
Name of the Student:

University Seat No. :

Semester: Batch No. :

ATME College of Engineering
13th KM mile Stone, Mysuru-Kanakapura Rd, Mysuru-28

Department of Mechanical Engineering

BASICS OF MATLAB

(BME657A)

MANUAL

For
VI SEMESTER

2025-2026

DEPARTMENT OF MECHANICAL ENGINEERING

V

DEPARTMENT OF MECHANICAL ENGINEERING
ATMECOLLEGE ENGINEERING

13th K.M Mile stone, Mysuru-Kanakapura Road, Mysuru

LABORATORY CERTIFICATE

This is to certify that Mr. /Miss... Bearing

USN .. has satisfactorily completed the course of experiments in practical

BASICSOFMATLAB (BME657A)prescribed by the Visvesvaraya Technological University for the

6th semester B.E course during the year 20……..20……..

SESSIONAL MARKS AWARDED

Conduction

Record & Viva-voce

Internal Assessment

Maximum Mark

Signature of staff Signature of H.O.D

Basics	of	Matlab Semester 6th

Course Code BME657A CIE Marks 50
Teaching Hours/Week (L:T:P: S) 0:0:2*:0 SEE Marks 50
Total Hours of Pedagogy 12­14 sessions Total Marks 100
Credits 01 Exam Hours 03
Examination nature (SEE) Practical	
* Additional one hour may be considered for instructions, if required
Course	objectives:	

 To know about fundamentals of MATLAB tool.
To provide an overview to program curve fitting & solve Linear and Nonlinear Equations.

 To understand the concept and importance of Fourier transforms.
To gain knowledge about MATLAB Simulink & solve engineering problems.

Sl.NO	 Experiments

1 Introduction to MATLAB Programming: Basics of MATLAB Programming, array operations in
MATLAB, loops and execution of control, working with files: Scripts and functions, plotting and
programming output, examples.2

3
Numerical Methods and their applications: Curve Fitting: Straight line fit, Polynomial fit.

4
5

Numerical Integration and Differentiation: Trapezoidal method, Simpson method.
6
7 Linear and Nonlinear Equations: Eigen values, Eigen vectors, Solution of linear algebraic

equations using Gauss Elimination and LU decomposition, Solution of nonlinear equation in
single variable using Gauss­Siedal and Newton­Raphson method. 8

9 Ordinary Differential Equations: Introduction to ODE’s, Euler’s method, second order
RungaKutta method, MATLAB ode45 algorithm in single variable and multivariable.
Transforms: Discrete Fourier Transforms,

10

11 Application of MATLAB to analyse problems in basic engineering mechanics, mechanical
vibrations, control system, statistics and dynamics of different circuits.

12 MATLAB Simulink: Introduction to MATLAB Simulink, Simulink libraries, development of basic
models in Simscape Power Systems

Course	outcomes	(Course	Skill	Set):
At the end of the course the student will be able to:

 Implement loops, branching, control instruction and functions in MATLAB programming
environment.

 Programming for curve fitting, numerical differentiation and integration, solution of linear
equations in MATLAB and solve engineering problems.

 Understand implementation of ODE using ode 45 and execute Solutions of nonlinear equations
and DFT in MATLAB.

 Simulate MATLAB Simulink examples.
Assessment	Details	(both	CIE	and	SEE)

The weightage of Continuous Internal Evaluation (CIE) is 50% and for Semester End Exam (SEE) is 50%.
The minimum passing mark for the CIE is 40% of the maximum marks (20 marks out of 50) and for the
SEE minimum passing mark is 35% of the maximum marks (18 out of 50 marks). A student shall be
deemed to have satisfied the academic requirements and earned the credits allotted to each subject/

59

course if the student secures a minimum of 40% (40 marks out of 100) in the sum total of the CIE
(Continuous Internal Evaluation) and SEE (Semester End Examination) taken together

Continuous	Internal	Evaluation	(CIE):
CIE marks for the practical course are 50	Marks.
The split­up of CIE marks for record/ journal and test are in the ratio 60:40.

Each experiment is to be evaluated for conduction with an observation sheet and record write­up.
Rubrics for the evaluation of the journal/write­up for hardware/software experiments are
designed by the faculty who is handling the laboratory session and are made known to students at
the beginning of the practical session.

 Record should contain all the specified experiments in the syllabus and each experiment write­up
will be evaluated for 10 marks.

 Total marks scored by the students are scaled down to 30	marks (60% of maximum marks).
 Weightage to be given for neatness and submission of record/write­up on time.

 Department shall conduct a test of 100 marks after the completion of all the experiments listed in
the syllabus.

 In a test, test write­up, conduction of experiment, acceptable result, and procedural knowledge will
carry a weightage of 60% and the rest 40% for viva­voce.

 The suitable rubrics can be designed to evaluate each student’s performance and learning ability.

 The marks scored shall be scaled down to 20	marks (40% of the maximum marks).
The Sum of scaled­down marks scored in the report write­up/journal and marks of a test is the total CIE
marks scored by the student.
Semester	End	Evaluation	(SEE):		
 SEE marks for the practical course are 50 Marks.
 SEE shall be conducted jointly by the two examiners of the same institute, examiners are

appointed by the Head of the Institute.
 The examination schedule and names of examiners are informed to the university before the

conduction of the examination. These practical examinations are to be conducted between the
schedule mentioned in the academic calendar of the University.
All laboratory experiments are to be included for practical examination.

 (Rubrics) Breakup of marks and the instructions printed on the cover page of the answer script
to be strictly adhered to by the examiners. OR based on the course requirement evaluation
rubrics shall be decided jointly by examiners.	

 Students can pick one question (experiment) from the questions lot prepared by the examiners
jointly. 	

 Evaluation of test write­up/ conduction procedure and result/viva will be conducted jointly by
examiners. 	

General rubrics suggested for SEE are mentioned here, writeup­20%, Conduction procedure and
result in ­60%, Viva­voce 20% of maximum marks. SEE for practical shall be evaluated for 100 marks
and scored marks shall be scaled down to 50 marks (however, based on course type, rubrics shall be
decided by the examiners)	
Change of experiment is allowed only once and 15% of Marks allotted to the procedure part are to be
made zero.

60

The minimum duration of SEE is 02 hours

Suggested	Learning	Resources:

Text	Books:	
1. Agam Kumar Tyagi, “MATLAB	and	Simulink	for	Engineers”, OXFORD Higher Education.
2. Dr. Shailendra Jain, “Modelling &	Simulation	using	MATLAB	–	Simulink”, Wiley – India.

Reference	Books:	
1. Won Y.Tang, Wemun Cao, Tae­Sang Ching and John Morris, “Applied	Numerical	Methods	Using	
MATLAB”, A John Wiley & Sons.

2. Steven T. Karris, “Introduction	 to	 Simulink	 with	 Engineering	 Applications”, Orchard
Publications.

61

INTRODUCTION TO MAT LAB

The name MATLAB stands for MATrix LABoratory. MATLAB was written originally to

provide easy access to matrix software developed by the LINPACK (linear system package)

and EISPACK (Eigen system package) projects.

MATLAB is a high-performance language for technical computing. It integrates computation,

visualization, and programming environment. Furthermore, MATLAB is a modern

programming language environment: it has sophisticated data structures, contains built-in

editing and debugging tools, and supports object-oriented programming. These factors make

MATLAB an excellent tool for teaching and research.

MATLAB is a high-performance language for technical computing. It integrates computation,

visualization, and programming in an easy-to-use environment where problems and solutions

are expressed in familiar mathematical notation. Typical uses include

➢ Math and computation

➢ Algorithm development

➢ Data acquisition

➢ Modeling, simulation, and prototyping

➢ Data analysis, exploration, and visualization

➢ Scientific and engineering graphics

➢ Application development, including graphical user interface building

Features of MATLAB

Following are the basic features of MATLAB:

➢ It is a high-level language for numerical computation, visualization and application

development.

➢ It also provides an interactive environment for iterative exploration, design and

problem solving.

➢ It provides vast library of mathematical functions for linear algebra, statistics,

Fourier analysis, filtering, optimization, numerical integration and solving ordinary

differential equations.

➢ It provides built-in graphics for visualizing data and tools for creating custom plots.

➢ MATLAB's programming interface gives development tools for improving code

quality, maintainability, and maximizing performance.

➢ It provides tools for building applications with custom graphical interfaces.

➢ It provides functions for integrating MATLAB based algorithms with

external applications and languages such as C, Java, .NET and Microsoft

Excel.

Uses of MATLAB

➢ MATLAB is widely used as a computational tool in science and engineering

encompassing the fields of physics, chemistry, math and all engineering streams. It is

used in a range of applications including:

➢ signal processing and Communications

➢ image and video Processing

➢ control systems

➢ test and measurement

➢ computational finance

➢ computational biology

Starting MATLAB

After logging into your account, you can enter MATLAB by double-clicking on the

MATLAB shortcut icon (MATLAB 17.0.4) on your Windows desktop. When you start

MATLAB, a special window called the MATLAB desktop appears. The desktop is a window

that contains other windows. The major tools within or accessible from the desktop are:

➢ The Command Window

➢ The Command History

➢ The Workspace

➢ The Current Directory

➢ The Help Browser

➢ The Start button

Desktop Tools

The following tools are managed by the MATLAB desktop, although not all of them appear

by default when you first start. If you prefer a command line interface, you can use functions

to perform most of the features found in the MATLAB desktop tools. Instructions for using

these function equivalents are provided with the documentation for each tool.

➢ Command Window – Run MATLAB functions.

➢ Command History – View a log of the functions you entered in the Command

Window, copy them, and execute them.

➢ Launch Pad – Run tools and access documentation for all of your MathWorks

products.

➢ Current Directory Browser – View MATLAB files and related files, and perform

file operations such as open, and find content.

➢ Help Browser – View and search the documentation for the full family of MATLAB

products.

➢ Workspace Browser – View and make changes to the contents of the workspace.

➢ Array Editor – View array contents in a table format and edit the values.

➢ Editor/Debugger – Create, edit, and debug M-files (files containing MATLAB

functions).

Keyboard Shortcuts and Accelerators

You can access many of the menu items using keyboard shortcuts or accelerators for your

platform, such as using Ctrl+X to perform a Cut on Windows platforms, or Alt+F to open the

File menu. Many of the shortcuts and accelerators are listed with the menu item. For example,

on Windows platforms, the Edit menu shows Cut Ctrl+X, and the File menu shows the F in

File underlined, which indicates that Alt+X opens it. Many standard shortcuts for your

platform will work but are not listed with the menu items.

Following are some additional shortcuts that are not listed on menu items.

.

MATLAB Windows

Window

Purpose

Command Window Main window, enters variables, runs programs

Figure Window Contains output from graphic commands

Editor Window Creates and debugs script and function files

Help Window Provides help information

Launch Pad Window

 Provides access to tools, demos, and

documentation

Command History Window

Logs commands entered in the Command

Window

Workspace Window

Provides information about the variables that

are used

Current Directory Window

Shows the files in the current directory

Working in the Command Window

Notation Purpose

>> Command Prompt

(Enter key)

Out put of the command is executed

(Upper and down

arrow keys)

Recalled the previously typed command to the

command prompt

… (Three periods) Command is continued to the next line

; (Semicolon) Out put of the command is not displayed

% (Enter key) It indicates that the line is designated as a comment

clc clears the command window

clear Removes all the variables from the memory

who Displays a list of the variables currently in the

memory

whos

Displays a list of the variables currently in the

memory and their size together with information

about their bytes and class

Introduction to MATLAB Programming: Basics of MATLAB Programming,

array operations in MATLAB, loops 2 and execution of control, working with

files: Scripts and functions, plotting and programming output, examples.

Lab Program – 1&2

MATLAB environment behaves like a super-complex calculator. You can enter

commands at the >> command prompt.

MATLAB is an interpreted environment. In other words, you give a command

and MATLAB executes it right away.

Commonly used Operators and Special Characters

MATLAB supports the following commonly used operators and special

characters:

Operator Purpose

+ Plus; addition operator.

- Minus; subtraction operator.

* Scalar and matrix multiplication operator.

.* Array multiplication operator.

^ Scalar and matrix exponentiation operator.

.^ Array exponentiation operator.

\ Left-division operator.

/ Right-division operator.

.\ Array left-division operator.

5 + 5

3 ^ 2 % 3 raised to the power of 2

ans = 9

./ Array right-division operator.

: Colon; generates regularly spaced elements and represents

an entire row or column.

() Parentheses; encloses function arguments and array indices;

overrides precedence.

[] Brackets; enclosures array elements.

. Decimal point.

… Ellipsis; line-continuation operator

, Comma; separates statements and elements in a row

; Semicolon; separates columns and suppresses display.

% Percent sign; designates a comment and specifies

formatting.

_ Quote sign and transpose operator.

._ Non-conjugated transpose operator.

= Assignment operator.

Hands on Practice

Type a valid expression, for example,

And press ENTER

When you click the Execute button, or type Ctrl+E, MATLAB executes it

immediately and the result returned is:

Let us take up few more examples:

When you click the Execute button, or type Ctrl+E, MATLAB executes it

immediately and the result returned is:

ans = 10

sin(pi /2) % sine of angle 900

ans = 1

x = 3;

y = 8

>> 7+8/2 ← Type and press enter

(→ 8/2 is executed first)

ans = 11

>> (7+8)/2 ← Type and press enter

→ 7+8 is executed first

ans = 7.5000

>> 4 + 5/3 + 2

→ 5/3 is executed first

ans = 7.6667

Another example,

When you click the Execute button, or type Ctrl+E, MATLAB executes it

immediately and the result returned is:

Semicolon (;) indicates end of statement. However, if you want to suppress and

hide the MATLAB output for an expression, add a semicolon after the

expression.

For example,

When you click the Execute button, or type Ctrl+E, MATLAB executes it

immediately and the result returned is:

Some more Examples

y = x + 5

>> 5 ^3/2

→ 5^3 is executed first, /2 is executed next

ans = 62.5000

>> 27^(1/3)+32^0.2

→ 1/3 is executed first, 27^(1/3) and 32^0.2 are executed next, and + is executed

last

>> 27^1/3+32^0.2

→ 27^1/3 and 32^0.2 are executed first, 1/3 is executed next, and + is executed

last

Ans = 11

>> 0.7854 (0.7854)^3/(1*2*3)+0.7854^5/(1*2*3*4*5)...

type three periods … and press enter to continue the expression on the next line

-0.7854^7/(1*2*3*4*5*6*7)

Ans = 0.7071

The format Command

By default, MATLAB displays numbers with four decimal place values. This is

known as short format.

However, if you want more precision, you need to use the format command.

The format long command displays 16 digits after decimal.

For example:

Ans = 5

format long

x = 7 + 10/3 + 5 ^ 1.2

x = 17.231981640639408

x = 17.2320

format bank

daily_wage = 177.45;

weekly_wage = daily_wage * 6

weekly_wage = 1064.70

MATLAB will execute the above statement and return the following result:

MATLAB will execute the above statement and return the following result:

The format bank command rounds numbers to two decimal places. For

example,

MATLAB will execute the above statement and return the following result:

MATLAB displays large numbers using exponential notation.

The format short e command allows displaying in exponential form with four

decimal places plus the exponent. For example,

format short

x = 7 + 10/3 + 5 ^ 1.2

format short e

4.678 * 4.9

ans = 2.2922e+01

format long e

x = pi

x = 3.141592653589793e+00

Ans =2063/90

MATLAB will execute the above statement and return the following result:

The format long e command allows displaying in exponential form with four

decimal places plus the exponent. For example,

MATLAB will execute the above statement and return the following result:

The format rat command gives the closest rational expression resulting from a

calculation. For example,

MATLAB will execute the above statement and return the following result:

format rat

4.678 * 4.9

Some more Examples

Command Description
Examples

format short Fixed-point with 4

decimal digits

>> format short

>> 290/7

ans = 41.4286

format long Fixed-point with 14

decimal digits

>> format long

>> 290/7

Ans = 41.42857142857143

format short e Scientific notation

with 4 decimal digits

>> format short e

>> 290/7

Ans = 4.1429e+001

format long e Scientific notation

with 15 decimal digits

>> format long e

>> 290/7

Ans = 4.142857142857143e+001

format short g Best of 5-digit fixed

or floating point

>> format short g

>> 290/7

Ans = 41.429

format long g Best of 15-digit fixed

or floating point

>> format long g

>> 290/7

Ans = 41.4285714285714

format bank Two decimal digits >> format bank

>> 290/7

Ans = 41.43

>> sqrt(64) ← Argument is a number

 ans = 8

>> sqrt(54+9*sqrt(100)) ← Argument includes a function

ans = 12

>> (15+600/4)/sqrt(121) ← function is included in an expression

ans = 15

Using the sqrt built-in function

Elementary math functions

cos(x) - Cosine abs(x) Absolute value

sin(x) - Sine sign(x) - Signum function

tan(x) - Tangent max(x) - Maximum value

acos(x) - Arc cosine min(x) - Minimum value

asin(x) - Arc sine ceil(x) - Round towards + infinite

atan(x) - Arc tangent floor(x) - Round towards - infinite

exp(x) - Exponential round(x) - Round to nearest integer

sqrt(x) - Square root rem(x,number) - Remainder after division

log(x) - Natural logarithm angle(x) - Phase angle

log10(x) - Common logarithm conj(x) - Complex conjugate

>> sqrt(50+14*3) ← Argument is an expression

ans = 9.5917

 Function Description
Examples

exp(x) exponential >> exp(5)

Ans = 148.4132

sqrt(x) Square root >> sqrt(81)

Ans = 9

abs(x) absolute value >> abs(-24)

Ans = 24

log(x) Natural logarithm.

Base e logarithm(ln)

>> log(1000)

Ans = 6.9078

log10(x) Base 10 logarithm >> log10(1000)

Ans = 3

factorial(x) The factorial function

x!

(x must be a positive

integer)

>> factorial(5)

ans = 120

rem(x,number)

Finding the reminder

of given value x.

>>rem(11,2)

ans=1

Trigonometric math functions

Function Description Examples

sin(x) Sine of angle x (x in

radians)

>> sin(pi/6)

Ans = 0.5000

sin(x) Sine of angle x (x in

Degrees)

>> sind(30)

Ans = 0.5000

cos(x) Cosine of angle x (x

in radians)

>> cos(pi/6)

Ans = 0.8660

tan(x) tangent of angle x (x

in radians)

>> tan(pi/6)

Ans = 0.5774

cot(x) cotangent of angle x

(x in radians)

>> cot(pi/6)

Ans = 1.7321

Rounding functions

Function Description Examples

round(x) Round to the nearest integer
>> round(17/5)

Ans = 3

fix(x) Round towards zero
>> fix(13/5)

Ans = 2

ceil(x) Round towards infinity
>> ceil(11/5)

Ans = 3

floor(x) Round towards minus infinity
>> floor(-9/4)

Ans = - 3

rem(x,y)
Returns the remainder after x

is divided by y

>> rem(13,5)

Ans = 3

sign(x)
Signum function. Returns 1 if

x>0, -1 if x<0, and o if x=0

>> sign(5)

Ans = 1

Example: the value of the expression 𝐴 = 𝑒−𝑎 sin(𝑥) + 10√𝑦 for a = 5, x = 2,

and y = 8 is computed by

>> a = 5; x = 2; y = 8;

>> y = exp(-a)*sin(x)+10*sqrt(y)

y = 28.2904

1) >> x=15 ← The number 15 assigned to the variable x

x = 15 ← MATLAB displays the variable and its assigned value

>> x=3*x - 12

← A new value is assigned to x. The new value is 3 times the previous value of

x minus 12.

The Assignment operator

Hierarchy of arithmetic operations

Precedence Mathematical operations

First The contents of all parentheses are evaluated first, starting

from the innermost parentheses and working outward.

Second All exponentials are evaluated, working from left to right

Third All multiplications and divisions are evaluated, working

from left to right

Fourth All additions and subtractions are evaluated, starting from

left to right

Example:

Ans x = 33

>> a=12 ← Assign 12 to a

a = 12

>> b=4

b = 4

← Assign 4 to b

>> c=(a-b)+40-a/b*10 ← Assign the value of the expression on the right-hand

side to the variable c.

c =18

>> a=12; ← The variables a, b and c are defined but are not displayed since a

>> b=4; semicolon is typed at the end of each statement

>> c=(a-b)+40-a/b*10;

>> c ← The value of the variable c is displayed by typing the name of the

variable

c =18

>> a=12, b=4; c=(a-b)+40-a/b*10 ← The variable b is not displayed because

a = 12

c = 18

semicolon is typed at the end of the assignment

A variable that already exists can be reassigned a new value.

Example: >> abb=72;

Once a variable is defined it can be used as an argument in functions.

Example: >> x=0.75;

>> E=sin(x)^2+cos(x)^2

E = 1

Predefined variables: i.e. pi, esp, inf, I or j.

Show that at x=π/5.

Solution: x = pi/5;

>> LHS=cos(x/2)^2

LHS = 0.9045

Rules about variable names:

1. Can contain letters, digits, and the underscore character.

2. Must begin with a letter.

3. MATLAB is case sensitive; it distinguishes between uppercase and

lowercase letters. For examples, AA, Aa, aA and aa are the names of four

different variables.

4. Avoid using the names of a built in function for a variable i.e. sin, exp etc.

>> RHS=(tan(x)+sin(x))/(2*tan(x))

RHS = 0.9045

>> abb=9;

>> abb

abb = 9

r = [7 8 9 10 11]

r =

Columns 1 through 4

7 8 9 10

Column 5

r = [7 8 9 10 11];

t = [2, 3, 4, 5, 6];

res = r + t

Creating Vectors

A vector is a one-dimensional array of numbers. MATLAB allows creating two

types of vectors:

Row vectors

Column vectors

Variable name=[type vector element]

Row vector: To create a row vector type the elements with a space or a comma

between the elements inside the square brackets.

Column vector: To create a column vector type the left square bracket [and

then enter the elements with a semicolon between them, or press the Enter key

after each element. Type the right square bracket] after the last element.

Row vectors are created by enclosing the set of elements in square brackets,

using space or comma to delimit the elements.

For example,

MATLAB will execute the above statement and return the following result:

Another example

11

res =

Columns 1 through 4

9 11 13 15

Column 5

17

c = [7; 8; 9; 10; 11]

c =

7

8

9

10

11

MATLAB will execute the above statement and return the following result:

Column vectors are created by enclosing the set of elements in square brackets,

using semicolon (;) to delimit the elements.

MATLAB will execute the above statement and return the following result:

Creating a vector with constant spacing by specifying the first term, the spacing,

and the last term

Variable_name= [m:q:n] or variable_name= m:q:n

Examples :

>> x=[1:2:13] First element 1, spacing 2, last element 13

x =

1 3 5 7 9 11 13

>> y=[1.5:0.1:2.1]

y =

First element 1.5, spacing 0.1, last element 2.1

1.5000 1.6000 1.7000 1.8000 1.9000 2.0000 2.1000

>> z=[-3:7]

default is 1

z =

First element -3, last element 7. If spacing is omitted, the

-3 -2 -1 0 1 2 3 4 5 6 7

>> xa=[21:-3:6]

xa =

First element 21, spacing -3, last element 6

21 18 15 12 9 6

Creating a vector with constant spacing by specifying the first and last terms and

the number of terms

Variable_name=linspace(xi,xf,n)

Examples :

>> vb= linspace(30,10,11)

10

11 elements, first element 30, last element

vb = 30 28 26 24 22 20 18 16 14 12 10

>> va= linspace(0,8,6) 6 elements, first element 0, last element 8

va = 0 1.6000 3.2000 4.8000 6.4000 8.0000

>> b=[7 2 76 33 8

1 98 6 25 6

5 54 68 9 0]

Ans

The enter key is pressed a new line is entered

>> u=linspace(49.5,0.5) when the number of elements is omitted, the default

is 100

u = Columns 1 through 9

49.5000

45.5404

49.0051 48.5101 48.0152 47.5202 47.0253 46.5303 46.0354

……………

Columns 91 through 99

4.9545

0.9949

4.4596 3.9646 3.4697 2.9747 2.4798 1.9848 1.4899

Column 100

0.5000

m =

1 2 3

4 5 6

7 8 9

Creating a Two-dimensional array (matrix)

In MATLAB, a matrix is created by entering each row as a sequence of space or

comma separated elements, and end of a row is demarcated by a semicolon. For

example, let us create a 3-by-3 matrix as:

MATLAB will execute the above statement and return the following result:

>> m = [1 2 3; 4 5 6; 7 8 9]

>> cd=6; e=3; h=4; Three variables are defined

>> mat=[e, cd*h, cos(pi/3); h^2, sqrt(h*h/cd), 14]

Elements are defined by Mathematical expressions

mat =

3.0000 24.0000 0.5000

16.0000 1.6330 14.0000

1 3 5 7 9 11

0 5 10 15 20 25

10 20 30 40 50 60

67 2 43 68 4 13

The zeros, ones and eye Commands

The zeros(m,n) and the ones(m,n) commands create a matrix with m rows and n

columns, in which all the elements are the numbers o and 1 respectively. The

eye(n) command creates a square matrix with n rows and n columns in which the

diagonal elements are equal to 1, and the rest of the elements are 0. This matrix

is called the identity matrix. Examples are:

>> zr=zeros(3,4) >> a=zeros(4) >> ne=ones(4,3)

zr = a = ne =

0 0 0 0 0 0 0 0 1 1 1

0 0 0 0 0 0 0 0 1 1 1

0 0 0 0 0 0 0 0 1 1 1

 0 0 0 0 1 1 1

>> idn=eye(5)

idn =

1 0 0 0 0

0 1 0 0 0

0 0 1 0 0

0 0 0 1 0

>> D=C'

D =

Define a matrix D as the transpose of matrix C

>> aa=[3 8 1]

aa =

Define a row vector aa

3 8 1

>> S=[35 46 78 23 5 14 81 3 55]

S =

Define a vector

35 46 78 23 5 14 81 3 55

>> S(4)

ans =

Display the fourth element

0 0 0 0 1

The Transpose Operator

The transpose operator is applied by typing a single quote ‘ following the

variable to be transposed.

Examples are:

2 21 41

55 5 64

14 32 9

8 11 1

Array Addressing Vector:

>> bb=aa‘

bb =

3

8

1

Define a row vector bb as the transpose of vector aa

>> A=[3 11 6 5; 4 7 10 2; 13 9 0 8] Create a 3x4 matrix

A =

>> A(3,1)=20

A =

Assign a new value to the (3,1) element

>> A(2,4)-A(1,2) Use elements in a mathematical expression

>> S(6)=273

S =

Assign a new value to the sixth element

35 46 78 23 5 273 81 3 55

>> S(2)+S(8)

ans = 49

Use the vector elements in mathematical expressions

>> S(5)^S(8)+sqrt(S(7))

expressions

ans = 134

Use the vector elements in mathematical

Matrix operations

3 11 6 5

4 7 10 2

13 9 0 8

3 11 6 5

4 7 10 2

20 9 0 8

23

>> v=[4 15 8 12 34 2 50 23 11]

v =

A vector v is created

4 15 8 12 34 2 50 23 11

>> u=v(3:7) A vector u is created from the elements 3 through 7 of vector v

u =

8 12 34 2 50 A vector u is created from the elements 3

through 7 of vectors v

Using Colon : in addressing Arrays

For a matrix

A(:,n) Refers to the elements in all the rows of column n of the matrix A

A(n,:) Refers to the elements in all the columns of row n of the matrix A

A(:,m:n) Refers to the elements in all the rows between columns m and n of

the matrix A

A(m:n,:) Refers to the elements in all the columns between rows m and n of

the matrix A

A(m:n,p:q) Refers to the elements in rows m through n and columns p through

q of the matrix A

Examples

ans = -9

>> B=A(:,3) Define a column vector B from the elements in all the rows of

column 3 in Matrix A

B =

5

6

9

12

15

Using a colon in addressing arrays

Examples:

>> A=[1 3 5 7 9 11; 2 4 6 8 10 12; 3 6 9 12 15 18; 4 8 12 16 20 24;

5 10 15 20 25 30]

A =

1 3 5 7 9 11

2 4 6 8 10 12

3 6 9 12 15 18

4 8 12 16 20 24

5 10 15 20 25 30

>> V=4:3:34

V =

Create a vector V with 11 elements

4 7 10 13 16 19 22 25 28 31 34

>> u=V([3,5,7:10]) Create a vector u from the 3rd, the 5th, and 7th through

10 elements of V

u =

10 16 22 25 28 31

>> C=A(2,:) Define a row vector C from the elements in all the columns

of row 2 in matrix A

C =

2 4 6 8 10 12

>> E=A(2:4,:) Define a matrix E from the elements in rows 2 through 4

and all the columns in matrix A

E =

2 4 6 8 10 12

3 6 9 12 15 18

4 8 12 16 20 24

>> F=A(1:3,2:4) Create a matrix f from the elements in rows 1 through 3 and

columns 2 through 4 In matrix A

F =

3 5 7

4 6 8

6 9 12

>> A=[3 8 1 24]

A =

Define vector A with 4 elements

3 8 1 24

>> B=4:3:16 Define vector B with 5 elements

B =

4 7 10 13 16

>> C=[A B]

C =

Define a new vector C by appending A and B

3 8 1 24 4 7 10 13 16

>> D=[A';B']

D =

3

8

1

24

Create a new column vector D by appending A’ and B’

>> B=[5 7 2]

B =

Define vector B with 3 elements

5 7 2

>> B(8)=4

B =

Assign a value to the 8th element

5 7 2 0 0 0 0 4

(MATLAB assigns zeros to the 4th through 7th elements)

>> P(5)=24

P =

0 0 0 0 24

>> A=[1 2 3 4; 5 6 7 8]

A =

Define a 2 x 4 matrix

>> A(3,:)=[10:4:22]

A =

Add the vector 10 14 18 22 as the third row of A

>> B=eye(3)

B =

C=[A B] Append the matrix B to matrix A. The number of rows in B and A

must be the same

C =

1 2 3 4

5 6 7 8

1 2 3 4

5 6 7 8

10 14 18 22

1 0 0

0 1 0

0 0 1

1 2 3 4 1 0 0

5 6 7 8 0 1 0

10 14 18 22 0 0 1

4

7

10

>> A=[3 6 9; 8 5 11]

A =

3

8

6 9

5 11

>> A(4,5) =17 Assign a value to the (4,5) element

A =

>> Q(3,4)=15

Q =

Assign a value to the (3,4) element of a new matrix

Deleting Elements

>> kt=[2 8 40 3 55 23 15 75 80]

kt =

Define a vector with 10 elements

2 8 40 3 55 23 15 75 80

>> kt(6)=[]

kt =

Eliminate the sixth element

2 8 40 3 55 15 75 80

>> kt(3:6)=[]

kt =

Eliminate elements 3 through 6

2 8 75 80

3 6 9 0 0 MATLAB changes the matrix size to 4X5, and

8 5 11 0 0 assigns zeros to the new elements

0 0 0 0 0

0 0 0 0 17

0 0 0 0

0 0 0 0

0 0 0 15

>> mtr=[5 78 4 24 9; 4 0 36 60 12; 56 13 5 89 31]

mtr =

Define 3x5 matrix

>> mtr(:,2:4)=[]

mtr =

Eliminate all the rows of columns 2 through 4

5 78 4 24 9

4 0 36 60 12

56 13 5 89 31

5 9

4 12

56 31

Built-in-functions for handling arrays

Function Description Examples

length(A)

Returns the number of

elements

In the vector A

>> A=[5 9 2 4];

>> length(A)

ans = 4

Size(A)

Returns a row vector [m,n],

where m and n are the size

m x n of the array A

>> A=[6 1 4 0 12; 5 19 6 8 2]

A =

6 1 4 0 12

5 19 6 8 2

>> size(A)

ans =

2 5

Reshape(A,m,n)

Rearrange a matrix A that has

r rows and s columns to have

m rows and n columns. R

>> A=[5 1 6; 8 0 2]

A =

5 1 6

>> A=[5 -3 8; 9 2 10]

A =

5 -3

9 2

8

10

Define two 2X3 matrices A and B

 times s must be equal to m 8 0 2

times n >> B=reshape(A,3,2)

 =

 5 0

 8 6

 1 2

 >> v=[7 4 2];

diag(v)

When v is a vector, creates a

square matrix with the

elements of v in the diagonal

>> A=diag(v)

A =

7 0 0

0 4 0

 0 0 2

 >> A=[1 2 3; 4 5 6; 7 8 9]

 A =

 1 2 3

diag(A)

When A is a matrix, creates a

vector from the diagonal

elements of A

4 5 6

7 8 9

>> vec=diag(A)

vec =

 1

 5

 9

Mathematical Operations with Arrays

>> A=[1 4 2; 5 7 3; 9 1 6; 4 2 8] ← Define a 4X3 matrix A

A =

>> B=[6 1; 2 5; 7 3] ← Define a 3X2 matrix B

B =

1 4 2

5 7 3

9 1 6

4 2 8

6 1

2 5

7 3

>> B=[10 7 4; -11 15 1]

B =

10 7 4

-11 15 1

>> A-B ← Subtracting matrix B from matrix A

ans =

-5 -10 4

20 -13 9

>> C=A+B ← Define a matrix C that is equal to A + B

C =

15 4

-2 17

12

11

>> C-8 ← The number 8 is subtracted from the matrix C

ans =

7 -4

-10 9

4

3

>> C=A*B ← Multiply matrix A by matrix B and assign the result to

variable C

C =

>> D=B*A ← Trying to multiply B by A, B*A, gives an error since the

number of columns in B is 2 and the number of rows in A is 4

??? Error using ==> *

Inner matrix dimensions must agree.

>> F=[1 3; 5 7]

F =

1

5

3

7

Define two 2 X 2 matrices F and G

>> G=[4 2; 1 6]

G =

4 2

1 6

>> F*G ← Multiply F*G

ans =

7 20

27 52

>> G*F ← Multiply G*F

ans =

14 26

31 45

28 27

65 49

98 32

84 38

>> AV=[2 5 1] ← Define a three-element column vector AV

AV =

2 5 1

>> BV=[3; 1; 4] ← Define a three-element column vector BV

BV =

3

1

4

>> AV*BV ← Multiply AV by BV. The answer is a scalar. (dot product of

two vectors)

ans =

15

>> BV*AV ← Multiply AV by BV. The answer is a 3 X 3 matrix

ans =

>> A=[2 5 7 0; 10 1 3 4; 6 2 11 5] ← Define a 3 X 4 matrix A

A =

>> b=3← Assign the number 3 to the variable b

b =

3

6 15 3

2 5 1

8 20 4

2 5 7 0

10 1 3 4

6 2 11 5

Note: The answer of F*G is not the same as the answer G*F

>> b*A ← Multiply the matrix A by b. This can be done by either typing

b*A or A*b

ans =

6 15 21 0

30 3 9 12

18 6 33 15

>> A*b

ans =

6 15 21 0

30 3 9 12

18 6 33 15

>> C=A*5 ← Multiply the matrix A by 5 and assign the result to a new

variable C

C =

10 25 35 0

50 5 15 20

30 10 55 25

>>C= 5*A

C =

10 25 35 0

50 5 15 20

30 10 55 25

Inverse of the Matrix

>> A=[7 3 8; 4 11 5; 6 7 10]

A =

7 3 8

4 11 5

6 7 10

>> I=eye(3)

I =

1 0 0

0 1 0

0 0 1

>> A*I

ans =

7 3 8

4 11 5

6 7 10

>> I*A

ans =

7 3 8

4 11 5

6 7 10

>> A=[2 1 4; 4 1 8; 2 -1 3] ← Creating the

matrix A

A =

2 1 4

4 1 8

2 -1 3

>> B=inv(A) ← Use the inv function to

find the inverse of A and assign it to B

B =

5.5000 -3.5000 2.0000

2.0000 -1.0000 0

-3.0000 2.0000 -1.0000

Use matrix operations to solve the following system of linear equations

Solution: Using the rules of linear algebra, the above system of equations can be

written in the matrix form A X = B or in the form X C = D:

The solution of both forms is shown below:

>> A=[4 -2 6; 2 8 2; 6 10 3]; ← Solving the form A X = B

>> B=[8; 4; 0];

>> X=A\B ← Solving by using left division X = A \ B

X =

-1.8049

0.2927

2.6341

>> Xb= inv(A)*B ← Solving by using the inverse of A (i.e. X= B)

Xb =

-1.8049

0.2927

2.6341

>> C=[4 2 6; -2 8 10; 6 2 3]; ← Solving the form X C = D

>> D=[8 4 0];

>> Xc= D/C ← Solving by using right division X= D / C

Xc =

-1.8049 0.2927 2.6341

>> Xd=D*inv(C) ← Solving by using the inverse of C, X=D.

Xd =

-1.8049 0.2927 2.6341

The M Files

MATLAB allows writing two kinds of program files:

Scripts - script files are program files with .m extension. In these files, you

write series of commands, which you want to execute together. Scripts do not

accept inputs and do not return any outputs. They operate on data in the

workspace.

Functions - functions files are also program files with .m extension. Functions

can accept inputs and return outputs. Internal variables are local to the function.

You can use the MATLAB editor or any other text editor to create your .m files.

In this section, we will discuss the script files. A script file contains multiple

sequential lines of MATLAB commands and function calls. You can run a script

by typing its name at the command line

To create scripts files, you need to use a text editor. You can open the MATLAB

editor in two ways:

➢ Using the command prompt

➢ Using the IDE

If you are using the command prompt, type edit in the command prompt. This

will open the editor. You can directly type edit and then the filename (with .m

extension)

edit

Or

edit <filename>

No of Students = 6000;

Teaching Staff = 150;

Non Teaching Staff = 20;

Total = No of Students + Teaching Staff ...

+ Non Teaching Staff;

disp(Total);

Alternatively, if you are using the IDE, choose NEW -> Script. This also opens

the editor and creates a file named Untitled. You can name and save the file after

typing the code.

Type the following code in the editor:

After creating and saving the file, you can run it in two ways:

➢ Clicking the Run button on the editor window or

➢ Just typing the filename (without extension) in the command prompt: >>

prog1

6170

a = 5; b = 7;

c = a + b

d = c + sin(b)

e = 5 * d

f = exp(-d)

c = 12

d = 12.6570

e = 63.2849

f = 3.1852e-06

str = 'Hello World!'

n = 2345

d = double(n)

un = uint32(789.50)

rn = 5678.92347

c = int32(rn)

The command window prompt displays the result:

Example 1

Create a script file, and type the following code:

When the above code is compiled and executed, it produces the following result:

Example 2

Create a script file with the following code:

=

Hello World!

n =

2345

d =

2345

un =

790

rn =

5.6789e+03

c =

5679

When the above code is compiled and executed, it produces the following result:

Example 3

The following examples show the use of arithmetic operators on scalar data.

Create a script file with the following code:

a = 10;

b = 20;

c = a + b

d = a - b

e = a * b

f = a / b

g = a \ b

x = 7;

c = 30

d = -10

e = 200

f = 0.5000

g = 2

z = 343

a = 100;

b = 200;

if (a >= b)

max = a

else

max = b

end

max = 200

When you run the file, it produces the following result:

Example 4

Create a script file and type the following code:

When you run the file, it produces following result:

Flow control (Loops)

y = 3;

z = x ^ y

There may be a situation when you need to execute a block of code several

times. In general, statements are executed sequentially. The first statement in a

function is executed first, followed by the second, and so on.

Programming languages provide various control structures that allow for more

complicated execution paths.

A loop statement allows us to execute a statement or group of statements

multiple times. The drawing shows the general form of a loop statement for most

programming languages.

Matlab provides various types of loops to handle looping requirements

including: while loops, for loops, and nested loops. If you are trying to declare

or write your own loops, you need to make sure that the loops are written as

scripts and not directly in the Command Window.

To start a new script, locate the button in the upper left corner of the window

labeled New Script.

MAT LAB has five flow control statements

➢ If statement

➢ Switch statement

➢ For loops

➢ While loops

➢ Break statements

MATLAB provides following types of loops to handle looping requirements

Loop Description

Type

 while loop Repeats a statement or group

 of statements while a given

 condition is true. It tests the

 condition before executing the

 loop body.

 for loop Executes a sequence of

 statements multiple times and

 abbreviates the code that

 manages the loop variable.

 nested You can use one or more loops

loops inside any another loop.

 break Terminates the loop statement

statement and transfers execution to the

 statement immediately

 following the loop.

Decision making Structures

Decision making structures require that the programmer should specify one or

more conditions to be evaluated or tested by the program, along with a statement

or statements to be executed if the condition is determined to be true, and

optionally, other statements to be executed if the condition is determined to be

false.

Following is the general form of a typical decision making structure found in

most of the programming languages:

MATLAB provides following types of decision making statements.

if ... end statement An if ... end statement consists of a boolean expression

followed by one or more statements.

if...else...end statement An if statement can be followed by an optional else

statement, which executes when the boolean

expression is false.

if <expression>

% statement(s) will execute if the boolean expression is true

<statements>

end

If...

elseif...elseif...else...end

statements

An if statement can be followed by one (or more)

optional elseif... and an else statement, which is very

useful to test various conditions.

nested if statements You can use one if or elseif statement inside another if

or elseif statement(s).

switch statement A switch statement allows a variable to be tested for

equality against a list of values.

nested switch

statements

You can use one switch statement inside another

switch statement(s).

if….end Statement

An if ... end statement consists of an if statement and a boolean expression

followed by one or more statements. It is delimited by the end statement.

Syntax

The syntax of an if statement in MATLAB is:

a = 10;

% check the condition using if statement

if a < 20

% if condition is true then print the following

fprintf('a is less than 20\n');

end

fprintf('value of a is : %d\n', a);

If the expression evaluates to true, then the block of code inside the if statement

will be executed. If the expression evaluates to false, then the first set of code

after the end statement will be executed.

Example

Create a script file and type the following code:

When you run the file, it displays the following result:

if <expression>

% statement(s) will execute if the boolean expression is true

<statement(s)>

else

<statement(s)>

% statement(s) will execute if the boolean expression is false

end

if...else...end Statement

An if statement can be followed by an optional else statement, which executes

when the expression is false.

Syntax

The syntax of an if...else statement in MATLAB is:

If the boolean expression evaluates to true, then the if block of code will be

executed, otherwise else block of code will be executed.

a is less than 20

value of a is : 10

a = 100;

% check the boolean condition

if a < 20

% if condition is true then print the following

fprintf('a is less than 20\n');

else

% if condition is false then print the following

fprintf('a is not less than 20\n');

end

fprintf('value of a is : %d\n', a);

a is not less than 20

Example

Create a script file and type the following code:

When the above code is compiled and executed, it produces the following result:

if <expression 1>

% Executes when the expression 1 is true

<statement(s)>

elseif <expression 2>

% Executes when the boolean expression 2 is true

<statement(s)>

Elseif <expression 3>

% Executes when the boolean expression 3 is true

<statement(s)>

else

% executes when the none of the above condition is true

<statement(s)>

end

if...elseif...elseif...else...end Statements

An if statement can be followed by one (or more) optional elseif... and an else

statement, which is very useful to test various conditions.

When using if... elseif...else statements, there are few points to keep in mind:

An if can have zero or one else's and it must come after any elseif's.

An if can have zero to many elseif's and they must come before the else.

Once an else if succeeds, none of the remaining elseif's or else's will be tested.

Syntax

Example

Create a script file and type the following code in it:

value of a is : 100

None of the values are matching

Exact value of a is: 100

When the above code is compiled and executed, it produces the following result:

The Nested if Statements

It is always legal in MATLAB to nest if-else statements which means you can

use one if or elseif statement inside another if or elseif statement(s).

a = 100;

% check the boolean condition

if a = = 10

% if condition is true then print the following

fprintf('Value of a is 10\n');

elseif (a = = 20)

% if else if condition is true

fprintf ('Value of a is 20\n');

elseif a = = 30

% if else if condition is true

fprintf('Value of a is 30\n');

else

% if none of the conditions is true '

fprintf('None of the values are matching\n');

fprintf('Exact value of a is: %d\n', a);

end

if <expression 1>

% Executes when the boolean expression 1 is true

if <expression 2>

% Executes when the boolean expression 2 is true

end

end

a = 100;

b = 200;

% check the boolean condition

if(a == 100)

% if condition is true then check the following

if(b == 200)

% if condition is true then print the following

fprintf('Value of a is 100 and b is 200\n');

end

end

fprintf('Exact value of a is : %d\n', a);

fprintf('Exact value of b is : %d\n', b);

Syntax

The syntax for a nested if statement is as follows:

You can nest elseif...else in the similar way as you have nested if statement.

Example

Create a script file and type the following code in it:

When you run the file, it displays:

while <expression>

<statements>

end

a = 10; % while loop execution

While Loop

The while loop repeatedly executes statements while a specified condition is

true.

The syntax of a while loop in MATLAB is as following:

The while loop repeatedly executes a program statement(s) as long as the

expression remains true.

An expression is true when the result is nonempty and contains all nonzero

elements (logical or real numeric). Otherwise, the expression is false.

Example:1

Value of a is 100 and b is 200

Exact value of a is : 100

Exact value of b is : 200

value of a: 10

value of a: 11

value of a: 12

value of a: 13

value of a: 14

value of a: 15

value of a: 16

value of a: 17

value of a: 18

value of a: 19

x=3

while (x<100)

x=x*3;

end

When the code above is executed, the result will be:

Example 2:

When the code above is executed, the result will be:

while(a < 20)

fprintf('value of a: %d\n', a);

a = a + 1;

end

x = input(‘Enter a Number:’);

count = 0;

while x > 1

x = x/2;

count = count + 1;

end

display (count);

Enter a Number:

130

Count =

8

Example 3:

When the code above is executed, the result will be:

Output

x=243

Remark: one can think of while loop as a combination of for loop and an if

statement. Here, the looping will keep going indefinitely as long as the

condition (x<100), is satisfied. Therefore, the value of x progresses from

3,9,27,81, to 243 when loop is terminated.

x = input(‘Enter an integer:’);

Fact = 1;

While x > 1;

Fact = fact * x;

End

Display(fact);

Enter a Integer:

12

Fact =

479001600

for index = values

<program statements>

...

end

Example : 4

When the code above is executed, the result will be:

For loop

A for loop is a repetition control structure that allows you to efficiently write a

loop that needs to execute a specific number of times.

The syntax of a for loop in MATLAB is as following:

b = 3

for k = 1:5

b = b^k

end

Output

3

9

27

81

243

Remark: the outputs are 3^1,3^2,3^3,3^4 and 3^5. The value of “k” keeps

changing as we go through the loop.

sum1 = 0;

for k = 1:9

sum1 = sum1+ k;

end

Example: 1

When the code above is executed, the result will be:

Example: 2

When the code above is executed, the result will be:

sum1 = 0;

for k = 1:2:9

sum1 = sum1+ k;

end

sum1

Output

25

Remark: this program performs the summation of 1+3+5+9 = 45. This

command “for k = 1:2:9” means we go through the loop only 5 times. First

time with k=1, second time with k=1+2(=3), third time with k = 1+2+2(=5),

and so on. The looping stops once k reaches 9.

Example: 3

When the code above is executed, the result will be:

Example: 4 using array

Output

45

Remark: this program performs the summation of 1+2+3+4+5+6+7+8+9 =

45

Output

24

Remark: this program performs the summation of sum1=

b(1)+b(2)+b(3)+b(4) = 3+8+9+4 = 24

b = [3 8 9 4 7 5];

sum1 = 0;

for k = 1:2:5

sum1 = sum1+ b(k);

end

sum1

Output

When the code above is executed, the result will be:

Example: 5 using array with step 2

When the code above is executed, the result will be:

b = [3 8 9 4 7 5];

sum1 = 0;

for k = 1:4

sum1 = sum1+ b(k);

end

sum1

for a = 10:20

fprintf(‘value of a:%d\n’,a);

end

Output

value of a: 10

value of a: 11

value of a: 12

value of a: 13

value of a: 14

value of a: 15

value of a: 16

value of a: 17

value of a: 18

value of a: 19

value of a: 20

Example: 6

When the code above is executed, the result will be:

Example: 7 using two for loops

19

Remark: this program performs the summation of sum1= b(1)+b(3)+b(5) =

3+9+7 = 19

Output

18

Remark: this program performs the summation of sum1=

1*1+1*2+1*3+2*1+2*2+2*3 = 18

for n = 1:2

for m = 1:3

fprintf(‘n = %3u m = %3u \r’, n, m)

end

end

When the code above is executed, the result will be:

Example: 8 using two for loops with printf

When the code above is executed, the result will be:

Output

 n = 1

n = 1

m = 1

m = 1

sum1 = 0;

for n = 1:2

for m = 1:3

sum1 = sum1+ n * m;

end

end

sum1

b = [3 5 7 4 9 8 3];

c = [2 3 5 7];

sum1 = 0;

for k = 1:4

sum1 = sum1+ b (c(k));

end

sum1

Output

24

Remark: this program performs the summation of

sum1= b(c(1)) + b(c(2)) + b(c(3)) + b(c(4))

= b(2) + b(3) + b(5) + b(7)

= 5+7+9+3

= 24

 n = 1

n = 2

n = 2

n = 2

m = 1

m = 2

m = 2

m = 2

Example: 9 More complicated use of loop and index

When the code above is executed, the result will be :

Numerical methods and their applications: Curve fitting: Straight line fit,

Polynomial fit

Lab Program – 3&4

MATLAB has an excellent set of graphic tools. Plotting a given data set or the

results of computation is possible with very few commands. You are highly

encouraged to plot mathematical functions and results of analysis as often as

possible. Trying to understand mathematical equations with graphics is an

enjoyable and very efficient way of learning mathematics. Being able to plot

mathematical functions and data freely is the most important step, and this

section is written to assist you to do just that.

Creating simple plots

The basic MATLAB graphing procedure, for example in 2D, is to take a vector

of x- coordinates, x = (x1; : : : ; xN), and a vector of y-coordinates, y = (y1; : : :

; yN), locate the points (xi; yi), with i = 1; 2; : : : ; n and then join them by

straight lines. You need to prepare x and y in an identical array form; namely, x

and y are both row arrays and column arrays of the same length.

Example:1

Plot a graph considering the vectors, x = (1; 2; 3; 4; 5; 6) and y = (3; -1; 2; 4; 5;

1)

>> x = [1 2 3 4 5 6];

>> y = [3 -1 2 4 5 1];

>> plot(x,y)

Note: The plot functions have different forms depending on the input arguments.

If y is a vector plot(y) produces a piecewise linear graph of the elements of y

versus the index of the elements of y. If we specify two vectors, as mentioned

above, plot(x,y) produces a graph of y versus x.

Example: 2

Create x as a vector of linearly spaced values between 0 and 2π. Use an

increment of π/100 between the values. Create y as sine values of x. Create a line

plot of the data.

x = 0:pi/100:2*pi;

y = sin(x);

>> xlabel('x = 0:2\pi')

>> ylabel('Sine of x')

>> title('Plot of the Sine function')

>>plot(x,y)

Multiple data sets in one plot

Multiple (x; y) pairs arguments create multiple graphs with a single call to plot.

For example, these statements plot three related functions of x: y1 = 2 cos(x),

y2 = cos(x), and y3 = 0:5* cos(x), in the interval 0 ≤ x ≤ 2π

>> x = 0:pi/100:2*pi;

>> y1 = 2*cos(x);

>> y2 = cos(x);

>> y3 = 0.5*cos(x);

>> plot(x,y1,'--',x,y2,'-',x,y3,':')

>> xlabel('0 \leq x \leq 2\pi')

>> ylabel('Cosine functions')

>>

legend('2*cos(x)','cos(x)','0.5*co

s(x)'

)

>> title('Typical example of

multiple plots')

>> axis([0 2*pi -3 3])

The result of multiple data sets in one graph plot is shown in Figure.

Example

Define x as 100 linearly spaced values between −2π and 2π. Define y1 and y2 as

sine and cosine values of x. Create a line plot of both sets of data.

x = linspace(-2*pi,2*pi);

y1 = sin(x);

y2 = cos(x);

plot(x,y1,x,y2)

Three Curves in single Plot

Plot three sine curves with a small phase shift between each line. Use the default

line style for the first line. Specify a dashed line style for the second line and a

dotted line style for the third line.

x = 0:pi/100:2*pi;

y1 = sin(x);

y2 = sin(x-0.25);

y3 = sin(x-0.5);

%figure

plot(x,y1,x,y2,'--',x,y3,':')

Specify Line Style, Color, and Marker

Plot three sine curves with a small phase shift between each line. Use a green

line with no markers for the first sine curve. Use a blue dashed line with circle

markers for the second sine curve. Use only cyan star markers for the third sine

curve

x = linspace(0,6);

x = 0:pi/10:2*pi;

y1 = sin(x);

y2 = sin(x-0.25);

y3 = sin(x-0.5);

plot(x,y1,'g',x,y2,'b--o',x,y3,'c*')

Bifurcation Plots

x = linspace(0,3);

y1 = sin(5*x);

y2 = sin(15*x);

subplot(2,1,1);

plot(x,y1)

title('Top Plot')

ylabel('sin(5x)')

subplot(2,1,2);

plot(x,y2)

title('Bottom Plot')

ylabel('sin(15x)')

Subplots

Plots Circle

subplot(2,2,1);

plot(x,sin(x));

subplot(2,2,2);

plot(x,cos(x));

subplot(2,2,3);

plot(x,exp(-x));

subplot(2,2,4);

plot(x, x.^3);

% plot sine function

% plot cosine function

% plot negative exponential function

% plot x^3

[x,y] = meshgrid([-2:.2:2]); % set up 2-D plane

Z = x.*exp(-x.^2-y.^2);

surf(x,y,Z,gradient(Z))

colorbar

% plot 3rd dimension on plane figure

% surface plot, with gradient(Z)

% determining color distribution

% display color scale, can adjust

% location similarly to legend

r = 2;

xc = 4;

yc = 3;

theta =

linspace(0,2*pi);

x = r*cos(theta) + xc;

y = r*sin(theta) + yc;

plot(x,y) axis equal

Plotting in 3-D

Ans = 693

Ans r = 2 x 1

1.532

-0.8685

Polynomials in MATLAB

Evaluating Polynomials

p = [1 7 0 -5 9];

polyval (p,4)

p = [1 7 0 -5 9];

X = [1 2 -3 4; 2 -5 6 3; 3 1 0 2; 5 -7 3 8];

polyvalm(p, X)

ans=

Finding the roots of Polynomials

Solve the equation 3𝑥2 − 2𝑥 − 4

Create the vector to represent the polynomial, then find the roots

P=[3 -2 -4];

r = roots (p)

Solve the equation 𝑥4 + 7𝑥3 − 5𝑥 + 9 = 0

Create a vector to represent the polynomial, then find the roots

p = [1 7 0 -5 9];

r = roots(p)

2307 -1769 -939 4499

2314 -2376 -249 4695

2256 -1892 -549 4310

r =

-6.8661 + 0.0000i

-1.4247 + 0.0000i

0.6454 + 0.7095i

0.6454 - 0.7095i

The function poly is an inverse of the roots function and returns to the

polynomial coefficients. For example:

p2 = poly(r)

p2 =

Columns 1 through 3:

1.00000 + 0.00000i 7.00000 + 0.00000i 0.00000 + 0.00000i

Columns 4 and 5:

-5.00000 - 0.00000i 9.00000 + 0.00000i

Polynomial Curve Fitting

The polyfit function finds the coefficients of a polynomial that fits a set of data

in a least-squares sense. If x and y are two vectors containing the x and y data to

be fitted to a n-degree polynomial, then we get the polynomial fitting the data by

writing p = polyfit(x,y,n)

Lab-Program 3: Numerical methods and their applications: Curve

fitting: Straight line fit.

Lab Program -3 code with degree1 for strainght

line

Program with degree 2

Lab Program 4: Program code with degree2 polynomial curve fit

Numerical Integration and Differentiation: Trapezoidal method,Simpson

method.

Lab Program - 5

OUTPUT

Enter lower limit, a:1

Enter upper limit, b:2

Enter no. of subintervals, n: 5

The approximate value of integral by Trapizoidal Rule is: 0.40592741

Lab Program 5-Numerical Integration and Differentiation: Trapezoidal method.

Program Code With Example 1:f=1/(1+x)

Program with Example 2:f=sin(x)

OUTPUT

Enter lower limit, a:2

Enter upper limit, b:8

Enter no. of subintervals, n: 5

The approximate value of integral by Trapizoidal Rule is: -0.23736200

Lab Program 6-Numerical Integration and Differentiation:Simpson’s method
Simpson’s 1/3 rule

Program Code Example 1 : SIMPSON 1/3 RULE FOR cos(x)-log(x)+exp(x)

Program code Example 2: SIMPSON 1/3 RULE FOR 1/(1+X)

OUTPUT

Enter lower limit a:0

a =0

Enter upper limit b:10

b =10

Enter the no. of subinterval:5

n =5

Please enter valid n!!!

Enter n as even number6

n =6

The approximation value of integral by Simsons 1/3 Rule is: Inf

OUTPUT

Enter lower limit a:0

a =0

Enter upper limit b:10

b =10

Enter the no. of subinterval:6

n =6

The approximation value of integral by Simsons 1/3 Rule is: 2.4492

Program code Example 3: SIMPSON 1/3 RULE FOR log(x)

Output:

simsons1

Enter lower limit a:4

a =4

Enter upper limit b:5.2

b =5.2000

Enter the no. of subinterval:6

n =6

The approximation value of integral by Simsons 1/3 Rule is:

1.8278

Linear and Nonlinear Equations: Eigen values, Eigen vectors, Solution of linear

algebraic equations using Gauss Elimination and LU decomposition, Solution of

nonlinear equation in single variable using Gauss-Siedal and Newton-Raphson

method.

Program Code for Simson’s 3/8 Rule

Lab Program 7&8

Eigen Values and Eigen Vectors:

Lab Program 7: Program code for Egien values and Eigen vectors

A=[8 -6 2;

-6 7 -4;

2 -4 3];

disp("Matrix");

disp(A)

%Eigenvalues and right eigenvectors of matrix A

[V,D]=eig(A)

OUTPUT:

Matrix

8 -6 2

-6 7 -4

2 -4 3

V =

0.3333 0.6667 -0.6667

0.6667 0.3333 0.6667

0.6667 -0.6667 -0.3333

D =

0.0000 0 0

0 3.0000 0

0 0 15.0000

Gauss Elimination Method:

Lab Program 8a: Guass Elimination Method using back substitution

Lab Program 8b: LU Decomposition

Program Code 8b: for LU Decomposition

OUTPUT

Lab Program 8c: Solution of nonlinear equation in single variable using Gauss-Siedal

Gauss Seidal Method

Lab Program 8c: Code for Gauss-Siedal

OUTPUT:

Solution of the system is :

10.143142

-2.952420

-2.333466

9.000000

Lab-Program 8d: Solution of nonlinear equation in single variable using Newton

Raphson Method

Lab Program -8d: Code using Newton Raphson Method

OUTPUT:

Enter non-linear equations: cos(x)-x*exp(x)

Enter initial guess: 1

Tolerable error: 0.00001

Enter maximum number of steps: 20

g =

- exp(x) - sin(x) - x*exp(x)

step=1

step=2

step=3

step=4

step=5

a=1.000000 f(a)=-2.177980

a=0.653079 f(a)=-0.460642

a=0.531343 f(a)=-0.041803

a=0.517910 f(a)=-0.000464

a=0.517757 f(a)=-0.000000

Root is 0.517757

Ordinary Differential Equations: Introduction to ODE’s, Euler’s method, second

order RungaKutta method, 10 MATLAB ODE45 algorithm in single variable

and multivariables. Transforms: Discrete Fourier Transforms.

Lab Program 9&10

Lab Program 9a: Euler’ Methods

Program Code 9a: for Euler’methods:

Lab Program 9b: RungaKutta Method

Lab -Program 9B- Rungekutta method order 2.

Lab Program 9c: ODE 45

Lab Program 9c: ODE 45 for dx/dt=3exp(-t)

Lab Program 10: Transforms: Discrete Fourier Transforms

Fourier Transform

xn=[2 3 4 4]

N=length(xn)

n=0:N-1

k=0:N-1;

WN=exp(-1j*2*pi/N);

nk=n'*k;

WNnk=WN.^nk;

Xk=xn*WNnk

Xk =

Application of MATLAB to analyse problems in basic engineering mechanics,

mechanical vibrations, control system, statistics and dynamics of different

circuits. MATLAB Simulink: Introduction to MATLAB Simulink, Simulink

libraries, development of basic models in Simscape Power.

Lab Program 11,12,13

Columns 1 through 2

13.0000 + 0.0000i -2.0000 + 1.0000i

Columns 3 through 4

-1.0000 - 0.0000i -2.0000 - 1.0000i

Link for study material simscap material

https://www.bing.com/videos/riverview/relatedvideo?q=what+is+simscape&mid=921D5

2B0D 4485D452FEC921D52B0D4485D452FEC&FORM=VIRE

