

COURSE MODULE OF THE SUBJECT TAUGHT FOR THE SESSION 2025-26
(EVEN SEM)
Course Syllabus with CO's

DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING - AI & ML

The current branches in the institution. How many employees are working in it. A brief 4-line summary of the institution.

10. Build a chatbot for the Indian Penal Code. We'll start by downloading the official Indian Penal Code document, and then we'll create a chatbot that can interact with it. Users will be able to ask questions about the Indian Penal Code and have a conversation with it.

Laboratory Outcome	At the end of the course the student will be able to: CO1: Develop the ability to explore and analyze word embeddings, perform vector arithmetic to investigate word relationships, visualize embeddings using dimensionality reduction techniques CO2: Apply prompt engineering skills to real-world scenarios, such as information retrieval, text generation. CO3: Utilize pre-trained Hugging Face models for real-world applications, including sentiment analysis and text summarization CO4. Apply different architectures used in large language models, such as transformers, and understand their advantages and limitations.
---------------------------	--

Conduct of Practical Examination:

The weightage of Continuous Internal Evaluation (CIE) is 50% and for Semester End Exam (SEE) is 50%. The minimum passing mark for the CIE is 40% of the maximum marks (20 marks out of 50) and for the SEE minimum passing mark is 35% of the maximum marks (18 out of 50 marks). A student shall be deemed to have satisfied the academic requirements and earned the credits allotted to each subject/course if the student secures a minimum of 40% (40 marks out of 100) in the sum total of the CIE (Continuous Internal Evaluation) and SEE (Semester End Examination) taken together.

Continuous Internal Evaluation (CIE):

CIE marks for the practical course are 50 Marks.

The split-up of CIE marks for record/ journal and test are in the ratio 60:40.

- Each experiment is to be evaluated for conduction with an observation sheet and record write-up.

Rubrics for the evaluation of the journal/write-up for hardware/software experiments are designed by the faculty who is handling the laboratory session and are made known to students at the beginning of the practical session.

- Record should contain all the specified experiments in the syllabus and each experiment write-up will be evaluated for 10 marks.

- Total marks scored by the students are scaled down to 30 marks (60% of maximum marks).

- Weightage to be given for neatness and submission of record/write-up on time.

- Department shall conduct a test of 100 marks after the completion of all the experiments listed in the syllabus.

- In a test, test write-up, conduction of experiment, acceptable result, and procedural knowledge will carry a weightage of 60% and the rest 40% for viva-voce.

- The suitable rubrics can be designed to evaluate each student's performance and learning ability.

- The marks scored shall be scaled down to 20 marks (40% of the maximum marks).

The Sum of scaled-down marks scored in the report write-up/journal and marks of a test is the total CIE marks scored by the student.

DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING - AI & ML
The Correlation of Course Outcomes (CO's) and Program Outcomes (PO's)

Subject Code:	BAIL657C		Title: Generative AI							Faculty Name: Mrs. Madhu Nagaraj		
List of Course Outcomes	Program Outcomes											
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	
CO-1	3	2	2	2	1	-	-	2	-	-	2	
CO-2	3	3	3	2	3	-	-	3	-	-	2	
CO-3	3	3	1	3	2	2	-	1	-	-	2	
CO-4	3	3	2	1	3	2	-	3	-	-	2	
Total	12	11	8	8	9	4	-	9	-	-	8	

Note: 3 = Strong Contribution 2 = Average Contribution 1 = Weak Contribution - = No Contribution

The Correlation of Course Outcomes (CO's) and Program Specific Outcomes (PSO's)

Subject Code:	BAIL657C		TITLE: Generative AI		Faculty Name: Mrs. Madhu Nagaraj		
List of Course Outcomes	Program Specific Outcomes						
	PSO1		PSO2		Total		
CO-1	3		2			5	
CO-2	3		2			5	
CO-3	3		1			4	
CO-4	3		3			6	