
ATME COLLEGE OF ENGINEERING
13thKM Stone, Bannur Road, Mysore - 560 028

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

(ACADEMIC YEAR 2023-24)

LABORATORY MANUAL

SUBJECT: DBMS LABORATORY WITH MINI PROJECT

SUBJECT CODE: 21CSL58

SEMESTER: V

2021 CBCS Scheme

Prepared by Verified by Approved by

Mr.K S Yogesh Mr. Kiran B, Mr.Sandesh R Dr.PutteGowda D

System Analyst Faculties Co-ordinators HOD, CSE

INSTITUTIONAL MISSION AND VISION

Objectives

 To provide quality education and groom top-notch professionals, entrepreneurs and

leaders for different fields of engineering, technology and management.

 To open a Training-R & D-Design-Consultancy cell in each department, gradually

introduce doctoral and postdoctoral programs, encourage basic & applied research in

areas of social relevance, and develop the institute as a center of excellence.

 To develop academic, professional and financial alliances with the industry as well as

the academia at national and transnational levels.

 To develop academic, professional and financial alliances with the industry as well as

the academia at national and transnational levels.

 To cultivate strong community relationships and involve the students and the staff in

local community service.

 To constantly enhance the value of the educational inputs with the participation of

students, faculty, parents and industry.

Vision

 Development of academically excellent, culturally vibrant, socially responsible and

globally competent human resources.

Mission

 To keep pace with advancements in knowledge and make the students competitive and

capable at the global level.

 To create an environment for the students to acquire the right physical, intellectual,

emotional and moral foundations and shine as torch bearers of tomorrow's society.

 To strive to attain ever-higher benchmarks of educational excellence.

Department of Computer Science & Engineering

Vision of the Department

 To develop highly talented individuals in Computer Science and Engineering to deal

with real world challenges in industry, education, research and society.

Mission of the Department

 To inculcate professional behavior, strong ethical values, innovative research

capabilities and leadership abilities in the young minds &to provide a teaching

environment that emphasizes depth, originality and critical thinking.

 Motivate students to put their thoughts and ideas adoptable by industry or to pursue

higher studies leading to research.

Program outcomes (POs)
Engineering Graduates will be able to:

 PO1. Engineering knowledge: Apply the knowledge of mathematics, science,

engineering fundamentals, and an engineering specialization to the solution of complex

engineering problems.

 PO2. Problem analysis: Identify, formulate, review research literature, and analyze

complex engineering problems reaching substantiated conclusions using first principles

of mathematics, natural sciences, and engineering sciences.

 PO3. Design/development of solutions: Design solutions for complex engineering

problems and design system components or processes that meet the specified needs

with appropriate consideration for the public health and safety, and the cultural,

societal, and environmental considerations.

 PO4. Conduct investigations of complex problems: Use research-based knowledge

and research methods including design of experiments, analysis and interpretation of
data, and synthesis of the information to provide valid conclusions.

 PO5. Modern tool usage: Create, select, and apply appropriate techniques, resources,

and modern engineering and IT tools including prediction and modeling to complex

engineering activities with an understanding of the limitations.

 PO6. The engineer and society: Apply reasoning informed by the contextual

knowledge to assess societal, health, safety, legal and cultural issues and the consequent

responsibilities relevant to the professional engineering practice.

 PO7. Environment and sustainability: Understand the impact of the professional

engineering solutions in societal and environmental contexts, and demonstrate the

knowledge of, and need for sustainable development.

 PO8. Ethics: Apply ethical principles and commit to professional ethics and
responsibilities and norms of the engineering practice.

 PO9. Individual and team work: Function effectively as an individual, and as a

member or leader in diverse teams, and in multi disciplinary settings.

 PO10. Communication: Communicate effectively on complex engineering activities

with the engineering community and with society at large, such as, being able to

comprehend and write effective reports and design documentation, make effective

presentations, and give and receive clear instructions.

 PO11. Project management and finance: Demonstrate knowledge and understanding

of the engineering and management principles and apply these to one’s own work, as a

member and leader in a team, to manage projects and in multidisciplinary environments.

 PO12. Life-long learning: Recognize the need for, and have the preparation and ability

to engage in independent and life-long learning in the broadest context of technological

change.

Program Specific Outcomes (PSOs)

1. PSO1: Ability to apply skills in the field of algorithms, database design, web design,

cloud computing and data analytics.

2. PSO2: Apply knowledge in the field of computer networks for building network and

internet based applications.

Program Educational Objectives (PEOs):

1. Empower students with a strong basis in the mathematical, scientific and

engineering fundamentals to solve computational problems and to prepare them for

employment, higher learning and R&D.

2. Gain technical knowledge, skills and awareness of current technologies of computer

science engineering and to develop an ability to design and provide novel

engineering solutions for software/hardware problems through entrepreneurial skills.

3. Exposure to emerging technologies and work in teams on interdisciplinary projects with

effective communication skills and leadership qualities.

4. Ability to function ethically and responsibly in a rapidly changing environment by

applying innovative ideas in the latest technology, to become effective professionals in

Computer Science to bear a life-long career in related areas.

DBMS LABORATORY WITH MINI PROJECT

[As per Choice Based Credit System (CBCS) scheme]

(Effective from the academic year 2023 -2024)

SEMESTER – V

Subject Code:21CSL58 IA Marks :40

Number of Contact Hours/Week:0:2:2 Exam Marks:60

Total Number of Lab Contact Hours:36 Exam Hours:03

CREDITS – 02

Course objectives: This course will enable students to

 Foundation knowledge in database concepts, technology and practice to groom students

into well-informed database applicationdevelopers.

 Strong practice in SQL programming through a variety of databaseproblems.
 Develop database applications using front-end tools and back-endDBMS.

Description (If any):

PART-A: SQL Programming (Max. Exam Mks. 50)

 Design, develop, and implement the specified queries for the following problems using

Oracle, MySQL, MS SQL Server, or any other DBMS under
LINUX/Windowsenvironment.

 Create Schema and insert at least 5 records for each table. Add appropriate

database constraints.

PART-B: Mini Project (Max. Exam Mks. 30)

 Use Java, C#, PHP, Python, or any other similar front-end tool. All applications

must be demonstrated on desktop/laptop as a stand-alone or web based application
(Mobile apps on Android/IOS are not permitted.)

 Installation procedure of the required software must be demonstrated, carried out in

groups and documented in the journal.

Lab Experiments:

Part A: SQL Programming

1. Consider the following schema for a LibraryDatabase:

BOOK (Book_id, Title, Publisher_Name, Pub_Year)
BOOK_AUTHORS (Book_id,Author_Name)
PUBLISHER (Name, Address, Phone)
BOOK_COPIES (Book_id, Programme_id, No-of_Copies)
BOOK_LENDING (Book_id, Programme_id, Card_No, Date_Out, Due_Date)
LIBRARY_PROGRAMME (Programme_id, Programme_Name, Address)

Write SQL queries to

1. Retrieve details of all books in the library – id, title, name of publisher,

authors, number of copies in each Programme, etc.
2. Get the particulars of borrowers who have borrowed more than 3 books, but from Jan

2017 to Jun 2017.

3. Delete a book in BOOK table. Update the contents of other tables to reflect this data

manipulationoperation.

4. Partition the BOOK table based on year of publication. Demonstrate its working with

a simplequery.

5. Create a view of all books and its number of copies that are currently available in the

Library.

2. Consider the following schema for Order Database:

SALESMAN(Salesman_id, Name, City, Commission)

CUSTOMER(Customer_id, Cust_Name, City, Grade, Salesman_id)

ORDERS(Ord_No,Purchase_Amt,Ord_Date,Customer_id,Salesman_id)

Write SQL queriesto

1. Count the customers with grades above Bangalore’saverage.

2. Find the name and numbers of all salesman who had more than onecustomer.

3. List all the salesman and indicate those who have and don’t have customers in their

cities (Use UNIONoperation.)

4. Create a view that finds the salesman who has the customer with the highest order of a

day.

5. Demonstrate the DELETE operation by removing salesman with id 1000. All his

orders must also bedeleted.

3. Consider the schema for Movie Database:

ACTOR(Act_id, Act_Name, Act_Gender)

DIRECTOR(Dir_id, Dir_Name,Dir_Phone)

MOVIES (Mov_id,Mov_Title, Mov_Year, Mov_Lang, Dir_id)

MOVIE_CAST(Act_id, Mov_id, Role)
RATING (Mov_id, Rev_Stars)
Write SQL queries to

1. List the titles of all movies directed by‘Hitchcock’.

2. Find the movie names where one or more actors acted in two or moremovies.
3. List all actors who acted in a movie before 2000 and also in a movie after 2015 (use

JOIN operation).

4. Find the title of movies and number of stars for each movie that has at least one rating
and find the highest number of stars that movie received. Sort the result by movietitle.

5. Update rating of all movies directed by ‘Steven Spielberg’ to5.

4. Consider the schema for College Database:

STUDENT(USN,SName, Address, Phone,Gender)

SEMSEC(SSID, Sem, Sec)

CLASS (USN, SSID)

SUBJECT (Subcode, Title, Sem, Credits)

IAMARKS (USN, Subcode, SSID, Test1, Test2, Test3, FinalIA)

Write SQL queries to

1. List all the student details studying in fourth semester ‘C’section.
2. Compute the total number of male and female students in each semester and in each

section.

3. Create a view of Test1 marks of student USN ‘1BI15CS101’ in allsubjects.

4. Calculate the FinalIA (average of best two test marks) and update the corresponding

table for allstudents.

5. Categorize students based on the followingcriterion:

If FinalIA = 17 to 20 then CAT =‘Outstanding’

If FinalIA = 12 to 16 then CAT = ‘Average’

If FinalIA< 12 then CAT = ‘Weak’

Give these details only for 8th semester A, B, and C section student

5. Consider the schema for CompanyDatabase:
EMPLOYEE (SSN, Name, Address, Sex, Salary, SuperSSN, DNo)

DEPARTMENT (DNo, DName, MgrSSN, MgrStartDate)

DLOCATION (DNo,DLoc)

PROJECT (PNo, PName, PLocation, DNo)

WORKS_ON(SSN, PNo, Hours)

Write SQL queries to

1. Make a list of all project numbers for projects that involve an employee whose

last name is ‘Scott’, either as a worker or as a manager of the department that

controls the project.

2. Show the resulting salaries if every employee working on the ‘IoT’ project is

given a 10 percentraise.

3. Find thesumofthesalariesofallemployeesofthe‘Accounts’department,aswellas the

maximum salary, the minimum salary, and the average salary in thisdepartment

4. Retrievethenameofeachemployeewhoworksonalltheprojectscontrolledby
department number 5 (use NOT EXISTSoperator).

5. For each department that has more than five employees, retrieve the

department number and the number of its employees who are making more

than Rs.6,00,000.

Part B: Mini project

 For any problem selected

 Make sure that the application should have five or more tables

 Indicative areas include; health care

Course outcomes: The students should be able to:

 Create, Update and query on the database.

 Demonstrate the working of different concepts of DBMS

 Implement, analyze and evaluate the project developed for an application.

Conduction of Practical Examination:

 Experiment distribution

o For laboratories having only one part: Students are allowed to pick one

experiment from the lot with equalopportunity.
o For laboratories having PART A and PART B: Students are allowed to

pick one experiment from PART A and one experiment from PART B,
with equalopportunity.

 Change of experiment is allowed only once and marks allotted for procedure to be made

zero of the changed part only.

 MarksDistribution(Courseedtochangeinaccoradancewithuniversityregulations)

o For laboratories having only one part – Procedure + Execution + Viva-Voce:

 15+70+15 =100 Marks
o For laboratories having PART A and PART B

i. Part A – Procedure + Execution + Viva = 6 + 28 + 6 = 40Marks
ii. Part B – Procedure + Execution + Viva = 9 + 42 + 9 = 60 Marks

CONTENTS

Sl.No. Particulars Page No

1 INTRODUCTION TO DATABASE 1

2 BASIC QUERIES IN SQL 10

3 CONCEPT OF NORMALIZATION 22

4 ACID PROPERTIES IN DBMS 28

5 INTRODUCTION TO OPERATORS IN MYSQL 32

6 MYSQL AGGREGATE FUNCTIONS 39

7 INTRODUCTION TO JOINS 45

8 INTRODUCTION TO SUBQUERY 50

9 VIEWS IN SQL 54

10 INTRODUCTION TO STORED PROCEDURES 56

11 INTRODUCTION TO MYSQL TRIGGERS 72

12 EXPERITMENT 1 - Library Database 88

13 EXPERITMENT 2 - Order Database 100

14 EXPERITMENT 3 - Movie Database 107

15 EXPERITMENT 4 - College Database 115

16 EXPERITMENT 5 - Company Database 126

17 VIVA QUESTIONS 135

18 ADDITIONAL QUERIES 143

DBMS Laboratory with mini Project 21CSL55

Dept. of CSE, ATMECE, Mysore Page 1

 INTRODUCTION

INTRODUCTION TO DATABASE

What is Database?

A database is a separate application that stores a collection of data. Each database has one or

more distinct APIs for creating, accessing, managing, searching, and replicating the data it holds.

now a days we use relational database management systems (RDBMS) to store and manager

huge volume of data.

A Relational DataBase Management System (RDBMS) is a software that:

 Enables you to implement a database with tables, columns, and indexes.

 Guarantees the Referential Integrity between rows of various tables.

 Interprets an SQL query and combines information from various tables.

RDBMS Terminology:

Database: A database is a collection of tables, with related data.

Table: A table is a matrix with data. A table in a database looks like a simple spreadsheet.

Column: One column (data element) contains data of one and the same kind, for example the column

postcode. or phone numbers

Row: A row (= tuple, entry or record) is a group of related data, for example the data of one

subscription.

Redundancy: Storing data twice, redundantly to make the system faster.

Primary Key: A primary key is unique. A key value can not occur twice in one table. With a key you

can find at most one row.

Foreign Key: A foreign key is the linking pin between two tables.

Compound Key: A compound key (composite key) is a key that consists of multiple columns, because

one column is not sufficiently unique.

Index: An index in a database resembles an index at the back of a book.

Referential Integrity: Referential Integrity makes sure that a foreign key value always points to an

existing row

DDL or Data Definition Language actually consists of the SQL commands that can be used to

to create and modify the structure of database objects in a database. These database objects include

views, schemas, tables, indexes, etc.

Some examples:

 CREATE - to create objects in the database

 ALTER - alters the structure of the database

 DROP - delete objects from the database

DBMS Laboratory with mini Project 21CSL55

Dept. of CSE, ATMECE, Mysore Page 2

DML is Data Manipulation Language statements: which areused to interact with a database by deleting,

inserting, retrieving, or updating data in the database.

Some examples:

 SELECT - retrieve data from the a database

 INSERT - insert data into a table

 UPDATE - updates existing data within a table

 DELETE - deletes all records from a table, the space for the records remain

DCL is Data Control Language statements: which includes commands such as GRANT and REVOKE

which mainly deals with the rights, permissions and other controls of the database system.

Some examples:

 GRANT-gives user’s access privileges to database.

 REVOKE-withdraw user’s access privileges given by using the GRANT command.

TCL is Transaction Control Language which deals with a transaction within a database.

Some examples:

 COMMIT - save work done

 SAVEPOINT - identify a point in a transaction to which you can later roll back

 ROLLBACK - restore database to original since the last COMMIT

 SET TRANSACTION - Change transaction options like what rollback segment to use.

SQL Data Types

Each column in a database table is required to have a name and a data type.

An SQL developer must decide what type of data that will be stored inside each column when

creating a table. The data type is a guideline for SQL to understand what type of data is expected

inside of each column, and it also identifies how SQL will interact with the stored data.

MySQL uses many different data types broken into three categories

 Numeric

 Date and Time

 String Type

DATA TYPES

NUMERIC:

 INT − A normal-sized integer that can be signed or unsigned. If signed, the allowable range is

from -2147483648 to 2147483647. If unsigned, the allowable range is from 0 to 4294967295.

You can specify a width of up to 11 digits.

 TINYINT − A very small integer that can be signed or unsigned. If signed, the allowable range is

from -128 to 127. If unsigned, the allowable range is from 0 to 255. You can specify a width of

up to 4 digits.

 SMALLINT − A small integer that can be signed or unsigned. If signed, the allowable range is

from -32768 to 32767. If unsigned, the allowable range is from 0 to 65535. You can specify a

width of up to 5 digits.

DBMS Laboratory with mini Project 21CSL55

Dept. of CSE, ATMECE, Mysore Page 3

 MEDIUMINT − A medium-sized integer that can be signed or unsigned. If signed, the allowable

range is from -8388608 to 8388607. If unsigned, the allowable range is from 0 to 16777215. You

can specify a width of up to 9 digits.

 BIGINT − A large integer that can be signed or unsigned. If signed, the allowable range is from -

9223372036854775808 to 9223372036854775807. If unsigned, the allowable range is from 0 to

18446744073709551615. You can specify a width of up to 20 digits.

 FLOAT (M, D) − A floating-point number that cannot be unsigned. You can define the display

length (M) and the number of decimals (D). This is not required and will default to 10, 2, where 2

is the number of decimals and 10 is the total number of digits (including decimals). Decimal

precision can go to 24 places for a FLOAT.

 DOUBLE (M, D) − A double precision floating-point number that cannot be unsigned. You can

define the display length (M) and the number of decimals (D). This is not required and will

default to 16, 4, where 4 is the number of decimals. Decimal precision can go to 53 places for a

DOUBLE. REAL is a synonym for DOUBLE.

 DECIMAL (M, D) − an unpacked floating-point number that cannot be unsigned. In the

unpacked decimals, each decimal corresponds to one byte. Defining the display length (M) and

the number of decimals (D) is required. NUMERIC is a synonym for DECIMAL.

DATE AND TIME TYPES

The MySQL date and time data types are as follows −

 DATE − A date in YYYY-MM-DD format, between 1000-01-01 and 9999-12-31. For example,

December 30th, 1973 would be stored as 1973-12-30.

 DATETIME − A date and time combination in YYYY-MM-DD HH:MM:SS format, between

1000-01-01 00:00:00 and 9999-12-31 23:59:59. For example, 3:30 in the afternoon on December

30th, 1973 would be stored as 1973-12-30 15:30:00.

 TIMESTAMP − A timestamp between midnight, January 1st, 1970 and sometime in 2037. This

looks like the previous DATETIME format, only without the hyphens between numbers; 3:30 in

the afternoon on December 30th, 1973 would be stored as 19731230153000

(YYYYMMDDHHMMSS).

 TIME − Stores the time in a HH:MM:SS format.

 YEAR (M) − Stores a year in a 2-digit or a 4-digit format. If the length is specified as 2 (for

example YEAR (2)), YEAR can be between 1970 to 2069 (70 to 69). If the length is specified as

4, then YEAR can be 1901 to 2155. The default length is 4.

STRING TYPES

This list describes the common string data types in MySQL.

 CHAR (M) − A fixed-length string between 1 and 255 characters in length (for example CHAR

(5)), right-padded with spaces to the specified length when stored. Defining a length is not

required, but the default is 1.

DBMS Laboratory with mini Project 21CSL55

Dept. of CSE, ATMECE, Mysore Page 4

 VARCHAR (M) − A variable-length string between 1 and 255 characters in length. For

example, VARCHAR (25). You must define a length when creating a VARCHAR field.

 BLOB or TEXT − A field with a maximum length of 65535 characters. BLOBs are "Binary

Large Objects" and are used to store large amounts of binary data, such as images or other types

of files. Fields defined as TEXT also hold large amounts of data. The difference between the two

is that the sorts and comparisons on the stored data are case sensitive on BLOBs and are not case

sensitive in TEXT fields. You do not specify a length with BLOB or TEXT.

 TINYBLOB or TINYTEXT − A BLOB or TEXT column with a maximum length of 255

characters. You do not specify a length with TINYBLOB or TINYTEXT.

 MEDIUMBLOB or MEDIUMTEXT − A BLOB or TEXT column with a maximum length of

16777215 characters. You do not specify a length with MEDIUMBLOB or MEDIUMTEXT.

 LONGBLOB or LONGTEXT − A BLOB or TEXT column with a maximum length of

4294967295 characters. You do not specify a length with LONGBLOB or LONGTEXT.

CREATE TABLE

Specifies a new base relation by giving it a name, and specifying each of its attributes and

their data types

Syntax of CREATE Command:

CREATE TABLE<table name>

(<AttributeA1><Data TypeD1> [<Constraints>],

<Attribute A2><Data Type D2> [<Constraints>],

…….

<Attribute An><Data Type Dn> [<Constraints>],

[<integrity-constraint1>, <integrity-constraint k>]);

Specifying the unique, primary key attributes, secondary keys, and referential integrity constraints

EXAMPLE OF CREATING TABLE

CREATE TABLE ORDERS

(

ORDER_ID INT (6) PRIMARY KEY,

ORDER_DATE DATE

);

DBMS Laboratory with mini Project 21CSL55

Dept. of CSE, ATMECE, Mysore Page 5

ALTER TABLE STATEMENT

Once a table is created in the database, there are many occasions where one may wish to change the

structure of the table. Typical cases include the following:

 Add a column

 Drop a column

 Change a column name

 Change the data type for a column

 add and drop various constraints on an existing table.including primarykey and foreignkey

The SQL syntax for ALTER TABLE is

ALTER TABLE "table_name" [alter specification]

[alter specification] is dependent on the type of alteration we wish to perform. alter

specificationis already mentioned above

ADDING COLUMN IN TABLE

To add a column in a table, use the following syntax:

ALTER TABLE TABLENAME ADD COLUMN_NAME DATETYPE;

Example: ALTER TABLE ORDERS ADD JOB VARCHAR (20);

MODIFYING DATATYPE FOR COLUMN IN TABLE

To modify a column data type in a table, use the following syntax:

ALTER TABLE ORDERS MODIFY COLUMN_NAME VARCHAR (50);

 Example: ALTER TABLE ORDERS MODIFY JOB VARCHAR (50);

RENAMING COLUMN IN TABLE

You can rename a column in MySQL using the ALTER TABLE and CHANGE commands

together to change an existing column.

For example,say the column is currently named JOB, but you decide that DESIGNATION is a

more appropriate title. The column is located on the table entitled ORDERS.

Here is an example of how to change it:

ALTER TABLE TABLENAME CHANGE OLDNAME NEWNAME VARCHAR (20);

Example:ALTER TABLE ORDERS CHANGE JOB DESIGNATION VARCHAR (20);

DBMS Laboratory with mini Project 21CSL55

Dept. of CSE, ATMECE, Mysore Page 6

DELETING COLUMN

To delete a column in a table, use the following syntax:

ALTER TABLE TABLENAME DROP COLUMN COLUMN_NAME

Example: ALTER TABLE ORDERS DROP COLUMN DESIGNATION;

RENAMING A TABLE

 To rename a table, use the following syntax:

RENAME TABLE OLDTABLENAME TO NEWTABLENAME;

Example:RENAME TABLE ORDERS TO ORDERS_TBL

DROP TABLE

It is very easy to drop an existing MySQL table, but you need to be very careful while deleting

any existing table because the data lost will not be recovered after deleting a table.

The DROP TABLE statement is used to drop an existing table in a database

DROP TABLE TABLENAME;

Example:DROP TABLE ORDER

TRUNCATE TABLE STATEMENT

 if we wish to simply get rid of the data but not the table itself? For this, we can use the

TRUNCATE TABLE command.

The syntax for TRUNCATE TABLE is

TRUNCATE "table_name"

So, if we wanted to truncate the table called customer that we created in MYSQL , we simply

type,

Example:TRUNCATE customer

http://www.1keydata.com/sql/sqlcreate.html

DBMS Laboratory with mini Project 21CSL55

Dept. of CSE, ATMECE, Mysore Page 7

CONSTRAINTS:

Common types of constraints include the following:

Primary Key:-

 A primary key is used to uniquely identify each row in a table. It can either be part of the

actual record itself, or it can be an artificial field (one that has nothing to do with the

actual record).

 A primary key can consist of one or more fields on a table. When multiple fields are used

as a primary key, they are called a composite key.

 Primary keys can be specified either when the table is created (using CREATE TABLE)

or by changing the existing table structure (using ALTER TABLE).

Below are examples for specifying a primary key when creating a table:

Example :

CREATE TABLE ORDERS (ORDER_ID INT (6) PRIMARY KEY,ORDER_DATE DATE);

Below are examples for specifying a primary key by altering a table:

 CREATE TABLE ORDERS (ORDER_ID INT (6), ORDER_DATE DATE);

Example :ALTER TABLE ORDERS ADD PRIMARY KEY (ORDER_ID);

Note: - Before using the ALTER TABLE command to add a primary key, you'll need to make sure

 that the field is defined as 'NOT NULL' -- in other words, NULL cannot be an accepted value for

 that field.and column values must be unique

ALTER TABLE TABLENAME DROP PRIMARY KEY CONSTRAINT

To drop a PRIMARY KEY constraint in Table ORDERS, use the following MYSQL:syntax

Example:ALTER TABLE ORDERS DROP PRIMARY KEY

FOREIGN KEY

 A foreign key is a field (or fields) that points to the primary key of another table.

 The purpose of the foreign key is to ensure referential integrity of the data. In other

words, only values that are supposed to appear in the database are permitted

 For example, say we have two tables, a CUSTOMER table that includes all customer

data, and an ORDERS table that includes all customer orders. The constraint here is that

all orders must be associated with a customer that is already in the CUSTOMER table.

 In this case, we will place a foreign key on the ORDERS table and have it relate to the

primary key of the CUSTOMER table. This way, we can ensure that all orders in the

ORDERS table are related to a customer in the CUSTOMER table. .In other words, the

ORDERS table cannot contain information on a customer that is not in the CUSTOMER

table.

DBMS Laboratory with mini Project 21CSL55

Dept. of CSE, ATMECE, Mysore Page 8

The structure of these two tables will be as follows:

Table CUSTOMER

column name Characteristic

SID Primary Key

Last_Name varchar(50)

First_Name varchar(50)

Table ORDERS

column name characteristic

Order_ID Primary Key

Order_Date Date

Customer_SID Foreign Key

Amount Decimal(10,2)

CREATE TABLE CUSTOMER

(

SID INT PRIMARY KEY,

Last_Name varchar(50),

First_Name varchar(50)

);

In the below example, the Customer_SID column in the ORDERS table is a foreign keypointing

 to the SID column which is primary key in the CUSTOMER table.

Below we show examples of how to specify the foreign key when creating the ORDERS table:

CREATE TABLE ORDERS

(

Order_ID int,

Order_Date date,

Customer_SID int,

Amount double,

Primary Key (Order_ID),

Foreign Key (Customer_SID) references CUSTOMER(SID)

);

Below are examples for specifying a foreign key by altering a table.

This assumes that the ORDERS table has been created, and the foreign key has not yet been put

in

ALTER TABLE ORDERS ADD FOREIGN KEY (customer_sid) REFERENCES

CUSTOMER(SID);

 We can drop a foreign key by using below syntax

ALTER TABLE ORDERS DROP FOREIGN KEYFOREIGNKEY_CONSTRAINT_NAME;

DBMS Laboratory with mini Project 21CSL55

Dept. of CSE, ATMECE, Mysore Page 9

NOT NULL Constraint:-By default, a column can hold NULL. If you don’t want to allow or

store NULL value in a column, you will want to place a constraint on this column specifying that

NULL is now not an allowable value.

DEFAULT Constraint:- The DEFAULT constraint provides a default value to a column when

the INSERT INTO statement does not provide a specific value.

UNIQUE Constraint:-The UNIQUE constraint ensures that all values in a column are distinct.

CHECK Constraint:-The CHECK constraint ensures that all values in a column satisfy certain

conditions. Once defined, the database will only insert a new row or update an existing row if the

new value satisfies the CHECK constraint. The CHECK constraint is used to ensure data quality

DBMS Laboratory with mini Project 21CSL55

Dept. of CSE, ATMECE, Mysore Page 10

BASIC QUERIES IN SQL

 SQL has one basic statement for retrieving information from a database; the SLELECT

statement

 This is not the same as the SELECT operation of the relationalalgebra

 Important distinction between SQL and the formal relationalmodel;

 SQL allows a table (relation) to have two or more tuples that are identical in all their

attribute values

 Hence, an SQL relation (table) is a multi-set (sometimes called a bag) of tuples; it is not a set

oftuples

 SQL relations can be constrained to be sets by using the CREATE UNIQUE INDEX

command, or by using the DISTINCToption

 Basic form of the SQL SELECT statement is called a mapping of a SELECT-FROM-

WHEREblock

SELECT <attribute list> FROM <table list> WHERE <condition>

 <attribute list>is a list of attribute names whose values are to be retrieved by thequery

 <table list >is a list of the relation names required to process thequery

 <condition>is a conditional (Boolean) expression that identifies the tuples to be retrieved by

thequery

SIMPLE SQL QUERIES

Basic SQL queries correspond to using the following operations of the relational algebra:

SELECT PROJECT JOIN

All subsequent examples uses COMPANY database as shown below:

Example of a simple query on one relation

Query 0: Retrieve the birth date and address of the employee whose name is 'John B. Smith'.

Q0: SELECT BDATE, ADDRESS FROM EMPLOYEE

WHERE FNAME='John' AND MINIT='B’ AND LNAME='Smith’

Similar to a SELECT-PROJECT pair of relational algebra operations: The SELECT-clause

specifies the projection attributes and the WHERE-clause specifies the selection condition

However, the result of the query may contain duplicate tuples.

DBMS Laboratory with mini Project 21CSL55

Dept. of CSE, ATMECE, Mysore Page 11

DBMS Laboratory with mini Project 21CSL55

Dept. of CSE, ATMECE, Mysore Page 12

DBMS Laboratory with mini Project 21CSL55

Dept. of CSE, ATMECE, Mysore Page 13

Example of a simple query on two relations

Query 1: Retrieve the name and address of all employees who work for the 'Research'

department.

Q1: SELECT FNAME, LNAME, ADDRESS FROM EMPLOYEE, DEPARTMENT

WHERE DNAME='Research' AND DNUMBER=DNO

Similar to a SELECT-PROJECT-JOIN sequence of relational algebra operations

(DNAME='Research') is a selection condition (corresponds to a SELECT operation in relational

algebra) (DNUMBER=DNO) is a join condition (corresponds to a JOIN operation in relational

algebra)

Example of a simple query on three relations

Query 2: For every project located in 'Stafford', list the project number, the controlling

department number, and the department manager's last name, address, and birth date.

Q2: SELECT PNUMBER, DNUM, LNAME, BDATE, ADDRESS FROM PROJECT,

DEPARTMENT, EMPLOYEE WHERE DNUM=DNUMBER ANDMGRSSN=SSN

AND PLOCATION='Stafford'

In Q2, there are two join conditions. The join condition DNUM=DNUMBER relates a project to its

controlling department The join condition MGRSSN=SSN relates the controlling department to the

employee who manages that department

ALIASES, * AND DISTINCT, EMPTY WHERE-CLAUSE

 In SQL, we can use the same name for two (or more) attributes as long as the attributes are

in differentrelations

 A query that refers to two or more attributes with the same name must qualify the attribute

name with the relation name by prefixing the relation name to the attributename

Example: EMPLOYEE.LNAME, DEPARTMENT.DNAME

 Some queries need to refer to the same relation twice. In this case, aliases are given to the

relationname.

Example

Query 3: For each employee, retrieve the employee's name, and the name of his or her

immediate supervisor.

Q3: SELECT E.FNAME, E.LNAME, S.FNAME, S.LNAME FROM EMPLOYEE S WHERE

E.SUPERSSN=S.SSN

In Q3, the alternate relation names E and S are called aliases or tuple variables for the EMPLOYEE

relation We can think of E and S as two different copies of EMPLOYEE; E represents employees in

role of supervisees and S represents employees in role of supervisors

Aliasing can also be used in any SQL query for convenience. Can also use the AS keyword to

specify aliases

DBMS Laboratory with mini Project 21CSL55

Dept. of CSE, ATMECE, Mysore Page 14

Q3: SELECT E.FNAME, E.LNAME, S.FNAME, S.LNAME FROM EMPLOYEE AS E,

EMPLOYEE AS S WHERE E.SUPERSSN=S.SSN

UNSPECIFIED WHERE-clause

A missing WHERE-clause indicates no condition; hence, all tuples of the relations in the FROM-

clause are selected. This is equivalent to the condition WHERE TRUE

Example:

Query 4: Retrieve the SSN values for all employees.

Q4: SELECT SSN FROM EMPLOYEE

If more than one relation is specified in the FROM-clause and there is no join condition, then the

CARTESIAN PRODUCT of tuples is selected

Example:

Q5: SELECT SSN, DNAME FROM EMPLOYEE, DEPARTMENT

Note: It is extremely important not to overlook specifying any selection and join conditions in the

WHERE-clause; otherwise, incorrect and very large relations mayresult

USE OF *

To retrieve all the attribute values of the selected tuples, a * is used, which stands for all the

attributes

Examples:

Retrieve all the attribute values of EMPLOYEES who work in department 5.

Q1a: SELECT * FROM EMPLOYEE WHERE DNO=5

Retrieve all the attributes of an employee and attributes of DEPARTMENT he works in for

every employee of ‘Research’ department.

Q1b: SELECT * FROM EMPLOYEE, DEPARTMENT WHERE DNAME='Research'

AND DNO=DNUMBER

USE OF DISTINCT

SQL does not treat a relation as a set; duplicate tuples can appear. To eliminate duplicate tuples in

a query result, the keyword DISTINCT is used

Example: the result of Q1c may have duplicate SALARY values whereas Q1d does not have any

duplicate values

Q1c: SELECT SALARY FROM EMPLOYEE

Q1d: SELECT DISTINCT SALARY FROM EMPLOYEE

DBMS Laboratory with mini Project 21CSL55

Dept. of CSE, ATMECE, Mysore Page 15

SET OPERATIONS

SQL has directly incorporated some set operations such as union operation (UNION), set difference

(MINUS) and intersection (INTERSECT) operations. The resulting relations of these set operations

are sets of tuples; duplicate tuples are eliminated from the result. The set operations apply only to

union compatible relations; the two relations must have the same attributes and the attributes must

appear in the sameorder

Query 5: Make a list of all project numbers for projects that involve an employee whose last

name is 'Smith' as a worker or as a manager of the department that controls the project.

Q5: (SELECT PNAME FROM PROJECT, DEPARTMENT, EMPLOYEE WHERE

DNUM=DNUMBER AND MGRSSN=SSN AND LNAME='Smith')

UNION

(SELECT PNAME FROM PROJECT, WORKS_ON, EMPLOYEE WHERE

PNUMBER=PNO AND ESSN=SSN ANDNAME='Smith')

NESTING OF QUERIES

A complete SELECT query, called a nested query, can be specified within the WHERE-clause of

another query, called the outer query. Many of the previous queries can be specified in an

alternative form using nesting

Query 6: Retrieve the name and address of all employees who work for the 'Research'

department.

Q6: SELECT FNAME, LNAME, ADDRESS FROM EMPLOYEE WHERE DNO IN

(SELECT DNUMBER FROM DEPARTMENT WHERE DNAME='Research')

Note: The nested query selects the number of the 'Research' department. The outer query selects an

EMPLOYEE tuple if its DNO value is in the result of either nested query. The comparison operator

IN compares a value v with a set (or multi-set) of values V, and evaluates to TRUE if v is one of the

elements in V

In general, we can have several levels of nested queries. A reference to an unqualified attribute

refers to the relation declared in the innermost nested query. In this example, the nested query is not

correlated with the outer query

CORRELATED NESTED QUERIES

If a condition in the WHERE-clause of a nested query references an attribute of a relation declared

in the outer query, the two queries are said to be correlated. The result of a correlated nested query

is different for each tuple (or combination of tuples) of the relation(s) the outer query

Query 7: Retrieve the name of each employee who has a dependent with the same first name

as the employee.

Q7: SELECT E.FNAME, E.LNAME FROM EMPLOYEE AS E WHERE E.SSN IN

(SELECT ESSN FROM DEPENDENT WHERE ESSN=E.SSN AND

DBMS Laboratory with mini Project 21CSL55

Dept. of CSE, ATMECE, Mysore Page 16

E.FNAME=DEPENDENT_NAME)

In Q7, the nested query has a different result in the outer query. A query written with nested

SELECT... FROM… WHERE... blocks and using the = or IN comparison operators can always be

expressed as a single block query. For example, Q7 may be written as in Q7a

Q7a: SELECT E.FNAME, E.LNAME FROM EMPLOYEE E, DEPENDENT D WHERE

E.SSN=D.ESSN ANDE.FNAME=D.DEPENDENT_NAME

THE EXISTS FUNCTION

EXISTS is used to check whether the result of a correlated nested query is empty (contains no

tuples) or not. We can formulate Query 7 in an alternative form that uses EXIST.

Q7b: SELECT FNAME, LNAME FROM EMPLOYEE

WHERE EXISTS (SELECT * FROM DEPENDENT WHERE SSN=ESSN

AND FNAME=DEPENDENT_NAME)

Query 8: Retrieve the names of employees who have no dependents.

Q8: SELECT FNAME, LNAME FROM EMPLOYEE

WHERE NOT EXISTS

(SELECT * FROM DEPENDENT WHERE SSN=ESSN)

Note: In Q8, the correlated nested query retrieves all DEPENDENT tuples related to an

EMPLOYEE tuple. If none exist, the EMPLOYEE tuple is selected

EXPLICIT SETS

It is also possible to use an explicit (enumerated) set of values in the WHERE-clause rather than a

nested query

Query 9: Retrieve the social security numbers of all employees who work on project number

1, 2, or 3.

Q9: SELECT DISTINCT ESSN FROM WORKS_ON WHERE PNO IN (1, 2, 3)

NULLS IN SQL QUERIES

SQL allows queries that check if a value is NULL (missing or undefined or not applicable). SQL

uses IS or IS NOT to compare NULLs because it considers each NULL value distinct from other

NULL values, so equality comparison is not appropriate.

Query 10: Retrieve the names of all employees who do not have supervisors.

Q10: SELECT FNAME, LNAME FROM EMPLOYEE

WHERE SUPERSSN IS NULL

Note: If a join condition is specified, tuples with NULL values for the join attributes are not

included in the result

DBMS Laboratory with mini Project 21CSL55

Dept. of CSE, ATMECE, Mysore Page 17

AGGREGATE FUNCTIONS

Include COUNT, SUM, MAX, MIN, and AVG

Query 11: Find the maximum salary, the minimum salary, and the average salary among all

employees.

Q11: SELECT MAX (SALARY), MIN(SALARY), AVG(SALARY)

FROM EMPLOYEE

Note: Some SQL implementations may not allow more than one function in the SELECT-clause

Query 12: Find the maximum salary, the minimum salary, and the average salary among

employees who work for the 'Research' department.

Q12: SELECT MAX (SALARY), MIN(SALARY), AVG(SALARY) FROM

EMPLOYEE, DEPARTMENT WHERE DNO=DNUMBER ANDDNAME='Research'

Queries 13 and 14: Retrieve the total number of employees in the company (Q13), and the number

of employees in the 'Research' department (Q14).

Q13: SELECT COUNT (*) FROM EMPLOYEE

Q14: SELECT COUNT (*) FROM EMPLOYEE, DEPARTMENT

WHERE DNO=DNUMBER AND DNAME='Research’

GROUPING

 In many cases, we want to apply the aggregate functions to subgroups of tuples in a relation

 Each subgroup of tuples consists of the set of tuples that have the same value for the

groupingattribute(s)

 The function is applied to each subgroupindependently

 SQL has a GROUP BY-clause for specifying the grouping attributes, which must also

appear in theSELECT-clause

Query 15: For each department, retrieve the department number, the number of employees

in the department, and their averagesalary.

Q15: SELECT DNO, COUNT (*), AVG (SALARY)

FROM EMPLOYEE GROUP BY DNO

 In Q15, the EMPLOYEE tuples are divided into groups. Each group having the same value

for the grouping attributeDNO

 The COUNT and AVG functions are applied to each such group of tuplesseparately

 The SELECT-clause includes only the grouping attribute and the functions to be applied on

each group oftuples

DBMS Laboratory with mini Project 21CSL55

Dept. of CSE, ATMECE, Mysore Page 18

 A join condition can be used in conjunction withgrouping

Query 16: For each project, retrieve the project number, project name, and the number of

employees who work on that project.

Q16: SELECT PNUMBER, PNAME, COUNT (*)

FROM PROJECT, WORKS_ON

WHERE PNUMBER=PNO GROUP

BY PNUMBER, PNAME

THE HAVING-CLAUSE

Sometimes we want to retrieve the values of these functions for only those groups that satisfy

certain conditions. The HAVING-clause is used for specifying a selection condition on groups

(rather than on individual tuples)

Query 17: For each project on which more than two employees work, retrieve the project

number, project name, and the number of employees who work on that project.

Q17: SELECT PNUMBER, PNAME, COUNT (*)

FROM PROJECT, WORKS_ON

WHERE PNUMBER=PNO GROUP

BY PNUMBER, PNAME HAVING

COUNT (*) > 2

SUBSTRING COMPARISON

The LIKE comparison operator is used to compare partial strings. Two reserved characters are used:

'%' (or '*' in some implementations) replaces an arbitrary number of characters, and '_' replaces a

single arbitrary character.

Query 18: Retrieve all employees whose address is in Houston, Texas. Here, the value ofthe

ADDRESS attribute must contain the substring ‘Houston,TX’ init.

Q18: SELECT FNAME, LNAME

FROM EMPLOYEE WHERE ADDRESS LIKE '%Houston,TX%'

Query 19: Retrieve all employees who were born during the 1950s.

Here, '5' must be the 8th character of the string (according to our format for date), so the BDATE

valueis' 5_', with each underscore as a place holder for a single arbitrarycharacter.

Q19: SELECT FNAME, LNAME

FROM EMPLOYEE WHERE BDATELIKE' 5_’

Note: The LIKE operator allows us to get around the fact that each value is considered atomic and

indivisible. Hence, in SQL, character string attribute values are not atomic

DBMS Laboratory with mini Project 21CSL55

Dept. of CSE, ATMECE, Mysore Page 19

ARITHMETIC OPERATIONS

The standard arithmetic operators '+', '-'. '*', and '/' (for addition, subtraction, multiplication, and

division, respectively) can be applied to numeric values in an SQL query result

Query 20: Show the effect of giving all employees who work on the 'ProductX' project a 10%

raise.

Q20: SELECT FNAME, LNAME, 1.1*SALARY

FROM EMPLOYEE, WORKS_ON, PROJECT

WHERE SSN=ESSN

AND PNO=PNUMBER AND PNAME='ProductX’

ORDER BY

The ORDER BY clause is used to sort the tuples in a query result based on the values of some

attribute(s)

Query 21: Retrieve a list of employees and the projects each works in, ordered by the

employee's department, and within each department ordered alphabetically by employee

lastname.

Q21: SELECT DNAME, LNAME, FNAME, PNAME

FROM DEPARTMENT, EMPLOYEE, WORKS_ON, PROJECT

WHERE DNUMBER=DNO

AND SSN=ESSN

AND PNO=PNUMBER ORDER

BY DNAME, LNAME

The default order is in ascending order of values. We can specify the keyword DESC if we want a

descending order; the keyword ASC can be used to explicitly specify ascending order, even though it is

thedefault

Ex: ORDER BY DNAME DESC, LNAME ASC, FNAME ASC

MORE EXAMPLE QUERIES:

Query 22: Retrieve the names of all employees who have two or more dependents.

Q22: SELECT LNAME, FNAME FROM

EMPLOYEE WHERE (SELECT COUNT (*) FROM DEPENDENT WHERE

SSN=ESSN) ≥ 2);

Query 23: List the names of managers who have least one dependent.

Q23: SELECT FNAME, LNAME

FROM EMPLOYEE

DBMS Laboratory with mini Project 21CSL55

Dept. of CSE, ATMECE, Mysore Page 20

WHERE EXISTS (SELECT * FROM DEPENDENT WHERE SSN=ESSN) AND

EXISTS (SELECT * FROM DEPARTMENT WHERE SSN=MGRSSN);

SPECIFYING UPDATES IN SQL

There are three SQL commands to modify the database: INSERT, DELETE, and UPDATE. INSERT

 In its simplest form, it is used to add one or more tuples to arelation

 Attributevaluesshouldbelistedinthesameorderastheattributeswerespecifiedinthe

CREATE TABLE command

Example:

INSERT INTO EMPLOYEE VALUES ('Richard','K','Marini', '653298653', '30-DEC-52', '98 Oak

Forest,Katy,TX', 'M', 37000,'987654321', 4)

 An alternate form of INSERT specifies explicitly the attribute names that correspondto

the values in the new tuple. Attributes with NULL values can be leftout.

Example: Insert a tuple for a new EMPLOYEE for whom we only know the FNAME, LNAME, and

SSN attributes.

INSERT INTO EMPLOYEE (FNAME, LNAME, SSN)VALUES ('Richard', 'Marini',

'653298653')

Important Note: Only the constraints specified in the DDL commands are automatically enforced by

the DBMS when updates are applied to the database. Another variation of INSERT allows insertion of

multiple tuples resulting from a query into a relation

Example: Suppose we want to create a temporary table that has the name, number of employees, and

total salaries for each department. A table DEPTS_INFO is created first, and is loaded with the

summary information retrieved from the database by the query.

CREATE TABLE DEPTS_INFO(DEPT_NAME VARCHAR (10),NO_OF_EMPS INT,

TOTAL_SAL INT);

INSERT INTO DEPTS_INFO (DEPT_NAME, NO_OF_EMPS, TOTAL_SAL)

SELECT DNAME, COUNT (*), SUM (SALARY) FROM DEPARTMENT, EMPLOYEE

WHERE DNUMBER=DNO GROUP BY DNAME ;

Note: The DEPTS_INFO table may not be up-to-date if we change the tuples in either the

DEPARTMENT or the EMPLOYEE relations after issuing the above. We have to create a view

(see later) to keep such a table up to date.

DELETE

 Removes tuples from a relation. Includes a WHERE-clause to select the tuples to bedeleted

 Referential integrity should beenforced

DBMS Laboratory with mini Project 21CSL55

Dept. of CSE, ATMECE, Mysore Page 21

 Tuples are deleted from only one table at a time (unless CASCADE is specified on a

referential integrityconstraint)

 A missing WHERE-clause specifies that all tuples in the relation are to be deleted; the table

then becomes an emptytable

 The number of tuples deleted depends on the number of tuples in the relation that satisfy the

WHERE-clause

Examples:

1. DELETE FROM EMPLOYEE WHERELNAME='Brown’;

2. DELETE FROM EMPLOYEE WHERESSN='123456789’;

3. DELETE FROM EMPLOYEE WHERE DNO IN (SELECT DNUMBERFROM

DEPARTMENT WHEREDNAME='Research');

4. DELETE FROMEMPLOYEE;

UPDATE

 Used to modify attribute values of one or more selectedtuples

 A WHERE-clause selects the tuples to bemodified

 An additional SET-clause specifies the attributes to be modified and their newvalues

 Each command modifies tuples in the samerelation

 Referential integrity should beenforced

Example1: Change the location and controlling department number of project number 10 to

'Bellaire' and 5,respectively.

UPDATEPROJECT

SET PLOCATION = 'Bellaire', DNUM = 5 WHERE PNUMBER=10;

Example2: Give all employees in the 'Research' department a 10% raise in salary.

UPDATE EMPLOYEE

SET SALARY = SALARY *1.1

WHERE DNO IN (SELECT DNUMBER FROM DEPARTMENT

WHERE DNAME='Research');

DBMS Laboratory with mini Project 21CSL55

Dept. of CSE, ATMECE, Mysore Page 22

Concept of Normalization

A large database defined as a single relation may result in data duplication. This repetition of data may

result in:

 Making relations very large.

 It isn't easy to maintain and update data as it would involve searching many records in relation.

 Wastage and poor utilization of disk space and resources.

 The likelihood of errors and inconsistencies increases.

So to handle these problems, we should analyze and decompose the relations with redundant data into

smaller, simpler, and well-structured relations that are satisfy desirable properties. Normalization is a

process of decomposing the relations into relations with fewer attributes.

What is Normalization?

 Normalization is the process of organizing the data in the database.

 Normalization is used to minimize the redundancy from a relation or set of relations. It is also

used to eliminate undesirable characteristics like Insertion, Update, and Deletion Anomalies.

 Normalization divides the larger table into smaller and links them using relationships.

 The normal form is used to reduce redundancy from the database table.

Why do we need Normalization?

The main reason for normalizing the relations is removing these anomalies. Failure to eliminate

anomalies leads to data redundancy and can cause data integrity and other problems as the database

grows. Normalization consists of a series of guidelines that helps to guide you in creating a good

database structure.

Data modification anomalies can be categorized into three types:

 Insertion Anomaly: Insertion Anomaly refers to when one cannot insert a new tuple into a

relationship due to lack of data.

 Deletion Anomaly: The delete anomaly refers to the situation where the deletion of data results

in the unintended loss of some other important data.

 Updatation Anomaly: The update anomaly is when an update of a single data value requires

multiple rows of data to be updated.

Advantages of Normalization

 Normalization helps to minimize data redundancy.

 Greater overall database organization.

 Data consistency within the database.

 Much more flexible database design.

 Enforces the concept of relational integrity.

DBMS Laboratory with mini Project 21CSL55

Dept. of CSE, ATMECE, Mysore Page 23

Disadvantages of Normalization

 You cannot start building the database before knowing what the user needs.

 It is very time-consuming and difficult to normalize relations of a higher degree.

 Careless decomposition may lead to a bad database design, leading to serious problems.

First Normal Form (1NF)

 A relation will be 1NF if it contains an atomic value.

 It states that an attribute of a table cannot hold multiple values. It must hold only single-valued

attribute.

 First normal form disallows the multi-valued attribute, composite attribute, and their

combinations.

Normal Forms

There are four types of normal forms that are usually used in relational databases as you can see in

the following figure:

1. 1NF: A relation is in 1NF if all its attributes have an atomic value.

2. 2NF: A relation is in 2NF if it is in 1NF and all non-key attributes are fully functional

dependent on the candidate key.

3. 3NF: A relation is in 3NF if it is in 2NF and there is no transitive dependency.

4. BCNF: A relation is in BCNF if it is in 3NF and for every Functional Dependency, LHS is the

super key.

To understand the above-mentioned normal forms, we first need to have an understanding of the

functional dependencies.

Functional dependency is a relationship that exists between two sets of attributes of a relational table

where one set of attributes can determine the value of the other set of attributes. It is denoted by X ->

Y, where X is called a determinant and Y is called dependent.

There are various levels of normalizations. Let’s go through them one by one:

NORMAL FORMS

 1NF 2NF 3NF 4NF

DBMS Laboratory with mini Project 21CSL55

Dept. of CSE, ATMECE, Mysore Page 24

First Normal Form (1NF)

A relation is in 1NF if every attribute is a single-valued attribute or it does not contain any multi-

valued or composite attribute, i.e., every attribute is an atomic attribute. If there is a composite or

multi-valued attribute, it violates the 1NF. To solve this, we can create a new row for each of the

values of the multi-valued attribute to convert the table into the 1NF.

Let’s take an example of a relational table <EmployeeDetail> that contains the details of the

employees of the company.

<EmployeeDetail>

Employee Code Employee Name Employee Phone Number

101 Yogesh 98765623,998234123

101 Yogesh 89023467

102 Vinay 76213908

103 Rajiv 98132452

Here, the Employee Phone Number is a multi-valued attribute. So, this relation is not in 1NF.

To convert this table into 1NF, we make new rows with each Employee Phone Number as a new row

as shown below

<EmployeeDetail>

Employee Code Employee Name Employee Phone Number

101 Yogesh 998234123

101 Yogesh 98765623

101 Yogesh 89023467

102 Vinay 76213908

Second Normal Form (2NF)

The normalization of 1NF relations to 2NF involves the elimination of partial dependencies. A partial

dependency exists when any non-prime attributes, i.e., an attribute not a part of the candidate key, is

not fully functionally dependent on one of the candidate keys.

For a relational table to be in second normal form, it must satisfy the following rules:

 The table must be in first normal form.

 It must not contain any partial dependency, i.e., all non-prime attributes are fully functionally

dependent on the primary key.

If a partial dependency exists, we can divide the table to remove the partially dependent attributes and

move them to some other table where they fit in well.

DBMS Laboratory with mini Project 21CSL55

Dept. of CSE, ATMECE, Mysore Page 25

Let us take an example of the following <EmployeeProjectDetail> table to understand what is partial

dependency and how to normalize the table to the second normal form:

<EmployeeProjectDetail>

Employee Code Project ID Employee Name Project Name

101 P03 Yogesh Project103

101 P01 Yogesh Project101

102 P04 Vinay Project104

103 P02 Rajiv Project102

In the above table, the prime attributes of the table are Employee Code and Project ID. We have partial

dependencies in this table because Employee Name can be determined by Employee Code and Project

Name can be determined by Project ID. Thus, the above relational table violates the rule of 2NF.

The prime attributes are those which are part of one or more candidate keys.

To remove partial dependencies from this table and normalize it into second normal form, we can

decompose the <EmployeeProjectDetail> table into the following three tables:

<EmployeeDetail>

Employee Code Employee Name

101 Yogesh

101 Yogesh

102 Vinay

103 Rajiv

<EmployeeProject>

Project ID Project Name

P03 Project103

P01 Project101

P04 Project104

P02 Project102

Thus, we’ve converted the <EmployeeProjectDetail> table into 2NF by decomposing it into

<EmployeeDetail>, <ProjectDetail> and <EmployeeProject> tables. As you can see, the above tables

satisfy the following two rules of 2NF as they are in 1NF and every non-prime attribute is fully

dependent on the primary key.

The relations in 2NF are clearly less redundant than relations in 1NF. However, the decomposed

relations may still suffer from one or more anomalies due to the transitive dependency. We will

remove the transitive dependencies in the Third Normal Formalization

DBMS Laboratory with mini Project 21CSL55

Dept. of CSE, ATMECE, Mysore Page 26

Employee Code Employee Name Employee Zipcode Employee City

101 Yogesh 575001 Mangalore

101 Yogesh 560002 Bangalore

102 Vinay 570001 Mysore

103 Sandeep 580020 Hubli

The above table is not in 3NF because it has Employee Code -> Employee City transitive dependency

because:Employee Code -> Employee Zipcode

 Employee Zipcode -> Employee City

 Also, Employee Zipcode is not a super key and Employee City is not a prime attribute.

 To remove transitive dependency from this table and normalize it into the third normal form,

we can decompose the <EmployeeDetail> table into the following two tables:

<EmployeeDetail>

Employee Code Employee Name Employee Zipcode

101 Yogesh 575001

101 Yogesh 560002

102 Vinay 570001

103 Sandeep 580020

<EmployeeLocation>

Employee Zipcode Employee City

575001 Mangalore

560002 Bangalore

570001 Mysore

580020 Hubli

Thus, we’ve converted the <EmployeeDetail> table into 3NF by decomposing it into

<EmployeeDetail> and <EmployeeLocation> tables as they are in 2NF and they don’t have any

transitive dependency.

The 2NF and 3NF impose some extra conditions on dependencies on candidate keys and remove

redundancy caused by that. However, there may still exist some dependencies that cause redundancy

in the database. These redundancies are removed by a more strict normal form known as BCNF.

Boyce–Codd Normal Form (BCNF)

Boyce-Codd Normal Form is an advanced version of 3NF as it contains additional constraints

compared to 3NF.

For a relational table to be in Boyce-Codd normal form, it must satisfy the following rules:

1. The table must be in the third normal form.

2. For every non-trivial functional dependency X -> Y, X is the superkey of the table. That means

X cannot be a non-prime attribute if Y is a prime attribute.

A superkey is a set of one or more attributes that can uniquely identify a row in a database table.Let us

DBMS Laboratory with mini Project 21CSL55

Dept. of CSE, ATMECE, Mysore Page 27

take an example of the following <EmployeeProjectLead> table to understand how to normalize the

table to the BCNF

<EmployeeProjectLead>

Employee Code Project ID Project Leader

101 P03 Gopalkrishna

101 P01 Chethan

102 P04 Hemanth

103 P02 Yashwanth

The above table satisfies all the normal forms till 3NF, but it violates the rules of BCNF because the

candidate key of the above table is {Employee Code, Project ID}.

For the non-trivial functional dependency, Project Leader -> Project ID, Project ID is a prime attribute

but Project Leader is a non-prime attribute. This is not allowed in BCNF.

To convert the given table into BCNF, we decompose it into three tables:

<EmployeeProject>

Employee Code Project ID

101 P03

101 P01

102 P04

103 P02

<ProjectLead>

Project Leader Project ID

Gopalkrishna P03

Chethan P01

Hemanth P04

Yashwanth P02

Thus, we’ve converted the <EmployeeProjectLead> table into BCNF by decomposing it into

<EmployeeProject> and <ProjectLead> tables.

DBMS Laboratory with mini Project 21CSL55

Dept. of CSE, ATMECE, Mysore Page 28

ACID Properties in DBMS

DBMS is the management of data that should remain integrated when any changes are done in it. It is

because if the integrity of the data is affected, whole data will get disturbed and corrupted. Therefore,

to maintain the integrity of the data, there are four properties described in the database management

system, which are known as the ACID properties.

The ACID properties are meant for the transaction that goes through a different group of tasks, and

there we come to see the role of the ACID properties.

In this section, we will learn and understand about the ACID properties. We will learn what these

properties stand for and what does each property is used for. We will also understand the ACID

properties with the help of some examples.

ACID Properties

The expansion of the term ACID defines for:

1)Atomicity: The term atomicity defines that the data remains atomic. It means if any operation is

performed on the data, either it should be performed or executed completely or should not be executed

at all. It further means that the operation should not break in between or execute partially. In the case

of executing operations on the transaction, the operation should be completely executed and not

partially.

Example: If Yogesh has account A having $30 in his account from which he wishes to send $10 to

Vinay's account, which is B. In account B, a sum of $ 100 is already present. When $10 will be

transferred to account B, the sum will become $110. Now, there will be two operations that will take

place. One is the amount of $10 that Yogesh wants to transfer will be debited from his account A, and

the same amount will get credited to account B, i.e., into Vinay's account. Now, what happens - the

first operation of debit executes successfully, but the credit operation, however, fails. Thus, in Yogesh

account A, the value becomes $20, and to that of Vinay's account, it remains $ 100 as it was

previously present.

ACID PROPERTIES

ATOMICITY CONSISTENCY ISOLATION DURABILITY

DBMS Laboratory with mini Project 21CSL55

Dept. of CSE, ATMECE, Mysore Page 29

In the above diagram, it can be seen that after crediting $10, the amount is still $100 in account B. So,

it is not an atomic transaction.

The below diagram shows that both debit and credit operations are done successfully. Thus the

transaction is atomic.

Thus, when the amount loses atomicity, then in the bank systems, this becomes a huge issue, and so

the atomicity is the main focus in the bank systems.

DBMS Laboratory with mini Project 21CSL55

Dept. of CSE, ATMECE, Mysore Page 30

2)Consistency: The word consistency means that the value should remain preserved always.

In DBMS, the integrity of the data should be maintained, which means if a change in the database is

made, it should remain preserved always. In the case of transactions, the integrity of the data is very

essential so that the database remains consistent before and after the transaction. The data should

always be correct.

Example:

In the above figure, there are three accounts, A, B, and C, where A is making a transaction T one by

one to both B & C. There are two operations that take place, i.e., Debit and Credit. Account A firstly

debits $50 to account B, and the amount in account A is read $300 by B before the transaction. After

the successful transaction T, the available amount in B becomes $150. Now, A debits $20 to account

C, and that time, the value read by C is $250 (that is correct as a debit of $50 has been successfully

done to B). The debit and credit operation from account A to C has been done successfully. We can

see that the transaction is done successfully, and the value is also read correctly. Thus, the data is

consistent. In case the value read by B and C is $300, which means that data is inconsistent because

when the debit operation executes, it will not be consistent.

4)Isolation: The term 'isolation' means separation. In DBMS, Isolation is the property of a database

where no data should affect the other one and may occur concurrently. In short, the operation on one

database should begin when the operation on the first database gets complete. It means if two

operations are being performed on two different databases, they may not affect the value of one

another. In the case of transactions, when two or more transactions occur simultaneously, the

consistency should remain maintained. Any changes that occur in any particular transaction will not be

seen by other transactions until the change is not committed in the memory.

https://www.javatpoint.com/dbms-tutorial

DBMS Laboratory with mini Project 21CSL55

Dept. of CSE, ATMECE, Mysore Page 31

Example: If two operations are concurrently running on two different accounts, then the value of both

accounts should not get affected. The value should remain persistent. As you can see in the below

diagram, account A is making T1 and T2 transactions to account B and C, but both are executing

independently without affecting each other. It is known as Isolation.

4) Durability: Durability ensures the permanency of something. In DBMS, the term durability ensures

that the data after the successful execution of the operation becomes permanent in the database. The

durability of the data should be so perfect that even if the system fails or leads to a crash, the database

still survives. However, if gets lost, it becomes the responsibility of the recovery manager for ensuring

the durability of the database. For committing the values, the COMMIT command must be used every

time we make changes.

Therefore, the ACID property of DBMS plays a vital role in maintaining the consistency and

availability of data in the database.

Thus, it was a precise introduction of ACID properties in DBMS. We have discussed these properties

in the transaction section also.

DBMS Laboratory with mini Project 21CSL55

Dept. of CSE, ATMECE, Mysore Page 32

INTRODUCTION TO OPERATORS IN MYSQL
An operator is a reserved word or a character used primarily in an SQL statement's WHERE

clause to perform operation(s), such as comparisons and arithmetic operations.TheseOperators

are used to specify conditions in an SQL statement and to serve as conjunctions for multiple

conditions in a statement.Different type of operators are as follows

 Arithmetic operators

 Comparison operators

 Logical operators

 Operators used to negate conditions

1.Arithmetic Operators
In MySQL, arithmetic operators are used to perform the arithmetic operations as described below.

Operator Description Example

+ Addition of two operands a + b

–
Subtraction of right operand from

the left operand

a – b

* Multiplication of two operands a * b

/ Division of left operand by the

right operand

a / b

% Modulus – the remainder of the

division of left operand by the right

a % b

The following are a few examples of operations, using Arithmetic Operators.

Let us assume certain values for the below variables as

a = 10 , b = 5

a + b will give the result as 15.

a – b will give the result as 5.

a * b will give the result as 50.

a / b will give the result as 2.

a % b will give the result as 0.

DBMS Laboratory with mini Project 21CSL55

Dept. of CSE, ATMECE, Mysore Page 33

Examples of Arithmetic Operators

SELECT 150 +250;

Output

400

SELECT 145 - 75;

Output

70

SELECT 17 * 5;

Output

85

SELECT 49 / 7;

Output

7.0000

SELECT 21 % 5;

Output

1

2.Comparison Operators

The comparison operators in MySql are used to compare values between operands and

return true or false according to the condition specified in the statement.

Operator Description Example

>

If the value of left operand is greater

than that of the value of the right

operand, the condition becomes true;

if not then false.

a > b

<

If the value of left operand is less

than that of a value of the right

operand, the condition becomes true;

if not then false.

a < b

= If both the operands have equal value,

the condition becomes true; if not
a == b

DBMS Laboratory with mini Project 21CSL55

Dept. of CSE, ATMECE, Mysore Page 34

then false.

/ !=

If both the operands do not have

equal value, the condition becomes

true; if not then false.

a != y

>=

If the value of left operand is greater

than or equal to the right operand, the

condition becomes true; if not then

false.

a >= b

<=

If the value of left operand is less

than or equal to the right operand, the

condition becomes true; if not then

false.

a <= b

!<

If the value of left operand is not less

than the value of right operand, the

condition becomes true; if not then

false.

a !< b

!>

If the value of left operand is not

greater than the value of right

operand, the condition becomes true;

if not then false.

a !> b

<>

If the values of two operands are not

equal, the condition becomes true; if

not then false.

a <> b

3. Logical Operators

The logical operators used in MySQL are shown below.

Operator Description

BETWEEN

It is used to search within a set of values, by the minimum value and maximum

value provided.

EXISTS
It is used to search for the presence of a row in a table which satisfies a certain

condition specified in the query.

OR
It is used to combine multiple conditions in a statement by using the WHERE

clause.

AND
It allows the existence of multiple conditions in an SQL statement’s WHERE

clause.

NOT
It reverses the meaning of the logical operator with which it is used. (Examples:

NOT EXISTS, NOT BETWEEN, NOT IN, etc.)

DBMS Laboratory with mini Project 21CSL55

Dept. of CSE, ATMECE, Mysore Page 35

IN

It is used to compare a value in a list of literal values.

ALL

It compares a value to all values in another set of values.

ANY It compares a value to any value in the list according to the condition specified.

LIKE It uses wildcard operators to compare a value to similar values.

IS NULL It compares a value with a NULL value.

UNIQUE

It searches for every row of a specified table for uniqueness (no duplicates).

Let us take an example of CUSTOMERtable as shown below to understand how to use the comparison

operators as stated above while performing MySQL queries.

Pre-RequisiteData:

CUSTOMERTABLE

ID NAME AGE ADDRESS SALARY

1 Anand 25 Bangalore 30000.00

2 Sandeep 27 Hubli 55000.00

3 Sharath 26 Bangalore 60000.00

4 Manohar 31 Mangalore 32000.00

5 Hemanth 29 Shimoga 40000.00

6 Nithin 30 Belgaum 75000.00

7 Nishant 32 Mysore 20000.00

8 Deepak 32 Mysore 25000.00

9 Bharath 39 Mysore 85000.00

 Below is script for creating table CUSTOMER

CREATE TABLE CUSTOMER

 (

ID INT PRIMARY KEY,

NAME VARCHAR(200),

AGE INT NOT NULL,

ADDRESS VARCHAR(200),

SALARY DECIMAL(15,2)

);

https://www.educba.com/mysql-queries/

DBMS Laboratory with mini Project 21CSL55

Dept. of CSE, ATMECE, Mysore Page 36

Below is script for Inserting values into CUSTOMER Table

Insert into Customer values (1,"Anand", 25,"Bangalore", 30000.00);

Insert into Customer values(2, "Sandeep", 27,"Hubli", 55000.00);

Insert into Customer values(3, "Sharath", 26,"Bangalore", 60000.00);

Insert into Customer values(4, "Manohar", 31,"Mangalore", 32000.00);

Insert into Customer values(5, 'Hemanth', 29,'Shimoga', 40000.00);

Insert into Customer values(6, 'Nithin', 30,'Belgaum', 75000.00);

Insert into Customer values(7, "Nishant", 32,"Mysore",20000.00);

Insert into Customer values(8, "Deepak", 32,"Mysore",25000.00);

Insert into Customer values(9, "Bharath", 39,"Mysore",85000.00);

Below is the screen shot showing contents of customer table.

Let us use the different comparison operators to query the CUSTOMER table as shown below.

Queries:

Q1.Writeaquerytofindthesalaryofapersonwhereageis less than or equal to 26and salary greater

than or equal 25000fromCustomer table

SELECT *FROMCUSTOMER WHERE AGE <=26ANDSALARY>=25000;

Output:

Q2. Write a query to find the salary of a person where age is less than or equal to 26 or salary

greater than or equal to 33000 from customer table.

SELECT *FROMCUSTOMER WHERE AGE <=26orSALARY>=33000;

Output:

DBMS Laboratory with mini Project 21CSL55

Dept. of CSE, ATMECE, Mysore Page 37

Q3.Write a query to find the name of customer whose name start with n(using pattern

matching)

SELECT * FROM CUSTOMER WHERE NAME LIKE 'n%';

Output:

Q4.Write a query to find the name of customer ending with th(using pattern matching)

SELECT * FROMCUSTOMER WHERE NAME LIKE '%th';

Output:

Q5. Write a query to find the customer details using “IN” operator where age can be 25 and 27.

SELECT*FROMCUSTOMER WHEREAGEIN (25,27);

Output:

DBMS Laboratory with mini Project 21CSL55

Dept. of CSE, ATMECE, Mysore Page 38

Q6. Write a query to find the customer details using “between ” operator where age is between

25 and 27

SELECT*FROMCUSTOMER WHEREAGEBETWEEN25AND27;

Output:

Q7. Write a query to find the customer details where age is not null

SELECT * FROMCUSTOMER WHERE AGE IS NOT NULL;

Output:

DBMS Laboratory with mini Project 21CSL55

Dept. of CSE, ATMECE, Mysore Page 39

MySQL Aggregate Functions
An SQL group function or aggregate functions performs an operation on a group ofrows and

returns a single result. You may want retrieve group of item-prices and return total-price. This

type of scenario is where you would use a group functions.

Syntax:

The following are the syntax to use aggregate functions in MySQL:

function_name (DISTINCT | ALL expression)

In the above syntax, we had used the following parameters:

 First, we need to specify the name of the aggregate function.

 Second, we use the DISTINCT modifier when we want to calculate the result based on distinct
values or ALL modifiers when we calculate all values, including duplicates.

 The default is ALL.

 Third, we need to specify the expression that involves columns and arithmetic operators.
 There are various aggregate functions available in MySQL.

 Some of the most commonly used aggregate functions are summarised in the below table:;

Count():

Count(*): Returns total number of records .

Count(salary): Return number of Non Null values over the column salary.
Count(Distinct Salary): Return number of distinct Non Null values over the column salary

Sum():

sum(salary): Sum all Non Null values of Column salary

sum(Distinct salary): Sum of all distinct Non-Null values

Avg():

Avg(salary) = Sum(salary) / count(salary) = 310/5

Avg(Distinct salary) = sum(Distinct salary) / Count(Distinct Salary)

Min() and Max():

Min(salary): Minimum value in the salary column except NULL
Max(salary): Maximum value in the salary

The following table issummaryofsomeSQLgroupfunction&queryexamples.

Function Description QueryExample

AVG(fieldname) Returns average value of a
column

SELECT AVG(salary) FROM
CUSTOMER;

COUNT(fieldname) Returnsnumberof itemsinTable
orquerieditems

SELECT COUNT (salary) FROM
CUSTOMER;

MAX(fieldname) Returns maximum value
ofColumn

SELECT MAX (salary) FROM
 CUSTOMER;

MIN(fieldname) Returns minimum value of
Column

SELECT MIN (salary) FROM
CUSTOMER;

SUM(fieldname) Returnstotalvalue ofColumn SELECT SUM (salary) FROM
CUSTOMER;

DBMS Laboratory with mini Project 21CSL55

Dept. of CSE, ATMECE, Mysore Page 40

Below are Sample queries uwhic uses Aggregate function

Q1. Write a query to find the average salary of employees in customer table

SELECT AVG(salary) FROM CUSTOMER;

Output:

Q2. Write a query to find the number of employees in customer table

SELECT COUNT(ID) FROM CUSTOMER;

Output:

Q3 Write a query to find the maximum salary of employees in customer table

SELECT MAX(salary) FROM CUSTOMER;

Output:

Q4. Write a query to find the minimum salary of employees in customer table

SELECT MIN(salary) FROM CUSTOMER;

Output:

Q5. Write a query to find the sum of salary of all employees in customer table

SELECT SUM (salary)FROM CUSTOMER;

DBMS Laboratory with mini Project 21CSL55

Dept. of CSE, ATMECE, Mysore Page 41

Output

GROUP BY Clause

The MYSQL GROUP BY Clause is used to collect data from multiple records and group the

result by one or more column. It is generally used in a SELECT statement.

You can also use some aggregate functions like COUNT, SUM, MIN, MAX, AVG etc. on the

grouped column.

SQL GROUP BY Syntax

Now that we know what the SQL GROUP BY clause is, let’s look at the syntax for a basic

group by query.

SELECT statements... GROUP BY column_name1[,column_name2,...] [HAVING condition];

HERE

 “SELECT statements…” is the standard SQL SELECT command query.

 “GROUP BY column_name1” is the clause that performs the grouping based on

column_name1.

 “[,column_name2,…]” is optional; represents other column names when the grouping is done

on more than one column.

 “[HAVING condition]” is optional; it is used to restrict the rows affected by the GROUP BY

clause. It is similar to the WHERE clause.

Pre-RequisiteData:

employeesTABLE

emp_id emp_name emp_age city salary

101 Hemanth 32 Mysore 20000.00

102 Mohan 32 Belgaum 30000.00

103 Deepak 40 Mangalore 100000.00

104 Nitin 35 Bangalore 40000.00

105 Sandeep 32 Mangalore 50000.00

106 Yogesh 45 Mysore 70000.00

107 Rohit 35 Bangalore 60000.00

108 Bharath 40 Hubli 80000.00

DBMS Laboratory with mini Project 21CSL55

Dept. of CSE, ATMECE, Mysore Page 42

Below is script for creating table employees

create table employees

(

emp_id int primary key,

emp_name varchar(200),

emp_age int ,

city varchar(200).

salary decimal(15,2)

);

Below is script for Inserting values into CUSTOMER Table

Insert into employees values(101,'Hemanth',32,'Mysore',20000);

Insert into employees values(102,'Mohan',32,'Belgaum',30000);

Insert into employees values(103,'Deepak',40,'Mangalore',100000)

Insert into employees values(104,'Nitin',35,'Bangalore',40000)

Insert into employees values(105,'Sandeep',32,'Mangalore',50000);

Insert into employees values(106,'Yogesh',45,'Mysore',70000)

Insert into employees values(107,'Rohit',35,'Bangalore',60000)

Insert into employees values(108,'Bharath',40,'Hubli',80000);

Below is the screen shot showing contents of employees table.

MySQL Count() Function with GROUP BY Clause

We can also use the count() function with the GROUP BY clause that returns the count of the

element in each group. For example, the following statement returns the number of employee

staying in each city:

SELECT city, COUNT(*) FROM employees GROUP BY city;

After the successful execution, we will get the result as below:

DBMS Laboratory with mini Project 21CSL55

Dept. of CSE, ATMECE, Mysore Page 43

MySQLCount()FunctionwithHAVINGandORDERBYClause

Letussee anotherclausethatuses ORDERBY andHavingclausewith thecount()function.Execute the

following statement that gives the employee age who has at least two agesameand sortsthem

basedonthecountresult:

SELECT emp_age,COUNT(*) FROM employees GROUP BY emp_age having

count(*)>1 order by count(*);

After the successful execution, we will get the result as below:

MySQL sum() Function with GROUP BY Clause

We can also use the sum () function with the GROUP BY clause that returns the sum of the

element in each group. For example, the following statement returns the sumof salary of

employees in each city:

SELECT city, sum(salary) FROM employees GROUP BY city

After the successful execution, we will get the result as below

MySQLsum()FunctionwithHAVINGandORDERBYClause

Letussee anotherclausethatuses ORDERBY andHavingclausewith thesum()unction.Execute the

following statement that gives the sum of salary who has at least two city and sum of salary should be

greaten or equal to 100000 annd sortsthem basedonthesalary

SELECT city, sum(salary) FROM employees GROUP BY city having sum(salary)

>=100000 ;

DBMS Laboratory with mini Project 21CSL55

Dept. of CSE, ATMECE, Mysore Page 44

After the successful execution, we will get the result as below:

In Above Ouput ,salary can sorted in descending order by salary using order by clause

Select city,sum(salary) from employee group by city having sum(salary)>=100000

Order by sum(salary) desc;

DBMS Laboratory with mini Project 21CSL55

Dept. of CSE, ATMECE, Mysore Page 45

INTRODUCTION TO JOINS

 Joins help retrieving data from two or more database tables.

 A JOIN clause is used to combine rows from two or more tables, based on a related column

between them.

 Join establishes temporarily relationship between two or more tables.The tables are mutually

related using primary and foreign keys.

CREATE TABLE MOVIESs (

MOVIE_ID INT (5) PRIMARY KEY,MOVIE_NAME VARCHAR(50));

CREATE TABLE ACTORS(ACTOR_ID INT(5) PRIMARY KEY,ACTOR_NAME

VARCHAR(50),MOVIE_ID INT(5),FOREIGN KEY(MOVIE_ID) REFERENCES

MOVIES(MOVIE_ID));

 HERE IS INSERT SCRIPTS FOR BOTH TABLES MOVIES AS WELL AS ACTORS

INSERT INTO MOVIES VALUES(1000,'SHOLAY');

INSERT INTO MOVIES VALUES(1001,'ITTEFAQ');

INSERT INTO MOVIES VALUES(1002,'TEESRI MANZIL');

INSERT INTO MOVIES VALUES(1003,'JEWEL THIEF ');

INSERT INTO MOVIES VALUES(1004,'CARAVAN');

INSERT INTO MOVIES VALUES(1005,' GUMNAAM');

INSERT INTO ACTORS VALUES(1,'AMITABH BACHCHAN',1000);

INSERT INTO ACTORS VALUES(2,'RAJESH KHANNA',1001);

INSERT INTO ACTORS VALUES(3,'SHAMI KAPOOR',1002);

INSERT INTO ACTORS VALUES(4,'DEV ANAND',1003);

INSERT INTO ACTORS VALUES(5,'NULL',1004);

SELECT * FROM MOVIES;

MOVIE_ID MOVIE_NAME

1000 SHOLAY

1001 ITTEFAQ

1002 TEESRI MANZIL

1003 JEWEL THIEF

1004 CARAVAN

1005 GUMNAAM

DBMS Laboratory with mini Project 21CSL55

Dept. of CSE, ATMECE, Mysore Page 46

SELECT * FROM ACTORS;

ACTOR_ID ACTOR_NAME MOVIE_ID

1 AMITABH BACHCHAN 1000

2 RAJESH KHANNA 1001

3 SHAMI KAPOOR 1002

4 DEV ANAND 1003

5 NULL 1004

Types of JOINS

Cross JOIN

Cross JOIN is a simplest form of JOINs which matches each row from one database table to all

rows of another.

In other words it gives us combinations of each row of first table with all records in second

table.

Select * FROM TableA CROSS JOIN TableB;

//OR//

Select * FROM Table1 A1,Table1 A2;

SELECT * FROM MOVIES CROSS JOIN ACTORS;

Executing the above script in MySQL workbench gives us the following results.

MOVIE_ID MOVIE_NAME ACTOR_ID ACTOR_NAME MOVIE_ID

1000 SHOLAY 1 AMITABH BACHCHAN 1000

1000 SHOLAY 2 RAJESH KHANNA 1001

1000 SHOLAY 3 SHAMI KAPOOR 1002

1000 SHOLAY 4 DEV ANAND 1003

1000 SHOLAY 5 NULL 1004

1001 ITTEFAQ 1 AMITABH BACHCHAN 1000

1001 ITTEFAQ 2 RAJESH KHANNA 1001

1001 ITTEFAQ 3 SHAMI KAPOOR 1002

1001 ITTEFAQ 4 DEV ANAND 1003

1001 ITTEFAQ 5 NULL 1004

1002 TEESRI MANZIL 1 AMITABH BACHCHAN 1000

1002 TEESRI MANZIL 2 RAJESH KHANNA 1001

1002 TEESRI MANZIL 3 SHAMI KAPOOR 1002

1002 TEESRI MANZIL 4 DEV ANAND 1003

DBMS Laboratory with mini Project 21CSL55

Dept. of CSE, ATMECE, Mysore Page 47

1002 TEESRI MANZIL 5 NULL 1004

1003 JEWEL THIEF 1 AMITABH BACHCHAN 1000

1003 JEWEL THIEF 2 RAJESH KHANNA 1001

1003 JEWEL THIEF 3 SHAMI KAPOOR 1002

1003 JEWEL THIEF 4 DEV ANAND 1003

1003 JEWEL THIEF 5 NULL 1004

1004 CARAVAN 1 AMITABH BACHCHAN 1000

1004 CARAVAN 2 RAJESH KHANNA 1001

1004 CARAVAN 3 SHAMI KAPOOR 1002

1004 CARAVAN 4 DEV ANAND 1003

1004 CARAVAN 5 NULL 1004

1005 GUMNAAM 1 AMITABH BACHCHAN 1000

1005 GUMNAAM 2 RAJESH KHANNA 1001

1005 GUMNAAM 3 SHAMI KAPOOR 1002

1005 GUMNAAM 4 DEV ANAND 1003

1005 GUMNAAM 5 NULL 1004

INNER JOIN

Technically, Join made by using equality-operator (=) to compare values of PrimaryKey of one

table and Foriegn Key values of antoher table, hence result set includes common(matched)

records from both tables

The inner JOIN is used to return rows from both tables that satisfy the given condition.

SELECT * FROM Table1 A INNER JOIN Table2 B ONA.<PrimaryKey>=B.<ForeignKey>;

SELECT MOVIE_NAME, ACTOR_NAME,ACTOR_ID FROM MOVIES M INNER JOIN

ACTORS A ON M.MOVIE_ID=A.MOVIE_ID;

Executing the above script in MySQL workbench gives us the following resut

MOVIE_NAME ACTOR_NAME ACTOR_ID

SHOLAY AMITABH BACHCHAN 1

ITTEFAQ RAJESH KHANNA 2

TEESRI MANZIL SHAMI KAPOOR 3

JEWEL THIEF

DEV ANAND

4

CARAVAN NULL 5

DBMS Laboratory with mini Project 21CSL55

Dept. of CSE, ATMECE, Mysore Page 48

INNER JOIN CONSISTING OF WHERE CONDITION AND ACTOR NAME SHOULD

NOT BE NULL

SELECT MOVIE_NAME, ACTOR_NAME,ACTOR_ID FROM MOVIES M INNER JOIN

ACTORS AON M.MOVIE_ID=A.MOVIE_ID WHERE ACTOR_NAME!='NULL';

OR

SELECT MOVIE_NAME, ACTOR_NAME,ACTOR_ID FROM MOVIES M INNER JOIN

ACTORS AON M.MOVIE_ID=A.MOVIE_ID WHERE ACTOR_NAME<>'NULL';

Executing the above script in MySQL workbench gives us the following results.

MOVIE_NAME ACTOR_NAME ACTOR_ID

SHOLAY AMITABH BACHCHAN 1

ITTEFAQ RAJESH KHANNA 2

TEESRI MANZIL SHAMI KAPOOR 3

JEWEL THIEF DEV ANAND 4

INNER JOIN CONSISTING OF WHERE CONDITION AND ACTOR NAME FIELDS ARE

HAVING NULL VALUE

SELECT MOVIE_NAME, ACTOR_NAME,ACTOR_ID FROM MOVIES M INNER JOIN

ACTORS A ON M.MOVIE_ID=A.MOVIE_ID WHERE ACTOR_NAME='NULL';

Executing the above script in MySQL workbench gives us the following results.

MOVIE_NAME ACTOR_NAME ACTOR_ID

CARAVAN NULL 5

OUTER-JOIN

A full outer join, or full join, which is not supported by the popular MySQL database management

system, However, can customized selection of un-matched rows e.g, selecting unmatched row from

first table or second table by sub-types: LEFT OUTER JOIN and RIGHT OUTER JOIN.

It can detect records having no match in joined table. It retuns NULL values for records of joined

table if no match is found.

LEFT JOIN

The LEFT JOIN retuns all the rows from the table on the left even if no matching rows have been

found in the table on the right. Where no matches have been found in the table on the right, NULL

is returned.

Select * FROM Table1 A LEFT OUTER JOIN Table2 B On A.<PrimaryKey>=B.<ForeignKey>;

SELECT MOVIE_NAME, ACTOR_NAME,ACTOR_ID FROM MOVIES M LEFT

OUTER JOIN ACTORS A ON M.MOVIE_ID=A.MOVIE_ID;

https://en.wikipedia.org/wiki/MySQL

DBMS Laboratory with mini Project 21CSL55

Dept. of CSE, ATMECE, Mysore Page 49

Executing the above script in MySQL workbench gives beloew result.You can see that in the

returned result which is listed below that for movies which do not have a actor, actor name fields

are having NULL values. That means no matching member found actor table for that particular

movie.

MOVIE_NAME ACTOR_NAME ACTOR_ID

SHOLAY AMITABH BACHCHAN 1

ITTEFAQ RAJESH KHANNA 2

TEESRI MANZIL SHAMI KAPOOR 3

JEWEL THIEF DEV ANAND 4

CARAVAN NULL 5

GUMNAAM NULL NULL

RIGHT JOIN

RIGHT JOIN is obviously the opposite of LEFT JOIN. The RIGHT JOIN retuns all the columns

from the table on the right even if no matching rows have been found in the table on the left.

Where no matches have been found in the table on the left, NULL is returned.

Select * FROM Table1 A RIGHT OUTER JOIN Table2 B on A.<PrimaryKey>=B.<ForeignKey>;

SELECT MOVIE_NAME, ACTOR_NAME,ACTOR_ID FROM MOVIES M RIGHT

OUTER JOIN ACTORS A ON M.MOVIE_ID=A.MOVIE_ID;

Executing the above script in MySQL workbench gives the following results.

MOVIE_NAME ACTOR_NAME ACTOR_ID

SHOLAY AMITABH BACHCHAN 1

ITTEFAQ RAJESH KHANNA 2

TEESRI MANZIL SHAMI KAPOOR 3

JEWEL THIEF DEV ANAND 4

CARAVAN NULL 5

DBMS Laboratory with mini Project 21CSL55

Dept. of CSE, ATMECE, Mysore Page 50

INTRODUCTION TO SUBQUERY

 A subquery is a query within another query. The outer query is called as main query and inner

query is called as subquery.

 Subqueries are nested queries that provide data to the enclosing query.

 Subquery must be enclosed in parentheses.

 Subqueries can return individual values or a list of records

 You can place the Subquery in a number of SQL clauses: WHERE clause, HAVING clause,

FROM clause.

 Subqueries can be used with SELECT, UPDATE, INSERT, DELETE statements along with

expression operator. It could be equality operator or comparison operator such as =, >, =, <=

and Like operator.

 The subquery generally executes first, and its output is used to complete the query condition

for the main or outer query.

 Subqueries are on the right side of the comparison operator.

 ORDER BY command cannot be used in a Subquery. GROUPBY command can be used to

perform same function as ORDER BY command.

 Use single-row operators with singlerow Subqueries. Use multiple-row operators with

multiple-row Subqueries.

Syntax:

 There is not any general syntax for Subqueries. However, Subqueries are seen to be used most

frequently with SELECT statement as shown below:

SELECT column_name FROM table_name WHERE column_name expression operator

 (SELECT COLUMN_NAME from TABLE_NAME WHERE ...);

 Below is sample table StudentDetails and StudentSection we have created to demonstrate

 working of subquesry

create tab StudentDetails

(

Student_ID int primary key

NAME varchar(100),

ROLL_NO int,

LOCATION varchar(100),

PHONE_NUMBER bigint

);

https://www.geeksforgeeks.org/sql-where-clause/
https://www.geeksforgeeks.org/having-vs-where-clause/
https://www.geeksforgeeks.org/sql-order-by/
https://www.geeksforgeeks.org/sql-group-by/

DBMS Laboratory with mini Project 21CSL55

Dept. of CSE, ATMECE, Mysore Page 51

create table StudentSection

(

NAME varchar(100),

ROLL_NO int,

Section char(1)

);

Below is sample insert scripts for inserting information into StudentDetails

insert into StudentDetails values(1000,'Hemanth',101,'Mysore',9845113337);

insert into StudentDetails values(2000,'Nitin',102,'Banglore',8877665544);

insert into StudentDetails values(3000,'Sandeep',103,'Kodagu',9538945623);

insert into StudentDetails values(4000,'Sashank Hegde',104,'Udupi',8989898989);

insert into StudentDetails values(5000,'Nagendra',105,'Banglore',9901478945);

Below is sample insert scripts for inserting information into StudentSection

insert into StudentSection values('Sashank Hegde',104,'A');

insert into StudentSection values('Nagendra',105,'B');

insert into StudentSection values('Nitin',102,'A');

insert into StudentSection values('Hemanth',101,'B');

select * from StudentDetails

select * from StudentSection

DBMS Laboratory with mini Project 21CSL55

Dept. of CSE, ATMECE, Mysore Page 52

Query1: To display NAME, LOCATION, PHONE_NUMBER of the StudentDetails table whose

section is A

Select NAME,LOCATION,PHONE_NUMBER from StudentDetails WHERE ROLL_NO

IN(SELECT ROLL_NO from StudentSection where SECTION='A');

Explanation : First subquery executes “ SELECT ROLL_NO from STUDENT where

SECTION=’A’” returns ROLL_NO from STUDENT table whose SECTION is ‘A’.Then outer-

query executes it and return the NAME, LOCATION, PHONE_NUMBER from the DATABASE

table of the student whose ROLL_NO is returned from inner subquery.

Below is snapshot of output of above exceuted subquery

Query2: To update name from StudentDetails table whose rollno is same as that in

StudentSection table and having name as Nitin by Using subquery

UPDATE StudentDetails SET NAME=’Nitin Jain’

WHERE ROLL_NO IN(SELECT ROLL_NOFROM StudentSection where NAME=’Nitin’);

DBMS Laboratory with mini Project 21CSL55

Dept. of CSE, ATMECE, Mysore Page 53

Query3: To delete students from Student2 table whose rollno is same as that in Student1 table

and having location as chennai

DELETE FROM StudentDetailsWHERE ROLL_NO IN (SELECT ROLL_NO

FROM StudentSection WHERE NAME =’Nagendra’);

Join vs. Subquery

 JOINs are faster than a subquery and it is very rare that the opposite.

 In JOINs the RDBMS calculates an execution plan, that can predict, what data should be

loaded and how much it will take to processed and as a result this process save some times,

unlike the subquery there is no pre-process calculation and run all the queries and load all their

data to do the processing.

 A JOIN is checked conditions first and then put it into table and displays; where as a subquery

take separate temp table internally and checking condition.

 When joins are using, there should be connection between two or more than two tables and

each table has a relation with other while subquery means query inside another query, has no

need to relation, it works on columns and conditions

DBMS Laboratory with mini Project 21CSL55

Dept. of CSE, ATMECE, Mysore Page 54

 VIEWS IN SQL

 A view is a single virtual tablethat is derived from other tables. The other tables could be

base tables or previously definedview.

 Allows for limited update operations Since the table may not physically bestored

 Allows full queryoperations

 A convenience for expressing certainoperations

 A view does not necessarily exist in physical form, which limits the possible update

operations that can be applied toviews.

Views syntax

Let's now look at the basic syntax used to create a view in MySQL.

 CREATE VIEW `view_name` AS SELECT statement;

WHERE

 "CREATE VIEW “view_name" tells MySQL server to create a view object in the

database

 "AS SELECT statement" is the SQL statements to be packed in the views. It can be a

SELECT statement can contain data from one table or multiple tables.

Example1-Simple View consisting of only one tables

CREATE VIEW VW_BOOKDETAILS AS SELECT BOOK_NAME, BOOK_AUTHOR,

PUBLISHER FROM BOOK_DETAILS;

Example of Simple Viewconsisting of two tables and using where condition

CREATE VIEW VW_ORDERS AS SELECT BOOK_NAME, BOOK_AUTHOR,

PUBLISHER FROM ORDERS A, BOOK_DETAILS B WHERE

A.ORDER_ID=B.ORDER_ID;

Example of View consisting of inner join

CREATE VIEW VW_BOOK1 AS SELECT A.ORDER_ID, ORDER_DATE, BOOK_NAME,

BOOK_AUTHOR, PUBLISHER FROM ORDERS A INNER JOIN BOOK_DETAILS B ON

A.ORDER_ID=B.ORDER_ID;

Example of View consisting of inner join and where condition

CREATE VIEW VW_BOOK2 AS SELECT A.ORDER_ID, ORDER_DATE,BOOK_NAME,

BOOK_AUTHOR, PUBLISHER FROM ORDERS A INNER JOIN BOOK_DETAILS B ON

A.ORDER_ID=B.ORDER_IDID AND PUBLISHER='Tata McGraw-Hill'

SELECT * FROM VW_BOOKDETAILS

SELECT * FROM VW_ORDERS

SELECT * FROM VW_BOOK1

SELECT * FROM VW_BOOK2

DBMS Laboratory with mini Project 21CSL55

Dept. of CSE, ATMECE, Mysore Page 55

 SHOW TABLES

Tables_in_naveen

VW_BOOKDETAILS

VW_ORDERS

VW_BOOK1

VW_BOOK2

Example2-Simple View

CREATE VIEW VW_PUBLICATION AS SELECT PUB_YEAR FROM BOOK;

SELECT * FROM VW _PUBLICATION

DROPING VIEWS

The DROP command can be used to delete a view from the database that is no longer required.

The basic syntax to drop a view is as follows.

DROP VIEW VIEWNAME;

DROP VIEW V_PUBLICATION;

You may want to use views primarily for following 3 reasons

 Ultimately , you will use your SQL knowledge , to create applications , which will use a

database for datarequirements. It's recommended that you use VIEWS of the original table

structure in your application instead of using the tables themselves. This ensures that when you

refactor your DB, your legacy code will see the orignal schema via the view without breaking

the application.

 VIEWS increase re-usability. You will not have to create complex queries involving joins

repeatedly. All the complexity is converted into a single line of query use VIEWS. Such

condensed code will be easier to integrate in your application. This will eliminates chances of

typos and your code will be more readable.

 VIEWS help in data security. You can use views to show only authorized information to

users and hidesensitive data like credit card numbers, pass

DBMS Laboratory with mini Project 21CSL55

Dept. of CSE, ATMECE, Mysore Page 56

INTRODUCTION TO STORED PROCEDURES
 A stored procedure is a prepared SQL code that you can save, so the code can be reused over and

over again.So if you have an SQL query that you write over and over again, save it as a stored

procedure, and then just call it to execute it.

 You can also pass parameters to a stored procedure, so that the stored procedure can act based on

the parameter value(s) that is passed.

 A procedure can return one or more than one value through parameters or may not return at all.

The procedure can be used in SQL queries.

Creating a procedure

Syntax

CREATE PROCEDURE procedure_name

(

parameter datatype ,

 parameter datatype

)

 BEGIN

 Declaration_section

 Executable_section

END;

Parameter

procedure_name: name of the stored procedure.

Parameter: number of parameters. It can be one or more than one.

declaration_section: all variables are declared.

executable_section: code is written here.

A variable is a named data object whose value can change during the stored procedure execution.

We typically use the variables in stored procedures to hold the immediate results. These variables

are local to the stored procedure. You must declare a variable before using it.

DELIMITER //

CREATE PROCEDURE sp_name

(

p_1 INT

)

BEGIN

 ...code goes here...

END //

DELIMITER ;

http://www.mysqltutorial.org/mysql-stored-procedure-tutorial.aspx

DBMS Laboratory with mini Project 21CSL55

Dept. of CSE, ATMECE, Mysore Page 57

 Replace procedure_name with sp_procedure_name whatever name you'd like to use for the stored

procedure. The parentheses are required — they enclose any parameters. If no parameters are

required, the parentheses can be empty.

 The main body of the stored procedure goes in between the BEGIN and END keywords. These

keywords are used for writing compound statements. A compound statement can contain multiple

statements, and these can be nested if required. Therefore, you can nest BEGIN and END blocks.

 In most cases, you will also need to surround the CREATE PROCEDURE statement

with DELIMITER commands and change END; to END //. Like this:

About the DELIMITER Command

 The first command is DELIMITER // , which is not related to the stored procedure syntax.

The DELIMITER statement changes the standard delimiter which is a semicolon (;) to another.

 In this case, the delimiter is changed from the semicolon(;) to double-slashes(//) We need to

change delimiter from ; to //.Because we want to pass the stored procedure to the server as a whole

rather than letting mysql tool interpret each statement at a time.

 Following the END keyword, we use the delimiter // to indicate the end of the stored procedure.

The last command (DELIMITER;)changes the delimiter back to the semicolon (;).

How to Execute a Stored Procedure

Call sp_procedure_name();

Writing the first MySQL stored procedure

Here we are creating sample table named employee

create table employee

(

employee_id int primary key,

Name varchar(50),

Designation varchar(50),

Salary decimal(10,2)

)

insert into employee values(100,'vishwanath','clerk',20000.00);

insert into employee values(101,'shashikiran','instructor',20000.00);

insert into employee values(102,'nitin','assitiant professor',25000.00);

insert into employee values(103,'deepak','associate professor',40000.00);

insert into employee values(104,'sanjay','professor',80000.00);

insert into employee values(105,'yogesh','system admin',30000.00);

insert into employee values(106,'anand','clerk',20000.00);

insert into employee values(107,'Hemanth','professor',80000.00);

insert into employee values(108,'Robert','cashier',15000.00);

insert into employee values(109,'amit','clerk',20000.00);

insert into employee values(110,'george','HR Manager',30000.00);

DBMS Laboratory with mini Project 21CSL55

Dept. of CSE, ATMECE, Mysore Page 58

Example

We are going to develop a simple stored procedure named SP_getEmployee to help you get

familiar with the syntax. The SP_getEmployee() stored procedure selects all employee information

from the employee table.:

DELIMITER $$

DROP PROCEDURE IF EXISTS SP_getEmployee $$

CREATE PROCEDURE SP_getEmployee()

BEGIN

SELECT * FROM employee;

END$$

Execute the stored procedure above as follows:

call SP_getEmployee();

http://www.mysqltutorial.org/introduction-to-sql-stored-procedures.aspx

DBMS Laboratory with mini Project 21CSL55

Dept. of CSE, ATMECE, Mysore Page 59

Introduction to MySQL stored procedure parameters

Almost stored procedures that you develop require parameters. The parameters make the stored

procedure more flexible and useful.

The syntax of defining a parameter in the stored procedures is as follows:

MODE param_name param_type(param_size)

The MODE could be IN , OUT or INOUT , depending on the purpose of the parameter in the

stored procedure.

The param_name is the name of the parameter. The name of the parameter must follow the naming

rules of the column name in MySQL.

Followed the parameter name is its data type and size. Like a variable, the data type of the

parameter can be any valid MySQL data type.

Each parameter is separated by a comma (,) if the stored procedure has more than one parameter

IN – is the default mode. When you define an IN parameter in a stored procedure, the calling

program has to pass an argument to the stored procedure. In addition, the value of an IN parameter

is protected. It means that even the value of the IN parameter is changed inside the stored

procedure, its original value is retained after the stored procedure ends. In other words, the stored

procedure only works on the copy of the IN parameter.

OUT – the value of an OUT parameter can be changed inside the stored procedure and its new

value is passed back to the calling program. Notice that the stored procedure cannot access the

initial value of the OUT parameter when it starts.

INOUT – an INOUT parameter is a combination of IN and OUT parameters. It means that the

calling program may pass the argument, and the stored procedure can modify

the INOUT parameter, and pass the new value back to the calling program.

MySQL Procedure : Parameter IN example

Stored Procedure With One Parameter

The following SQL statement creates a stored procedure that selects employee information from a

employee Table based on employee_id from the " SP_getEmployeeid .:

//SP_getEmployeeid

DELIMITER $$

DROP PROCEDURE IF EXISTS SP_getEmployeeid $$

CREATE PROCEDURE SP_getEmployeeid

http://www.mysqltutorial.org/mysql-variables/
http://www.mysqltutorial.org/mysql-data-types.aspx

DBMS Laboratory with mini Project 21CSL55

Dept. of CSE, ATMECE, Mysore Page 60

 (

 IN emp_id INT(10)

)

 BEGIN

select * FROM employee where employee_id=emp_id;

 END$$

Execute the stored procedure below........ as follows:

Stored Procedure With Multiple Parameters

Setting up multiple parameters is very easy. Just list each parameter and the data type separated by

a comma as shown below.

The following SQL statement creates a stored procedure that selects studentdetails from a

particular USN with a particular NAME from the " studentmarks " table:

Example

DELIMITER $$

DROP PROCEDURE IF EXISTS SP_getStudentdetails $$

CREATE PROCEDURE SP_getStudentdetails

 (

 IN usn1 varchar(50),

 IN name1 varchar(50)

)

 BEGIN

select * FROM studentmarks where usn=usn1 and name=name1;

DBMS Laboratory with mini Project 21CSL55

Dept. of CSE, ATMECE, Mysore Page 61

 END$$

Execute the stored procedure above as follows:

MySQL Procedure : Parameter OUT example

The following example shows a simple stored procedure that uses an OUT parameter. Within the

procedure MySQL MAX() function retrieves maximum salary from MAX_SALARY of employee .

table.

DELIMITER $$

DROP PROCEDURE IF EXISTS sp_getemployemaxsalary()$$

 CREATE PROCEDURE sp_getemployemaxsalary

 (

 out max_salary float(10,2)

)

 BEGIN

SELECT max(Salary) into max_salary from employee;

END$$

DELIMITER ;

In the body of the procedure, the parameter max_salary will get the highest salary from Salary

column of Employee Table. After calling the procedure the word OUT tells the MYSQL that the

value goes out from the procedure.

Here max_salary is the name of the output parameter and we have passed its value to a session

variable named @ m, in the CALL statement.

DBMS Laboratory with mini Project 21CSL55

Dept. of CSE, ATMECE, Mysore Page 62

MySQL Procedure : Parameter INOUT example

Here we are creating sample table STUDENT with USN as primary key

CREATE TABLE STUDENT

 (

USN VARCHAR (10) PRIMARY KEY,

SNAME VARCHAR (25),

ADDRESS VARCHAR (25),

PHONE BIGINT (10),

GENDER CHAR (1)

);

Here we are inserting sample data into STUDENT Table

INSERT INTO STUDENT VALUES ('4AD16CS020','AKSHAY','BELAGAVI', 8877881122,'M');

INSERT INTO STUDENT VALUES ('4AD16CS062','SANDHYA','BENGALURU',

7722829912,'F');

INSERT INTO STUDENT VALUES ('4AD16CS091','TARANATH','BENGALURU',

7712312312,'M');

INSERT INTO STUDENT VALUES ('4AD16CS066','SUPRIYA','MANGALURU',

DBMS Laboratory with mini Project 21CSL55

Dept. of CSE, ATMECE, Mysore Page 63

8877881122,'F');

INSERT INTO STUDENT VALUES ('4AD16CS010','ABHAY','BENGALURU', 9900211201,'M');

INSERT INTO STUDENT VALUES ('4AD16CS032','BHASKAR','BENGALURU',

9923211099,'M');

INSERT INTO STUDENT VALUES ('4AD16CS025',’AKSHATHA’,'BENGALURU',

7894737377,'F');

INSERT INTO STUDENT VALUES ('4AD16CS011','AJAY','TUMKUR', 9845091341,'M');

INSERT INTO STUDENT VALUES ('4AD16CS029','CHITRA','DAVANGERE', 7696772121,'F');

INSERT INTO STUDENT VALUES ('4AD16CS045','JEEVAN','BELLARY', 9944850121,'M');

The following example shows a simple stored procedure that uses an INOUT parameter and an IN

parameter. The user will supply 'M' or 'F' through IN parameter to count a number of male or female

gender from STUDENT table. The INOUT parameter (countgender) will return the result to a user.

Here is the code and output of the procedure

DELIMITER $$

DROP PROCEDURE IF EXISTS sp_ studentcountgender $$

 create procedure sp_studentcountgender

(

IN studentgender char(1),

OUT countgender int

)

 begin

 select COUNT(GENDER) INTO countgender FROM STUDENT WHERE

 GENDER=studentgender;

 END$$

DELIMITER ;

DBMS Laboratory with mini Project 21CSL55

Dept. of CSE, ATMECE, Mysore Page 64

Other examples of stored procedure are as follows

This an example of inserting information into table employee through stored procedure

// INSERT STORED PROCEDURE

DELIMITER $$

DROP PROCEDURE IF EXISTS sp_InsertEmployee $$

CREATE PROCEDURE sp_InsertEmployee

(

 IN employee_id INT(10),

IN Name VARCHAR(255),

IN Designation VARCHAR(255),

IN Salary float(10,2)

)

 BEGIN

INSERT INTO employee values(employee_id ,Name,Designation, Salary);

 END$$

DBMS Laboratory with mini Project 21CSL55

Dept. of CSE, ATMECE, Mysore Page 65

This an example of updating information into table employee through stored procedure

// UPDATE STORED PROCEDURE

DELIMITER $$

DROP PROCEDURE IF EXISTS sp_UpdatetEmployee $$

CREATE PROCEDURE sp_UpdatetEmployee

(

 IN emp_id INT(10),

IN Name VARCHAR(255),

IN Designation VARCHAR(255),

IN Salary float(10,2)

)

 BEGIN

UPDATE EMPLOYEE SET Name= Name, Designation= Designation, Salary= Salary WHERE

employee_id = emp_id ;

END$$

DBMS Laboratory with mini Project 21CSL55

Dept. of CSE, ATMECE, Mysore Page 66

Previously we had written separate stored procedure for inserting and updating information in

employee table.now we can write single stored procedure which includes both Inserting and

updating information in employee table.

This an example of both Inserting and updating information into table employee through single

stored procedure

// INSERT AND UPDATE STORED PROCEDURE

DELIMITER $$

DROP PROCEDURE IF EXISTS SP_InsertUpdateemployee $$

 CREATE PROCEDURE SP_InsertUpdateemployee

(

IN emp_id int,

IN Name VARCHAR(255),

IN Designation VARCHAR(255),

IN Salary float(10,2)

)

BEGIN

DECLARE counta int;

SELECT count(*) INTO counta FROM employee WHERE employee_id=emp_id;

IF counta=0

DBMS Laboratory with mini Project 21CSL55

Dept. of CSE, ATMECE, Mysore Page 67

THEN

INSERT INTO employee values(emp_id,Name,Designation,Salary);

ELSEIF counta>0

THEN

UPDATE EMPLOYEE SET Name=Name,Designation=Designation,Salary=Salary

WHERE employee_id=emp_id;

END IF;

END $$

MySQL stored procedures advantages

SP_InsertUpdateemployee

DBMS Laboratory with mini Project 21CSL55

Dept. of CSE, ATMECE, Mysore Page 68

An example of deleting record in table named employee by using stored procedure

// DELETE STORED PROCEDURE

DELIMITER $$

DROP PROCEDURE IF EXISTS sp_DeletetEmployee $$

CREATE PROCEDURE sp_DeletetEmployee

(

IN emp_id INT(10)

)

 BEGIN

Delete from employee where employee_id= emp_id;

END$$

DBMS Laboratory with mini Project 21CSL55

Dept. of CSE, ATMECE, Mysore Page 69

Variables scope

A variable has its own scope that defines its lifetime. If you declare a variable inside a stored

procedure, it will be out of scope when the END statement of stored procedure reaches.

If you declare a variable inside BEGIN END block, it will be out of scope if the END is reached.

You can declare two or more variables with the same name in different scopes because a variable is

only effective in its own scope. However, declaring variables with the same name in different

scopes is not good programming practice.

A variable whose name begins with the @ sign is a session variable. It is available and accessible

until the session ends.

Declare a Variable:

DECLARE var_name [, var_name] ... type [DEFAULT value]

To provide a default value for a variable, include a DEFAULT clause. The value can be specified

as an expression; it need not be constant. If the DEFAULT clause is missing, the initial value is

NULL.

DBMS Laboratory with mini Project 21CSL55

Dept. of CSE, ATMECE, Mysore Page 70

Example1: Local variables

Local variables are declared within stored procedures and are only valid within the BEGIN…END

block where they are declared. Local variables can have any SQL data type. The following example

shows the use of local variables in a stored procedure.

Here below is an example of stored procedure which is used to insert as well both update contents

of employee table

DELIMITER $$

DROP PROCEDURE IF EXISTS SP_InsertUpdateemployee $$

 CREATE PROCEDURE SP_InsertUpdateemployee

(

IN emp_id int,

IN Name VARCHAR(255),

IN Designation VARCHAR(255),

IN Salary float(10,2)

)

BEGIN

DECLARE counta int;

SELECT count(*) INTO counta FROM employee WHERE employee_id=emp_id;

IF counta=0

THEN

INSERT INTO employee values(emp_id,Name,Designation,Salary);

ELSEIF counta>0

THEN

UPDATE EMPLOYEE SET Name=Name,Designation=Designation,Salary=Salary

WHERE employee_id=emp_id;

END IF;

END $$

DBMS Laboratory with mini Project 21CSL55

Dept. of CSE, ATMECE, Mysore Page 71

TO DROP STORED PROCEDURE

Once you have created your procedure in MySQL, you might find that you need to remove it from

the database. This statement is used to drop a stored procedure .

DROP procedure IF EXISTS procedure_name;

procedure_name: The name of the procedure that you wish to drop.’

Example of Droping Stored Procedure

drop procedure IF EXISTS SP_getcustomerid;

or

drop procedure SP_getcustomerid;

MySQL stored procedures advantages

 Reduce Network Traffic : Stored procedures help reduce the traffic between application and

database server because instead of sending multiple lengthy SQL statements, the application has

to send only the name and parameters of the stored procedure.

 Faster Query Execution : Since stored procedures are Parsed, Compiled at once, and the

executable is cached in the Database. Therefore if same query is repeated multiple times then

Database directly executes the executable and hence Time is saved in Parse,Compile etc.

 Secure: MySQL stored procedures are secure because the database administrator can grant

appropriate permissions to applications that access stored procedures in the database without

giving any permissions on the underlying database table

MySQL stored procedures disadvantages

 Stored procedure’s constructs are not designed for developing complex and flexible business

logic.

 It is difficult to debug stored procedures. Only a few database management systems allow you to

debug stored procedures. Unfortunately, MySQL does not provide facilities for debugging stored

procedures.

 Memory usage increased: If we use many stored procedures, the memory usage of every

connection that is using those stored procedures will increase substantially.

DBMS Laboratory with mini Project 21CSL55

Dept. of CSE, ATMECE, Mysore Page 72

INTRODUCTION TO MYSQL TRIGGER

 A trigger is a set of SQL Statements that are run automatically when a specified change operation

(SQL INSERT, UPDATE, or DELETE statement) is performed on a specified table.

 A SQL trigger is a special type of stored procedure. It is special because it is not called directly

like a stored procedure. The main difference between a trigger and a stored procedure is that a

trigger is called automatically when a data modification event is made against a table whereas a

stored procedure must be called explicitly.

 A trigger can be defined to be invoked either before or after the data is changed by INSERT,

UPDATE or DELETE statement

 Triggers are useful for tasks such as enforcing business rules, validating input data, and keeping an

audit trail.A trigger can be set to activate either before or after the trigger event.For example, you

can have a trigger activate before each row that is inserted into a table or after each row that is

updated

 It is important to understand the SQL trigger’s advantages and disadvantages so that you can use it

appropriately. In the following sections, we will discuss the advantages and disadvantages of using

SQL triggers.

Advantages of using SQL triggers

 SQL triggers provide an alternative way to check the integrity of data.

 SQL triggers can catch errors in business logic in the database layer.

 SQL triggers provide an alternative way to run scheduled tasks. By using SQL triggers, you don’t

have to wait to run the scheduled tasks because the triggers are invoked automatically before or

after a change is made to the data in the tables.

 SQL triggers are very useful to audit the changes of data in tables.

Disadvantages of using SQL triggers

 SQL triggers only can provide an extended validation and they cannot replace all the validations.

Some simple validations have to be done in the application layer. For example, you can validate

user’s inputs in the client side by using JavaScript or on the server side using server-side scripting

languages such as JSP, PHP, ASP.NET, Perl.

 SQL triggers are invoked and executed invisible from the client applications, therefore, it is

difficult to figure out what happens in the database layer.

 SQL triggers may increase the overhead of the database server.

http://www.mysqltutorial.org/mysql-stored-procedure-tutorial.aspx

DBMS Laboratory with mini Project 21CSL55

Dept. of CSE, ATMECE, Mysore Page 73

In MySQL, trigger can also be created. There are 6 type of triggers that can be made they are:-

1.After/Before insert

2.After/Before update

3.After/Before delete

CREATE TRIGGER trigger_name

 trigger_event ON table_name

FOR EACH ROW

BEGIN

...

END;

Here,

 Trigger_name is the name of the trigger which must be put after CREATE TRIGGER statement.

 The naming convention for trigger_name can be like [trigger time]_[table name]_[trigger event]. For

example, before_student_update or after_student_insert can be a name of the trigger.

 Trigger_time is the time of trigger activation and it can be BEFORE or AFTER. We must have to

specify the activation time while defining a trigger. We must to use BEFORE if we want to process

action prior to the change made on the table and AFTER if we want to process action post to the

change made on the table.

 Trigger_event can be INSERT, UPDATE or DELETE. This event causes the trigger to be invoked.

A trigger only can be invoked by one event. To define a trigger that is invoked by multiple events,

we have to define multiple triggers, one for each event.

 Table_name is the name of the table. Actually, a trigger is always associated with a specific table.

Without a table, a trigger would not exist hence we have to specify the table name after the ‘ON’

keyword.

 BEGIN…END is the block in which we will define the logic for the trigger.

AFTER/BEFORE INSERT TRIGGER

CREATE TRIGGER trigger_name

 AFTER/BEFORE INSERT ON table_name

FOR EACH ROW

 BEGIN

 --variable declarations

 --trigger code

 END;

Parameter:

 trigger_name: name of the trigger to be created.

 AFTER/BEFORE INSERT: It points the trigger after or before insert query is executed.

 table_name: name of the table in which a trigger is created.

DBMS Laboratory with mini Project 21CSL55

Dept. of CSE, ATMECE, Mysore Page 74

AFTER/ BEFORE UPDATE Trigger

 In MySQL, AFTER/BEFORE UPDATE trigger can also be created.

 AFTER/BEFORE UPDATE trigger means trigger will invoke after/before the record is

updated.

Syntax:

CREATE TRIGGER trigger_name

 AFTER/BEFORE UPDATE ON table_name

 FOR EACH ROW

 BEGIN

 --variable declarations

 --trigger code

 END;

Parameter:

 trigger_name: name of the trigger to be created.

 AFTER UPDATE: It points the trigger update query is executed.

 table_name: name of the table in which a trigger is created.

AFTER/BEFORE DELETE Trigger

 In MySQL, AFTER/BEFORE DELETE trigger can also be created.

 AFTER/BEFORE DELETE trigger means trigger will invoke after/before the record is deleted.

Syntax:

CREATE TRIGGER trigger_name

 AFTER/BEFORE DELETE ON table_name

FOR EACH ROW

 BEGIN

 --variable declarations

 --trigger code

 END;

Parameter:

 trigger_name: name of the trigger to be created.

 AFTER/BEFORE DELETE: It points the trigger after/before delete query is executed.

 table_name: name of the table in which a trigger is created.

DBMS Laboratory with mini Project 21CSL55

Dept. of CSE, ATMECE, Mysore Page 75

AUDIT TRACKING

EXAMPLES OF TRIGGERS FOR AUDIT PURPOSE

CREATE TABLE Employee_Details

 (

Emp_ID int primary key ,

Emp_Name varchar(55),

Emp_Sal decimal (10,2)

);

CREATE TABLE Employee_Details_Audit

(

 Emp_ID int,

 Emp_Name varchar(55),

 Emp_Sal decimal (10,2),

 Action varchar(55)

) ;

Above we have two scripts for creating two table Employee_Details and Employee_Details_Audit.

Both tables have same no of column names,same column name and same date type.In second

table,Employee_Details_Audit keeps track of what kind of operations are perdormed on table

Employee_Details and any insert ,update and delete operation value are stored in

Employee_Details_Audit

For the First table Employee_Details we insert five records .

Insert into Employee_Details values (1000,'Amit',10000);

Insert into Employee_Details values (1001,'Hemanth',12000);

Insert into Employee_Details values (1002,'George',20000);

Insert into Employee_Details values (1003,'Nitin',30000);

Insert into Employee_Details values (1004,'Riyaz',40000);

DBMS Laboratory with mini Project 21CSL55

Dept. of CSE, ATMECE, Mysore Page 76

Below we have written three types of trigger meant for auditing purpose.what ever operations perfomed

on table Employee_Details gets automatically reflected in Employee_Details_Audit.For example we

perform any insert,update or delete operations on Employee_Details, its get automatically get reflected

in Employee_Details_Audit table because we have written triggers on Employee_Details table.

TRIGGER EXAMPLE 1

EXAMPLE OF CREATING AFTER INSERT TRIGGER FOR AUDIT PURPOSE

CREATE TRIGGER TriggerAfterInsert

AFTER INSERT ON Employee_Details

FOR EACH ROW

insert into Employee_Details_Audit

values(new.Emp_ID,new.Emp_Name,new.Emp_Sal,'INSERT')

 In above example,TriggerAfterInsert,an Insert Trigger written on table Employee_Details.whenever we

perform insert operation on Employee_Details table, automatically TriggerAfterInsert is fired and

whatever records we have inserted in Employee_Detailsthe same recods gets inserted in

Employee_Details_Audit along with what action we performed for example Insert action we have

perfomed that too get inserted in Employee_Details_Audit.

DBMS Laboratory with mini Project 21CSL55

Dept. of CSE, ATMECE, Mysore Page 77

Below is an screen shot of output of TriggerAfterInser fired on table Employee_Details

TRIGGER EXAMPLE 2

TRIGGER EXAMPLE 2

EXAMPLE OF CREATINGAFTER UPDATE TRIGGER FOR AUDIT PURPOSE

create trigger TriggerAfterUpdate

AFTER UPDATE ON Employee_Details

 FOR EACH ROW

insert into Employee_Details_Audit

values(new.Emp_ID,new.Emp_Name,new.Emp_Sal,'UPDATE')

In above example,TriggerAfterUpdate,an Update Trigger written on table Employee_Details.whenever

we perform Update operation on Employee_Details table, automatically TriggerAfterUpdateis fired and

whatever records we have updated in Employee_Details same recods gets updated in

Employee_Details_Audit along with what action we performed for example Update action we have

perfomed that too get inserted in Employee_Details_Audit

DBMS Laboratory with mini Project 21CSL55

Dept. of CSE, ATMECE, Mysore Page 78

Below is an screen shot of output of TriggerAfterUpdate fired on table Employee_Details

DBMS Laboratory with mini Project 21CSL55

Dept. of CSE, ATMECE, Mysore Page 79

TRIGGER EXAMPLE 3

EXAMPLE OF CREATING AFTER DELETE TRIGGER FOR AUDIT PURPOSE

create trigger TriggerAfterDelete

AFTER DELETE ON Employee_Details

FOR EACH ROW

insert into Employee_Details_Audit

values(old.Emp_ID, old.Emp_Name, old.Emp_Sal,'DELETE')

DBMS Laboratory with mini Project 21CSL55

Dept. of CSE, ATMECE, Mysore Page 80

Below is an screen shot of output of TriggerAfterDelete fired on table Employee_Details

Write a Trigger To Calculate the FinalIA (average of best two test marks) and update the

correspondingtable for all students By Using Trigger.

CREATE TABLE IAMARKS

(

USN VARCHAR (10) PRIMARY KEY,

SUBCODE VARCHAR (8),

SSID VARCHAR (5),

TEST1 INT (2),

TEST2 INT (2),

TEST3 INT (2),

FINALIA INT (2)

);

Above is script for creating for IAMARKS table.Here is table named IAMARKS where we enter

Marks of TEST1,TEST2 and TEST3 but FINALIA is calculated by taking best of two test marks divide
by two.

Below is structure of IAMARKS Table.

DBMS Laboratory with mini Project 21CSL55

Dept. of CSE, ATMECE, Mysore Page 81

TRIGGER EXAMPLE 4

This is trigger is an example of Before Insert Trigger

DELIMITER $$

DROP trigger IF EXISTS trg_insertbefore_IAMARKS $$

CREATE TRIGGER trg_insertbefore_IAMARKS

BEFORE INSERT ON IAMARKS

FOR EACH ROW

BEGIN

SETNEW.FINALIA=GREATEST(NEW.TEST1+NEW.TEST2,NEW.TEST2+NEW.TEST3,

NEW.TEST1+NEW.TEST3)/2;

END$$

Below is insert script for Student Info and marks into table IAMARKS

Please note that we are inserting 0 marks into table IAMARKS containing columnnameFINALIA.

INSERT INTO IAMARKS VALUES ('4AD18CS002','15CS51','CSE5A', 25, 16, 24,0);

INSERT INTO IAMARKS VALUES ('4AD18CS072','15CS52','CSE5B', 22, 19, 14,0);

INSERT INTO IAMARKS VALUES ('4AD18CS091','15CS53','CSE5C', 19, 15, 20,0);

INSERT INTO IAMARKS VALUES ('4AD18CS011','15CS54','CSE5A', 20, 16, 19,0);

INSERT INTO IAMARKS VALUES ('4AD18CS075','15CS55','CSE5B', 19, 18, 22,0);

INSERT INTO IAMARKS VALUES ('4AD18CS095','15CS56','CSE5C', 23, 17, 24,0);

Above ,we have written trigger name before_IAMARKS_insert on IAMARKS table which

automatically calculates FINALIA by using Greatest function and inserts intovalues into

FINALIA column of table IAMARKS while trying to insert record on IAMARKS

Below is snap shot of output generated by trigger before_ IAMARKS_insert on table

IAMARKS

DBMS Laboratory with mini Project 21CSL55

Dept. of CSE, ATMECE, Mysore Page 82

OTHER TRIGGER EXAMPLES

Example Of Creating Before Insert Trigger Having The If Conditional Statements for incrementing

salary of employee based on certain condition

TRIGGER EXAMPLE 5

DELIMITER $$

DROP trigger IF EXISTS increment_Salary_Employee $$

CREATE TRIGGER increment_Salary_Employee

BEFORE insert ON employee

FOR EACH ROW

IF NEW.Salary>20000 and NEW.Salary<40000

THEN

SET NEW.salary=NEW.salary*1.1;

ELSEIF NEW.Salary>=40000 and NEW.Salary<90000

THEN

SET NEW.Salary=NEW.Salary*1.2;

END IF;

 END$$

DBMS Laboratory with mini Project 21CSL55

Dept. of CSE, ATMECE, Mysore Page 83

Above trigger increment_Salary_Employee is written on table employee.this trigger checks salary of

employee table during insertion if salary is greater than 20000 and salary is lesser than 40000,it

automatically increments salary by 10%.if salary is greater than or equal to 40000 and salary is lesser

than 90000,salary is automatically incremented by 20%

Here is snapshot of output of trigger increment_Salary_Employee fired on Employee table when any

records is inserted into table Employee

TRIGGER EXAMPLE 6

DELIMITER $$

DROP trigger IF EXISTS trg_insertbefore_trimupper $$

CREATE TRIGGER trg_insertbefore_trimupper

BEFORE INSERT ON employee

FOR EACH ROW

BEGIN

SET NEW.Name = UPPER(NEW.Name);

SET NEW.Designation = UPPER(NEW.Designation);

END IF;

END$$

DBMS Laboratory with mini Project 21CSL55

Dept. of CSE, ATMECE, Mysore Page 84

Above trigger name trg_insertbefore_trimupper is create on table employee which automatically

converts Name and Designation columns in table employee into upper case letters and

insertsautomatically into Table employee when any employee record is inserted in employee table.

Here is example of snapshot of output of trigger trg_insertbefore_trimupper

Below is screen shot for creating simple table people which has 2 columns age and name

DBMS Laboratory with mini Project 21CSL55

Dept. of CSE, ATMECE, Mysore Page 85

TRIGGER EXAMPLE 7

Above trigger beforeinsert _agecheck is created on table people which checks age being inserted into

Table people if age is less than 0 or negative values ,it automatically insert age valeue has 0.if we are

trying to insert into table people suppose age value is greater than 100,then automatically inserts 60 as

default value in age column of people table.

Here is example of snapshot of output of beforeinsert_agecheck

DBMS Laboratory with mini Project 21CSL55

Dept. of CSE, ATMECE, Mysore Page 86

TRIGGER EXAMPLE 8

This is trigger is an example of Before Update Trigger

Above trigger beforeupdate_agecheck is created on table people which checks age being updated into

Table people if age is less than 0 or negative values ,it automatically updates age valeue has 0. suppose

if we are trying to update age value is greater than 100,then automatically updates 60 in age column of

people table.

Below is snap shot of output of trigger beforeupdate_agecheck

DBMS Laboratory with mini Project 21CSL55

Dept. of CSE, ATMECE, Mysore Page 87

How to DROP TRIGGER

DROP TRIGGERIF EXISTSschema_name.trigger_name;

In this syntax:

 First, specify the name of the trigger that you want to drop after the DROP TRIGGER keywords.

 Second, specify the name of the schema to which the trigger belongs. If you skip the schema

name, the statement will drop the trigger in the current database.

 Third, use IF EXISTS option to conditionally drops the trigger if the trigger exists. The IF

EXISTS clause is optional.

DROP TRIGGER IF EXISTS employee.trg_insertbefore_IAMARKS;

or

 DROP TRIGGER trg_insertbefore_IAMARKS;

Above statement drops trigger trg_insertbefore_IAMARKS created on table IAMARKS

Note that if you drop a table, MySQL will automatically drop all triggers associated with the table

https://www.mysqltutorial.org/mysql-drop-table

DBMS Laboratory with mini Project 21CSL55

Dept. of CSE, ATMECE, Mysore Page 88

LAB EXPERIMENTS
PART A: SQLPROGRAMMING

A. Consider the following schema for a LibraryDatabase:

BOOK (Book_id, Title, Publisher_Name, Pub_Year)

BOOK_AUTHORS (Book_id, Author_Name)

PUBLISHER (Name, Address, Phone)

BOOK_COPIES(Book_id, Programme_id, No-of_Copies)

BOOK_LENDING(Book_id, Programme_id, Card_No, Date_Out, Due_Date)

LIBRARY_PROGRAMME(Programme_id, Programme_Name,Address)

Write SQL queries to

1. Retrieve details of all books in the library – id, title, name of publisher, authors,

number of copies in each Programme, etc.

2. Get the particulars of borrowers who have borrowed more than 3 books, butfrom

Jan 2017 to Jun2017

3. Delete a book in BOOK table. Update the contents of other tables to reflect thisdata

manipulationoperation.

4. Partition the BOOK table based on year of publication. Demonstrate itsworking

with a simplequery.

5. Create a view of all books and its number of copies that are currently availablein

the Library.

Program Objectives:

This course will enable students to

 Foundation knowledge in database concepts, technology and practice to groomstudents
into well-informed database applicationdevelopers.

 Strong practice in SQL programming through a variety of databaseproblems.

 Develop database applications using front-end tools and back-endDBMS.

DBMS Laboratory with mini Project 21CSL55

Dept. of CSE, ATMECE, Mysore Page 89

Solution:

Entity-Relationship Diagram

DBMS Laboratory with mini Project 21CSL55

Dept. of CSE, ATMECE, Mysore Page 90

Schema Diagram

DBMS Laboratory with mini Project 21CSL55

Dept. of CSE, ATMECE, Mysore Page 91

Table Creation

CREATE TABLE PUBLISHERs (

NAME VARCHAR (20) PRIMARY KEY,

PHONE BIGINT (20),

ADDRESS VARCHAR (100));

CREATE TABLE BOOK (

BOOK_ID INT (10) PRIMARY KEY,

TITLE VARCHAR (20),

PUB_YEAR VARCHAR (20),

PUBLISHER_NAME VARCHAR (20),

FOREIGN KEY (PUBLISHER_NAME) REFERENCES PUBLISHER (NAME) ON DELETE

CASCADE);

CREATE TABLE BOOK_AUTHORS (

AUTHOR_NAME VARCHAR (20),

BOOK_ID INT (10),

PRIMARY KEY (BOOK_ID, AUTHOR_NAME),

FOREIGN KEY (BOOK_ID) REFERENCES BOOK (BOOK_ID) ON DELETE CASCADE);

CREATE TABLE LIBRARY_PROGRAMME (

PROGRAMME_ID INT (10) PRIMARY KEY,

PROGRAMME_NAME VARCHAR (50),

ADDRESS VARCHAR (100));

CREATE TABLE BOOK_COPIES (

NO_OF_COPIES INT (5),

BOOK_ID INT (10),

PROGRAMME_ID INT (10),

PRIMARY KEY (BOOK_ID,PROGRAMME_ID),

FOREIGN KEY (BOOK_ID) REFERENCES BOOK (BOOK_ID) ON DELETE CASCADE,

FOREIGN KEY (PROGRAMME_ID) REFERENCES LIBRARY_PROGRAMME

(PROGRAMME_ID) ON DELETE CASCADE);

CREATE TABLE CARD (CARD_NO INT (10) PRIMARY KEY);

CREATE TABLE BOOK_LENDING (

DATE_OUT DATE,

DUE_DATE DATE,

BOOK_ID INT (10),

PROGRAMME_ID INT (10),

CARD_NO INT (10),

PRIMARY KEY (BOOK_ID,PROGRAMME_ID, CARD_NO),

FOREIGN KEY (BOOK_ID) REFERENCES BOOK (BOOK_ID) ON DELETE CASCADE,

FOREIGN KEY (PROGRAMME_ID) REFERENCES

LIBRARY_PROGRAMME(PROGRAMME_ID) ON DELETE CASCADE,

FOREIGN KEY (CARD_NO) REFERENCES CARD (CARD_NO) ON DELETE CASCADE);

DBMS Laboratory with mini Project 21CSL55

Dept. of CSE, ATMECE, Mysore Page 92

Table Descriptions

DESC BOOK

DESC BOOK_AUTHORS;

DESC PUBLISHER;

DESC BOOK_COPIES

DBMS Laboratory with mini Project 21CSL55

Dept. of CSE, ATMECE, Mysore Page 93

DESC BOOK_LENDING;

DESC CARD;

DESC LIBRARY_PROGRAMME;

DBMS Laboratory with mini Project 21CSL55

Dept. of CSE, ATMECE, Mysore Page 94

Insertion of Values to Tables

INSERT INTO BOOK VALUES (1,'DBMS','JAN-2017', 'MCGRAW-HILL');

INSERT INTO BOOK VALUES (2,'ADBMS','JUN-2016','MCGRAW-HILL');

INSERT INTO BOOK VALUES (3, 'CD','SEP-2016','PEARSON');

INSERT INTO BOOK VALUES (4,' ALGORITHMS ','SEP-2015',' MIT');

INSERT INTO BOOK VALUES (5,'OS','MAY-2016','PEARSON');

INSERT INTO BOOK_AUTHORS VALUES ('NAVATHE', 1);

INSERT INTO BOOK_AUTHORS VALUES ('NAVATHE', 2);

INSERT INTO BOOK_AUTHORS VALUES ('ULLMAN',3);

INSERT INTO BOOK_AUTHORS VALUES ('CHARLES', 4);

INSERT INTO BOOK_AUTHORS VALUES('GALVIN', 5);

INSERT INTO PUBLISHER VALUES ('MCGRAW-HILL', 9989076587,'BANGALORE');

INSERT INTO PUBLISHER VALUES ('PEARSON', 9889076565,'NEWDELHI');

INSERT INTO PUBLISHER VALUES ('PRENTICE HALL', 7455679345,'HYEDRABAD');

INSERT INTOPUBLISHER VALUES ('WILEY', 8970862340,'CHENNAI');

INSERT INTO PUBLISHER VALUES ('MIT',7756120238,'BANGALORE');

INSERT INTO BOOK_COPIES VALUES (10, 1, 10);

INSERT INTO BOOK_COPIES VALUES (5, 1, 11);

INSERT INTO BOOK_COPIES VALUES (2, 2, 12);

INSERT INTO BOOK_COPIES VALUES (5, 2, 13);

INSERT INTO BOOK_COPIES VALUES (7, 3, 14);

INSERT INTO BOOK_COPIES VALUES (1, 5, 10);

INSERT INTO BOOK_COPIES VALUES (3, 4, 11);

INSERT INTO BOOK_LENDING VALUES ('2017-01-01','2017-06-01', 1, 10, 101);

INSERT INTO BOOK_LENDING VALUES ('2017-01-11 ','2017-03-11', 3, 14, 101);

INSERT INTO BOOK_LENDING VALUES ('2017-02-21','2017-04-21', 2, 13, 101);

INSERT INTO BOOK_LENDING VALUES ('2017-03-15 ','2017-07-15', 4, 11, 101);

INSERT INTO BOOK_LENDING VALUES ('2017-04-12','2017-05-12', 1, 11, 104);

INSERT INTO CARD VALUES (100);

INSERT INTO CARD VALUES (101);

INSERT INTO CARD VALUES (102);

INSERT INTO CARD VALUES (103);

INSERT INTO CARD VALUES (104);

INSERT INTO LIBRARY_PROGRAMME VALUES (10,'VIJAY NAGAR','MYSURU');

INSERT INTO LIBRARY_PROGRAMME VALUES (11,'VIDYANAGAR','HUBLI'); ;

INSERT INTO LIBRARY_PROGRAMME VALUES(12,'KUVEMPUNAGAR','MYSURU');

INSERT INTO LIBRARY_PROGRAMME VALUE(13,'RAJAJINAGAR','BANGALORE');

INSERT INTO LIBRARY_PROGRAMME VALUES (14,'MANIPAL','UDUPI');

DBMS Laboratory with mini Project 21CSL55

Dept. of CSE, ATMECE, Mysore Page 95

SELECT * FROM BOOK;

BOOK_ID TITLE PUB_YEAR PUBLISHER_NAME

1 DBMS Jan-2017 MCGRAW-HILL

2 ADBMS Jun-2017 MCGRAW-HILL

3 CD Sep-2016 PEARSON

4 ALGORITHMS Sep-2015 MIT

5 OS May-2016 PEARSON

SELECT * FROM BOOK_AUTHORS;

AUTHOR_NAME BOOK_ID

NAVATHE 1

NAVATHE 2

ULLMAN 3

CHARLES 4

GALVIN 5

 SELECT * FROM PUBLISHER;

NAME PHONE ADDRESS

MCGRAW-HILL 9989076587 BANGALORE

MIT 7756120238 BANGALORE

PEARSON 9889076565 NEWDELHI

PRENTICE HALL 7455679345 HYEDRABAD

WILEY 8970862340 CHENNAI

SELECT * FROM BOOK_COPIES;

NO_OF_COPIES BOOK_ID PROGRAMME_ID

10 1 10

5 1 11

2 2 12

5 2 13

7 3 14

1 5 10

3 4 11

DBMS Laboratory with mini Project 21CSL55

Dept. of CSE, ATMECE, Mysore Page 96

SELECT * FROM BOOK_LENDING;

DATEOUT DUEDATE BOOKID PROGRAMME_ID CARDNO

2017-01-01 2017-06-01 1 10

2017-01-11 2017-03-11 3 4 101

2017-02-21 2017-04-21 2 13 101

2017-03-15 2017-07-15 4 11 101

2017-04-12 2017-05-12 1 11 104

 SELECT * FROM CARD;

CARD NO

101

102

103

104

105

 SELECT * FROM LIBRARY_PROGRAMME;

PROGRAMME_ID PROGRAMME_NAME ADDRESS

10 VIJAY NAGAR MYSURU

11 VIDYANAGAR HUBLI

12 KUVEMPUNAGAR MYSURU

13 RAJAJINAGAR BANGALORE

14 MANIPAL UDUPI

DBMS Laboratory with mini Project 21CSL55

Dept. of CSE, ATMECE, Mysore Page 97

Queries:

1. Retrieve details of all books in the library – id, title, name of publisher, authors, number

of copies in each branch, etc.

SELECT B.BOOK_ID, B.TITLE, B.PUBLISHER_NAME, A.AUTHOR_NAME,

C.NO_OF_COPIES, L.PROGRAMME_ID FROM BOOK B, BOOK_AUTHORS A, BOOK_COPIES

C, LIBRARY_PROGRAMME L WHERE B.BOOK_ID=A.BOOK_ID AND

B.BOOK_ID=C.BOOK_ID AND L.PROGRAMME_ID=C.PROGRAMME_ID;

2. Get the particulars of borrowers who have borrowed more than 3 books, but from Jan

2017 to Jun2017.

 SELECT CARD_NO FROM BOOK_LENDING WHERE DATE_OUT

 BETWEEN '2017-01-01'AND '2017-07-01' GROUP BY CARD_NO

 HAVING COUNT(*)>3;

BOOK_

ID

TITLE PUBLISHER_

NAME

AUTHOR_

NAME

NO_

OF_COPIES

PROGRAMME

_ID

1 DBMS MCGRAW-HILL
NAVATHE 10 10

1 DBMS MCGRAW-HILL
NAVATHE 5 11

2 ADBMS MCGRAW-HILL
NAVATHE 2 12

2 ADBMS MCGRAW-HILL
NAVATHE 5 13

3 CD PEARSON
ULLMAN 7 14

4 ALGORITHMS MIT
CHARLES 1 11

5 OS PEARSON
GALVIN 3 10

DBMS Laboratory with mini Project 21CSL55

Dept. of CSE, ATMECE, Mysore Page 98

3. Delete a book in BOOK table. Update the contents of other tables to reflect this data

manipulationoperation.

 DELETE FROM BOOK WHERE BOOK_ID=3;

4. Partition the BOOK table based on year of publication. Demonstrate its working with a

simple query.

CREATE VIEW VW_PUBLICATION AS SELECT PUB_YEAR FROMBOOK;

SELECT * FROM VW_PUBLICATION

5. Create a view of all books and its number of copies that are currently available in the

Library.

CREATE VIEW VW_BOOKS AS SELECT B.BOOK_ID, B.TITLE, C.NO_OF_COPIES

FROM BOOK B, BOOK_COPIES C, LIBRARY_PROGRAMME L WHERE

B.BOOK_ID=C.BOOK_ID AND C.PROGRAMME_ID=L.PROGRAMME_ID;

DBMS Laboratory with mini Project 21CSL55

Dept. of CSE, ATMECE, Mysore Page 99

SELECT * FROM VW_BOOKS;

Program Outcomes:

The students are able to

 Create, Update and query on thedatabase.

 Demonstrate the working of different concepts ofDBMS

 Implement, analyze and evaluate the project developed for anapplication.

DBMS Laboratory with mini Project 21CSL55

Dept. of CSE, ATMECE, Mysore Page 100

B. Consider the following schema for OrderDatabase:

SALESMAN (Salesman_id, Name, City, Commission)

CUSTOMER (Customer_id, Cust_Name, City, Grade,Salesman_id)

ORDERS (Ord_No, Purchase_Amt, Ord_Date, Customer_id, Salesman_id)

Write SQL queries to

1. Count the customers with grades above Bangalore’saverage.

2. Find the name and numbers of all salesmen who had more than onecustomer.

3. List all salesmen and indicate those who have and don’t have customers intheir

cities (Use UNIONoperation.)

4. Create a view that finds the salesman who has the customer with the highestorder

of aday.

5. Demonstrate the DELETE operation by removing salesman with id 1000. Allhis

orders must also bedeleted.

Solution:

Entity-Relationship Diagram

Program Objectives:

This course will enable students to

 Foundation knowledge in database concepts, technology and practice to groomstudents
into well-informed database applicationdevelopers.

 Strong practice in SQL programming through a variety of databaseproblems.

 Develop database applications using front-end tools and back-endDBMS.

DBMS Laboratory with mini Project 21CSL55

Dept. of CSE, ATMECE, Mysore Page 101

Schema Diagram

Table Creation

CREATE TABLE SALESMAN (

SALESMAN_ID INT (4) PRIMARY KEY,

NAME VARCHAR (20),

CITY VARCHAR (20),

COMMISSION VARCHAR (20));

CREATE TABLE CUSTOMER (

CUSTOMER_ID INT (5) PRIMARY KEY,

CUST_NAME VARCHAR (20),

CITY VARCHAR (20), GRADE INT (4),

SALESMAN_ID INT (6),

FOREIGN KEY (SALESMAN_ID) REFERENCES SALESMAN (SALESMAN_ID) ON DELETE

SET NULL);

CREATE TABLE ORDERS (

ORD_NO INT (5) PRIMARY KEY,

PURCHASE_AMT DECIMAL (10, 2),

ORD_DATE DATE,

CUSTOMER_ID INT (4),

SALESMAN_ID INT (4),

FOREIGN KEY (CUSTOMER_ID) REFERENCES CUSTOMER (CUSTOMER_ID) ON DELETE

CASCADE,

FOREIGN KEY (SALESMAN_ID) REFERENCES SALESMAN (SALESMAN_ID) ON DELETE

CASCADE);

DBMS Laboratory with mini Project 21CSL55

Dept. of CSE, ATMECE, Mysore Page 102

Table Descriptions

DESC SALESMAN;

DESC CUSTOMER;

DESC ORDERS;

Insertion of Value

INSERT INTO SALESMAN VALUES(101,'RICHARD','LOS ANGELES','18%');

INSERT INTO SALESMAN VALUES(103,'GEORGE','NEWYORK','32%');

INSERT INTO SALESMAN VALUES(110,'CHARLES','BANGALORE','54%');

INSERT INTO SALESMAN VALUES(122,'ROWLING','PHILADELPHIA','46%');

INSERT INTO SALESMAN VALUES(126,'KURT','CHICAGO','52%');

INSERT INTO SALESMAN VALUES(132,'EDWIN','PHOENIX','41%');

INSERT INTO CUSTOMER VALUES(501,'SMITH','LOS ANGELES',10,103);

INSERT INTO CUSTOMER VALUES(510,'BROWN','ATLANTA',14,122);

INSERT INTO CUSTOMER VALUES(522,'LEWIS','BANGALORE',10,132);

INSERT INTO CUSTOMER VALUES(534,'PHILIPS','BOSTON',17,103);

INSERT INTO CUSTOMER VALUES(543,'EDWARD','BANGALORE',14,110);

INSERT INTO CUSTOMER VALUES(550,'PARKER','ATLANTA',19,126);

DBMS Laboratory with mini Project 21CSL55

Dept. of CSE, ATMECE, Mysore Page 103

INSERT INTO ORDERS VALUES(1,1000,'2017-05-04',501,103);

INSERT INTO ORDERS VALUES(2,4000,'2017-01-20’,522,132);

INSERT INTO ORDERS VALUES(3,2500,'2017-02-24',550,126);

INSERT INTO ORDERS VALUES(5,6000,'2017-04-13',522,103);

INSERT INTO ORDERS VALUES(6,7000,'2017-03-09',550,126);

INSERT INTO ORDERS VALUES (7,3400,'2017-01-20',501,122);

SELECT * FROM SALESMAN;

SELECT * FROM CUSTOMER;

SELECT * FROM ORDERS;

DBMS Laboratory with mini Project 21CSL55

Dept. of CSE, ATMECE, Mysore Page 104

Queries

1. Count the customers with grades above Bangalore’saverage.

SELECT GRADE, COUNT (CUSTOMER_ID) FROM

CUSTOMER GROUP BY GRADE

HAVING GRADE > (SELECT AVG (GRADE) FROM

CUSTOMER WHERE CITY='BANGALORE');

SELECT GRADE,COUNT(DISTINCT CUSTOMER_ID)

 FROM CUSTOMER GROUP BY GRADE
HAVING GRADE >(SELECT AVG(GRADE) FROM CUSTOMER
WHERE CITY='BANGALORE');

2. Find the name and numbers of all salesmen who had more than onecustomer.

SELECT SALESMAN_ID,NAME

FROM SALESMAN A

WHERE 1 <(SELECT COUNT(*) FROM CUSTOMER

WHERE SALESMAN_ID=A.SALESMAN_ID)

OR

SELECT S.SALESMAN_ID,NAME, FROM CUSTOMER

C,SALESMAN S WHERE

S.SALESMAN_ID=C.SALESMAN_ID GROUP BY

C.SALESMAN_ID HAVING COUNT(*)>1

3. List all salesmen and indicate those who have and don’t have customers in their cities

(Use UNIONoperation.)

SELECT S.SALESMAN_ID,NAME,CUST_NAME,COMMISSION FROM SALESMAN

S,CUSTOMER C
WHERE S.CITY = C.CITY

UNION

SELECT SALESMAN_ID, NAME, 'NO MATCH',COMMISSION FROM SALESMAN

WHERE NOT CITY = ANY (SELECT CITY

FROM CUSTOMER) ORDER BY 2 DESC;

DBMS Laboratory with mini Project 21CSL55

Dept. of CSE, ATMECE, Mysore Page 105

4. Create a view that finds the salesman who has the customer with the highest order of a

day.
CREATE VIEW VW_ELITSALESMAN AS

SELECT B.ORD_DATE,A.SALESMAN_ID,A.NAME FROM SALESMAN A, ORDERS B

WHERE A.SALESMAN_ID = B.SALESMAN_ID AND B.PURCHASE_AMT=(SELECT

MAX(PURCHASE_AMT) FROM ORDERS CWHERE C.ORD_DATE = B.ORD_DATE);

SELECT * FROM VW_ELITSALESMAN

5. Demonstrate the DELETE operation by removing salesman with id 1000. All his orders

must also be deleted.

Use ON DELETE CASCADE at the end of foreign key definitions while creating child table

orders and then execute the following:

DELETE FROM SALESMAN WHERE SALESMAN_ID=101;

DBMS Laboratory with mini Project 21CSL55

Dept. of CSE, ATMECE, Mysore Page 106

Program Outcomes:

The students are able to

 Create, Update and query on thedatabase.

 Demonstrate the working of different concepts ofDBMS

 Implement, analyze and evaluate the project developed for anapplication.

DBMS Laboratory with mini Project 21CSL55

Dept. of CSE, ATMECE, Mysore Page 107

C. Consider the schema for MovieDatabase:

ACTOR (Act_id, Act_Name, Act_Gender)

DIRECTOR (Dir_id, Dir_Name, Dir_Phone)

MOVIES (Mov_id, Mov_Title, Mov_Year, Mov_Lang, Dir_id)

MOVIE_CAST (Act_id, Mov_id, Role)

RATING (Mov_id, Rev_Stars) Write SQL queries to

1. List the titles of all movies directed by‘Hitchcock’.

2. Find the movie names where one or more actors acted in two or moremovies.

3. List all actors who acted in a movie before 2000 and also in a movie after 2015

 (use JOIN operation).

4. Find the title of movies and number of stars for each movie that has at least one

rating and find the highest number of stars that movie received. Sort the result by

movietitle.

5. Update rating of all movies directed by ‘Steven Spielberg’ to5.

Solution:

Entity-Relationship Diagram

Program Objectives:

This course will enable students to

 Foundation knowledge in database concepts, technology and practice to groom students
into well-informed database applicationdevelopers.

 Strong practice in SQL programming through a variety of databaseproblems.

 Develop database applications using front-end tools and back-endDBMS.

DBMS Laboratory with mini Project 21CSL55

Dept. of CSE, ATMECE, Mysore Page 108

Schema Diagram

Table Creation

CREATE TABLE ACTOR (

ACT_ID INT (5) PRIMARY KEY,

ACT_NAME VARCHAR (20),

ACT_GENDER CHAR (1));

CREATE TABLE DIRECTOR (
DIR_ID INT (5) PRIMARY KEY,
DIR_NAME VARCHAR (20),

DIR_PHONE BIGINT);

CREATE TABLE MOVIES

(MOV_ID INT (4) PRIMARY KEY,

MOV_TITLE VARCHAR (50),

MOV_YEAR INT (4),

MOV_LANG VARCHAR (20),

DIR_ID INT (5),

FOREIGN KEY (DIR_ID) REFERENCES DIRECTOR(DIR_ID));

CREATE TABLE MOVIES_CAST (

ACT_ID INT (5),

MOV_ID INT (5),

ROLE VARCHAR (20),

PRIMARY KEY (ACT_ID, MOV_ID),

FOREIGN KEY (ACT_ID) REFERENCES ACTOR (ACT_ID),

FOREIGN KEY (MOV_ID) REFERENCES MOVIES (MOV_ID));

DBMS Laboratory with mini Project 21CSL55

Dept. of CSE, ATMECE, Mysore Page 109

CREATE TABLE RATING (

MOV_ID INT (5) PRIMARYKEY,

REV_STARS VARCHAR (25),

FOREIGN KEY (MOV_ID) REFERENCES MOVIES (MOV_ID));

 Table Descriptions

DESC ACTOR;

DESC DIRECTOR;

DESC MOVIES;

DESC MOVIES_CAST;

DBMS Laboratory with mini Project 21CSL55

Dept. of CSE, ATMECE, Mysore Page 110

DESC RATING;

Insertion of Values to Tables

INSERT INTO ACTOR VALUES (1,’MADHURI DIXIT’,’F’);
INSERT INTO ACTOR VALUES (2,’AAMIR KHAN’,’M’);
INSERT INTO ACTOR VALUES (3,’JUHI CHAWLA’,’F’);
INSERT INTO ACTOR VALUES (4,’SRIDEVI’,’F’);

INSERT INTO DIRECTOR VALUES (100,’SUBHASH KAPOOR’, 9563400156);

INSERT INTO DIRECTOR VALUES(102,'ALAN TAYLOR',9971960035);

INSERT INTO DIRECTOR VALUES (103,’SANTHOSH ANANDDRAM’, 9934611125);

INSERT INTO DIRECTOR VALUES (104,’IMTIAZ ALI’, 8539920975);

INSERT INTO DIRECTOR VALUES (105,'HITCHCOCK',7766138911);

INSERT INTO DIRECTOR VALUES (106,'STEVEN SPIELBERG',9966138934);

INSERT INTO MOVIES VALUES (501,'JAB HARRY MET SEJAL',2017,'HINDI',104);

INSERT INTO MOVIES VALUES (502,'RAJAKUMARA',2017,'KANNADA',103);

INSERT INTO MOVIES VALUES (503,'JOLLY LLB 2', 2013,'HINDI', 100);

INSERT INTO MOVIES VALUES (504,'TERMINATOR GENESYS',2015,'ENGLISH',102);

INSERT INTO MOVIES VALUES (505,'JAWS',1975,'ENGLISH',106);

INSERT INTO MOVIES VALUES (506,'BRIDGE OF SPIES',2015,'ENGLISH', 106);

INSERT INTO MOVIES VALUES (507,'VERTIGO',1943,'ENGLISH',105);

INSERT INTO MOVIES VALUES (508,’SHADOW OF A DOUBT',1943,'ENGLISH', 105);

INSERT INTO MOVIES_CAST VALUES (1, 501,'HEROINE');

INSERT INTO MOVIES_CAST VALUES (1, 502,'HEROINE');

INSERT INTO MOVIES_CAST VALUES (3, 503,'COMEDIAN');

INSERT INTO MOVIES_CAST VALUES (4, 504,'GUEST');

INSERT INTO MOVIES_CAST VALUES (4, 501,'HERO');

INSERT INTO RATING VALUES (501, 4);

INSERT INTO RATING VALUES (502, 2);

INSERT INTO RATING VALUES (503, 5);

INSERT INTO RATING VALUES (504, 4);

INSERT INTO RATING VALUES (505, 3);

INSERT INTO RATING VALUES (506, 2);

DBMS Laboratory with mini Project 21CSL55

Dept. of CSE, ATMECE, Mysore Page 111

SELECT * FROM ACTOR;

ACT_ID ACT_NAME ACT

1 MADHURI DIXIT F

2 AAMIR KHAN M

3 JUHI CHAWLA F

4 SRIDEVI F

SELECT * FROM DIRECTOR;

DIR_ID DIR_NAME DIR_PHONE

100 SUBHASH KAPOOR 56340015

102 ALAN TAYLOR 719600310

103 SANTHOSH ANANDDRAM 99346111

104 IMTIAZ ALI 85399209

105 HITCHCOCK 7766138911

106 STEVEN SPIELBERG 9966138934

SELECT * FROM MOVIES;

MOV_ID MOV_TITLE MOV_YEAR MOV_LANG DIR_ID

501 JAB HARRY MET SEJAL 2017 HINDI 104

502 RAJAKUMARA 2017 KANNADA 103

503 JOLLY LLB 2 2013 HINDI 100

504 TERMINATOR GENESYS 2015 ENGLISH 102

505 JAWS 1975 ENGLISH 106

506 BRIDGE OF SPIES 2015 ENGLISH 106

507 VERTIGO 1958 ENGLISH 105

508 SHADOW OF A DOUBT 1943 ENGLISH 105

DBMS Laboratory with mini Project 21CSL55

Dept. of CSE, ATMECE, Mysore Page 112

SELECT * FROM MOVIE_CAST;

ACT_ID MOV_ID ROLE

1 501 HEROINE

1 502 HEROINE

3 503 COMEDIAN

4 504 GUEST

4 501 HERO

SELECT * FROM RATING;

MOV_ID REV_STARS

501 4

502 2

503 5

504 4

505 3

506 2

507 2

508 4

DBMS Laboratory with mini Project 21CSL55

Dept. of CSE, ATMECE, Mysore Page 113

Queries:

1. List the titles of all movies directed by‘Hitchcock’.

SELECT MOV_TITLE FROM MOVIES WHERE DIR_ID IN (SELECT DIR_ID FROM

DIRECTOR WHERE DIR_NAME = ‘HITCHCOCK’);

OR

SELECT MOV_TITLE FROM MOVIES M, DIRECTOR D WHERE M.DIR_ID=D.DIR_ID

AND DIR_NAME='HITCHCOCK';

2. Find the movie names where one or more actors acted in two or more movies.

SELECT MOV_TITLE FROM MOVIES M,MOVIES_CAST MV

WHERE M.MOV_ID=MV.MOV_ID AND ACT_ID IN(SELECT ACT_ID FROM

MOVIES_CAST GROUP BY ACT_ID HAVING COUNT(ACT_ID)>1) GROUP BY

MOV_TITLE HAVING COUNT(*)>1;

3. List all actors who acted in a movie before 2000 and also in a movie after 2015 (use JOIN

operation).
SELECT ACT_NAME, MOV_TITLE, MOV_YEAR FROM ACTOR A JOIN

MOVIE_CAST C ON A.ACT_ID=C.ACT_ID INNER JOIN MOVIES M

ON C.MOV_ID=M.MOV_ID WHERE M.MOV_YEAR NOT BETWEEN 2000 AND 2015;

DBMS Laboratory with mini Project 21CSL55

Dept. of CSE, ATMECE, Mysore Page 114

4. Find the title of movies and number of stars for each movie that has at least one rating and

find the highest number of stars that movie received. Sort the result by movietitle.

SELECT MOV_TITLE,MAX(REV_STARS) FROM MOVIES M ,RATING R WHERE

M.MOV_ID=R.MOV_ID GROUP BY MOV_TITLE HAVING MAX(REV_STARS)>0 ORDER

BY MOV_TITLE;

5. Update rating of all movies directed by ‘Steven Spielberg’ to5

UPDATE RATING SET REV_STARS=5 WHERE MOV_ID IN(SELECT MOV_ID FROM

MOVIES WHERE DIR_ID IN(SELECT DIR_ID FROM DIRECTOR

WHERE DIR_NAME='STEVEN SPIELBERG'));

OR

UPDATE RATING R, MOVIES M, DIRECTOR D SET REV_STARS=5 WHERE

R.MOV_ID=M.MOV_ID AND M.DIR_ID=D.DIR_ID AND DIR_NAME='STEVEN

SPIELBERG';

Program Outcomes:

The students are able to

 Create, Update and query on thedatabase.

 Demonstrate the working of different concepts ofDBMS

 Implement, analyze and evaluate the project developed for anapplication.

DBMS Laboratory with mini Project 21CSL55

Dept. of CSE, ATMECE, Mysore Page 115

D. Consider the schema for CollegeDatabase:

STUDENT (USN, SName, Address, Phone, Gender)

SEMSEC (SSID, Sem, Sec)

CLASS (USN, SSID)

SUBJECT (Subcode, Title, Sem, Credits)

IAMARKS (USN, Subcode,SSID, Test1, Test2, Test3, FinalIA)

Write SQL queries to

1. List all the student details studying in fourth semester ‘C’section.

2. Compute the total number of male and female students in each semester and in each

section.

3. Create a view of Test1 marks of student USN ‘1BI15CS101’ in allsubjects.

4. Calculate the FinalIA (average of best two test marks) and update the corresponding

table for allstudents.

5. Categorize students based on the followingcriterion:

If FinalIA = 17 to 20 then CAT =‘Outstanding’

If FinalIA = 12 to 16 then CAT = ‘Average’

If FinalIA< 12 then CAT = ‘Weak’

Give these details only for 8th semester A, B, and C section students.

Solution:

Entity - Relationship Diagram

Program Objectives:

This course will enable students to

 Foundation knowledge in database concepts, technology and practice to groomstudents
into well-informed database applicationdevelopers.

 Strong practice in SQL programming through a variety of databaseproblems.

 Develop database applications using front-end tools and back-endDBMS.

DBMS Laboratory with mini Project 21CSL55

Dept. of CSE, ATMECE, Mysore Page 116

Schema Diagram

Table Creation

CREATE TABLE STUDENT (

USN VARCHAR (10) PRIMARY KEY,

SNAME VARCHAR (25),

ADDRESS VARCHAR (25),

PHONE BIGINT (10),

GENDER CHAR (1));

CREATE TABLE SEMSEC (

SSID VARCHAR (5) PRIMARY KEY,

SEM INT (5),

SEC CHAR (1));

CREATE TABLE CLASS (

USN VARCHAR (10),

SSID VARCHAR (5),

PRIMARY KEY (USN, SSID),

FOREIGN KEY (USN) REFERENCES STUDENT (USN),

FOREIGN KEY (SSID) REFERENCES SEMSEC (SSID));

CREATE TABLE SUBJECT(

SUBCODE VARCHAR(10)

PRIMARY KEY,

TITLE VARCHAR(20),

SEM INT,

CREDITS INT);

DBMS Laboratory with mini Project 21CSL55

Dept. of CSE, ATMECE, Mysore Page 117

CREATE TABLE IAMARKS (

USN VARCHAR (10),

SUBCODE VARCHAR (8),

SSID VARCHAR (5),

TEST1 INT (2),

TEST2 INT (2),

TEST3 INT (2),

FINALIA INT (2),

PRIMARY KEY (USN, SUBCODE, SSID),

FOREIGN KEY (USN) REFERENCES STUDENT (USN),

FOREIGN KEY (SUBCODE) REFERENCES SUBJECT (SUBCODE), FOREIGN

KEY (SSID) REFERENCES SEMSEC (SSID));

Table Descriptions

DESC STUDENT;

DESC SEMSEC;

DESC CLASS;

DBMS Laboratory with mini Project 21CSL55

Dept. of CSE, ATMECE, Mysore Page 118

DESC SUBJECT;

DESC IAMARKS;

Insertion of values to tables

INSERT INTO STUDENT VALUES ('4AD13CS020','AKSHAY','BELAGAVI', 8877881122,'M');

INSERT INTO STUDENT VALUES ('4AD13CS062','SANDHYA','BENGALURU',

7722829912,'F');

INSERT INTO STUDENT VALUES ('4AD13CS091','TEESHA','BENGALURU', 7712312312,'F');

INSERT INTO STUDENT VALUES ('4AD13CS066','SUPRIYA','MANGALURU',

8877881122,'F');

INSERT INTO STUDENT VALUES ('4AD14CS010','ABHAY','BENGALURU', 9900211201,'M');

INSERT INTO STUDENT VALUES ('4AD14CS032','BHASKAR','BENGALURU',

9923211099,'M');

INSERT INTO STUDENT VALUES ('4AD14CS025','ASMI','BENGALURU', 7894737377,'F');

INSERT INTO STUDENT VALUES ('4AD15CS011','AJAY','TUMKUR', 9845091341,'M');

INSERT INTO STUDENT VALUES ('4AD15CS029','CHITRA','DAVANGERE', 7696772121,'F');

INSERT INTO STUDENT VALUES ('4AD15CS045','JEEVA','BELLARY', 9944850121,'M');

INSERT INTO STUDENT VALUES ('4AD15CS091','SANTOSH','MANGALURU',

8812332201,'M')

INSERT INTO STUDENT VALUES ('4AD16CS045','ISMAIL','KABURGI', 9900232201,'M');

INSERT INTO STUDENT VALUES ('4AD16CS088','SAMEERA','SHIMOGA', 9905542212,'F');

INSERT INTO STUDENT VALUES ('4AD16CS122','VINAYAKA','CHIKAMAGALUR',

8800880011,'M');

DBMS Laboratory with mini Project 21CSL55

Dept. of CSE, ATMECE, Mysore Page 119

INSERT INTO SEMSEC VALUES ('CSE8A', 8,'A');

INSERT INTO SEMSEC VALUES ('CSE8B', 8,'B');

INSERT INTO SEMSEC VALUES ('CSE8C', 8,'C');

INSERT INTO SEMSEC VALUES ('CSE7A', 7,'A');

INSERT INTO SEMSEC VALUES ('CSE7B', 7,'B');

INSERT INTO SEMSEC VALUES ('CSE7C', 7,'C');

INSERT INTO SEMSEC VALUES ('CSE6A', 6,'A');

INSERT INTO SEMSEC VALUES ('CSE6B', 6,'B');

INSERT INTO SEMSEC VALUES ('CSE6C', 6,'C');

INSERT INTO SEMSEC VALUES ('CSE5A', 5,'A');

INSERT INTO SEMSEC VALUES ('CSE5B', 5,'B');

INSERT INTO SEMSEC VALUES ('CSE5C', 5,'C');

INSERT INTO SEMSEC VALUES ('CSE4A', 4,'A');

INSERT INTO SEMSEC VALUES ('CSE4B', 4,'B');

INSERT INTO SEMSEC VALUES ('CSE4C', 4,'C');

INSERT INTO SEMSEC VALUES ('CSE3A', 3,'A');

INSERT INTO SEMSEC VALUES ('CSE3B', 3,'B');

INSERT INTO SEMSEC VALUES ('CSE3C', 3,'C');

INSERT INTO SEMSEC VALUES ('CSE2A', 2,'A');

INSERT INTO SEMSEC VALUES ('CSE2B', 2,'B');

INSERT INTO SEMSEC VALUES ('CSE2C', 2,'C');

INSERT INTO SEMSEC VALUES ('CSE1A', 1,'A');

INSERT INTO SEMSEC VALUES ('CSE1B', 1,'B');

INSERT INTO SEMSEC VALUES ('CSE1C', 1,'C');

INSERT INTO CLASS VALUES ('4AD13CS020','CSE8A');

INSERT INTO CLASS VALUES ('4AD13CS062','CSE8A');

INSERT INTO CLASS VALUES ('4AD13CS066','CSE8B');

INSERT INTO CLASS VALUES ('4AD13CS091','CSE8C');

INSERT INTO CLASS VALUES ('4AD14CS010','CSE7A');

INSERT INTO CLASS VALUES ('4AD14CS025','CSE7A');

INSERT INTO CLASS VALUES ('4AD14CS032','CSE7A');

INSERT INTO CLASS VALUES ('4AD15CS011','CSE4A');

INSERT INTO CLASS VALUES ('4AD15CS029','CSE4A');

INSERT INTO CLASS VALUES ('4AD15CS045','CSE4B');

INSERT INTO CLASS VALUES ('4AD15CS091','CSE4C');

INSERT INTO CLASS VALUES ('4AD16CS045','CSE3A');

INSERT INTO CLASS VALUES ('4AD16CS088','CSE3B');

INSERT INTO CLASS VALUES ('4AD16CS122','CSE3C');

INSERT INTO SUBJECT VALUES ('10CS81','ACA', 8, 4);

INSERT INTO SUBJECT VALUES ('10CS82','SSM', 8, 4);

INSERT INTO SUBJECT VALUES ('10CS83','NM', 8, 4);

INSERT INTO SUBJECT VALUES ('10CS84','CC', 8, 4);

INSERT INTO SUBJECT VALUES ('10CS85','PW', 8, 4);

INSERT INTO SUBJECT VALUES ('10CS71','OOAD', 7, 4);

DBMS Laboratory with mini Project 21CSL55

Dept. of CSE, ATMECE, Mysore Page 120

INSERT INTO SUBJECT VALUES ('10CS72','ECS', 7, 4);

INSERT INTO SUBJECT VALUES ('10CS73','PTW', 7, 4);

INSERT INTO SUBJECT VALUES ('10CS74','DWDM', 7, 4); I

INSERT INTO SUBJECT VALUES ('10CS75','JAVA', 7, 4);

INSERT INTO SUBJECT VALUES ('10CS76','SAN', 7, 4);

INSERT INTO SUBJECT VALUES ('15CS51', 'ME', 5, 4);

INSERT INTO SUBJECT VALUES ('15CS52','CN', 5, 4);

INSERT INTO SUBJECT VALUES ('15CS53','DBMS', 5, 4);

INSERT INTO SUBJECT VALUES ('15CS54','ATC', 5, 4);

INSERT INTO SUBJECT VALUES ('15CS55','JAVA', 5, 3);

INSERT INTO SUBJECT VALUES ('15CS56','AI', 5, 3);

INSERT INTO SUBJECT VALUES ('15CS41','M4', 4, 4);

INSERT INTO SUBJECT VALUES ('15CS42','SE', 4, 4);

INSERT INTO SUBJECT VALUES ('15CS43','DAA', 4, 4);

INSERT INTO SUBJECT VALUES ('15CS44','MPMC', 4, 4);

INSERT INTO SUBJECT VALUES ('15CS45','OOC', 4, 3);

INSERT INTO SUBJECT VALUES ('15CS46','DC', 4, 3);

INSERT INTO SUBJECT VALUES ('15CS31','M3', 3, 4);

INSERT INTO SUBJECT VALUES ('15CS32','ADE', 3, 4);

INSERT INTO SUBJECT VALUES ('15CS33','DSA', 3, 4);

INSERT INTO SUBJECT VALUES ('15CS34','CO', 3, 4);

INSERT INTO SUBJECT VALUES ('15CS35','USP', 3, 3);

INSERT INTO SUBJECT VALUES ('15CS36','DMS', 3, 3);

INSERT INTO IAMARKS VALUES ('4AD13CS091','10CS81','CSE8C', 15, 16, 18,0);

INSERT INTO IAMARKS VALUES ('4AD13CS091','10CS82','CSE8C', 12, 19, 14,0);

INSERT INTO IAMARKS VALUES ('4AD13CS091','10CS83','CSE8C', 19, 15, 20,0);

INSERT INTO IAMARKS VALUES ('4AD13CS091','10CS84','CSE8C', 20, 16, 19,0);

INSERT INTO IAMARKS VALUES ('4AD13CS091','10CS85','CSE8C', 15, 15, 12,0);

SELECT * FROM STUDENT;

 SELECT * FROM

DBMS Laboratory with mini Project 21CSL55

Dept. of CSE, ATMECE, Mysore Page 121

 SELECT * FROM SEMSEC;

SELECT * FROM CLASS;

DBMS Laboratory with mini Project 21CSL55

Dept. of CSE, ATMECE, Mysore Page 122

SELECT * FROM SUBJECT;

SELECT * FROM IAMARKS;

DBMS Laboratory with mini Project 21CSL55

Dept. of CSE, ATMECE, Mysore Page 123

Queries:

1. List all the student details studying in fourth semester ‘C’section.

SELECT S.*, SS.SEM, SS.SEC FROM STUDENT S, SEMSEC SS, CLASS C WHERE

 S.USN = C.USN AND SS.SSID = C.SSID AND SS.SEM = 4 AND SS.SEC=’C’

2. Compute the total number of male and female students in each semester and ineach section.

SELECT SS.SEM, SS.SEC, S.GENDER, COUNT (S.GENDER) AS COUNT FROM

STUDENT S, SEMSEC SS, CLASS C

WHERES.USN = C.USN AND SS.SSID =C.SSID

GROUP BY SS.SEM, SS.SEC,S.GENDER ORDER BY SEM;

3. Create a view of Test1 marks of student USN ‘1BI15CS101’ in allsubjects.

CREATE VIEW VW_STUDENT_TEST AS SELECT TEST1,SUBCODE FROM
IAMARKS WHERE USN=’4AD13CS091';

SELECT * FROM VW_STUDENT_TEST

DBMS Laboratory with mini Project 21CSL55

Dept. of CSE, ATMECE, Mysore Page 124

4. Calculate the FinalIA (average of best two test marks) and update thecorresponding

table for allstudents.

UPDATE IAMARKS

 SET FINALIA=GREATEST(TEST1+TEST2,TEST2+TEST3,TEST1+TEST3)/2;

Note: Before execution above SQL statement, IAMARKS table contents are:

SELECT * FROM IAMARKS;

UPDATE IAMARKS

 SET FINALIA=GREATEST(TEST1+TEST2,TEST2+TEST3,TEST1+TEST3)/2;

After executing above SQL statement, IAMARKS table contents are:

5. Categorize students based on the followingcriterion:

If FinalIA = 17 to 20 then CAT =‘Outstanding’

If FinalIA = 12 to 16 then CAT = ‘Average’

If FinalIA< 12 then CAT = ‘Weak’

Give these details only for 8th semester A, B, and C section students.

SELECT S.USN,S.SNAME,S.ADDRESS,S.PHONE,S.GENDER,

(CASE

WHEN IA.FINALIA BETWEEN 17 AND 20 THEN 'OUTSTANDING'

WHEN IA.FINALIA BETWEEN 12 AND 16 THEN 'AVERAGE'

ELSE 'WEAK'

 END) AS CAT

FROM STUDENT S, SEMSEC SS, IAMARKS IA, SUBJECT SUB WHERE S.USN = IA.USN

AND SS.SSID = IA.SSID AND SUB.SUBCODE = IA.SUBCODE AND SUB.SEM = 8;

DBMS Laboratory with mini Project 21CSL55

Dept. of CSE, ATMECE, Mysore Page 125

Program Outcomes:

The students are able to

 Create, Update and query on thedatabase.

 Demonstrate the working of different concepts ofDBMS

 Implement, analyze and evaluate the project developed for anapplication.

DBMS Laboratory with mini Project 21CSL55

Dept. of CSE, ATMECE, Mysore Page 126

E.Consider the schema for CompanyDatabase:

EMPLOYEE (SSN, Name, Address, Sex, Salary, SuperSSN,

DNo) DEPARTMENT (DNo, DName, MgrSSN, MgrStartDate)

DLOCATION (DNo,DLoc)

PROJECT (PNo, PName, PLocation, DNo)

 WORKS_ON (SSN, PNo, Hours)

Write SQL queries to

1. Make a list of all project numbers for projects that involve an employee whose last

name is ‘Scott’, either as a worker or as a manager of the department that controls the

project.

2. Show the resulting salaries if every employee working on the ‘IoT’ project is given a 10

percentraise.

3. Find the sum of the salaries of all employees of the ‘Accounts’ department, as well as

the maximum salary, the minimum salary, and the average salary in thisdepartment

4. Retrieve the name of each employee who works on all the projects controlled by

department number 5 (use NOT EXISTS operator).

5. For each department that has more than five employees, retrieve the department

number and the number of its employees who are making more than Rs.6,00,000.

Solution:

Entity-Relationship Diagram

Program Objectives:

This course will enable students to

 Foundation knowledge in database concepts, technology and practice to groomstudents

into well-informed database applicationdevelopers.

 Strong practice in SQL programming through a variety of databaseproblems.

 Develop database applications using front-end tools and back-endDBMS.

DBMS Laboratory with mini Project 21CSL55

Dept. of CSE, ATMECE, Mysore Page127

Schema Diagram

Table Creation

CREATE TABLE DEPARTMENT

(

DNO VARCHAR (20) PRIMARY KEY,

DNAME VARCHAR (20),

MGRSTARTDATE DATE,

MGRSSN VARCHAR (20)

);

CREATE TABLE EMPLOYEE (

SSN VARCHAR (20) PRIMARY KEY,

FNAME VARCHAR (20),

LNAME VARCHAR (20),

ADDRESS VARCHAR (100),

SEX CHAR (1),

SALARY INT (10),

SUPERSSN VARCHAR (20),

DNO VARCHAR (20),

FOREIGN KEY (SUPERSSN) REFERENCES EMPLOYEE (SSN),

FOREIGN KEY (DNO) REFERENCES DEPARTMENT (DNO));

NOTE: Once DEPARTMENT and EMPLOYEE tables are created we must alter department

table to add foreign constraint MGRSSN using sql command

DBMS Laboratory with mini Project 21CSL55

Dept. of CSE, ATMECE, Mysore Page128

ALTER TABLE DEPARTMENT ADD FOREIGN KEY(MGRSSN) REFERENCES

EMPLOYEE(SSN);

CREATE TABLE DLOCATION (

DLOC VARCHAR (20),

DNO VARCHAR (20),

PRIMARY KEY (DNO, DLOC),

FOREIGN KEY (DNO) REFERENCES DEPARTMENT (DNO));

CREATE TABLE PROJECT (

PNO INT (10) PRIMARY KEY,

PNAME VARCHAR (20),

PLOCATION VARCHAR (20),

DNO VARCHAR (20),

FOREIGN KEY (DNO) REFERENCES DEPARTMENT (DNO));

Table Descriptions

DESC EMPLOYEE;

DESC DEPARTMENT;

DESC DLOCATION;

DESC PROJECT;

DESC PROJECT

DBMS Laboratory with mini Project 21CSL55

Dept. of CSE, ATMECE, Mysore Page129

DESC WORKS_ON;

Insertion of values to tables

INSERT INTO EMPLOYEE VALUES ('ATMEECE01','JOHN','SCOTT','BANGALORE','M',

450000,NULL,NULL);

INSERT INTO EMPLOYEE VALUES ('ATMECSE01','JAMES','SMITH','BANGALORE','M',

500000,NULL,NULL);

INSERT INTO EMPLOYEE VALUES ('ATMECSE02','HEARN','BAKER','BANGALORE','M',

700000,NULL,NULL);

INSERT INTO EMPLOYEE VALUES ('ATMECSE03','EDWARD','SCOTT','MYSORE','M',

500000,NULL,NULL);

INSERT INTO EMPLOYEE VALUES ('ATMECSE04','PAVAN','HEGDE','MANGALORE','M',

650000,NULL,NULL);

INSERT INTO EMPLOYEE VALUES ('ATMECSE05','GIRISH','MALYA','MYSORE','M',

450000,NULL,NULL);

INSERT INTO EMPLOYEE VALUES ('ATMECSE06','NEHA','SN','BANGALORE','F',

800000,NULL,NULL);

INSERT INTO EMPLOYEE VALUES ('ATMEACC01','AHANA','K','MANGALORE','F',

350000,NULL,NULL);

INSERT INTO EMPLOYEE VALUES

('ATMEACC02','SANTHOSH','KUMAR','MANGALORE','M', 300000,NULL,NULL);

INSERT INTO EMPLOYEE VALUES ('ATMEISE01','VEENA','M','MYSORE','F',

600000,NULL,NULL);

INSERT INTO EMPLOYEE VALUES ('ATMEIT01','NAGESH','HR','BANGALORE','M',

500000,NULL,NULL);

INSERT INTO DEPARTMENT VALUES ('1','ACCOUNTS','2001-01-01','ATMEACC02');

INSERT INTO DEPARTMENT VALUES ('2','IT','2016-08-01','ATMEIT01');

INSERT INTO DEPARTMENT VALUES ('3','ECE','2008-6-01','ATMEECE01');

INSERT INTO DEPARTMENT VALUES ('4','ISE','2015-06-01','ATMEISE01');

INSERT INTO DEPARTMENT VALUES ('5','CSE','2002-06-01','ATMECSE05');

Note: update entries of employee table to fill missing fields SUPERSSN and DNO

DBMS Laboratory with mini Project 21CSL55

Dept. of CSE, ATMECE, Mysore Page130

UPDATE EMPLOYEE SET SUPERSSN=’ATMECSE02’, DNO=’5’ WHERE

SSN=’ATMECSE01’;

UPDATE EMPLOYEE SET SUPERSSN=’ATMECSE03’, DNO=’5’ WHERE SSN=’ATMECSE02’;

UPDATE EMPLOYEE SET SUPERSSN=’ATMECSE04’, DNO=’5’ WHERE SSN=’ATMECSE03’;

UPDATE EMPLOYEE SET DNO=’5’, SUPERSSN=’ATMECSE05’ WHERE SSN=’ATMECSE04’;

UPDATE EMPLOYEE SET DNO=’5’, SUPERSSN=’ATMECSE06’ WHERE SSN=’ATMECSE05’;

UPDATE EMPLOYEE SET DNO=’5’, SUPERSSN=NULL WHERE SSN=’ATMECSE06’;

UPDATE EMPLOYEE SET DNO=’1’, SUPERSSN=’ATMEACC02’ WHERE

SSN=’ATMEACC01’;

UPDATE EMPLOYEE SET DNO=’1’, SUPERSSN=NULL WHERE

SSN=’ATMEACC02’;

UPDATE EMPLOYEE SET DNO=’4’, SUPERSSN=NULL WHERE

SSN=’ATMEISE01’;

UPDATE EMPLOYEE SET DNO=’2’, SUPERSSN=NULL WHERE

SSN=’ATMEIT01’;

INSERT INTO DLOCATION VALUES ('BANGALORE', '1');

INSERT INTO DLOCATION VALUES ('BANGALORE', '2');

INSERT INTO DLOCATION VALUES ('BANGALORE', '3');

INSERT INTO DLOCATION VALUES ('MANGALORE', '4');

INSERT INTO DLOCATION VALUES ('MANGALORE', '5');

INSERT INTO PROJECT VALUES (100,'IOT','BANGALORE','5');

INSERT INTO PROJECT VALUES (101,'CLOUD','BANGALORE','5');

INSERT INTO PROJECT VALUES (102,'BIGDATA','BANGALORE','5');

INSERT INTO PROJECT VALUES (103,'SENSORS','BANGALORE','3');

INSERT INTO PROJECT VALUES (104,'BANK MANAGEMENT','BANGALORE','1');

INSERT INTO PROJECT VALUES (105,'SALARY MANAGEMENT','BANGALORE','1');

INSERT INTO PROJECT VALUES (106,'OPENSTACK','BANGALORE','4');

INSERT INTO PROJECT VALUES (107,'SMART CITY','BANGALORE','2');

INSERT INTO WORKS_ON VALUES (4, 'ATMECSE01', 100);

INSERT INTO WORKS_ON VALUES (6, 'ATMECSE01', 101);

INSERT INTO WORKS_ON VALUES (8, 'ATMECSE01', 102);

INSERT INTO WORKS_ON VALUES (10, 'ATMECSE02', 100);

INSERT INTO WORKS_ON VALUES (3, ‘ATMECSE04’, 100);

INSERT INTO WORKS_ON VALUES (4, 'ATMECSE05', 101);

INSERT INTO WORKS_ON VALUES (5, 'ATMECSE06', 102);

DBMS Laboratory with mini Project 21CSL55

Dept. of CSE, ATMECE, Mysore Page131

INSERT INTO WORKS_ON VALUES (6, 'ATMECSE03', 102);

INSERT INTO WORKS_ON VALUES (7, 'ATMEECE01', 103);

INSERT INTO WORKS_ON VALUES (5, 'ATMEACC01', 104);

INSERT INTO WORKS_ON VALUES (6, 'ATMEACC02', 105);

INSERT INTO WORKS_ON VALUES (4, 'ATMEISE01', 106);

INSERT INTO WORKS_ON VALUES (10, 'ATMEIT01', 107);

SELECT * FROM EMPLOYEE;

SELECT * FROM DEPARTMENT ;

SELECT * FROM DLOCATION ;

DBMS Laboratory with mini Project 21CSL55

Dept. of CSE, ATMECE, Mysore Page132

SELECT * FROM PROJECT ;

SELECT * FROM WORKS_ON

Queries:

1. Make a list of all project numbers for projects that involve an employee whose last

name is ‘Scott’, either as a worker or as a manager of the department that controls the

project.

(SELECT DISTINCT P.PNO FROM PROJECT P, DEPARTMENT D, EMPLOYEE E

WHERE E.DNO=D.DNO AND D.MGRSSN=E.SSN AND E.LNAME=’SCOTT’)

UNION

(SELECT DISTINCT P1.PNO FROM PROJECT P1, WORKS_ON W, EMPLOYEE E1

WHERE P1.PNO=W.PNO AND E1.SSN=W.SSN AND E1.LNAME=’SCOTT’)

DBMS Laboratory with mini Project 21CSL55

Dept. of CSE, ATMECE, Mysore Page133

2. Show the resulting salaries if every employee working on the ‘IoT’ project is given a 10

percentraise.

SELECT E.FNAME, E.LNAME, 1.1*E.SALARY AS INCR_SAL FROM EMPLOYEE E,

WORKS_ON W, PROJECT P WHERE E.SSN=W.SSN AND W.PNO=P.PNO AND

P.PNAME=’IOT’;

3. Find the sum of the salaries of all employees of the ‘Accounts’ department, as well as

the maximum salary, the minimum salary, and the average salary in this department

SELECT SUM (E.SALARY), MAX (E.SALARY), MIN (E.SALARY), AVG (E.SALARY)

FROM EMPLOYEE E, DEPARTMENTD WHERE E.DNO=D.DNO AND

D.DNAME=’ACCOUNTS’;

4. Retrieve the name of each employee who works on all the projects Controlled by

department number 5 (use NOT EXISTSoperator).

SELECT E.FNAME,E.LNAME FROM EMPLOYEE E WHERE NOT EXISTS

(SELECT PNO FROM PROJECT P WHERE DNO=5 AND PNO NOT IN

(SELECT PNO FROM WORKS_ON W WHERE E.SSN=SSN));

5. For each department that has more than five employees, retrieve the department

number and the number of its employees who are making more than Rs. 6, 00,000.

SELECT D.DNO, COUNT(*)

FROM DEPARTMENT D, EMPLOYEE E

WHERE D.DNO=E.DNO

DBMS Laboratory with mini Project 21CSL55

Dept. of CSE, ATMECE, Mysore Page134

AND E.SALARY>600000

AND D.DNO IN (SELECT E1.DNO

FROM EMPLOYEE E1

GROUP BY E1.DNO

HAVING COUNT (*)>5)

GROUP BY D.DNO;

Viva Questions

1. What isSQL?

Structured Query Language

2. What isdatabase?

A database is a logically coherent collection of data with some inherent meaning,

representing some aspect of real world and which is designed, built and populated with data

for a specific purpose.

3. What isDBMS?

It is a collection of programs that enables user to create and maintain a database. In other

words it is general-purpose software that provides the users with the processes of defining,

constructing and manipulating the database for various applications.

4. What is a Database system?

The database and DBMS software together is called as Database system.

Program Outcomes:

The students are able to

 Create, Update and query on thedatabase.

 Demonstrate the working of different concepts ofDBMS

 Implement, analyze and evaluate the project developed for anapplication.

DBMS Laboratory with mini Project 21CSL55

Dept. of CSE, ATMECE, Mysore Page135

5. What are Advantages ofDBMS?

 Redundancy iscontrolled.

 Unauthorized access isrestricted.

 Providing multiple userinterfaces.

 Enforcing integrityconstraints.

 Providing backup andrecovery.

6. What are Disadvantages in File ProcessingSystem?

 Data redundancy &inconsistency.

 Difficult in accessingdata.

 Dataisolation.

 Dataintegrity.

 Concurrent access is notpossible.

 SecurityProblems.

7. Define the "integrityrules"

There are two Integrity rules.

 Entity Integrity: States that “Primary key cannot have NULLvalue”

 Referential Integrity: States that “Foreign Key can be either a NULL value or should

be Primary Key value of otherrelation.

8. What is a view? How it is related to data independence?

A view may be thought of as a virtual table, that is, a table that does not really exist in its

own right but is instead derived from one or more underlying base table. In other words,

there is no stored file that direct represents the view instead a definition of view is stored in

data dictionary. Growth and restructuring of base tables is not reflected in views. Thus the

view can insulate users from the effects of restructuring and growth in the database. Hence

accounts for logical data independence.

9. What is DataModel?

A collection of conceptual tools for describing data, data relationships, data semantics and

constraints.

10. What is E-Rmodel?

DBMS Laboratory with mini Project 21CSL55

Dept. of CSE, ATMECE, Mysore Page136

This data model is based on real world that consists of basic objects called entities and of

relationship among these objects. Entities are described in a database by a set of attributes.

11. What is Object Orientedmodel?

This model is based on collection of objects. An object contains values stored in instance

variables within the object. An object also contains bodies of code that operate on the

object. These bodies of code are called methods. Objects that contain same types of values

and the same methods are grouped together into classes.

12. What is an Entity?

It is an 'object' in the real world with an independent existence.

13. What is an Entitytype?

It is a collection (set) of entities that have same attributes.

14. What is an attribute?

It is a particular property, which describes theentity.

15. What is degree of aRelation?

It is the number of attribute of its relation schema.

16. What isRelationship?

It is an association among two or more entities.

17. What is DDL (Data DefinitionLanguage)?

A data base schema is specified by a set of definitions expressed by a special language

called DDL.

18. What is DML (Data ManipulationLanguage)?

This language that enable user to access or manipulate data as organized by appropriate

datamodel.

19. What isnormalization?

It is a process of analyzing the given relation schemas based on their Functional

Dependencies (FDs) and primary key to achieve the properties

 Minimizingredundancy

 Minimizing insertion, deletion and updateanomalies.

20. What is 1 NF (NormalForm)?

The domain of attribute must include only atomic (simple, indivisible) values.

21. What is2NF?

DBMS Laboratory with mini Project 21CSL55

Dept. of CSE, ATMECE, Mysore Page137

A relation schema R is in 2NF if it is in 1NF and every non-prime attribute A in R is fully

functionally dependent on primary key.

22. What is3NF?

A relation schema R is in 3NF if it is in 2NF and for every FD X A either of the following

is true

 X is a Super-key ofR.

 A is a prime attribute ofR.

In other words, if every non prime attribute is non-transitively dependent on primary key.

23. What is BCNF (Boyce-Codd NormalForm)?

A relation schema R is in BCNF if it is in 3NF and satisfies additional constraints that for

every FD X A, X must be a candidate key.

24. What is4NF?

A relation schema R is said to be in 4NF if for every Multivalued dependency X Y that

holds over R, one of following is true

 X is subset or equal to (or) XY =R.

 X is a superkey.

25. What is5NF?

A Relation schema R is said to be 5NF if for every join dependency {R1, R2, ...,Rn} that

holds R, one the following is true

 Ri = R for somei.

 The join dependency is implied by the set of FD, over R in which the left side is key

ofR

26. What are partial, alternate,, artificial, compound and naturalkey?

PartialKey:

It is a set of attributes that can uniquely identify weak entities and that are related to same

owner entity. It is sometime called as Discriminator.

Alternate Key:

All Candidate Keys excluding the Primary Key are known as Alternate Keys.

Artificial Key:

If no obvious key, either standalone or compound is available, then the last resort is to

simply create a key, by assigning a unique number to each record or occurrence. Then this

is known as developing an artificial key.

Compound Key:

DBMS Laboratory with mini Project 21CSL55

Dept. of CSE, ATMECE, Mysore Page138

If no single data element uniquely identifies occurrences within a construct, then

combining multiple elements to create a unique identifier for the construct is known as

creating a compoundkey.

Natural Key:

When one of the data elements stored within a construct is utilized as the primary key, then

it is called the natural key.

27. What is meant by queryoptimization?

The phase that identifies an efficient execution plan for evaluating a query that has the least

estimated cost is referred to as query optimization.

28. What do you mean by atomicity andaggregation?

Atomicity:

Either all actions are carried out or none are. Users should not have to worry about the

effect of incomplete transactions. DBMS ensures this by undoing the actions of incomplete

transactions.

Aggregation:

A concept which is used to model a relationship between a collection of entities and

relationships. It is used when we need to express a relationship among relationships.

29. What is a checkpoint and when does itoccur?

A Checkpoint is like a snapshot of the DBMS state. By taking checkpoints, the DBMS can

reduce the amount of work to be done during restart in the event of subsequent crashes.

30. What do you mean by flat filedatabase?

It is a database in which there are no programs or user access languages. It has no cross-file

capabilities but is user-friendly and provides user-interface management.

31. Brief theory of Network, Hierarchical schemas and theirproperties

Network schema uses a graph data structure to organize records example for such a

database management system is CTCG while a hierarchical schema uses a tree data

structure example for such a system isIMS.

32. What is aquery?

A query with respect to DBMS relates to user commands that are used to interact with a

data base. The query language can be classified into data definition language and data

manipulation language.

33. What do you mean by Correlatedsubquery?

Subqueries, or nested queries, are used to bring back a set of rows to be used by the parent

DBMS Laboratory with mini Project 21CSL55

Dept. of CSE, ATMECE, Mysore Page139

query. Depending on how the subquery is written, it can be executed once for the parent

query or it can be executed once for each row returned by the parent query. If the subquery

is executed for each row of the parent, this is called a correlated subquery.

A correlated subquery can be easily identified if it contains any references to the parent

subquery columns in its WHERE clause. Columns from the subquery cannot be referenced

anywhere else in the parent query. The following example demonstrates a non-correlated

subquery.

E.g. Select * From CUST Where ‘2019/03/05' IN (Select ODATE From ORDER Where

CUST.CNUM = ORDER.CNUM)

34. What are the primitive operations common to all record managementsystems?

Addition, deletion and modification

35. How do you communicate with anRDBMS?

You communicate with an RDBMS using Structured Query Language (SQL)

36. Define SQL and state the differences between SQL and other conventional

programmingLanguages

SQL is a nonprocedural language that is designed specifically for data access operations on

normalized relational database structures. The primary difference between SQL and other

conventional programming languages is that SQL statements specify what data operations

should be performed rather than how to perform them.

37. What is databaseTrigger?

A database trigger is a PL/SQL block that can defined to automatically execute for insert,

update, and delete statements against a table. The trigger can e defined to execute once for

the entire statement or once for every row that is inserted, updated, or deleted.

38. What are stored-procedures? And what are the advantages of usingthem.

Stored procedures are database objects that perform a user defined operation. A stored

procedure can have a set of compound SQL statements. A stored procedure executes the

SQL commands and return the result to the client. Stored procedures are used to reduce

network traffic.

39. Which is the subset of SQL commands used to manipulate Database structures,

including tables?

Data Definition Language (DDL)

40. What operator performs pattern matching?

LIKE operator

41. What operator tests column for the absence of data?

DBMS Laboratory with mini Project 21CSL55

Dept. of CSE, ATMECE, Mysore Page140

IS NULL operator

42. What are the wildcards used for patternmatching?

For single character substitution and % for multi-character substitution

43. What are the difference between TRUNCATE and DELETEcommands?

TRUNCATE DELETE

 TRUNCATE is a DDL command  DELETE is a DML command

 TRUNCATE operation cannot be

rolled back

 DELETE operation can be rolled back

 TRUNCATE does not invoke trigger  DELETE does invoke trigger

 TRUNCATE resets auto_increment

value to 0

 DELETE does not resets

auto_increment value to 0

44. What is the use of the ADD OR DROP option in the ALTER TABLEcommand?

It is used to add/drop columns or add/drop constraints specified on the table

45. What is the use of DESC inSQL?

DESC has two purposes. It is used to describe a schema as well as to retrieve rows from table in

descending order.

The query SELECT * FROM EMP ORDER BY ENAME DESC will display the output sorted

on ENAME in descending order

46. What is the use of ON DELETE CASCADE?

Whenever rows in the master (referenced) table are deleted ,the respective rows of the child

(referencing) table with a matching foreign key column will get deleted as well. This is called a

cascade delete

Example Tables:

CREATE TABLE Customer

(

customer_idINT (6) PRIMARY KEY,

cname VARCHAR (100),

caddress VARCHAR (100)

);

CREATE TABLE Order

 (

order_id INT (6) PRIMARY KEY,

products VARCHAR (100),

payment DECIMAL(10,2),

customer_id INT (6) ,

FOREIGN KEY (customer_id) REFERENCES Customer(customer_id) ON DELETE CASCADE

DBMS Laboratory with mini Project 21CSL55

Dept. of CSE, ATMECE, Mysore Page141

);

 Customer is the master table and Order is the child table, where 'customer_id’ is primary key in

customer table and customer_id is the foreign key in Order table and represents the customer who

placed the order. When a row of Customer is deleted, any Order row matching the deleted Customer's

customer_id will also be deleted.

47. What is the use of Floor()?

The FLOOR() function returns the largest integer value that is smaller than or equal to a

number.

EXAMPLE;

SELECT FLOOR(25.75);

OUTPUT

25

48. What is the use of Truncate()?

The TRUNCATE() function truncates a number to the specified number of decimal places.

EXAMPLE;

SELECT TRUNCATE(135.375, 2);

OUTPUT

135.37

49. What is the use of CEILING?

Return the smallest integer value that is greater than or equal to 25.75:

EXAMPLE;

SELECT CEILING(25.75)

 OUTPUT

26

50. What you mean by SQL UNIQUE Constraint?

 The UNIQUE constraint ensures that all values in a column are different.

 Both the UNIQUE and PRIMARY KEY constraints provide a guarantee for uniqueness for a

column or set of columns.

 A PRIMARY KEY constraint automatically has a UNIQUE constraint.

 However, you can have many UNIQUE constraints per table, but only one PRIMARY KEY

constraint per table.

51. How to add and drop UNIQUE Constraint in table in mysql?

ALTER TABLE contacts ADD CONSTRAINT UNC_name_email UNIQUE(name,email)

ALTER TABLE contacts DROP INDEX UNC_name_email;

52. What is the Group by Clause?

DBMS Laboratory with mini Project 21CSL55

Dept. of CSE, ATMECE, Mysore Page142

 The GROUP BY clause is a SQL command that is used to group rows that have the same

values.

 The GROUP BY clause is used in the SELECT statement .Optionally it is used in conjunction

with aggregate functions to produce summary reports from the database.That's what it

does, summarizing data from the database.

 The queries that contain the GROUP BY clause are called grouped queries and only return

 single row for every grouped item.

Example:SELECT COUNT(CustomerID), Country FROM Customers

 GROUP BY Country

53. What is use of having clause in mysql

 The HAVING clause is used in the SELECT statement to specify filter conditions for a group

of rows or aggregates.

 The HAVING clause is often used with the GROUP BY clause to filter groups based on a

specified condition. If the GROUP BY clause is omitted, the HAVING clause behaves like

the WHERE clause.

 Notice that the HAVING clause applies a filter condition to each group of rows, while

the WHERE clause applies the filter condition to each individual row.

Example:SELECT COUNT(CustomerID), Country FROM Customers

 GROUP BY CountryHAVING COUNT(CustomerID) > 5;

54. What is distinct clause in SQL?

When querying data from a table, you may get duplicate rows. In order to remove these

duplicate rows, you use the DISTINCT clause in the SELECT statement.

Example:SELECT DISTINCT columns FROM table_name WHERE where_conditions;

55. What is a union?

Unions combine the results from multiple SELECT queries into a consolidated result set.

The only requirements for this to work is that the number of columns should be the same from

all the SELECT queries which needs to be combined

http://www.mysqltutorial.org/mysql-select-statement-query-data.aspx
http://www.mysqltutorial.org/mysql-group-by.aspx
http://www.mysqltutorial.org/mysql-where/
http://www.mysqltutorial.org/mysql-select-statement-query-data.aspx

DBMS Laboratory with mini Project 21CSL55

Dept. of CSE, ATMECE, Mysore Page143

Additional Queries
CREATE command

CREATE TABLE Employee

(

Empno int(4) primary key,

Empname varchar(50),

job varchar(40),

Hiredate date,

Salary decimal(10,2),

Deptno int(7),

Age int(10)

);

DESC command

DESC Employee;

INSERT command

Insert the values into the table as specified.

1) Insert into Employee values(1000,'Hemanth’,’Manager’,’2018-11-17’,35000, 30, 38);

2) Insert into Employee values(1001, 'Nitin’,’Manager’,’2018-05-01’,45000, 10, 42);

3) Insert into Employee values(1002, 'Sachin’,’Salesman’,’2018-01-09’,18000, 20, 28);

4) Insert into Employee values(1003, 'Deepak’,’Clerk’,’2018-05-15’,15000, 40, 34);

5) Insert into Employee values(1004, 'Ajay’,’Analyst’,’2018-10-22’,60000, 50, 45);

6) Insert into Employee values(1005, 'Arun’,’Programmer’,’2018-7-24’,25000, 60,25);

DBMS Laboratory with mini Project 21CSL55

Dept. of CSE, ATMECE, Mysore Page144

Queries:

Problems on select command:

1) Display the details of all managers of Employee Table

SELECT * FROM Employee WHERE job=’Manager’;

2) Display the details of all employees getting salary less than 30,000.

SELECT * FROM Employee WHERE salary<30000;

3) Display the details of employees who age is between 35 and 45

SELECT * FROM Employee WHERE age BETWEEN 35AND 45;

4) Display the details of Clerks who have joined after 01-MAR-05.

SELECT * FROM Employee WHERE job=’Clerk’ AND hiredate>’2018-03-05’;

5) Sort the details in descending order of Empno.

SELECT * FROM Employee ORDER BY Empno DESC;

6) Sort the details of employees in ascending order of name

SELECT * FROM Employee ORDER BY Empname

7) Display the details of employees whose names contain ‘i’ in them.

SELECT * FROM Employee WHERE Empname LIKE '%i%';

8) Display the details of employees whose names starts with ‘a’ in them.

SELECT * FROM Employee WHERE Empname LIKE 'a%';

DBMS Laboratory with mini Project 21CSL55

Dept. of CSE, ATMECE, Mysore Page145

9) Display the details of employees whose names does not starts with ‘a’ in them.

SELECT * FROM Employee WHERE Empname NOT LIKE 'a%';

10) Display the employee details whose names have exactly 4 characters.

SELECT * FROM Employee WHERE length(Empname)=4

11)Copy all the records of their from employee table and insert the records into a temp table

with column names same as in Employee table

CREATE TABLE TEMP SELECT * FROM Employee;

Problems on update command:

1. Update the salary by 10% hike to Managerworking in department number 20 and30

SOL: UPDATE EMP SET SAL = SAL * 1. 1 WHERE Deptno IN (20,30) AND JOB

=‘ Manager’;

2. Give 5% raise in salary to all theSalesman

SOL1:UPDATE EMPLOYEE SET Salary=Salary*1.15 WHERE JOB='Salesman';

OR

SOL2 :UPDATE EMPLOYEE SET Salary=Salary+(Salary * 15/100) WHERE

JOB='Salesman';

3. Change the department no of Sachin to40

SOL: UPDATE EMP SET DEPTNO = 40 WHERE Empname = ‘Sachin;

4. Update all employee name to uppercase

SOL: UPDATE EMPLOYEE SET Empname=upper(Empname);

Problems on delete command:

1. Delete all the records ofemployees

SOL: DELETE FROM Employee;

2. Delete the records of employee name Ajay’s only

SOL: DELETE FROM EMP WHERE ENAME = ‘Ajay’;

3. Delete the record of employee table whose Empno is 1005

SOL: DELETE FROM EMP WHERE Empno =1005;

DBMS Laboratory with mini Project 21CSL55

Dept. of CSE, ATMECE, Mysore Page146

4. Delete the first five records of employeetable

SOL: DELETE FROM EMPLOYEE LIMIT 5;

ALTER command

1. How to create database name COLLEGE ?

CREATE DATABASE COLLEGE;

2. How Modify datetype of age column in Employee table

ALTER TABLE Employee MODIFY age int(3);

3. How to rename column name of job to Designation in Employee table?

ALTER TABLE Employee CHANGE job Designation varchar(40);

4. How to add column Commission in Employee table?

ALTER TABLE Employee add Commissionvarchar(40);

5. How to drop column Commission in Employee table?

ALTER TABLE Employee DROP column Commission;

6. How to add primary key to Employee table?

ALTER TABLE Employee add primary key(Empno);

7. How to drop primary key to Employee table?

ALTER TABLE Employee DROPprimary key;

8. How to rename employee table?

RENAME TABLE Employee to Employee_Details

9. How to delete contents of Employee table?

DELETE FROM Employee;

OR

TRUNCATE Employee;

10. How to drop Employee table?

DROP TABLE Employee;

11. How to drop database name COLLEGE?

DROP DATABASE COLLEGE

	13thKM Stone, Bannur Road, Mysore - 560 028
	SUBJECT: DBMS LABORATORY WITH MINI PROJECT
	Vision
	Mission
	Vision of the Department
	Mission of the Department
	Program outcomes (POs)
	Engineering Graduates will be able to:

	Program Specific Outcomes (PSOs)
	Program Educational Objectives (PEOs):
	DBMS LABORATORY WITH MINI PROJECT
	CREDITS – 02
	Description (If any):
	PART-B: Mini Project (Max. Exam Mks. 30)
	Lab Experiments: Part A: SQL Programming
	Part B: Mini project
	Conduction of Practical Examination:

	CONTENTS
	INTRODUCTION TO DATABASE
	What is Database?
	RDBMS Terminology:
	SQL Data Types
	Each column in a database table is required to have a name and a data type.
	DATA TYPES
	DATE AND TIME TYPES
	The MySQL date and time data types are as follows −
	STRING TYPES
	This list describes the common string data types in MySQL.
	BASIC QUERIES IN SQL
	SIMPLE SQL QUERIES
	Example of a simple query on one relation
	Example of a simple query on two relations
	Example of a simple query on three relations
	ALIASES, * AND DISTINCT, EMPTY WHERE-CLAUSE
	Example
	UNSPECIFIED WHERE-clause
	Query 4: Retrieve the SSN values for all employees.
	USE OF *
	Retrieve all the attribute values of EMPLOYEES who work in department 5.
	Retrieve all the attributes of an employee and attributes of DEPARTMENT he works in for every employee of ‘Research’ department.
	USE OF DISTINCT
	SET OPERATIONS
	Query 5: Make a list of all project numbers for projects that involve an employee whose last name is 'Smith' as a worker or as a manager of the department that controls the project.
	UNION
	NESTING OF QUERIES
	Query 6: Retrieve the name and address of all employees who work for the 'Research' department.
	CORRELATED NESTED QUERIES
	Query 7: Retrieve the name of each employee who has a dependent with the same first name as the employee.
	THE EXISTS FUNCTION
	Query 8: Retrieve the names of employees who have no dependents.
	EXPLICIT SETS
	Query 9: Retrieve the social security numbers of all employees who work on project number 1, 2, or 3.
	Query 10: Retrieve the names of all employees who do not have supervisors.
	AGGREGATE FUNCTIONS
	Query 11: Find the maximum salary, the minimum salary, and the average salary among all employees.
	Query 12: Find the maximum salary, the minimum salary, and the average salary among employees who work for the 'Research' department.
	Queries 13 and 14: Retrieve the total number of employees in the company (Q13), and the number of employees in the 'Research' department (Q14).
	GROUPING
	Query 15: For each department, retrieve the department number, the number of employees in the department, and their averagesalary.
	Query 16: For each project, retrieve the project number, project name, and the number of employees who work on that project.
	THE HAVING-CLAUSE
	Query 17: For each project on which more than two employees work, retrieve the project number, project name, and the number of employees who work on that project.
	SUBSTRING COMPARISON
	Query 18: Retrieve all employees whose address is in Houston, Texas. Here, the value ofthe ADDRESS attribute must contain the substring ‘Houston,TX’ init.
	Query 19: Retrieve all employees who were born during the 1950s.
	ARITHMETIC OPERATIONS
	Query 20: Show the effect of giving all employees who work on the 'ProductX' project a 10% raise.
	ORDER BY
	Query 21: Retrieve a list of employees and the projects each works in, ordered by the employee's department, and within each department ordered alphabetically by employee lastname.
	MORE EXAMPLE QUERIES:
	Query 23: List the names of managers who have least one dependent.
	SPECIFYING UPDATES IN SQL
	Example:
	DELETE
	Examples:
	UPDATE
	Concept of Normalization
	Normal Forms
	First Normal Form (1NF)
	INTRODUCTION TO OPERATORS IN MYSQL
	1.Arithmetic Operators
	Examples of Arithmetic Operators
	SELECT 150 +250;
	Output
	400
	SELECT 145 - 75;
	Output (1)
	70
	SELECT 17 * 5;
	Output (2)
	85
	SELECT 49 / 7;
	Output (3)
	7.0000
	SELECT 21 % 5;
	Output (4)
	1
	2.Comparison Operators
	The comparison operators in MySql are used to compare values between operands and return true or false according to the condition specified in the statement.
	3. Logical Operators
	The logical operators used in MySQL are shown below.
	Let us take an example of CUSTOMERtable as shown below to understand how to use the comparison operators as stated above while performing MySQL queries.

	CUSTOMERTABLE
	Below is script for creating table CUSTOMER
	Below is script for Inserting values into CUSTOMER Table
	Insert into Customer values (1,"Anand", 25,"Bangalore", 30000.00);
	Insert into Customer values(2, "Sandeep", 27,"Hubli", 55000.00);
	Insert into Customer values(3, "Sharath", 26,"Bangalore", 60000.00);
	Insert into Customer values(4, "Manohar", 31,"Mangalore", 32000.00);
	Insert into Customer values(5, 'Hemanth', 29,'Shimoga', 40000.00);
	Insert into Customer values(6, 'Nithin', 30,'Belgaum', 75000.00);
	Insert into Customer values(7, "Nishant", 32,"Mysore",20000.00);
	Insert into Customer values(8, "Deepak", 32,"Mysore",25000.00);
	Insert into Customer values(9, "Bharath", 39,"Mysore",85000.00);
	Below is the screen shot showing contents of customer table.
	MySQL Aggregate Functions
	Syntax:
	The following are the syntax to use aggregate functions in MySQL:
	function_name (DISTINCT | ALL expression)
	In the above syntax, we had used the following parameters:
	 First, we need to specify the name of the aggregate function.
	 Second, we use the DISTINCT modifier when we want to calculate the result based on distinct values or ALL modifiers when we calculate all values, including duplicates.
	 The default is ALL.
	 Third, we need to specify the expression that involves columns and arithmetic operators.
	 There are various aggregate functions available in MySQL.
	 Some of the most commonly used aggregate functions are summarised in the below table:;
	Count():
	Count(*): Returns total number of records .
	Count(salary): Return number of Non Null values over the column salary.
	Count(Distinct Salary): Return number of distinct Non Null values over the column salary
	Sum():
	sum(salary): Sum all Non Null values of Column salary
	sum(Distinct salary): Sum of all distinct Non-Null values
	Avg():
	Avg(salary) = Sum(salary) / count(salary) = 310/5
	Avg(Distinct salary) = sum(Distinct salary) / Count(Distinct Salary)
	Min() and Max():
	Min(salary): Minimum value in the salary column except NULL
	Max(salary): Maximum value in the salary
	Below are Sample queries uwhic uses Aggregate function
	SELECT MAX(salary) FROM CUSTOMER;
	Output:
	SELECT SUM (salary)FROM CUSTOMER;
	Output
	Below is script for creating table employees
	Below is script for Inserting values into CUSTOMER Table (1)
	Insert into employees values(101,'Hemanth',32,'Mysore',20000);
	Insert into employees values(102,'Mohan',32,'Belgaum',30000);
	Insert into employees values(103,'Deepak',40,'Mangalore',100000)
	Insert into employees values(104,'Nitin',35,'Bangalore',40000)
	Insert into employees values(105,'Sandeep',32,'Mangalore',50000);
	Insert into employees values(106,'Yogesh',45,'Mysore',70000)
	Insert into employees values(107,'Rohit',35,'Bangalore',60000)
	Insert into employees values(108,'Bharath',40,'Hubli',80000);
	Below is the screen shot showing contents of employees table.
	MySQLCount()FunctionwithHAVINGandORDERBYClause
	Letussee anotherclausethatuses ORDERBY andHavingclausewith thecount()function.Execute the following statement that gives the employee age who has at least two agesameand sortsthem
	basedonthecountresult:
	MySQLsum()FunctionwithHAVINGandORDERBYClause
	Letussee anotherclausethatuses ORDERBY andHavingclausewith thesum()unction.Execute the following statement that gives the sum of salary who has at least two city and sum of salary should be greaten or equal to 100000 annd sortsthem basedonthesalary
	In Above Ouput ,salary can sorted in descending order by salary using order by clause
	Select city,sum(salary) from employee group by city having sum(salary)>=100000
	Order by sum(salary) desc;
	INTRODUCTION TO JOINS
	INNER JOIN CONSISTING OF WHERE CONDITION AND ACTOR NAME SHOULD
	NOT BE NULL
	INNER JOIN CONSISTING OF WHERE CONDITION AND ACTOR NAME FIELDS ARE HAVING NULL VALUE
	RIGHT JOIN

	INTRODUCTION TO SUBQUERY
	Syntax: (1)
	select * from StudentDetails
	select * from StudentSection
	Join vs. Subquery
	VIEWS IN SQL
	INTRODUCTION TO STORED PROCEDURES
	Advantages of using SQL triggers
	Disadvantages of using SQL triggers
	Below is an screen shot of output of TriggerAfterDelete fired on table Employee_Details
	Below is insert script for Student Info and marks into table IAMARKS
	This is trigger is an example of Before Update Trigger
	How to DROP TRIGGER
	LAB EXPERIMENTS
	A. Consider the following schema for a LibraryDatabase:
	Table Descriptions
	Insertion of Values to Tables
	Queries:
	1. Retrieve details of all books in the library – id, title, name of publisher, authors, number of copies in each branch, etc.
	2. Get the particulars of borrowers who have borrowed more than 3 books, but from Jan 2017 to Jun2017.
	3. Delete a book in BOOK table. Update the contents of other tables to reflect this data manipulationoperation.
	4. Partition the BOOK table based on year of publication. Demonstrate its working with a simple query.
	5. Create a view of all books and its number of copies that are currently available in the Library.
	B. Consider the following schema for OrderDatabase:
	Write SQL queries to
	Table Descriptions (1)
	2. Find the name and numbers of all salesmen who had more than onecustomer.
	3. List all salesmen and indicate those who have and don’t have customers in their cities (Use UNIONoperation.)
	4. Create a view that finds the salesman who has the customer with the highest order of a day.
	CREATE VIEW VW_ELITSALESMAN AS
	SELECT B.ORD_DATE,A.SALESMAN_ID,A.NAME FROM SALESMAN A, ORDERS B
	WHERE A.SALESMAN_ID = B.SALESMAN_ID AND B.PURCHASE_AMT=(SELECT
	MAX(PURCHASE_AMT) FROM ORDERS CWHERE C.ORD_DATE = B.ORD_DATE);
	SELECT * FROM VW_ELITSALESMAN
	5. Demonstrate the DELETE operation by removing salesman with id 1000. All his orders
	must also be deleted.
	Use ON DELETE CASCADE at the end of foreign key definitions while creating child table orders and then execute the following:
	C. Consider the schema for MovieDatabase:
	1. List the titles of all movies directed by‘Hitchcock’.
	Table Descriptions (2)
	Queries: (1)
	2. Find the movie names where one or more actors acted in two or more movies.
	3. List all actors who acted in a movie before 2000 and also in a movie after 2015 (use JOIN operation).
	4. Find the title of movies and number of stars for each movie that has at least one rating and find the highest number of stars that movie received. Sort the result by movietitle.
	5. Update rating of all movies directed by ‘Steven Spielberg’ to5
	D. Consider the schema for CollegeDatabase:
	1. List all the student details studying in fourth semester ‘C’section.
	Table Descriptions (3)
	Queries: (2)
	3. Create a view of Test1 marks of student USN ‘1BI15CS101’ in allsubjects.
	4. Calculate the FinalIA (average of best two test marks) and update thecorresponding table for allstudents.
	E.Consider the schema for CompanyDatabase:
	Write SQL queries to (1)
	Table Descriptions (4)
	Insertion of values to tables
	Queries: (3)
	2. Show the resulting salaries if every employee working on the ‘IoT’ project is given a 10 percentraise.
	4. Retrieve the name of each employee who works on all the projects Controlled by department number 5 (use NOT EXISTSoperator).
	5. For each department that has more than five employees, retrieve the department number and the number of its employees who are making more than Rs. 6, 00,000. SELECT D.DNO, COUNT(*)

	Viva Questions
	1. What isSQL?
	2. What isdatabase?
	3. What isDBMS?
	4. What is a Database system?
	5. What are Advantages ofDBMS?
	6. What are Disadvantages in File ProcessingSystem?
	7. Define the "integrityrules"
	8. What is a view? How it is related to data independence?
	9. What is DataModel?
	10. What is E-Rmodel?
	11. What is Object Orientedmodel?
	12. What is an Entity?
	13. What is an Entitytype?
	14. What is an attribute?
	15. What is degree of aRelation?
	16. What isRelationship?
	17. What is DDL (Data DefinitionLanguage)?
	18. What is DML (Data ManipulationLanguage)?
	19. What isnormalization?
	20. What is 1 NF (NormalForm)?
	21. What is2NF?
	22. What is3NF?
	23. What is BCNF (Boyce-Codd NormalForm)?
	24. What is4NF?
	25. What is5NF?
	26. What are partial, alternate,, artificial, compound and naturalkey? PartialKey:
	Alternate Key:
	Artificial Key:
	Compound Key:
	Natural Key:
	27. What is meant by queryoptimization?
	28. What do you mean by atomicity andaggregation? Atomicity:
	Aggregation:
	29. What is a checkpoint and when does itoccur?
	30. What do you mean by flat filedatabase?
	31. Brief theory of Network, Hierarchical schemas and theirproperties
	32. What is aquery?
	33. What do you mean by Correlatedsubquery?
	34. What are the primitive operations common to all record managementsystems?
	35. How do you communicate with anRDBMS?
	36. Define SQL and state the differences between SQL and other conventional programmingLanguages
	37. What is databaseTrigger?
	38. What are stored-procedures? And what are the advantages of usingthem.
	39. Which is the subset of SQL commands used to manipulate Database structures,
	including tables?
	Data Definition Language (DDL)
	40. What operator performs pattern matching?
	41. What operator tests column for the absence of data?
	42. What are the wildcards used for patternmatching?
	43. What are the difference between TRUNCATE and DELETEcommands?
	44. What is the use of the ADD OR DROP option in the ALTER TABLEcommand?
	45. What is the use of DESC inSQL?
	DESC has two purposes. It is used to describe a schema as well as to retrieve rows from table in descending order.
	The query SELECT * FROM EMP ORDER BY ENAME DESC will display the output sorted on ENAME in descending order
	46. What is the use of ON DELETE CASCADE?
	Whenever rows in the master (referenced) table are deleted ,the respective rows of the child (referencing) table with a matching foreign key column will get deleted as well. This is called a cascade delete
	Example Tables:
	Customer is the master table and Order is the child table, where 'customer_id’ is primary key in customer table and customer_id is the foreign key in Order table and represents the customer who placed the order. When a row of Customer is deleted, an...
	47. What is the use of Floor()?
	The FLOOR() function returns the largest integer value that is smaller than or equal to a number.
	EXAMPLE;
	SELECT FLOOR(25.75);
	OUTPUT
	25
	48. What is the use of Truncate()?
	The TRUNCATE() function truncates a number to the specified number of decimal places.
	EXAMPLE; (1)
	SELECT TRUNCATE(135.375, 2);
	OUTPUT (1)
	135.37
	49. What is the use of CEILING?
	Return the smallest integer value that is greater than or equal to 25.75:
	EXAMPLE; (2)
	SELECT CEILING(25.75)
	OUTPUT (2)
	26
	50. What you mean by SQL UNIQUE Constraint?
	 The UNIQUE constraint ensures that all values in a column are different.
	 Both the UNIQUE and PRIMARY KEY constraints provide a guarantee for uniqueness for a column or set of columns.
	 A PRIMARY KEY constraint automatically has a UNIQUE constraint.
	 However, you can have many UNIQUE constraints per table, but only one PRIMARY KEY constraint per table.
	51. How to add and drop UNIQUE Constraint in table in mysql?
	ALTER TABLE contacts ADD CONSTRAINT UNC_name_email UNIQUE(name,email)
	ALTER TABLE contacts DROP INDEX UNC_name_email;
	52. What is the Group by Clause?
	 The GROUP BY clause is a SQL command that is used to group rows that have the same
	values.
	 The GROUP BY clause is used in the SELECT statement .Optionally it is used in conjunction
	with aggregate functions to produce summary reports from the database.That's what it does, summarizing data from the database.
	 The queries that contain the GROUP BY clause are called grouped queries and only return
	single row for every grouped item.
	Example:SELECT COUNT(CustomerID), Country FROM Customers
	GROUP BY Country
	53. What is use of having clause in mysql
	 The HAVING clause is used in the SELECT statement to specify filter conditions for a group of rows or aggregates.
	 The HAVING clause is often used with the GROUP BY clause to filter groups based on a specified condition. If the GROUP BY clause is omitted, the HAVING clause behaves like the WHERE clause.
	 Notice that the HAVING clause applies a filter condition to each group of rows, while the WHERE clause applies the filter condition to each individual row.
	Example:SELECT COUNT(CustomerID), Country FROM Customers (1)
	GROUP BY CountryHAVING COUNT(CustomerID) > 5;
	54. What is distinct clause in SQL?
	When querying data from a table, you may get duplicate rows. In order to remove these duplicate rows, you use the DISTINCT clause in the SELECT statement.
	Example:SELECT DISTINCT columns FROM table_name WHERE where_conditions;
	55. What is a union?
	Unions combine the results from multiple SELECT queries into a consolidated result set.
	The only requirements for this to work is that the number of columns should be the same from all the SELECT queries which needs to be combined
	2. Give 5% raise in salary to all theSalesman
	3. Change the department no of Sachin to40
	4. Update all employee name to uppercase
	2. Delete the records of employee name Ajay’s only
	3. Delete the record of employee table whose Empno is 1005
	4. Delete the first five records of employeetable
	1. How to create database name COLLEGE ?
	CREATE DATABASE COLLEGE;
	2. How Modify datetype of age column in Employee table
	ALTER TABLE Employee MODIFY age int(3);
	3. How to rename column name of job to Designation in Employee table?
	ALTER TABLE Employee CHANGE job Designation varchar(40);
	4. How to add column Commission in Employee table?
	ALTER TABLE Employee add Commissionvarchar(40);
	5. How to drop column Commission in Employee table?
	ALTER TABLE Employee DROP column Commission;
	6. How to add primary key to Employee table?
	ALTER TABLE Employee add primary key(Empno);
	7. How to drop primary key to Employee table?
	ALTER TABLE Employee DROPprimary key;
	8. How to rename employee table?
	RENAME TABLE Employee to Employee_Details
	9. How to delete contents of Employee table?
	DELETE FROM Employee;
	OR
	TRUNCATE Employee;
	10. How to drop Employee table?
	DROP TABLE Employee;
	11. How to drop database name COLLEGE?
	DROP DATABASE COLLEGE

