -
struct tree void main()
{ {
char name[20]; struct tree t1;
float height;
int noofbranches; printf("enter the name of the tree\n");
I scanf("%s", t1.name);
void disp(struct tree tr) printf("enter tree height\n");
{ scanf("%f", &t1.height);
printf("the tree name is: %s\n",tr.name); printf("enter number of noofbranches\n");
printf("the tree height is: %f\n" tr.height); scanf("%d", &t1.noofbranches);
printf("noofbranches in the tree ave:
%d\n",tr.noofbranches); disp(t1);
} }

RED Wip,
Q.
g
p

Array of Structures
0 1 2 3 4 5 6 7 8

CA Tf i E NBA
ollege of Engineering Vo man ‘ : f‘@'&
{
struct tree t1[2];

for(int i=0; i<=1; i++)

. . {
f;:lflclsife?tdlo'h> printf("enter the name of the tree\n");
{ scanf("%s", t1[i].name);
printf("enter tree height\n");

float height: scanf("%f", &t1[i].height);

int noofbranches: printf("enter number of noofbranches\n");

y ’ scanf("%d", &t1[i].noofbranches);

}

char name[20];

for(int i=0; i<=1; i++)

{

printf("the tree name is: %s\n",t1[i].name);

printf("the tree height is: %f\n",t1[i].height);
printf("noofbranches in the tree are: %d\n",t1[i].noofbranches);

}

e —

o
&
T

#include<stdio.h>
typedef struct
{
char name[10];
int usn;
}student;
void main()
{
student s1;
printf("enter student name:\n");
scanf("%s", s1.name);
printf("enter student usn:\n");
scanf("%d", &s1.usn);
printf("student name is %s",s1.name);
printf("student usn is %d", s1.usn);

e

Different ways of writing a program using structure

#include<stdio.h> #include<stdio.h> #include<stdio.h>

struct student struct student typedef struct

{ { {
char name[10]; char name[10]; char name[10];
int usn; int usn: int usn;

}; }s1: }student;

void main() void main() }/oid main()

{ {
struct student s1; printf("enter student name:\n"); student s1;
printf("enter student name:\n"); scanf("%s", s1.name): printf("enter student name:\n");
scanf("%s", s1.name); printf("enter student usn:\n"); Scfanf("%s", s1.name);
printf("enter student usn:\n"); scanf("%d", &s1.usn); printf("enter student usn:\n");
scanf("%d", &s1.usn); printf("student name is scanf("%d", &s1.usn);
printf("student name is %s\n",s1.name); printf("student name is

%s\n",s1.name); printf("student usn is %d", %s\n,s1.name);

printf("student usn is %d", s1.usn); s1.usn); printf("student usn is %d", s1.usn

} i }

typedef struct {

int month: Structure within a

int day; structure
int year;
ldate;

typedef struct { OR

char name[10];
int age;
float salary;

date dob;
} humanBeing;

humanBeing personi;

A L M E I
College of Engineering <

typedef struct {

char name[10];
int age;
float salary;
struct {
int month;
int day;
int year;
} date;

} humanBeing;

M E

of Engineering

char city[20];
int pin;
char phone[14];
b
struct employee
{
char name[20];
struct address add,;
b
void main ()
{
struct employee emp;
printf("Enter employee information?\n");
scanf("%s %s %d %s",emp.name,emp.add.city, &emp.add.pin, emp.add.phone);
printf("Printing the employee information....\n");
printf("name:%s\nCity:%s\nPincode:%d\nPhone:%s",emp.name,emp.add.city,emp.add.pin,emp.add.phon

e); }

College of Englneerﬁel . !

A self-referential structure is one in which one or more of its components is a pointer
to itself. Self referential structures usually require dynamic storage management
routines (malloc and free) to explicitly obtain and release memory.

Self Referential Structures

typedef struct { ol

char data; int data1;

SR
struct list *link ; tharda e

} list; struct node* link;

Each instance of the structure list will have two components data and link.
» Data: is a single character,

» Link: link is a pointer to a list structure. The value of link is either the address in memory

a‘zge of @

WL

\
"'fc oV

AT M E

College of Engineering AN A

list item1, item2, item3;

item].data="a";

item2.data='"b';

item3.data = 'c';

item1.link = item2.1link = item3.link = NULL;

a / b c

item].link = &item2:
item2.link = &item3;

AT M E

College of Engineering

union tag_name{
data_type member 1;
data_type member 2;

data_type member n;
}variable_name;

AT M E

College of Engineering

typedef union union item

{ {
int i; inti;
double d; double d;
char c; charc;

litem; |5

-
C
[

AT M E

- : NBA
College of Engineering p _
]) 0 ' R
Difference between Structure and Union
STRUCTURE UNION
Keyword The kevword structis usedto define a structure The keyword union is usedto define a unian.

Size When avariable is associated with a structure, the when avariable is associated with a union, the compiler
compiler allocates the memory for each member. The allocates the memaory by considerngthe size of the
size of structure is greater than or equal to the sum of largest memory. So, size of union is equal to the size
sizes of its members. of largest member.

Memory Each memberwithin a structure is assigned unigue Memaory allocated is shared by individual members of

storage area of location. union.
Value Altering the value of a member will not affed other Altering the value of any of the memberwill alter other

Altering members of the structure. membervalues.

Accessing - - _

e Individual member can be accessed at| any time Only one member can be accessed atatime.
Initialization WA : : Pioail
of Mok Several members of a structure caninitialize at once. Onlythe firstmember of a union can be initialized.

.n@ @igﬁe of Er@l\l/‘rgeerg

typedef struct 'Eypedef union
{ Structure .
int marks; int marks;
char grade; char grade;
float percentage; float percentage;
}student; }student;
student s; student s;
s.marks=90; S.marks=90;
s.grade='A" printf("marks:%d\n",s.marks);

marks: 90
grade: A
percentage: 90.0

s.percentage=90.0;
s.grade="A'
printf("marks:%d\n",s.marks); printf("Grade:%c\n",s.grade);
printf("Grade:%c\n",s.grade);
printf("percentage:%f\n",s.percent
age);

}

s.percentage=90.0;
printf("percentage:%f\n",s.percentage);
}

ATME

College of Engineering

; ff)? |

ISO g001: 2015
001 0059

Bubble Sort Program

0 1 2 3 4
ey G

0 1 2 3 4
ooy |

. IE:JI (%Ieg;é?/é%%eri:r%
815|4

712 2
X :
217]18[5]4 2
]
Y_ ¥
217]18(5]4 2
£
2{7]5]|8]4 2
¢><: for() /[for the passes
2|7]5]4]8 { ’

If(no. on left > no. on right)

{

//for the passes Example to swap 2 numbers

a=10, b=20
If(no. on left > no. on right) temp=a;
{ a=b;
Exchange or swap the numbers b=temp;
for(j=1; j<n; j++)
} {
}
}
If(a[i] > a[i+1])
If there are 5 elements in array then it will take 4 cycles to sort {
the array tef\‘lp=f‘:‘[i];
If there are n elements then it will take n-1 cycles to sort the a[f]'a['ﬂ]’
ali+1]=temp;

array }

i.e from cycle 1 to less than n

.IjﬂAT M E

Collegé-of Engineering

Int i,j,temp;
for(j=1; j<n; j++)

{
for(i=0; i<n-j; i++)
{
if(a[i]> a[i+1])
{
temp=a[i];
afi]=a[i+1];
a[i+1]=temp;
}
}
}

.“@ @lbﬁe of Englneerl:nEg;

VoI

int a[100], n, i, pos, key;
printf("\nEnter the number of elements\n");
scanf("%d",&n);

printf("\nEnter the elements in ascending order\n");

for(i=0; i<n; i++)
{
scanf("%d", &a[i]);
}
printf("\nEnter the key element\n");
scanf("%d", &key);
pos = binary_search(key, a, n);

if(pos ==-1)
printf("Key element not found\n");
else

printf("\nKey element %d found at position %d\n", key, pos);

}

int binafy_sea Ch}(lﬁf"ke Rk

int low = 0;
int high = n-1;
while(low <= high)
{
mid = (low+high)/2;
if(key == a[mid])
return mid;
else if(key < a[mid])
high = mid-1;
else
low = mid+1;
}

return -1;

AT M E

College of Engineering

Advantages:
* Simple Technique
* Very efficient searching technique

Disadvantages

* The list of elements to be searched should be sorted.

* It is necessary to obtain the middle element which is possible only if elements are stored in the array. If
the elements are stored in linked list, this method can not be used.

AL LE N
College of Engineering Wi dinaoncio A :

Two-dimensional arrays are called matrices in mathematics and tables in business applications.
There is a standard way of drawing a two-dimensional m x n array A where the elements of a
form a rectangular array with m rows and n columns and where the element A[J, K] appears in
row J and column K.

Iwo-Dimensional 3 x 4 Array A

Let A be a two-dimensional m x n array. Although A is pictured as a rectangular arramm? ”

) re&ntarE)n Mo-ﬂﬁne

College of Engineering

elements with m rows and n columns, the array will be represented in memory by a block of m . n
sequential memory locations.

The programming language will store the array A either (1) column by column, is called
column-major order, or (2) row by row, in

A Subscript A Subscript
(1, 1)) (1, 1)
gt . 1)?‘- Column 1 1.2) |
3. 1)) ‘ (1.3)§'HOW1
(1,2)) (1.4)
(2, 2) r Column 2 (2, 1)
(3,2)) (2,2) .
(1.3) @["2 Fig. Two-Dimensional 3 x 4 Array A
(2. 3) ¢ Column 3 | {2.4?:
(3, 3;‘ | (8 1)
nd 2| rows (Column-major order) LOC(A[J, K]) = Base(A) + WM(K - 1)+ (J - 1)]
&bl it ki (Row-major order) LOC(A[J, K]) = Base(A) + W[N(J - 1) + (K - 1)]

‘a} Column-maior Order (b) Row-ma}or Urde’ _

o
°\\vz.\!- ok &,

A T M E .

College of Engineering

* A polynomial is a sum of terms, where each term has a form where x is the
variable, a is the coefficient and e is the exponent

A(x) =3x20 + 2x5 + 4
B(x) = x4 + 10x3 + 3x2+1

A LM.E I
College of Engineering

Polynomial Representation

One way to represent polynomials in C is to use typedef to create the type polynomial as below:

#define MAX_TERMS 100 /*size of terms array*/

typedef struct

{ 3x20 + 2x5 + 4
float coef;
int expon;

} polynomial;

polynomial terms[MAX-TERMS];
int avail = 0;

term[0] term[1] term[2]

startA finishA startB finishB avail
o 2 1 1 10 3 1
o 1000 0 4 3 2 0
0 1 2 3 4

The above figure shows how these polynomials are stored in the array terms. The index of the first
term of A and B is given by startA and startB, while finishA and finishB give the index of the last term

of A and B.

 The index of the next free location in the array is given by avail.
» For above example, startA=0, finishA=1, startB=2, finishB=5, & avail=6.

=] A N W AT
I (5] Aeadind vy Rng KAk
atme| College of Engineering ® DOINPO

#include<stdio.h>

typedef struct

{
int cf; //lused to hold coefficient
int px; //lused to hold power of x

}poly;
/lfunction to read a polynomial with n terms

void read_poly(poly p[], int n)
{
int i,cf,px;
for(i=0; i<n; i++)
{
printf("enter Coefficient and exponent:");
scanf("%d%d", &pli].cf, &p[il-px););
}
}

inti;
for(i=0; i<n; i++)
{
if(p[i].cf < 0)
printf("%d",p[i].cf);
else
printf("+%d",p[i].cf);

if(p[i].px !'= 0)
printf("x*%d",p[i].px);
}
printf("\n");
}
void main()
{
int n;
poly p[10];
printf("enter number of terms:\n");
scanf("%d", &n);
read_poly(p, n);

irint ioliiiln"

tme

e A) w5 —
Jlmpeiiicietl
a College of Engineering

void main()

{

intm, n, k;
poly p1[20], p2[20], p3[40];

printf("enter number of terms in polynomial 1:\n");
scanf("%d", &m);
read_poly(p1, m);

printf("enter number of terms in polynomial 2:\n");
scanf("%d", &n);
read_poly(p2, n); //function call to read a polynomial with n terms

printf("Poly 1: \n");
Print_poly(p1,m); //function call to display a polynomial with n terms

printf("poly 2: \n");
Print_poly(p2,n); //function call to display a polynomial with n terms

printf("\n***********\n");
k = add_poly(p1, m, p2, n, p3); //Function call to add 2 polynomials
printf("polynomial 3: ");

irint ioliiis, kl; /[function call to disilai a iolinomial with n terms

he| College of Engineering i

void read_poly(poly pI[], int n)

{
int i,cf,px; void print_poly(poly p[], int n)
for(i=0; i<n; i++) {
{ inti;
printf("enter Coefficient and exponent:")for(i=0; i<n; i++)
scanf("%d%d", &pli].cf, &p[i]-pX); {
} if(p[i].cf < 0)
} printf("%d",p[i].cf);
else

printf("+%d",p[i].cf);
if(p[i].px != 0)
printf("x*%d",p[i].px);
}
printf("\n");

e

AT M E

College of Engineering

inti, k, cf1, px1, pbs, sum;

k=0;
I)) for(i=0; i<m: i
int search(int px1, poly p2[], int n) {°r(' 05 F<m; i++)
{ cfl = p1[i].cf;
int j, px2; px1 = p1[i].px;
1{tor(j=0; j<n; j++) pos = search(px1, p2, n);
pX2 = p2[j].px; i{f(pos>0)
|f(pX1 == pX2) sum = cfl + p2[pos].cf;
return j; p3[k].cf = sum;
} _ 999:
return -1 : \ p2[pos].cf =-999;
} else

p3[k].cf = cf1;
p3[k].px = px1;
k++;
}
k = copy_poly(p3, k, p2, n); //function call to copy remaining terms
of poly 2 into poly 3

//Function to copy remaining terms of poly 2 into poly 3 °
int copy_poly(poly p3[], int k, poly p2[], int n)

{
intj;
for(j=0; j<n; j++)
{
if(p2[j].cf '=-999)
{
p3[k].cf = p2[j].cf;
p3[k].px = p2[j].px;
k++;
}
}
return k;
}

A Tsparet mArri

College of Engineering

A matrix which contains many zero entries or very few non-zero entries is called as Sparse matrix.
In the figure B contains only 8 of 36 elements are nonzero and that is sparse.

col0 coll col2 col0 coll col2 col3 cod4 col$S
row0 [27 3 4 | rowd[15 0 0 22 0 -15 |
row 1 6 82 -2 rowl |0 1§ 3 0 0 0
row 2 109 -64 11 row2 |0 0 0 -6 0 0
row 3 12 8 9 row3 0 0 0 0 0 0
row 4 48 27 47 row4 91 0 0 0 0 0
- N rows |0 0 28 0 0 0
Figure A - Figure B B

A sparse matrix can be represented in 1-Dimension, 2- Dimension and 3- Dimensional array.
When a sparse matrix is represented as a two-dimensional array as shown in Figure B, more
space is wasted.

College of Engineering

.@ATME

« An element within a matrix can characterize by using the triple This means
that, an array of triples is used to represent a sparse matrix.

» Organize the triples so that the row indices are in ascending order.

* The operations should terminate, so we must know the number of rows and columns,

and the number of nonzero elements in the matrix.

#define MAX_TERMS 100 /* maximum number of terms */
typedef struct
{
int col;
int row;
int value;
} TERM;

/M- dimensional array representing array of triples<row,col,val>
TERM a[MAX_TERMS];

College of Engineering % S &
) Grc 10V

Row Col Val
col0 coll col2 col3 cold colS 3[0] g 6 8 — 6X|6 is t_he ?ize and 8.non zero

- 0 0 2 0 15 [l] X X s values in given matrix
rowl [0 11 3 0 0 0 2] 0 3 50 » Row 0
row2 |0 0 0 6 0 0 [3] 0 5 15
row3 0 0 0 0 0 0
rowd[91 0 0 0 0 0 E;} 1 ; ;1 ‘ Rowt
rows 2 0 28 0 0 0 B [6] 2 3 -6 =) Row 2

Figure B [7] 4 0 9] o) Row4

[8] 5 z 28 ==s—) Row 5

Fig (a): Sparse matrix stored as triple

void read_sparse_matrix(TERM a[], int m, int n)

{
inti,j,k,item;
a[0].row=m, a[0].col=n, k=1;
for(i=0; i<m; i++)
{
for(j=0; j<n; j++)
{
scanf("%d",&item); a[0]
if(item==0) [1]
continue; 2]
a[k].row=i, a[k].col=j, a[k].val=item; [3]
k++; 4]
} [5]
} [6]
Iy [7]
a[0].val=k-1;
} [8]

Row

6
0
0
0
1
1
2
4
5

of B "’]r:-farl'"lg m

o
=

o S W o = h WO N

==

! | EFTAT
1 .
;
&

cold coll col2 col3 col4 colS

rowd[15 0 0 22 0 -I5
rowl |0 11 3 0 0 0
row2 |0 0 0 6 0 0
row3 |0 0 0 0 0 0
row4 |91 0 0 0 0 0
rows |0 0 28 0 0 0
- Figure B -

Val

6X6 is the size and 8 non zero
8 — values in given matrix

22 Row 0

11 ‘Rowl
3

-6 mmsssss) Row 2

Q] —) Row 4
7)f =mmmmm) Row 5

Fig (a): Sparse matrix storedas triple

&5 a\tﬁe“’&!‘
Aan;—eLvOSEM mEIX icara Va[-‘ 5 E.
College of Engineering %
a[0] 6 6 °’c oY
col0 coll col2 col3 cold col5 [;] 0 0 ;g
rowd[15 0 0 22 0 -15 | 2] 2
[3] 4 5 -15
rowl |0 11 3 0 0 0 [4] 1 1 11
row2 0 0 0 -6 0 0 [5] 1 2 3
row3 |0 0 0 0 0 0 [6] 2 3 -6
row4 (91 0 0 0 0 0 [7] 4 0 91
rowS5[0 0 28 0 0 0 [8] 5 2 28
— Fieure B — Fig (a): Sparse matrix storedas triple
Row COI
Val
6X6 is the size and 8 non zero values in
b0] 6 6 8 D) gjyen matrix
[1T O 0 15 col0
[2] O 4 91
3] 1 1 11 =) Coll
@2 13
[5] 2 5 28
[6] 3 0 22 Col 3
[71 3 2 -6
)

[8] 5 0 -15
Fig (b): Transpose matrix stored as triple

AL T 1\/[E nspose of a given sparse matrix matrix 8
College of Engineering

void transpose(TERM a[], TERM b[])

{ a0] 6 6 8
inti,j,k; 1] 0 0 15
b[0].row=a[0].col; 2] © 3 22
b[0].col=a[0].row; [Z] (1) ? -1115
b[0].val=a[0].val; %5} :) ;
k=1; [6] 2 3 -6
fOI’(i=0; i<a[0].co|; i++) [7] 4 0 91
{ 8] 5 2 28

for(j=1; j<a[0].val; j++) Fig (a): Sparse matrix storedas triple
{
if(a[j].col==i) Row Col Val
{ bo] 6 6 8
b[k].row=a[j].col; [1] © 0 15
b[k].col=a[j].row; [2] © 4 91
b[k].val=a[j].val; & 1 1 11
k++; [4] 2 1 3
} 5] 2 5 28
} [6] 3 0 22
} [7] 3 2 -6

8] 5 0 -15

[
Fig (b): Transpose matrix stored as triple

SAED W
4
P Je

Character array - Strings String in C

char str[] = "Geeks"

index — , , , 3 4

Array which has character in it is called as String str —|Gle|e|k[s| |

Address—-l I ‘] | []

\ 04

Strings end with special character called null character(\0).

0 1 2 3 4 5 6 7
char a[8]; a --------

Initialization: 0 1 2 3 4 5 6 7
chara[B] = (M ¢,1,1,/0,\0% Wi e [o o] |
Or

0 1 2 3 4 5 6 7
char a[]="HelloHi"; a _____
e

String: A finite sequence S of zero or more Characters is called string.
Length: The number of characters in a string is called length of string.
Empty or Null String: The string with zero characters.

Concatenation: Let S1 and S2 be the strings. The string consisting of the characters of S1
followed by the character S2 is called Concatenation of S1 and S2.

Ex: ‘THE’ // ‘END’ = ‘THEEND’

‘THE’ // *’ |/ ‘END’ = ‘THE END’

Substring: A string Y is called substring of a string S if there exist string X and Z such that
S=XI/IYIlZ

If X is an empty string, then Y is called an Initial substring of S, and Z is an empty string then
Y is called a terminal substring of S.

Ex: ‘BE OR NOT’ is a substring of ‘TO BE OR NOT TO BFE’

‘THE’ is an initial substring of ‘THE END’

AT M E

College of Engineering

Strings are stored in three types of structures
1. Fixed length storage structures

2. Variable length structures

3. Linked storage structures

A, LM E
College of Engineering

1. Fixed length storage structures

In this storage structure, each line of text to be manipulated is viewed as a record where all
records have same length.

O I 7 S
| mme
, [O S T
> | 8 N

5 2 Jc o e |F |6 |4 |

1. Time wasted in reading entire record if more spaces are present

2. Certain records may require more space than available to store a string
3. If the length reserved for string is too small, it is not possible to store larger data

4. If the length reserved for string is too large, too much memory is wasted

5. Once the string is defined, the length of the string can't be changed

AT M E

College of Engineering

->The storage structure for a string can expand or 5 bytes
shrink to accommodate any size of data.

->But there should be a mechanism to indicate the
end of the data K R 1 s JH N A o |
->In C language strings end with a special character \ Y } _Y_/

called NULL (denoted by \0)

String delimiter

8 bytes
char a[]="RAMA";

char a[J="KRISHNA";

AT M E

College of Engineering

3. Linked storage structures

Head

\O

B

x
0

Data MNext

©u

String Operations:

NBA

AICTE
"

ecrepmeo®

o
°\\vz.\!-" ok &,

-

B[AckeMak I

Substring
Accessing a substring from a given string requires three pieces of information:
(1) The name of the string or the string itself
(2) The position of the first character of the substring in the givenstring
(3) The length of the substring or the position of the last character of the substring.
Syntax: SUBSTRING (string, initial, length)
The syntax denote the substring of a string S beginning in a position K and having a length
L.
Ex: SUBSTRING ('TO BE ORNOTTOBE’, 4,7)="BE ORN’
SUBSTRING ('THE END', 4, 4) =' END'

Indexing
Indexing also called pattern matching, refers to finding the position where a string pattern P

first appears in a given string text T. This operation is called INDEX
Syntax: INDEX (text, pattern)

(G

fc o"

Let S1 and S2 be string. The concatenation of S1 and S2 which is denoted by ST ST“f?thé string’
consisting of the characters of S1 followed by the character of S2.

EX:

(a) Suppose S1 ="MARK' and S2= ‘“TWAIN' then

S1 /152 = ‘MARKTWAIN’

Concatenation is performed in C language using strcat function as shown below

strcat (51, S2);

Concatenates string S1 and S2 and stores the result in S1

strcat () function is part of the string.h header file; hence it must be included at the time of

pre- processing

Tolieds of Engineering

.@ T M E

Length

The number of characters in a string is called its length.
Syntax: LENGTH (string)

Ex: LENGTH (‘computer’) =8

ATME

College of Engineering

atme

Formatted - printf (for output) Un formatted - puts (for output)
- scanf (for input) - gets (for input)

#include<stdio.h>

Void main()
{
char c[20]; char name[20]; O/p:
scanf("%s", c); Printf("enter your name:"); enter your name: Sachin Tendulkar

Scanf("%s", name); your name is: Sachin

Printf("your name is %s:", name);

ATME

e College of Engineering

atme

- WALA
IS0 8001:2015
{150 50072004] 0059

#include<stdio.h>

Void main()

{ O/p:
char name[20]; enter your name: Sachin Tendulkar
printf("enter your name:"); your name is: Sachin Tendulakar
gets(name);

printf("your name is:");

puts(name);

A Trder B N
College of Engineering

Function

Description

char *sircat(char *dest, char *src)

concatenate dest and src strings;
return result in dest

char ®strncat{char *dest, char *src, int n)

.char ’*a‘:rcmp(char *s:ﬂ char *.s:r?)

concatenate dest and n characters
from src; return result in dest

compare two strings;
return < O if strl < str2;
Qif strl = s1r2;

>0 if strl > str2

char *strncmp(char *strl, char *str2, int n)

compare first n characters
return < () if str] < str2;
0if serl = sur2;

> 1if strd > str2

char *strcpy(char *dest, char *src)

copy src into dest, return dest

char *strncpy(char *dest, char *src, int n)

copy n characters from src¢
string into dest; return dest,

size —t strlen(char *s)

return the length of a s

char *strchr(char *s, int c)

return pointer to the first
occurrence of ¢ in s;
return NULL if not present

char *strrchr(char *s, int ¢)

return pointer to last occurrence of
¢ in s; return NULL if not present

char *strtok(char *s, char *delimiters)

return a token from s; token is
surrounded by delimiters

char *strstrichar *s, char *pat)

return pointer to start of
patin s

size—t strspn{char *s, char *spanset)

size —t strespn{char *s, char * spnm.e!j

scan s for characters in spanset,
return length of span

return length of span

scan s for characters not in spanset;

char *strpbrk(char *s, char *spanset)

scan s for characters in spanser,
return pointer to first occurrence

of a character from spanset

g Sese nl
&
5 E .
® -y = \'\

e " 0

Fecrepmeo®’

string handling functions under

strcat(), strlen(), strcpy() ,.

AT M En

: : NBA
College of Engineering RINCS HANLD LN \ o]\ \

AICTE

7 Accrepmeo®

B LZ
150 9001:2008

AL E I
College of Ergiﬁﬁgrmfg

char str[6] = “Hello”;

index [/} 1 2 3 4 5

value H e 1 1 0 \@

address 1000 1001 1002 1003 1004 1005
#include<stdio.h>

void main()

{
char str[6]="Hello";
int len = my_strlen(str);
printf("length of str is %d",len);

#include<stdio.h>
#include<string.h>

} void main()
int my_strlen(char str[]) { char str[6]="Hello";
¢ int i=0: int len = strlen(str);
=0, . 1] HX") " .
while(str[i] 1= "\0') , printf("length of str is %d",len);
{
i++;
}
return i;

AT M E

College of Engineering

#include<stdio.h>

void main()

{
char str1[6]="HELLO";
char str2[6];
My _strcpy(strl, str2);

}
void my_strcpy(char stril[], char str2[])
{
int i=0;
while(str1[i] !="\0')
{
str2[i]=strl[i];
i++;
}
str2[i]="\0";
}

str2 =

#include<stdio.h>
#include<string.h>
void main()
{
char str1[6]="HELLO";
char str2[6];
strcpy(strl,str2);
printf("string 2 is %s",str2);

AT M E

College of Engineering

Finclude<stdio.h> : i — S T
void main() 0O 1 2 3 4 5 6 7 & 9 10 11 1z 13 14
{ strl | ¢ t |y | £t | o |\0

char str1[6]="HELLO";
char str2[6]="WORLD";
My_strcat(strl, str2);

str2 | p r o E r i m

strcat| strl, str2);

} strl t r ¥ t o p r | o £ r a m i
void my_strcat(char str1[], char str2[]) T
{ Mull character (\0) of strl is replaced by the first character of ste2
intij;
i=0,j=0;
while(str1[i] !="'\0') #include<stdio.h>
{ #include<string.h>
i++; void main()
} {
while(str2[j]!'="\0') char str1[6]="HELLO";
{ char str2[6]="WORLD";
strifi++]=str2[j++]; strcat(strl,str2);
} printf("strl is %s",strl);

stri[i++] = '\0';

AT M E

College of Engineering

#tinclude<stdio.h>
void main()
{
char str1[6]="Hello";
char str2[6]="Hello";
int res = my_strcmp(strl, str2);
if(res==0) { printf("strings are equal\n"); }
else if(res < 0) { printf("string 1 is smaller than string 2");
else { printf("string 1 is greater than string 2"); }

}
Int my_strcmp(char strl[], char str2[])
{
inti;
i=0;
while(str1[i] == str2[i])
{
if(stri[i] =="\0")
break;
i++;
}

str1

str2

Memory

Index 0 1 2 3 4 5 6

Memory

Index

AT M E

College of Engineering

#include<stdio.h>
#include<string.h>
void main()
{
char str1[6]="Hello";
char str2[6];
my_strrev(strl, str2);

}

void my_strrev(char strl[], char str2[])

{
inti,n; n
n = strlen(strl)

for(i=0; i<n; i++)

{

i Reverse

str2[n-1-i] = strl]i];

}
str2[n] = '\0;

A T M E PATTERN MATCHING ALGORITHM
College of Engineering

Brute Force Algorithm
The first pattern matching algorithm is one in which comparison is done by a given pattern P with each of
the substrings of T, moving from left to right, until a match is found.
WK = SUBSTRING (T, K, LENGTH (P))
* Where, WK denote the substring of T having the same length as P and beginning with the Kth
character of T.
» First compare P, character by character, with the first substring, W1. If all the characters are the same,
then P =W1 and so P appears in T and INDEX (T, P) = 1.
« Suppose it is found that some character of P is not the same as the corresponding character of W1.
Then P # W1
« Immediately move on to the next substring, W2 That is, compare P with W2. If P # W2 then compare P
with W3 and so on.
» The process stops, When P is matched with some substring WK and so P appears in T and
INDEX(T,P) = K or When all the WK'S with no match and hence P does not appear inT.

Al M E I
College of Engineering

Algorithm: (Pattern Matching_Brute Force)

P and T are strings with lengths R and S, and are stored as arrays with one character per

element. This algorithm finds the INDEX of P in T.

1. [Initialize.] Set K: =1 and MAX:=S-R+ 1

2. Repeat Steps 3 to 5 while K < MAX

3. Repeat for L = 1 to R: [Tests each character of P]
If P[L] # T[K+ L - 1], then: Go to Step 5
[End of inner loop.]

4. [Success.] Set INDEX = K, and Exit

5.SetK:=K+1

[End of Step 2 outer loop]
6. [Failure.] Set INDEX =0
7. Exit

AT M E

College of iEngingeling

Algm PatternMatching_KMP(s, p)

{

k=1, s1=q,, n=length(s)
While(k<=n && s, !=p)
{
Read t
Ske1 = F(Si i)
k=k+1
}
If(k>n)
{
index=0
}

else

{
Index=k-length(p)

}

return index

ING ALGORITHM - KMP algorithm(Knut e

return int

b Pattern matching graph

123456 7891011
aaaaaaaaaab
Patternp: aaab

Patternp: aaba

Stacks: Definition, Stack Operations, Array Representation of Stacks, Stacks using Dynamic
Arrays, Stack Applications: Polish notation, Infix to postfix conversion, evaluation of postfix
Expression

Recursion - Factorial, GCD, Fibonacci Sequence, Tower of Hanoi, Ackerman's Function.
Queues: Definition, Array Representation, Queue Operations, Circular Queues,

Circular queues using Dynamic arrays, Dequeues, Priority Queues, A Mazing Problem.
Multiple Stacks and Queues. Programming Examples.

College of Engineering

-> Stack is a linear data structure which follows a particular order in which the operations are

performed.

->The order may be LIFO(Last In First Out) or FILO(First In Last Out).

-> A stack can be implemented by means of Array, |

Structure, Pointer, and Linked List.

-> Here, we are going to implement stack using
arrays, which makes it a fixed size stack
implementation.

->At any given time, we can only access the top
element of a stack.

Top

"—'\I Push item

m Pop item

- Stacks may be represented in the computer in various ways such as one-way linked list
(Singly linked list) or linear array.

« Stacks are maintained by the two variables such as TOP and MAX_STACK_SIZE.

* TOP which contains the location of the top element in the stack. If TOP= -1, then it
indicates stack is empty.

e MAX_STACK_SIZE which gives maximum number of elements that can be stored in
stack.

Stack can represented using linear array as shown below

A B C
0 1 . 3 4 5 6 7
TOP MAX_STACK_SIZE

->Check for overflow condition i.e
->Increment top by 1
->Push an element

Empty PUSH PUSH PUSH PUSH
Stack 10 20 12 33
=
3 3 3 3 ‘ 3l 33 [Ctop
— — — T— S— #define Max_Size 4
5 5 : , 2 ra top,| 12 \{/oid push()
— — — —J — if (top >= Max_Size-1)
. . .| 20 ie top;| 20 ! ﬂj EISsteaCk overflow
— p— —_ — top++
\ﬂf %Oﬂ ' 10 ﬂ stack[top] = item;

AT M E

ColEge of EhglREEting

\{/oid push() void push(int item, int top, int s[])
I{f(top == Max_Size - 1) { If(top == Max_Size - 1)
Z)r(ii?(t;g'.‘Stack Overflow"); { Printf("Stack Overflow");
} ; Return;
top++; 1op++;

s[top] = item;

s[top] = item;

Deleting an element from the stack is called pop operation. The element is deleted only from

the top of the stack and only one element is deleted at a time.

top=3

top=2

top=0

A

pop()

top=-1
Stack Underflow

AT M E

College of Engineering

int pop() int pop(int top, int s[])
{ {
int item_deleted; int item_deleted;
If(top==-1) If(top==-1)
Return O; Return O;
item_deleted=s[top--]; item_deleted=s[(top)--];
Return item_deleted; Return item_deleted;

A T M E
l \49# oo ooy I {
->Display the elements of stack 3| & p=iep
->Check for underflow condition 219
->Display using for loop 1 1B
Display Stack content using global variables Display Stack content by pass by parameter 0|3
Stack
void display() void display(int top, int s[])
{ {
Inti; Inti;
If(top==-1) If(top==-1)
{ {
Printf("stack is empty\n"); Printf("stack is empty\n");
Return; Return;
} }
Printf("Contents of the stack are:\n"); Printf("Contents of the stack are:\n");
For(i=0; i<=top; i++) For(i=0; i<=top; i++)
{ {
Printf("%d\n",s[i]); Printf("%d\n",s][i]);
} }

ALLE I
College of Engineering

Applications/Advantages of Stack’ [A e R

Stacks can be used for expression evaluation.

Stacks can be used to check parenthesis matching in an expression

Stacks can be used for Conversion from one form of expression to another.

Stacks can be used for Memory Management

College of Engineering

.QATME

In this expression, the binary operator is placed in-between the operand.
The expression can be parenthesized or un- parenthesized.
Example: A+ B
Here, A & B are operands and + is operator

Prefix or Polish Expression: In this expression, the operator appears before its operand.
Example: + AB
Here, A & B are operands and + is operator

Postfix or Reverse Polish Expression: In this expression, the operator appears after its
operand.

Example: AB +

Here, A & B are operands and + is operator

AL ——
College of Engineering <

Step 1: If operand - push
Step2: If operator -
* Pop the top of the stack and make it operand 2
* Pop the next top of the stack and make operand 1
* Perform operation
* Push the result

Infix->4+2*3 postfix ->423* +
Infix -> (8 +5) * (6 / 3) postfix ->85+63/*
Infix->4$2*3-3+8/4/(1+1) postfix->42S53*3-84/11+/+

Liestor oy I 4,
College of Engineering ¢

Postfix Evaluation Example

Example : 1210-96 +*

- @@ - -@-'8- 8-

A & - I -

College of Engineering

Steps to convert infix to postfix expression

Step 1: If operand - send it to postfix expression
Step2: If operator -

Check the Priority of current operator (PCO) VS Priority of top of stack(POTS)
If(PCO > POTS) then PUSH
If(PCO = POTS) then POP
If(PCO < POTS) then POP

Step3: Parenthesis

If (PUSH

If) PUSH

Permitted to push any symbol above the brackets

POP all the symbols between (and)

Example:((4+(8*2))-10)

S.No Scanned element
1 (
2 (
3 4
4 ¥
5 (
6 8
7 *
8 2
9)
10)
1 -
12 10
13)

Input Expression

(4+(8°2))-10)

4+(872))-10)

+(8*2))-10)

(872))-10)

8%2))-10)

*2))-10)

2))-10)

))-10)

)-10)

-10)

10)

Operator Stack

Output Expression

48

48

482

482"

482"+

482"+

4827+10

482*+10-

Description l

Push ‘(‘ to stack

Push *(‘ to stack

Output value

Push *+' to stack

Push ‘(' to stack

Output value

Push "’ to stack

Output value

Pop till *("is found

Pop till *('is found

Push *-' to stack

Output value

Pop till ‘(' is found

is_empty()

Bt
Fecrepmeo®’

R RS
150 9001:2008

0059

kich 1T M E

aedtydedtlege of Engineering
$%E 50

char s[SIZE];

int top=-1;

void push(char elem)

{

s[++top]=elem;
}
char pop()
{
return s[top--];
}
int pr(char elem)
{
switch(elem) {
case '#":return O;
case '(":return 1;
case '+":
case '-":return 2;
case "*':
case'/":
case '%":return 3;
case '"M:return 4;

}

NBA
int i=0,k=0; ‘ A G e
printf("enter the infix expression\n"); gets(infix);
push('#);
while((ch=infix[i++])!="\0’)
{
if(ch=="(")
push(ch);
else if(isalnum(ch))
postfix[k++]=ch;
else if(ch==")")
{
while(s[top]!="(‘)
postfix[k++]=pop();
elem=pop();
}
else
{
while(pr(s[top])>=pr(ch))
postfix[k++]=pop();
push(ch);
}
}

while(s[top]!="#’)
postfix[k++]=pop();
postfix[k]="\0’;

i printf("infix expression is %s\n postfix expression is %s\n",infix,postfix);

Enumeration (or enum) is a user defined data type in C. It is mainly used to assign names to
integral constants, the names make a program easy to read and maintain.

precedence getToken(char *symbol, int *n)

{
*symbol = expr[(*n)++];
precedence switch (*symbol)

{
case ‘(" : return Iparen;
case ')’ : return rparen;
case '+': return plus;
case '-' : return minus;
case 'l' : return divide;
case '*' : return times;
case '%' : return mod;
case '': return eos;
default: return operand;

e —

B CTXYT M E o
el SEURRRRBRSINeerng

char symbol;

int opl,op2, n=0;

int top=-1;

token = getToken(&symbol, &n);
while(token! = eos)

{
if (token == operand)
push(); /* stack insert */
else
{
op2 = pop(); /* stack delete */
opl = pop();
switch(token)
{
case plus: push(opl+op?2); break;
case minus: push(opl-op2); break;
case times: push(opl*op2); break;
case divide: push(opl/op2); break;
case mod: push(opl%op?2); break;
}
}
token = getToken(&symbol, &n);
}

College of Engineering
':_""’"' ym bol;

precedence token;

int n = 0,top = 0; /* place eos on stack */

stack[0] = eos;

for (token = getToken(&symbol, &n); token != eos; token = getToken(&symbol,& n))

.o fixdoid) T° N FE

{
if (token == operand)
printf("%c", symbol);
else if (token == rparen)
{
while (stack[top] != Iparen)
printToken(pop());
pop();
}
else
{
while(isp[stack[top]] >= icp[token])
printToken(pop());
push(token);
}
}
while((token = pop ())!= eos)
printToken(token);

irintf"'\n"l'|

]

JATM E

e College of Engineering

e

- A
SCryg cpmRR

Recursion

IL__L_Q—JJ

|
|

Direct Indirect
Recursion Recursion

ATM E e
.!_II \“ .E;“" ;!i. |
4 College of Engineering %\g\@?ﬁ

Direct Recursion Indirect Recursion

Function calls itself directly

funci()) funcl() P funca)

{

H«-‘«-‘«-

-
-

func1(); func2();

F
ATME Wﬂ
College of Engineering %%K?ﬁ

Direct Recursion Indirect Recursion

Example:
#include<stdio.h> #include<stdio.h>
void main() void fun(void);
{ void main()
printf("l LOVE MY COUNTRY\n"); {
main(); printf("l LOVE MY COUNTRY\n");
} fun();
} D
fun()
Output: {
main();
}
Output:

| LOVE MY COUNTRY
| LOVE MY COUNTRY

(infinte number of times | LOVE MY

ATM E

College of Engineering

General format of recursive function:

is exit
condition
satisfied?

Thile@s af ENEmeeriHg _ L

Factorial of a number 5!=5%4%3%2%1=120

#inlcude<stdio.h>
void main()

{

fact=1;

Printf("enter the no\n");
Scanf("%d",&n);
For(i=1;i<=n;i++)

{

fact=fact*i;
}

printf("factorial of a number is %d", fact);

}

void main()
{
int n,ans;
printf("enter the value of n\n");
scanf("%d",&n);
ans=fact(n);
printf("answer is %d",ans);

}
int fact(int n)
{
if(n==0)
{
return 1;
, }
— { 1 if n== else
act(n) =
n*fact(n-1) if n>0 { return n*

R

The greatest common divisor (GCD) of two integers m and nis the greatest mteger that
divides both m and n with no remainder.

m —=

GCD [o the GCD of m andn

n —=

If n divides m with no mmimum

Form=>n=0, ged (m, n) = {gfd(n remainder of—) Otherwise

Procedure: GCD (M, N)
1. If(M % N) =0, then set GCD=N and RETURN
2. CallGCD (N, M % N)
3. Return

AT M E

ne] HSURATZSEIR RS9
int gcd(int a, int b)
{
if(b==0)
return a;
elseif(a<b)
return gcd(b,a);
else
return gcd(b, a%b);
}
Void main()
{
Int a,b;

Printf("enter a and b\n");
Scanf("%d%d", &a,&b);
Result=gcd(a,b);

Printf("result is = %d", Result);

AT M E

College of Engineering

the two preceding numbers.

n 123456 7 8 9 10 Fo—0 F -1

ﬂb(n) 0112 35 8 13 21 34 F:r; - Fn 1+ Fn. 2

Default

A

0
0

0,1, 1,2 3, 5 8 13, 21, 34, 55, 89, 144, ...

fib(n) = 1 if n==2

fib(n-1)+fib(n-2) if n>2

1 2 3 5 0 if n==1
1
1
1

Finc)udedsefioHsgineering {

int fib(int);

void main() i{f(n==1)
{
int n.ans; return 0;
printf("enter the value of n\n"); } _
scanf("%d",&n); if(n==2)
ans=fib(n); {
printf("answer is %d",ans); } return 1;
} .
if(n>2)
{
return fib(n-1)+fib(n-2);
}

}

L] OnebrofYend; I 5

Suppose three pegs, labeled A, Band C, are given, and suppose on peg Am?mnlte number
n of

disks with decreasing size are placed.

The objective of the game is to move the disks from peg A to peg C using peg B as an
auxiliary.

The rules of the game are as follows:

1. Only one disk may be moved at a time. Only the top disk on any peg may be moved to

(-

""c 10 ‘

any other peg.
2. At no time can a larger disk be placed on a smaller disk
A B C

£ | |,\‘
F

|

Imtial Setup of Towers of Hanoi with n = 6

= == A 3 NA i ﬁ £,

Example: Towers of Hanoi problem for n = 3.

. Move top dISk from peg f to peg C.

1
Solution: Observe that it consists of the following seven moves
= D1oKS 2. Move top disk from peg A to peg B.
* | | | | | 3. Move top disk from peg C to peg B.
4. Move top disk from peg A to peg C.
| | | | L * | 5. Move top disk from peg B to peg A.
AR E 6. Move top disk from peg B to peg C.
{5) {6) N
.L.L_.L_ _J. .‘._ .*._ 7. Move top disk from peg A to peg C.
A B C A B C A B C

In other words,
n=3: A—»C, A—B, C—B, A—C, B—A, B—C(,
A—C

the solution to the Towers of Hanoi problem forn=1and n=2
n=I: A—C
n=2: A—B, A—C, B—C

hent Dwess afcHsroigneleleny f olfentip

(Move the top n - 1 disks from peg A to peg B
Move the top disk from peg A to peg C:A—C.

(3) Move the top n - 1 disks from peg B to peg C

The general notation

* TOWER (N, BEG, AUX, END) to denote a procedure which moves the top n disks
from

the initial peg BEG to the final peg END using the peg AUX as an auxiliary.

* When n =1, the solution:

TOWER (1, BEG, AUX, END) consists of the single instruction BEG—END

* When n > 1, the solution may be reduced to the solution of the following three sub
problems:

(a) TOWER (N - I, BEG, END, AUX)
(b) TOWER (I, BEG, AUX, END) or BEG — END
(c) TOWER (N - I, AUX, BEG, END)

NBA

AICTE
"

ecrepmeo®

o
o\\zﬁ-" ok &,

-

150 9001:2008

Bentatimerte. TRV &
College/oid tower(int M . :

int n;
void main()

{

printf("Enter the no. of discs: \n");

scanf("%d",&n);
printf("the number of moves in tower of henoi problem\n");

tower(n,'A",'C",'B");

}
void tower(int n,char frompeg,char topeg,char auxpeg)
{

if(n==1)

{

printf("move disk1 from %C to %C\n ",frompeg,topeg);
return;

}
tower(n-1,frompeg,auxpeg,topeg);
printf("move disk%d from %C to %C\n",n,frompeg,topeg);

AT M E

College of Engineering

* A Queue is a special type of data structure where elements are inserted from
one end and deleted from other end.

« The end at which elements are added is called rear

« The end at which elements are deleted is called front

« The first element inserted is the first element to be deleted out. Hence it is First
In First Out (FIFO) or Last In Last Out (LILO) data structure.

¢ A
/\\' X Deletion e g—— Insertion
) e
| [I
w Front Rear

FIFO/LILO

AT M E

College of Engineering

Type of queue

Or ordinaryor Circular
linear Queue

Dequeue

Priority (Double
Queue ey

Queue)

AT M E R
College of Engineerin _ T
o - = rray epresentatlon A

0 1 2 3
A
F=-1,r=-1 T
i T
add
A AB ABC ABCD ABCDE BCDE 0 1 2 3
t ottt ot 1 t 1 A |B
fr F r f T f r f r f r
add add add add add delete T T
f=queue fl'OIlt : =queue rear f r a dd
0 1 2 3 4 0 1 2 3 4
A B | C B | C |D E
f r f r

add delete

College of Engineering #
perations on Queues)

Queue CreateQ(maxQueueSize) ::=
#define MAX_QUEUE_ SIZE 100 /* maximum queue size */
typedef struct

{

int key; /* other fields */
} element;
element queue[MAX_QUEUE_ SIZE];
int rear = -1;
int front = -1;

2. Boolean IsEmptyQ(queue) ::= front == -1 || front > rear

Aly M. E I {
Englneerlng |

void addq(element item)
{ I* add an item to the queue */
if (rear == MAX_QUEUE_SIZE-1)
queueFull();
queue [++rear] = item;

5. deleteq()
element deleteq()
{ I* remove element at the front of the queue */
if (front == -1 || front > rear)
return queueEmpty(); /* return an error key */
return queue[++front];

}

AT M E

College of Engineering

6. queueFull()
The queueFull function which prints an error message and

terminates execution

void queueFull()

{

printf("Queue is full, cannot add element");
exit(0);

Eioador enrunctions [v
College of Engineering i

void delete()

{
If(front==-1 | | front>rear)
printf("underflow");
else
Printf("element deleted is %d", queue[front]);
front++;
}

void display()
{
if(front==-1 | | front>rear)
Printf("display not possible");
else
Printf("queue elements are:");
For(int i=f; i<=r; i++)
Printf("%d\t", queueli]);

0
s 9

AL E I)
College of Engineering . %o }

0 1 2 3 4 4
A B C D E 7c 10
-1 0 1 2 3 4
f r
0 1 2 3 4
= | D E B e ®|E
1 0 1 2 3 4
1 8 & 2 3 4 T T
T T f r
item A is deleted
f r
‘ w 3 2 3 4
C | D | E
B X 2 3 4
f r
item B is deleted

AT

CinluyermﬂEnglneermg

29 21 72 13 34 24 24 21
0o 1 2 3 4 5 34 72
i)) 4 13
FRONT REAR
3
LINEAR QUEUE CIRCULAR QUEUE

AT M E

College of Engineering

(front+1)%MAX_QUEUE_SIZE

(rear +1) % MAX_QUEUE_SIZE

2
front OH g 5 front 0 aq 5

6 7 6 7 6

e
&

rear rear

(a) (b) (©

L eador c Mnctids N ° V>
College of Engineering .
void dequeue() ‘

{

If(f==-1 && r==-1)
Printf("queue is empty")

Else
Printf(element deleted %d", queue|f]);
f=(f+1)%MAX;

void display()
{
If(f==-1 && r==-1)
Printf("queue is empty")
else
Printf("Queue elements are:");
for(i=f; il=r; (i+1)%MAX)
printf("%d\t", queue[i]);

AT M E

College of Engineering

Double ended queue (Dequeue

0059

Insert At Front Insert At Rear

Deque Data Structure

Remove from Front Remove from Back

| A T M E

c| College of Engineering

void insertfront()

{
If(f==-1 && r==-1)
f++; fir
g[++rear]=item;

s (=1 - IEEE

g[--f]=item;

Else

f
Printf("front insertion not possible"); l l
0

| A T M E

c| College of Engineering

void deleterear()

{
If(f==-1 && r==-1)
Printf("no items");

Else
Printf("item deleted is %d", q[r]);
r-;

AT M E

College of Engineering

1. Input-restricted deque is a deque which allows insertions at only one end of the list
but allows deletions at both ends of thelist
2. Output-restricted deque is a deque which allows deletions at only one end of the list

but allows insertions at both ends of the list.

AT M E

College of Engineering

A queue in which we are able to insert items or remove items from any position based on some
priority is often referred to as priority queue.

(1) An element of higher priority is processed before any element of lower priority.

(2) Two elements with the same priority are processed according to the order in which
they were added to the queue.

One way to maintain a priority queue in memory is by means of a

one-way list, as follows:

1. Each node in the list will contain three items of information: an information field INFO,
a priority number PRN and a link number LINK.

2. A node X precedes a node Y in the list

a. When X has higher priority than Y

b. When both have the same priority but X was added to the list before Y. This means
that the order in the one-way list corresponds to the order of the priority queue.

~[AAA]d -j---—+{_BBB 2] o}—>[ccc]2] e}—~[DDD[4] o]

—[EEE[4] o}—[FFF[4] o} —[GGG[5] ¥

(
\
N

Algorithm to deletes and processes the first element in a priority queue
Algorithm: This algorithm deletes and processes the first element in a priority
queue which

appears in memory as a one-way list.

1. Set ITEM:= INFO[START] [This saves the data in the first node.]

2. Delete first node from the list.

3. Process ITEM.

College of Engineering

Algorithm to add an element to priority ~ °™*"" | ‘f\

A
P,

queue

(- T T ~[BBBl[+}-

Algorithm: This algorithm adds an N I D e e Gl
ITEM with priority number N to a

Fig (a)
priority queue which is - | |
maintained in memory as a one-way stant [AXXX[2] <
list. |)
1. Traverse the one-way list until ~{AAAT] ~1—(B8B[a] +—{ecC] 2] « ¥~ [Boo[4] -]
finding a node X whose priority Eésw ol »{'FFF';A: o}—GGG[5) >
number exceeds N. Insert Fig(b)

ITEM in front of node X.
2. If no such node is found, insert ITEM

¢ of
L Qwee oy,

G-

A
Src 1o v

College of Enaineering _ _

e Another way to maintain a priority queue in memory is to use a separate queue f;)r each
level of priority (or for each priority number).

e Each such queue will appear in its own circular array and must have its own pair of
pointers, FRONT and REA R.

e If each queue is allocated the same amount of space, a two-dimensional array QUEUE
can be used instead of the linear arrays.

FRONT REAR 1

&)
w
=
th
(=

4 5 1 | 4 | FFF DDD EEE

5[4 4 s { GGG J

College of Engineering <

Algorithm: This algorithm deletes and processes the first element in a priority queue
maintained by a two-dimensional array QUEUE.

150 9001:2008

1. [Find the first non-empty queue.]

Find the smallest K such that FRONT[K] # NULL.

2. Delete and process the front element in row K of QUEUE.
3. Exit.

Algorithm: This algorithm adds an ITEM with priority number M to a priority queue
maintained by a two-dimensional array QUEUE.

1. Insert ITEM as the rear element in row M of QUEUE.

2. Exit.

