ATME COLLEGE OF ENGINEERING

13"KM Stone, Bannur Road, Mysore - 560 028

¢ 1 College of Engineering

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING
(ACADEMIC YEAR 2023-24)

LABORATORY MANUAL

SUBJECT: DBMS LABORATORY WITH MINI PROJECT

SUBJECT CODE: 21CSL58

SEMESTER: V
2021 CBCS Scheme
Prepared by Verified by Approved by
Mr.K S Yogesh Mr. Kiran B, Mr.Sandesh R Dr.PutteGowda D

System Analyst Faculties Co-ordinators HOD, CSE

INSTITUTIONAL MISSION AND VISION

Objectives

To provide quality education and groom top-notch professionals, entrepreneurs and
leaders for different fields of engineering, technology and management.

To open a Training-R & D-Design-Consultancy cell in each department, gradually
introduce doctoral and postdoctoral programs, encourage basic & applied research in
areas of social relevance, and develop the institute as a center of excellence.

To develop academic, professional and financial alliances with the industry as well as
the academia at national and transnational levels.

To develop academic, professional and financial alliances with the industry as well as
the academia at national and transnational levels.

To cultivate strong community relationships and involve the students and the staff in
local community service.

To constantly enhance the value of the educational inputs with the participation of
students, faculty, parents and industry.

Vision

Development of academically excellent, culturally vibrant, socially responsible and
globally competent human resources.

Mission

To keep pace with advancements in knowledge and make the students competitive and
capable at the global level.

To create an environment for the students to acquire the right physical, intellectual,
emotional and moral foundations and shine as torch bearers of tomorrow's society.

To strive to attain ever-higher benchmarks of educational excellence.

Department of Computer Science & Engineering

Vision of the Department

To develop highly talented individuals in Computer Science and Engineering to deal
with real world challenges in industry, education, research and society.

Mission of the Department

To inculcate professional behavior, strong ethical values, innovative research
capabilities and leadership abilities in the young minds &to provide a teaching
environment that emphasizes depth, originality and critical thinking.

Motivate students to put their thoughts and ideas adoptable by industry or to pursue
higher studies leading to research.

Program outcomes (POs)
Engineering Graduates will be able to:

PO1. Engineering knowledge: Apply the knowledge of mathematics, science,
engineering fundamentals, and an engineering specialization to the solution of complex
engineering problems.

PO2. Problem analysis: Identify, formulate, review research literature, and analyze
complex engineering problems reaching substantiated conclusions using first principles
of mathematics, natural sciences, and engineering sciences.

PO3. Design/development of solutions: Design solutions for complex engineering
problems and design system components or processes that meet the specified needs
with appropriate consideration for the public health and safety, and the cultural,
societal, and environmental considerations.

PO4. Conduct investigations of complex problems: Use research-based knowledge
and research methods including design of experiments, analysis and interpretation of
data, and synthesis of the information to provide valid conclusions.

PO5. Modern tool usage: Create, select, and apply appropriate techniques, resources,
and modern engineering and IT tools including prediction and modeling to complex
engineering activities with an understanding of the limitations.

PO6. The engineer and society: Apply reasoning informed by the contextual
knowledge to assess societal, health, safety, legal and cultural issues and the consequent
responsibilities relevant to the professional engineering practice.

PO7. Environment and sustainability: Understand the impact of the professional
engineering solutions in societal and environmental contexts, and demonstrate the
knowledge of, and need for sustainable development.

PO8. Ethics: Apply ethical principles and commit to professional ethics and
responsibilities and norms of the engineering practice.

PO9. Individual and team work: Function effectively as an individual, and as a
member or leader in diverse teams, and in multi disciplinary settings.

PO10. Communication: Communicate effectively on complex engineering activities
with the engineering community and with society at large, such as, being able to
comprehend and write effective reports and design documentation, make effective
presentations, and give and receive clear instructions.

PO11. Project management and finance: Demonstrate knowledge and understanding
of the engineering and management principles and apply these to one’s own work, as a
member and leader in a team, to manage projects and in multidisciplinary environments.

PO12. Life-long learning: Recognize the need for, and have the preparation and ability
to engage in independent and life-long learning in the broadest context of technological
change.

Program Specific Outcomes (PSOs)

1. PSO1: Ability to apply skills in the field of algorithms, database design, web design,

cloud computing and data analytics.

2. PSO2: Apply knowledge in the field of computer networks for building network and

internet based applications.

Program Educational Objectives (PEOSs):

1. Empower students with a strong basis in the mathematical, scientific and
engineering fundamentals to solve computational problems and to prepare them for
employment, higher learning and R&D.

2. Gain technical knowledge, skills and awareness of current technologies of computer
science engineering and to develop an ability to design and provide novel

engineering solutions for software/hardware problems through entrepreneurial skills.

3. Exposure to emerging technologies and work in teams on interdisciplinary projects with
effective communication skills and leadership qualities.

4. Ability to function ethically and responsibly in a rapidly changing environment by
applying innovative ideas in the latest technology, to become effective professionals in

Computer Science to bear a life-long career in related areas.

DBMS LABORATORY WITH MINI PROJECT
[As per Choice Based Credit System (CBCS) scheme]
(Effective from the academic year 2023 -2024)
SEMESTER -V

Subject Code:21CSL58 IA Marks :40

Number of Contact Hours/Week:0:2:2 Exam Marks:60

Total Number of Lab Contact Hours:36 Exam Hours:03
CREDITS - 02

Course objectives: This course will enable students to

e Foundation knowledge in database concepts, technology and practice to groom students
into well-informed database applicationdevelopers.

e Strong practice in SQL programming through a variety of databaseproblems.

e Develop database applications using front-end tools and back-endDBMS.

Description (If any):

PART-A: SQL Programming (Max. Exam Mks. 50)

e Design, develop, and implement the specified queries for the following problems using
Oracle, MySQL, MS SQL Server, or any other DBMS under
LINUX/Windowsenvironment.

e Create Schema and insert at least 5 records for each table. Add appropriate
database constraints.

PART-B: Mini Project (Max. Exam Mks. 30)

e Use Java, C#, PHP, Python, or any other similar front-end tool. All applications
must be demonstrated on desktop/laptop as a stand-alone or web based application
(Mobile apps on Android/IOS are not permitted.)

e Installation procedure of the required software must be demonstrated, carried out in
groups and documented in the journal.

Lab Experiments:
Part A: SQL Programming

1. Consider the following schema for a LibraryDatabase:
BOOK (Book_id, Title, Publisher_Name, Pub_Year)
BOOK_AUTHORS (Book_id,Author_Name)
PUBLISHER (Name, Address, Phone)
BOOK_COPIES (Book_id, Programme_id, No-of Copies)
BOOK _LENDING (Book_id, Programme_id, Card_No, Date_Out, Due_Date)
LIBRARY_PROGRAMME (Programme_id, Programme_Name, Address)

Write SQL queries to

1. Retrieve details of all books in the library — id, title, name of publisher,
authors, number of copies in each Programme, etc.

2. Get the particulars of borrowers who have borrowed more than 3 books, but from Jan
2017 to Jun 2017.

3. Delete a book in BOOK table. Update the contents of other tables to reflect this data
manipulationoperation.

4. Partition the BOOK table based on year of publication. Demonstrate its working with
a simplequery.

5. Create a view of all books and its number of copies that are currently available in the
Library.

2. Consider the following schema for Order Database:

SALESMAN(Salesman_id, Name, City, Commission)
CUSTOMER(Customer_id, Cust_Name, City, Grade, Salesman_id)
ORDERS(Ord_No,Purchase_ Amt,Ord_Date,Customer_id,Salesman_id)
Write SQL queriesto

1. Count the customers with grades above Bangalore’saverage.

2. Find the name and numbers of all salesman who had more than onecustomer.

3. List all the salesman and indicate those who have and don’t have customers in their
cities (Use UNIONoperation.)

4. Create a view that finds the salesman who has the customer with the highest order of a
day.

5. Demonstrate the DELETE operation by removing salesman with id 1000. All his
orders must also bedeleted.

Consider the schema for Movie Database:

ACTOR(Act_id, Act_Name, Act_Gender)

DIRECTOR(Dir_id, Dir_Name,Dir_Phone)

MOVIES (Mov_id,Mov_Title, Mov_Year, Mov_Lang, Dir_id)

MOVIE_CAST(Act_id, Mov_id, Role)

RATING (Mov_id, Rev_Stars)

Write SQL queries to

1. List the titles of all movies directed by‘Hitchcock’.

2. Find the movie names where one or more actors acted in two or moremovies.

3. List all actors who acted in a movie before 2000 and also in a movie after 2015 (use
JOIN operation).

4. Find the title of movies and number of stars for each movie that has at least one rating
and find the highest number of stars that movie received. Sort the result by movietitle.

5. Update rating of all movies directed by ‘Steven Spielberg’ t05.

Consider the schema for College Database:

STUDENT(USN,SName, Address, Phone,Gender)

SEMSEC(SSID, Sem, Sec)

CLASS (USN, SSID)

SUBJECT (Subcode, Title, Sem, Credits)

IAMARKS (USN, Subcode, SSID, Test1, Test2, Test3, FinallA)

Write SQL queries to

1. List all the student details studying in fourth semester ‘C’section.

2. Compute the total number of male and female students in each semester and in each
section.

3. Create a view of Testl marks of student USN “1BI15CS101” in allsubjects.

4. Calculate the Finall A (average of best two test marks) and update the corresponding
table for allstudents.

5. Categorize students based on the followingcriterion:
If FinallA = 17 to 20 then CAT =‘Outstanding’
If FinallA = 12 to 16 then CAT = ‘Average’

If FinallA< 12 then CAT = ‘Weak’
Give these details only for 8th semester A, B, and C section student

5. Consider the schema for CompanyDatabase:

EMPLOYEE (SSN, Name, Address, Sex, Salary, SuperSSN, DNo)

DEPARTMENT (DNo, DName, MgrSSN, MgrStartDate)

DLOCATION (DNo,DLoc)

PROJECT (PNo, PName, PLocation, DNo)

WORKS_ON(SSN, PNo, Hours)

Write SQL queries to

1. Make a list of all project numbers for projects that involve an employee whose
last name is ‘Scott’, either as a worker or as a manager of the department that
controls the project.

2. Show the resulting salaries if every employee working on the ‘IoT’ project is
given a 10 percentraise.

3. Find thesumofthesalariesofallemployeesofthe® Accounts’department,aswellas the
maximum salary, the minimum salary, and the average salary in thisdepartment

4. Retrievethenameofeachemployeewhoworksonalltheprojectscontrolledby
department number 5 (use NOT EXISTSoperator).

5. For each department that has more than five employees, retrieve the
department number and the number of its employees who are making more
than Rs.6,00,000.

Part B: Mini project

e For any problem selected
e Make sure that the application should have five or more tables
e Indicative areas include; health care
Course outcomes: The students should be able to:
e Create, Update and query on the database.
e Demonstrate the working of different concepts of DBMS
e Implement, analyze and evaluate the project developed for an application.

Conduction of Practical Examination:
e Experiment distribution

o For laboratories having only one part: Students are allowed to pick one
experiment from the lot with equalopportunity.

o For laboratories having PART A and PART B: Students are allowed to
pick one experiment from PART A and one experiment from PART B,
with equalopportunity.

e Change of experiment is allowed only once and marks allotted for procedure to be made
zero of the changed part only.

e MarksDistribution(Courseedtochangeinaccoradancewithuniversityregulations)

o For laboratories having only one part — Procedure + Execution + Viva-Voce:
15+70+15 =100 Marks
o For laboratories having PART A and PART B
i. Part A —Procedure + Execution + Viva =6 + 28 + 6 = 40Marks
ii. Part B —Procedure + Execution + Viva =9 + 42 + 9 = 60 Marks

CONTENTS

SI.No. Particulars Page No
1 INTRODUCTION TO DATABASE 1
2 | BASIC QUERIES IN SQL 10
3 CONCEPT OF NORMALIZATION 29
4 ACID PROPERTIES IN DBMS 28
5 INTRODUCTION TO OPERATORS IN MYSQL 32
6 MYSQL AGGREGATE FUNCTIONS 39
7 INTRODUCTION TO JOINS 45
8 INTRODUCTION TO SUBQUERY 50
9 VIEWS IN SQL 54
10 INTRODUCTION TO STORED PROCEDURES 56
11 | INTRODUCTION TO MYSQL TRIGGERS 72
12 | EXPERITMENT 1 - Library Database 83
13 | EXPERITMENT 2 - Order Database 100
14 | EXPERITMENT 3 - Movie Database 107
15 | EXPERITMENT 4 - College Database 115
16 | EXPERITMENT 5 - Company Database 126
17 | VIVA QUESTIONS 135
18 | ADDITIONAL QUERIES 143

DBMS Laboratory with mini Project 21CSL55

INTRODUCTION
INTRODUCTION TO DATABASE

What is Database?

A database is a separate application that stores a collection of data. Each database has one or
more distinct APIs for creating, accessing, managing, searching, and replicating the data it holds.
now a days we use relational database management systems (RDBMS) to store and manager
huge volume of data.

A Relational DataBase Management System (RDBMS) is a software that:

e Enables you to implement a database with tables, columns, and indexes.
e Guarantees the Referential Integrity between rows of various tables.
e Interprets an SQL query and combines information from various tables.

RDBMS Terminology:
Database: A database is a collection of tables, with related data.
Table: Atable is a matrix with data. A table in a database looks like a simple spreadsheet.

Column: One column (data element) contains data of one and the same kind, for example the column
postcode. or phone numbers

Row: A row (= tuple, entry or record) is a group of related data, for example the data of one
subscription.

Redundancy: Storing data twice, redundantly to make the system faster.

Primary Key: A primary key is unique. A key value can not occur twice in one table. With a key you
can find at most one row.

Foreign Key: A foreign key is the linking pin between two tables.

Compound Key: A compound key (composite key) is a key that consists of multiple columns, because
one column is not sufficiently unique.

Index: An index in a database resembles an index at the back of a book.

Referential Integrity: Referential Integrity makes sure that a foreign key value always points to an
existing row

DDL or Data Definition Language actually consists of the SQL commands that can be used to
to create and modify the structure of database objects in a database. These database objects include
views, schemas, tables, indexes, etc.
Some examples:
e CREATE - to create objects in the database
e ALTER - alters the structure of the database
e DROP - delete objects from the database

Dept. of CSE, ATMECE, Mysore Page 1

DBMS Laboratory with mini Project 21CSL55

DML is Data Manipulation Language statements: which areused to interact with a database by deleting,
inserting, retrieving, or updating data in the database.

Some examples:

SELECT - retrieve data from the a database

INSERT - insert data into a table

UPDATE - updates existing data within a table

DELETE - deletes all records from a table, the space for the records remain

DCL is Data Control Language statements: which includes commands such as GRANT and REVOKE
which mainly deals with the rights, permissions and other controls of the database system.

Some examples:
e GRANT-gives user’s access privileges to database.
o REVOKE-withdraw user’s access privileges given by using the GRANT command.

TCL is Transaction Control Language which deals with a transaction within a database.

Some examples:

COMMIT - save work done

SAVEPOINT - identify a point in a transaction to which you can later roll back
ROLLBACK - restore database to original since the last COMMIT

SET TRANSACTION - Change transaction options like what rollback segment to use.

SQL Data Types
Each column in a database table is required to have a name and a data type.

An SQL developer must decide what type of data that will be stored inside each column when
creating a table. The data type is a guideline for SQL to understand what type of data is expected
inside of each column, and it also identifies how SQL will interact with the stored data.

MySQL uses many different data types broken into three categories
e Numeric
e Date and Time
e String Type

DATA TYPES
NUMERIC:

e INT — A normal-sized integer that can be signed or unsigned. If signed, the allowable range is
from -2147483648 to 2147483647. If unsigned, the allowable range is from 0 to 4294967295.
You can specify a width of up to 11 digits.

e TINYINT — A very small integer that can be signed or unsigned. If signed, the allowable range is
from -128 to 127. If unsigned, the allowable range is from 0 to 255. You can specify a width of
up to 4 digits.

e SMALLINT — A small integer that can be signed or unsigned. If signed, the allowable range is
from -32768 to 32767. If unsigned, the allowable range is from 0 to 65535. You can specify a
width of up to 5 digits.

Dept. of CSE, ATMECE, Mysore Page 2

DBMS Laboratory with mini Project 21CSL55

MEDIUMINT — A medium-sized integer that can be signed or unsigned. If signed, the allowable
range is from -8388608 to 8388607. If unsigned, the allowable range is from 0 to 16777215. You
can specify a width of up to 9 digits.

BIGINT — A large integer that can be signed or unsigned. If signed, the allowable range is from -
9223372036854775808 to 9223372036854775807. If unsigned, the allowable range is from 0 to
18446744073709551615. You can specify a width of up to 20 digits.

FLOAT (M, D) — A floating-point number that cannot be unsigned. You can define the display
length (M) and the number of decimals (D). This is not required and will default to 10, 2, where 2
is the number of decimals and 10 is the total number of digits (including decimals). Decimal
precision can go to 24 places for a FLOAT.

DOUBLE (M, D) — A double precision floating-point number that cannot be unsigned. You can
define the display length (M) and the number of decimals (D). This is not required and will
default to 16, 4, where 4 is the number of decimals. Decimal precision can go to 53 places for a
DOUBLE. REAL is a synonym for DOUBLE.

DECIMAL (M, D)— an unpacked floating-point number that cannot be unsigned. In the
unpacked decimals, each decimal corresponds to one byte. Defining the display length (M) and
the number of decimals (D) is required. NUMERIC is a synonym for DECIMAL.

DATE AND TIME TYPES
The MySQL date and time data types are as follows —

DATE — A date in YYYY-MM-DD format, between 1000-01-01 and 9999-12-31. For example,
December 30", 1973 would be stored as 1973-12-30.

DATETIME — A date and time combination in YYYY-MM-DD HH:MM:SS format, between
1000-01-01 00:00:00 and 9999-12-31 23:59:59. For example, 3:30 in the afternoon on December
30", 1973 would be stored as 1973-12-30 15:30:00.

TIMESTAMP — A timestamp between midnight, January 1%, 1970 and sometime in 2037. This
looks like the previous DATETIME format, only without the hyphens between numbers; 3:30 in
the afternoon on December 30", 1973 would be stored as 19731230153000
(YYYYMMDDHHMMSS).

TIME — Stores the time in a HH:MM:SS format.
YEAR (M) — Stores a year in a 2-digit or a 4-digit format. If the length is specified as 2 (for

example YEAR (2)), YEAR can be between 1970 to 2069 (70 to 69). If the length is specified as
4, then YEAR can be 1901 to 2155. The default length is 4.

STRING TYPES
This list describes the common string data types in MySQL.

CHAR (M) — A fixed-length string between 1 and 255 characters in length (for example CHAR
(5)), right-padded with spaces to the specified length when stored. Defining a length is not
required, but the default is 1.

Dept. of CSE, ATMECE, Mysore Page 3

DBMS Laboratory with mini Project 21CSL55

e VARCHAR (M) — A variable-length string between 1 and 255 characters in length. For
example, VARCHAR (25). You must define a length when creating a VARCHAR field.

e BLOB or TEXT — A field with a maximum length of 65535 characters. BLOBs are "Binary
Large Objects" and are used to store large amounts of binary data, such as images or other types
of files. Fields defined as TEXT also hold large amounts of data. The difference between the two
is that the sorts and comparisons on the stored data are case sensitive on BLOBs and are not case
sensitive in TEXT fields. You do not specify a length with BLOB or TEXT.

e TINYBLOB or TINYTEXT — A BLOB or TEXT column with a maximum length of 255
characters. You do not specify a length with TINYBLOB or TINYTEXT.

e MEDIUMBLOB or MEDIUMTEXT — A BLOB or TEXT column with a maximum length of
16777215 characters. You do not specify a length with MEDIUMBLOB or MEDIUMTEXT.

e LONGBLOB or LONGTEXT — A BLOB or TEXT column with a maximum length of
4294967295 characters. You do not specify a length with LONGBLOB or LONGTEXT.

CREATE TABLE
Specifies a new base relation by giving it a name, and specifying each of its attributes and

their data types

Syntax of CREATE Command:

CREATE TABLE<table name>
(<AttributeAl><Data TypeD1> [<Constraints>],
<Attribute A2><Data Type D2> [<Constraints>],
<Attribute An><Data Type Dn> [<Constraints>],
[<integrity-constraint1>, <integrity-constraint k>]);
Specifying the unique, primary key attributes, secondary keys, and referential integrity constraints
EXAMPLE OF CREATING TABLE

CREATE TABLE ORDERS

(

ORDER_ID INT (6) PRIMARY KEY,
ORDER_DATE DATE

);

Dept. of CSE, ATMECE, Mysore Page 4

DBMS Laboratory with mini Project 21CSL55

ALTER TABLE STATEMENT
Once a table is created in the database, there are many occasions where one may wish to change the
structure of the table. Typical cases include the following:

Add a column

Drop a column

Change a column name

Change the data type for a column

add and drop various constraints on an existing table.including primarykey and foreignkey

The SQL syntax for ALTER TABLE is
ALTER TABLE "table_name™ [alter specification]

[alter specification] is dependent on the type of alteration we wish to perform. alter
specificationis already mentioned above

ADDING COLUMN IN TABLE

To add a column in a table, use the following syntax:

ALTER TABLE TABLENAME ADD COLUMN_NAME DATETYPE;
Example: ALTER TABLE ORDERS ADD JOB VARCHAR (20);
MODIFYING DATATYPE FOR COLUMN IN TABLE

To modify a column data type in a table, use the following syntax:

ALTER TABLE ORDERS MODIFY COLUMN_NAME VARCHAR (50);
Example: ALTER TABLE ORDERS MODIFY JOB VARCHAR (50);

RENAMING COLUMN IN TABLE

You can rename a column in MySQL using the ALTER TABLE and CHANGE commands
together to change an existing column.

For example,say the column is currently named JOB, but you decide that DESIGNATION is a
more appropriate title. The column is located on the table entitled ORDERS.

Here is an example of how to change it:
ALTER TABLE TABLENAME CHANGE OLDNAME NEWNAME VARCHAR (20);

Example:ALTER TABLE ORDERS CHANGE JOB DESIGNATION VARCHAR (20);

Dept. of CSE, ATMECE, Mysore Page 5

DBMS Laboratory with mini Project 21CSL55

DELETING COLUMN

To delete a column in a table, use the following syntax:
ALTER TABLE TABLENAME DROP COLUMN COLUMN_NAME
Example: ALTER TABLE ORDERS DROP COLUMN DESIGNATION;

RENAMING A TABLE

To rename atable, use the following syntax:

RENAME TABLE OLDTABLENAME TO NEWTABLENAME;
Example:RENAME TABLE ORDERS TO ORDERS_TBL

DROP TABLE

It is very easy to drop an existing MySQL table, but you need to be very careful while deleting
any existing table because the data lost will not be recovered after deleting a table.

The DROP TABLE statement is used to drop an existing table in a database

DROP TABLE TABLENAME;

Example:DROP TABLE ORDER

TRUNCATE TABLE STATEMENT

if we wish to simply get rid of the data but not the table itself? For this, we can use the
TRUNCATE TABLE command.

The syntax for TRUNCATE TABLE is

TRUNCATE "table_name"

So, if we wanted to truncate the table called customer that we created in MYSQL , we simply
type,

Example: TRUNCATE customer

Dept. of CSE, ATMECE, Mysore Page 6

http://www.1keydata.com/sql/sqlcreate.html

DBMS Laboratory with mini Project 21CSL55

CONSTRAINTS:
Common types of constraints include the following:

Primary Key:-

e A primary key is used to uniquely identify each row in a table. It can either be part of the
actual record itself, or it can be an artificial field (one that has nothing to do with the
actual record).

e A primary key can consist of one or more fields on a table. When multiple fields are used
as a primary key, they are called a composite key.

e Primary keys can be specified either when the table is created (using CREATE TABLE)
or by changing the existing table structure (using ALTER TABLE).

Below are examples for specifying a primary key when creating a table:
Example :
CREATE TABLE ORDERS (ORDER_ID INT (6) PRIMARY KEY,ORDER_DATE DATE);

Below are examples for specifying a primary key by altering a table:

CREATE TABLE ORDERS (ORDER_ID INT (6), ORDER_DATE DATE);
Example :ALTER TABLE ORDERS ADD PRIMARY KEY (ORDER_ID);

Note: - Before using the ALTER TABLE command to add a primary key, you'll need to make sure
that the field is defined as 'NOT NULL' -- in other words, NULL cannot be an accepted value for
that field.and column values must be unique

ALTER TABLE TABLENAME DROP PRIMARY KEY CONSTRAINT
To drop a PRIMARY KEY constraint in Table ORDERS, use the following MY SQL.:syntax
Example:ALTER TABLE ORDERS DROP PRIMARY KEY

FOREIGN KEY
o A foreign key is a field (or fields) that points to the primary key of another table.

e The purpose of the foreign key is to ensure referential integrity of the data. In other
words, only values that are supposed to appear in the database are permitted

e For example, say we have two tables, a CUSTOMER table that includes all customer
data, and an ORDERS table that includes all customer orders. The constraint here is that
all orders must be associated with a customer that is already in the CUSTOMER table.

e In this case, we will place a foreign key on the ORDERS table and have it relate to the
primary key of the CUSTOMER table. This way, we can ensure that all orders in the
ORDERS table are related to a customer in the CUSTOMER table. .In other words, the
ORDERS table cannot contain information on a customer that is not in the CUSTOMER
table.

Dept. of CSE, ATMECE, Mysore Page 7

DBMS Laboratory with mini Project 21CSL55

The structure of these two tables will be as follows:

Table CUSTOMER
column name Characteristic
SID Primary Key
Last_Name varchar(50)
First_Name varchar(50)
Table ORDERS
column name characteristic
Order_ID Primary Key
Order_Date Date
Customer_SID Foreign Key
Amount Decimal(10,2)

CREATE TABLE CUSTOMER
(

SID INT PRIMARY KEY,
Last_Name varchar(50),
First_Name varchar(50)

);

In the below example, the Customer_SID column in the ORDERS table is a foreign keypointing
to the SID column which is primary key inthe CUSTOMER table.

Below we show examples of how to specify the foreign key when creating the ORDERS table:
CREATE TABLE ORDERS

(

Order_ID int,

Order_Date date,

Customer_SID int,

Amount double,

Primary Key (Order_ID),

Foreign Key (Customer_SID) references CUSTOMER(SID)

);

Below are examples for specifying a foreign key by altering a table.
This assumes that the ORDERS table has been created, and the foreign key has not yet been put
in

ALTER TABLE ORDERS ADD FOREIGN KEY (customer_sid) REFERENCES
CUSTOMER(SID);

We can drop a foreign key by using below syntax

ALTER TABLE ORDERS DROP FOREIGN KEYFOREIGNKEY_CONSTRAINT_NAME;

Dept. of CSE, ATMECE, Mysore

Page 8

DBMS Laboratory with mini Project 21CSL55

NOT NULL Constraint:-By default, a column can hold NULL. If you don’t want to allow or
store NULL value in a column, you will want to place a constraint on this column specifying that
NULL is now not an allowable value.

DEFAULT Constraint:- The DEFAULT constraint provides a default value to a column when
the INSERT INTO statement does not provide a specific value.

UNIQUE Constraint:-The UNIQUE constraint ensures that all values in a column are distinct.
CHECK Constraint:-The CHECK constraint ensures that all values in a column satisfy certain

conditions. Once defined, the database will only insert a new row or update an existing row if the
new value satisfies the CHECK constraint. The CHECK constraint is used to ensure data quality

Dept. of CSE, ATMECE, Mysore Page 9

DBMS Laboratory with mini Project 21CSL55
BASIC QUERIES IN SQL

e SQL has one basic statement for retrieving information from a database; the SLELECT
statement

e This is not the same as the SELECT operation of the relationalalgebra
e Important distinction between SQL and the formal relationalmodel;

e SQL allows a table (relation) to have two or more tuples that are identical in all their
attribute values

e Hence, an SQL relation (table) is a multi-set (sometimes called a bag) of tuples; it is not a set
oftuples

e SQL relations can be constrained to be sets by using the CREATE UNIQUE INDEX
command, or by using the DISTINCToption

e Basic form of the SQL SELECT statement is called a mapping of a SELECT-FROM-
WHEREDblock

SELECT <attribute list> FROM <table list> WHERE <condition>
e <attribute list>is a list of attribute names whose values are to be retrieved by thequery
e <table list >is a list of the relation names required to process thequery

e <condition>is a conditional (Boolean) expression that identifies the tuples to be retrieved by
thequery

SIMPLE SQL QUERIES

Basic SQL queries correspond to using the following operations of the relational algebra:

SELECT PROJECT JOIN

All subsequent examples uses COMPANY database as shown below:

Example of a simple query on one relation

Query 0: Retrieve the birth date and address of the employee whose name is *John B. Smith’.
QO0: SELECT BDATE, ADDRESS FROM EMPLOYEE
WHERE FNAME='John' AND MINIT=B” AND LNAME='Smith’

Similar to a SELECT-PROJECT pair of relational algebra operations: The SELECT-clause
specifies the projection attributes and the WHERE-clause specifies the selection condition
However, the result of the query may contain duplicate tuples.

Dept. of CSE, ATMECE, Mysore Page 10

DBMS Laboratory with mini Project 21CSL55
EMPLOYEE
FNAME | MINT | LNAME | SSN | BDATE | ADDRESS | SEX | SALARY DNO
DEPARTMENT
DNAME | DMUMEER | MGRSSN | MGRSTARTDATE
DEPT_LOCATIONS
CRUMBER | LOCATION
PROJECT
PNAME | PNUMEER | PLOCATION | DNUM
WORKS_ON
ESSN | PNO | HOURS
DEPENDENT
ESSN | DEFENDENT NAE SEX BDATE RELATIONSHP
Dept. of CSE, ATMECE, Mysore Page 11

DBMS Laboratory with mini Project

21CSL55

| WORKS_ON ESSN | PNO | HOURS

123458789 1 »s

12756700 2 75
GIOBB4ASE 3 4200
AR5 W53 1 200
asasuss | 2 200 [PROJECT PNAME PNUMEER | PLOCATION | DNUM
JABALEEES 2 0o ProcuctX 1 Fedsiss 5
ABALERES 3 o Producty o Sugadond 5
IHILES 10 0o Produc? - taaton 5
330445655 | 20 100 — . =y <
MEeaTTTT 0 00

|—Deorgeeieniion
MWEeaTTIv 10 00 Newt " g mﬂ!l :
SETRTRT 10 00
SE7BeaY X0 50
DETESAT21 0 200
DETES4E2 20 150
BERRHLASS 2 rll
[erenDENT ESSN DEPENDENT NAME [SEX| EOATE RELATIONSHIP

333445555 A F 1086.04.05 DALGHTER

HIBAALEES Theodoe M 1603-10-26 SOM
| MBS Joy F 15500800 SPOUSE

BO7EEATR1 Avoer M| 19424008 SPOUSE
123456789 Machani M_{ 19859104 SO

123455 T80 Ao FE 1588.12.30 DALGHTER

123488780 Emtnth r 19870808 SPOUSE

Dept. of CSE, ATMECE, Mysore Page 12

DBMS Laboratory with mini Project 21CSL55

Example of a simple query on two relations

Query 1: Retrieve the name and address of all employees who work for the 'Research’
department.

Q1: SELECT FNAME, LNAME, ADDRESS FROM EMPLOYEE, DEPARTMENT
WHERE DNAME="'Research' AND DNUMBER=DNO

Similar to a SELECT-PROJECT-JOIN sequence of relational algebra operations
(DNAME='Research’) is a selection condition (corresponds to a SELECT operation in relational
algebra) (DNUMBER=DNO) is a join condition (corresponds to a JOIN operation in relational
algebra)

Example of a simple query on three relations

Query 2: For every project located in 'Stafford’, list the project number, the controlling
department number, and the department manager’s last name, address, and birth date.

Q2: SELECT PNUMBER, DNUM, LNAME, BDATE, ADDRESS FROM PROJECT,
DEPARTMENT, EMPLOYEE WHERE DNUM=DNUMBER ANDMGRSSN=SSN
AND PLOCATION="Stafford'

In Q2, there are two join conditions. The join condition DNUM=DNUMBER relates a project to its
controlling department The join condition MGRSSN=SSN relates the controlling department to the
employee who manages that department

ALIASES, * AND DISTINCT, EMPTY WHERE-CLAUSE

e In SQL, we can use the same name for two (or more) attributes as long as the attributes are
in differentrelations

e A query that refers to two or more attributes with the same name must qualify the attribute
name with the relation name by prefixing the relation name to the attributename

Example: EMPLOYEE.LNAME, DEPARTMENT.DNAME

e Some queries need to refer to the same relation twice. In this case, aliases are given to the
relationname.

Example

Query 3: For each employee, retrieve the employee's name, and the name of his or her
immediate supervisor.

Q3: SELECT E.FNAME, E.LNAME, S.FNAME, S.LNAME FROM EMPLOYEE S WHERE
E.SUPERSSN=S.SSN

In Q3, the alternate relation names E and S are called aliases or tuple variables for the EMPLOYEE
relation We can think of E and S as two different copies of EMPLOYEE; E represents employees in
role of supervisees and S represents employees in role of supervisors

Aliasing can also be used in any SQL query for convenience. Can also use the AS keyword to
specify aliases

Dept. of CSE, ATMECE, Mysore Page 13

DBMS Laboratory with mini Project 21CSL55

Q3: SELECT E.FNAME, E.LNAME, S.FNAME, S.LNAME FROM EMPLOYEE AS E,
EMPLOYEE AS S WHERE E.SUPERSSN=S.SSN

UNSPECIFIED WHERE-clause

A missing WHERE-clause indicates no condition; hence, all tuples of the relations in the FROM-
clause are selected. This is equivalent to the condition WHERE TRUE

Example:
Query 4: Retrieve the SSN values for all employees.
Q4: SELECT SSN FROM EMPLOYEE

If more than one relation is specified in the FROM-clause and there is no join condition, then the
CARTESIAN PRODUCT of tuples is selected

Example:
Q5: SELECT SSN, DNAME FROM EMPLOYEE, DEPARTMENT

Note: It is extremely important not to overlook specifying any selection and join conditions in the
WHERE-clause; otherwise, incorrect and very large relations mayresult

USE OF *

To retrieve all the attribute values of the selected tuples, a * is used, which stands for all the
attributes

Examples:
Retrieve all the attribute values of EMPLOYEES who work in department 5.
Qla: SELECT * FROM EMPLOYEE WHERE DNO=5

Retrieve all the attributes of an employee and attributes of DEPARTMENT he works in for
every employee of ‘Research’ department.

Q1b: SELECT * FROM EMPLOYEE, DEPARTMENT WHERE DNAME="Research'
AND DNO=DNUMBER

USE OF DISTINCT

SQL does not treat a relation as a set; duplicate tuples can appear. To eliminate duplicate tuples in
a query result, the keyword DISTINCT is used

Example: the result of Q1c may have duplicate SALARY values whereas Q1d does not have any
duplicate values

Qlc: SELECT SALARY FROM EMPLOYEE

Q1d: SELECT DISTINCT SALARY FROM EMPLOYEE

Dept. of CSE, ATMECE, Mysore Page 14

DBMS Laboratory with mini Project 21CSL55
SET OPERATIONS

SQL has directly incorporated some set operations such as union operation (UNION), set difference
(MINUS) and intersection (INTERSECT) operations. The resulting relations of these set operations
are sets of tuples; duplicate tuples are eliminated from the result. The set operations apply only to
union compatible relations; the two relations must have the same attributes and the attributes must
appear in the sameorder

Query 5: Make a list of all project numbers for projects that involve an employee whose last
name is 'Smith" as a worker or as a manager of the department that controls the project.

Q5: (SELECT PNAME FROM PROJECT, DEPARTMENT, EMPLOYEE WHERE
DNUM=DNUMBER AND MGRSSN=SSN AND LNAME="Smith’)

UNION

(SELECT PNAME FROM PROJECT, WORKS_ON, EMPLOYEE WHERE
PNUMBER=PNO AND ESSN=SSN ANDNAME="Smith’)

NESTING OF QUERIES

A complete SELECT query, called a nested query, can be specified within the WHERE-clause of
another query, called the outer query. Many of the previous queries can be specified in an
alternative form using nesting

Query 6: Retrieve the name and address of all employees who work for the 'Research’
department.

Q6: SELECT FNAME, LNAME, ADDRESS FROM EMPLOYEE WHERE DNO IN
(SELECT DNUMBER FROM DEPARTMENT WHERE DNAME='Research')

Note: The nested query selects the number of the 'Research’ department. The outer query selects an
EMPLOYEE tuple if its DNO value is in the result of either nested query. The comparison operator
IN compares a value v with a set (or multi-set) of values V, and evaluates to TRUE if v is one of the
elements in V

In general, we can have several levels of nested queries. A reference to an unqualified attribute
refers to the relation declared in the innermost nested query. In this example, the nested query is not
correlated with the outer query

CORRELATED NESTED QUERIES

If a condition in the WHERE-clause of a nested query references an attribute of a relation declared
in the outer query, the two queries are said to be correlated. The result of a correlated nested query
is different for each tuple (or combination of tuples) of the relation(s) the outer query

Query 7: Retrieve the name of each employee who has a dependent with the same first name
as the employee.

Q7: SELECT E.FNAME, E.LNAME FROM EMPLOYEE AS E WHERE E.SSN IN
(SELECT ESSN FROM DEPENDENT WHERE ESSN=E.SSN AND

Dept. of CSE, ATMECE, Mysore Page 15

DBMS Laboratory with mini Project 21CSL55
E.FNAME=DEPENDENT_NAME)

In Q7, the nested query has a different result in the outer query. A query written with nested
SELECT... FROM... WHERE... blocks and using the = or IN comparison operators can always be
expressed as a single block query. For example, Q7 may be written as in Q7a

Q7a: SELECT E.FNAME, E.LNAME FROM EMPLOYEE E, DEPENDENT D WHERE
E.SSN=D.ESSN ANDE.FNAME=D.DEPENDENT_NAME

THE EXISTS FUNCTION

EXISTS is used to check whether the result of a correlated nested query is empty (contains no
tuples) or not. We can formulate Query 7 in an alternative form that uses EXIST.

Q7b: SELECT FNAME, LNAME FROM EMPLOYEE
WHERE EXISTS (SELECT * FROM DEPENDENT WHERE SSN=ESSN
AND FNAME=DEPENDENT_NAME)
Query 8: Retrieve the names of employees who have no dependents.
Q8: SELECT FNAME, LNAME FROM EMPLOYEE
WHERE NOT EXISTS
(SELECT * FROM DEPENDENT WHERE SSN=ESSN)

Note: In Q8, the correlated nested query retrieves all DEPENDENT tuples related to an
EMPLOYEE tuple. If none exist, the EMPLOYEE tuple is selected

EXPLICIT SETS

It is also possible to use an explicit (enumerated) set of values in the WHERE-clause rather than a
nested query

Query 9: Retrieve the social security numbers of all employees who work on project number
1,2, 0or3.

Q9: SELECT DISTINCT ESSN FROM WORKS_ON WHERE PNO IN (1, 2, 3)
NULLS IN SQL QUERIES

SQL allows queries that check if a value is NULL (missing or undefined or not applicable). SQL
uses IS or IS NOT to compare NULLSs because it considers each NULL value distinct from other
NULL values, so equality comparison is not appropriate.

Query 10: Retrieve the names of all employees who do not have supervisors.
Q10: SELECT FNAME, LNAME FROM EMPLOYEE
WHERE SUPERSSN IS NULL

Note: If a join condition is specified, tuples with NULL values for the join attributes are not
included in the result

Dept. of CSE, ATMECE, Mysore Page 16

DBMS Laboratory with mini Project 21CSL55
AGGREGATE FUNCTIONS
Include COUNT, SUM, MAX, MIN, and AVG

Query 11: Find the maximum salary, the minimum salary, and the average salary among all
employees.

Q11: SELECT MAX (SALARY), MIN(SALARY), AVG(SALARY)
FROM EMPLOYEE
Note: Some SQL implementations may not allow more than one function in the SELECT -clause

Query 12: Find the maximum salary, the minimum salary, and the average salary among
employees who work for the ‘Research’ department.

Q12: SELECT MAX (SALARY), MIN(SALARY), AVG(SALARY) FROM
EMPLOYEE, DEPARTMENT WHERE DNO=DNUMBER ANDDNAME="Research’

Queries 13 and 14: Retrieve the total number of employees in the company (Q13), and the number
of employees in the 'Research’ department (Q14).

Q13: SELECT COUNT (*) FROM EMPLOYEE
Q14: SELECT COUNT (*) FROM EMPLOYEE, DEPARTMENT
WHERE DNO=DNUMBER AND DNAME="Research’
GROUPING
e In many cases, we want to apply the aggregate functions to subgroups of tuples in a relation

e Each subgroup of tuples consists of the set of tuples that have the same value for the
groupingattribute(s)

e The function is applied to each subgroupindependently

e SQL has a GROUP BY-clause for specifying the grouping attributes, which must also
appear in theSELECT-clause

Query 15: For each department, retrieve the department number, the number of employees
in the department, and their averagesalary.

Q15: SELECT DNO, COUNT (*), AVG (SALARY)
FROM EMPLOYEE GROUP BY DNO

e InQ15, the EMPLOYEE tuples are divided into groups. Each group having the same value
for the grouping attributeDNO

e The COUNT and AVG functions are applied to each such group of tuplesseparately

e The SELECT-clause includes only the grouping attribute and the functions to be applied on
each group oftuples

Dept. of CSE, ATMECE, Mysore Page 17

DBMS Laboratory with mini Project 21CSL55

e A join condition can be used in conjunction withgrouping

Query 16: For each project, retrieve the project number, project name, and the number of
employees who work on that project.

Q16: SELECT PNUMBER, PNAME, COUNT (*)
FROM PROJECT, WORKS_ON
WHERE PNUMBER=PNO GROUP
BY PNUMBER, PNAME
THE HAVING-CLAUSE

Sometimes we want to retrieve the values of these functions for only those groups that satisfy
certain conditions. The HAVING-clause is used for specifying a selection condition on groups
(rather than on individual tuples)

Query 17: For each project on which more than two employees work, retrieve the project
number, project name, and the number of employees who work on that project.

Q17: SELECT PNUMBER, PNAME, COUNT (*)
FROM PROJECT, WORKS_ON
WHERE PNUMBER=PNO GROUP
BY PNUMBER, PNAME HAVING
COUNT (*) > 2
SUBSTRING COMPARISON

The LIKE comparison operator is used to compare partial strings. Two reserved characters are used:
'%" (or "' in some implementations) replaces an arbitrary number of characters, and *_* replaces a
single arbitrary character.

Query 18: Retrieve all employees whose address is in Houston, Texas. Here, the value ofthe
ADDRESS attribute must contain the substring ‘Houston, TX’ init.

Q18: SELECT FNAME, LNAME
FROM EMPLOYEE WHERE ADDRESS LIKE '%Houston, TX%!'

Query 19: Retrieve all employees who were born during the 1950s.

Here, '5' must be the 8th character of the string (according to our format for date), so the BDATE

valueis' 5 ', with each underscore as a place holder for a single arbitrarycharacter.
Q19: SELECT FNAME, LNAME
FROM EMPLOYEE WHERE BDATELIKE' 5°

Note: The LIKE operator allows us to get around the fact that each value is considered atomic and
indivisible. Hence, in SQL, character string attribute values are not atomic

Dept. of CSE, ATMECE, Mysore Page 18

DBMS Laboratory with mini Project 21CSL55
ARITHMETIC OPERATIONS

The standard arithmetic operators '+, -". *', and '/* (for addition, subtraction, multiplication, and
division, respectively) can be applied to numeric values in an SQL query result

Query 20: Show the effect of giving all employees who work on the '‘ProductX’ project a 10%
raise.

Q20: SELECT FNAME, LNAME, 1.1*SALARY

FROM EMPLOYEE, WORKS_ON, PROJECT

WHERE SSN=ESSN

AND PNO=PNUMBER AND PNAME="ProductX’
ORDER BY

The ORDER BY clause is used to sort the tuples in a query result based on the values of some
attribute(s)

Query 21: Retrieve a list of employees and the projects each works in, ordered by the
employee's department, and within each department ordered alphabetically by employee
lastname.

Q21: SELECT DNAME, LNAME, FNAME, PNAME

FROM DEPARTMENT, EMPLOYEE, WORKS_ON, PROJECT
WHERE DNUMBER=DNO

AND SSN=ESSN

AND PNO=PNUMBER ORDER

BY DNAME, LNAME

The default order is in ascending order of values. We can specify the keyword DESC if we want a
descending order; the keyword ASC can be used to explicitly specify ascending order, even though it is
thedefault

Ex: ORDER BY DNAME DESC, LNAME ASC, FNAME ASC
MORE EXAMPLE QUERIES:

Query 22: Retrieve the names of all employees who have two or more dependents.
Q22: SELECT LNAME, FNAME FROM
EMPLOYEE WHERE (SELECT COUNT (*) FROM DEPENDENT WHERE
SSN=ESSN) > 2);

Query 23: List the names of managers who have least one dependent.
Q23: SELECT FNAME, LNAME
FROM EMPLOYEE

Dept. of CSE, ATMECE, Mysore Page 19

DBMS Laboratory with mini Project 21CSL55
WHERE EXISTS (SELECT * FROM DEPENDENT WHERE SSN=ESSN) AND
EXISTS (SELECT * FROM DEPARTMENT WHERE SSN=MGRSSN);

SPECIFYING UPDATES IN SQL

There are three SQL commands to modify the database: INSERT, DELETE, and UPDATE. INSERT

e Inits simplest form, it is used to add one or more tuples to arelation

e Attributevaluesshouldbelistedinthesameorderastheattributeswerespecifiedinthe
CREATE TABLE command

Example:

INSERT INTO EMPLOYEE VALUES ('Richard','K','Marini', '653298653', '30-DEC-52', '98 Oak
Forest,Katy, TX', 'M', 37000,'987654321", 4)

e Analternate form of INSERT specifies explicitly the attribute names that correspondto
the values in the new tuple. Attributes with NULL values can be leftout.

Example: Insert a tuple for a new EMPLOYEE for whom we only know the FNAME, LNAME, and
SSN attributes.

INSERT INTO EMPLOYEE (FNAME, LNAME, SSN)VALUES (‘Richard’, 'Marini',
'653298653')

Important Note: Only the constraints specified in the DDL commands are automatically enforced by
the DBMS when updates are applied to the database. Another variation of INSERT allows insertion of
multiple tuples resulting from a query into a relation

Example: Suppose we want to create a temporary table that has the name, number of employees, and
total salaries for each department. A table DEPTS_INFO is created first, and is loaded with the
summary information retrieved from the database by the query.

CREATE TABLE DEPTS_INFO(DEPT_NAME VARCHAR (10),NO_OF_EMPS INT,
TOTAL_SAL INT);
INSERT INTO DEPTS_INFO (DEPT_NAME, NO_OF EMPS, TOTAL_SAL)

SELECT DNAME, COUNT (*), SUM (SALARY) FROM DEPARTMENT, EMPLOYEE
WHERE DNUMBER=DNO GROUP BY DNAME ;

Note: The DEPTS INFO table may not be up-to-date if we change the tuples in either the
DEPARTMENT or the EMPLOYEE relations after issuing the above. We have to create a view
(see later) to keep such a table up to date.

DELETE
e Removes tuples from a relation. Includes a WHERE-clause to select the tuples to bedeleted

o Referential integrity should beenforced

Dept. of CSE, ATMECE, Mysore Page 20

DBMS Laboratory with mini Project

21CSL55

Tuples are deleted from only one table at a time (unless CASCADE is specified on a
referential integrityconstraint)

A missing WHERE-clause specifies that all tuples in the relation are to be deleted; the table

then becomes an emptytable

The number of tuples deleted depends on the number of tuples in the relation that satisfy the

WHERE-clause

Examples:

1.
2.
3.

4.

DELETE FROM EMPLOYEE WHERELNAME='Brown’;
DELETE FROM EMPLOYEE WHERESSN='123456789’;

DELETE FROM EMPLOYEE WHERE DNO IN (SELECT DNUMBERFROM
DEPARTMENT WHEREDNAME='Research’);

DELETE FROMEMPLOYEE;

UPDATE

Used to modify attribute values of one or more selectedtuples

A WHERE-clause selects the tuples to bemodified

An additional SET-clause specifies the attributes to be modified and their newvalues
Each command modifies tuples in the samerelation

Referential integrity should beenforced

Examplel: Change the location and controlling department number of project number 10 to
‘Bellaire' and 5,respectively.

UPDATEPROJECT
SET PLOCATION = 'Bellaire’, DNUM = 5 WHERE PNUMBER=10;

Example2: Give all employees in the 'Research’ department a 10% raise in salary.

UPDATE EMPLOYEE

SET SALARY = SALARY *1.1

WHERE DNO IN (SELECT DNUMBER FROM DEPARTMENT
WHERE DNAME='Research’);

Dept. of CSE, ATMECE, Mysore

Page 21

DBMS Laboratory with mini Project 21CSL55

Concept of Normalization
A large database defined as a single relation may result in data duplication. This repetition of data may
result in:

e Making relations very large.

e Itisn't easy to maintain and update data as it would involve searching many records in relation.
e Wastage and poor utilization of disk space and resources.

e The likelihood of errors and inconsistencies increases.

So to handle these problems, we should analyze and decompose the relations with redundant data into
smaller, simpler, and well-structured relations that are satisfy desirable properties. Normalization is a
process of decomposing the relations into relations with fewer attributes.

What is Normalization?
e Normalization is the process of organizing the data in the database.
e Normalization is used to minimize the redundancy from a relation or set of relations. It is also
used to eliminate undesirable characteristics like Insertion, Update, and Deletion Anomalies.
e Normalization divides the larger table into smaller and links them using relationships.
e The normal form is used to reduce redundancy from the database table.

Why do we need Normalization?

The main reason for normalizing the relations is removing these anomalies. Failure to eliminate
anomalies leads to data redundancy and can cause data integrity and other problems as the database
grows. Normalization consists of a series of guidelines that helps to guide you in creating a good
database structure.

Data modification anomalies can be categorized into three types:
e Insertion Anomaly: Insertion Anomaly refers to when one cannot insert a new tuple into a
relationship due to lack of data.
e Deletion Anomaly: The delete anomaly refers to the situation where the deletion of data results
in the unintended loss of some other important data.
e Updatation Anomaly: The update anomaly is when an update of a single data value requires
multiple rows of data to be updated.

Advantages of Normalization
e Normalization helps to minimize data redundancy.
e Greater overall database organization.
e Data consistency within the database.
e Much more flexible database design.
e Enforces the concept of relational integrity.

Dept. of CSE, ATMECE, Mysore Page 22

DBMS Laboratory with mini Project 21CSL55

Disadvantages of Normalization
e You cannot start building the database before knowing what the user needs.
e Itis very time-consuming and difficult to normalize relations of a higher degree.
e Careless decomposition may lead to a bad database design, leading to serious problems.

First Normal Form (1NF)
e Arelation will be 1NF if it contains an atomic value.
e |t states that an attribute of a table cannot hold multiple values. It must hold only single-valued
attribute.
e First normal form disallows the multi-valued attribute, composite attribute, and their
combinations.

Normal Forms
There are four types of normal forms that are usually used in relational databases as you can see in
the following figure:

[NORMAL FORMS }

[1NF] [ZNF]

1. INF: Arelation is in INF if all its attributes have an atomic value.

2. 2NF: Arelation is in 2NF if it is in INF and all non-key attributes are fully functional
dependent on the candidate key.

3. 3NF: Arelation is in 3NF if it is in 2NF and there is no transitive dependency.

4. BCNF: A relation is in BCNF if it is in 3NF and for every Functional Dependency, LHS is the
super key.

To understand the above-mentioned normal forms, we first need to have an understanding of the
functional dependencies.

Functional dependency is a relationship that exists between two sets of attributes of a relational table
where one set of attributes can determine the value of the other set of attributes. It is denoted by X ->
Y, where X is called a determinant and Y is called dependent.

There are various levels of normalizations. Let’s go through them one by one:

Dept. of CSE, ATMECE, Mysore Page 23

DBMS Laboratory with mini Project 21CSL55

First Normal Form (1NF)

A relation is in INF if every attribute is a single-valued attribute or it does not contain any multi-
valued or composite attribute, i.e., every attribute is an atomic attribute. If there is a composite or
multi-valued attribute, it violates the INF. To solve this, we can create a new row for each of the
values of the multi-valued attribute to convert the table into the 1NF.

Let’s take an example of a relational table <EmployeeDetail> that contains the details of the
employees of the company.

<EmployeeDetail>

Employee Code Employee Name Employee Phone Number
101 Yogesh 98765623,998234123
101 Yogesh 89023467
102 Vinay 76213908
103 Rajiv 98132452

Here, the Employee Phone Number is a multi-valued attribute. So, this relation is not in 1NF.

To convert this table into 1NF, we make new rows with each Employee Phone Number as a new row
as shown below

<EmployeeDetail>

Employee Code Employee Name Employee Phone Number
101 Yogesh 998234123
101 Yogesh 98765623
101 Yogesh 89023467
102 Vinay 76213908

Second Normal Form (2NF)

The normalization of 1NF relations to 2NF involves the elimination of partial dependencies. A partial
dependency exists when any non-prime attributes, i.e., an attribute not a part of the candidate key, is
not fully functionally dependent on one of the candidate keys.

For a relational table to be in second normal form, it must satisfy the following rules:
e The table must be in first normal form.
e It must not contain any partial dependency, i.e., all non-prime attributes are fully functionally
dependent on the primary key.

If a partial dependency exists, we can divide the table to remove the partially dependent attributes and
move them to some other table where they fit in well.

Dept. of CSE, ATMECE, Mysore Page 24

DBMS Laboratory with mini Project 21CSL55

Let us take an example of the following <EmployeeProjectDetail> table to understand what is partial
dependency and how to normalize the table to the second normal form:

<EmployeeProjectDetail>

Employee Code | Project ID Employee Name Project Name
101 P03 Yogesh Project103
101 PO1 Yogesh Project101
102 P04 Vinay Project104
103 P02 Rajiv Project102

In the above table, the prime attributes of the table are Employee Code and Project ID. We have partial
dependencies in this table because Employee Name can be determined by Employee Code and Project
Name can be determined by Project ID. Thus, the above relational table violates the rule of 2NF.

The prime attributes are those which are part of one or more candidate keys.

To remove partial dependencies from this table and normalize it into second normal form, we can
decompose the <EmployeeProjectDetail> table into the following three tables:

<EmployeeDetail>

Employee Code

Employee Name

101

Yogesh

101 Yogesh

102 Vinay

103 Rajiv

<EmployeeProject>

Project ID Project Name
P03 Project103
PO1 Project101
P04 Project104
P02 Project102

Thus, we’ve converted the <EmployeeProjectDetail> table into 2NF by decomposing it into
<EmployeeDetail>, <ProjectDetail> and <EmployeeProject> tables. As you can see, the above tables
satisfy the following two rules of 2NF as they are in 1NF and every non-prime attribute is fully
dependent on the primary key.

The relations in 2NF are clearly less redundant than relations in INF. However, the decomposed
relations may still suffer from one or more anomalies due to the transitive dependency. We will
remove the transitive dependencies in the Third Normal Formalization

Dept. of CSE, ATMECE, Mysore Page 25

DBMS Laboratory with mini Project 21CSL55

Employee Code Employee Name Employee Zipcode Employee City
101 Yogesh 575001 Mangalore

101 Yogesh 560002 Bangalore

102 Vinay 570001 Mysore

103 Sandeep 580020 Hubli

The above table is not in 3NF because it has Employee Code -> Employee City transitive dependency
because:Employee Code -> Employee Zipcode

o Employee Zipcode -> Employee City

e Also, Employee Zipcode is not a super key and Employee City is not a prime attribute.

o To remove transitive dependency from this table and normalize it into the third normal form,
we can decompose the <EmployeeDetail> table into the following two tables:

<EmployeeDetail>

Employee Code Employee Name | Employee Zipcode
101 Yogesh 575001
101 Yogesh 560002
102 Vinay 570001
103 Sandeep 580020

<EmployeeLocation>

Employee Zipcode | Employee City
575001 Mangalore
560002 Bangalore
570001 Mysore

580020 Hubli

Thus, we’ve converted the <EmployeeDetail> table into 3NF by decomposing it into
<EmployeeDetail> and <EmployeeLocation> tables as they are in 2NF and they don’t have any
transitive dependency.

The 2NF and 3NF impose some extra conditions on dependencies on candidate keys and remove
redundancy caused by that. However, there may still exist some dependencies that cause redundancy
in the database. These redundancies are removed by a more strict normal form known as BCNF.

Boyce—Codd Normal Form (BCNF)
Boyce-Codd Normal Form is an advanced version of 3NF as it contains additional constraints
compared to 3NF.
For a relational table to be in Boyce-Codd normal form, it must satisfy the following rules:
1. The table must be in the third normal form.
2. For every non-trivial functional dependency X -> Y, X is the superkey of the table. That means
X cannot be a non-prime attribute if Y is a prime attribute.

A superkey is a set of one or more attributes that can uniquely identify a row in a database table.Let us

Dept. of CSE, ATMECE, Mysore Page 26

DBMS Laboratory with mini Project 21CSL55

take an example of the following <EmployeeProjectLead> table to understand how to normalize the
table to the BCNF

<EmployeeProjectLead>

Employee Code Project ID | Project Leader
101 P03 Gopalkrishna
101 PO1 Chethan

102 P04 Hemanth

103 P02 Yashwanth

The above table satisfies all the normal forms till 3NF, but it violates the rules of BCNF because the
candidate key of the above table is {Employee Code, Project ID}.

For the non-trivial functional dependency, Project Leader -> Project 1D, Project ID is a prime attribute
but Project Leader is a non-prime attribute. This is not allowed in BCNF.

To convert the given table into BCNF, we decompose it into three tables:

<EmployeeProject>

Employee Code | Project ID
101 P03
101 PO1
102 P04
103 P02

<ProjectLead>

Project Leader | Project ID
Gopalkrishna P03

Chethan P01
Hemanth P04
Yashwanth P02

Thus, we’ve converted the <EmployeeProjectLead> table into BCNF by decomposing it into
<EmployeeProject> and <ProjectLead> tables.

Dept. of CSE, ATMECE, Mysore Page 27

DBMS Laboratory with mini Project 21CSL55

ACID Properties in DBMS
DBMS is the management of data that should remain integrated when any changes are done in it. It is
because if the integrity of the data is affected, whole data will get disturbed and corrupted. Therefore,
to maintain the integrity of the data, there are four properties described in the database management
system, which are known as the ACID properties.

The ACID properties are meant for the transaction that goes through a different group of tasks, and
there we come to see the role of the ACID properties.

In this section, we will learn and understand about the ACID properties. We will learn what these
properties stand for and what does each property is used for. We will also understand the ACID
properties with the help of some examples.

ACID Properties
The expansion of the term ACID defines for:

ACID PROPERTIES

A A A
[ATOMICITY} [CONSISTENCY } [ISOLATION } [DURABILITY }

1)Atomicity: The term atomicity defines that the data remains atomic. It means if any operation is
performed on the data, either it should be performed or executed completely or should not be executed
at all. It further means that the operation should not break in between or execute partially. In the case
of executing operations on the transaction, the operation should be completely executed and not
partially.

Example: If Yogesh has account A having $30 in his account from which he wishes to send $10 to
Vinay's account, which is B. In account B, a sum of $ 100 is already present. When $10 will be
transferred to account B, the sum will become $110. Now, there will be two operations that will take
place. One is the amount of $10 that Yogesh wants to transfer will be debited from his account A, and
the same amount will get credited to account B, i.e., into Vinay's account. Now, what happens - the
first operation of debit executes successfully, but the credit operation, however, fails. Thus, in Yogesh
account A, the value becomes $20, and to that of Vinay's account, it remains $ 100 as it was
previously present.

Dept. of CSE, ATMECE, Mysore Page 28

DBMS Laboratory with mini Project 21CSL55

A

Before $ 30 Transfer Before $100
Debit $10 S K Credit $10
Available : $ 20 Process Available : $ 100

Debited Credit Failure
Succesfully

Partial Execution

No Atomicity
Excution termination

In the above diagram, it can be seen that after crediting $10, the amount is still $100 in account B. So,
it is not an atomic transaction.

The below diagram shows that both debit and credit operations are done successfully. Thus the
transaction is atomic.

A
Before § 30 Transfer Before § 100
Debit $10 paSsSeSeieteSatetufuiaiaie Credit $ 10
Available : $ 20 Process Available : $ 110
Debited Credited
Successfully Successfully

Complete Execution

Atomicity
Execution Successfull

Thus, when the amount loses atomicity, then in the bank systems, this becomes a huge issue, and so
the atomicity is the main focus in the bank systems.

Dept. of CSE, ATMECE, Mysore Page 29

DBMS Laboratory with mini Project 21CSL55

2)Consistency: The word consistency means that the value should remain preserved always.
In DBMS, the integrity of the data should be maintained, which means if a change in the database is
made, it should remain preserved always. In the case of transactions, the integrity of the data is very
essential so that the database remains consistent before and after the transaction. The data should
always be correct.

Example:
Before
Debit to B
Available
Debitto C
Available
Value
Read
By
B =300
before
T
Before $100 Before $ 50
Credit $ 50 Credit $ 20

Available $ 150 Available $70

Data Consistent

In the above figure, there are three accounts, A, B, and C, where A is making a transaction T one by
one to both B & C. There are two operations that take place, i.e., Debit and Credit. Account A firstly
debits $50 to account B, and the amount in account A is read $300 by B before the transaction. After
the successful transaction T, the available amount in B becomes $150. Now, A debits $20 to account
C, and that time, the value read by C is $250 (that is correct as a debit of $50 has been successfully
done to B). The debit and credit operation from account A to C has been done successfully. We can
see that the transaction is done successfully, and the value is also read correctly. Thus, the data is
consistent. In case the value read by B and C is $300, which means that data is inconsistent because
when the debit operation executes, it will not be consistent.

4)lIsolation: The term ‘isolation' means separation. In DBMS, Isolation is the property of a database
where no data should affect the other one and may occur concurrently. In short, the operation on one
database should begin when the operation on the first database gets complete. It means if two
operations are being performed on two different databases, they may not affect the value of one
another. In the case of transactions, when two or more transactions occur simultaneously, the
consistency should remain maintained. Any changes that occur in any particular transaction will not be
seen by other transactions until the change is not committed in the memory.

Dept. of CSE, ATMECE, Mysore Page 30

https://www.javatpoint.com/dbms-tutorial

DBMS Laboratory with mini Project 21CSL55

Example: If two operations are concurrently running on two different accounts, then the value of both
accounts should not get affected. The value should remain persistent. As you can see in the below
diagram, account A is making T1 and T2 transactions to account B and C, but both are executing
independently without affecting each other. It is known as Isolation.

A | Value read by B before B
T+ was 3100

Before $100

Debitto B & 20 E!ef-::re 5 50
Available $80 = » CI‘EIE:'II byA $20
—>| DebittoGC $ 20 . Available $ 70
Available £ 60
Value read
by C before Ts
T: was $80 c |

Before §7T0
Creditby A $ 20
Available £90

Isolation - Independent execution of T: & T=by A

4) Durability: Durability ensures the permanency of something. In DBMS, the term durability ensures
that the data after the successful execution of the operation becomes permanent in the database. The
durability of the data should be so perfect that even if the system fails or leads to a crash, the database
still survives. However, if gets lost, it becomes the responsibility of the recovery manager for ensuring
the durability of the database. For committing the values, the COMMIT command must be used every
time we make changes.

Therefore, the ACID property of DBMS plays a vital role in maintaining the consistency and
availability of data in the database.

Thus, it was a precise introduction of ACID properties in DBMS. We have discussed these properties
in the transaction section also.

Dept. of CSE, ATMECE, Mysore Page 31

DBMS Laboratory with mini Project

INTRODUCTION TO OPERATORS IN MYSQL

21CSL55

An operator is a reserved word or a character used primarily in an SQL statement's WHERE
clause to perform operation(s), such as comparisons and arithmetic operations.TheseOperators
are used to specify conditions in an SQL statement and to serve as conjunctions for multiple

conditions in a statement.Different type of operators are as follows

e Arithmetic operators

« Comparison operators

» Logical operators

e Operators used to negate conditions

1.Arithmetic Operators

In MySQL, arithmetic operators are used to perform the arithmetic operations as described below.

Operator Description Example

+ Addition of two operands a+b

B Subtraction of right operand from a-b
the left operand

* Multiplication of two operands a*b

/ Division of left operand by the alb
right operand

% Modulus — the remainder of the a%b
division of left operand by the right

The following are a few examples of operations, using Arithmetic Operators.

Let us assume certain values for the below variables as

a=10,b=5

a + b will give the result as 15.

a — b will give the result as 5.

a* b will give the result as 50.

a / b will give the result as 2.

a % b will give the result as 0.

Dept. of CSE, ATMECE, Mysore

Page 32

DBMS Laboratory with mini Project

21CSL55

Examples of Arithmetic Operators

SELECT 150 +250;
Output
400

SELECT 145 - 75;
Output
70

SELECT 17 * 5;
Output
85

SELECT 49/ 7,
Output
7.0000

SELECT 21 % 5;

Output
1

2.Comparison Operators

The comparison operators in MySql are used to compare values between operands and
return true or false according to the condition specified in the statement.

Operator

Description

Example

If the value of left operand is greater
than that of the value of the right
operand, the condition becomes true;
if not then false.

a>hb

If the value of left operand is less
than that of a value of the right
operand, the condition becomes true;
if not then false.

a<bhb

If both the operands have equal value,
the condition becomes true; if not

a==

Dept. of CSE, ATMECE,

Mysore

Page 33

DBMS Laboratory with mini Project

21CSL55

then false.

/1=

If both the operands do not have
equal value, the condition becomes
true; if not then false.

al=y

If the value of left operand is greater
than or equal to the right operand, the
condition becomes true; if not then
false.

a>=b

If the value of left operand is less
than or equal to the right operand, the
condition becomes true; if not then
false.

a<=b

If the value of left operand is not less
than the value of right operand, the
condition becomes true; if not then
false.

al<b

If the value of left operand is not
greater than the value of right
operand, the condition becomes true;
if not then false.

al>b

<>

If the values of two operands are not
equal, the condition becomes true; if
not then false.

a<>b

3. Logical Operators
The logical operators used in MySQL are shown below.

Operator | Description

BETWEEN | It is used to search within a set of values, by the minimum value and maximum
value provided.
It is used to search for the presence of a row in a table which satisfies a certain

EXISTS " e L
condition specified in the query.

OR It is used to combine multiple conditions in a statement by using the WHERE
clause.

AND It allows the existence of multiple conditions in an SQL statement’s WHERE
clause.

NOT It reverses the meaning of the logical operator with which it is used. (Examples:
NOT EXISTS, NOT BETWEEN, NOT IN, etc.)

Dept. of CSE, ATMECE, Mysore

Page 34

DBMS Laboratory with mini Project

21CSL55

IN It is used to compare a value in a list of literal values.

ALL It compares a value to all values in another set of values.

ANY It compares a value to any value in the list according to the condition specified.
LIKE It uses wildcard operators to compare a value to similar values.

IS NULL It compares a value with a NULL value.

UNIQUE It searches for every row of a specified table for uniqueness (no duplicates).

Let us take an example of CUSTOMERtable as shown below to understand how to use the comparison
operators as stated above while performing MySQL queries.

Pre-RequisiteData:

CUSTOMERTABLE

ID | NAME AGE | ADDRESS | SALARY
1 Anand 25 Bangalore 30000.00
2 Sandeep 27 Hubli 55000.00
3 Sharath 26 Bangalore 60000.00
4 Manohar 31 Mangalore 32000.00
5 Hemanth 29 Shimoga 40000.00
6 Nithin 30 Belgaum 75000.00
7 Nishant 32 Mysore 20000.00
8 Deepak 32 Mysore 25000.00
9 Bharath 39 Mysore 85000.00

Below is script for creating table CUSTOMER
CREATE TABLE CUSTOMER

(

ID INT PRIMARY KEY,
NAME VARCHAR(200),
AGE INT NOT NULL,
ADDRESS VARCHAR(200),
SALARY DECIMAL(15,2)

);

Dept. of CSE, ATMECE, Mysore

Page 35

https://www.educba.com/mysql-queries/

DBMS Laboratory with mini Project 21CSL55
Below is script for Inserting values into CUSTOMER Table

Insert into Customer values (1,"Anand", 25,"Bangalore”, 30000.00);
Insert into Customer values(2, "Sandeep", 27,"Hubli", 55000.00);
Insert into Customer values(3, "Sharath™, 26,"Bangalore”, 60000.00);
Insert into Customer values(4, "Manohar”, 31,"Mangalore", 32000.00);
Insert into Customer values(5, 'Hemanth', 29,'Shimoga’, 40000.00);
Insert into Customer values(6, 'Nithin', 30,'Belgaum’, 75000.00);

Insert into Customer values(7, "Nishant”, 32,"Mysore",20000.00);
Insert into Customer values(8, "Deepak”, 32,"Mysore",25000.00);
Insert into Customer values(9, "Bharath", 39,"Mysore",85000.00);

Below is the screen shot showing contents of customer table.

SELECT = FROM CUSTOMER;

—————————— +

SALARY

Bangalore
Hubli
Bangalore
Mangalore
Shimoga
Be lgaum
Muzore
Mysore

Sandeep
Sharath
Manohar
Hemanth
Mithin

Hizhant
Deepak

Bharath

Bl 4§ == e e e e - ==
T T S Y
R

in =et (@.

Let us use the different comparison operators to query the CUSTOMER table as shown below.
Queries:

Q1.Writeaquerytofindthesalaryofapersonwhereageis less than or equal to 26and salary greater
than or equal 25000fromCustomer table

SELECT *FROMCUSTOMER WHERE AGE <=26ANDSALARY>=25000;
Output:

SELECT = FROM CUSTOMER WHERE AGE <= Z6 AND SALARY = 25088;
+

___________ —_

ADDREES SALARY

Bangalore JA8Ad . 8@

Sharath Bangalore 68006 . BB

M 4 === == &

+
1
1

+
1
]
1
1

+

Q2. Write a query to find the salary of a person where age is less than or equal to 26 or salary
greater than or equal to 33000 from customer table.

SELECT *FROMCUSTOMER WHERE AGE <=260rSALARY>=33000;
Output:

Dept. of CSE, ATMECE, Mysore Page 36

DBMS Laboratory with mini Project 21CSL55

SELECT = FROM CUSTOMER UWHERE AGE <=26& or SALARY >=330080;
+

————— — %

ADDRESS SALARY
Bangalore JA80Ad . AR
Sandeep Hubli LLO@d . 3
6AAAA . BA
46088 . 88
75088 . 648

Sharath Bangalore
Hemanth Shimoga
Mithin Be lgaum

o

in zet (A.H@ secl>

Q3.Write a query to find the name of customer whose name start with n(using pattern
matching)

SELECT * FROM CUSTOMER WHERE NAME LIKE 'n%"
Output:

SELECT = FROM CUSTOMER WHERE HAME LIKE ‘nx’;

————————— —

ADDRESS SALARY i

Be lgaum 7h066 .66
200080 . 8A

Mithin
Hizhant

+ +
1 1
1 1
+ +
1 1
]]
1 1
1 1
+

in set {B.00 sec)

Q4.Write a query to find the name of customer ending with th(using pattern matching)
SELECT * FROMCUSTOMER WHERE NAME LIKE "%th’;

Output:
SELECT = FROM CUSTOMER WHERE NAME LIKE ‘:xth’;

——————————— —————

ADDRESS SALARY i

Bangalore 60800 . 3@
Shimoga 40800 . 3@
85086 .84

Sharath
Hemanth
Bharath

- o=

in =et (A.AH@ =zec)>

Q5. Write a query to find the customer details using “IN” operator where age can be 25 and 27.
SELECT*FROMCUSTOMER WHEREAGEIN (25,27);
Output:

2 SELECT = FROM CUSTOMER WHERE AGE IMNC25.273;

Jnana . a8
55808. 68

Bangalore
Hubli

$ o ==
$omm—— ==

Sandeep

in =zet (A.0@ sec)

Dept. of CSE, ATMECE, Mysore Page 37

DBMS Laboratory with mini Project 21CSL55

Q6. Write a query to find the customer details using “between ” operator where age is between
25 and 27

SELECT*FROMCUSTOMER WHEREAGEBETWEEN25AND27,;
Output:

SELECT = FROM CUSTOMER WHERE AGE BETWEEN 25 AND 273
+

___________ —_

ADDRESS SALARY i

Bangalore 38066 .86
Hubli 55088 .60
Bangalore 0008 . BE

Sandeep
Sharath

[ST
1]
(1. ISP

Q7. Write a query to find the customer details where age is not null

SELECT * FROMCUSTOMER WHERE AGE IS NOT NULL;
Output:

=

= &
& &
= &

=
1.XT
d b

y
41l |

Y
4 Ll |

=

=

o
il il fofe
il fea oo el fo

Dept. of CSE, ATMECE, Mysore Page 38

DBMS Laboratory with mini Project 21CSL55

MySQL Aggregate Functions
An SQL group function or aggregate functions performs an operation on a group ofrows and
returns a single result. You may want retrieve group of item-prices and return total-price. This
type of scenario is where you would use a group functions.

Syntax:
The following are the syntax to use aggregate functions in MySQL.:

function_name (DISTINCT | ALL expression)
In the above syntax, we had used the following parameters:

e First, we need to specify the name of the aggregate function.

e Second, we use the DISTINCT modifier when we want to calculate the result based on distinct
values or ALL modifiers when we calculate all values, including duplicates.

The default is ALL.

Third, we need to specify the expression that involves columns and arithmetic operators.
There are various aggregate functions available in MySQL.

Some of the most commonly used aggregate functions are summarised in the below table:;

Count():

Count(*): Returns total number of records .
Count(salary): Return number of Non Null values over the column salary.
Count(Distinct Salary): Return number of distinct Non Null values over the column salary

Sum():

sum(salary): Sum all Non Null values of Column salary
sum(Distinct salary): Sum of all distinct Non-Null values

Ava():
Avg(salary) = Sum(salary) / count(salary) = 310/5
Avg(Distinct salary) = sum(Distinct salary) / Count(Distinct Salary)

Min() and Max():
Min(salary): Minimum value in the salary column except NULL
Max(salary): Maximum value in the salary

The following table issummaryofsomeSQLgroupfunction&queryexamples.

Eunction Description

AVG(fieldname) Returns average value of a | SELECT AVG(salary) FROM
column CUSTOMER,;

COUNT (fieldname) Returnsnumberof itemsinTable SELECT COUNT (salary) FROM
orquerieditems CUSTOMER,;

MAX(fieldname) Returns maximum value [SELECT MAX (salary) FROM
ofColumn CUSTOMER,;

MIN(fieldname) Returns minimum value of [SELECT MIN (salary) FROM
Column CUSTOMER,;

SUM(fieldname) Returnstotalvalue ofColumn SELECT SUM (salary) FROM

CUSTOMER,;

Dept. of CSE, ATMECE, Mysore Page 39

DBMS Laboratory with mini Project 21CSL55
Below are Sample queries uwhic uses Aggregate function

Q1. Write a query to find the average salary of employees in customer table
SELECT AVG(salary) FROM CUSTOMER;
Output:

myﬂql} SELECT HUG(salary) FROM CUSTOMER:;

sec’

Q2. Write a query to find the number of employees in customer table
SELECT COUNT(ID) FROM CUSTOMER;
Output:

myuq1> SELECT COUNT<ID> FROM CUSTOMER;

Q3 Write a query to find the maximum salary of employees in customer table
SELECT MAX(salary) FROM CUSTOMER;
Output:

myuql} SELECT "HH{Q&I&IH) FROM CUSTOMER;

row in set (E B8 secl>

Q4. Write a query to find the minimum salary of employees in customer table
SELECT MIN(salary) FROM CUSTOMER,;
Output:

myaql} SELECT HIN(salary} FROM CUSTOMER;

+

row in set (B B8 zec

Q5. Write a query to find the sum of salary of all employees in customer table
SELECT SUM (salary)FROM CUSTOMER;

Dept. of CSE, ATMECE, Mysore Page 40

DBMS Laboratory with mini Project

21CSL55

Output

SUM{zalary>FROM CUSTOMER;
+

GROUP BY Clause

The MYSQL GROUP BY Clause is used to collect data from multiple records and group the

result by one or more column. It is generally used in a SELECT statement.

You can also use some aggregate functions like COUNT, SUM, MIN, MAX, AVG etc. on the

grouped column.

SQL GROUP BY Syntax

Now that we know what the SQL GROUP BY clause is, let’s look at the syntax for a basic

group by query.

SELECT statements... GROUP BY column_namel[,column_name2,...] [HAVING condition];

HERE

o “SELECT statements...” is the standard SQL SELECT command query.

e “GROUP BY column_namel” is the clause that performs the grouping based on

column_namel.

e “[,column name2,...]” is optional; represents other column names when the grouping is done

on more than one column.

e “[HAVING condition]” is optional; it is used to restrict the rows affected by the GROUP BY

clause. It is similar to the WHERE clause.

Pre-RequisiteData:

employeesTABLE

emp_id | emp_name | emp_age| city salary
101 Hemanth 32 Mysore 20000.00
102 Mohan 32 Belgaum 30000.00
103 Deepak 40 Mangalore | 100000.00
104 Nitin 35 Bangalore 40000.00
105 Sandeep 32 Mangalore | 50000.00
106 Yogesh 45 Mysore 70000.00
107 Rohit 35 Bangalore 60000.00
108 Bharath 40 Hubli 80000.00

Dept. of CSE, ATMECE, Mysore

Page 41

DBMS Laboratory with mini Project 21CSL55

Below is script for creating table employees
create table employees
(
emp_id int primary key,
emp_name varchar(200),
emp_age int,
city varchar(200).
salary decimal(15,2)

);

Below is script for Inserting values into CUSTOMER Table
Insert into employees values(101,'Hemanth’,32,'Mysore’,20000);
Insert into employees values(102,'Mohan',32,'Belgaum’,30000);
Insert into employees values(103,'Deepak’,40,'Mangalore’,100000)
Insert into employees values(104,'Nitin’,35,'Bangalore’,40000)
Insert into employees values(105,'Sandeep’,32,'Mangalore’,50000);
Insert into employees values(106,"Y ogesh',45,"Mysore’,70000)
Insert into employees values(107,'Rohit’,35,'Bangalore’,60000)
Insert into employees values(108,'Bharath',40,"Hubli',80000);

Below is the screen shot showing contents of employees table.

Hemanth
Mohan
Deepak
Mitin
Sandeep
Yogeszh
Rohit
Bharath

108080 .
480888 .
LoaEaA .
78888 .
6BEEAE .

Mangalore
Bangalore
Mangalore
Muzore
Bangalore
Hubli

S T
R

1
]

+
1
]
1
]
]
1
1
]
1
1
1
]
1
1
]
1

+

W e e

rows in set (@.808

1>
MySQL Count() Function with GROUP BY Clause

We can also use the count() function with the GROUP BY clause that returns the count of the
element in each group. For example, the following statement returns the number of employee
staying in each city:

SELECT city, COUNT(*) FROM employees GROUP BY city;
After the successful execution, we will get the result as below:

i Bangalore 1

! Belgaum
Hubli

i Mangalore 1

(B.098 sec)

Dept. of CSE, ATMECE, Mysore Page 42

DBMS Laboratory with mini Project 21CSL55

MySQL Count()FunctionwithHAVINGandORDERBY Clause

Letussee anotherclausethatuses ORDERBY andHavingclausewith thecount()function.Execute the
following statement that gives the employee age who has at least two agesameand sortsthem
basedonthecountresult:

SELECT emp_age,COUNT(*) FROM employees GROUP BY emp_age having
count(*)>1 order by count(*);

After the successful execution, we will get the result as below:

mysgl>* SELECT emp_age.,.COUNTC+*> FROM employeesz group by emp_age having count (>l

order hy count{*»;

+
1
1

+
1
1
1
1
1
1

+

=

MySQL sum() Function with GROUP BY Clause

We can also use the sum () function with the GROUP BY clause that returns the sum of the
element in each group. For example, the following statement returns the sumof salary of
employees in each city:

SELECT city, sum(salary) FROM employees GROUP BY city

After the successful execution, we will get the result as below

T

1086084 . AR
38080 .86
880008 .80

158084 . 8Q
78008.808

Bangalore
Belgaum

Hubli
Mangalore

ommmm e e

rows in set (A.BB sec?

MySQLsum()FunctionwithHAVINGandORDERBY Clause

Letussee anotherclausethatuses ORDERBY andHavingclausewith thesum()unction.Execute the
following statement that gives the sum of salary who has at least two city and sum of salary should be
greaten or equal to 100000 annd sortsthem basedonthesalary

SELECT city, sum(salary) FROM employees GROUP BY city having sum(salary)
>=100000 ;

Dept. of CSE, ATMECE, Mysore Page 43

DBMS Laboratory with mini Project 21CSL55

After the successful execution, we will get the result as below:

muysgly SELECT city,. sum(salary> FROM employeez GROUP BY city having sumdsalary?
>=100000 ;

_____________ .
sumCzalary?

1888484 . A8

i Bangalore
15886068 . 04

! Mangalore
———
2 rowz in set C(A.AA zec)

+
1
1
+
1
1
1
1
+

In Above Ouput ,salary can sorted in descending order by salary using order by clause
Select city,sum(salary) from employee group by city having sum(salary)>=100000
Order by sum(salary) desc;

sql> SELECT city, sum{salary> FROM emplovees GROUP BY city having sum{zalary
=1A888A order hy sumisalary) desc;

—_ +
sum{zalaryr

Mangalore 15800088 .88

Bangalore 108884 . 8@

rows in set (A.@AA sec

musgqly _

Dept. of CSE, ATMECE, Mysore Page 44

DBMS Laboratory with mini Project
INTRODUCTION TO JOINS

e Joins help retrieving data from two or more database tables.

21CSL55

e A JOIN clause is used to combine rows from two or more tables, based on a related column
between them.

e Join establishes temporarily relationship between two or more tables. The tables are mutually

related using primary and foreign keys.

CREATE TABLE MOVIESs (

MOVIE_ID INT (5) PRIMARY KEY,MOVIE_NAME VARCHAR(50));

CREATE TABLE ACTORS(ACTOR_ID INT(5) PRIMARY KEY,ACTOR_NAME
VARCHAR(50),MOVIE_ID INT(5),FOREIGN KEY(MOVIE_ID) REFERENCES

MOVIES(MOVIE_ID));

HERE IS INSERT SCRIPTS FOR BOTH TABLES MOVIES AS WELL AS ACTORS

INSERT INTO
INSERT INTO
INSERT INTO
INSERT INTO
INSERT INTO
INSERT INTO

INSERT INTO
INSERT INTO
INSERT INTO
INSERT INTO
INSERT INTO

MOVIES VALUES(1000,'SHOLAY");
MOVIES VALUES(1001,'ITTEFAQY);
MOVIES VALUES(1002, TEESRI MANZIL";
MOVIES VALUES(1003," JEWEL THIEF ");
MOVIES VALUES(1004,'CARAVANY);
MOVIES VALUES(1005,' GUMNAAMY;

ACTORS VALUES(1,AMITABH BACHCHAN',1000);

ACTORS VALUES(2,’RAJESH KHANNA',1001);
ACTORS VALUES(3,'SHAMI KAPOOR',1002);
ACTORS VALUES(4,DEV ANAND',1003);
ACTORS VALUES(5,'NULL',1004);

SELECT * FROM MOVIES;

MOVIE_ID MOVIE_NAME
1000 SHOLAY
1001 ITTEFAQ
1002 TEESRI MANZIL
1003 JEWEL THIEF
1004 CARAVAN
1005 GUMNAAM

Dept. of CSE, ATMECE, Mysore

Page 45

DBMS Laboratory with mini Project

21CSL55

SELECT * FROM ACTORS;

ACTOR_ID ACTOR_NAME MOVIE_ID
1 AMITABH BACHCHAN 1000
2 RAJESH KHANNA 1001
3 SHAMI KAPOOR 1002
4 DEV ANAND 1003
5 NULL 1004

Types of JOINS

Cross JOIN

Cross JOIN is a simplest form of JOINs which matches each row from one database table to all
rows of another.

In other words it gives us combinations of each row of first table with all records in second

table.

Select * FROM TableA CROSS JOIN TableB;

IIOR//

Select * FROM Tablel Al,Tablel A2;
SELECT * FROM MOVIES CROSS JOIN ACTORS;

Executing the above script in MySQL workbench gives us the following results.

MOVIE_ID | MOVIE_NAME | ACTOR_ID ACTOR_NAME MOVIE_ID
1000 SHOLAY 1 AMITABH BACHCHAN 1000
1000 SHOLAY 2 RAJESH KHANNA 1001
1000 SHOLAY 3 SHAMI KAPOOR 1002
1000 SHOLAY 4 DEV ANAND 1003
1000 SHOLAY 5 NULL 1004
1001 ITTEFAQ 1 AMITABH BACHCHAN 1000
1001 ITTEFAQ 2 RAJESH KHANNA 1001
1001 ITTEFAQ 3 SHAMI KAPOOR 1002
1001 ITTEFAQ 4 DEV ANAND 1003
1001 ITTEFAQ 5 NULL 1004
1002 TEESRI MANZIL 1 AMITABH BACHCHAN 1000
1002 TEESRI MANZIL 2 RAJESH KHANNA 1001
1002 TEESRI MANZIL 3 SHAMI KAPOOR 1002
1002 TEESRI MANZIL 4 DEV ANAND 1003

Dept. of CSE, ATMECE, Mysore Page 46

DBMS Laboratory with mini Project 21CSL55
1002 TEESRI MANZIL 5 1004
1003 JEWEL THIEF 1 AMITABH BACHCHAN 1000
1003 JEWEL THIEF 2 RAJESH KHANNA 1001
1003 JEWEL THIEF 3 SHAMI KAPOOR 1002
1003 JEWEL THIEF 4 DEV ANAND 1003
1003 JEWEL THIEF 5 1004
1004 CARAVAN 1 AMITABH BACHCHAN 1000
1004 CARAVAN 2 RAJESH KHANNA 1001
1004 CARAVAN 3 SHAMI KAPOOR 1002
1004 CARAVAN 4 DEV ANAND 1003
1004 CARAVAN 5 1004
1005 GUMNAAM 1 AMITABH BACHCHAN 1000
1005 GUMNAAM 2 RAJESH KHANNA 1001
1005 GUMNAAM 3 SHAMI KAPOOR 1002
1005 GUMNAAM 4 DEV ANAND 1003
1005 GUMNAAM 5 1004

INNER JOIN

Technically, Join made by using equality-operator (=) to compare values of PrimaryKey of one

table and Foriegn Key values of antoher table, hence result set includes common(matched)

records from both tables

The inner JOIN is used to return rows from both tables that satisfy the given condition.
SELECT * FROM Tablel A INNER JOIN Table2 B ONA.<PrimaryKey>=B.<ForeignKey>;

SELECT MOVIE_NAME, ACTOR_NAME,ACTOR_ID FROM MOVIES M INNER JOIN
ACTORS A ON M.MOVIE_ID=A.MOVIE_ID;

Executing the above script in MySQL workbench gives us the following resut

MOVIE_NAME ACTOR_NAME ACTOR_ID
SHOLAY AMITABH BACHCHAN 1
ITTEFAQ RAJESH KHANNA 2

TEESRI MANZIL SHAMI KAPOOR 3

JEWEL THIEF DEV ANAND

CARAVAN NULL

Dept. of CSE, ATMECE, Mysore

Page 47

DBMS Laboratory with mini Project 21CSL55
INNER JOIN CONSISTING OF WHERE CONDITION AND ACTOR NAME SHOULD

NOT BE NULL

SELECT MOVIE_NAME, ACTOR_NAME,ACTOR_ID FROM MOVIES M INNER JOIN
ACTORS AON M.MOVIE_ID=A.MOVIE_ID WHERE ACTOR_NAME!='NULL"

OR

SELECT MOVIE_NAME, ACTOR_NAME,ACTOR_ID FROM MOVIES M INNER JOIN
ACTORS AON M.MOVIE_ID=A.MOVIE_ID WHERE ACTOR_NAME<>NULL";

Executing the above script in MySQL workbench gives us the following results.

MOVIE_NAME ACTOR_NAME ACTOR_ID
SHOLAY AMITABH BACHCHAN 1
ITTEFAQ RAJESH KHANNA 2

TEESRI MANZIL SHAMI KAPOOR 3

JEWEL THIEF DEV ANAND 4

INNER JOIN CONSISTING OF WHERE CONDITION AND ACTOR NAME FIELDS ARE
HAVING NULL VALUE

SELECT MOVIE_NAME, ACTOR_NAME,ACTOR_ID FROM MOVIES M INNER JOIN
ACTORS A ON M.MOVIE_ID=A.MOVIE_ID WHERE ACTOR_NAME='NULL

Executing the above script in MySQL workbench gives us the following results.

MOVIE_NAME ACTOR_NAME ACTOR_ID
CARAVAN NULL 5
OUTER-JOIN

A full outer join, or full join, which is not supported by the popular MySQL database management
system, However, can customized selection of un-matched rows e.g, selecting unmatched row from
first table or second table by sub-types: LEFT OUTER JOIN and RIGHT OUTER JOIN.

It can detect records having no match in joined table. It retuns NULL values for records of joined
table if no match is found.

LEFT JOIN

The LEFT JOIN retuns all the rows from the table on the left even if no matching rows have been
found in the table on the right. Where no matches have been found in the table on the right, NULL
is returned.

Select * FROM Tablel A LEFT OUTER JOIN Table2 B On A.<PrimaryKey>=B.<ForeignKey>;

SELECT MOVIE_NAME, ACTOR_NAME,ACTOR_ID FROM MOVIES M LEFT
OUTER JOIN ACTORS A ON M.MOVIE_ID=A.MOVIE_ID;

Dept. of CSE, ATMECE, Mysore Page 48

https://en.wikipedia.org/wiki/MySQL

DBMS Laboratory with mini Project

21CSL55

Executing the above script in MySQL workbench gives beloew result.You can see that in the
returned result which is listed below that for movies which do not have a actor, actor name fields
are having NULL values. That means no matching member found actor table for that particular

movie.
MOVIE NAME ACTOR NAME ACTOR ID
SHOLAY AMITABH BACHCHAN 1
ITTEFAQ RAJESH KHANNA 2
TEESRI MANZIL SHAMI KAPOOR 3
JEWEL THIEF DEV ANAND 4
CARAVAN NULL 5
GUMNAAM NULL NULL
RIGHT JOIN

RIGHT JOIN is obviously the opposite of LEFT JOIN. The RIGHT JOIN retuns all the columns
from the table on the right even if no matching rows have been found in the table on the left.
Where no matches have been found in the table on the left, NULL is returned.

Select * FROM Tablel A RIGHT OUTER JOIN Table2 B on A.<PrimaryKey>=B.<ForeignKey>;
SELECT MOVIE_NAME, ACTOR_NAME,ACTOR_ID FROM MOVIES M RIGHT

OUTER JOIN ACTORS A ON M.MOVIE_ID=A.MOVIE_ID;

Executing the above script in MySQL workbench gives the following results.

MOVIE_NAME ACTOR_NAME ACTOR_ID
SHOLAY AMITABH BACHCHAN 1
ITTEFAQ RAJESH KHANNA 2

TEESRI MANZIL SHAMI KAPOOR 3

JEWEL THIEF DEV ANAND 4
CARAVAN NULL 5

Dept. of CSE, ATMECE, Mysore

Page 49

DBMS Laboratory with mini Project 21CSL55

INTRODUCTION TO SUBQUERY

e Asubquery is a query within another query. The outer query is called as main query and inner
query is called as subquery.

e Subqueries are nested queries that provide data to the enclosing query.
e Subquery must be enclosed in parentheses.
e Subqueries can return individual values or a list of records

e You can place the Subquery in a number of SQL clauses: WHERE clause, HAVING clause,
FROM clause.

e Subqueries can be used with SELECT, UPDATE, INSERT, DELETE statements along with
expression operator. It could be equality operator or comparison operator such as =, >, =, <=
and Like operator.

e The subquery generally executes first, and its output is used to complete the query condition
for the main or outer query.

e Subqueries are on the right side of the comparison operator.

e ORDER BY command cannot be used in a Subquery. GROUPBY command can be used to
perform same function as ORDER BY command.

e Use single-row operators with singlerow Subqueries. Use multiple-row operators with
multiple-row Subgueries.

Syntax:

e There is not any general syntax for Subqueries. However, Subqueries are seen to be used most
frequently with SELECT statement as shown below:

SELECT column_name FROM table_name WHERE column_name expression operator
(SELECT COLUMN_NAME from TABLE_NAME WHERE ...);
Below is sample table StudentDetails and StudentSection we have created to demonstrate

working of subquesry

create tab StudentDetails

(

Student_ID int primary key
NAME varchar(100),
ROLL_NO int,
LOCATION varchar(100),
PHONE_NUMBER bigint

);

Dept. of CSE, ATMECE, Mysore Page 50

https://www.geeksforgeeks.org/sql-where-clause/
https://www.geeksforgeeks.org/having-vs-where-clause/
https://www.geeksforgeeks.org/sql-order-by/
https://www.geeksforgeeks.org/sql-group-by/

DBMS Laboratory with mini Project

create table StudentSection
(

NAMEvarchar(100),
ROLL_NO int,

Section char(1)

);
Below is sample insert scripts for inserting information into StudentDetails

insert into StudentDetails values(1000,'Hemanth’,101,'Mysore',9845113337);
insert into StudentDetails values(2000,'Nitin’',102,'Banglore’,8877665544);

insert into StudentDetails values(3000,'Sandeep’,103,'Kodagu’,9538945623);
insert into StudentDetails values(4000,'Sashank Hegde',104,'Udupi',8989898989);
insert into StudentDetails values(5000,'Nagendra’,105,'Banglore’,9901478945);

Below is sample insert scripts for inserting information into StudentSection

insert into StudentSection values('Sashank Hegde',104,'A’);
insert into StudentSection values('Nagendra’,105,'B");
insert into StudentSection values('Nitin',102,'A");

insert into StudentSection values("Hemanth',101,'B);

select * from StudentDetails

yagl?> zelect * from StudentDetailss

S ——

i Student_ID

+,—
]

PHONE_NUMBER

______________ +
845113337 |
2877665544 1
25389450623
8789878987
1781470745

______________ +

Hemanth
Mitin
Sandee

Eashanﬂ Hegde
Hagendra

2084
3884
48688

Banglove
Kodagu
Udupi
Danglore

-+
]
1
+
"
1
1
s
1
[l
1
1
I
+

§ o mmmm e o=k
$ o= mmmm e o=k

+

;
+
Sazhank Hegde |
Hagendra H
Mitin :
Hemanth i

+

rows in set <A.B8 sec)

Dept. of CSE, ATMECE, Mysore

21CSL55

Page 51

DBMS Laboratory with mini Project 21CSL55

Queryl: To display NAME, LOCATION, PHONE_NUMBER of the StudentDetails table whose
section is A

Select NAME,LOCATION,PHONE_NUMBER from StudentDetails WHERE ROLL_NO
IN(SELECT ROLL_NO from StudentSection where SECTION="A");

Explanation : First subquery executes “ SELECT ROLL NO from STUDENT where
SECTION="A"” returns ROLL NO from STUDENT table whose SECTION is ‘A’.Then outer-
query executes it and return the NAME, LOCATION, PHONE_NUMBER from the DATABASE
table of the student whose ROLL_NO is returned from inner subquery.

Below is snapshot of output of above exceuted subquery

mysgly Select MAME.LOCATION.PHONE_MUMBER from StudentDetails
—» WHERE ROLL_HO IH{SELECT ROLL_M0O from StudentSection where SECTION='A’>;
+

——— ——

LOCATION

PHONE_HWUMEBER !

8877665544
8287828987

#omm

:
+
i Banglore
1
H

Query2: To update name from StudentDetails table whose rollno is same as that in
StudentSection table and having name as Nitin by Using subquery

UPDATE StudentDetails SET NAME="Nitin Jain’
WHERE ROLL_NO IN(SELECT ROLL_NOFROM StudentSection where NAME="Nitin’);

7845113337
8877665544
2538945623
8989898989
79681478945

Hemanth

Mitin

Sandeep
Saszhank Hegde
Hagendra

Banglore
Kodagu
Udupi
Banglore

R b a1
e
A

rouws in set (A.00 secl

muysgl> UPDATE StudentDetails SET MWAME='Hitin Jain’

—» WHERE ROLL_MWO IN<SELECT ROLL_MWO FROM StudentSection where HAME='MWitin’>:
Query O, 1 row affected (B.B8 seck
Rows matched: 1 Changed: 1 Warnings: @

#* From studentdetails;

7845113337
8877665544
9538945623
8989898989
79681478245

Hemanth

Mitin Jain
Sandeep
Saszhank Hegde
Hagendra

Banglore
Kodagu
Udupi
Banglore

$ oo mmmmen g -k

+
1
]

+
]
1
1
1
1
]
1
]
]
1

+

e
e

rows in set (A.B@ sec

Dept. of CSE, ATMECE, Mysore Page 52

DBMS Laboratory with mini Project 21CSL55

Query3: To delete students from Student2 table whose rollno is same as that in Studentl table
and having location as chennai

DELETE FROM StudentDetailsWHERE ROLL_NO IN (SELECT ROLL_NO
FROM StudentSection WHERE NAME ="Nagendra’);

muyzgl>* zselect ®* from StudentDetails;
______________ +

PHONE_MUMBER

2845113337
BE77665544
2538245623
8989898989
7981478945

Hemanth
Hemanth
Sandeep
Sashank
Magendra

Huyszore
Banglore
Kodagu
Udupi
Banglore

i R
$ommmm e e
$ommmm e e
$ o mm e =

rows in set (A.BA sec?

mysql> DELETE FROM StudentDetails WHERE ROLL_HO IN <SELECT ROLL_HNO
—» FROM StudentSection WHERE HAME = 'Hagendra’);

Query 0K, 1 row affected <B.BA =sec

muyzgl>* zselect ®* from StudentDetails;

2845113337
BE77665544
2538245623
8989898989

Hemanth
Hemanth
Sandeep
Sashank

Huyszore
Banglore
Kodagu

o me
§omm e m =
§omm e e
$ o= =

rows in set (A.BAA sech

muysgl>

Join vs. Subquery

JOINs are faster than a subquery and it is very rare that the opposite.

e InJOINs the RDBMS calculates an execution plan, that can predict, what data should be
loaded and how much it will take to processed and as a result this process save some times,
unlike the subquery there is no pre-process calculation and run all the queries and load all their
data to do the processing.

e A JOIN is checked conditions first and then put it into table and displays; where as a subquery
take separate temp table internally and checking condition.

e When joins are using, there should be connection between two or more than two tables and
each table has a relation with other while subquery means query inside another query, has no
need to relation, it works on columns and conditions

Dept. of CSE, ATMECE, Mysore Page 53

DBMS Laboratory with mini Project 21CSL55
VIEWS IN SQL

e Aview isa single virtual tablethat is derived from other tables. The other tables could be
base tables or previously definedview.

e Allows for limited update operations Since the table may not physically bestored
e Allows full queryoperations
e A convenience for expressing certainoperations

e A view does not necessarily exist in physical form, which limits the possible update
operations that can be applied toviews.
Views syntax

Let's now look at the basic syntax used to create a view in MySQL.
CREATE VIEW ‘view_name™ AS SELECT statement;
WHERE
e "CREATE VIEW “view name" tells MySQL server to create a view object in the
database
e "AS SELECT statement™ is the SQL statements to be packed in the views. It can be a
SELECT statement can contain data from one table or multiple tables.

Examplel-Simple View consisting of only one tables

CREATE VIEW VW_BOOKDETAILS AS SELECT BOOK_NAME, BOOK_AUTHOR,
PUBLISHER FROM BOOK_DETAILS;

Example of Simple Viewconsisting of two tables and using where condition

CREATE VIEW VW_ORDERS AS SELECT BOOK_NAME, BOOK_AUTHOR,
PUBLISHER FROM ORDERS A, BOOK_DETAILS B WHERE
A.ORDER_ID=B.ORDER_ID;

Example of View consisting of inner join

CREATE VIEW VW_BOOK1 AS SELECT A.ORDER_ID, ORDER_DATE, BOOK_NAME,
BOOK_AUTHOR, PUBLISHER FROM ORDERS A INNER JOIN BOOK_DETAILS B ON
A.ORDER_ID=B.ORDER_ID;

Example of View consisting of inner join and where condition
CREATE VIEW VW_BOOK2 AS SELECT A.ORDER_ID, ORDER_DATE,BOOK_NAME,
BOOK_AUTHOR, PUBLISHER FROM ORDERS A INNER JOIN BOOK_DETAILS B ON
A.ORDER_ID=B.ORDER_IDID AND PUBLISHER="Tata McGraw-Hill'

SELECT * FROM VW_BOOKDETAILS
SELECT * FROM VW_ORDERS
SELECT * FROM VW_BOOK1
SELECT * FROM VW_BOOK2

Dept. of CSE, ATMECE, Mysore Page 54

DBMS Laboratory with mini Project 21CSL55
SHOW TABLES

Tables_in_naveen
VW_BOOKDETAILS
VW_ORDERS
VW_BOOK1
VW_BOOK2

Example2-Simple View

CREATE VIEW VW_PUBLICATION AS SELECT PUB_YEAR FROM BOOK;

SELECT * FROM VW _PUBLICATION

uzgl> SELECT = FROM UW_PUBLICATION:

+

JAN-2817
JUN-2016
SEP-2616
SEP-2615
MAY-2016

5 rows in set (H.HA sec)

DROPING VIEWS

The DROP command can be used to delete a view from the database that is no longer required.
The basic syntax to drop a view is as follows.
DROP VIEW VIEWNAME;
DROP VIEW V_PUBLICATION;
You may want to use views primarily for following 3 reasons

e Ultimately , you will use your SQL knowledge , to create applications , which will use a
database for datarequirements. It's recommended that you use VIEWS of the original table
structure in your application instead of using the tables themselves. This ensures that when you
refactor your DB, your legacy code will see the orignal schema via the view without breaking
the application.

e VIEWS increase re-usability. You will not have to create complex gueries involving joins
repeatedly. All the complexity is converted into a single line of query use VIEWS. Such
condensed code will be easier to integrate in your application. This will eliminates chances of
typos and your code will be more readable.

e VIEWS help in data security. You can use views to show only authorized information to
users and hidesensitive data like credit card numbers, pass

Dept. of CSE, ATMECE, Mysore Page 55

DBMS Laboratory with mini Project 21CSL55

INTRODUCTION TO STORED PROCEDURES
e A stored procedure is a prepared SQL code that you can save, so the code can be reused over and
over again.So if you have an SQL query that you write over and over again, save it as a stored
procedure, and then just call it to execute it.

e You can also pass parameters to a stored procedure, so that the stored procedure can act based on
the parameter value(s) that is passed.

e A procedure can return one or more than one value through parameters or may not return at all.
The procedure can be used in SQL queries.

Creating a procedure
Syntax
CREATE PROCEDURE procedure_name
(
parameter datatype ,
parameter datatype
)
BEGIN
Declaration_section
Executable_section
END;
Parameter
procedure_name: name of the stored procedure.
Parameter: number of parameters. It can be one or more than one.
declaration_section: all variables are declared.
executable_section: code is written here.

A variable is a named data object whose value can change during the stored procedure execution.
We typically use the variables in stored procedures to hold the immediate results. These variables
are local to the stored procedure. You must declare a variable before using it.

DELIMITER //

CREATE PROCEDURE sp_name

(
p_1INT

)

BEGIN

...code goes here...
END //
DELIMITER ;

Dept. of CSE, ATMECE, Mysore Page 56

http://www.mysqltutorial.org/mysql-stored-procedure-tutorial.aspx

21CSL55

e Replace procedure_name with sp_procedure_name whatever name you'd like to use for the stored
procedure. The parentheses are required — they enclose any parameters. If no parameters are
required, the parentheses can be empty.

DBMS Laboratory with mini Project

e The main body of the stored procedure goes in between the BEGIN and END keywords. These
keywords are used for writing compound statements. A compound statement can contain multiple
statements, and these can be nested if required. Therefore, you can nest BEGIN and END blocks.

e In most cases, you will also need to surround the CREATE PROCEDURE statement
with DELIMITER commands and change END; to END //. Like this:

About the DELIMITER Command
e The first command is DELIMITER // , which is not related to the stored procedure syntax.
The DELIMITER statement changes the standard delimiter which is a semicolon (;) to another.

e Inthis case, the delimiter is changed from the semicolon(;) to double-slashes(//) We need to
change delimiter from ; to //.Because we want to pass the stored procedure to the server as a whole
rather than letting mysql tool interpret each statement at a time.

e Following the END keyword, we use the delimiter // to indicate the end of the stored procedure.
The last command (DELIMITER;)changes the delimiter back to the semicolon (;).

How to Execute a Stored Procedure
Call sp_procedure_name();

Writing the first MySQL stored procedure
Here we are creating sample table named employee

create table employee

(

employee_id int primary key,
Name varchar(50),
Designation varchar(50),
Salary decimal(10,2)

)

insert into employee
insert into employee
insert into employee
insert into employee
insert into employee
insert into employee
insert into employee
insert into employee
insert into employee
insert into employee
insert into employee

values(100,'vishwanath','clerk’,20000.00);
values(101,'shashikiran’,'instructor’,20000.00);
values(102,'nitin’,'assitiant professor',25000.00);
values(103,'deepak’,'associate professor',40000.00);
values(104,'sanjay’,'professor',80000.00);
values(105,'yogesh’,'system admin’,30000.00);
values(106,'anand’,‘clerk’,20000.00);
values(107,'Hemanth’,'professor’,80000.00);
values(108,'Robert','cashier’,15000.00);
values(109,'amit’,'clerk’,20000.00);
values(110,'george’,'HR Manager',30000.00);

Dept. of CSE, ATMECE, Mysore

Page 57

DBMS Laboratory with mini Project 21CSL55

yzgl> zelect

——
i employee_id
4+

28804 .80
288064 .80
25804 .80
48804 . 80
80804 .80
3P80A .80
29800 .80
88800 .80
15800 .80
29800 .80
38804 .80

vishwanath
shashikiran
nitin

161
1682

instructor
assitiant professor
associate professor
professor

system admin

clerk

professopr

cazhier

clerk

HR HManager

184
1685
186
187
188
189

sanjay
yogesh
ELELL
Hemanth
Rohbert
amit
george

+
M

183 deepak
M

o
$ == e mm e e ———— ==

11 rows in set (B.BHA secl

Example

We are going to develop a simple stored procedure named SP_getEmployee to help you get
familiar with the syntax. The SP_getEmployee() stored procedure selects all employee information
from the employee table.:

DELIMITER $$

DROP PROCEDURE IF EXISTS SP_getEmployee 3
CREATE PROCEDURE SP_getEmployee()

BEGIN

SELECT * FROM employee;

END$$

Execute the stored procedure above as follows:

call SP_getEmployee();

uzgl* call SP_getEmployeedl;

20000, 00
20008 .84
250800, 00
40A0@ . AA
B0R0A. AR
JBP0E. 60
20008080
80000 . 60
15680880
20000, A0
e 55157 I

vishwanath
shashikiran
nitin
deepak
zanjay
yogesh
anand
Hemanth
Robert
amit
jJeorge

instructor
assitiant professop
associate professop
profeszor

system admin

clerk

professop

cazshier

clerk

HR Manager

$omm e e e e e e ————— ==
$omm e e e e e e ————— ==
T T A

11 rows in set (B.80 sec)

Juery 0K, B rows affected (A.A3 sec

ysgl> _

Dept. of CSE, ATMECE, Mysore Page 58

http://www.mysqltutorial.org/introduction-to-sql-stored-procedures.aspx

DBMS Laboratory with mini Project 21CSL55
Introduction to MySQL stored procedure parameters

Almost stored procedures that you develop require parameters. The parameters make the stored
procedure more flexible and useful.

The syntax of defining a parameter in the stored procedures is as follows:
MODE param_name param_type(param_size)

The MODE could be IN, OUT or INOUT , depending on the purpose of the parameter in the
stored procedure.

The param_name is the name of the parameter. The name of the parameter must follow the naming
rules of the column name in MySQL.

Followed the parameter name is its data type and size. Like a variable, the data type of the
parameter can be any valid MySQL data type.

Each parameter is separated by a comma (,) if the stored procedure has more than one parameter

IN — is the default mode. When you define an IN parameter in a stored procedure, the calling
program has to pass an argument to the stored procedure. In addition, the value of an IN parameter
is protected. It means that even the value of the IN parameter is changed inside the stored
procedure, its original value is retained after the stored procedure ends. In other words, the stored
procedure only works on the copy of the IN parameter.

OUT - the value of an OUT parameter can be changed inside the stored procedure and its new
value is passed back to the calling program. Notice that the stored procedure cannot access the
initial value of the OUT parameter when it starts.

INOUT —an INOUT parameter is a combination of IN and OUT parameters. It means that the
calling program may pass the argument, and the stored procedure can modify
the INOUT parameter, and pass the new value back to the calling program.

MySQL Procedure : Parameter IN example
Stored Procedure With One Parameter

The following SQL statement creates a stored procedure that selects employee information from a
employee Table based onemployee id from the " SP_getEmployeeid .:

/ISP_getEmployeeid

DELIMITER $$

DROP PROCEDURE IF EXISTS SP_getEmployeeid $$
CREATE PROCEDURE SP_getEmployeeid

Dept. of CSE, ATMECE, Mysore Page 59

http://www.mysqltutorial.org/mysql-variables/
http://www.mysqltutorial.org/mysql-data-types.aspx

DBMS Laboratory with mini Project 21CSL55
(

IN emp_id INT(10)

)

BEGIN

select * FROM employee where employee_id=emp_id;
END$$

[P

row in zet (@A,
Query OK. B rows affected (B.81 szec
ysgl? call SP_getEmployeeidCi@4>;
+

—

employee_id Designation

+
1
1

+
1
1

- omm o om=

row in set (@,
Query 0K, B rows affected (B.81 sec’

ysgl: _

Stored Procedure With Multiple Parameters

Setting up multiple parameters is very easy. Just list each parameter and the data type separated by
a comma as shown below.

The following SQL statement creates a stored procedure that selects studentdetails from a
particular USN with a particular NAME from the " studentmarks " table:

Example
DELIMITER $$
DROP PROCEDURE IF EXISTS SP_getStudentdetails $$
CREATE PROCEDURE SP_getStudentdetails
(
IN usnl varchar(50),
IN namel varchar(50)
)
BEGIN

select * FROM studentmarks where usn=usnl and name=namel;

Dept. of CSE, ATMECE, Mysore Page 60

DBMS Laboratory with mini Project 21CSL55
END$$
Execute the stored procedure above as follows:

muyzsgl>* select * from studentmarks;

4AD17CEA18
4AD1PCEA11
4AD1PCEH2H
4AD1PCER25
4AD1PCEA2T
4AD17CEA32
4AD1PCE845
4AD1PCEH62
4AD1?CEA66 UEENA

4AD17CEA1 TARAHATH

gz in = (A.88 sec

ARVIND
Ay
SHAY
THA
ANA
B R
JEE
SANDHYR

2986211201
2845891341
8877881122
7894737377
7626772121
0923211899
29448508121
722829912

877881122
7712312312

e e - - ———— ==
e e - - ———— ==
- ——————— - m=

§ == e e e e ———— ==

=3
=
=
=]
-
L=
12
[
-
[
o
o+

+
1
[]

+
[
1

+

€

row in set

MySQL Procedure : Parameter OUT example

The following example shows a simple stored procedure that uses an OUT parameter. Within the
procedure MySQL MAX() function retrieves maximum salary from MAX_SALARY of employee .
table.

DELIMITER $$
DROP PROCEDURE IF EXISTS sp_getemployemaxsalary()$$
CREATE PROCEDURE sp_getemployemaxsalary

(

out max_salary float(10,2)

)

BEGIN

SELECT max(Salary) into max_salary from employee;
END$$

DELIMITER ;

In the body of the procedure, the parameter max_salary will get the highest salary from Salary
column of Employee Table. After calling the procedure the word OUT tells the MY SQL that the
value goes out from the procedure.

Here max_salary is the name of the output parameter and we have passed its value to a session
variable named @ m, in the CALL statement.

Dept. of CSE, ATMECE, Mysore Page 61

DBMS Laboratory with mini Project 21CSL55

wegl> select * from employee;
———————————— t——————————— —————

employee_id Dezignation

vishwanath
shaszhikiran
nitin
deepak
zanjay
vogesh
anand
Hemanth
Rohert

amit

181
i@2
183
i84
185
186
187
i@8
i@9

instructor
aszitiant professop
associate professop
professor

system admin

clerk

professor

cazshier

clerk

HR Manager

Project Manager
Inzurance Manager

e - - R L L LTI

1
1
+
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
+

[FI _ _ —— Sp—

13 rows in set CB.8B8 sec>

wegl>

mysgl>* call s=p_getemplovemaxsalary{Bfm>;
Query 0K, B rows affected <{B.82 sech

mysgl>* select Ems
+ +

row in set (B.B@ sec

mysgl>

MySQL Procedure : Parameter INOUT example

Here we are creating sample table STUDENT with USN as primary key

CREATE TABLE STUDENT

(

USN VARCHAR (10) PRIMARY KEY,

SNAME VARCHAR (25),

ADDRESS VARCHAR (25),

PHONE BIGINT (10),

GENDER CHAR (1)

);

Here we are inserting sample data into STUDENT Table

INSERT INTO STUDENT VALUES ('4AD16CS020','/AKSHAY''BELAGAVI', 8877881122,'M";
INSERT INTO STUDENT VALUES ('4AD16CS062','SANDHYA''BENGALURU,
7722829912,'F");

INSERT INTO STUDENT VALUES ('4AD16CS091', TARANATH','BENGALURU’,
7712312312,'M");

INSERT INTO STUDENT VALUES ('4AD16CS066','SUPRIYA''MANGALURU',

Dept. of CSE, ATMECE, Mysore Page 62

DBMS Laboratory with mini Project 21CSL55

8877881122, F);

INSERT INTO STUDENT VALUES (4AD16CS010','ABHAY', BENGALURU', 9900211201,'M");
INSERT INTO STUDENT VALUES (4AD16CS032,'BHASKAR', BENGALURU',
9923211099, M");

INSERT INTO STUDENT VALUES (4AD16CS025' AKSHATHA’, BENGALURU!,
7894737377, F);

INSERT INTO STUDENT VALUES (4AD16CS011','AJAY', TUMKUR', 9845091341,'M’);
INSERT INTO STUDENT VALUES (4AD16CS029','CHITRA',DAVANGERE', 7696772121,'F);
INSERT INTO STUDENT VALUES (4AD16CS045', JEEVAN', BELLARY", 9944850121, M);

yagl> SELECT = FROM STUDEMNT:

__________ —— e

ADDRESS

BEMGALURU
TUMEUR

79882112681
7845891341

4AD16CEA1A
4AD16CG5811

4AD1 6CEA2A
4AD16CG5825

4AD16C5A29
4AD16C5832
4AD16C5A45
4AD16C5862
4AD16CE5B66
4AD16C5871

AKSHATHA
CHITRA
BHASKAR
JEEUAN
SAMDHYA
SUPRIYA
TARAMATH

BELAGAUI
BEMGALURU
DAUVANGERE
BENGALURU
BELLARY
BEMGALURU
MAMGALURU
BENGALURU

8877881122
824737377
Pe96772121
2923211829
29448568121
YP22829912
8877881122
712312312

R ———
R ———

L A - p—

(A.01 sec

The following example shows a simple stored procedure that uses an INOUT parameter and an IN
parameter. The user will supply ‘M’ or 'F' through IN parameter to count a number of male or female
gender from STUDENT table. The INOUT parameter (countgender) will return the result to a user.
Here is the code and output of the procedure

DELIMITER $$

DROP PROCEDURE IF EXISTS sp_ studentcountgender $$
create procedure sp_studentcountgender

(

IN studentgender char(1),

OUT countgender int

)

begin

select COUNT(GENDER) INTO countgender FROM STUDENT WHERE
GENDER=studentgender;

END$$

DELIMITER ;

Dept. of CSE, ATMECE, Mysore Page 63

DBMS Laboratory with mini Project

mysgl* call sp_studentcountgender{' M’ .ECountGender?;
Guery OK,. B rows affected (B.88 zec

mysgl> select ECountGender;
+

row in set (B.BH@ sec

muysgl> call sp_studentcountgender<’ F’ ,BCountGender?;
Query OK,. @ rows affected (H.B0 szec)

mysgl> select BCountGender;
+

row in set (B.8B0 sec?

mysgl>

Other examples of stored procedure are as follows

This an example of inserting information into table employee through stored procedure
/I INSERT STORED PROCEDURE

DELIMITER $$

DROP PROCEDURE IF EXISTS sp_InsertEmployee $$

CREATE PROCEDURE sp_InsertEmployee

(

IN employee_id INT(10),

IN Name VARCHAR(255),

IN Designation VARCHAR(255),

IN Salary float(10,2)
)

BEGIN

INSERT INTO employee values(employee_id ,Name,Designation, Salary);
END$$

Dept. of CSE, ATMECE, Mysore

21CSL55

Page 64

DBMS Laboratory with mini Project 21CSL55

myzgl> call sp_InsertEmployeecilil ., ' Jagdizsh’ . 'System Engineer’ 4000853 ;
Query 0K, 1 row affected (H.B2 seck

_gqetEmployee{l;

vizhwanath
shashikiran
nitin
deepak
sanjay
yogesh
anand
Hemanth
Rohert
amit
qeorge
Jagdiszh

181
i@z

instructor
assitiant professop
aszociate professorp
professor

system admin

clerk

professor

cazhier

clerk

HR Manager

System Engineer

F e e e ==
F e e ==

F e e e ==

rows in set (.81 sec?>

GQuery OK. @ rouws affected (B.B6 zecl

mysgly _

This an example of updating information into table employee through stored procedure
/l UPDATE STORED PROCEDURE
DELIMITER $$
DROP PROCEDURE IF EXISTS sp_UpdatetEmployee $$
CREATE PROCEDURE sp_UpdatetEmployee
(
IN emp_id INT(10),
IN Name VARCHAR(255),
IN Designation VARCHAR(255),
IN Salary float(10,2)
)
BEGIN

UPDATE EMPLOYEE SET Name= Name, Designation= Designation, Salary= Salary WHERE
employee_id =emp_id ;

END$$

Dept. of CSE, ATMECE, Mysore Page 65

DBMS Laboratory with mini Project

pegly call sp_getemployee;

181
182
183
184
185
186
187
188
187
118

L T

vishuwanath
shazshikiran
nitin
deepak
zanjay
vogezh
anand
Hemanth
Rohert
amit
george
Jagdizh

2 rows in set <H.80 sec)

Query 0K, A

vegly call
Query 0K, 1

pegly call

181
182
183
184
185
186
187

rows affected <B.@5

e ————————— -

inztructor
azzitiant professopr
aszociate professop
profeszzop

syztem admin

clerk

profezzop

cazhiep

clerk

HR HManager

System Engineer

BEC)

e ———————— - e

20008 . 80
200068 .80
2500068806
480086 . 8@
880808 . 88
JaHeAE . 8ae
280806 . 86
800AA.8A
150868 . 84
2800868 . 84
38086 . 2R
418088 . 8Q

21CSL55

sp_UpdatetEmployeeflll ., Jaishankar’ .’ Project Manager’ . 7800080 ;
row affected <B.84 zec

zsp_getemployee;

e T

vishwanath
shashikiran
nitin
deepak
zanjay
vogeszh
anand
Hemanth
Rohert
amit
george
Jaizhankar

o - —————————————— e me

instructor
aszitiant professor
azzociate professor
professop

system admin

clerk

profezssopr

cashier

clerk

HR Manager

Project Manager

CREATE PROCEDURE SP_InsertUpdateemployee

(
IN emp_id int,

IN Name VARCHAR(255),
IN Designation VARCHAR(255),

IN Salary float(10,2)

)
BEGIN

DECLARE counta int;

SELECT count(*) INTO counta FROM employee WHERE employee_id=emp _id,;

IF counta=0

Dept. of CSE, ATMECE, Mysore

o i —————————————— e me

20008 .80
280808 . 80
250808 . 80
480086 . Bl
88086 . 8e
39086 . 86
200068 . 84
880868 .8Q
150868 . 84
200868 . 80
380068 .8Q
70008 . 8A

Page 66

DBMS Laboratory with mini Project 21CSL55
THEN

INSERT INTO employee values(emp_id,Name,Designation,Salary);

ELSEIF counta>0

THEN

UPDATE EMPLOYEE SET Name=Name, Designation=Designation,Salary=Salary
WHERE employee_id=emp_id;

END IF;

END $$

musgl> call SP_getEmployee;

vishwanath
shashikiran
nitin
deepak
ganjay
yogesh
ELELT
Hemanth
Rohert
amit
george
Jaizhankar

181
182
183
184
185
186
187
168
189
118

instructor
aszitiant professor
associate professor
professopr

gystem admin

clerk

professor

cashier

clerk

HR Hanager

Project Manager

e e e S
F e e ==

T S S

—_———— e —

12 rows in zet (A.B0 szec)
Query 0K, B rows affected (A.A7 =zec)

myzgl> call sp_InzertlUpdateEmployeedi12,'Kishore’ .’ Insurance
Query 0K, 1 row affected (A.A3 sec)

myzgl> call SP_getEmployee;

+
1
1

+
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]

+

vishwanath
shashikiran
nitin
deepak
sanjay
yogesh
anand
Hemanth
Rohert
amit
qeorqe
Jaishankar
Kizhore

161
182
183
184
185
186
187
1688
189
118
111

instructor
assitiant professor
associate professor
professopr

system admin

clerk

professopr

cazshier

clerk

HR Manager

Project Manager
Insurance Agent

R el e -
o e i ———————— ==

13 rows in set (A.B8 sec)

Dept. of CSE, ATMECE, Mysore Page 67

DBMS Laboratory with mini Project

21CSL55

mysgl> call SP_getEmployee;

——
employee_id

vishuwanath
shashikiran
nitin
deepak
sanjay
vogesh
anand
Hemanth
Rohert
amit
geEOrge
Jaizhankar
Kishore

181
182
183
184
185
186
187
188
189

e TS
e TS

rows in set (H.@A sec)

instructor
assitiant professor
associate professop
professor

system admin

clerk

professor

cazhier

clerk

HR MHanager

Project Manager
Insurance Agent

mysgl> call

——— e

rows affected <(H_H8

sp_InsertlUpdateEmployee(l12,. ' Kiran’ .’ Inzurance Manager' 3580883 ;

row affected <B_63
SP_getEmployee;

SEec)

SEeC)

employee_id

vishuwanath
shashikiran
nitin
deepak
sanjay
yogeszh
anand
Hemanth
Rohert
amit
geEOrge
Jaizhankar

181
182
183
184
185
186
187
188
189

i e S
i e S

rows in set (H.@A sec)

An example of deleting record in table named employee by using stored procedure

instructor
assitiant professor
associate professop
professor

system admin

clerk

professor

cazhier

clerk

HR MHanager

Project Manager
Inzurance Manager

/| DELETE STORED PROCEDURE
DELIMITER $$
DROP PROCEDURE IF EXISTS sp_DeletetEmployee $$
CREATE PROCEDURE sp_DeletetEmployee

(
IN emp_id

)
BEGIN

INT(10)

Delete from employee where employee id=emp_id;

END$$

e TS

i e S

28080.806
280680.806
25080.806
480680 .86
880680.806
Jape0 .86
280680.806
880680.806
150680.86
28080.806
Jape0 .86
780680806
25080.84

28080.806
280680.806
25080.806
480680 .86
880680.806
38860 . 084
28080.806
880680.806
150680.86
28080.806
Jape0 .86
780680806
35080.86

Dept. of CSE, ATMECE, Mysore

Page 68

DBMS Laboratory with mini Project 21CSL55

RO PLO
1 . 0

AE ARAE . A
A 0 § AR
A 0 0 AR
A : : : ARAE . A
(4] gln
Jd 1 1 d1d

-
A 0 AR

e
At : 2 AR
= .hihihih I
¥ e 0 1) A1
Ag : ARG . AE
A9 AAAE . A
§ 0 ARAE . A
0 O AR
AR
ARAA . A

i 0 A . B8
De 0
0 0 - R
0 0

=
= =

= = = &
1 5 5 0 O

il fenf el el fea i)

=
= = =

o 0 5
BBl ol el el B)
o S 5 O O

e B)
= = ==

Variables scope

A variable has its own scope that defines its lifetime. If you declare a variable inside a stored
procedure, it will be out of scope when the END statement of stored procedure reaches.

If you declare a variable inside BEGIN END block, it will be out of scope if the END is reached.
You can declare two or more variables with the same name in different scopes because a variable is
only effective in its own scope. However, declaring variables with the same name in different
scopes is not good programming practice.

A variable whose name begins with the @ sign is a session variable. It is available and accessible
until the session ends.

Declare a Variable:
DECLARE var_name [, var_name] ... type [DEFAULT value]

To provide a default value for a variable, include a DEFAULT clause. The value can be specified
as an expression; it need not be constant. If the DEFAULT clause is missing, the initial value is
NULL.

Dept. of CSE, ATMECE, Mysore Page 69

DBMS Laboratory with mini Project 21CSL55
Examplel: Local variables

Local variables are declared within stored procedures and are only valid within the BEGIN...END
block where they are declared. Local variables can have any SQL data type. The following example
shows the use of local variables in a stored procedure.

Here below is an example of stored procedure which is used to insert as well both update contents
of employee table

DELIMITER $$

DROP PROCEDURE IF EXISTS SP_InsertUpdateemployee $$
CREATE PROCEDURE SP_InsertUpdateemployee

(

IN emp_id int,

IN Name VARCHAR(255),

IN Designation VARCHAR(255),

IN Salary float(10,2)

)

BEGIN

DECLARE counta int;

SELECT count(*) INTO counta FROM employee WHERE employee_id=emp_id,;
IF counta=0

THEN

INSERT INTO employee values(emp_id,Name,Designation,Salary);
ELSEIF counta>0

THEN

UPDATE EMPLOYEE SET Name=Name,Designation=Designation,Salary=Salary
WHERE employee_id=emp_id;

END IF;

END $$

Dept. of CSE, ATMECE, Mysore Page 70

DBMS Laboratory with mini Project 21CSL55
TO DROP STORED PROCEDURE

Once you have created your procedure in MySQL, you might find that you need to remove it from
the database. This statement is used to drop a stored procedure .

DROP procedure IF EXISTS procedure_name;

procedure_name: The name of the procedure that you wish to drop.’

Example of Droping Stored Procedure
drop procedure IF EXISTS SP_getcustomerid,;
or

drop procedure SP_getcustomerid;

MySQL stored procedures advantages
e Reduce Network Traffic : Stored procedures help reduce the traffic between application and
database server because instead of sending multiple lengthy SQL statements, the application has
to send only the name and parameters of the stored procedure.

e Faster Query Execution : Since stored procedures are Parsed, Compiled at once, and the
executable is cached in the Database. Therefore if same query is repeated multiple times then
Database directly executes the executable and hence Time is saved in Parse,Compile etc.

e Secure: MySQL stored procedures are secure because the database administrator can grant
appropriate permissions to applications that access stored procedures in the database without
giving any permissions on the underlying database table

MySQL stored procedures disadvantages
e Stored procedure’s constructs are not designed for developing complex and flexible business
logic.

e Itisdifficult to debug stored procedures. Only a few database management systems allow you to
debug stored procedures. Unfortunately, MySQL does not provide facilities for debugging stored
procedures.

e Memory usage increased: If we use many stored procedures, the memory usage of every
connection that is using those stored procedures will increase substantially.

Dept. of CSE, ATMECE, Mysore Page 71

DBMS Laboratory with mini Project 21CSL55

INTRODUCTION TO MYSQL TRIGGER

A trigger is a set of SQL Statements that are run automatically when a specified change operation
(SQL INSERT, UPDATE, or DELETE statement) is performed on a specified table.

A SQL trigger is a special type of stored procedure. It is special because it is not called directly
like a stored procedure. The main difference between a trigger and a stored procedure is that a
trigger is called automatically when a data modification event is made against a table whereas a
stored procedure must be called explicitly.

A trigger can be defined to be invoked either before or after the data is changed by INSERT,
UPDATE or DELETE statement

Triggers are useful for tasks such as enforcing business rules, validating input data, and keeping an
audit trail. A trigger can be set to activate either before or after the trigger event.For example, you
can have a trigger activate before each row that is inserted into a table or after each row that is
updated

It is important to understand the SQL trigger’s advantages and disadvantages so that you can use it
appropriately. In the following sections, we will discuss the advantages and disadvantages of using
SQL triggers.

Advantages of using SQL triggers

SQL triggers provide an alternative way to check the integrity of data.
SQL triggers can catch errors in business logic in the database layer.

SQL triggers provide an alternative way to run scheduled tasks. By using SQL triggers, you don’t
have to wait to run the scheduled tasks because the triggers are invoked automatically before or
after a change is made to the data in the tables.

SQL triggers are very useful to audit the changes of data in tables.

Disadvantages of using SQL triggers

SQL triggers only can provide an extended validation and they cannot replace all the validations.
Some simple validations have to be done in the application layer. For example, you can validate
user’s inputs in the client side by using JavaScript or on the server side using server-side scripting
languages such as JSP, PHP, ASP.NET, Perl.

SQL triggers are invoked and executed invisible from the client applications, therefore, it is
difficult to figure out what happens in the database layer.

SQL triggers may increase the overhead of the database server.

Dept. of CSE, ATMECE, Mysore Page 72

http://www.mysqltutorial.org/mysql-stored-procedure-tutorial.aspx

DBMS Laboratory with mini Project 21CSL55

In MySQL, trigger can also be created. There are 6 type of triggers that can be made they are:-

1.After/Before insert
2.After/Before update
3.After/Before delete

CREATE TRIGGER trigger_name
trigger_event ON table_name

FOR EACH ROW

BEGIN

END;
Here,

« Trigger_name is the name of the trigger which must be put after CREATE TRIGGER statement.

o The naming convention for trigger_name can be like [trigger time]_[table name]_[trigger event]. For
example, before_student_update or after_student_insert can be a name of the trigger.

« Trigger_time is the time of trigger activation and it can be BEFORE or AFTER. We must have to
specify the activation time while defining a trigger. We must to use BEFORE if we want to process
action prior to the change made on the table and AFTER if we want to process action post to the
change made on the table.

o Trigger_event can be INSERT, UPDATE or DELETE. This event causes the trigger to be invoked.
A trigger only can be invoked by one event. To define a trigger that is invoked by multiple events,
we have to define multiple triggers, one for each event.

o Table_name is the name of the table. Actually, a trigger is always associated with a specific table.
Without a table, a trigger would not exist hence we have to specify the table name after the ‘ON’
keyword.

o BEGIN...END is the block in which we will define the logic for the trigger.

AFTER/BEFORE INSERT TRIGGER

CREATE TRIGGER trigger_name
AFTER/BEFORE INSERT ON table_name
FOR EACH ROW
BEGIN
--variable declarations
--trigger code
END;
Parameter:

e trigger_name: name of the trigger to be created.
e AFTER/BEFORE INSERT: It points the trigger after or before insert query is executed.
e table_name: name of the table in which a trigger is created.

Dept. of CSE, ATMECE, Mysore Page 73

DBMS Laboratory with mini Project 21CSL55
AFTER/ BEFORE UPDATE Trigger

e In MySQL, AFTER/BEFORE UPDATE trigger can also be created.
e AFTER/BEFORE UPDATE trigger means trigger will invoke after/before the record is
updated.

Syntax:

CREATE TRIGGER trigger_name
AFTER/BEFORE UPDATE ON table_name
FOR EACH ROW
BEGIN
--variable declarations
--trigger code
END;

Parameter:
e trigger_name: name of the trigger to be created.

e AFTER UPDATE: It points the trigger update query is executed.
e table_name: name of the table in which a trigger is created.

AFTER/BEFORE DELETE Trigger
e InMySQL, AFTER/BEFORE DELETE trigger can also be created.
e AFTER/BEFORE DELETE trigger means trigger will invoke after/before the record is deleted.

Syntax:

CREATE TRIGGER trigger_name
AFTER/BEFORE DELETE ON table_name
FOR EACH ROW
BEGIN
--variable declarations
--trigger code
END;

Parameter:
e trigger_name: name of the trigger to be created.

e AFTER/BEFORE DELETE: It points the trigger after/before delete query is executed.
e table_name: name of the table in which a trigger is created.

Dept. of CSE, ATMECE, Mysore Page 74

DBMS Laboratory with mini Project 21CSL55

AUDIT TRACKING

EXAMPLES OF TRIGGERS FOR AUDIT PURPOSE

CREATE TABLE Employee_Details
(

Emp_ID int primary key,
Emp_Name varchar(55),

Emp_Sal decimal (10,2)

);

CREATE TABLE Employee_Details_Audit
(

Emp_ID int,

Emp_Name varchar(55),

Emp_Sal decimal (10,2),

Action varchar(55)

);

Above we have two scripts for creating two table Employee_Details and Employee_Details_Audit.
Both tables have same no of column names,same column name and same date type.In second
table,Employee_Details_Audit keeps track of what kind of operations are perdormed on table
Employee_Details and any insert ,update and delete operation value are stored in
Employee_Details_Audit

For the First table Employee_Details we insert five records .

Insert into Employee_Details values (1000,'Amit’',20000);
Insert into Employee_Details values (1001,'Hemanth’,12000);
Insert into Employee_Details values (1002,'George’,20000);
Insert into Employee_Details values (1003,'Nitin',30000);
Insert into Employee_Details values (1004,'Riyaz',40000);

18868 . 88
12080.088
28080 .08
38864 . A8
48080 . 68

Hemanth
George
Hitin

1
1
+
1
1
1
1
1
1
1
1
1
1
+

) e omm - m-

rows in set (H.60A

mysgl>

Dept. of CSE, ATMECE, Mysore Page 75

DBMS Laboratory with mini Project 21CSL55

Below we have written three types of trigger meant for auditing purpose.what ever operations perfomed
on table Employee_Details gets automatically reflected in Employee _Details_Audit.For example we
perform any insert,update or delete operations on Employee_Details, its get automatically get reflected
in Employee_Details_Audit table because we have written triggers on Employee_Details table.

TRIGGER EXAMPLE 1
EXAMPLE OF CREATING AFTER INSERT TRIGGER FOR AUDIT PURPOSE

CREATE TRIGGER TriggerAfterinsert

AFTER INSERT ON Employee_Details

FOR EACH ROW

insert into Employee_Details_Audit
values(new.Emp_ID,new.Emp_Name,new.Emp_Sal,'INSERT")

In above example, TriggerAfterinsert,an Insert Trigger written on table Employee_Details.whenever we
perform insert operation on Employee_Details table, automatically TriggerAfterinsert is fired and
whatever records we have inserted in Employee_Detailsthe same recods gets inserted in
Employee_Details_Audit along with what action we performed for example Insert action we have
perfomed that too get inserted in Employee_Details_Audit.

muysl> select = from emplovee_details;

|
|
|
|
|
|
|
|
|
+

186886 .80
120886 .88
2800688 . 80
38804 .80
48086 . 88

Hemanth
George
Mitin

+
]
1

+
1
1
1
]
1
]
]
1
1
]

+

7 J T Sy

rows in set (A.8@

muysl> select = from emplovee_details_audit;
Empty zet (A.AAQ sec>

Dept. of CSE, ATMECE, Mysore Page 76

DBMS Laboratory with mini Project 21CSL55
Below is an screen shot of output of TriggerAfterInser fired on table Employee_Details

CREATE TRIGGER TriggerfAfterinsert
> AFTER INSERT OM Employee_Detail=s
FOR EACH ROW
insert into Employee_Details_Audit
values{new.Emp_ID.newv.Enp_HMame.new.Emp_8al.’INSERT' >

ysgly insert into employee_details values<1885%,.'Sanjay’ . 5880685 ;
Query 0K, 1 row affected <A.H2 sec

yzgl?> select * from employee_details:

|
|
|
|
|
|
|
|
|
|
-

Hemanth
George
Nitin
Riya=

+
1
1

+
1
1
1
]
1
1
1
]
1
1
1
]

+

o= e mm e e

h rows in szet (A.HA

5]

—————————— ————
Emp_%al | Action

+
1
1
+
1
1
+
rou in szet (B.HA sec)

ysgly _

TRIGGER EXAMPLE 2

EXAMPLE OF CREATINGAFTER UPDATE TRIGGER FOR AUDIT PURPOSE

create trigger TriggerAfterUpdate

AFTER UPDATE ON Employee_Details

FOR EACH ROW

insert into Employee_Details_Audit
values(new.Emp_ID,new.Emp_Name,new.Emp_Sal,'UPDATE)

In above example, TriggerAfterUpdate,an Update Trigger written on table Employee Details.whenever
we perform Update operation on Employee Details table, automatically TriggerAfterUpdateis fired and
whatever records we have updated in Employee Details same recods gets updated in

Employee Details_Audit along with what action we performed for example Update action we have
perfomed that too get inserted in Employee_Details_Audit

Dept. of CSE, ATMECE, Mysore Page 77

DBMS Laboratory with mini Project 21CSL55

mysgl>* zelect * from Employvee_Details;
¥ 4 ¥ +
i Emp_ID ! Emp_Mame | Emp_%Sal

1888 Amit 18888 . 80
1881 Hemanth 12888 . 80
14882 George 20084 . 91
1883 Hitin 38888 . 84
1864 Rivaz 40088 . 80
1885 Sanjay LAAaA . Aa

b o e ——— ==

b rows in set (A.HBB sec

myzgl>* zelect ¥ from Employee_Details_HAudit;

+

ll Emp_ID ! Emp_Mame ! Emp_Sal | Action
i 188% | Sanjay i 580806868 | IMSERT

1 row in set (B.BH@ sech

mysqgl>

Below is an screen shot of output of TriggerAfterUpdate fired on table Employee_Details

muysgl> create trigger TriggerAfterlpdate
—» AFTER UPDATE OM Employee_Details
—» FOR EACH ROW
—% inzert into Employee_Details_Audit
= valuestnew.Enp_ID, . new.Emnp_Mame .new.Emp_Sal.*UPDATE’ >
-
-
Query OK, B rows affected <A.05% sec

Easql) update employee_details set Emp_Mame='Ajay’ .Emp_S5al=58888 where Emp_ID=18

Quéry 0K, 1 row affected {B.83 sec)
Rows matched: 1 Changed: 1 Warnings: @

mysgl> SELECT = FROM emplovee_details;
4 ¥ 4 +
i Emp_ID § Emp_Mame Emp_Sal

18868 Ajay LABaEa . aa
16881 Hemanth 120600 . A8
1662 George 2800008 . 868
16883 Hitin InBAA . AR
1884 Riya= 4A800A . AA
1885 Sanjay LAAAA . AR

o .- ==

rouwsz in set (A.AA sec

mysl> SELECT = FROM employee_details_auddits
4 ¥ 4 4 +

i Emp_ID | Emp_Mame | Emp_Sal | Action

+ + + +
1885 § Sanjay i SHAAA.AA INSERT |
1888 § Ajay i SAAAA.AA | UPDATE |

+ + + +

rouwsz in set (A.AA sec

mysgl> _

Dept. of CSE, ATMECE, Mysore

DBMS Laboratory with mini Project

21CSL55

TRIGGER EXAMPLE 3

EXAMPLE OF CREATING AFTER DELETE TRIGGER FOR AUDIT PURPOSE

create trigger TriggerAfterDelete

AFTER DELETE ON Employee_Details

FOR EACH ROW

insert into Employee_Details_Audit

values(old.Emp_ID, old.Emp_Name, old.Emp_Sal,'DELETE')

ysl> SELECT #*# FROM emplovee_ detall

+

;

+

:
Hemanth |
George i
MHitin :
Riya= i
- 1

1

+

[—

rows in set (B.0H

yegl> EELECT #*# FROM employee_ deta11° audlt,

+
1
1

+
1
1
1
1

+

=

create trigger TriggerAfterDelete
—» AFTER DELETE ON Employee_Details

—>» FOR EACH ROW

—» inzert into Emplovee_Details_Aondit
—* valuesCold.Emp_ID, old.Emp_Mame,., old.Emp_%al.’DELETE® »;

586086 . 88
126846 . 680
280086 .88
J8A8A . B0
40086 . BA
LAA8H . B0

LAAAA . A0
58686 .88

INSERT
UPDATE

Query O, 8 rows affected (B.85% sec?

musgl> aelect =* from emplovee_ detall

Hemanth
George
Hitin
Riyqz

e
B e e e

rows in set (A.88

586084 .48
128608. 088
28084 .88
38E8A . 38
480084 . A8
LAA8A . A8

Dept. of CSE, ATMECE, Mysore

Page 79

DBMS Laboratory with mini Project 21CSL55
Below is an screen shot of output of TriggerAfterDelete fired on table Employee_Details

sl delete from employee_details where Emp_ID=1885;
Query OK. 1 »ow affected CB.88 zec)

ysgl} select = from emplovee_details;

|
|
I
|
|
|
|
|
|
|
+

58864 .88
1280608 .088
28808 .88
308064 .88
4080608 . 38

Hemanth
George
Mitin

+
1
]

+
1
]
1
1
1
]
]
1
1
1

+

W e o e

L rows in set (H.B8A

Sanjay 58864 .88 INSERT
Ajay 508648 . 88 UPDATE
Sanjay i 586886.806 DELETE

__________ —————

Write a Trigger To Calculate the FinallA (average of best two test marks) and update the
correspondingtable for all students By Using Trigger.

CREATE TABLE IAMARKS

(

USN VARCHAR (10) PRIMARY KEY,
SUBCODE VARCHAR (8),

SSID VARCHAR (5),

TEST1 INT (2),

TEST2 INT (2),

TEST3 INT (2),

FINALIA INT (2)

2

Above is script for creating for IAMARKS table.Here is table named IAMARKS where we enter

Marks of TEST1,TEST2 and TEST3 but FINALIA is calculated by taking best of two test marks divide
by two.

Below is structure of IAMARKS Table.

IAMARKS ;

varchar<i18>
varchar (8>
varchawr<S>
int{2>
intd2>
int€2>

e
o e
omm e e e
o e
omm e e

i FINALIA

e —

7 rou i set (A.A1 sec>

muysgl> SELECT = FROM IAMARKS:
Empty set (A.BA0 sec>

myusgl>

Dept. of CSE, ATMECE, Mysore Page 80

DBMS Laboratory with mini Project 21CSL55
TRIGGER EXAMPLE 4

This is trigger is an example of Before Insert Trigger

DELIMITER $$

DRORP trigger IF EXISTS trg_insertbefore_ IAMARKS $$

CREATE TRIGGER trg_insertbefore_IAMARKS

BEFORE INSERT ON IAMARKS

FOR EACH ROW

BEGIN
SETNEW.FINALIA=GREATEST(NEW.TEST1+NEW.TEST2,NEW.TEST2+NEW.TEST3,
NEW.TEST1+NEW.TEST3)/2;

END$$

Below is insert script for Student Info and marks into table IAMARKS
Please note that we are inserting 0 marks into table IAMARKS containing columnnameFINALIA.

INSERT INTO IAMARKS VALUES ('4AD18CS002','15CS51','CSE5A, 25, 16, 24,0);
INSERT INTO IAMARKS VALUES ('4AD18CS072','15CS52''CSE5B, 22, 19, 14,0);
INSERT INTO IAMARKS VALUES ('4AD18CS091','15CS53','CSE5SC, 19, 15, 20,0);
INSERT INTO IAMARKS VALUES ('4AD18CS011','15CS54','CSE5A, 20, 16, 19,0);
INSERT INTO IAMARKS VALUES ('4AD18CS075','15CS55','CSE5B!, 19, 18, 22,0);
INSERT INTO IAMARKS VALUES ('4AD18CS095','15CS56','CSESC', 23, 17, 24,0);

Above ,we have written trigger name before_IAMARKS insert on IAMARKS table which
automatically calculates FINALIA by using Greatest function and inserts intovalues into
FINALIA column of table IAMARKS while trying to insert record on IAMARKS

mysql> DELIMITER 4%
mysgql> DROP trigger IF ERISTS trg_inserthefore_[AMARKS 43
Query OK, B rous affected, 1 varning (B.08 sec)

mysql> CREATE TRIGGER trg_inserthefore_IAMARKS

-» BEFORE INSERT ON IAMARKS

-» FOR EACH ROW

-» BEGIN

-» SET NEW.FINALIA=GREATEST(MEW.TEST1+NEW.TEST2,NEW.TEST2 +NEW.TEST3, NEW. TEST
1+NEW.TEST3)/2;

-» END%$
Query 0K, @ rows affected (B.03 sec)

1>

Below is snap shot of output generated by trigger before_ IAMARKS insert on table
IAMARKS

Dept. of CSE, ATMECE, Mysore Page 81

DBMS Laboratory with mini Project 21CSL55

wsgl>» INSERT INTO IAMARKS VALUES (°4AD1BCSAAZ* .°18C551°.°'CSESA’. 25,
Query 0K, 1 row affected <B.82 zec?
ysgl>» INSERT INTO IAMARKS UVALUES < 4AD1BCS@YZ* .°18C552°,.'CSESB'. 22,
Query 0K, 1 row affected (B.098 sec>
yzgl> INSERT INTO IAMARKS UALUES < 4AD1BCS@?1*.°18C553°,'CSELC’. 19.
Query 0K, 1 row affected (A.8A zec)
wsgl> INSERT INTO IAMARKS UALUES ('4ADi8CS@A11’.°18C554°,.'CEESA’. 20.
Query 0K, 1 row affected (A.88 zec)
ysgl> INSERT INTO IAMARKS UVALUES (" 4AD1BCSAYS* .°18C555°,.'CSESB’. 19.

Query 0K, 1 row affected (A.88 zec?)

ysgl» INSERT INTO IAMARKS UALUES <’'4AD18CSA?5* .’ 18CS556° ,.°'CSELC’ .
Query 0K, 1 row affected <B.08 zec)
ysgl> SELECT = FROM IAMARKS;

4AD1 8CEAA2
4AD18CEA72
4AD18CSA71
4AD18CEA11
4AD18CEA75
4AD18CEA95

18C551
18C552
18C553
18CE54
18C555
18C556

L p——y
L p——y
L Ty
o - ———— ==
b o - ==

A e e ———— =

rows in set (B.B0 sec

ysglr _

OTHER TRIGGER EXAMPLES
Example Of Creating Before Insert Trigger Having The If Conditional Statements for incrementing
salary of employee based on certain condition

TRIGGER EXAMPLE 5

DELIMITER $$

DROP trigger IF EXISTS increment_Salary Employee $$
CREATE TRIGGER increment_Salary Employee
BEFORE insert ON employee

FOR EACH ROW

IF NEW.Salary>20000 and NEW.Salary<40000
THEN

SET NEW.salary=NEW.salary*1.1;

ELSEIF NEW.Salary>=40000 and NEW.Salary<90000
THEN

SET NEW.Salary=NEW.Salary*1.2;

END IF;

END$$

Dept. of CSE, ATMECE, Mysore Page 82

DBMS Laboratory with mini Project

21CSL55

Above trigger increment_Salary_Employee is written on table employee.this trigger checks salary of

employee table during insertion if salary is greater than 20000 and salary is lesser than 40000, it

automatically increments salary by 10%.if salary is greater than or equal to 40000 and salary is lesser
than 90000,salary is automatically incremented by 20%

Here is snapshot of output of trigger increment_Salary Employee fired on Employee table when any
records is inserted into table Employee

¥

181
1682
183
184
185
186
187

4 mm e e e e e e

harzsha
shashikiran
nitin
deepak
sanjay
yogesh
anand
ARUH
robert
amit
kumar

== e e e e e e s

11 rows in set C(@.HA

yzgl> insert into employee wvalues

Query 0K, 1 rouw

ysgl» insert into emplovee values

Query 0K, 1 rou

¥

yzgl> select

181
182
183
164
185
186
147
148
149

= e e e e e e e ————— =

instructor
assitiant professor
associate professor
professor

system admin

clerk

TEST EHGIMEER

h» manager

zalesman
zsalezsmanager

affected {H.83 =seck

affected (AB.82 =ecl

from employee;

harzha
shashikiran
nitin
deepak
sanjawy
yogesh
anand
ARUN
robert
amit
kumar
azhok
sunil

4 == = mm e e e e e e ————— =

13 rows in set (A.HA secl

TRIGGER EXAMPLE 6

DELIMITER $$

instructor
aszitiant professor
associate professor
profeszor

system admin

clerk

TEST ENGIMEER

hy» manager

salesman
salesmanager

doctor

test engineer

DROP trigger IF EXISTS trg_insertbefore_trimupper $$
CREATE TRIGGER trg_insertbefore_trimupper
BEFORE INSERT ON employee

FOR EACH ROW
BEGIN

SET NEW.Name = UPPER(NEW.Name);
SET NEW.Designation = UPPER(NEW.Designation);

END IF;
END$$

i A

L T

15804 .84
19884 .84
25680840 . 84
48804 . AA
88804 . AA
30884 . 848
156884 .84

25 -8a
35 -84
48 -84

428840 . 849

156884 . 84
17806 .84
25804 .84
408840 . 88
806800 . 80

308 -88
15 -8a
25 -Ha

356884 .84
400800 . 80
428000 . 84
24806 . AA
33884 .84

i A

¢i111,."ashok’ .‘'doctor’ .7888A>;

(112, "swunil’ . test engineer’ . 3H0EEA>;

Dept. of CSE, ATMECE, Mysore

Page 83

DBMS Laboratory with mini Project 21CSL55

Above trigger name trg_insertbefore_trimupper is create on table employee which automatically
converts Name and Designation columns in table employee into upper case letters and
insertsautomatically into Table employee when any employee record is inserted in employee table.

Here is example of snapshot of output of trigger trg_insertbefore_trimupper

mysgl> select * From employee;

i employee_id | Mame i Designation i Salary
188 ! harsha clerk 1568688 .88
181 | =shashikiran instructor 178088 . 98
182 | nitin aszitiant professor 258688 . 848

183 | deepak azzociate professop 40AAA . 38

1684 sanjay professor 20808808 . 36
185 yogesh system admin JH88A . 88
186 anand clerk 1568688 . 848

homm e e e

? rows in set (B.BE@ seck

mysgl> insert into employee valuesClB@7.’'deepak’.’'system engineer’ 2560608 ;
Query 0K, 1 row affected (B.H1 zec)

mysgly select * From employee;

employee_id | Mame i Dezignation 1 Zalary
1686 harzha clerk 156884 . 48
181 shazhikiran instructor 178088 . 98
182 nitin aszitiant professor 258688 . 848
163 deepak associate professor 40HAAAE . 38
1684 sanjay professopr 20808008 . 38
185 yogesh system admin J8Ea68 . A8
186 anand clerk 15888 . 898

DEEFPAK S¥STEM EMGIMEER 25080688 .98

(B.B8 sec)

T

Databhasze changed
ysqli EREHTE TABLE people
—» age INT.
—i game varchar(15@>
Query UH: B rows affected (B.H5 secl

wegl> insert into people values<2@.'ajay’>;
Query 0K, 1 row affected {B.B2 sec

wegl? insert into people valuez(5H.'szanjay’ >;
Query OK. 1 row affected <(B.080 zec

zelect * from people;

i name

i ajay
i zanjay

in szet (B.80 sec?

Dept. of CSE, ATMECE, Mysore

DBMS Laboratory with mini Project 21CSL55
TRIGGER EXAMPLE 7

ysgl> DELIMITER $%
ysigly DROP trigger IF ERISTS heforeinsert_agechecks$$
Query 0K, A rows affected. 1 warning ¢A.0@ sec

CREATE TRIGGER heforeinsert_agecheck
*» BEFORE INSERT ON people

FOR EACH ROW

IF MEW.age < B

THEN SET HEW.age = B;

ELSEIF HEW.age »> 188 THEMW

SET NEW.age = 6B;

END IF;

END$%

» B rows affected (B.B5 sec)

Above trigger beforeinsert _agecheck is created on table people which checks age being inserted into
Table people if age is less than O or negative values ,it automatically insert age valeue has 0.if we are
trying to insert into table people suppose age value is greater than 100,then automatically inserts 60 as
default value in age column of people table.

Here is example of snapshot of output of beforeinsert_agecheck

mysgl> zelect * from people;
+ + +

i name

H
+
ERELL H
sanjay 1

+

in set (B.BA sec)

insert into people values(—7H.’hemanth” »;
Query 0K, 1 rov affected (A.08 szecr

mysgl> zelect * from people;
+ ¥ +

i age | name

ajay
sanjay
hemanth

1
]
+
1
1
1
]
1
1

+

in set (A.BA sec)

insert into people values{18@A,‘nitin’ >;
GQuery 0K, 1 row affected <B.80 sec?

mysgl> select * from people;
1 i +

H i name

ajay
sanjay
nitin

+

hemanth |

¥ +
a

in set <H.

Dept. of CSE, ATMECE, Mysore

DBMS Laboratory with mini Project 21CSL55
TRIGGER EXAMPLE 8
This is trigger is an example of Before Update Trigger

mysgl>

mysqgl> DELIMITER %%

mysgql> DROP trigger IF ERXISTS heforeupdate_agecheck$$
Query 0K, B rows affected, 1 warning ¢A.00 sec)

CREATE TRIGGER heforeupdate_agecheck
» BEFORE update ON people
FOR EACH ROW
IF HNEW.age < H
THEN SET NEW.age = B;
ELSEIF NEW.age > 188 THEN
SET NEM.age = 6@;
END IF;
END%%
Query 0K, B rows affected (@.83 secd

Above trigger beforeupdate_agecheck is created on table people which checks age being updated into
Table people if age is less than O or negative values ,it automatically updates age valeue has 0. suppose
if we are trying to update age value is greater than 100,then automatically updates 60 in age column of
people table.

Below is snap shot of output of trigger beforeupdate agecheck

ysgly select * from people;
1 i +

i age | name

[15) nitin

; '
28 | ajay i
A hemanth |

i LA | sanjay

h +
4 rows in set (A.00 sec)

ysgly update people set age=1008 vhere name='hemanth’;
Query 0K, 1 row affected (H.BH@ sec)
ows matched: 1 Changed: 1 WYarnings: @

ysigl> select * from people;
¥ i +

age 1 name

20
oY’
6H
6@

sanjay
nitin

i
+
ajay i
1
:
hemanth |

+

in set (A.00 sec?

Dept. of CSE, ATMECE, Mysore

DBMS Laboratory with mini Project 21CSL55

mysgl} update people set age=-55 where name='nitin’;
Query 0K, 1 row affected (A.B0 sec)
Rows matched: 1 Changed: 1 Warnings: @

+

sanjay
nitin

hemanth
————————— +

in set (A.B1 sec)

1
i
+
1
1
1
1
1
1
1
1
+

How to DROP TRIGGER
DROP TRIGGERIF EXISTSschema_name.trigger_name;

In this syntax:
e First, specify the name of the trigger that you want to drop after the DROP TRIGGER keywords.

e Second, specify the name of the schema to which the trigger belongs. If you skip the schema
name, the statement will drop the trigger in the current database.

e Third, use IF EXISTS option to conditionally drops the trigger if the trigger exists. The IF
EXISTS clause is optional.

DROP TRIGGER IF EXISTS employee.trg_insertbefore IAMARKS;
or
DROP TRIGGER trg_insertbefore IAMARKS;

Above statement drops trigger trg_insertbefore IAMARKS created on table IAMARKS
Note that if you drop a table, MySQL will automatically drop all triggers associated with the table

Dept. of CSE, ATMECE, Mysore Page 87

https://www.mysqltutorial.org/mysql-drop-table

DBMS Laboratory with mini Project 21CSL55

LAB EXPERIMENTS
PART A: SQLPROGRAMMING

A. Consider the following schema for a LibraryDatabase:

BOOK (Book id, Title, Publisher_ Name, Pub_Year)

BOOK_AUTHORS (Book id, Author_Name)

PUBLISHER (Name, Address, Phone)

BOOK_COPIES(Book id, Programme _id, No-of _Copies)
BOOK_LENDING(Book id, Programme _id, Card No, Date_Out, Due_Date)
LIBRARY_PROGRAMME(Programme _id, Programme_Name,Address)

Write SQL queries to

1. Retrieve details of all books in the library — id, title, name of publisher, authors,
number of copies in each Programme, etc.

2. Get the particulars of borrowers who have borrowed more than 3 books, butfrom
Jan 2017 to Jun2017

3. Delete a book in BOOK table. Update the contents of other tables to reflect thisdata
manipulationoperation.

4. Partition the BOOK table based on year of publication. Demonstrate itsworking
with a simplequery.

5. Create a view of all books and its number of copies that are currently availablein
the Library.

biectives:
This course will enable students to

e Foundation knowledge in database concepts, technology and practice to groomstudents
into well-informed database applicationdevelopers.

e Strong practice in SQL programming through a variety of databaseproblems.
e Develop database applications using front-end tools and back-endDBMS.

Dept. of CSE, ATMECE, Mysore Page 88

DBMS Laboratory with mini Project 21CSL55

Solution:
Entity-Relationship Diagram

Book id Author Mams

Book Written_Bw Book_Antrhors

N

Published_By

Propramme id
Book Copias

Publisher Lib
Mame =y Programm
— Programme & MName
~—)
N

Addrass
N

Date_out
Book_Lending

-~

-
-~
Due dats -~
N

v
Phone

Dept. of CSE, ATMECE, Mysore Page 89

DBMS Laboratory with mini Project

Schema Diagram

21CSL55

Book
Bock id | Title | Pub_Year | Foblcher Name
Book_Anrhor
ol Bzl 3d | Aorhor 7Name
l.-_ her
Mame Phome | Addre=
Book_ Coopie
L{ Bl id| Presramme 8| Mo of Copis
Book_Lendins
o 22k i) Procramme 5| C2rd m2 | Dare_cor | Dos_dars
T
_.::; _Prosramme
Prosramme @ | Programme Neame | Addrem

|

Dept. of CSE, ATMECE, Mysore

Page 90

DBMS Laboratory with mini Project 21CSL55

Table Creation
CREATE TABLE PUBLISHERS (
NAME VARCHAR (20) PRIMARY KEY,
PHONE BIGINT (20),
ADDRESS VARCHAR (100));

CREATE TABLE BOOK (

BOOK_ID INT (10) PRIMARY KEY,

TITLE VARCHAR (20),

PUB_YEAR VARCHAR (20),

PUBLISHER_NAME VARCHAR (20),

FOREIGN KEY (PUBLISHER_NAME) REFERENCES PUBLISHER (NAME) ON DELETE

CASCADE);

CREATE TABLE BOOK_AUTHORS (

AUTHOR_NAME VARCHAR (20),

BOOK_ID INT (10),

PRIMARY KEY (BOOK_ID, AUTHOR_NAME),

FOREIGN KEY (BOOK_ID) REFERENCES BOOK (BOOK_ID) ON DELETE CASCADE);

CREATE TABLE LIBRARY_PROGRAMME (
PROGRAMME_ID INT (10) PRIMARY KEY,
PROGRAMME_NAME VARCHAR (50),
ADDRESS VARCHAR (100));

CREATE TABLE BOOK_COPIES (

NO_OF_COPIES INT (5),

BOOK_ID INT (10),

PROGRAMME_ID INT (10),

PRIMARY KEY (BOOK_ID,PROGRAMME_ID),

FOREIGN KEY (BOOK_ID) REFERENCES BOOK (BOOK_ID) ON DELETE CASCADE,
FOREIGN KEY (PROGRAMME_ID) REFERENCES LIBRARY PROGRAMME
(PROGRAMME_ID) ON DELETE CASCADE);

CREATE TABLE CARD (CARD_NO INT (10) PRIMARY KEY);

CREATE TABLE BOOK_LENDING (

DATE_OUT DATE,

DUE_DATE DATE,

BOOK_ID INT (10),

PROGRAMME_ID INT (10),

CARD_NO INT (10),

PRIMARY KEY (BOOK_ID,PROGRAMME_ID, CARD_NO),

FOREIGN KEY (BOOK_ID) REFERENCES BOOK (BOOK_ID) ON DELETE CASCADE,
FOREIGN KEY (PROGRAMME_ID) REFERENCES
LIBRARY_PROGRAMME(PROGRAMME_ID) ON DELETE CASCADE,

FOREIGN KEY (CARD_NO) REFERENCES CARD (CARD_NO) ON DELETE CASCADE);

Dept. of CSE, ATMECE, Mysore Page 91

DBMS Laboratory with mini Project 21CSL55

Table Descriptions

DESC BOOK

BOOK_ID

TITLE
PUB_YEAR
PUBLISHER_HAME

int<1@>»

varcharC28>
varcharC28>
varcharC28>

e)
o omm
o ———— e
$omm e ———— e
o ———— e

rows in set (H.HA

mysgl> DESC BOOK_AUTHORS s
+

_____________ *~r

AUTHOR_MAME varchar<2@A>
BOOK_ID int<l@>

H.8080 sec>»

A)
A)
A)
A)

Defaunlt
varchar<2@>»
bigint<2@7>
varchar<iB8@»

zet (A.HA@ zec>

-+
[]
]

-+
[]
[
[
]
[
]

-+

[——
[——
LECELELI L |

4 mmmmmn poun

mysgl> DESC BOOK_COPIES;

-
|
|
|
|
|
|
|
|
|
|
|
|
|
|

+
|
|
|
|
|
|
|
|
|

i NO_OF_COPIES
i BOOK_ID
i PROGRAMAE_ID

$omm =

[S rh
R Lk

Dept. of CSE, ATMECE, Mysore Page 92

DBMS Laboratory with mini Project 21CSL55
DESC BOOK_LENDING;

mysgl> DESC BOOK_LENDING;

DATE_OUT
DUE_DATE
BOOK_ID
PROGRAMME_ID
CARD_NO

int<18>
int{18>

$omm e =
$omm e =
$omm e =

$ommmm—————— ==

+=
|
|
|
|
|
|
|
|
|
|
|
|
|
|
[L T

rows in set (@.

CARD_NO

——

1 row in set (B.0@ sec?

mysqgly _

DESC LIBRARY_PROGRAMME;

mysql> DESC LIBRARY_PROGRAMME;

+

PROGRAMME_ID

PROGRAMME_NAME
ADDRESS

varchar(58>
varchar{188>

+ o ———— =
+ o ———— =
o ———— ==
+ o ———— =

+ o ———— -

rous in set (H.B0@ sec)

1>

Dept. of CSE, ATMECE, Mysore Page 93

DBMS Laboratory with mini Project 21CSL55
Insertion of VValues to Tables

INSERT INTO BOOK VALUES (1,DBMS','JAN-2017', ' MCGRAW-HILL);
INSERT INTO BOOK VALUES (2,/ADBMS','JUN-2016'MCGRAW-HILL');
INSERT INTO BOOK VALUES (3, 'CD','SEP-2016','PEARSON’);

INSERT INTO BOOK VALUES (4, ALGORITHMS ''SEP-2015'," MIT");
INSERT INTO BOOK VALUES (5,'0S','MAY-2016',/PEARSONY);

INSERT INTO BOOK_AUTHORS VALUES (NAVATHE', 1);
INSERT INTO BOOK_AUTHORS VALUES (NAVATHE', 2);
INSERT INTO BOOK_AUTHORS VALUES (‘'ULLMAN',3);
INSERT INTO BOOK_AUTHORS VALUES ('CHARLES, 4);
INSERT INTO BOOK_AUTHORS VALUES('GALVIN', 5);

INSERT INTO PUBLISHER VALUES (MCGRAW-HILL', 9989076587,'BANGALORE);
INSERT INTO PUBLISHER VALUES ('PEARSON', 9889076565, NEWDELH]I");

INSERT INTO PUBLISHER VALUES ('PRENTICE HALL', 7455679345,'HYEDRABAD);
INSERT INTOPUBLISHER VALUES ('WILEY", 8970862340, CHENNAI');

INSERT INTO PUBLISHER VALUES ('MIT", 7756120238, BANGALORE);

INSERT INTO BOOK_COPIES VALUES (10, 1, 10);
INSERT INTO BOOK_COPIES VALUES (5, 1, 11);
INSERT INTO BOOK_COPIES VALUES (2, 2, 12),
INSERT INTO BOOK_COPIES VALUES (5, 2, 13);
INSERT INTO BOOK_COPIES VALUES (7, 3, 14);
INSERT INTO BOOK_COPIES VALUES (1, 5, 10);
INSERT INTO BOOK_COPIES VALUES (3, 4, 11);

INSERT INTO BOOK_LENDING VALUES ('2017-01-01','2017-06-01', 1, 10, 101);
INSERT INTO BOOK_LENDING VALUES ('2017-01-11 ','2017-03-11', 3, 14, 101);
INSERT INTO BOOK_LENDING VALUES ('2017-02-21','2017-04-21', 2, 13, 101);
INSERT INTO BOOK_LENDING VALUES ('2017-03-15 ',"2017-07-15', 4, 11, 101);
INSERT INTO BOOK_LENDING VALUES ('2017-04-12''2017-05-12', 1, 11, 104);

INSERT INTO CARD VALUES (100);
INSERT INTO CARD VALUES (101);
INSERT INTO CARD VALUES (102);
INSERT INTO CARD VALUES (103);
INSERT INTO CARD VALUES (104);

INSERT INTO LIBRARY_PROGRAMME VALUES (10,'VIJAY NAGAR','MYSURU";
INSERT INTO LIBRARY_PROGRAMME VALUES (11,'VIDYANAGAR','HUBLI"); ;
INSERT INTO LIBRARY_PROGRAMME VALUES(12,KUVEMPUNAGAR','MYSURUY);
INSERT INTO LIBRARY_PROGRAMME VALUE(13,'RAJAJINAGAR'BANGALORE");
INSERT INTO LIBRARY_PROGRAMME VALUES (14'MANIPAL','UDUPIY;

Dept. of CSE, ATMECE, Mysore Page 94

DBMS Laboratory with mini Project 21CSL55
SELECT * FROM BOOK;

BOOK_ID TITLE PUB_YEAR | PUBLISHER_NAME
1 DBMS Jan-2017 MCGRAW-HILL
2 ADBMS Jun-2017 MCGRAW-HILL
3 CD Sep-2016 PEARSON
4 ALGORITHMS | Sep-2015 MIT
5 0S May-2016 PEARSON

SELECT * FROM BOOK_AUTHORS;

AUTHOR_NAME | BOOK_ID

NAVATHE 1
NAVATHE 2
ULLMAN 3
CHARLES 4
GALVIN 5
SELECT * FROM PUBLISHER;
NAME PHONE ADDRESS
MCGRAW-HILL 9989076587 BANGALORE
MIT 7756120238 BANGALORE
PEARSON 9889076565 NEWDELHI
PRENTICE HALL 7455679345 HYEDRABAD
WILEY 8970862340 CHENNAI

SELECT * FROM BOOK_COPIES;

NO_OF_COPIES |BOOK_ID | PROGRAMME_ID

10 1 10
5 1 11
2 2 12
5 2 13
7 3 14
1 5 10
3 4 11

Dept. of CSE, ATMECE, Mysore Page 95

DBMS Laboratory with mini Project 21CSL55
SELECT * FROM BOOK_LENDING;

DATEOUT DUEDATE BOOKID PROGRAMME_ID CARDNO
2017-01-01 |2017-06-01 1 10

2017-01-11 2017-03-11 3 4 101
2017-02-21 2017-04-21 2 13 101
2017-03-15 2017-07-15 4 11 101
2017-04-12 2017-05-12 1 11 104

SELECT * FROM CARD;

CARD NO
101
102
103
104
105

SELECT * FROM LIBRARY_PROGRAMME;

PROGRAMME_ID PROGRAMME_NAME | ADDRESS

10 VIJAY NAGAR MYSURU
11 VIDYANAGAR HUBLI

12 KUVEMPUNAGAR MYSURU
13 RAJAJINAGAR BANGALORE
14 MANIPAL UDUPI

Dept. of CSE, ATMECE, Mysore Page 96

DBMS Laboratory with mini Project

21CSL55

Queries:

1. Retrieve details of all books in the library — id, title, name of publisher, authors, number
of copies in each branch, etc.

SELECT B.BOOK_ID, B.TITLE, B.PUBLISHER_NAME, A A AUTHOR_NAME,

C.NO_OF_COPIES, L.PROGRAMME_ID FROM BOOK B, BOOK_AUTHORS A, BOOK_COPIES
C, LIBRARY_PROGRAMME L WHERE B.BOOK_ID=A.BOOK_ID AND
B.BOOK_ID=C.BOOK_ID AND L.PROGRAMME_ID=C.PROGRAMME_ID;

BOOK | TITLE PUBLISHER_ | AUTHOR_ OF_ggl_:’IES PROGRAMME
ID NAME NAME ID
1 DBMS MCGRAW-HILL | NAVATHE 10 10
1 DBMS MCGRAW-HILL | NAVATHE S 11
2 ADBMS | MCGRAW-HILL | NVAVATHE 2 12
2 ADBMS | MCGRAW-HILL | NAVATHE S 13
3 CD PEARSON ULLMAN ! 14
4 | ALGORITHMS MIT CHARLES 1 1
5 0s PEARSON GALVIN 3 10

2. Get the particulars of borrowers who have borrowed more than 3 books, but from Jan
2017 to Jun2017.
SELECT CARD_NO FROM BOOK_LENDING WHERE DATE_OUT
BETWEEN '2017-01-01'AND "2017-07-01' GROUP BY CARD_NO
HAVING COUNT(*)>3;

»row

mysqgl> _

in =et (A.HA3

SEec)

Dept. of CSE, ATMECE, Mysore

Page 97

DBMS Laboratory with mini Project 21CSL55

3. Delete a book in BOOK table. Update the contents of other tables to reflect this data
manipulationoperation.

DELETE FROM BOOK WHERE BOOK_ID=3;

mysgl> SELECT =+ FROM BOOK;
T T S ———— +

PUBLISHER_NAME

MCGRAW-HILL
MCGRAW-HILL
PEARSON

MIT

PEARSON

JAN-20817
JUN-2816
SEP-2816
SEP-2@15
MAY-2816

s T

+
]
i

+
1
]
]
]
]
]
1
]
]
]

+

=

my=zgql> DELETE FROM BOOK WHERE BOOK_ID=3;
Query 0K, 1 row affected (H.83 seck

________________ +

PUBLISHER_MAME !

JAN-2817
JUN-2816
SEP-2815%
MAY-2816

MCGRAW-HILL
MCGRAY-HILL
MIT

PEARSON

$omm e

4. Partition the BOOK table based on year of publication. Demonstrate its working with a
simple query.

CREATE VIEW VW_PUBLICATION AS SELECT PUB_YEAR FROMBOOK;

SELECT * FROM VW_PUBLICATION

wzgl> SELECT = FROM UY_PUBLICATION;

+

JAN-2817
JUN-2016
SEP-2816
SEP-2015
MAY-2816

rous in set (H.BHA seck

5. Create a view of all books and its number of copies that are currently available in the
Library.
CREATE VIEW VW_BOOKS AS SELECT B.BOOK_ID, B.TITLE, C.NO_OF_COPIES
FROM BOOK B, BOOK_COPIES C, LIBRARY_PROGRAMME L WHERE
B.BOOK_ID=C.BOOK_ID AND C.PROGRAMME_ID=L.PROGRAMME_ID;

Dept. of CSE, ATMECE, Mysore Page 98

DBMS Laboratory with mini Project 21CSL55

SELECT * FROM VW_BOOKS;

ysgl> SHOW TABLES:

book_authors
book_copies
book_lending

card
library_programme
publisher
viw_books

O p——

[
n
-+
[
n
[
[
[
[
[
L
[
[
[
n
[
[
[
[
+
b2
|.

rows in set <(B.00 secr»

y=qgql> SELECT = FROM UUW_BOOKS;

+

W ommmmm . omm
[—
[—— Y

A

zet (A.BAA sec>

Proaram m

The students are able to
e Create, Update and query on thedatabase.
e Demonstrate the working of different concepts ofDBMS
e Implement, analyze and evaluate the project developed for anapplication.

Dept. of CSE, ATMECE, Mysore Page 99

DBMS Laboratory with mini Project 21CSL55

B. Consider the following schema for OrderDatabase:
SALESMAN (Salesman _id, Name, City, Commission)
CUSTOMER (Customer _id, Cust_Name, City, Grade,Salesman_id)
ORDERS (Ord_No, Purchase_ Amt, Ord_Date, Customer _id, Salesman_id)

Write SQL queries to
1. Count the customers with grades above Bangalore’saverage.

2. Find the name and numbers of all salesmen who had more than onecustomer.

3. List all salesmen and indicate those who have and don’t have customers intheir
cities (Use UNIONoperation.)

4. Create a view that finds the salesman who has the customer with the highestorder
of aday.

5. Demonstrate the DELETE operation by removing salesman with id 1000. Allhis
orders must also bedeleted.

Program Objectiv
This course will enable students to

e Foundation knowledge in database concepts, technology and practice to groomstudents
into well-informed database applicationdevelopers.

e Strong practice in SQL programming through a variety of databaseproblems.

e Develop database applications using front-end tools and back-endDBMS.

Solution:
Entity-Relationship Diagram

o (I

=
Salesman Customer @
N
1
@ | € _
@

N N
Orders

Ord_Date
Purchase_Amt @

Dept. of CSE, ATMECE, Mysore Page 100

DBMS Laboratory with mini Project 21CSL55
Schema Diagram

LA ——
YEILES AN

—u| Salesman_id | Name | City | Commission

T.

Customei

Customer 1d | Cust Name | City | Grade | Salesman_id
r 3

Ovders
Oird No | Purchase_Amt | Ord Date | Customer_id | Salesman_id

Table Creation

CREATE TABLE SALESMAN (
SALESMAN_ID INT (4) PRIMARY KEY,
NAME VARCHAR (20),

CITY VARCHAR (20),

COMMISSION VARCHAR (20));

CREATE TABLE CUSTOMER (

CUSTOMER_ID INT (5) PRIMARY KEY,

CUST_NAME VARCHAR (20),

CITY VARCHAR (20), GRADE INT (4),

SALESMAN_ID INT (6),

FOREIGN KEY (SALESMAN_ID) REFERENCES SALESMAN (SALESMAN_ID) ON DELETE
SET NULL);

CREATE TABLE ORDERS (

ORD_NO INT (5) PRIMARY KEY,

PURCHASE_AMT DECIMAL (10, 2),

ORD_DATE DATE,

CUSTOMER_ID INT (4),

SALESMAN_ID INT (4),

FOREIGN KEY (CUSTOMER_ID) REFERENCES CUSTOMER (CUSTOMER_ID) ON DELETE
CASCADE,

FOREIGN KEY (SALESMAN_ID) REFERENCES SALESMAN (SALESMAN_ID) ON DELETE
CASCADE);

Dept. of CSE, ATMECE, Mysore Page 101

DBMS Laboratory with mini Project 21CSL55
Table Descriptions

DESC SALESMAN;
mysgl> DESC SALESMAN;

_____________ -,~—

SALESMAN_ID
HAME

CITY
COMMISSION

varchar{2H0>
varchar< 2>

varchar {28

b omm e
e
b omm e
o - mm

H
i
+
¢

CUSTOMER_ID

CUST_HAME varchar {20
CITY varchar (2>
GRADE int<4>
SALESHAHW_ID int <G>

T)
T)
N]
T)

L rows in set (A.AB sec?

DESC ORDERS;
wysql> DESC ORDERS;

————— e e e e e e —————— e e e

MULL
NULL
MULL

PURCHASE_AMT decimal<iB. 2>
date
int{4>

int<4>

ORD_DATE
CUSTOMER_ID
SALESMAN_ID

[
[
[

[L

rows in set <H@.

INSERT INTO SALESMAN VALUES(101,'RICHARD','LOS ANGELES','18%");
INSERT INTO SALESMAN VALUES(103,'GEORGE','NEWY ORK','32%");
INSERT INTO SALESMAN VALUES(110,'/CHARLES','BANGALORE','54%);
INSERT INTO SALESMAN VALUES(122,'ROWLING','PHILADELPHIA','46%");
INSERT INTO SALESMAN VALUES(126,'KURT','CHICAGO','52%");

INSERT INTO SALESMAN VALUES(132,'EDWIN','PHOENIX','41%");

INSERT INTO CUSTOMER VALUES(501,'SMITH','LOS ANGELES',10,103);
INSERT INTO CUSTOMER VALUES(510,BROWN','ATLANTA'14,122);
INSERT INTO CUSTOMER VALUES(522,'LEWIS'BANGALORE'10,132);
INSERT INTO CUSTOMER VALUES(534,'PHILIPS''BOSTON",17,103);
INSERT INTO CUSTOMER VALUES(543,'EDWARD','BANGALORE'14,110);
INSERT INTO CUSTOMER VALUES(550,PARKER','ATLANTA',19,126);

Dept. of CSE, ATMECE, Mysore Page 102

DBMS Laboratory with mini Project

21CSL55

INSERT INTO ORDERS VALUES(1,1000,2017-05-04',501,103);
INSERT INTO ORDERS VALUES(2,4000,'2017-01-20",522,132);
INSERT INTO ORDERS VALUES(3,2500,'2017-02-24',550,126);
INSERT INTO ORDERS VALUES(5,6000,2017-04-13',522,103);
INSERT INTO ORDERS VALUES(6,7000,2017-03-09',550,126);
INSERT INTO ORDERS VALUES (7,3400,'2017-01-20',501,122);

SELECT * FROM SALESMAN;

FROM SALESMAN:

RICHARD
GEORGE

CHARLES
ROWLIHNG

KURT

EDUWIN

PHILIPS
EDUARD
PARKER

+
.
! LEUIS
.
(A.B80 =ec)

wsgl? select * from ord
———————— ——

PURCHASE_AMT

+

i 1806 .088
i 48006 .88
i 25068 .88
i 6806 . 38
i ‘78808 .88
i 340068 .88
+

h rows in set (A.BH@ secl

+

R

LOS AMGELES

ATLANTA

BANGALORE

BOSTON

BANGALORE

ATLANTA

ers;

$ommmmmmmm e ee =

2817-A5%-A4
2817-01-28
2817-A2-24
2817-A4-13
2817-A3-87
2817-01-28

e - ——— ==

LOS AWMGELES
MEWY ORK
BANGALORE

PHILADELFHIA
CHICAGOD
PHOENI 2

R

omm e

R

COMMISSION

$ommmmmmmm e ee =

+

e S

Dept. of CSE, ATMECE, Mysore

Page 103

DBMS Laboratory with mini Project 21CSL55

Queries

1. Count the customers with grades above Bangalore’saverage.
SELECT GRADE, COUNT (CUSTOMER_ID) FROM
CUSTOMER GROUP BY GRADE
HAVING GRADE > (SELECT AVG (GRADE) FROM
CUSTOMER WHERE CITY=BANGALOREY;

zet (A.EA3 =zmecr

2. Find the name and numbers of all salesmen who had more than onecustomer.
SELECT SALESMAN_ID,NAME
FROM SALESMAN A
WHERE 1 <(SELECT COUNT(*) FROM CUSTOMER
WHERE SALESMAN_ID=A.SALESMAN _ID)
OR
SELECT S.SALESMAN_ID,NAME, FROM CUSTOMER
C,SALESMAN S WHERE
S.SALESMAN_ID=C.SALESMAN ID GROUP BY
C.SALESMAN_ID HAVING COUNT(*)>1

- — %

i SALESMAN_ID

3. List all salesmen and indicate those who have and don’t have customers in their cities
(Use UNIONoperation.)

SELECT S.SALESMAN_ID,NAME,CUST_NAME,COMMISSION FROM SALESMAN
S,CUSTOMER C

WHERE S.CITY =C.CITY

UNION

SELECT SALESMAN_ID, NAME, 'NO MATCH',COMMISSION FROM SALESMAN
WHERE NOT CITY = ANY (SELECT CITY

FROM CUSTOMER) ORDER BY 2 DESC;

Dept. of CSE, ATMECE, Mysore Page 104

DBMS Laboratory with mini Project 21CSL55

4. Create a view that finds the salesman who has the customer with the highest order of a
day.

CREATE VIEW VW _ELITSALESMAN AS

SELECT B.ORD DATE,A.SALESMAN_ID,A.NAME FROM SALESMAN A, ORDERS B

WHERE A.SALESMAN ID = B.SALESMAN ID AND B.PURCHASE _AMT=(SELECT

MAX(PURCHASE_AMT) FROM ORDERS CWHERE C.ORD DATE = B.ORD_DATE);

SELECT * FROM VW_ELITSALESMAN

201 °7-Aa5—8a4
201°7—-681-28

GEORGE
EDUWIHN
KURT
GEORGE

2801°7-82-24
201°7-684—-173
201°7—-83—8%

o
4

U] o mmmmm mmmn o omm

rows in set (A.HAH@ =sec>

5. Demonstrate the DELETE operation by removing salesman with id 1000. All his orders
must also be deleted.
Use ON DELETE CASCADE at the end of foreign key definitions while creating child table
orders and then execute the following:

DELETE FROM SALESMAN WHERE SALESMAN_1D=101,

L

FROM SALESHMAM;

RICHARD
GEORGE
CHARLES
ROULING
KURT
EDUIN

LOS ANMGELES
NEWYORK
BANMGALORE
PHILADELPHIA
CHICAGO
PHOENI R

A

-

(A.82 secl

mysgl> DELETE FROM SALESZMAN WHERE SALESMAM_ID=181;
Query 0K, 1 row affected <(B.82 sec)

FROM SALESMAN:

GEORGE
CHARLES

NEWYORK
BANGALORE
PHILADELPHIA
CHICAGO
PHOENI R

KURT
EDUIN

. ——— -
- m=

+
H
i
! ROWLING
+
<

B.88 zec>

Dept. of CSE, ATMECE, Mysore Page 105

DBMS Laboratory with mini Project 21CSL55

Proagram m

The students are able to
e Create, Update and query on thedatabase.
e Demonstrate the working of different concepts ofDBMS
e Implement, analyze and evaluate the project developed for anapplication.

Dept. of CSE, ATMECE, Mysore Page 106

DBMS Laboratory with mini Project 21CSL55

C. Consider the schema for MovieDatabase:
ACTOR (Act_id, Act_Name, Act_Gender)
DIRECTOR (Dir_id, Dir_Name, Dir_Phone)
MOVIES (Mov_id, Mov_Title, Mov_Year, Mov_Lang, Dir_id)
MOVIE_CAST (Act id, Mov id, Role)
RATING (Mov_id, Rev_Stars) Write SQL queries to

1. List the titles of all movies directed by‘Hitchcock’.

2. Find the movie names where one or more actors acted in two or moremovies.

3. List all actors who acted in a movie before 2000 and also in a movie after 2015
(use JOIN operation).

4. Find the title of movies and number of stars for each movie that has at least one

rating and find the highest number of stars that movie received. Sort the result by
movietitle.

5. Update rating of all movies directed by ‘Steven Spielberg’ toS5.

Program jectiv
This course will enable students to

e Foundation knowledge in database concepts, technology and practice to groom students
into well-informed database applicationdevelopers.

e Strong practice in SQL programming through a variety of databaseproblems.
e Develop database applications using front-end tools and back-endDBMS.

Solution:
Entity-Relationship Diagram

@ = =

Dept. of CSE, ATMECE, Mysore Page 107

DBMS Laboratory with mini Project 21CSL55

Schema Diagram

Actor
3| det_id | Act_Name | Aci_Gender

[3 T
Ihrectos

| Dar_1d | Dir_Name | Dir_Phone |

Movies
|"| Mov id

Mov_Title | Mov_Year | Mov_Lang | Dir_id |

Movie_Cast
| Aer 1d | Mov 1d | Role |

Rating
| Mov_id | Rev_Stars |

Table Creation

CREATE TABLE ACTOR (
ACT_ID INT (5) PRIMARY KEY,
ACT_NAME VARCHAR (20),
ACT_GENDER CHAR (1));

CREATE TABLE DIRECTOR (
DIR_ID INT (5) PRIMARY KEY,
DIR_NAME VARCHAR (20),
DIR_PHONE BIGINT);

CREATE TABLE MOVIES

(MOV_ID INT (4) PRIMARY KEY,

MOV _TITLE VARCHAR (50),

MOV _YEAR INT (4),

MOV_LANG VARCHAR (20),

DIR_ID INT (5),

FOREIGN KEY (DIR_ID) REFERENCES DIRECTOR(DIR_ID));

CREATE TABLE MOVIES_CAST (

ACT_ID INT (5),

MOV_ID INT (5),

ROLE VARCHAR (20),

PRIMARY KEY (ACT_ID, MOV_ID),

FOREIGN KEY (ACT_ID) REFERENCES ACTOR (ACT _ID),
FOREIGN KEY (MOV_ID) REFERENCES MOVIES (MOV._ID)):

Dept. of CSE, ATMECE, Mysore Page 108

DBMS Laboratory with mini Project 21CSL55

CREATE TABLE RATING (

MOV_ID INT (5) PRIMARYKEY,

REV_STARS VARCHAR (25),

FOREIGN KEY (MOV_ID) REFERENCES MOVIES (MOV_ID));

Table Descriptions

DESC ACTOR,;

mysgql> DESC ACTOR;

varchar(28>
char{l}

§ommm——— e
§ommm——— e
§ o= e
§ o= e

$omm e

rows in set <{@.0@

mysgl> DESC DIRECTOR:

-
I
|
|
|
|
|
I
I
|
|
|

varchar<2@>»
bigint{2B8>

(A.A8@ =ec

DIR_PHOME

b ommmm—— e
b ommmm—— e

T s
#omm

M o ommmm e e

rows in se

varchar<{5A>
MOU_YEAR int{4>
MOU_LANG varchar<{28>

int<{5>

(.88 szec)

+ +
1 1
] 1
+ +
1 1
] 1
1 1
1 [
1 1
] 1
1 1
1 [
1 1
] 1
+ +

ommmm—————— -
e

o ==
e - ==
e - ==
[FA

rows in set (A.BA sec

Dept. of CSE, ATMECE, Mysore Page 109

DBMS Laboratory with mini Project 21CSL55
DESC RATING,;

mysgl> DESC RATIHG:
+

___________ —

#omm
#omm
#omm = e
#omm = e

+
+
2

Insertion of Values to Tables
INSERT INTO ACTOR VALUES (1,"MADHURI DIXIT’,’F’);

INSERT INTO ACTOR VALUES (2,’”AAMIR KHAN’,"M’);
INSERT INTO ACTOR VALUES (3,”JUHI CHAWLA’,’F’);
INSERT INTO ACTOR VALUES (4,’SRIDEVTI’,’F’);

INSERT INTO DIRECTOR VALUES (100,"SUBHASH KAPOOR’, 9563400156);
INSERT INTO DIRECTOR VALUES(102,/ALAN TAYLOR',9971960035);

INSERT INTO DIRECTOR VALUES (103,"SANTHOSH ANANDDRAM?’, 9934611125);
INSERT INTO DIRECTOR VALUES (104,"IMTIAZ ALI’, 8539920975);

INSERT INTO DIRECTOR VALUES (105,'HITCHCOCK',7766138911);

INSERT INTO DIRECTOR VALUES (106,'STEVEN SPIELBERG',9966138934);

INSERT INTO MOVIES VALUES (501, JAB HARRY MET SEJAL',2017,'HINDI',104);
INSERT INTO MOVIES VALUES (502, RAJAKUMARA',2017,'KANNADA'103);
INSERT INTO MOVIES VALUES (503,JOLLY LLB 2, 2013,'HINDI', 100);

INSERT INTO MOVIES VALUES (504, TERMINATOR GENESYS',2015,'ENGLISH',102);
INSERT INTO MOVIES VALUES (505,'JAWS',1975,'/ENGLISH',106);

INSERT INTO MOVIES VALUES (506, BRIDGE OF SPIES',2015,'ENGLISH', 106);
INSERT INTO MOVIES VALUES (507,'VERTIGO',1943,'ENGLISH',105);

INSERT INTO MOVIES VALUES (508,SHADOW OF A DOUBT',1943,'ENGLISH', 105);

INSERT INTO MOVIES_CAST VALUES (1, 501,’'HEROINE);
INSERT INTO MOVIES_CAST VALUES (1, 502,'HEROINEY);
INSERT INTO MOVIES_CAST VALUES (3, 503,'COMEDIANY);
INSERT INTO MOVIES_CAST VALUES (4, 504,'GUEST");
INSERT INTO MOVIES_CAST VALUES (4, 501,’HERQO);

INSERT INTO RATING VALUES (501, 4);
INSERT INTO RATING VALUES (502, 2);
INSERT INTO RATING VALUES (503, 5);
INSERT INTO RATING VALUES (504, 4);
INSERT INTO RATING VALUES (505, 3);
INSERT INTO RATING VALUES (506, 2);

Dept. of CSE, ATMECE, Mysore Page 110

DBMS Laboratory with mini Project 21CSL55
SELECT * FROM ACTOR,;
ACT_ID ACT_NAME ACT
1 MADHURI DIXIT F
2 AAMIR KHAN M
3 JUHI CHAWLA F
4 SRIDEVI F
SELECT * FROM DIRECTOR,;
DIR_ID DIR_NAME DIR_PHONE
100 SUBHASH KAPOOR 56340015
102 ALAN TAYLOR 719600310
103 SANTHOSH ANANDDRAM 99346111
104 IMTIAZ ALI 85399209
105 HITCHCOCK 7766138911
106 STEVEN SPIELBERG 9966138934

SELECT * FROM MOVIES;

MOV _ID
501
502
503
504
505
506
507
508

MOV_TITLE

JAB HARRY MET SEJAL
RAJAKUMARA

JOLLY LLB 2

TERMINATOR GENESYS
JAWS
BRIDGE OF SPIES
VERTIGO

SHADOW OF A DOUBT

MOV_YEAR
2017
2017
2013
2015
1975
2015
1958
1943

MOV_LANG |DIR_ID

HINDI 104
KANNADA 103

HINDI 100
ENGLISH 102
ENGLISH 106
ENGLISH 106
ENGLISH 105
ENGLISH 105

Dept. of CSE, ATMECE, Mysore

Page 111

DBMS Laboratory with mini Project 21CSL55

SELECT * FROM MOVIE_CAST;

ACT_ID MOV_ID ROLE
1 501 HEROINE
1 502 HEROINE
3 503 COMEDIAN
4 504 GUEST
4 501 HERO

SELECT * FROM RATING;

MOV_ID REV_STARS
501 4
502
503
504
505
506
507
508

AN WO ROTDN

Dept. of CSE, ATMECE, Mysore Page 112

DBMS Laboratory with mini Project 21CSL55

Queries:
1. List the titles of all movies directed by‘Hitchcock’.
SELECT MOV_TITLE FROM MOVIES WHERE DIR_ID IN (SELECT DIR_ID FROM
DIRECTOR WHERE DIR NAME = ‘HITCHCOCK");
OR
SELECT MOV_TITLE FROM MOVIES M, DIRECTOR D WHERE M.DIR_ID=D.DIR_ID
AND DIR_NAME=HITCHCOCK;

UERTIGO

SHADOW OF A DOUBT i

2 rows in set (B.B0 sec

2. Find the movie names where one or more actors acted in two or more movies.
SELECT MOV _TITLE FROM MOVIES M,MOVIES_CAST MV
WHERE M.MOV_ID=MV.MOV_ID AND ACT_ID IN(SELECT ACT_ID FROM
MOVIES_CAST GROUP BY ACT_ID HAVING COUNT(ACT_ID)>1) GROUP BY
MOV _TITLE HAVING COUNT(*)>1;

JAE HARRY MET SEJAL

row in set (B.B@ secl

3. List all actors who acted in a movie before 2000 and also in a movie after 2015 (use JOIN
operation).
SELECT ACT_NAME, MOV_TITLE, MOV_YEAR FROM ACTOR A JOIN
MOVIE_CAST C ON A.ACT_ID=C.ACT_ID INNER JOIN MOVIES M
ON C.MOV_ID=M.MOV_ID WHERE M.MOV_YEAR NOT BETWEEN 2000 AND 2015;

—

i ACT_NAME

MADHURI DIXIT
MADHURI DIXIT
SRIDEUI

JAB HARRY MET SEJAL
RAJAKUMARA
JAB HARRY MET SEJAL

o - ==
$omm - ==

rows in set (A.B@ sec)

Dept. of CSE, ATMECE, Mysore Page 113

DBMS Laboratory with mini Project 21CSL55

4. Find the title of movies and number of stars for each movie that has at least one rating and
find the highest number of stars that movie received. Sort the result by movietitle.
SELECT MOV _TITLE,MAX(REV_STARS) FROM MOVIES M ,RATING R WHERE
M.MOV_ID=R.MOV _ID GROUP BY MOV _TITLE HAVING MAX(REV_STARS)>0 ORDER
BY MOV _TITLE;

BRIDGE OF SPIES

JAB HARRY MET SEJAL
JAWE

JOLLY LLB 2
RaJaKUMARA
TERMINATOR GEMESYS

+
1
1

+
1
1
1
]
1
1
1
]
1
1
1
]

+

5. Update rating of all movies directed by ‘Steven Spielberg’ toS
UPDATE RATING SET REV_STARS=5 WHERE MOV _ID IN(SELECT MOV _ID FROM
MOVIES WHERE DIR_ID IN(SELECT DIR_ID FROM DIRECTOR
WHERE DIR_NAME='STEVEN SPIELBERG));
OR
UPDATE RATING R, MOVIES M, DIRECTOR D SET REV_STARS=5 WHERE
R.MOV_ID=M.MOV_ID AND M.DIR_ID=D.DIR_ID AND DIR_NAME='STEVEN
SPIELBERG;

mysgl> SELECT = FROM RATING:
+ +

+

1
]

+
1
]
1
1
1
]
1
1
1
]
1
1

+

The students are able to
e Create, Update and query on thedatabase.
e Demonstrate the working of different concepts ofDBMS
e Implement, analyze and evaluate the project developed for anapplication.

Dept. of CSE, ATMECE, Mysore Page 114

DBMS Laboratory with mini Project 21CSL55

D. Consider the schema for CollegeDatabase:

STUDENT (USN, SName, Address, Phone, Gender)
SEMSEC (SSID, Sem, Sec)

CLASS (USN, SSID)

SUBJECT (Subcode, Title, Sem, Credits)

IAMARKS (USN, Subcode,SSID, Testl, Test2, Test3, FinallA)

Write SQL queries to

1. List all the student details studying in fourth semester ‘C’section.

2.Compute the total number of male and female students in each semester and in each
section.

3.Create a view of Testl marks of student USN “1BI15CS101° in allsubjects.

4. Calculate the Finall A (average of best two test marks) and update the corresponding
table for allstudents.

5.Categorize students based on the followingcriterion:
If FinallA = 17 to 20 then CAT =‘Outstanding’
If FinallA =12 to 16 then CAT = ‘Average’
If FinallA< 12 then CAT = ‘Weak’
Give these details only for 8th semester A, B, and C section students.

Program jectiv
This course will enable students to

e Foundation knowledge in database concepts, technology and practice to groomstudents
into well-informed database applicationdevelopers.

e Strong practice in SQL programming through a variety of databaseproblems.
e Develop database applications using front-end tools and back-endDBMS.

Solution:
Entity - Relatlonshlp Dlagram

ADDRESS o < sEm >
PHONE < SsIb — SEC >
usN S o
ST GENDER>
SNAME >\

STUDENT] an CLASS 4 t SEMSEC

2.3)

@ < Title >
<SUBCODE> >
SEM
(1.n)

< Test >\ IAMARKS \ CREDITS
S (1.n) (1,3)

I SUBJECT
(Tes / ©n \‘//
< Test3 STy

— "¢ Finala

Dept. of CSE, ATMECE, Mysore Page 115

DBMS Laboratory with mini Project 21CSL55

Schema Diagram
Student

FUSN | SName | Address | Phone | Gender |

Semsec
b-SSID | Sem | Sec |
1_— a

Class
IISN | 551D

Subject
| Subcode | Title | Sem | Crediis |

r

Tamarks

| 7SN | Subcode | SSID | Testl | Test? | Test3 | Finalld |

Table Creation

CREATE TABLE STUDENT (

USN VARCHAR (10) PRIMARY KEY,
SNAME VARCHAR (25),

ADDRESS VARCHAR (25),

PHONE BIGINT (10),

GENDER CHAR (1));

CREATE TABLE SEMSEC (

SSID VARCHAR (5) PRIMARY KEY,
SEM INT (5),

SEC CHAR (1));

CREATE TABLE CLASS (

USN VARCHAR (10),

SSID VARCHAR (5),

PRIMARY KEY (USN, SSID),

FOREIGN KEY (USN) REFERENCES STUDENT (USN),
FOREIGN KEY (SSID) REFERENCES SEMSEC (SSID)):

CREATE TABLE SUBJECT(
SUBCODE VARCHAR(10)
PRIMARY KEY,

TITLE VARCHAR(20),
SEM INT,

CREDITS INT);

Dept. of CSE, ATMECE, Mysore Page 116

DBMS Laboratory with mini Project 21CSL55

CREATE TABLE IAMARKS (

USN VARCHAR (10),

SUBCODE VARCHAR (8),

SSID VARCHAR (5),

TESTL INT (2),

TEST2 INT (2),

TEST3 INT (2),

FINALIA INT (2),

PRIMARY KEY (USN, SUBCODE, SSID),

FOREIGN KEY (USN) REFERENCES STUDENT (USN),
FOREIGN KEY (SUBCODE) REFERENCES SUBJECT (SUBCODE), FOREIGN
KEY (SSID) REFERENCES SEMSEC (SSID));

Table Descriptions
DESC STUDENT;

STUDENT ;

varchar{i@>
varchar<2h>
varchapr{25>
higint<18>
chaprtl>

LI E DL DR B)
e)
e
e

et (A.HA sec>

varchart{hd
int<5>
char{l>

T
T
T

+
1
i

+
1
]
]
]
1
i

+

e

varchar<1@>»
varchar<q?»

A
A

Dept. of CSE, ATMECE, Mysore Page 117

DBMS Laboratory with mini Project 21CSL55

DESC SUBJECT,

SUBJECT ;

SUBCODE varchar{i18>
TITLE varchar{28>
5EHM int<11>
CREDITS int<i1>

MULL
MULL

+ +
1 1
1]
+ +
1 1
[]
1 1
[1
1 1
1]
]]
1 1
+ +

o =
T R

ysgl> DESC ITAMARKS;
+

e

varchar<i@>
varchar<i>»
varchar<s>
int{2>
int{2>
int{2>

homm e - ==
[——
homm e - ==
homm e - ==

rows in

Insertion of values to tables

INSERT INTO STUDENT VALUES ('4AD13CS020','/AKSHAY','BELAGAVI', 8877881122,'M’);
INSERT INTO STUDENT VALUES ('4AD13CS062','SANDHYA''BENGALURU/,
7722829912,'F");

INSERT INTO STUDENT VALUES ('4AD13CS091', TEESHA''BENGALURU', 7712312312,'F");
INSERT INTO STUDENT VALUES ('4AD13CS066','SUPRIYA''MANGALURU',
8877881122,'F");

INSERT INTO STUDENT VALUES ('4AD14CS010','ABHAY",BENGALURU', 9900211201,'M");
INSERT INTO STUDENT VALUES ('4AD14CS032','BHASKAR',BENGALURU/,
9923211099,'M");

INSERT INTO STUDENT VALUES ('4AD14CS025','/ASMI''BENGALURU', 7894737377,'F');
INSERT INTO STUDENT VALUES (4AD15CS011','AJAY', TUMKUR', 9845091341,'M");
INSERT INTO STUDENT VALUES ('4AD15CS029','CHITRA''DAVANGERE', 7696772121,'F');
INSERT INTO STUDENT VALUES ('4AD15CS045','JEEVA'BELLARY", 9944850121,'M’);
INSERT INTO STUDENT VALUES ('4AD15CS091','SANTOSH',MANGALURU',
8812332201,'M’)

INSERT INTO STUDENT VALUES ('4AD16CS045''ISMAIL',KABURGI', 9900232201,'M);
INSERT INTO STUDENT VALUES ('4AD16CS088','SAMEERA",'SHIMOGA, 9905542212,'F");
INSERT INTO STUDENT VALUES ('4AD16CS122''VINAY AKA''CHIKAMAGALUR/,
8800880011,'M");

Dept. of CSE, ATMECE, Mysore Page 118

DBMS Laboratory with mini Project 21CSL55

INSERT INTO SEMSEC VALUES ('CSE8A', 8,'A);
INSERT INTO SEMSEC VALUES ('CSES8B', 8,'B");
INSERT INTO SEMSEC VALUES ('CSES8C, 8,'C');
INSERT INTO SEMSEC VALUES ('CSE7A', 7,'A);
INSERT INTO SEMSEC VALUES ('CSE7B', 7,'B");
INSERT INTO SEMSEC VALUES ('CSE7C', 7,'C");
INSERT INTO SEMSEC VALUES ('CSE6GA', 6,'A);
INSERT INTO SEMSEC VALUES ('CSE6B', 6,'B");
INSERT INTO SEMSEC VALUES ('CSE6C', 6,'C');
INSERT INTO SEMSEC VALUES ('CSE5A', 5,'A);
INSERT INTO SEMSEC VALUES ('CSE5B', 5,'B");
INSERT INTO SEMSEC VALUES ('CSE5C', 5,'CY);
INSERT INTO SEMSEC VALUES ('CSE4A', 4,'A’);
INSERT INTO SEMSEC VALUES ('CSE4B', 4,'B");
INSERT INTO SEMSEC VALUES ('CSE4C', 4,'C");
INSERT INTO SEMSEC VALUES ('CSE3A', 3,'A);
INSERT INTO SEMSEC VALUES ('CSE3B', 3,'B");
INSERT INTO SEMSEC VALUES ('CSE3C', 3,'CY);
INSERT INTO SEMSEC VALUES ('CSE2A', 2,'A);
INSERT INTO SEMSEC VALUES ('CSE2B', 2,'B");
INSERT INTO SEMSEC VALUES ('CSE2C', 2,'CY);
INSERT INTO SEMSEC VALUES ('CSE1A', 1,'A);
INSERT INTO SEMSEC VALUES ('CSE1B', 1,'B");
INSERT INTO SEMSEC VALUES ('CSE1C', 1,'CY);

INSERT INTO CLASS VALUES ('4AD13CS020','CSE8A);
INSERT INTO CLASS VALUES ('4AD13CS062','CSE8A);
INSERT INTO CLASS VALUES ('4AD13CS066','CSESB");
INSERT INTO CLASS VALUES ('4AD13CS091','CSESC");
INSERT INTO CLASS VALUES (4AD14CS010','CSE7A);
INSERT INTO CLASS VALUES (4AD14CS025','CSE7A);
INSERT INTO CLASS VALUES (4AD14CS032','CSE7A);
INSERT INTO CLASS VALUES (4AD15CS011','CSE4A);
INSERT INTO CLASS VALUES ('4AD15CS029','CSE4A);
INSERT INTO CLASS VALUES ('4AD15CS045','CSE4B");
INSERT INTO CLASS VALUES (4AD15CS091','CSE4C);
INSERT INTO CLASS VALUES (4AD16CS045','CSE3A);
INSERT INTO CLASS VALUES (4AD16CS088','CSE3B");
INSERT INTO CLASS VALUES (4AD16CS122','CSE3C");

INSERT INTO SUBJECT VALUES ('10CS81''ACA, 8, 4);
INSERT INTO SUBJECT VALUES ('10CS82','SSM', 8, 4);
INSERT INTO SUBJECT VALUES ('10CS83','NM’, 8, 4);
INSERT INTO SUBJECT VALUES ('10CS84','CC', 8, 4);
INSERT INTO SUBJECT VALUES ('10CS85','PW', 8, 4);
INSERT INTO SUBJECT VALUES ('10CS71','OOAD', 7, 4);

Dept. of CSE, ATMECE, Mysore Page 119

DBMS Laboratory with mini Project 21CSL55

INSERT INTO SUBJECT VALUES ('10CS72''ECS', 7, 4);
INSERT INTO SUBJECT VALUES ('10CS73,'PTW', 7, 4);
INSERT INTO SUBJECT VALUES ('10CS74','DWDM, 7, 4); |
INSERT INTO SUBJECT VALUES ('10CS75','JAVA', 7, 4);
INSERT INTO SUBJECT VALUES ('10CS76','SAN', 7, 4);
INSERT INTO SUBJECT VALUES ('15CS51', 'ME', 5, 4);
INSERT INTO SUBJECT VALUES ('15CS52','CN, 5, 4);
INSERT INTO SUBJECT VALUES ('15CS53','DBMS, 5, 4);
INSERT INTO SUBJECT VALUES ('15CS54''ATC', 5, 4);
INSERT INTO SUBJECT VALUES ('15CS55','JAVA, 5, 3);
INSERT INTO SUBJECT VALUES ('15CS56','Al’, 5, 3);
INSERT INTO SUBJECT VALUES ('15CS41','M4', 4, 4);
INSERT INTO SUBJECT VALUES ('15CS42','SE', 4, 4);
INSERT INTO SUBJECT VALUES ('15CS43''DAA, 4, 4);
INSERT INTO SUBJECT VALUES ('15CS44''MPMC', 4, 4);
INSERT INTO SUBJECT VALUES ('15CS45','O0C, 4, 3);
INSERT INTO SUBJECT VALUES ('15CS46','DC, 4, 3);
INSERT INTO SUBJECT VALUES ('15CS31','M3', 3, 4);
INSERT INTO SUBJECT VALUES ('15CS32''ADE, 3, 4);
INSERT INTO SUBJECT VALUES ('15CS33','DSA, 3, 4);
INSERT INTO SUBJECT VALUES ('15CS34','CO/, 3, 4);
INSERT INTO SUBJECT VALUES ('15CS35','USP", 3, 3);
INSERT INTO SUBJECT VALUES ('15CS36',DMS, 3, 3);

INSERT INTO IAMARKS VALUES ('4AD13CS091','10CS81''CSES8C', 15, 16, 18,0);
INSERT INTO IAMARKS VALUES ('4AD13CS091','10CS82''CSES8C', 12, 19, 14,0);
INSERT INTO IAMARKS VALUES ('4AD13CS091','10CS83','CSES8C', 19, 15, 20,0);
INSERT INTO IAMARKS VALUES ('4AD13CS091','10CS84','CSES8C', 20, 16, 19,0);
INSERT INTO IAMARKS VALUES ('4AD13CS091','10CS85','CSES8C', 15, 15, 12,0);

SELECT * FROM STUDENT;

Ly
-
=

=
=
B X
=

EEEREIDSDEDER RS S
-
=i

rF=x X3

Dept. of CSE, ATMECE, Mysore Page 120

DBMS Laboratory with mini Project 21CSL55
SELECT * FROM SEMSEC,;

+
1
1

+
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

+

B.88 sec>

usgl> SELECT = FROM CLASS;
+

-
|
|
|
|
|
|
|
|
|
|
|
|

4001 6C5A45
44D1 6 CEA8E
4AD1 605122
44D1 508811
4401 5C5829
44D1 5C8 845
4AD15C5A71
401 4CE81 8
4AD1 4G5 825
40D1 4CEA32
4AD13C5828
4AD13CEA62
4AD13CSA66
4AD13CEAT1

T § == e e = e e e e e ————— e

14 rowsz in =e

Dept. of CSE, ATMECE, Mysore Page 121

DBMS Laboratory with mini Project 21CSL55

SELECT * FROM SUBJECT;

ysgl> SELECT = FROM SUBJECT;

+————— +

SUBCODE

18Cs81
18C572
18C873
18C574
18C575
18C576
1BCS81
18ACsS82
1BCS83
18C584
1BCS85
15C531
15C832
15C533
15CE834
15C535
15C836
15C541
150842
15C543
15CE44
15C545

15C546
150851
150852
15C853
15C554
15C855
150856

4AD13CEA1
4401 3C5A71
4AD13C5A1
4AD13C5A71
4AD13CG5A71

18C581
18C582
18C583
18C584
18C585

[-
$omm
o - ==
[-
[-

rows in set (H.AA sec

Dept. of CSE, ATMECE, Mysore Page 122

DBMS Laboratory with mini Project 21CSL55

Queries:
1. List all the student details studying in fourth semester ‘C’section.

SELECT S.*, SS.SEM, SS.SEC FROM STUDENT S, SEMSEC SS, CLASS C WHERE
S.USN = C.USN AND SS.SSID = C.SSID AND SS.SEM =4 AND SS.SEC="C’

+ + +
1 1 1
]]]
+ + +
1 1 1
]]]
+ + +

row in set

2. Compute the total number of male and female students in each semester and ineach section.
SELECT SS.SEM, SS.SEC, S.GENDER, COUNT (S.GENDER) AS COUNT FROM
STUDENT S, SEMSEC SS, CLASS C
WHERES.USN = C.USN AND SS.SSID =C.SSID
GROUP BY SS.SEM, SS.SEC,S.GENDER ORDER BY SEM,;

+
1
1

+
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

+

S S

rows in set (H.A8 se

3. Create a view of Testl marks of student USN ‘1BI15CS101’ in allsubjects.
CREATE VIEW VW_STUDENT_TEST AS SELECT TEST1,SUBCODE FROM
IAMARKS WHERE USN="4AD13CS091";

SELECT * FROM VW_STUDENT_TEST

ysgql» SEELECT = FROM UL_STUDENT _TEST;
+

—

SUBCODE !

18C581
18Cs82
18C583
1BC584
18C585

o ———— e

b rows in

Dept. of CSE, ATMECE, Mysore Page 123

DBMS Laboratory with mini Project 21CSL55

4. Calculate the FinallA (average of best two test marks) and update thecorresponding
table for allstudents.
UPDATE IAMARKS
SET FINALIA=GREATEST(TEST1+TEST2,TEST2+TEST3, TEST1+TEST3)/2;

Note: Before execution above SQL statement, IAMARKS table contents are:

SELECT * FROM IAMARKS;

4AD13CEA71
4AD13C5A%1

18C581
18C532
18C583
18C534
18CS35

4AD13CEA71
4AD13C5A%1
4AD13CEA71

$omm = ——— ==
$omm = ——— ==
$omm e ——— ==
$omm = ——— ==
$omm e ——— ==

rows in set (A.BA sec

UPDATE IAMARKS
SET FINALIA=GREATEST(TEST1+TEST2,TEST2+TEST3,TEST1+TEST3)/2;

After executing above SQL statement, IAMARKS table contents are:

4AD13G5A71
401368071
4AD13G5A71

18C581
18Ccss2
18C583
18C584
18C585

401365071
4AD13C58%71

S
S
S Y
e S
S

rows in set (B.680 sec

5. Categorize students based on the followingcriterion:
If FinallA =17 to 20 then CAT =‘Outstanding’
If FinallA = 12 to 16 then CAT = ‘Average’
If FinallA< 12 then CAT = ‘Weak’
Give these details only for 8th semester A, B, and C section students.

SELECT S.USN,S.SNAME,S.ADDRESS,S.PHONE,S.GENDER,
(CASE

WHEN IA.FINALIA BETWEEN 17 AND 20 THEN 'OUTSTANDING'

WHEN IA.FINALIA BETWEEN 12 AND 16 THEN 'AVERAGE'

ELSE 'WEAK'

END) AS CAT

FROM STUDENT S, SEMSEC SS, IAMARKS IA, SUBJECT SUB WHERE S.USN = IA.USN
AND SS.SSID = IA.SSID AND SUB.SUBCODE = IA.SUBCODE AND SUB.SEM = 8;

Dept. of CSE, ATMECE, Mysore Page 124

DBMS Laboratory with mini Project 21CSL55

4AD13CEA1 TEESHA BENGALURU 712312312
7712312312
712312312
7712312312

7712312312

OUTSTAMDING
OUTSTAMDING
OUTSTAMDING
OUTSTANDING
AUVERAGE

4AD13CEA1
4AD13CEA1
4AD13C5A1

TEESHA BENGALURU
TEESHA BENGALURU
TEESHA BENGALURU

+
"

4AD13CEA1 i TEESHA BENGALURU
+

[——
[——

rows in set (A.A@ ze

Proaram m

The students are able to
e Create, Update and query on thedatabase.
e Demonstrate the working of different concepts ofDBMS
e Implement, analyze and evaluate the project developed for anapplication.

Dept. of CSE, ATMECE, Mysore Page 125

DBMS Laboratory with mini Project 21CSL55

E.Consider the schema for CompanyDatabase:

EMPLOYEE (SSN, Name, Address, Sex, Salary, SuperSSN,
DNo) DEPARTMENT (DNo, DName, MgrSSN, MgrStartDate)
DLOCATION (DNo,DLoc)

PROJECT (PNo, PName, PLocation, DNo)

WORKS_ON (SSN, PNo, Hours)

Write SQL queries to

1 Make a list of all project numbers for projects that involve an employee whose last
name is ‘Scott’, either as a worker or as a manager of the department that controls the
project.

2 Show the resulting salaries if every employee working on the ‘IoT’ project is given a 10
percentraise.

3. Find the sum of the salaries of all employees of the ‘Accounts’ department, as well as
the maximum salary, the minimum salary, and the average salary in thisdepartment

4. Retrieve the name of each employee who works on all the projects controlled by
department number 5 (use NOT EXISTS operator).

5 For each department that has more than five employees, retrieve the department
number and the number of its employees who are making more than Rs.6,00,000.

Program Objectiv
This course will enable students to

e Foundation knowledge in database concepts, technology and practice to groomstudents
into well-informed database applicationdevelopers.

e Strong practice in SQL programming through a variety of databaseproblems.

e Develop database applications using front-end tools and back-endDBMS.

Solution:
Entity-Relationship Diagram

q Diocation D
Works_on @

Dept. of CSE, ATMECE, Mysore Page 126

DBMS Laboratory with mini Project 21CSL55

Schema Diagram

Employee

» i | Fname | Lname | Address | Sex | Salary | SuperSSN | DNO |
%

Department

!
| DNO | Dname | MgrSSN | MgrStartDate

DLocation

[DY0 [DLoC

Project

»| PNO | PName | PLocation | DNO |

Works_on

|@ | PNO | Hours |

Table Creation

CREATE TABLE DEPARTMENT

(

DNO VARCHAR (20) PRIMARY KEY,
DNAME VARCHAR (20),
MGRSTARTDATE DATE,

MGRSSN VARCHAR (20)

);

CREATE TABLE EMPLOYEE (

SSN VARCHAR (20) PRIMARY KEY,

FNAME VARCHAR (20),

LNAME VARCHAR (20),

ADDRESS VARCHAR (100),

SEX CHAR (1),

SALARY INT (10),

SUPERSSN VARCHAR (20),

DNO VARCHAR (20),

FOREIGN KEY (SUPERSSN) REFERENCES EMPLOYEE (SSN),
FOREIGN KEY (DNO) REFERENCES DEPARTMENT (DNO));

NOTE: Once DEPARTMENT and EMPLOYEE tables are created we must alter department
table to add foreign constraint MGRSSN using sql command

Dept. of CSE, ATMECE, Mysore Page127

DBMS Laboratory with mini Project 21CSL55

ALTER TABLE DEPARTMENT ADD FOREIGN KEY(MGRSSN) REFERENCES
EMPLOYEE(SSN);
CREATE TABLE DLOCATION (
DLOC VARCHAR (20),
DNO VARCHAR (20),
PRIMARY KEY (DNO, DLOC),
FOREIGN KEY (DNO) REFERENCES DEPARTMENT (DNO));

CREATE TABLE PROJECT (

PNO INT (10) PRIMARY KEY,

PNAME VARCHAR (20),

PLOCATION VARCHAR (20),

DNO VARCHAR (20),

FOREIGN KEY (DNO) REFERENCES DEPARTMENT (DNO));

Table Descriptions

DESC EMPLOYEE;
uysgl»> DESC EMPLOYEE:

varchar (28>
varchawr<{2@>
varchar (28>
varchar<{188>
char<i>
int<i8>
varchar (28>
varchawr<{2@>»

$ ommmm e mm e ————— ==
L el
L el
#omm

1 I L L L L L]

B rows din (A.A@ =sec>

yagl> DESC DEPARTMENT ;

-
|
|
|
|
|
|
|
|
|
|
|
|
|
|

+
|
|
|
|
|
|
|
|
|
|
|
|
|

varchar{Z@>
varchar{28>
date

varchar{28>

MGRSTARTDATE
MGRESH

o mm
o mm
$ o —— e
§ o=

]
1

+
1
]
1
1
1
]
1
1

+

4 rows in set (H.

yagl> DESC DLOCATION:
+

———

varchar{2@>
varchar{2@>»

+omm e e
o
o me
o

2 rows in

DESC PROJECT

Dept. of CSE, ATMECE, Mysore Page128

DBMS Laboratory with mini Project 21CSL55

PROJECT 5

int<18>

varchar(Z@2>»
varchar(2Z@>
varchar(2Z@>

___________ ——— T
rows in set (A.88 secl

PLOCATION

- m=

i
e
i
i

+
1
1

+
1
1
1
1
1
1

+

T)
ommmm—— e

Insertion of values to tables
INSERT INTO EMPLOYEE VALUES (ATMEECEOQ1','JOHN','SCOTT',BANGALORE','M,
450000,NULL,NULL);
INSERT INTO EMPLOYEE VALUES (ATMECSEOL','JAMES','SMITH''BANGALORE','M’,
500000,NULL,NULL);
INSERT INTO EMPLOYEE VALUES (ATMECSEO02','HEARN','BAKER'BANGALORE','M’,
700000,NULL,NULL);
INSERT INTO EMPLOYEE VALUES (ATMECSEO03','EDWARD','SCOTT','MYSORE''M',
500000,NULL,NULL);
INSERT INTO EMPLOYEE VALUES (ATMECSE04','PAVAN','HEGDE''MANGALORE''M',
650000,NULL,NULL);
INSERT INTO EMPLOYEE VALUES (ATMECSEO05','GIRISH'MALYA''MYSORE','M',
450000,NULL,NULL);
INSERT INTO EMPLOYEE VALUES (ATMECSEO06''NEHA''SN''BANGALORE','F,
800000,NULL,NULL);
INSERT INTO EMPLOYEE VALUES (ATMEACCO01''AHANA''K','MANGALORE','F,
350000,NULL,NULL);
INSERT INTO EMPLOYEE VALUES
(ATMEACCO02''SANTHOSH','KUMAR''MANGALORE','M’, 300000,NULL,NULL);
INSERT INTO EMPLOYEE VALUES (ATMEISEOL','VEENA''M''MYSORE','F',
600000,NULL,NULL);
INSERT INTO EMPLOYEE VALUES (‘ATMEITO01''NAGESH''HR''BANGALORE','M',
500000,NULL,NULL);

INSERT INTO DEPARTMENT VALUES ('1''ACCOUNTS','2001-01-01''ATMEACC02";
INSERT INTO DEPARTMENT VALUES ('2','1T",'2016-08-01'ATMEITO01");

INSERT INTO DEPARTMENT VALUES ('3''ECE','2008-6-01''ATMEECEO01");

INSERT INTO DEPARTMENT VALUES ('4''ISE','2015-06-01''ATMEISEO1");

INSERT INTO DEPARTMENT VALUES ('5','CSE','2002-06-01', ATMECSE05");

Note: update entries of employee table to fill missing fields SUPERSSN and DNO

Dept. of CSE, ATMECE, Mysore Page129

DBMS Laboratory with mini Project 21CSL55

UPDATE EMPLOYEE SET SUPERSSN="ATMECSE(2’, DNO="5" WHERE
SSN="ATMECSEO01";

UPDATE EMPLOYEE SET SUPERSSN="ATMECSEO03’, DNO="5" WHERE SSN="ATMECSE02’;
UPDATE EMPLOYEE SET SUPERSSN="ATMECSE04’, DNO="5" WHERE SSN="ATMECSE03’;
UPDATE EMPLOYEE SET DNO="5", SUPERSSN="ATMECSEO05’ WHERE SSN="ATMECSE04’;

UPDATE EMPLOYEE SET DNO="5", SUPERSSN="ATMECSE06’ WHERE SSN="ATMECSEO05’;
UPDATE EMPLOYEE SET DNO="5", SUPERSSN=NULL WHERE SSN="ATMECSE06’;

UPDATE EMPLOYEE SET DNO="1", SUPERSSN="ATMEACC02> WHERE
SSN="ATMEACCO01’;

UPDATE EMPLOYEE SET DNO="1", SUPERSSN=NULL WHERE
SSN="ATMEACCO02’;

UPDATE EMPLOYEE SET DNO="4", SUPERSSN=NULL WHERE
SSN="ATMEISEO1’;

UPDATE EMPLOYEE SET DNO="2", SUPERSSN=NULL WHERE
SSN="ATMEITO01’;

INSERT INTO DLOCATION VALUES (‘(BANGALORE', '1%;
INSERT INTO DLOCATION VALUES (BANGALORE', 2Y;
INSERT INTO DLOCATION VALUES ('(BANGALORE!, '3";
INSERT INTO DLOCATION VALUES (MANGALORE', '4);
INSERT INTO DLOCATION VALUES (MANGALORE', '5;

INSERT INTO PROJECT VALUES (100,'I0T''BANGALORE','5);

INSERT INTO PROJECT VALUES (101,'CLOUD'BANGALORE','5");

INSERT INTO PROJECT VALUES (102,'BIGDATA''BANGALORE','5";

INSERT INTO PROJECT VALUES (103,'SENSORS''BANGALORE','3");

INSERT INTO PROJECT VALUES (104,BANK MANAGEMENT','BANGALORE','1";
INSERT INTO PROJECT VALUES (105,'SALARY MANAGEMENT''BANGALORE','1";

INSERT INTO PROJECT VALUES (106,'OPENSTACK''BANGALORE''4";
INSERT INTO PROJECT VALUES (107,'SMART CITY''BANGALORE','2";

INSERT INTO WORKS_ON VALUES (4, 'ATMECSEO1', 100);
INSERT INTO WORKS_ON VALUES (6, ' ATMECSEO1', 101);
INSERT INTO WORKS_ON VALUES (8, 'ATMECSEO1', 102);
INSERT INTO WORKS_ON VALUES (10, 'ATMECSEO02', 100);
INSERT INTO WORKS_ON VALUES (3, ‘ATMECSE04’, 100);
INSERT INTO WORKS_ON VALUES (4, 'ATMECSEOQS', 101);
INSERT INTO WORKS_ON VALUES (5, 'ATMECSEOQ6', 102);

Dept. of CSE, ATMECE, Mysore Page130

21CSL55

DBMS Laboratory with mini Project

INSERT INTO WORKS_ON VALUES (6, 'ATMECSEO03', 102);
INSERT INTO WORKS_ON VALUES (7, 'ATMEECEO01', 103);
INSERT INTO WORKS_ON VALUES (5, 'ATMEACCO1', 104);
INSERT INTO WORKS_ON VALUES (6, 'ATMEACCO02', 105);

INSERT INTO WORKS_ON VALUES (4, 'ATMEISEOQ1', 106);
INSERT INTO WORKS_ON VALUES (10, 'ATMEITO01', 107);

SELECT * FROM EMPLOYEE;

T = FROM EMPLOYEE:

SANTHOSH
JAMES
HEARH
EDUARD
PAUAN
GIRISH
HEHA
JOHN
VEENA
NAGESH

mm e e e e e —————— ==
mm e ——_——— ==

rows in set (B.0H

uzgl> SELECT = FROM DEPARTMENT :

__________ —

MGRETARTDATE

28001 -P1-61
2816—H8—-A1
28088-P6—H1
2815-P6—A1
28082-B6—61

R

L rows in set (H.

SELECT * FROM DLOCATION ;

MANGALORE
MANGALORE
BANGALORE
BANGALORE
MYSORE

MANGALORE
MYSORE

BANGALORE
BANGALORE
MY SORE

BANGALORE

omm

T

ATMEACCHZ
ATHMEITAL

ATMEECEH1
ATMEISEAL
ATMECS EAS

e RS

3588088
Janana
LArANA
15 1515]5]
=Y]6]5]5]0)
650808
41L88088
8808088
41588088
[F]51515]15]5]
111615 16]0)

e RS

ATMEACCAZ2
HULL
ATMECSEA2
ATHMECSEA3
ATMECSEA4
ATMECSEAS
ATMECSEAG
MULL
MULL
HULL

e RS

Dept. of CSE, ATMECE, Mysore

Page131

DBMS Laboratory with mini Project 21CSL55

BANGALORE
BANGALORE
BANGALORE
MANGALORE
MANGALORE

BANGALORE

BANGALORE
BIGDATA BANGALORE
SENSORS BANGALORE
BANK MAMAGEMENT BANGALORE
SALARY MANAGEMENT BANGALORE
OPENSTACK BANGALORE
SHART CITY BANGALORE

= e ———— e
mm e e e —— e

rows in set (A.@3

Queries:

1 Make a list of all project numbers for projects that involve an employee whose last
name is ‘Scott’, either as a worker or as a manager of the department that controls the
project.

(SELECT DISTINCT P.PNO FROM PROJECT P, DEPARTMENT D, EMPLOYEE E
WHERE E.DNO=D.DNO AND D.MGRSSN=E.SSN AND E.LNAME="SCOTT")
UNION

(SELECT DISTINCT P1.PNO FROM PROJECT P1, WORKS_ON W, EMPLOYEE E1
WHERE P1.PNO=W.PNO AND E1.SSN=W.SSN AND E1.LNAME="SCOTT")

DBMS Laboratory with mini Project 21CSL55

2. Show the resulting salaries if every employee working on the ‘IoT’ project is given a 10
percentraise.
SELECT E.FNAME, E.LNAME, 1.1*E.SALARY AS INCR_SAL FROM EMPLOYEE E,
WORKS_ON W, PROJECT P WHERE E.SSN=W.SSN AND W.PNO=P.PNO AND
P.PNAME="10T";

INCR_SAL
—————————— +
5500808.8 |
7700608.8 |
158688.8 |

—————————— +

set (B.81 sec

+
]
1

+
1
1
1
]
]
1

+

3. Find the sum of the salaries of all employees of the ‘Accounts’ department, as well as
the maximum salary, the minimum salary, and the average salary in this department
SELECT SUM (E.SALARY), MAX (E.SALARY), MIN (E.SALARY), AVG (E.SALARY)
FROM EMPLOYEE E, DEPARTMENTD WHERE E.DNO=D.DNO AND
D.DNAME="ACCOUNTS’;

_______________ +

MINCE _SALARYY ! AUGCE_SALARY)

300808

! SUMCE_SALARYY | MAXCE _SALARY) g
1 1
i 325000.0000 |

_______________ +

b5 A0 358008

b omm o me
e

il ruw in sel <B.

4. Retrieve the name of each employee who works on all the projects Controlled by
department number 5 (use NOT EXISTSoperator).
SELECT E.FNAME,E.LNAME FROM EMPLOYEE E WHERE NOT EXISTS
(SELECT PNO FROM PROJECT P WHERE DNO=5 AND PNO NOT IN
(SELECT PNO FROM WORKS_ON W WHERE E.SSN=SSN));

[

1l row in set <.

5 For each department that has more than five employees, retrieve the department
number and the number of its employees who are making more than Rs. 6, 00,000.
SELECT D.DNO, COUNT(*)

FROM DEPARTMENT D, EMPLOYEE E
WHERE D.DNO=E.DNO

Dept. of CSE, ATMECE, Mysore Page133

DBMS Laboratory with mini Project 21CSL55

AND E.SALARY>600000

AND D.DNO IN (SELECT E1.DNO
FROM EMPLOYEE E1

GROUP BY E1.DNO

HAVING COUNT (*)>5)

GROUP BY D.DNO;

—————————— +

y in set (B.00 sec»

Proaram m

The students are able to
e Create, Update and query on thedatabase.
e Demonstrate the working of different concepts ofDBMS
e Implement, analyze and evaluate the project developed for anapplication.

1. WhatisSQL?
Structured Query Language
2. What isdatabase?

A database is a logically coherent collection of data with some inherent meaning,
representing some aspect of real world and which is designed, built and populated with data
for a specific purpose.

3. What isDBMS?

It is a collection of programs that enables user to create and maintain a database. In other
words it is general-purpose software that provides the users with the processes of defining,
constructing and manipulating the database for various applications.

4. What is a Database system?

The database and DBMS software together is called as Database system.

Dept. of CSE, ATMECE, Mysore Page134

DBMS Laboratory with mini Project

5. What are Advantages ofDBMS?
e Redundancy iscontrolled.
e Unauthorized access isrestricted.
e Providing multiple userinterfaces.
e Enforcing integrityconstraints.

e Providing backup andrecovery.

6. What are Disadvantages in File ProcessingSystem?

e Data redundancy &inconsistency.
e Difficult in accessingdata.
e Dataisolation.
e Dataintegrity.
e Concurrent access is notpossible.
e SecurityProblems.

7. Define the "integrityrules™

There are two Integrity rules.

e Entity Integrity: States that “Primary key cannot have NULLvalue”

21CSL55

e Referential Integrity: States that “Foreign Key can be either a NULL value or should

be Primary Key value of otherrelation.

8. What is a view? How it is related to data independence?

A view may be thought of as a virtual table, that is, a table that does not really exist in its
own right but is instead derived from one or more underlying base table. In other words,
there is no stored file that direct represents the view instead a definition of view is stored in
data dictionary. Growth and restructuring of base tables is not reflected in views. Thus the
view can insulate users from the effects of restructuring and growth in the database. Hence

accounts for logical data independence.
9. What is DataModel?

A collection of conceptual tools for describing data, data relationships, data semantics and

constraints.
10. What is E-Rmodel?

Dept. of CSE, ATMECE, Mysore

Page135

DBMS Laboratory with mini Project 21CSL55

This data model is based on real world that consists of basic objects called entities and of
relationship among these objects. Entities are described in a database by a set of attributes.

11. What is Object Orientedmodel?

This model is based on collection of objects. An object contains values stored in instance
variables within the object. An object also contains bodies of code that operate on the
object. These bodies of code are called methods. Objects that contain same types of values
and the same methods are grouped together into classes.

12. What is an Entity?

It is an 'object’ in the real world with an independent existence.
13. What is an Entitytype?

It is a collection (set) of entities that have same attributes.
14. What is an attribute?

It is a particular property, which describes theentity.
15. What is degree of aRelation?

It is the number of attribute of its relation schema.
16. What isRelationship?

It is an association among two or more entities.
17. What is DDL (Data DefinitionLanguage)?

A data base schema is specified by a set of definitions expressed by a special language
called DDL.

18. What is DML (Data ManipulationLanguage)?

This language that enable user to access or manipulate data as organized by appropriate

datamodel.

19. What isnormalization?

It is a process of analyzing the given relation schemas based on their Functional
Dependencies (FDs) and primary key to achieve the properties

e Minimizingredundancy
e Minimizing insertion, deletion and updateanomalies.
20. What is 1 NF (NormalForm)?

The domain of attribute must include only atomic (simple, indivisible) values.
21. What is2NF?

Dept. of CSE, ATMECE, Mysore Page136

DBMS Laboratory with mini Project 21CSL55

A relation schema R is in 2NF if it is in INF and every non-prime attribute A in R is fully
functionally dependent on primary key.

22. What is3NF?

A relation schema R is in 3NF if it is in 2NF and for every FD X A either of the following
is true

e Xisa Super-key ofR.
e Aisa prime attribute ofR.
In other words, if every non prime attribute is non-transitively dependent on primary key.
23. What is BCNF (Boyce-Codd NormalForm)?

A relation schema R is in BCNF if it is in 3NF and satisfies additional constraints that for
every FD X A, X must be a candidate key.

24, What is4NF?

A relation schema R is said to be in 4NF if for every Multivalued dependency X Y that
holds over R, one of following is true

e X issubset or equal to (or) XY =R.
e X isasuperkey.
25. What isbNF?

A Relation schema R is said to be 5NF if for every join dependency {R1, R2, ...,Rn} that
holds R, one the following is true

e Ri=R for somei.

e The join dependency is implied by the set of FD, over R in which the left side is key
ofR

26. What are partial, alternate,, artificial, compound and naturalkey?
PartialKey:

It is a set of attributes that can uniquely identify weak entities and that are related to same
owner entity. It is sometime called as Discriminator.

Alternate Key:
All Candidate Keys excluding the Primary Key are known as Alternate Keys.

Artificial Key:

If no obvious key, either standalone or compound is available, then the last resort is to
simply create a key, by assigning a unique number to each record or occurrence. Then this
is known as developing an artificial key.

Compound Key:

Dept. of CSE, ATMECE, Mysore Page137

DBMS Laboratory with mini Project 21CSL55

If no single data element uniquely identifies occurrences within a construct, then
combining multiple elements to create a unique identifier for the construct is known as
creating a compoundkey.

Natural Key:

When one of the data elements stored within a construct is utilized as the primary key, then
it is called the natural key.

27. What is meant by queryoptimization?

The phase that identifies an efficient execution plan for evaluating a query that has the least
estimated cost is referred to as query optimization.

28. What do you mean by atomicity andaggregation?
Atomicity:

Either all actions are carried out or none are. Users should not have to worry about the
effect of incomplete transactions. DBMS ensures this by undoing the actions of incomplete
transactions.

Aggregation:

A concept which is used to model a relationship between a collection of entities and
relationships. It is used when we need to express a relationship among relationships.

29. What is a checkpoint and when does itoccur?

A Checkpoint is like a snapshot of the DBMS state. By taking checkpoints, the DBMS can
reduce the amount of work to be done during restart in the event of subsequent crashes.

30. What do you mean by flat filedatabase?

It is a database in which there are no programs or user access languages. It has no cross-file

capabilities but is user-friendly and provides user-interface management.
31. Brief theory of Network, Hierarchical schemas and theirproperties

Network schema uses a graph data structure to organize records example for such a
database management system is CTCG while a hierarchical schema uses a tree data
structure example for such a system isIMS.

32. What is aquery?

A query with respect to DBMS relates to user commands that are used to interact with a
data base. The query language can be classified into data definition language and data
manipulation language.

33. What do you mean by Correlatedsubquery?

Subqueries, or nested queries, are used to bring back a set of rows to be used by the parent

Dept. of CSE, ATMECE, Mysore Page138

DBMS Laboratory with mini Project

34.

35.

36.

37.

38.

39.

40.

41.

Dept. of CSE, ATMECE, Mysore

query. Depending on how the subquery is written, it can be executed once for the parent
query or it can be executed once for each row returned by the parent query. If the subquery
is executed for each row of the parent, this is called a correlated subquery.

A correlated subquery can be easily identified if it contains any references to the parent

subquery columns in its WHERE clause. Columns from the subquery cannot be referenced
anywhere else in the parent query. The following example demonstrates a non-correlated
subquery.

E.g. Select * From CUST Where 2019/03/05" IN (Select ODATE From ORDER Where
CUST.CNUM = ORDER.CNUM)

What are the primitive operations common to all record managementsystems?
Addition, deletion and modification

How do you communicate with anRDBMS?

You communicate with an RDBMS using Structured Query Language (SQL)

Define SQL and state the differences between SQL and other conventional
programmingLanguages

SQL is a nonprocedural language that is designed specifically for data access operations on
normalized relational database structures. The primary difference between SQL and other
conventional programming languages is that SQL statements specify what data operations
should be performed rather than how to perform them.

What is databaseTrigger?

A database trigger is a PL/SQL block that can defined to automatically execute for insert,
update, and delete statements against a table. The trigger can e defined to execute once for
the entire statement or once for every row that is inserted, updated, or deleted.

What are stored-procedures? And what are the advantages of usingthem.

Stored procedures are database objects that perform a user defined operation. A stored
procedure can have a set of compound SQL statements. A stored procedure executes the
SQL commands and return the result to the client. Stored procedures are used to reduce
network traffic.
Which is the subset of SQL commands used to manipulate Database structures,
including tables?
Data Definition Language (DDL)
What operator performs pattern matching?

LIKE operator
What operator tests column for the absence of data?

21CSL55

Page139

DBMS Laboratory with mini Project 21CSL55

IS NULL operator
42. What are the wildcards used for patternmatching?
For single character substitution and % for multi-character substitution
43. What are the difference between TRUNCATE and DELETEcommands?

TRUNCATE DELETE
e TRUNCATE isa DDL command e DELETE isa DML command
e TRUNCATE operation cannot be e DELETE operation can be rolled back
rolled back
e TRUNCATE does not invoke trigger e DELETE does invoke trigger
e TRUNCATE resets auto_increment e DELETE does not resets
value to 0 auto_increment value to 0

44. What is the use of the ADD OR DROP option in the ALTER TABLEcommand?
It is used to add/drop columns or add/drop constraints specified on the table
45. What is the use of DESC inSQL?

DESC has two purposes. It is used to describe a schema as well as to retrieve rows from table in
descending order.

The query SELECT * FROM EMP ORDER BY ENAME DESC will display the output sorted
on ENAME in descending order

46. What is the use of ON DELETE CASCADE?

Whenever rows in the master (referenced) table are deleted ,the respective rows of the child
(referencing) table with a matching foreign key column will get deleted as well. This is called a
cascade delete

Example Tables:

CREATE TABLE Customer
(

customer_idINT (6) PRIMARY KEY,
cname VARCHAR (100),

caddress VARCHAR (100)

);

CREATE TABLE Order

(

order_id INT (6) PRIMARY KEY,

products VARCHAR (100),

payment DECIMAL(10,2),

customer_id INT (6),

FOREIGN KEY (customer_id) REFERENCES Customer(customer_id) ON DELETE CASCADE

Dept. of CSE, ATMECE, Mysore Page140

DBMS Laboratory with mini Project 21CSL55

Customer is the master table and Order is the child table, where ‘customer_id’ is primary key in
customer table and customer_id is the foreign key in Order table and represents the customer who
placed the order. When a row of Customer is deleted, any Order row matching the deleted Customer's
customer_id will also be deleted.

47.

48.

49.

50.

oL

52.

What is the use of Floor()?

The FLOOR() function returns the largest integer value that is smaller than or equal to a
number.

EXAMPLE;

SELECT FLOOR(25.75);

OUTPUT

25

What is the use of Truncate()?

The TRUNCATE() function truncates a number to the specified number of decimal places.
EXAMPLE;

SELECT TRUNCATE(135.375, 2);

OUTPUT

135.37

What is the use of CEILING?

Return the smallest integer value that is greater than or equal to 25.75:
EXAMPLE;

SELECT CEILING(25.75)

OUTPUT

26

What you mean by SQL UNIQUE Constraint?

The UNIQUE constraint ensures that all values in a column are different.

Both the UNIQUE and PRIMARY KEY constraints provide a guarantee for uniqueness for a
column or set of columns.

A PRIMARY KEY constraint automatically has a UNIQUE constraint.

However, you can have many UNIQUE constraints per table, but only one PRIMARY KEY
constraint per table.

How to add and drop UNIQUE Constraint in table in mysql?

ALTER TABLE contacts ADD CONSTRAINT UNC_name_email UNIQUE(name,email)
ALTER TABLE contacts DROP INDEX UNC_name_email;

What is the Group by Clause?

Dept. of CSE, ATMECE, Mysore Page141

DBMS Laboratory with mini Project 21CSL55

53.

o4.

95.

e The GROUP BY clause is a SQL command that is used to group rows that have the same

values.
The GROUP BY clause is used in the SELECT statement .Optionally it is used in conjunction

with aggregate functions to produce summary reports from the database.That's what it
does, summarizing data from the database.

The queries that contain the GROUP BY clause are called grouped queries and only return
single row for every grouped item.

Example:SELECT COUNT (CustomerID), Country FROM Customers
GROUP BY Country
What is use of having clause in mysql

The HAVING clause is used in the SELECT statement to specify filter conditions for a group
of rows or aggregates.

The HAVING clause is often used with the GROUP BY clause to filter groups based on a
specified condition. If the GROUP BY clause is omitted, the HAVING clause behaves like
the WHERE clause.

Notice that the HAVING clause applies a filter condition to each group of rows, while
the WHERE clause applies the filter condition to each individual row.

Example:SELECT COUNT(CustomerID), Country FROM Customers
GROUP BY CountryHAVING COUNT(CustomerID) > 5;
What is distinct clause in SQL?

When querying data from a table, you may get duplicate rows. In order to remove these
duplicate rows, you use the DISTINCT clause in the SELECT statement.

Example:SELECT DISTINCT columns FROM table_name WHERE where_conditions;

What is a union?
Unions combine the results from multiple SELECT queries into a consolidated result set.

The only requirements for this to work is that the number of columns should be the same from
all the SELECT queries which needs to be combined

Dept. of CSE, ATMECE, Mysore Page142

http://www.mysqltutorial.org/mysql-select-statement-query-data.aspx
http://www.mysqltutorial.org/mysql-group-by.aspx
http://www.mysqltutorial.org/mysql-where/
http://www.mysqltutorial.org/mysql-select-statement-query-data.aspx

DBMS Laboratory with mini Project 21CSL55

Additional Queries
CREATE command

CREATE TABLE Employee
(

Empno int(4) primary key,
Empname varchar(50),

job varchar(40),

Hiredate date,

Salary decimal(10,2),
Deptno int(7),

Age int(10)

);

DESC Employee;
yzgl> DESC Employee;

DESC command

varchar 58>
varchar{4@>
date
decimal{iB. 2>
int<?>
int<18>

Hiredate
Salary
Deptno

e T——y
e T——y
e T——y
L L
e T——y

rows in set <(B.80 sec>

INSERT command
Insert the values into the table as specified.

1) Insert into Employee values(1000,'Hemanth’,”"Manager’,’2018-11-17",35000, 30, 38);
2) Insert into Employee values(1001, Nitin’,”"Manager’,”2018-05-01,45000, 10, 42);

3) Insert into Employee values(1002, ‘Sachin’,’Salesman’,”2018-01-09°,18000, 20, 28);
4) Insert into Employee values(1003, 'Deepak’,’Clerk’,’2018-05-15,15000, 40, 34);

5) Insert into Employee values(1004, 'Ajay’,” Analyst’,’2018-10-22",60000, 50, 45);

6) Insert into Employee values(1005, 'Arun’,”Programmer’,”2018-7-24",25000, 60,25);

Dept. of CSE, ATMECE, Mysore Page143

DBMS Laboratory with mini Project 21CSL55

pzgl> zselect % from Employee;
——————— —————— ——

2018-11-17
2818-85-#A1
2018-01-a9
2818-85-15
2818-18-22
2018-07-24

Hemanth

Mitin
Sachin
Deepak
Ajay

Salesman
Clerk
Analust
Programmer

$ommmm e e =
$ommmm e e =
S R
S R

[T T tp—

Quieries:
Problems on sel mmand:

1) Display the details of all managers of Employee Table
SELECT * FROM Employee WHERE job="Manager’;

2) Display the details of all employees getting salary less than 30,000.
SELECT * FROM Employee WHERE salary<30000;

3) Display the details of employees who age is between 35 and 45
SELECT * FROM Employee WHERE age BETWEEN 35AND 45;

4) Display the details of Clerks who have joined after 01-MAR-05.
SELECT * FROM Employee WHERE job="Clerk’ AND hiredate>’2018-03-05;

5) Sort the details in descending order of Empno.
SELECT * FROM Employee ORDER BY Empno DESC;

6) Sort the details of employees in ascending order of name
SELECT * FROM Employee ORDER BY Empname

7) Display the details of employees whose names contain ‘i’ in them.
SELECT * FROM Employee WHERE Empname LIKE '%i%/";

8) Display the details of employees whose names starts with ‘a’ in them.

SELECT * FROM Employee WHERE Empname LIKE 'a%';

Dept. of CSE, ATMECE, Mysore Page144

DBMS Laboratory with mini Project 21CSL55

9) Display the details of employees whose names does not starts with ‘a’ in them.
SELECT * FROM Employee WHERE Empname NOT LIKE 'a%;

10) Display the employee details whose names have exactly 4 characters.
SELECT * FROM Employee WHERE length(Empname)=4

11)Copy all the records of their from employee table and insert the records into a temp table
with column names same as in Employee table

CREATE TABLE TEMP SELECT * FROM Employee;

Problems on update command:

1. Update the salary by 10% hike to Managerworking in department number 20 and30

SOL: UPDATE EMP SET SAL = SAL * 1. 1 WHERE Deptno IN (20,30) AND JOB
=‘ Manager’;

2. Give 5% raise in salary to all theSalesman
SOL1:UPDATE EMPLOYEE SET Salary=Salary*1.15 WHERE JOB="Salesman’;
OR

SOL2 :UPDATE EMPLOYEE SET Salary=Salary+(Salary * 15/100) WHERE
JOB='Salesman’;

3. Change the department no of Sachin to40
SOL: UPDATE EMP SET DEPTNO =40 WHERE Empname = ‘Sachin;
4. Update all employee name to uppercase
SOL: UPDATE EMPLOYEE SET Empname=upper(Empname);
Problems on delete command:
1. Delete all the records ofemployees
SOL: DELETE FROM Employee;
2. Delete the records of employee name Ajay’s only
SOL: DELETE FROM EMP WHERE ENAME = ‘Ajay’;
3. Delete the record of employee table whose Empno is 1005
SOL: DELETE FROM EMP WHERE Empno =1005;

Dept. of CSE, ATMECE, Mysore Page145

DBMS Laboratory with mini Project 21CSL55

4. Delete the first five records of employeetable
SOL: DELETE FROM EMPLOYEE LIMIT 5;

ALTER command

1. How to create database name COLLEGE ?
CREATE DATABASE COLLEGE;
2. How Modify datetype of age column in Employee table
ALTER TABLE Employee MODIFY age int(3);
3. How to rename column name of job to Designation in Employee table?
ALTER TABLE Employee CHANGE job Designation varchar(40);
4. How to add column Commission in Employee table?
ALTER TABLE Employee add Commissionvarchar(40);

5 How to drop column Commission in Employee table?
ALTER TABLE Employee DROP column Commission;
6. How to add primary key to Employee table?
ALTER TABLE Employee add primary key(Empno);
7. Howto drop primary key to Employee table?
ALTER TABLE Employee DROPprimary key;
8. How to rename employee table?
RENAME TABLE Employee to Employee_Details
9. How to delete contents of Employee table?
DELETE FROM Employee;
OR
TRUNCATE Employee;
10. How to drop Employee table?
DROP TABLE Employee;
11. How to drop database name COLLEGE?
DROP DATABASE COLLEGE

Dept. of CSE, ATMECE, Mysore Page146

	13thKM Stone, Bannur Road, Mysore - 560 028
	SUBJECT: DBMS LABORATORY WITH MINI PROJECT
	Vision
	Mission
	Vision of the Department
	Mission of the Department
	Program outcomes (POs)
	Engineering Graduates will be able to:

	Program Specific Outcomes (PSOs)
	Program Educational Objectives (PEOs):
	DBMS LABORATORY WITH MINI PROJECT
	CREDITS – 02
	Description (If any):
	PART-B: Mini Project (Max. Exam Mks. 30)
	Lab Experiments: Part A: SQL Programming
	Part B: Mini project
	Conduction of Practical Examination:

	CONTENTS
	INTRODUCTION TO DATABASE
	What is Database?
	RDBMS Terminology:
	SQL Data Types
	Each column in a database table is required to have a name and a data type.
	DATA TYPES
	DATE AND TIME TYPES
	The MySQL date and time data types are as follows −
	STRING TYPES
	This list describes the common string data types in MySQL.
	BASIC QUERIES IN SQL
	SIMPLE SQL QUERIES
	Example of a simple query on one relation
	Example of a simple query on two relations
	Example of a simple query on three relations
	ALIASES, * AND DISTINCT, EMPTY WHERE-CLAUSE
	Example
	UNSPECIFIED WHERE-clause
	Query 4: Retrieve the SSN values for all employees.
	USE OF *
	Retrieve all the attribute values of EMPLOYEES who work in department 5.
	Retrieve all the attributes of an employee and attributes of DEPARTMENT he works in for every employee of ‘Research’ department.
	USE OF DISTINCT
	SET OPERATIONS
	Query 5: Make a list of all project numbers for projects that involve an employee whose last name is 'Smith' as a worker or as a manager of the department that controls the project.
	UNION
	NESTING OF QUERIES
	Query 6: Retrieve the name and address of all employees who work for the 'Research' department.
	CORRELATED NESTED QUERIES
	Query 7: Retrieve the name of each employee who has a dependent with the same first name as the employee.
	THE EXISTS FUNCTION
	Query 8: Retrieve the names of employees who have no dependents.
	EXPLICIT SETS
	Query 9: Retrieve the social security numbers of all employees who work on project number 1, 2, or 3.
	Query 10: Retrieve the names of all employees who do not have supervisors.
	AGGREGATE FUNCTIONS
	Query 11: Find the maximum salary, the minimum salary, and the average salary among all employees.
	Query 12: Find the maximum salary, the minimum salary, and the average salary among employees who work for the 'Research' department.
	Queries 13 and 14: Retrieve the total number of employees in the company (Q13), and the number of employees in the 'Research' department (Q14).
	GROUPING
	Query 15: For each department, retrieve the department number, the number of employees in the department, and their averagesalary.
	Query 16: For each project, retrieve the project number, project name, and the number of employees who work on that project.
	THE HAVING-CLAUSE
	Query 17: For each project on which more than two employees work, retrieve the project number, project name, and the number of employees who work on that project.
	SUBSTRING COMPARISON
	Query 18: Retrieve all employees whose address is in Houston, Texas. Here, the value ofthe ADDRESS attribute must contain the substring ‘Houston,TX’ init.
	Query 19: Retrieve all employees who were born during the 1950s.
	ARITHMETIC OPERATIONS
	Query 20: Show the effect of giving all employees who work on the 'ProductX' project a 10% raise.
	ORDER BY
	Query 21: Retrieve a list of employees and the projects each works in, ordered by the employee's department, and within each department ordered alphabetically by employee lastname.
	MORE EXAMPLE QUERIES:
	Query 23: List the names of managers who have least one dependent.
	SPECIFYING UPDATES IN SQL
	Example:
	DELETE
	Examples:
	UPDATE
	Concept of Normalization
	Normal Forms
	First Normal Form (1NF)
	INTRODUCTION TO OPERATORS IN MYSQL
	1.Arithmetic Operators
	Examples of Arithmetic Operators
	SELECT 150 +250;
	Output
	400
	SELECT 145 - 75;
	Output (1)
	70
	SELECT 17 * 5;
	Output (2)
	85
	SELECT 49 / 7;
	Output (3)
	7.0000
	SELECT 21 % 5;
	Output (4)
	1
	2.Comparison Operators
	The comparison operators in MySql are used to compare values between operands and return true or false according to the condition specified in the statement.
	3. Logical Operators
	The logical operators used in MySQL are shown below.
	Let us take an example of CUSTOMERtable as shown below to understand how to use the comparison operators as stated above while performing MySQL queries.

	CUSTOMERTABLE
	Below is script for creating table CUSTOMER
	Below is script for Inserting values into CUSTOMER Table
	Insert into Customer values (1,"Anand", 25,"Bangalore", 30000.00);
	Insert into Customer values(2, "Sandeep", 27,"Hubli", 55000.00);
	Insert into Customer values(3, "Sharath", 26,"Bangalore", 60000.00);
	Insert into Customer values(4, "Manohar", 31,"Mangalore", 32000.00);
	Insert into Customer values(5, 'Hemanth', 29,'Shimoga', 40000.00);
	Insert into Customer values(6, 'Nithin', 30,'Belgaum', 75000.00);
	Insert into Customer values(7, "Nishant", 32,"Mysore",20000.00);
	Insert into Customer values(8, "Deepak", 32,"Mysore",25000.00);
	Insert into Customer values(9, "Bharath", 39,"Mysore",85000.00);
	Below is the screen shot showing contents of customer table.
	MySQL Aggregate Functions
	Syntax:
	The following are the syntax to use aggregate functions in MySQL:
	function_name (DISTINCT | ALL expression)
	In the above syntax, we had used the following parameters:
	 First, we need to specify the name of the aggregate function.
	 Second, we use the DISTINCT modifier when we want to calculate the result based on distinct values or ALL modifiers when we calculate all values, including duplicates.
	 The default is ALL.
	 Third, we need to specify the expression that involves columns and arithmetic operators.
	 There are various aggregate functions available in MySQL.
	 Some of the most commonly used aggregate functions are summarised in the below table:;
	Count():
	Count(*): Returns total number of records .
	Count(salary): Return number of Non Null values over the column salary.
	Count(Distinct Salary): Return number of distinct Non Null values over the column salary
	Sum():
	sum(salary): Sum all Non Null values of Column salary
	sum(Distinct salary): Sum of all distinct Non-Null values
	Avg():
	Avg(salary) = Sum(salary) / count(salary) = 310/5
	Avg(Distinct salary) = sum(Distinct salary) / Count(Distinct Salary)
	Min() and Max():
	Min(salary): Minimum value in the salary column except NULL
	Max(salary): Maximum value in the salary
	Below are Sample queries uwhic uses Aggregate function
	SELECT MAX(salary) FROM CUSTOMER;
	Output:
	SELECT SUM (salary)FROM CUSTOMER;
	Output
	Below is script for creating table employees
	Below is script for Inserting values into CUSTOMER Table (1)
	Insert into employees values(101,'Hemanth',32,'Mysore',20000);
	Insert into employees values(102,'Mohan',32,'Belgaum',30000);
	Insert into employees values(103,'Deepak',40,'Mangalore',100000)
	Insert into employees values(104,'Nitin',35,'Bangalore',40000)
	Insert into employees values(105,'Sandeep',32,'Mangalore',50000);
	Insert into employees values(106,'Yogesh',45,'Mysore',70000)
	Insert into employees values(107,'Rohit',35,'Bangalore',60000)
	Insert into employees values(108,'Bharath',40,'Hubli',80000);
	Below is the screen shot showing contents of employees table.
	MySQLCount()FunctionwithHAVINGandORDERBYClause
	Letussee anotherclausethatuses ORDERBY andHavingclausewith thecount()function.Execute the following statement that gives the employee age who has at least two agesameand sortsthem
	basedonthecountresult:
	MySQLsum()FunctionwithHAVINGandORDERBYClause
	Letussee anotherclausethatuses ORDERBY andHavingclausewith thesum()unction.Execute the following statement that gives the sum of salary who has at least two city and sum of salary should be greaten or equal to 100000 annd sortsthem basedonthesalary
	In Above Ouput ,salary can sorted in descending order by salary using order by clause
	Select city,sum(salary) from employee group by city having sum(salary)>=100000
	Order by sum(salary) desc;
	INTRODUCTION TO JOINS
	INNER JOIN CONSISTING OF WHERE CONDITION AND ACTOR NAME SHOULD
	NOT BE NULL
	INNER JOIN CONSISTING OF WHERE CONDITION AND ACTOR NAME FIELDS ARE HAVING NULL VALUE
	RIGHT JOIN

	INTRODUCTION TO SUBQUERY
	Syntax: (1)
	select * from StudentDetails
	select * from StudentSection
	Join vs. Subquery
	VIEWS IN SQL
	INTRODUCTION TO STORED PROCEDURES
	Advantages of using SQL triggers
	Disadvantages of using SQL triggers
	Below is an screen shot of output of TriggerAfterDelete fired on table Employee_Details
	Below is insert script for Student Info and marks into table IAMARKS
	This is trigger is an example of Before Update Trigger
	How to DROP TRIGGER
	LAB EXPERIMENTS
	A. Consider the following schema for a LibraryDatabase:
	Table Descriptions
	Insertion of Values to Tables
	Queries:
	1. Retrieve details of all books in the library – id, title, name of publisher, authors, number of copies in each branch, etc.
	2. Get the particulars of borrowers who have borrowed more than 3 books, but from Jan 2017 to Jun2017.
	3. Delete a book in BOOK table. Update the contents of other tables to reflect this data manipulationoperation.
	4. Partition the BOOK table based on year of publication. Demonstrate its working with a simple query.
	5. Create a view of all books and its number of copies that are currently available in the Library.
	B. Consider the following schema for OrderDatabase:
	Write SQL queries to
	Table Descriptions (1)
	2. Find the name and numbers of all salesmen who had more than onecustomer.
	3. List all salesmen and indicate those who have and don’t have customers in their cities (Use UNIONoperation.)
	4. Create a view that finds the salesman who has the customer with the highest order of a day.
	CREATE VIEW VW_ELITSALESMAN AS
	SELECT B.ORD_DATE,A.SALESMAN_ID,A.NAME FROM SALESMAN A, ORDERS B
	WHERE A.SALESMAN_ID = B.SALESMAN_ID AND B.PURCHASE_AMT=(SELECT
	MAX(PURCHASE_AMT) FROM ORDERS CWHERE C.ORD_DATE = B.ORD_DATE);
	SELECT * FROM VW_ELITSALESMAN
	5. Demonstrate the DELETE operation by removing salesman with id 1000. All his orders
	must also be deleted.
	Use ON DELETE CASCADE at the end of foreign key definitions while creating child table orders and then execute the following:
	C. Consider the schema for MovieDatabase:
	1. List the titles of all movies directed by‘Hitchcock’.
	Table Descriptions (2)
	Queries: (1)
	2. Find the movie names where one or more actors acted in two or more movies.
	3. List all actors who acted in a movie before 2000 and also in a movie after 2015 (use JOIN operation).
	4. Find the title of movies and number of stars for each movie that has at least one rating and find the highest number of stars that movie received. Sort the result by movietitle.
	5. Update rating of all movies directed by ‘Steven Spielberg’ to5
	D. Consider the schema for CollegeDatabase:
	1. List all the student details studying in fourth semester ‘C’section.
	Table Descriptions (3)
	Queries: (2)
	3. Create a view of Test1 marks of student USN ‘1BI15CS101’ in allsubjects.
	4. Calculate the FinalIA (average of best two test marks) and update thecorresponding table for allstudents.
	E.Consider the schema for CompanyDatabase:
	Write SQL queries to (1)
	Table Descriptions (4)
	Insertion of values to tables
	Queries: (3)
	2. Show the resulting salaries if every employee working on the ‘IoT’ project is given a 10 percentraise.
	4. Retrieve the name of each employee who works on all the projects Controlled by department number 5 (use NOT EXISTSoperator).
	5. For each department that has more than five employees, retrieve the department number and the number of its employees who are making more than Rs. 6, 00,000. SELECT D.DNO, COUNT(*)

	Viva Questions
	1. What isSQL?
	2. What isdatabase?
	3. What isDBMS?
	4. What is a Database system?
	5. What are Advantages ofDBMS?
	6. What are Disadvantages in File ProcessingSystem?
	7. Define the "integrityrules"
	8. What is a view? How it is related to data independence?
	9. What is DataModel?
	10. What is E-Rmodel?
	11. What is Object Orientedmodel?
	12. What is an Entity?
	13. What is an Entitytype?
	14. What is an attribute?
	15. What is degree of aRelation?
	16. What isRelationship?
	17. What is DDL (Data DefinitionLanguage)?
	18. What is DML (Data ManipulationLanguage)?
	19. What isnormalization?
	20. What is 1 NF (NormalForm)?
	21. What is2NF?
	22. What is3NF?
	23. What is BCNF (Boyce-Codd NormalForm)?
	24. What is4NF?
	25. What is5NF?
	26. What are partial, alternate,, artificial, compound and naturalkey? PartialKey:
	Alternate Key:
	Artificial Key:
	Compound Key:
	Natural Key:
	27. What is meant by queryoptimization?
	28. What do you mean by atomicity andaggregation? Atomicity:
	Aggregation:
	29. What is a checkpoint and when does itoccur?
	30. What do you mean by flat filedatabase?
	31. Brief theory of Network, Hierarchical schemas and theirproperties
	32. What is aquery?
	33. What do you mean by Correlatedsubquery?
	34. What are the primitive operations common to all record managementsystems?
	35. How do you communicate with anRDBMS?
	36. Define SQL and state the differences between SQL and other conventional programmingLanguages
	37. What is databaseTrigger?
	38. What are stored-procedures? And what are the advantages of usingthem.
	39. Which is the subset of SQL commands used to manipulate Database structures,
	including tables?
	Data Definition Language (DDL)
	40. What operator performs pattern matching?
	41. What operator tests column for the absence of data?
	42. What are the wildcards used for patternmatching?
	43. What are the difference between TRUNCATE and DELETEcommands?
	44. What is the use of the ADD OR DROP option in the ALTER TABLEcommand?
	45. What is the use of DESC inSQL?
	DESC has two purposes. It is used to describe a schema as well as to retrieve rows from table in descending order.
	The query SELECT * FROM EMP ORDER BY ENAME DESC will display the output sorted on ENAME in descending order
	46. What is the use of ON DELETE CASCADE?
	Whenever rows in the master (referenced) table are deleted ,the respective rows of the child (referencing) table with a matching foreign key column will get deleted as well. This is called a cascade delete
	Example Tables:
	Customer is the master table and Order is the child table, where 'customer_id’ is primary key in customer table and customer_id is the foreign key in Order table and represents the customer who placed the order. When a row of Customer is deleted, an...
	47. What is the use of Floor()?
	The FLOOR() function returns the largest integer value that is smaller than or equal to a number.
	EXAMPLE;
	SELECT FLOOR(25.75);
	OUTPUT
	25
	48. What is the use of Truncate()?
	The TRUNCATE() function truncates a number to the specified number of decimal places.
	EXAMPLE; (1)
	SELECT TRUNCATE(135.375, 2);
	OUTPUT (1)
	135.37
	49. What is the use of CEILING?
	Return the smallest integer value that is greater than or equal to 25.75:
	EXAMPLE; (2)
	SELECT CEILING(25.75)
	OUTPUT (2)
	26
	50. What you mean by SQL UNIQUE Constraint?
	 The UNIQUE constraint ensures that all values in a column are different.
	 Both the UNIQUE and PRIMARY KEY constraints provide a guarantee for uniqueness for a column or set of columns.
	 A PRIMARY KEY constraint automatically has a UNIQUE constraint.
	 However, you can have many UNIQUE constraints per table, but only one PRIMARY KEY constraint per table.
	51. How to add and drop UNIQUE Constraint in table in mysql?
	ALTER TABLE contacts ADD CONSTRAINT UNC_name_email UNIQUE(name,email)
	ALTER TABLE contacts DROP INDEX UNC_name_email;
	52. What is the Group by Clause?
	 The GROUP BY clause is a SQL command that is used to group rows that have the same
	values.
	 The GROUP BY clause is used in the SELECT statement .Optionally it is used in conjunction
	with aggregate functions to produce summary reports from the database.That's what it does, summarizing data from the database.
	 The queries that contain the GROUP BY clause are called grouped queries and only return
	single row for every grouped item.
	Example:SELECT COUNT(CustomerID), Country FROM Customers
	GROUP BY Country
	53. What is use of having clause in mysql
	 The HAVING clause is used in the SELECT statement to specify filter conditions for a group of rows or aggregates.
	 The HAVING clause is often used with the GROUP BY clause to filter groups based on a specified condition. If the GROUP BY clause is omitted, the HAVING clause behaves like the WHERE clause.
	 Notice that the HAVING clause applies a filter condition to each group of rows, while the WHERE clause applies the filter condition to each individual row.
	Example:SELECT COUNT(CustomerID), Country FROM Customers (1)
	GROUP BY CountryHAVING COUNT(CustomerID) > 5;
	54. What is distinct clause in SQL?
	When querying data from a table, you may get duplicate rows. In order to remove these duplicate rows, you use the DISTINCT clause in the SELECT statement.
	Example:SELECT DISTINCT columns FROM table_name WHERE where_conditions;
	55. What is a union?
	Unions combine the results from multiple SELECT queries into a consolidated result set.
	The only requirements for this to work is that the number of columns should be the same from all the SELECT queries which needs to be combined
	2. Give 5% raise in salary to all theSalesman
	3. Change the department no of Sachin to40
	4. Update all employee name to uppercase
	2. Delete the records of employee name Ajay’s only
	3. Delete the record of employee table whose Empno is 1005
	4. Delete the first five records of employeetable
	1. How to create database name COLLEGE ?
	CREATE DATABASE COLLEGE;
	2. How Modify datetype of age column in Employee table
	ALTER TABLE Employee MODIFY age int(3);
	3. How to rename column name of job to Designation in Employee table?
	ALTER TABLE Employee CHANGE job Designation varchar(40);
	4. How to add column Commission in Employee table?
	ALTER TABLE Employee add Commissionvarchar(40);
	5. How to drop column Commission in Employee table?
	ALTER TABLE Employee DROP column Commission;
	6. How to add primary key to Employee table?
	ALTER TABLE Employee add primary key(Empno);
	7. How to drop primary key to Employee table?
	ALTER TABLE Employee DROPprimary key;
	8. How to rename employee table?
	RENAME TABLE Employee to Employee_Details
	9. How to delete contents of Employee table?
	DELETE FROM Employee;
	OR
	TRUNCATE Employee;
	10. How to drop Employee table?
	DROP TABLE Employee;
	11. How to drop database name COLLEGE?
	DROP DATABASE COLLEGE

