ATME College of Engineering
13" KM mile Stone, Mysuru-Kanakapura Rd, Mysuru-28

Department of Mechanical Engineering

BASICS OF MATLAB
(BME657A)

MANUAL

For
VISEMESTER

2025-2026

Name of the Student:

University Seat No. :

Semester: Batch No. :

DEPARTMENT OF MECHANICAL ENGINEERING

v
DEPARTMENT OF MECHANICAL ENGINEERING
ATMECOLLEGE ENGINEERING
13" K.M Mile stone, Mysuru-Kanakapura Road, Mysuru

... Bearing
.. has satisfactorily completed the course of experiments in practical

BASICSOFMATLAB (BME657A)prescribed by the Visvesvaraya Technological University for the
6th semester B.E course during the year 20........ 20........

SESSIONAL MARKS AWARDED

Conduction

Record & Viva-voce

Internal Assessment

Maximum Mark

Signature of staff Signature of H.O.D

59

Basics of Matlab Semester 6
Course Code BME657A CIE Marks 50
Teaching Hours/Week (L:T:P: S) 0:0:2*:0 SEE Marks 50
Total Hours of Pedagogy 12-14 sessions Total Marks 100
Credits 01 Exam Hours 03
Examination nature (SEE) Practical

* Additional one hour may be considered for instructions, if required

Course objectives:

To know about fundamentals of MATLAB tool.

To provide an overview to program curve fitting & solve Linear and Nonlinear Equations.
To understand the concept and importance of Fourier transforms.

To gain knowledge about MATLAB Simulink & solve engineering problems.

SLNO Experiments

1 Introduction to MATLAB Programming: Basics of MATLAB Programming, array operations in
MATLAB, loops and execution of control, working with files: Scripts and functions, plotting and

2 programming output, examples.

i Numerical Methods and their applications: Curve Fitting: Straight line fit, Polynomial fit.

z Numerical Integration and Differentiation: Trapezoidal method, Simpson method.

7 Linear and Nonlinear Equations: Eigen values, Eigen vectors, Solution of linear algebraic
equations using Gauss Elimination and LU decomposition, Solution of nonlinear equation in

8 single variable using Gauss-Siedal and Newton-Raphson method.

9 Ordinary Differential Equations: Introduction to ODE’s, Euler’s method, second order

10 RungaKutta method, MATLAB ode45 algorithm in single variable and multivariable.
Transforms: Discrete Fourier Transforms,

11 Application of MATLAB to analyse problems in basic engineering mechanics, mechanical
vibrations, control system, statistics and dynamics of different circuits.

12 MATLAB Simulink: Introduction to MATLAB Simulink, Simulink libraries, development of basic

models in Simscape Power Systems

Course outcomes (Course SKkill Set):
At the end of the course the student will be able to:

Implement loops, branching, control instruction and functions in MATLAB programming
environment.

Programming for curve fitting, numerical differentiation and integration, solution of linear
equations in MATLAB and solve engineering problems.

Understand implementation of ODE using ode 45 and execute Solutions of nonlinear equations
and DFT in MATLAB.

Simulate MATLAB Simulink examples.

Assessment Details (both CIE and SEE)

The weightage of Continuous Internal Evaluation (CIE) is 50% and for Semester End Exam (SEE) is 50%.
The minimum passing mark for the CIE is 40% of the maximum marks (20 marks out of 50) and for the
SEE minimum passing mark is 35% of the maximum marks (18 out of 50 marks). A student shall be
deemed to have satisfied the academic requirements and earned the credits allotted to each subject/

60

course if the student secures a minimum of 40% (40 marks out of 100) in the sum total of the CIE
(Continuous Internal Evaluation) and SEE (Semester End Examination) taken together

Continuous Internal Evaluation (CIE):
CIE marks for the practical course are 50 Marks.
The split-up of CIE marks for record/ journal and test are in the ratio 60:40.

e Each experiment is to be evaluated for conduction with an observation sheet and record write-up.
Rubrics for the evaluation of the journal/write-up for hardware/software experiments are
designed by the faculty who is handling the laboratory session and are made known to students at
the beginning of the practical session.

e Record should contain all the specified experiments in the syllabus and each experiment write-up
will be evaluated for 10 marks.

e Total marks scored by the students are scaled down to 30 marks (60% of maximum marks).

e Weightage to be given for neatness and submission of record /write-up on time.

e Department shall conduct a test of 100 marks after the completion of all the experiments listed in
the syllabus.

e [n atest, test write-up, conduction of experiment, acceptable result, and procedural knowledge will
carry a weightage of 60% and the rest 40% for viva-voce.

e The suitable rubrics can be designed to evaluate each student’s performance and learning ability.

e The marks scored shall be scaled down to 20 marks (40% of the maximum marks).

The Sum of scaled-down marks scored in the report write-up/journal and marks of a test is the total CIE
marks scored by the student.

Semester End Evaluation (SEE):

e SEE marks for the practical course are 50 Marks.

e SEE shall be conducted jointly by the two examiners of the same institute, examiners are
appointed by the Head of the Institute.

e The examination schedule and names of examiners are informed to the university before the
conduction of the examination. These practical examinations are to be conducted between the
schedule mentioned in the academic calendar of the University.

e Alllaboratory experiments are to be included for practical examination.

e (Rubrics) Breakup of marks and the instructions printed on the cover page of the answer script
to be strictly adhered to by the examiners. OR based on the course requirement evaluation
rubrics shall be decided jointly by examiners.

e Students can pick one question (experiment) from the questions lot prepared by the examiners
jointly.

e Evaluation of test write-up/ conduction procedure and result/viva will be conducted jointly by
examiners.

General rubrics suggested for SEE are mentioned here, writeup-20%, Conduction procedure and

result in -60%, Viva-voce 20% of maximum marks. SEE for practical shall be evaluated for 100 marks

and scored marks shall be scaled down to 50 marks (however, based on course type, rubrics shall be
decided by the examiners)

Change of experiment is allowed only once and 15% of Marks allotted to the procedure part are to be

made zero.

61

The minimum duration of SEE is 02 hours

Suggested Learning Resources:

Text Books:
1. Agam Kumar Tyagi, “MATLAB and Simulink for Engineers”, OXFORD Higher Education.
2. Dr. Shailendra Jain, “Modelling & Simulation using MATLAB - Simulink”, Wiley - India.

Reference Books:
1. Won Y.Tang, Wemun Cao, Tae-Sang Ching and John Morris, “Applied Numerical Methods Using
MATLAB”, A John Wiley & Sons.
2. Steven T. Karris, “Introduction to Simulink with Engineering Applications”, Orchard
Publications.

INTRODUCTION TO MAT LAB

The name MATLAB stands for MATrix LABoratory. MATLAB was written originally to
provide easy access to matrix software developed by the LINPACK (linear system package)

and EISPACK (Eigen system package) projects.

MATLAB is a high-performance language for technical computing. It integrates computation,
visualization, and programming environment. Furthermore, MATLAB is a modern
programming language environment: it has sophisticated data structures, contains built-in
editing and debugging tools, and supports object-oriented programming. These factors make

MATLAB an excellent tool for teaching and research.

MATLAB is a high-performance language for technical computing. It integrates computation,
visualization, and programming in an easy-to-use environment where problems and solutions
are expressed in familiar mathematical notation. Typical uses include

» Math and computation

» Algorithm development

» Data acquisition
» Modeling, simulation, and prototyping

» Data analysis, exploration, and visualization
> Scientific and engineering graphics

> Application development, including graphical user interface building

Features of MATLAB
Following are the basic features of MATLAB:
» Itis a high-level language for numerical computation, visualization and application
development.
» It also provides an interactive environment for iterative exploration, design and
problem solving.
> It provides vast library of mathematical functions for linear algebra, statistics,
Fourier analysis, filtering, optimization, numerical integration and solving ordinary
differentialequations.
» It provides built-in graphics for visualizing data and tools for creating custom plots.
» MATLAB's programming interface gives development tools for improving code

quality, maintainability, and maximizing performance.

» It provides tools for building applications with custom graphical interfaces.

> It provides functions for integrating MATLAB based algorithms with
external applications and languages such as C, Java, .NET and Microsoft
Excel.
Uses of MATLAB

> MATLAB is widely used as a computational tool in science and engineering
encompassing the fields of physics, chemistry, math and all engineering streams. It is
used in a range of applications including:

» signal processing and Communications

» image and video Processing

» control systems

» test and measurement

» computational finance

>

computational biology

Starting MATLAB
After logging into your account, you can enter MATLAB by double-clicking on the
MATLAB shortcut icon (MATLAB 17.0.4) on your Windows desktop. When you start
MATLAB, a special window called the MATLAB desktop appears. The desktop is a window
that contains other windows. The major tools within or accessible from the desktop are:
» The Command Window
The Command History
The Workspace

>

>

» The Current Directory
» The Help Browser

>

The Start button

Menus change,

dependingonthe Use tab to go View ar Move Command Window outside of
tocl you are toWorkspecs Get hglp. changecurrent doskiop {undack).
currently using. browser. dirsctory.

=) MATLAB
File Edit Debug Peskiop ‘Window [Help
Dﬁ|%%&|ﬂ“|hﬂg|?“&wmies jJ

Shartouts (] How to ack [Z] Wit Mewe
[E el (PR A | Command Window
ci & | |-
Allfiles £ | Fite Tipe

2 bucky.m h-file
[caution. mdl hodel

Editor Autc Y|
»

Currerd Ciractory: | WEF‘EFEL‘EI

<« MATL ALE >

o Copvright 1984-2005 Th=e Mathlorks, Inc.
:l Ver=sion 7V.0.4 [(R1a43P2)

collatzall asy

To get started, select HATLLE Help or Dewoz from th

=

Command History nox
Fs-- 2/23/04 3:59 FH ——-'ﬂ
morsS o

formwac loag e
cd d:‘mywtlles/seq te_l‘
o lear

‘ worlespac _Flll - _r|:I
A Start _ \ o

Clicl! Start Viow ar oxocuts Dra;\thn soparatorbar \Entur MATLAB functions at
button for quick previously run functions to resize windows. command-ina prompt.
access (0 tools from the Command

and mare. Hiztory window

Figure 1.1: The graphical interface to the MATLAB workspace

Desktop Tools
The following tools are managed by the MATLAB desktop, although not all of them appear

by default when you first start. If you prefer a command line interface, you can use functions
to perform most of the features found in the MATLAB desktop tools. Instructions for using
these function equivalents are provided with the documentation for each tool.
» Command Window — Run MATLAB functions.
» Command History — View a log of the functions you entered in the Command
Window, copy them, and execute them.
» Launch Pad — Run tools and access documentation for all of your MathWorks
products.
» Current Directory Browser — View MATLAB files and related files, and perform
file operations such as open, and find content.

> Help Browser — View and search the documentation for the full family of MATLAB

products.
» Workspace Browser — View and make changes to the contents of the workspace.
> Array Editor — View array contents in a table format and edit the values.
» Editor/Debugger — Create, edit, and debug M-files (files containing MATLAB

functions).

Keyboard Shortcuts and Accelerators

You can access many of the menu items using keyboard shortcuts or accelerators for your
platform, such as using Ctrl+X to perform a Cut on Windows platforms, or Alt+F to open the
File menu. Many of the shortcuts and accelerators are listed with the menu item. For example,
on Windows platforms, the Edit menu shows Cut Ctrl+X, and the File menu shows the F in
File underlined, which indicates that Alt+X opens it. Many standard shortcuts for your

platform will work but are not listed with the menu items.

Following are some additional shortcuts that are not listed on menu items.

Keys Result

Enter The equivalent of double-clicking, it performs the
default action for a selection. For example, pressing
Enter while a line in the Command History window
is selected runs that line in the Command Window.

Escape Cancels the current action.

Ctrl+Tab Moves to the next tab in the desktop, where the tab is

or for a tool, or for a file in the Editor/Debugger. When
used in the Editor/Debugger in tabbed mode outside

Ctrl+F6 of the desktop, moves to the next open file.|

Keys Result {Continued)

Ctrl+Shift+Tab Moves to the previous tab in the desktop, where the
tab is for a tool, or for a file in the Editor/Debugger.
When used in the Editor/Debugger in tabbed mode
outside of the desktop, moves to the previous open
file.

Ctrl+Page Up Moves to the next tab within a group of tools or files
tabbed together.

Ctrl+Page Down Moves to the previous tab within a window.

Alt+F4 Closes desktop or window outside of desktop.

Alt+Space Displays the system menu.

MATLAB Windows

Window

Purpose

Command Window

Main window, enters variables, runs programs

Figure Window

Contains output from graphic commands

Editor Window

Creates and debugs script and function files

Help Window

Provides help information

Launch Pad Window

Command History Window

Provides access to tools, demos, and

documentation

Workspace Window

Logs commands entered in the Command
Window

Current Directory Window

Provides information about the variables that

are used

Shows the files in the current directory

Working in the Command Window

Notation

Purpose

>>

Command Prompt

J

Out put of the command is executed

(Enter key)
T‘l' Recalled the previously typed command to the
(Upper and down command prompt

arrow keys)

... (Three periods) Command is continued to the next line
; (Semicolon) Out put of the command is not displayed
% (Enter key) It indicates that the line is designated as a comment
clc clears the command window
clear Removes all the variables from the memory
who Displays a list of the variables currently in the
memory
Displays a list of the variables currently in the
whos memory and their size together with information

about their bytes and class

Lab Program — 1&2

Introduction to MATLAB Programming: Basics of MATLAB Programming,
array operations in MATLAB, loops 2 and execution of control, working with

files: Scripts and functions, plotting and programming output, examples.

MATLAB environment behaves like a super-complex calculator. You can enter
commands at the >> command prompt.

MATLAB is an interpreted environment. In other words, you give a command
and MATLAB executes it right away.

Commonly used Operators and Special Characters

MATLAB supports the following commonly used operators and special
characters:

Operator Purpose

+ Plus; addition operator.

Minus; subtraction operator.

* Scalar and matrix multiplication operator.
* Array multiplication operator.

A Scalar and matrix exponentiation operator.
A~ Array exponentiation operator.

\ Left-division operator.

/ Right-division operator.

\ Array left-division operator.

Array right-division operator.

Colon; generates regularly spaced elements and represents

an entire row or column.

formatting.

() Parentheses; encloses function arguments and array indices;
overrides precedence.
[] Brackets; enclosures array elements.
Decimal point.
Ellipsis; line-continuation operator
Comma; separates statements and elements in a row
Semicolon; separates columns and suppresses display.
% Percent sign; designates a comment and specifies

Quote sign and transpose operator.

Non-conjugated transpose operator.

Assignment operator.

Hands on Practice

Type a valid expression, for example,

5+5

And press ENTER
When you click the Execute button, or type Ctrl+E, MATLAB executes it

immediately and the result returned is:

ans =10

Let us take up few more examples:

372 9% 3raised to the power of 2

When you click the Execute button, or type Ctrl+E, MATLAB executes it

immediately and the result returned is:

ans=9

Another example,

sin(pi /2) % sine of angle 90°

When you click the Execute button, or type Ctrl+E, MATLAB executes it

immediately and the result returned is:

ans=1

Semicolon (;) indicates end of statement. However, if you want to suppress and
hide the MATLAB output for an expression, add a semicolon after the
expression.

For example,

X=3;

y=x+5

When you click the Execute button, or type Ctrl+E, MATLAB executes it

immediately and the result returned is:

y=8

Some more Examples

>> 7+8/2 « Type and press enter
(— 8/2is executed first)

ans =11

>> (7+8)/2 — Type and press enter
— 748 is executed first
ans = 7.5000

>>4+5/3+2
— 5/3 is executed first
ans = 7.6667

>> 5 13/2
— 573 is executed first, /2 is executed next
ans = 62.5000

>>277N1/3)+3270.2
— 1/3 is executed first, 27(1/3) and 32°0.2 are executed next, and + is executed

last

Ans=5

>> 2771/3+3270.2

— 2771/3 and 320.2 are executed first, 1/3 is executed next, and + is executed
last

Ans = 11

>> (0.7854 (0.7854)"3/(1*2*3)+0.7854"5/(1*2*3*4*5)...

type three periods ... and press enter to continue the expression on the next line
-0.785477/(1*2*3*4*5*6*7)

Ans = 0.7071

The format Command

By default, MATLAB displays numbers with four decimal place values. This is
known as short format.

However, if you want more precision, you need to use the format command.
The format long command displays 16 digits after decimal.

For example:

format long
X=7+10/3+5"1.2

MATLAB will execute the above statement and return the following result:

X =17.231981640639408

format short
Xx=7+10/3+571.2

MATLAB will execute the above statement and return the following result:

X =17.2320

The format bank command rounds numbers to two decimal places. For

example,

format bank
daily _wage = 177.45;

weekly wage = daily _wage * 6

MATLAB will execute the above statement and return the following result:

weekly wage = 1064.70

MATLAB displays large numbers using exponential notation.

The format short e command allows displaying in exponential form with four

decimal places plus the exponent. For example,

format short e
4.678*4.9

MATLAB will execute the above statement and return the following result:

ans = 2.2922e+01

The format long e command allows displaying in exponential form with four

decimal places plus the exponent. For example,

format long e

X = pi

MATLAB will execute the above statement and return the following result:

X = 3.141592653589793e+00

The format rat command gives the closest rational expression resulting from a

calculation. For example,

format rat
4.678 4.9

MATLAB will execute the above statement and return the following result:

Ans =2063/90

Some more Examples

Command Description Examples
format short Fixed-point with 4 >> format short
decimal digits >> 290/7
ans =41.4286
format long Fixed-point with 14 |>> format long

decimal digits

>> 290/7
Ans = 41.42857142857143

format short e

Scientific notation

with 4 decimal digits

>> format short e
>> 290/7
Ans = 4.1429e+001

format long e

Scientific notation
with 15 decimal digits

>> format long e
>> 290/7
Ans = 4.142857142857143e+001

format short g

Best of 5-digit fixed

or floating point

>> format short g
>> 290/7
Ans = 41.429

format long g

Best of 15-digit fixed

or floating point

>> format long g
>> 290/7
Ans =41.4285714285714

format bank

Two decimal digits

>> format bank
>> 290/7
Ans =41.43

Using the sgrt built-in function

>> sqrt(64) «— Argument is a number

ans = 8

>> sqrt(50+14*3) «— Argument is an expression
ans= 9.5917

>> sqrt(54+9*sqrt(100)) <« Argument includes a function

ans = 12

>> (15+600/4)/sqrt(121) « function is included in an expression

ans= 15

Elementary math functions

cos(x) - Cosine abs(x) Absolute value

sin(x) - Sine sign(x) - Signum function

tan(x) - Tangent max(x) - Maximum value

acos(x) - Arc cosine min(x) - Minimum value

asin(x) - Arc sine ceil(x) - Round towards + infinite

atan(x) - Arc tangent floor(x) - Round towards - infinite
exp(X) - Exponential round(x) - Round to nearest integer
sqrt(x) - Square root rem(x,number) - Remainder after division
log(x) - Natural logarithm angle(x) - Phase angle

log10(x) - Common logarithm conj(x) - Complex conjugate

Function

Description

Examples
exp(x) exponential >> exp(5)
Ans = 148.4132
sqrt(x) Square root >> sqrt(81)
Ans=9
abs(x) absolute value >> abs(-24)
Ans= 24
log(x) Natural logarithm. >> 10g(1000)
Base e logarithm(In) |Ans = 6.9078
log10(x) Base 10 logarithm >>]0g10(1000)
Ans = 3

factorial(x)

The factorial function
X!
(X must be a positive

integer)

>> factorial(b)
ans = 120

rem(x,number)

Finding the reminder

of given value x.

>>rem(11,2)
ans=1

Trigonometric math functions

Function Description Examples
sin(x) Sine of angle x (x in|>>sin(pi/6)
radians) Ans = 0.5000
sin(x) Sine of angle x (x in|>>sind(30)
Degrees) Ans = 0.5000
cos(X) Cosine of angle x (x|>> cos(pi/6)
in radians) Ans = 0.8660
tan(x) tangent of angle x (x|>> tan(pi/6)
in radians) Ans =0.5774
cot(x) cotangent of angle x|>> cot(pi/6)

(x in radians)

Ans=1.7321

Rounding functions

Function Description Examples
_ >> round(17/5)
round(x) Round to the nearest integer
Ans = 3
_ >> fix(13/5)
fix(x) Round towards zero
Ans = 2
_ o >> ceil(11/5)
ceil(x) Round towards infinity
Ans =3
~____|>>floor(-9/4)
floor(x) Round towards minus infinity
Ans=-3
Returns the remainder after x |>>rem(13,5)
rem(x,y) o
is divided by y Ans =3
_ Signum function. Returns 1 if|>> sign(5)
sign(x) _ :
x>0, -1ifx<0,andoifx=0 |Ans=1

Example: the value of the expression A = e~ sin(x) + 10y fora=5,x=2,

and y = 8 is computed by

>>a:5;x:2;y:8;
>>y = exp(-a)*sin(x)+10*sqrt(y)
y = 28.2904

The Assignment operator
Hierarchy of arithmetic operations

Precedence Mathematical operations

First The contents of all parentheses are evaluated first, starting

from the innermost parentheses and working outward.

Second All exponentials are evaluated, working from left to right

Third All multiplications and divisions are evaluated, working

from left to right

Fourth All additions and subtractions are evaluated, starting from
left to right
Example:

1) >> x=15 <« The number 15 assigned to the variable x

x=15 «— MATLAB displays the variable and its assigned value

>> x=3*x - 12
«— A new value is assigned to x. The new value is 3 times the previous value of

X minus 12.

Ans x =33

>>3=12 <« Assignl2toa
a=12
>>p=4 «— Assign4tob
b=4
>> c=(a-b)+40-a/b*10 «— Assign the value of the expression on the right-hand
side to the variable c.
c=18

>>a=12; « The variables a, b and c are defined but are not displayed since a

>> p=4; semicolon is typed at the end of each statement
>> c=(a-b)+40-a/b*10;
>>C « The value of the variable c is displayed by typing the name of the
variable
c =18

>>a=12, b=4; c=(a-b)+40-a/b*10 « The variable b is not displayed because
a=12 semicolon is typed at the end of the assignment
c=18

A variable that already exists can be reassigned a new value.
Example: >> abb=72;

>> abb=9:
>> abb
abb=9

Once a variable is defined it can be used as an argument in functions.
Example: >> x=0.75;

>> E=sin(x)"2+cos(x)"2

E=1

Rules about variable names:
1. Can contain letters, digits, and the underscore character.
2. Must begin with a letter.
3. MATLAB is case sensitive; it distinguishes between uppercase and
lowercase letters. For examples, AA, Aa, aA and aa are the names of four
different variables.

4. Avoid using the names of a built in function for a variable i.e. sin, exp etc.

Predefined variables: i.e. pi, esp, inf, | or j.

Show that at x=mn/5.
Solution: x = pi/5;

>> LHS=cos(x/2)"2
LHS = 0.9045

>> RHS=(tan(x)+sin(x))/(2*tan(x))
RHS = 0.9045

Creating Vectors

A vector is a one-dimensional array of numbers. MATLAB allows creating two
types of vectors:

Row vectors

Column vectors

Variable name=[type vector element]

Row vector: To create a row vector type the elements with a space or a comma
between the elements inside the square brackets.

Column vector: To create a column vector type the left square bracket [and
then enter the elements with a semicolon between them, or press the Enter key

after each element. Type the right square bracket] after the last element.

Row vectors are created by enclosing the set of elements in square brackets,

using space or comma to delimit the elements.

For example,

r=[78910 11]

MATLAB will execute the above statement and return the following result:

r=

Columns 1 through 4

7 8 9 10
Column 5
11

Another example

r=[78910 11];
t=1[2,3,4,5,6];

res=r+t

MATLAB will execute the above statement and return the following result:

res =

Columns 1 through 4

9 11 13 15
Column 5
17

Column vectors are created by enclosing the set of elements in square brackets,

using semicolon (;) to delimit the elements.

c=1[7;8;9;10; 11]

MATLAB will execute the above statement and return the following result:

c=
7
8
9
10
11

Creating a vector with constant spacing by specifying the first term, the spacing,

and the last term

Variable_name=[m:qg:n] or variable_name=m:q:n

Examples :

>>x=[1:2:13] Firstelement 1, spacing 2, last element 13
X =
1 3 5 7 9 11 13

>>y=[1.5:0.1:2.1] First element 1.5, spacing 0.1, last element 2.1
y =
1.5000 1.6000 1.7000 1.8000 1.9000 2.0000 2.1000

>> z7=[-3:7] First element -3, last element 7. If spacing is omitted, the
defaultis 1
Z=

-3 -2 -1 0 1 2 3 4 5 6 7

>> xa=[21:-3:6] First element 21, spacing -3, last element 6
Xa =
21 18 15 12 9 6

Creating a vector with constant spacing by specifying the first and last terms and

the number of terms

Variable_name=linspace(xi,xf,n)

Examples :

>> va= linspace(0,8,6) 6 elements, first element O, last element 8
va= 0 1.6000 3.2000 4.8000 6.4000 8.0000

>> vb= linspace(30,10,11) 11 elements, first element 30, last element
10
vb= 30 28 26 24 22 20 18 16 14 12 10

>> u=linspace(49.5,0.5) when the number of elements is omitted, the default

is 100
>>pb=[7276338 The enter key is pressed a new line is entered
u= Columns 1 through 9
1986 28 6
49.5000 49.0051 48.5101 48.0152 47.5202 47.0253 46.5303 46.0354
4
45.54845 6890]
Ans

Columns 91 through 99
49545 44596 3.9646 3.4697 2.9747 24798 1.9848 1.4899
0.9949

Column 100
0.5000

Creating a Two-dimensional array (matrix)
In MATLAB, a matrix is created by entering each row as a sequence of space or
comma separated elements, and end of a row is demarcated by a semicolon. For

example, let us create a 3-by-3 matrix as:

>>m=[123;456;789]

MATLAB will execute the above statement and return the following result:

m =
123
4 5 6
789

>> cd=6; e=3; h=4;
>> mat=[e, cd*h, cos(pi/3); h"2, sqrt(h*h/cd), 14]

Elements are defined by Mathematical expressions

Three variables are defined

mat =
3.0000 24.0000 0.5000
16.0000 1.6330 14.0000

1 3 5 7 9 11
0 5 10 15 20 25
10 20 30 40 50 60

67 2 43 68 4 13
The zeros, ones and eye Commands

The zeros(m,n) and the ones(m,n) commands create a matrix with m rows and n

columns, in which all the elements are the numbers o and 1 respectively. The

eye(n) command creates a square matrix with n rows and n columns in which the

diagonal elements are equal to 1, and the rest of the elements are 0. This matrix

is called the identity matrix. Examples are:

>> zr=zeros(3,4)

zr =

0 0 0 O
0 0 0 O
0 0 0 O

>> a=zeros(4)

a

0
0
0
0

o O o o

o O o o

o O o o

>> ne=ones(4,3)

ne =

e
e
= e

>> idn=eye(5)
idn =
1

o O +—» O
o » O O
O O O

0
0
0

o O O o

0 0 0 0 1

The Transpose Operator
The transpose operator is applied by typing a single quote following the
variable to be transposed.

Examples are:

>> aa=[3 8 1] Define a row vector aa
aa=
3 8 1
>> bb=aa‘ Define a row vector bb as the transpose of vector aa
bb =
3
8
1
>> D=C' Define a matrix D as the transpose of matrix C
2 21 41
5 5 64
14 32 9
8 11 1

Array Addressing Vector:

>> S=[3546 78 23 5 14 81 3 55] Define a vector
S=
35 46 78 23 5 14 81 3 55

>> S(4) Display the fourth element

ans =

23

>> 5(6)=273 Assign a new value to the sixth element
S =
35 46 78 23 5 273 81 3 55

>> 5(2)+S(8) Use the vector elements in mathematical expressions
ans =49
>> S(5)"S(8)+sqrt(S(7)) Use the vector elements in mathematical

expressions
ans = 134

Matrix operations

>>A=[31165;47102;13908] Create a 3x4 matrix

A=
3 11 6 5
4 7 10 2
13 9 0 8

>> A(3,1)=20 Assign a new value to the (3,1) element

A=
3 11 6 5
4 7 10 2
20 9 0 8

>> A(2,4)-A(1,2) Use elements in a mathematical expression

ans = -9

Using Colon : in addressing Arrays

>>v=[4158 123425023 11] A vector v is created
V=
4 15 8 12 34 2 50 23 11

>> u=v(3:7) A vector uis created from the elements 3 through 7 of vector v
u=
8 12 34 2 50 A vector u is created from the elements 3

through 7 of vectors v

For a matrix
A(:,n) Refers to the elements in all the rows of column n of the matrix A
A(n,:) Refers to the elements in all the columns of row n of the matrix A

A(;,m:n) Refers to the elements in all the rows between columns m and n of

the matrix A

A(m:n,:) Refers to the elements in all the columns between rows m and n of

the matrix A

A(m:n,p:q) | Refers to the elements in rows m through n and columns p through

g of the matrix A

Examples

>>A=[1357911;24681012;369121518; 481216 20 24;
51015 20 25 30]
A=
1 3 5 7 9 11
2 4 6 8 10 12
3 6 9 12 15 18
4 8 12 16 20 24
5 10 15 20 25 30

Using a colon in addressing arrays

Examples:

>> B=A(:,3) Define a column vector B from the elements in all the rows of
column 3 in Matrix A
B =
5
6
9
12
15

>> C=A(2,:) Define a row vector C from the elements in all the columns
of row 2 in matrix A
C=

2 4 6 8 10 12

>> E=A(2:4,2) Define a matrix E from the elements in rows 2 through 4
and all the columns in matrix A
E=

2 4 6 8 10 12

3 6 9 12 15 18

4 8 12 16 20 24

>>F=A(1:3,2:4) Create a matrix f from the elements in rows 1 through 3 and

columns 2 through 4 In matrix A

F=

3 5 7

4 6 8

6 9 12
>>\/=4:3:34 Create a vector V with 11 elements
V =

4 7 10 13 16 19 22 25 28 31 34

>> u=V([3,5,7:10]) Create a vector u from the 3", the 5™, and 7" through
10 elements of VV
u=

10 16 22 25 28 31

>>B=[57 2] Define vector B with 3 elements
B =
5 7 2

>> B(8)=4 Assign a value to the 8™ element
B =
5 7 2 0 0 0 0 4
(MATLAB assigns zeros to the 4" through 7" elements)

>> P(5)=24
P=
0 0 0 0 24

>> A=[3 8 1 24] Define vector A with 4 elements

A=

3 8 1 24
>> B=4:3:16 Define vector B with 5 elements
B =

4 7 10 13 16
>> C=[A B] Define a new vector C by appending A and B
C=

3 8 1 24 4 7 10 13 16
>> D=[A";B'] Create a new column vector D by appending A’ and B’
D=

3

8

1

24

10

>>A=[1234;5678] Define a 2 x 4 matrix
A=

>> A(3,:)=[10:4:22] Add the vector 10 14 18 22 as the third row of A
A=
1 2 3 4
5 6 7 8
10 14 18 22
>> B=eye(3)
B =
1 0 O
0 1 0
0 0 1
C=[AB] Append the matrix B to matrix A. The number of rows in B and A
must be the same
C=
1 2 3 4 1 0 O
5 6 7 8 0 1 0
10 14 18 22 0 0 1

>> A=[369;8511]
A=
3 6 9
8§ 5 11
>> A(4,5) =17 Assign a value to the (4,5) element

A=
3 6 9 0 0 MATLAB changes the matrix size to 4X5, and
8 5 11 0 0 assigns zeros to the new elements
0O 0 0 0 O
0o 0 0 0 17

>> Q(3,4)=15 Assign a value to the (3,4) element of a new matrix

0O 0 0 O
0O 0 0 O
0O 0 0 15

Deleting Elements
>> kt=[2 8 40 3 55 23 15 75 80] Define a vector with 10 elements
kt =
2 8 40 3 55 23 15 75 80
>> kt(6)=[] Eliminate the sixth element
kt =
2 8 40 3 55 15 75 80
>> kt(3:6)=[] Eliminate elements 3 through 6
kt =
2 8 75 80

>>mtr=[5784249; 403660 12; 56 13 5 89 31]

mtr =

5 78 4 24 9
4 0 36 60 12
56 13 5 89 31

>>mtr(:,2:4)=[]
mtr =
5 9
4 12
56 31

Define 3x5 matrix

Eliminate all the rows of columns 2 through 4

Built-in-functions for handling arrays

Function Description Examples
Returns the number of >> A=[59 2 4];
length(A) elements >> |ength(A)
In the vector A ans= 4
>>A=[614012;51968 2]
A=
Returns a row vector [m,n], 6 1 4 0 12
Size(A) where m and n are the size 5 19 6 8 2
m X n of the array A >> size(A)
ans =
2 5
Rearrange a matrix A that has |>> A=[516; 8 0 2]
Reshape(A,m,n) [rrows and s columns to have |A =
m rows and n columns. R 5 1 6

times s must be equal to m

times n

8 0 2
>> B=reshape(A,3,2)

5 0
8 6
1 2
>>v=[7472];
>> A=diag(v)
When v is a vector, creates a Az
diag(v) square matrix with the 2 0 0
elements of v in the diagonal
0 4 0
0 0 2
>>A=[123;456;7809]
A=
1 2 3
When A is a matrix, creates a vo0
diag(A) vector from the diagonal res

elements of A

>>vec=diag(A)
vec =

1

5

9

Mathematical Operations with Arrays

>> A=[5-38;92 10]

A=
5 -3 8

9 2 10

Define two 2X3 matrices A and B

>>B=[107 4; -11 15 1]
B =

10 7 4

11 15 1

>> A-B « Subtracting matrix B from matrix A

ans =
-5 -10 4
20 -13 9

>> C=A+B « Define a matrix C thatisequal to A + B
C=

15 4 12

2 17 11

>> C-8 « The number 8 is subtracted from the matrix C

ans =
7 -4 4
10 9 3

>>A=[142;573;916; 4 28] < Define a 4X3 matrix A
A=

1 4
5 7
9 1
4 2

N O o WD

>>B=[61; 2 5; 7 3] « Define a 3X2 matrix B

6 1
2 5
7 3

>> C=A*B «— Multiply matrix A by matrix B and assign the result to
variable C
C=

28 27

65 49

98 32

84 38
>> D=B*A «— Trying to multiply B by A, B*A, gives an error since the
number of columns in B is 2 and the number of rows in A'is 4
??? Error using ==>*

Inner matrix dimensions must agree.

>>F=[13;57]
F=
1 3 Define two 2 X 2 matrices F and G
5 7
>>G=[42;16]
G=
4 2
1 6
>>F*G «— Multiply F*G
ans =
7 20
27 52
>> G*F «— Multiply G*F
ans =
14 26
31 45

Note: The answer of F*G is not the same as the answer G*F

>> AV=[2 5 1] « Define a three-element column vector AV
AV =
2 5 1
>> BV=[3; 1; 4] « Define a three-element column vector BV
BV =
3
1
4
>> AV*BV «— Multiply AV by BV. The answer is a scalar. (dot product of
two vectors)
ans =
15
>> BV*AV «— Multiply AV by BV. The answer is a 3 X 3 matrix

ans =

6 15 3
2 5 1
8 20 4

>>A=[2570;10134;62115] « Definea3 X 4 matrix A

A=
2 5 7 0
10 1 3 4
6 2 11 5

>> b=3« Assign the number 3 to the variable b
b=
3

>> p*A «— Multiply the matrix A by b. This can be done by either typing
b*A or A*b
ans =

6 15 21 O

30 3 9 12

18 6 33 15

>> A*h

ans =
6 15 21 O
30 3 9 12
18 6 33 15

>> C=A*5 «— Multiply the matrix A by 5 and assign the result to a new

variable C

C=
10 25 35 O
50 5 15 20
30 10 55 25

>>C=5*A

C=
10 25 35 O
50 5 15 20

30 10 55 25

Inverse of the Matrix

>>A=[738;4115;6710]
A=

7 3 8

4 11 5

6 7 10

>> |=eye(3)

| =
1 0 O
0 1 0
0 0 1
>> A*|
ans =
7 3 8
4 11 5
6 7 10
>> |*A
ans =
7 3 8

4 11 5
6 7 10

>>A=[214;418;2-13] <« Creating the
matrix A
A=

>> B=inv(A) <« Use the inv function to
find the inverse of A and assign it to B
B =

5.5000 -3.5000 2.0000

2.0000 -1.0000 0

-3.0000 2.0000 -1.0000

Use matrix operations to solve the following system of linear equations

Solution: Using the rules of linear algebra, the above system of equations can be

written in the matrix form A X = B or in the form X C = D:

The solution of both forms is shown below:
>> A=[4-26;282;610 3]; «— Solving the form A X =B

>> B=[8; 4; 0];
>> X=A\B « Solving by using left division X = A\ B
X =

-1.8049

0.2927

2.6341

>> Xb=inv(A)*B « Solving by using the inverse of A (i.e. X=B)

Xb =

-1.8049

0.2927

2.6341
>>(C=[426;-2810; 62 3]; — Solving the form XC =D
>>D=[8 4 0];
>> Xc= D/C « Solving by using right division Xx=D /C
Xc =

-1.8049 0.2927 2.6341

>> Xd=D*inv(C) « Solving by using the inverse of C, X=D.
Xd =
-1.8049 0.2927 2.6341

The M Files
MATLAB allows writing two kinds of program files:

Scripts - script files are program files with .m extension. In these files, you
write series of commands, which you want to execute together. Scripts do not
accept inputs and do not return any outputs. They operate on data in the
workspace.

Functions - functions files are also program files with .m extension. Functions
can accept inputs and return outputs. Internal variables are local to the function.
You can use the MATLAB editor or any other text editor to create your .m files.
In this section, we will discuss the script files. A script file contains multiple
sequential lines of MATLAB commands and function calls. You can run a script

by typing its name at the command line

To create scripts files, you need to use a text editor. You can open the MATLAB
editor in two ways:

» Using the command prompt

» Using the IDE

If you are using the command prompt, type edit in the command prompt. This
will open the editor. You can directly type edit and then the filename (with .m

extension)

edit
Or

edit <filename>

Alternatively, if you are using the IDE, choose NEW -> Script. This also opens

the editor and creates a file named Untitled. You can name and save the file after

typing the code.
EDITOR PUBLISH VIEW
ED:‘ - H:;H LGl Find Files Insert =L fx T e F
; p— {=| Co v Comment % 43 7 GoTo v
New Open Save s Bomace {g £ L d Bre
v - v "Epﬁm ot Indeﬂtt}_]t;:_jl_:':‘j *Fﬁd -
e EDIT NAVIGATE | BREA
| -[progZ.m X]
1

Type the following code in the editor:

No of Students = 6000;

Teaching Staff = 150;

Non Teaching Staff = 20;

Total = No of Students + Teaching Staff ...
+ Non Teaching Staff;

disp(Total);

After creating and saving the file, you can run it in two ways:

» Clicking the Run button on the editor window or
» Just typing the filename (without extension) in the command prompt: >>

progl

The command window prompt displays the result:

6170

Example 1

Create a script file, and type the following code:

a=5b=7;
c=a+hb

d =c +sin(b)
e=5%*d

f = exp(-d)

When the above code is compiled and executed, it produces the following result:

c=12

d= 12.6570
e = 63.2849
f=3.1852e-06

Example 2

Create a script file with the following code:

str = 'Hello World!"
n=2345

d = double(n)

un = uint32(789.50)
rn =5678.92347

c = int32(rn)

When the above code is compiled and executed, it produces the following result:

Hello World!
n=

2345

d=

2345

un=

790

=
5.6789e+03
c=

5679

Example 3

The following examples show the use of arithmetic operators on scalar data.

Create a script file with the following code:

a = 10;

b =20;

c=a+b
d=a-b
e=a*b
f=alb
g=al\b

X=1,

When you run the file, it produces the following result:

c=30
d= -10
e= 200
f=0.5000
g=2
z=343

Example 4

Create a script file and type the following code:

a = 100;

b = 200;
if (@>=h)
max = a
else
max=>b

end

When you run the file, it produces following result:

max = 200

Flow control (Loops)

There may be a situation when you need to execute a block of code several
times. In general, statements are executed sequentially. The first statement in a
function is executed first, followed by the second, and so on.

Programming languages provide various control structures that allow for more
complicated execution paths.

A loop statement allows us to execute a statement or group of statements
multiple times. The drawing shows the general form of a loop statement for most
programming languages.

Matlab provides various types of loops to handle looping requirements
including: while loops, for loops, and nested loops. If you are trying to declare
or write your own loops, you need to make sure that the loops are written as
scripts and not directly in the Command Window.

To start a new script, locate the button in the upper left corner of the window

labeled New Script.

Conditional Code

If condition
is true

If condition
is false

MAT LAB has five flow control statements

> |If statement

» Switch statement
» For loops
» While loops

> Break statements

MATLAB provides following types of loops to handle looping requirements

while loop Repeats a statement or group

of statements while a given

condition is true. It tests the Conditional Code

condition before executing the

If condition
is true

loop body.

forloop Executes a sequence of Condition
statements multiple times and

abbreviates the code that

If condition
manages the loop variable. is false
nested You can use one or more loops 7
loops inside any another loop.
break Terminates the loop statement

statement and transfers execution to the
statement immediately
following the loop.

Decision making Structures

Decision making structures require that the programmer should specify one or
more conditions to be evaluated or tested by the program, along with a statement
or statements to be executed if the condition is determined to be true, and
optionally, other statements to be executed if the condition is determined to be
false.

Following is the general form of a typical decision making structure found in

most of the programming languages:

If condition If condition
is true is false

conditional '

code

MATLAB provides following types of decision making statements.

if ... end statement An if ... end statement consists of a boolean expression

followed by one or more statements.

if...else...end statement | An if statement can be followed by an optional else
statement, which executes when the boolean

expression is false.

If...
elseif...elseif...else...end

statements

An if statement can be followed by one (or more)
optional elseif... and an else statement, which is very

useful to test various conditions.

nested if statements

You can use one if or elseif statement inside another if

or elseif statement(s).

switch statement

A switch statement allows a variable to be tested for

equality against a list of values.

nested switch

statements

You can use one switch statement inside another

switch statement(s).

if....end Statement

An if ... end statement consists of an if statement and a boolean expression

followed by one or more statements. It is delimited by the end statement.

Syntax

The syntax of an if statement in MATLAB is:

if <expression>

% statement(s) will execute if the boolean expression is true

<statements>

end

I the expression evaluates to true, then the block of code inside the if statement
will be executed. If the expression evaluates to false, then the first set of code

after the end statement will be executed.

I

If condition
is true

If condition

is false conditional code

Example

Create a script file and type the following code:

a=10;

% check the condition using if statement
ifa<20

% if condition is true then print the following
fprintf(‘'a is less than 20\n");

end

fprintf('value of a is : %d\n’', a);

When you run the file, it displays the following result:

a is less than 20

value ofais: 10

if...else...end Statement

An if statement can be followed by an optional else statement, which executes
when the expression is false.

Syntax

The syntax of an if...else statement in MATLAB is:

If <expression>

% statement(s) will execute if the boolean expression is true
<statement(s)>

else

<statement(s)>

% statement(s) will execute if the boolean expression is false

end

If the boolean expression evaluates to true, then the if block of code will be

executed, otherwise else block of code will be executed.

If condition
is true

condition

If condition
is false

else code

®

Example

Create a script file and type the following code:

a = 100;

% check the boolean condition

ifa<20

% if condition is true then print the following
fprintf(‘a is less than 20\n");

else

% if condition is false then print the following
fprintf(‘a is not less than 20\n");

end

fprintf('value of a is : %d\n’', a);

When the above code is compiled and executed, it produces the following result:

a is not less than 20

value ofais : 100

if...elseif...elseif...else...end Statements

An if statement can be followed by one (or more) optional elseif... and an else
statement, which is very useful to test various conditions.

When using if... elseif...else statements, there are few points to keep in mind:

An if can have zero or one else's and it must come after any elseif's.

An if can have zero to many elseif's and they must come before the else.

Once an else if succeeds, none of the remaining elseif's or else's will be tested.

Syntax

If <expression 1>

% Executes when the expression 1 is true
<statement(s)>

elseif <expression 2>

% Executes when the boolean expression 2 is true
<statement(s)>

Elseif <expression 3>

% Executes when the boolean expression 3 is true
<statement(s)>

else

% executes when the none of the above condition is true
<statement(s)>

end

Example

Create a script file and type the following code in it:

a = 100;

% check the boolean condition

ifa==10

% if condition is true then print the following
fprintf("VValue of a is 10\n");

elseif (a==20)

% if else if condition is true

fprintf ("Value of a is 20\n");

elseifa==230

% if else if condition is true

fprintf("Value of a is 30\n');

else

% if none of the conditions is true '
fprintf('None of the values are matching\n’);
fprintf('Exact value of a is: %d\n’, a);

end

When the above code is compiled and executed, it produces the following result:

None of the values are matching

Exact value of a is: 100

The Nested if Statements

It is always legal in MATLAB to nest if-else statements which means you can

use one if or elseif statement inside another if or elseif statement(s).

Syntax

The syntax for a nested if statement is as follows:

If <expression 1>

% Executes when the boolean expression 1 is true
If <expression 2>

% Executes when the boolean expression 2 is true
end

end

You can nest elseif...else in the similar way as you have nested if statement.
Example

Create a script file and type the following code in it:

a = 100;

b = 200;

% check the boolean condition

if(a==100)

% if condition is true then check the following
if(b==200)

% if condition is true then print the following
fprintf("VValue of a is 100 and b is 200\n");
end

end

fprintf('Exact value of a is : %d\n', a);
fprintf('Exact value of b is : %d\n', b);

When you run the file, it displays:

Value of a is 100 and b is 200
Exact value of ais : 100

Exact value of b is : 200

While Loop

The while loop repeatedly executes statements while a specified condition is
true.

The syntax of a while loop in MATLAB is as following:

while <expression>
<statements>

end

The while loop repeatedly executes a program statement(s) as long as the

expression remains true.

An expression is true when the result is nonempty and contains all nonzero

elements (logical or real numeric). Otherwise, the expression is false.

Example:1

a=10; % while loop execution

while(a<20)
fprintf('value of a: %d\n', a);
a=a+l,

end

When the code above is executed, the result will be:

value of a: 10
value of a: 11
value of a: 12
value of a: 13
value of a: 14
value of a: 15
value of a: 16
value of a: 17
value of a: 18

value of a: 19

Example 2:

x=3
while (x<100)
X=X*3;

end

When the code above is executed, the result will be:

Output

X=243

Remark: one can think of while loop as a combination of for loop and an if
statement. Here, the looping will keep going indefinitely as long as the
condition (x<100), is satisfied. Therefore, the value of x progresses from
3,9,27,81, to 243 when loop is terminated.

Example 3:

X = input(‘Enter a Number:”);
count = 0;

while x> 1

X = X/2;

count = count + 1;

end

display (count);

When the code above is executed, the result will be:

Enter a Number:
130

Count =

8

Example : 4

X = input(‘Enter an integer:’);
Fact = 1;

While x > 1;

Fact = fact * x;

End

Display(fact);

When the code above is executed, the result will be:

Enter a Integer:
12

Fact =
479001600

For loop

A for loop is a repetition control structure that allows you to efficiently write a

loop that needs to execute a specific number of times.

The syntax of a for loop in MATLAB is as following:

for index = values

<program statements>

end

Example: 1

b=3
fork=1:5
b = bk
end

When the code above is executed, the result will be:

Output
3

9

27

81

243

Remark: the outputs are 3"1,3"2,3"3,3"4 and 3"5. The value of “k” keeps

changing as we go through the loop.

Example: 2

suml =0;
fork=1:9
suml =suml+ k;

end

When the code above is executed, the result will be:

Output
45

Remark: this program performs the summation of 1+2+3+4+5+6+7+8+9 =
45

Example: 3

suml = 0;
fork=1:2:9
suml =suml+ k;
end

suml

When the code above is executed, the result will be:

Output
25

Remark: this program performs the summation of 1+3+5+9 = 45. This
command “for k = 1:2:9” means we go through the loop only 5 times. First
time with k=1, second time with k=1+2(=3), third time with k = 1+2+2(=5),

and so on. The looping stops once k reaches 9.

Example: 4 using array

b=[389475];
suml =0;
fork=1:4

suml = suml+ b(k);
end

suml

When the code above is executed, the result will be:

Output
24

Remark: this program performs the summation of suml=
b(1)+b(2)+b(3)+b(4) = 3+8+9+4 = 24

Example: 5 using array with step 2

b=[389475];
suml =0;
fork=1:2:5

suml = suml+ b(k);
end

suml

When the code above is executed, the result will be:

Output

19

Remark: this program performs the summation of suml= b(1)+b(3)+b(5) =
3+9+7 =19

Example: 6

fora=10:20
fprintf(‘value of a:%d\n’,a);

end

When the code above is executed, the result will be:

Output

value of a: 10
value of a: 11
value of a: 12
value of a: 13
value of a: 14
value of a: 15
value of a: 16
value of a: 17
value of a: 18
value of a: 19

value of a;: 20

Example: 7 using two for loops

suml = 0;
forn=1:2
form=1:3
suml =suml+ n* m;
end

end

suml

When the code above is executed, the result will be:

Output
18

Remark: this program performs the summation of suml=
1*1+1*2+1*3+2*1+2*2+2*3 = 18

Example: 8 using two for loops with printf

forn=1:2
form=1:3
fprintf(‘n = %3u m = %3u \r’, n, m)
end
end

When the code above is executed, the result will be:

Output
n=1 m=1
n=1 m=1

-
I

-
I

>
|

N NN R

3 3 3 3

mn 1l

N NN R

-
I

Example: 9 More complicated use of loop and index

b=[3574983];
c=[2357];

suml = 0;

fork=1:4

suml = suml+ b (c(k));
end

suml

When the code above is executed, the result will be :

Output
24

Remark: this program performs the summation of

sum1=b(c(1)) + b(c(2)) + b(c(3)) + b(c(4))
=b(2) + b(3) + b(5) + b(7)

5+7+9+3

24

Lab Program — 3&4

Numerical methods and their applications: Curve fitting: Straight line fit,

Polynomial fit

MATLAB has an excellent set of graphic tools. Plotting a given data set or the
results of computation is possible with very few commands. You are highly
encouraged to plot mathematical functions and results of analysis as often as
possible. Trying to understand mathematical equations with graphics is an
enjoyable and very efficient way of learning mathematics. Being able to plot
mathematical functions and data freely is the most important step, and this

section is written to assist you to do just that.

Creating simple plots

The basic MATLAB graphing procedure, for example in 2D, is to take a vector

straight lines. You need to prepare x and y in an identical array form; namely, x
and y are both row arrays and column arrays of the same length.

Example:1

Plot a graph considering the vectors, x = (1; 2; 3; 4;5; 6) and y = (3; -1; 2; 4; 5;
1)

>>x=[123456]; —

>>y=[3-12451]; | Y
/

>> plot(x,y) " //

Note: The plot functions have different forms depending on the input arguments.
If y is a vector plot(y) produces a piecewise linear graph of the elements of y
versus the index of the elements of y. If we specify two vectors, as mentioned

above, plot(x,y) produces a graph of y versus x.

Example: 2
Create x as a vector of linearly spaced values between 0 and 2z. Use an
increment of 7z/100 between the values. Create y as sine values of x. Create a line

plot of the data.

x = 0:pi/100:2*pi; | Plot of the Sine function
< . :
y = sin(x); 08r / \

osk / \
/ \

>> xlabel('x = 0:2\pi") |
>> ylabel('Sine of X') M

Sine of x
[=}

>> title('Plot of the Sine function’)

>>p lot (X , y) -04} /
-06F Ay /
-patb \\\ ;,f/
N
o 1 2 3 4 5 6 7

SYMBOL COLOR | SYMBOL LINE STYLE | SYMBOL MARKER
k Black — Solid - Plus sign
r Red —— Dashed 0 Circle
b Blue : Dotted * Asterisk
g Green —. Dash-dot : Point
c Cyan none No line X Cross
m Magenta s Square
y Yellow d Diamond

Multiple data sets in one plot

Multiple (x; y) pairs arguments create multiple graphs with a single call to plot.

For example, these statements plot three related functions of x: y1 = 2 cos(x),

y2 = cos(x), and y3 = 0:5* cos(x), in the interval 0 <x <2z

>> x = 0:pi/100:2*pi; , Tipcaleranpi ofmutpe plos

>>y1 = 2*cos(X);)b _____§°<>{z]

>>y2 = cos(X); 1 "

>>y3 = 0.5*Cos(X); N
i A e

>> plot(x,y1,--' x,y2,-' x,y3,"") g 0

>> xlabel(‘'0 \leq x \leq 2\pi") i \ o

>> ylabel(‘Cosine functions') N o

>> IR

legend('2*cos(x)','cos(x)','0.5*co

S(X)’
)
>> title("Typical example of
multipleplots’)

>> axis([0 2*pi -3 3])

The result of multiple data sets in one graph plot is shown in Figure.

Example

Define x as 100 linearly spaced values between —2z and 2z. Define y1 and y2 as
sine and cosine values of x. Create a line plot of both sets of data.

X = linspace(-2*pi,2*pi);

y1 = sin(x); SERVANRNNAYA

y2 = cos(X);

04r

plot(x,y1,x,y2) 02}

02T
0.4r

0.6

Three Curves in single Plot

Plot three sine curves with a small phase shift between each line. Use the default
line style for the first line. Specify a dashed line style for the second line and a

dotted line style for the third line.

X = 0:pi/100:2*pi;
y1 =sin(x);

y2 =sin(x-0.25);
y3 =sin(x-0.5);

%figure

plot(x,y1,x,y2,'--'X,y3,"")

0.8

06|

p2F
04}
06}

08T

041 /

02t/ /

Specify Line Style, Color, and Marker

Plot three sine curves with a small phase shift between each line. Use a green
line with no markers for the first sine curve. Use a blue dashed line with circle

markers for the second sine curve. Use only cyan star markers for the third sine

curve

X = 0:pi/10:2*pi;

}]
y1 = sin(x); 08f /, ‘s
y2 =sin(x-0.25); 08 f \\Q
L Y
y3 =sin(x-0.5); e f‘ %
0.2 \
plot(x,y1,'g',x,y2,'b--0" X,y3,'c*") i f; \
0.2 ;
0.4}
061
08f £
L s 'E/
-10 1 2 3
Bifurcation Plots
x = linspace(0,3); 1 Top Plot
' TN
yl= sin(5*x); os} / ’ \ f/ \
y2 =sin(15*x); % of
subplot(2,1,1); /- -
p|0t(x’yl)] 0.5 1 1.5 25
Bottom Plot
title('Top Plot") T N A
osH | / I'I | |'I \ |'I \ |
ylabel('sin(5x)') g 0\ |]
subplot(2,1,2): "al LV VL
plot(x,y2) S T
title('Bottom Plot")
ylabel('sin(15x)")

Subplots

x = linspace(0,6);

subplot(2,2,1); % plot sine function

plot(x,sin(x));

subplot(2,2,2); % plot cosine function

plot(x,cos(x));

subplot(2,2,3); 9% plot negative exponential function
plot(x,exp(-x));

subplot(2,2,4); % plot x*3

plot(x, x."3);

sin(x) cos(x)
1 1 :
05} / 05
0 0
05 05
1 g "
0 2 4 6 8 0 2 4
exp(-x) x
1 - , 250 .
0.8} 200
06} |] 150 -
04l 100+
0.2] 50+
0 e 0
0 2 4 3 8 0 2 4

Plots Circle

r=2;

XC = 4;

yc=3;

theta =
linspace(0,2*pi);

X = r*cos(theta) + xc;
y = r*sin(theta) + yc;

plot(x,y) axis equal

45} e

35 /

25T

2t /
15} .

6.5

Plotting in 3-D

[X,y] = meshgrid([-2:.2:2]); % set up 2-D plane

Z = x.*exp(-x."2-y. 2);
surf(x,y,Z,gradient(Z))

colorbar

% plot 3rd dimension on plane figure

% surface plot, with gradient(2)

% determining color distribution
% display color scale, can adjust

% location similarly to legend

0.y

40.1

4005

Polynomials in MATLAB

Evaluating Polynomials
p=[170 -59];

polyval (p,4)

Ans =693

p=[170 -59];
X=[12-34;2-563;3102;5-738];
polyvalm(p, X)

ans=
2307 -1769 -939 4499

2314 -2376 -249 4695
2256 -1892 -549 4310

Finding the roots of Polynomials

Solve the equation 3x2 — 2x — 4

Create the vector to represent the polynomial, then find the roots
P=[3 -2 -4];

r = roots (p)

Ansr=2x1
1.532
-0.8685

Solve the equation x* + 7x3 —5x +9 =0
Create a vector to represent the polynomial, then find the roots
p=[17 0-5 9],

r = roots(p)

r=
-6.8661 + 0.0000i
-1.4247 + 0.0000i
0.6454 + 0.7095i
0.6454 - 0.7095i

The function poly is an inverse of the roots function and returns to the

polynomial coefficients. For example:

p2 = poly(r)

p2 =
Columns 1 through 3:
1.00000 + 0.00000i 7.00000 + 0.00000i 0.00000 + 0.00000i
Columns 4 and 5:
-5.00000 - 0.00000i 9.00000 + 0.00000i

Polvnomial Curve Fitting

The polyfit function finds the coefficients of a polynomial that fits a set of data
in a least-squares sense. If x and y are two vectors containing the x and y data to
be fitted to a n-degree polynomial, then we get the polynomial fitting the data by
writing p = polyfit(x,y,n)

Lab-Program 3: Numerical methods and their applications: Curve
fitting: Straight line fit.

W By the method of least Squares, fit a straight Jine to the following 4
ng data:

S

e oAl T |

Y| 1411395

5
2

e, = 5 values of (x, y) are given. We first form the following Table.

e and in expressions that follow, ¥ denotes ﬁ
i=1

MehatYo=a4q4q. (nterms) = na

%0 — T S T S e

I F—’T“’-‘ ! 14 '

2 13 4 26

3 9 9 27
5 2 25 0 |
= N |
S x=15|Ly=43 |5 x5 =55 X xyi=97 |
%

i i i find that t ,
From the details available in the Table, we he normal — J
the line of best fit are’

43 = S5a + 15b,
97 = 15a + 55b.

Solving these equations, we geta = 91/5 and b = - (16/5). Hence, for the p
line of best fit is

9 16
y=a+bx=?-?x, or Sy=91-16x

Lab Program -3 code with degreel for strainght

line
x=[1:5];
y=[14113}9’5}2];

y_fit =

15.0000 11.8600

8.6000

5.4000

2.2000

p=polyfit(x,y); 1N |]
- : . O
p=polyfit(x,y,1); |
y_fit=polyval(p,x) T 5]
plot(x,y,'ro’,x,y_fit) L |
. O
disp(p) - 1
2 E— l ! {%)
Program with degree 2
m Jit a second-degree pard hola to the followiny, daty.
110 1.5[20(25]30[35T
}) : l s l ‘ .:3 l .(5 :Z.()
> Here, n = 7 values of (x,) are given. We prepare the following Table
Xi Yi xzz ;13 X? | X yfzﬁ,\\
L5 | 13 [225 | 3375 | 50625 | 195 | -
20 | 16 | 40 | 80 1600 | 32 |)
2.5 20 | 625 | 15.625 | 39.0625 5.0 s
30 | 27 | 9.00 | 27.00 | 81.00 8.1 %1
35 | 34 | 1225 | 42875 | 1500625 | 119 | 414
40 | 41 | 1600 | 6400 | 25600 | 164 | gs¢
Sxi=|yi=]|Z8=| Zx=| Xx= | Zxy=]1d-
17.5 | 16.2 | 50.75 | 161.875 | 548.1875 | 47.65 | 154475

Now, we find that the normal equations that determine the parabola of best fit 2z

16.2 = 7a + (17.5)b + (50.75)¢
47.65 = (17.5)a + (50.75)b + (161.875)c
154.475 = (50.75)a + (161.875)b + (548.1875)c

4

Scanne: d with CamScanner

4 I 307
; parab® (
of @ ind*® a= 1.04, b = = 0.198, ¢ = 0.244, Hence, the required
4 : Ve
,{f " .C pation® P
& s 2 — 1.04 — (0.198) x + (0.244)
.‘hiﬂ‘—'l g+ bx + cX 1.0 (L]
L e Vv = ~ - . N LR o ST

Lab Program 4: Program code with degree2 polynomial curve fit

Polynomial curve fit ax*2+bx+c

%x=[1.0:0.5:4.0];
y=[1.1,1.3,1.6,2.0,2.7,3.4,4.1];
p=polyfit(x,y,2);
y_fit=polyval(p,x)
plot(x,y,'ro',x,y_fit)

disp(p)

y_fit =

1.0857 1.2929 1.6214 2.0714 2.6429 3.3357 4.1500

() |

0.2429 -0.1929 1.0357

Lab Program -5

Numerical Integration and Differentiation: Trapezoidal method,Simpson
method.

2. Find Solution of an equation 1/1+x using Trapezoidal rule
x1=1and x2=2
Interval N=35

Solution:

1
Equation is fix) = i

Method-1:
b-a

AT
L

h=

[

-1
h=—]—=02

£
-

The value of table for x and v

x| 1 12 14 1.6 1.8 2
y|0.5]0.45455 | 0.41667 |0.38462|0.35714 | 0.33333

Using Trapezoidal Rule
.'hff'r B g [Jf'c “ysTl (J". T¥ TV T)y)]

. 0.2
-Ll'-:fl' = —[0.3+0.33333 = 2 = (0.45455 - 0.41667 - 033462 + 0.35714)]

. 0.2
|yde = —[05+033333 =2 % (1.61297)]

-Ll'-:fl' = 0.40593

Solution by Trapezoidal Rule is 0.40593

Lab Program 5-Numerical Integration and Differentiation: Trapezoidal method.

Program Code With Example 1:f=1/(1+x)

% MATLAB code for syms function that creates a variable
% dynamically and automatically assigns
% to a MATLAB variable with the same name
syms x
% Declare the function
fl= 1/ (1+x);
% inline creates a function of string containing in f1
f = inline(fl);
a=input ('Enter lower limit, a:');
b=input ('Enter upper limit, b:');
n=input ('Enter no. of subintervals, n: '");
h=(b-a) /n;
S0=0;s1=0;
sO=f (a) +£ (b) ;
for i=1:n-1
x=a+i*h;
sl=sl+f (x);
end
s=(h/2) * (s0+2*s1) ;
fprintf ('The approximate value of integral by
Trapizoidal Rule is: %11.8f\n\n', s);

OUTPUT

Enter lower limit, a:1

Enter upper limit, b:2

Enter no. of subintervals, n: 5

The approximate value of integral by Trapizoidal Rule is: 0.40592741

Program with Example 2:f=sin(x)

% MATLAB code for syms function that creates a variable
% dynamically and automatically assigns
% to a MATLAB variable with the same name

syms x
% Declare the function

fl= sin(x);
% inline creates a function of string containing in f1

f = inline(£f1);

a=input ('Enter lower limit, a:');
b=input ('Enter upper limit, b:');
n=input ('Enter no. of subintervals, n: ');
h=(b-a) /n;

S0=0;s1=0;

sO=f (a)+£(b);

for i=l:n-1

x=a+i*h;
sl=sl+f(x);

end

s=(h/2)* (s0+2*s1);

fprintf('The approximate value of integral by Trapizoidal
Rule is: %11.8f\n\n', s);

OUTPUT

Enter lower limit, a:2

Enter upper limit, b:8

Enter no. of subintervals, n: 5

The approximate value of integral by Trapizoidal Rule is: -0.23736200

Lab Program 6-Numerical Integration and Differentiation:Simpson’s method
Simpson’s 1/3 rule

2. Find Solution of an equation cos(x)-log(x}+exp(x) using Simpson’s 1/3 rule
x1=0andx2=10
Interval N =6

Solution:
Equation is fix) = cos(x) - log(x) = &

The value of table for x and y

x| 0 [166666667 333333333 5 6.66666667 | ©.33333333 10
"Undefined" |4.97691775|26.52707214 | 147.99785126 | 785.87545319| 4150.87998258 | 22024.62672328

~

1
Using Simpsons 3 Rule

st

., 166666667
_| yde = [(Undefined + 22024.62672328) = 4 x (4.97691775 = 147.99783128 - 4158.87998238) = 2 x (26.52707214 + 785.87543319)]

B
J

166666667

A
J

[yd= [(Undefined + 22024.62672328) = 4 x (4311.83475162) = 2 (812.40252333)]

|k = Undefined

1
Solution by Simpson's 3 Rule is Undefined

Program Code Example 1 : SIMPSON 1/3 RULE FOR cos(x)-log(x)+exp(X)

SIMPSON 1/3 RULE FOR cos (x)-log (x)+exp (x)

Q

MATLAB code for syms function that creates a
variable

o\

dynamically and automatically assigns
to a MATLAB variable with the same name
yms x

Declare the function

1 = cos(x)-log(x)+exp(x);

% inline creates a function of string containing
in f1

f = inline (£f1l);

a=input ('Enter lower limit a:"')

b=input ('Enter upper limit b:")

n=input ('Enter the no. of subinterval:')

o\® o©

w

o\@

Hh

h=(b-a) /n;
if rem(n,2) ==
fprintf ('\n Please enter wvalid n!!!'");
n=input ('\n Enter n as even number')
end

o@

X stores the summation of first and last segment
= f(a)+f(b);

s

0@

variables 0dd and Even to store
summation of odd and even
terms respectively
odd = 0:
Even = 0;
for 1 = 1:2:n-1
xi=a+ (i*h);
0odd=0dd+£f (x1) ;
end
for 1 = 2:2:n-2
xi=a+ (i*h) ;
Even=Even+f (x1i) ;
nd
Formula to calculate numerical integration
using Simpsons 1/3 Rule
I = (h/3)*(X+4*0dd+2*Even) ;

o°

oe

de (D

o°

disp('The approximation value of integral by Simsons
1/3 Rule is: ');

OUTPUT
Enter lower limit a:0
a=0

Enter upper limit b:10
b =10
Enter the no. of subinterval:5

n =5

Please enter valid n!!!
Enter n as even number6
n =6

The approximation value of integral by Simsons 1/3 Rule is: Inf

Program code Example 2: SIMPSON 1/3 RULE FOR 1/(1+X)

2. SIMPSON 1/3 RULE FOR 1/ (1+X)

¢ MATLAB code for syms function that creates a

variable

% dynamically and automatically assigns

% to a MATLAB variable with the same name

Syms x

% Declare the function

f1 = 1/(1+x);

% inline creates a function of string containing

in f1

f = inline(f1l);

a=input ('Enter lower limit a:')

b=input ('Enter upper limit b:"')

n=input ('Enter the no. of subinterval:')

h=(b-a) /n;

if rem(n,2) ==
fprintf('\n Please enter valid n!!!");
n=input ('\n Enter n as even number')

end

SIMPSON 1/3 RULE FOR 1/ (1+X) (Cont...)

% X stores the summation of first and last segment
X = f(a)+f(b);
% variables 0dd and Even to store

% summation of odd and even

% terms respectively

odd = 0;

Even = 0;

for 1 = 1:2:n-1
xi=a+ (i*h);
0dd=0dd+f (x1) ;

end

for i = 2:2:n-2
xi=a+ (i*h);
Even=Even+f (x1) ;

end

Q,

% Formula to calculate numerical integration
% using Simpsons 1/3 Rule
I = (h/3)*(X+4*0dd+2*Ewven) ;

disp ('The approximation value of integral by
Simsons 1/3 Rule is: ');

disp (I)

OUTPUT
Enter lower limit a:0
a=0

Enter upper limit b:10
b =10

Enter the no. of subinterval:6
n =6

The approximation value of integral by Simsons 1/3 Rule is: 2.4492

Program code Example 3: SIMPSON 1/3 RULE FOR log(x)

SIMPSON 1/3 RULE FOR log(x)

% MATLAB code for syms function that creates a
variable

% dynamically and automatically assigns

% to a MATLAB wvariable with the same name

syms x

% Declare the function

fl = log(x):;

% inline creates a function of string containing

1
f = inline(£f1l);

a=input ('Enter lower limit a:')

b=input ('Enter upper limit b:")

n=input ('Enter the no. of subinterval:"')

h=(b-a) /n;
if rem(n,2) ==
fprintf ('\n Please enter wvalid n!!!");

n=input ('\n Enter n as even number')
end

SIMPSON 1/3 RULE FOR log(x) (Cont..)
% X stores the summation of first and last segment
X = f(a)+f(b);

o

variables 0Odd and Even to store
summation of odd and even
terms respectively
odd = 0;
Even = 0;
for i = 1:2:n-1
xi=a+ (i*h);
0dd=0dd+f (x1i) ;
end
for i = 2:2:n-2
xi=a+ (1i*h);
Even=Even+f (xi) ;

o

o

end

o

Formula to calculate numerical integration
% using Simpsons 1/3 Rule
I = (h/3)* (X+4*0dd+2*Even) ;

disp('The approximation value of integral by Simsons
1/3 Rule is:");
disp(I)

Output:

simsonsl
Enter lower limit a:4

a =4

Enter upper limit b:5.2
b =5.2000
Enter the no. of subinterval:6

n =6

The approximation value of integral by Simsons 1/3 Rule is:
1.8278

SIMPSON’S 3/8™ RULE

2. Find Solution of an equation e®{x)./{1+x) using Simpson's 3/8 rule
x1=0and x2=10
Interval N =6

Solution:
- £
Equation is fx) = :

Method-1:
b-a
-

|
h= 5 =] 66666667

The value of table for x and »

x| 0| 1.66666667 333333333- 5 - 6.66666667 | 8.33333333 10
y|1]|1.98543377 | 6.46833651 _24 73552652 _ 102.49199925 (445.74235772 | 2002 40598135_
3
Using Simpson's = Rule
3 o
Jyd = ?[(_-"o‘-"ﬁ}‘-{-‘i]‘-‘{.‘:‘.‘:‘J-".'*'EJ]
. 3 = 166666667
j_‘.‘a‘x = T:[l + 2002 40598135) =+ 2 = (24.73552652) + 3 = (1.98543377 = 6.46883651 + 102 49199025 + 445.74235772)]
. 3 x 166666667)) o _
j}'a:.“x = fiﬂl <+ 2002 40598133) + 2 = (24.73552632) + 3 = (556.68862723)]

¥ = 1316.83931138

Solution by Simpson's % Rule is 2132683932258

Program Code for Simson’s 3/8 Rule

SIMPSON 3/8 RULE
f=@(x) exp(x)./(1+x); %Define a function
a=input('Enter lower limit a:');
b=input('Enter upper limit b:');
n=input('Enter the no. of subinterval:');
if rem(n,3) ==

fprintf("\n Thanks! It’s a valid n!!!');
else
fprintf("\n Please enter valid n!!!');
n=input("\n Enter n as multiple of 3:');
End
h=(b-a)/n;
k=1:1:n-1;
S=f(a+k*h); %compute v, k
1=3:3:n-1;
S3=sum(S(3:3:n-1)); %compute sum
S(1) =[]; %Delete the values at | position
So=sum(S); %Compute sum
% Write Simpson 3/8 Formula
out=(3*h/8)*(f(a)+f(b)+3*So+2*S3);
fprintf('The value of integration is %f\n',out);

OUTPUT:

Enter lower limit a:0

Enter upper limit b:10

Enter the no. of subinterval:6

Thanks! It’s a valid n!!!The Approximate value of integration by Simson’s 3/8 Rule
is2326.839323

Lab Program 7&8

Linear and Nonlinear Equations: Eigen values, Eigen vectors, Solution of linear
algebraic equations using Gauss Elimination and LU decomposition, Solution of
nonlinear equation in single variable using Gauss-Siedal and Newton-Raphson

method.

Eigen Values and Eigen VVectors:

D" T chedacleddn'c Cpanon of N Vo

Pt sk - ')’ 1 o O g
\n’)\'l.\ =0 = : L-r \ ~5%] & +O& =0
3 1 1 © 0|

R 2
i B GRS E \ .
3 v O N)

e ¥ oty e \\'nfﬂ
23— (SAIN H (Smd)N-\PI= 0

pdeg W 3 0 R0, e how

):cl:lrt?r\‘—"{, -))
3 15 - =(S=0r (=)
T'n'\d:\"‘ !*\3\\."\IS\‘ *(S_—‘).

S I-f-‘g'\‘)‘:D

T‘—:”;" . ¥ &5 K27
‘!S‘n\‘\\s'l_\\} \4—3\3“
=2 SE !
= (5-|)-(1,3)+3(|—\§)= lﬁ—a"fa_'
o=z — -32€
S RN_FN+er+3€ =0
= N-FW4+26=0 -)

Put A== im (®) (> 3 _gx3) v 36 =0
2y = =A% 36 =0 D o=2

SoGr) = (M) (%’—Q)ﬁ'\S)’—'O
™ © N4 a9t — X —1g8x Y€ +34 = O
ST AR) - AN (A ER) ¥ ra)=o
= (h+2) (W -ArT18) =]
s PR RRTAE =D

N—-AaANtT\t =0
= (A-3)(»-6) =0

=5 NN-6) -B3(A—6) =0

@ = O (-DOH =0
—9 Nz -2, 3,6 0 Wwa exgem voduaes OF 1We

""ﬂ\a}"f oA

b ~—— = oA

= chohaciutne MRt
e:& . Fyom W -~
oot [H AT ()= ={o)

HN V3> ’\X ‘\ [
[\ s-»
\ (\)
e AR T T S _
= [1”-,--;)1*11\ {%x >

2ty + (-
Frew ni defn of equivalect Mobiite

Bearrant avh Camytearvme

(=M% ty4 32=0
'\f('S-/\)‘dq:(: 0 y (@
ANy + (A X o

Care (i) FOY A:=-2 , C‘cv\(\wn, fx) e tor—es

—

ALYy 1320 -0)

W AT azs0 -0

AN 4y *+32:0 ce i) N .

By Owh b platceton
Cw‘m\.‘, L\) L) axne
s

X . = =Y. = =
(1 =T%X3) (Ba1=1%3) (3x3- 120

= A = =¥ = =
~2po o ao

= =) g B
X('[:,] s lhe e«¢6u\ Ve ¢

S

(I

on (D F (M)) weger

\~c>

Qose(t) Fos A=2 equane (x) belev—es
——

—AXAT1IR =0 =-0V)
A FAgA X =0 T
BN XY "R =0 - (V)
Ry S anulk phcohon o

_’_x—-— - —1 = Z
S~ o B

ov) £ (V)

s

CM(((‘("‘) Rt A=¢ i (x), ! ?’]“

————
’ ——

v/ 'SXQ‘UV%Z:U ..(vml '
- X -\QI ST R '(:(V"'.[)
A 4 “~§X s =" l‘X, i
. \ o) Wi U 'L) o
bxé ks 'w\tuhpl«'caﬂm /

Koy A wR smag Yeg
I+ % %3 §- T8y
=) K= 1 : &
¥ & 3
(NS Py
5 i " vadme Ve
| 9\ -3 3
Lab Program 7: Program code for Egien values and Eigen vectors
A=[8 -6 2;
-6 7 -4;
2 -4 3]
disp("Matrix");
disp(A)

%Eigenvalues and right eigenvectors of matrix A
[V.D]=eig(A)

OUTPUT:

Matrix

0.3333 0.6667 -0.6667
0.6667 0.3333 0.6667
0.6667 -0.6667 -0.3333
D=
0.0000 0 0
0 3.0000 0
0 0 15.0000

Gauss Elimination Method:

, G]CLL&F)P""- 3 L‘\'"-'\ v <> 4+ ' 1] LR SC= § vy)

NN L = e
. |

. \\da R
3“’*(¢’7-a2,—_<i

(A7) = | e T ‘; |
> 2y =

Lab Program 8a: Guass Elimination Method using back substitution

% Solve Ax = b using Naive Gauss Elimination
A= 111 213; 34-=2];
b= [4;7;9];

%% Gauss Elimination
% Get augmented matrix

Ab = [A, b];

% With A(1,1) as pivot Element
alpha = Ab(2,1)/Ab(1,1);

Ab(2,:) = Ab(2,:) - alphaxAb(1,:);
alpha = A(3,1)/A(1,1);

Ab(3,:) = Ab(3,:) - alpha%Ab(1,:);

% With A(2,2) as pivot Element
alpha = Ab(3,2)/Ab(2,2);
Ab(3,:) = Ab(3,:) - alpha*Ab(2,:);

%% Back-Substitution
x = zeros(3,1);

x(3) = Ab(3,end)/Ab(3,3);

x(2) = (Ab(2,end)-Ab(2,3)*x(3)) / Ab(2,2);

x(1) = (Ab(1,end)-(Ab(1,3)*x(3)+Ab(1,2)*x(2))) / Ab(1,1);] Y
OUTPUT:
X =

1

2

Lab Program 8b: LU Decomposition

‘:“D\\‘h\ﬁ ,.‘.’svasécfml o4 ecw\ antms hom a/

BV .[(.\c,\ln‘\,o%o._l—n‘cn'l Mo

X":}\‘d"&z:g
RN~ hy-3z=8
Sdep() 1 Fowst, e hawe to Comvent Aeqsvem °of eqma-

dens “-::Tt-a et ﬂoxm-) B
A P b \ w‘f\l}u_ =

e

Py 6
= ‘ -3 =3 N - x b=
EEEE it

=3 14 4

<

S eP @) ek e (omVest h—:)'q*h:: LT
te A= L U Lohene L ondt U ane fLecssi

ced Lpply tRoagalar TMaTres |

Séﬂf@ Yow, Rx=Db
= LUX-=b

lat Ux=y = bLy=b

Ze\\ne
Sa-ip_@ Eivst, o honee ¥ i - L"L7'='
ﬁl: L"b l *L'b
Ly=b 2 51y-=L'h
-:)V:_L"b

5»_«43@ Ux=y vlox=u'y
o> Ta=U'y =2 x= U

Program Code 8b: for LU Decomposition

%2 A = coefficient matrix

% b = right hand side wvector
% X = solution wvector

A= [12 3; 4 5 06; 78 9];
b=[4; 5; 6];

[m,n]=size (A);

if m~=n

fprintf ("Matrix A must be square")

end

[L, U] = 1lu(A); % LU factorization
disp("L = ");

disp (L)

disp("U = ");

disp (U)

Y = L\b ; % solution of Y

disp("Y = ") ;

disp (Y)
X=U\Y ; % solution of X

diSp("X _ u);
disp (X)

OUTPUT

Decomposition

L=
1.0000 0 0]
0.6667 0.8333 1.0000
1.0000 1.0000 0

U=

3.0000 2.0000 7.0000
0 2.0000 -6.0000
0 0 1.3333

Y =
4.0000
3.0000
-0.1667

0.8750
1.1250
-0.1250

Lab Program 8c: Solution of nonlinear equation in single variable using Gauss-Siedal

Gauss Seidal Method

5. Solve Equations 2x+y+z=15,3x+5y+22=11,2x+y+4z=8 using Gauss Seidel method

Solution:
|l| Total Equations are 3

From the above eguations

(5-5-5)

=

Xk+1

Ye=17 %(11 e - L-k)

Zx-17 _'11(3 -2 -.Vb:)

Initial gauss (x,y,z) = (0,0, 0)

Solution sieps are
1% Approximation

1 1
X =305-@-©@]=3015]1=735

1 1
y=3M11-3(7.5)-20)] = [-11.5]= -23

! g A~ 1 - ot
= 3[3-3(7--‘)-(-2-1,'] = I[--‘i.:] =Z1175

27 Approximation

1 1
xp= =[13-(-2.3)- (- 1.1759] = S[18.475] = 22373

1
Yo = 5[11 -3(8.2375) - 2(- 1.175)] = [- 14.3625] = - 2.8723

[T

1 1
Iy = I[S -2(82375)-(-28725] = I[- 7.6023] = - 19006
3" ppproximation

1 1
x3=35[13-(-2.8725) - (- 1.8006)] = 5[18.7731] = 9.8866

1
[11 - 3(9.8866) - 2(- 1.9006)] = E[- 14.8384] = - 29717

-
i
[l
]

1 1
3= I[S - 2(9.8886)-(-2971T] = I[- 8.8014] = -22004
4% ppproximation

1 1
x4 = 3[15- (- 2.9717) - (- 2.2004)] = 5[20.172] = 10.086

ya=

L |

1
[11 - 3(10.086) - 2(- 2.2004)] = E[- 14.8574] = - 29713

1 1
Ig= I[S - 2(10.086) - (- 2.9713)] = I[-9.2006] = - 2.3001

5% Approximation

1
[15 -(-29715)-(-2.3001)] = $[202716] = 10.1338

b2 | =

1 1
¥s = z[11 - 3(10.1358) - 2(- 2.3001)] = E[- 14.8071] = -2.9614

1 1
.= E[S - 2(10.1358) - (- 296147 = 1[-93102] = - 23275
&% Approximation

1 1
x5 = 5[15-(-29614)-(-13175)] = 5[20.185] = 10.1445

1 1
Ys= ;[11 -3(10.1445) - 2(-23275)] = <[- 14.7784] = - 29557

1 1
Iz= I[S - 2(10.1443) - (- 29537 = I[-9.3333] = -23333

75 Approximation

1 1
X7 = =[15 - (-29557) - (- 2.3333)] = 5[20.289] = 10.1445
1 1
vr = 211 -3(10.1445) - 2(- 2.3333)] = [- 14.7668] = -2.8534

8™ Approximation

l 1
xg=5[13-(-29534) - (- 13339)] = 5[20.2873] = 10.1436

7
4

| —

1
vy = Z[11-3(10.1436) - 2 - 2.3339]] = E[- 14.7631] = - 29526

L

1
5= 1[8-2{1#].143'5] -(-28526)] = 1[-9.334?] = . 13337

Solution By Gauss Seidel Method.
x=101436 21014

y=-283262 -29;

.
= -4

[
b

Lab Program 8c: Code for Gauss-Siedal

clc

clear

close all

A=[211;352;214]

b=[15 11 8]';

x=linspace(0,0,length(A))'

%x =[0 0 0]'

n=size(x,1) %n=3

normVal=Inf

nmax=1000 %number of maximum iterations which can be reached%

tol=1e-3 % Tolerence for method%

iter=0

while normVal>tol && iter<nmax
x_old=x;

fori=1:n

guess=0

for j=1:i-1
guess=guess+A(i,j)*x(j)

end %guess =0

for j=i+1:n
guess=guess+A(i,j)*x_old(j)

end %guess =0

x(i)=(1/A(i,i))*(b(i)-guess) %for i=1,x =[7.5000 0 0]'
% for i=2,x =[7.5000 -2.3000 0]
%for i=3,x =[7.5000 -2.3000 -1.1750]'
end
iter=iter+1
normVal=norm(x_old-x)

end

fprintf('Solution of the system is : \n%f\n%f\n%f\n%f\n%f in %d
iterations',x,iter);

OUTPUT:

Solution of the systemis :
10.143142

-2.952420

-2.333466

9.000000

Lab-Program 8d: Solution of nonlinear equation in single variable using Newton
Raphson Method

Note : cos(x) will be calculated in Radian mode. For Degree mode, select the option in Trigonometry Function Mode
Find a root of an equation f{x) = cos(x) - x - exp(x) initial solution x,=1, using Newton Raphson method

Solution:
Here cos(x) -xe* =10

Let flx) = cos(x) - xe*
A f(x) = -exp(x) - sin(x) - x - exp(x)

x=1

1% iteration :

Hxo) = A0 = cos(n) - 161 = -2.478

S (xg)=f (W)= - &' -sin()) - 1¢' = -6278

)
f (Xo)

-2.178

-6.278

x]=x,3-

xy=1-

xp = 06331

2 iteration :

X, | = A0.6331) = cos(0.6331) - 0.6531e%9531 = _ 0 4606
1

7 (xl) =£(0.6531) = - 252 _5in(0.6531) - 0.6531e%851 = 37839

1)
()

.\'2=X1-

... -0.4606
xy = 0.6331 - 3790
X, =0.3313
Absolute error

e= lxy-x [= 105313 - 06531 = 0.127
374 iteration :
1(x3) =03313) = cox0.3313) - 0.3313¢"5 = . 00418

7 (xz) =£(0.5313) = - 05303 _ 5in(0.5313) - 0.531360530 = 31118

Lab Program -8d: Code using Newton Raphson Method
% Clearing Screen
clc

% Setting x as symbolic variable
Syms X;

% Input Section

y = input('Enter non-linear equations: '),

a = input('Enter initial guess: "),

e = input('Tolerable error:);

N = input('Enter maximum number of steps: ');
% Initializing step counter

step =1;

% Finding derivate of given function
g = diff(y,x)

% Finding Functional Value
fa = eval(subs(y,x,a));

while abs(fa)> e
fa = eval(subs(y,x,a));
ga = eval(subs(g,x,a));
if ga ==
disp('Division by zero.');
break;
end

b = a - fa/ga;
fprintf('step=%d\ta=%f\tf(a)=%f\n',step,a,fa);
a=b;

if step>N
disp('Not convergent');
break;
end
step =step + 1;
end

fprintf('Root is %f\n', a);

OUTPUT:

Enter non-linear equations: cos(x)-x*exp(x)
Enter initial guess: 1

Tolerable error: 0.00001

Enter maximum number of steps: 20

g:

- exp(X) - sin(x) - x*exp(x)

step=1 a=1.000000 f(a)=-2.177980
step=2 a=0.653079 f(a)=-0.460642
step=3 a=0.531343 f(a)=-0.041803
step=4 a=0.517910 f(a)=-0.000464
step=5 a=0.517757 f(a)=-0.000000
Root is 0.517757

Lab Program 9&10

Ordinary Differential Equations: Introduction to ODE’s, Euler’s method, second
order RungaKutta method, 10 MATLAB ODE45 algorithm in single variable

and multivariables. Transforms: Discrete Fourier Transforms.

Lab Program 9a: Euler’ Methods

Euler's method for solving first order differential equation

d
Z=f: ylxo) =y

Yier =Y+ WGy
<z v
W,‘ml &

Xig1 =X +h
Exemple MATLAB CODE: EXPLANATION
Using Euler's method, find the value of
¥(0.1) with step size h = 0.025 % Define the Objective function
fo: ’dlfff'_‘enhal equation £ = Biny) () Miusois
d—':_ = Hwi?h y(0) =1
- % Input the parameters
— x =input ('Enter the initial
Here f(xy) =22 i value of x: ');
y =input ('Enter the initial
A value of y(x): ');
+=0 h =input ('Enterthe step
,0'?’ size (h): ');
i
X =input ('Enter X at which ¥
is [r:».llli[p ks %) 4
Example MATLAB CODE: EXPLANATION

Using Euler's method, find the value of

y(0,1) with step size h = 0.025 S S 35 ¥ K (L Beipeiha
f : 5 . k=1; % Set iteration counter
fo: .d|ff'erfenhal equation B .
d—: = ::: with y(0) = 1 fprintf ('Value of y at _:-:i%f
Ixi+1=xi+h| 1s %f \n',x,y):;
x y f(x,y) — fxy = £(x,y); % Compute f(x.4)
=y + hf (x.y) newy = y+h.*fxy; % Compute new y
0 1 1 10250 | % For printing purpose
0.025] 1.025 [0.9524| 10488 | Esbik,i)=[x ¥ fxy Desiyl
0.050[1.0488/0.9090] 10715 | k = k+l; % Update iteration
0.075(1.0715|0.8692| 10933 | x = x+h; % Update x
| 0} |1.0933]0.8324] 1.1141 y = newy;\ % Update y
Thus, y(0.1) = 1.0933 end)

EULER’S METHOD(Cont...)

% Printing the Results

Resl= array2table(rsl); % Convert Array to Table

Resl.Properties.VariableNames(l:size(Resl,2)) = Variables

% Print Optimal Result

fprintf ('Output of y(%f)=%f \n',6X,rsl(end,2));

Program Code 9a: for Euler’methods:

$Define the Objective function

f=0(x,v) (v-x)./(y+x);

$Input the parameters

input ('Enter the initial value of x: ');
input ("Enter the initial value of y(x): ');
input ("Enter the step size (h): ');

X= input('Enter X at which Y is required: ')
Variables = {'x','y', 'fxy', 'NewY'};

k = 1; % Set iteration counter

while X>=x

fprintf ('Value of y at x=%f is %f \n', x,V);
fxy = f(x,y):; % Compute £ (x,Vy)

newy = y+h.*fxy; % Compute new y

% For printing purpose

rsl (k,:)=[x y fxy newy]:;

oo X
Il

k = k+l; % Update iteration
x = x+h; % Update x

y = newy; % Update y

end

% Printing the Results

Resl= array2table (rsl); % Convert Array to Table
Resl.Properties. VariableNames (l:size (Resl, 2)) =Variables
% Print Optimal Result

fﬁrintfi'OutBut of ;I%fi=%f \n’i Xi rsl iendi 2::;

OUTPUT:

nonlinearl

Enter the initial value of x: 0

Enter the initial value of y(x): 1
Enter the step size (h): 0.025

Enter X at which Y T is required: 0.1

X=

0.1000
Value of y at x=0.000000 is 1.000000
Value of y at x=0.025000 is 1.025000
Value of y at x=0.050000 is 1.048810
Value of y at x=0.075000 is 1.071534
Value of y at x=0.100000 is 1.093264

Resl =

5x4 table

X y fxy NewY

0 1 1 1.025
0.025 1.025 0.95238 1.0488
0.05 1.0488 0.90899 1.0715
0.075 1.0715 0.86917 1.0933
0.1 1.0833 0.83239 1.1141

Output of y(0.100000)=1.093264

Lab Program 9b: RungaKutta Method

ky=hf(tnyn)
ky=hf(tys0yntky)

Yn+1 =)'n+%[k1 +k2]

Question: Given that

d — 7005t - =
a{+20y_7e 05t ; y(o)_s
Compute y(0.2) using Rk Method of order 2 by taking h = 0.1

RUNGE KUTTA METHOD OF ORDER 2(Cont...)

Solution: Here
f(t.y)=—20y+7e-05¢
y(0)=5=> Vo=05 &ty=0
1* iteration n=0
ky=hf(to,yo)= -9.3
t,=to+h=0.1
kz:fUTtpyD+k,):(01)(926586): 9.2659
vi=7yo+ é [k1 + k2] = 4.9829
y(o.l) = 4.9829

2% jteration n=1
ky=hf(tsy,) =93
ty=to+2h=02

ky = hf (t,, Jy k) = 9.2675
Va=y 4 é ’k, + kzl = 49667

y(O.Z) = 49667

Lab -Program 9B- Rungekutta method order 2.

f = input('Enter your function: '); $right hand side of ODE

to= input('Enter intial walue of independent wvariable: ') ;

yo =input ('Enter intial walue of dependent wvariable: '});

h=input ('Enter step size: "');

tn =input('Enter point at which you want toc evaluate scolution: ");
n=(tn-te) /h;

t{(l)= to; vi{il) = vo;

for i=1l:n

t{i+l) = to + i*h;

kl= h*f (t(i),y(i));
k2= h*f(t(i+1), v (i)+kl);

yv(i+l) = y(i) + (1/2)* (k1l+k2);
fprintf('y(%.2f) = 2.4f\n', t(i+l),y(i+1l))
end

Output:

Enter your function: @(t,y) -20*y+ 7*exp(-0.5%*t)
Enter intial value of independent variable: O

Enter intial value of dependent variable: 5

Enter step size: 0.1

Enter point at which you want to evaluate solution: O..
y(0.10) = 4.9829

y(0.20) = 4.9667

Lab Program 9c: ODE 45

Symbolic Differential Equation Terms

y y
@ Dy
dt

d2

dtg/ D2y
d"y

dt" bny

Description
ezplot(f) - plots the expression f = f(x) over the default domain: -2r < x < 27.

ezplot(f,[min,max]) - plots f = f(x) over the domain: min < x < max.

Example 11_1- SOIVe DE beIOW With " : Figure1l1-1.Solulion‘ofExamplejMbasednlndsnlveam?ezplm
MATLAB. \
d—y+2y=12 »(0)=10 "
dt S~ |
T
>> vy = dsolve('Dy + 2*y = 12', 'y(0)=10")
y —

6+4*exp(-2*t)

X axis range from 0 to 3
and y- axis range from 0

to 10.
>> ezplot(y, [0 3])

>> axis([0 3 0 10])

= - [X] [- [=] ~ @]

Example 11-3. Solve DE below with

MATLAB.

2
d—2y+3d—y+2y=24

e dt
y(0)=10 y'(0)=0

>>y = dsolve('D2y + 3*Dy + 2*y = 24',

'y(0)=10', 'Dy(0)=0)
y —
1242*exp(-2*t)-4*exp(-t)

>> ezplot(y, [0 6])

M8
M6
1M14r
M2+

108
106
104+

Figure 11-3. Solution of Example 11-3 based on dsolve and ezplot

w02t /

The approximate and exact solutions agree to 6 decimal places. This is a
contrast with the result we had for the same equation when we used

Euler's method.

Solver Accuracy Description

oded5s Medium This should be the
first solver you try
ode23 Low Less accurate
than ode45s
odell3 | Low to high For
computationally
intensive
problems
odel5s Low to Use if oded5
medium fails because the
problem is stiff*

2"d order ODE using ODE45

Using MATILAB ode4S to solve differential equations

This shows how to use MATLAB to solve standard engineering problems
which involves solving a standard second order ODE (constant coefficients with
initial conditions and nonhomogeneous).

A numerical ODE solver is used as the main tool to solve the ODE’s. The
MATLAB function ode45 will be used. The important thing to remember is that
ode45 can only solve a first order ODE. Therefore to solve a higher order ODE.
the ODE has to be first converted to a set of first order ODE"s. This is possible
since an order ODE can be converted to a set of first order ODE’s.

Gives a first order ODE % = f(t)

An example of the above is % = 3 e® with an initial condition x(0) = 0.

Lab Program 9c: ODE 45 for dx/dt=3exp(-t)

ODEA45 solver :

File Edit View Insert Tooks Deskiop Window Help

function testl Node| kR ODEL G008 a0

t=0:0.001:5; 0
initial x=0;
[t,x]=0ded5 (@rha, t, initial x);
plot(t,x); .
xlabel ('t"); ylabel('x"); xas)

o5t

ab

function dxdt=rha(t, x) |
dxdt=-3*exp (-t); : \\\
25|
end

eI‘ld i 4] 0.5 1 15 2 25 3 35 4 4.5

2"d order ODE using ODE45

To solve a second order ODE, using this as an example.

d*z de .
0 + 5E —4z(t) = sin(101)

Since ode45 can only solve a first order ode, the above has to be converted to two first order
ODE's as follows. Introduce 2 new state variables x;, 3 and carry the following derivation

T = m} take derivative &) = x’} doreplacement T) = Ty } Ty =13 }
2 =1 zy=21" 2y = -z’ +dz+sin(10t)) oy = —5zy+ 4z +sin(10t)
The above gives 2 new first order ODE's. These are

T =
Ty = =529 + 4z, +sin (10t)

Now ode45 can be used to solve the above in the same way as was done with the first example.
The only difference is that now a vector is used instead of a scalar,

| 2" order ODE using ODE45
function second order ocde

t=0:0.001:3; & Figure 1 - O *

initial x=0;: File Edit WView Insert Tools Desktop Window Help -
- NEde [kRS 09LL- G 08 =D

initial_dxdt=0;

0.14

[t,x]=oded5 (Erhs, t, [initial x initial dxdt]);

plot(t,x(:,1)); 0.12
xlabel('t'); ylabel('x');
function dxdt=rhs(t, x) o /S
dxdt 1=x(2); 0.08 '

dxdt 2=-5*x(2)+4*x(1)+sin(10*t);

0.08 ~_/
dxdt=[dxdt_1;dxzdt_2]; S

end L

0.02

end

Lab Program 10: Transforms: Discrete Fourier Transforms

Fourier Transform

Find Discrete Fourier Transform (DFT) of x(n) = [2 3 4 4]
Solution:
N—1 5
X(k) = > _ x(ne W for k=0,1.,N—1
n=0
eIF = cosg —jsing =—j e I™= cos(m) — jsin(mw) = —1
E = cos:%’r —jsin?%'r =j e 2™ = cos(2r) — jsin2(w) =1
for k=0,1,2,3
3
X(0) = 3> x(n)e® = [2e® + 3e% + 4€% +4€%] =[2+3+4+4] =13
n=0
3 ;2mTn ; : 3
X(1) = 3 x(n)e %" = [2e® + 3e~i™/2 4 4e—i™ 4 4e=37/2] = [2 — 3j — 4+ 4j] = [-2+]
n=0
3 — i . ; 2
X(2) = x(n)e—‘ﬁ— = [2e° +3e ™ + 42" 43" =[2—-3+4—-4]=[-1—-0j] = -1

n=0
3 —j6xn . . .
X(3) = > x(n)e_% = [2e% + 3e—B7/2 4e—i37 4 4e—19"'/2] =[243/—4—4j][-2—]]
n=0
The DFT of the sequence x(n) = [2 3 4 4] is [13, -2+j, -1, -2-]] @

xn=[2 3 4 4]
N=length(xn)
n=0:N-1

k=0:N-1;
WN=exp(-1j*2*pi/N);
nk=n"*k;
WNnk=WN."nk;
Xk=xn*WNnk

Xk =

Columns 1 through 2

13.0000 + 0.0000i -2.0000 + 1.0000i
Columns 3 through 4

-1.0000 - 0.0000i -2.0000 - 1.0000i

Lab Program 11,12,13

Application of MATLAB to analyse problems in basic engineering mechanics,
mechanical vibrations, control system, statistics and dynamics of different
circuits. MATLAB Simulink: Introduction to MATLAB Simulink, Simulink

libraries, development of basic models in Simscape Power.

Introduction to Simulink

“+Simulink is a software package for modeling, simulating, and analyzing dynamical
systems.

%It supports linear and nonlinear systems, modeled in continuous time, sampled time,
or a hybrid of the two.

“*For modeling, Simulink provides a graphical user interface (GUI) for building
models as block diagrams, using click-and-drag mouse operations.

%+ With this interface, we can draw the models just as we would with pencil and paper
(or depict them as it is done in most textbooks).

% Simulink includes a comprehensive block library of sinks, sources, linear and
nonlinear components, and connectors.

% We can also customize and create our own blocks.

2.1 Starting Simulink

To start a Simulink session, we'd need to bring up Matlab program first (Nguyen, 1995).
From Matlab command window, enter:

>> simulink

Alternately, we may click on the Simulink icon located on the toolbar as shown:

4\ MATLAB 7.6.0 (R2008a)

File Edit Debug Parallel Desktogf Window Help

DA B0 & 5| 0 CumntDirectory:

Fig. 1. Simulink icon in Matlab window

Simulink's library browser window like one shown below will pop up presenting the block
set for model construction.

Simulink's library browser window like one shown below will pop up presenting the block
set for model construction.

New Fileicon Search window

Library —# | —— Block Set

!

!
IPENERRE

i

i

Description Box
Fig. 2. Simulink’s library browser

To see the content of the blockset, click on the "+" sign at the beginning of each toolbox.

To start a model click on the NEW FILE ICON as shown in the screenshot above.
Alternately, we may use keystrokes CTRL+N.

A new window will appear on the screen. We will be constructing our model in this
window. Also in this window the constructed model is simulated. A screenshot of a typical
working (model) window looks like one shown below:

File fde Veew Simulstion Format Took Welp - —— e -
DSE® ‘@ &g oy wfoo fea JRupe . REE®

The WORKSPACE.

(rast [- v o 4
Fig. 3. Simulink workspace

Step 1. Creating Blocks.
From BLOCK SET CATEGORIES section of the SIMULINK LIBRARY BROWSER window,
click on the "+" sign next to the Simulink group to expand the tree and select (click on) Sources.

Fig. 4. Sources Block sets

w

A set of blocks will appear in the BLOCKSET group. Click on the Sine Wave block and drag
it to the workspace window (also known as model window).

e e - -~
'.- vt - [0‘.0-~o.«:o e e l

Fig. 5. Adding Blocks to Workspace
Now we have established a source of our model.

To save a model, click on the floppy diskette mor. or from FILE menu, select Save or
CTRL+S. All Simulink model files will have an extension ".mdl". Simulink recognizes the file
with .mdl extension as a simulation model (similar to how MATLAB recognizes files with
the extension .m as an MFile).

Continue to build the model by adding more components (or blocks) to the model window.
We will add the Scope block from Sinks library, an Integrator block from Continuous
library, and a Mux block from Signal Routing library.

NOTE: If we wish to locate a block knowing its name, we may enter the name in the
SEARCH WINDOW (at Find prompt) and Simulink will bring up the specified block.

To move the blocks around, click on them and drag to a desired location.

Once all the blocks are dragged over to the work space, we may remove (delete) a block, by
clicking on it once to turn on the "select mode" (with four corner boxes) and use the DEL key
or keys combination CTRL-X.

Step 2. Making connections.

To establish connections between the blocks, move the cursor to the output port represented
by "> sign on the block. Once placed at a port, the cursor will turn into a cross "+” enabling
us to make connection between blocks.

To make a connection: leftclick while holding down the control key (on the keyboard) and
drag from source port to a destination port.

The connected model is shown below.

Sine Wave E
B Scope

Integrator

Fig. 6. Block diagram for Sine simulation

A sine signal is generated by the Sine Wave block (a source) and displayed on the scope
(fig. 7). The integrated sine signal is sent towards the scope, to display it along with the
original signal from the source via the Mux, whose function is to multiplex signals in form
of scalar, vector, or matrix into a bus.

‘- - R e
SR Tss AGE 84 — -

R e e &
.....
....................................

e e et o T e

................................

Fig. 7. Scope appearance

Step 3. Running simulation.

Now the simulation of the simple system above can be run by clicking on the play button
(», alternatively, we may use key sequence CTRL+T, or choose Start submenu under
Simulation menu).

Double click on the Scope block to display of the scope.

To view /edit the parameters, simply double click on the block of interest.

2.2 Handling of blocks and lines
The table below describes the actions and the corresponding keystrokes or mouse
operations (Windows versions) (Nguyen, 1995).

Actions Kevystrokes or Mouse Actions
Copying a block [Drag the block to the model window with the left mouse button on the
from a library OR use choose between select the COPY and PASTE from EDIT menu.
Duplicating blocks |Hold down the CTRL key and select the block. Drag the block to a new|

in a model location with the left mouse button.
Piplay Hlock's Click doubly on the bloc.
parameters ’
Flip a block CTIRL-F
Rotate a block CTRL-R
= ging bl Click on block’s label and position the cursor to desired place.
e Hold down the SHIFT key and drag the block to a new location.

Drawing a diagonal | Hold down the SHIFT key while dragging the mouse with the left
line button.

Move the cursor to the line to where we want to create the vertex and

Dividing a line use the left button on the mouse to drag the line while holding down

the SHIFT kevy.

Table 1. The actions and the corresponding keystrokes or mouse operations.

2.3 Simulink block libraries
Simulink organizes its blocks into block libraries according to their behaviour.

The Simulink window displays the block library icons and names:

o The Sources library contains blocks that generate signals.

¢ TheSinks library contains blocks that display or write block output.

¢ The Discrete library contains blocks that describe discrete-time components.

¢ The Linear library contains blocks that describe linear functions.

o The Nonlinear library contains blocks that describe nonlinear functions.

¢ The Connections library contains blocks that allow multiplexing and demultiplexing,
implement external Input/Output, pass data to other parts of the model, create
subsystems, and perform other functions.

¢ The Blocksets and Toolboxes library contains the Extras block library of specialized
blocks.

¢ The Demos library contains useful MATLAB and Simulink demos.

3. Viewing and analyzing simulation results

Output trajectories from Simulink can be plotted using one of three methods (The

MathWorks, 1999):

¢ Feeding a signal into either a Scope or an XY Graph block

e Writing output to return variables and using MATLAB plotting commands

e Writing output to the workspace using To Workspace blocks and plotting the results
using MATLAB plotting commands

3.1 Using the scope block
We can use display output trajectories on a Scope block during a simulation.
This simple model shows an example of the use of the Scope block:

BN
"

Step Tranator Fen Soape

Fig. 8. Block diagram for Scope displaying

The display on the Scope shows the output trajectory. The Scope block enables to zoom in
on an area of interest or save the data to the workspace.
The XY Graph block enables to plot one signal against another.

3.2 Using return variables
By returning time and output histories, we can use MATLAB plotting commands to display
and annotate the output trajectories.

o,
ol
Step Transter Fon o

Fig. 9. Block diagram for output displaying

The block labelled Out is an Outport block from the Connections library. The output
trajectory, yout, is returned by the integration solver. For more information, see Chapter 4.
This simulation can also be run from the Simulation menu by specifying variables for the
time, output, and states on the Workspace 1/O page of the Simulation Parameters dialog
box. then these results can be plot using:

plot (tout,yout)

3.3 Using the To Workspace block
The To Workspace block can be used to return output trajectories to the MATLAB

workspace. The model below illustrates this use:

Fig. 10. Block diagram for Workspace displaying

The variables y and t appear in the workspace when the simulation is complete. The time
vector is stored by feeding a Clock block into a To Workspace block. The time vector can
also be acquired by entering a variable name for the time on the Workspace 1/0 page of the
Simulation Parameters dialog box for menu-driven simulations, or by returning it using the
sim command (see Chapter 4 for more information).

The To Workspace block can accept a vector input, with each input element’s trajectory
stored as a column vector in the resulting workspace variable.

4. Modeling mechanical systems with Simulink

Simulink's primary design goal is to enable the modeling, analysis, and implementation of
dynamics systems so then mechanical systems. The mechanical systems consist of bodies,
joints, and force elements like springs. Modeling a mechanical system need the equations of
motion or the mechanical structure. Thus in general mechanical systems can be simulated
by two ways:

e Using graphical representation of the mathematical model.

e Drawing directly the mechanical system using SimMechanics.

4.1 Modeling using graphical representation:

The equations of motion of mechanical systems have undergone historical development
associated with such distinguished mathematicians as Newton, D'Alembert, Euler,
Lagrange, Gauss, and Hamilton, among others (Wood & Kennedy, 2003). While all made
significant contributions to the formulation’s development of the underlying equations of
motion, our interest here is on the computational aspects of mechanical simulation in an
existing dynamic simulation package. Simulink is designed to model systems governed by
these mathematical equations. The Simulink model is a graphical representation of
mathematical operations and algorithm elements. Simulink solves the differential equation
by evaluating the individual blocks according to the sorted order to compute derivatives for
the states. The solver uses numeric integration to compute the evolution of states through
time. Application of this method is illustrated in the first example of the section 5.

4.2 Modeling using SimMechanics

SimMechanics™ software is a block diagram modeling environment for the engineering
design and simulation of rigid body machines and their motions, using the standard
Newtonian dynamics of forces and torques. Instead of representing a mathematical model
of the system, we develop a representation that describes the key components of the
mechanical system. The base units in SimMechanics are physical elements instead of
algorithm elements. To build a SimMechanics model, we must break down the mechanical
system into the building blocks that describe it (Popinchalk, 2009).

After building the mechanical representation using SimMechanics, to study the system's
response to and stability against external changes, we can apply small perturbations in the
motion or the forces/torques to a known trajectory and force/torque set. SimMechanics
software and Simulink® provide analysis modes and functions for analyzing the results of
perturbing mechanical motion. To use these modes, we must first build a kinematic model
of the system, one that specifies completely the positions, velocities, and accelerations of the
system's bodies. We create a kinematic model by interconnecting blocks representing the

bodies and joints of the system and then connecting actuators to the joints to specify the
motions of the bodies. Application of this method is illustrated in the second example of the
section 5.

5. Examples of modeling and control of mechanical systems

5.1 Dynamics modeling for satellite antenna dish ilized p form

The stabilized platform is the object which can isolate motion of the vehicle, and can
measure the change of platform’s motion and position incessantly, exactly hold the motorial
gesture benchmark, so that it can make the equipment which is fixed on the plad’on‘n aim at
and track objoect fastly and exactly. In the stabilized platform systems, the basic requi

are to maintain stable operation even when there are changes in the sy dyn ics a.nd to
have very good disturbance rejection capability.

The objective of this example is to develop the dynamics model simulation for satellite
antenna dish stabilized platform. The dynamic model of the platform is a three degree of
freedom system. It is composed of, the four bodies which are: case, outer gimbal, inner
gimbal and platform as shown in fig. 11. Simulink is used to simulate the obtained dynamic
model of the stabilized platform. The testing results can be used to analyze the dynamic
structure of the considered system. In addition, these results can be applied to the
stabilization controller design study (Leghmizi et al., 2011).

Fig. 11. The system structure
The mathematical modeling was established using Euler theory. The Euler's moment
cquations are

M =iH)

The net torque M consists of driving torque applied by the adjacent outer member and
reaction torque applied by the adjacent inner member.
= o dF

iH=2 - uH var.<H (3]
dt

iH : Inertial derivative of the vector H ;
mH : Derivative of H calculated in a rotating frame of reference;
@, : Absolute rotational rate of the moving reference frame;

H :Inertial angular momentum;

M : External torque applied to the body.

By applylng equation (2) on the different parts of the platform sy . the sy may be
as a set of second-order differential equations in the state vanablcs Solving this

sysm of equations we obtain:

= CB -CB
*~AB-AB o
. CA —-CA,
Y=AB-AB o

C CB —-C.B,
)

d=_.._L-—
B, AB —~ AB,

Where

A =sing

B =1

c ___M'..—MI’Y
’ 1

>

>
)

1. -1
cosvcososino[%]

B, =[l-tsin’0'l;0cos‘ol’—":|
C = M ;MIL

I 1 o1 in® @ 1
A,=l+cos’w[.+ 1 _cos’@+1_sin]osin’w['—"]

1

-1
B, = cosﬂsinﬂcosw["'f&]

C. = M ;MCX
Detailed equations <« ion is p 1 in the paper (Leghmizi, 2010, 2011).
Here, it suffices to note that designing a si lation for the sy b. d on th complete

nonlinear dynamics is extremely difficult. It is thus necessary to reduce the complexity of
the problem by considering the lincarized dynamics (Lee et al, 1996). This can be done by
noting that the gimbal angles variations are effectively negligible and that the ship velocities

is insignificant. Applyving the above assumptions to the nonli <} i the
following equations are obtained.

ap n &l 1 - R —E,,
s B T e TR e S) S e ol A e)
s (2] - 1 1 —1
— - — ki Sutani 2
L = N e @
—r_ 1
& =Tr-o——r (sgn) — -c—lc'—n-w—'r)
5.1.2 Modeling the 131 of i mwu
The model in fig. 12 is the graphical P r of eq i (6). (7)) and (S8). It"s obtained

by using the Simulink toolbox.

——— —— T — e e — =
LA e D e eE R S EmZe. BEES

=i}
—_
I -
4353
e 3, -
B
7}
pc 23
—_—
— - 2 —_ =

Fig. 12 The platform plant simulation

In order to enhance our understanding of the system, we performed a si Lati in cl A
loop mode. After that, a PID controller was applied to the closed-loop model. The PID

1led was calculated using the Ziegler—Nichols method (Moradi, 2003). The
model is presented in the fig. 13

> N ‘S’ Tissk

= s T NmBe pEES

0

—— Y —x
F i NG
e B >
———— NS
N
3 I I e S
o
NG
>R e L EmEe sEBe - .
>—@ 0
4
4 =
—%}-—-«B: -
i o =
R I
g - 1 £33
[——————
-— - =
1y useful to recogni the ¢ ributi of cach modelled effect
to the dyvnamics of the system. . knowing the natural behavior of the system could be
ful for blishing adapted contxvol laws. Simulation results will be presented to

lll trate the gimbals behaviour to different entries. They are presented in fig. 14, which

tai the impulsion and step responses of the closed-loop system using the PID
coc\uoller&ch ;ﬂ\cupelimposesﬂ\emguhrposldonmtheXaxes(blue),theY.m
(green) and the Z axes (red

- = = = = = - = - - = = = = = = - -
= T——

Fig 14. The closced-loop system impulsion and step responsces using the PID controller

5.2 Modeling a t2a)

The Stoewart platform is a classic design for position and motion control, originally proposced
in 1965 as a flight simulator, and still commonly used for that purpose (Stewart, 1965). Since
then, a wide range of applications have Bemalitad fooen el Shevwiet platform. A few of the
industrices using this design include acrospace. automotive, nautical, and machine tool
technology. Among other tasks, the platforrm has been used. to simulate flight, model a
lunar rover. build bridges, aid in vehicle maintenance. design crane and hoist mechanisms,
and position satellite communiacation dishes and telescopes (Matlab Hlelp).

The Stewart platform has an exceptional range of motion and can be accurately and casily
positioned and oriented. The platform provides a large amount of rigidity, or stiffness, for a
siven structural mass, and thus provides significant positional coertainty. The platformm model
is moderately complex, with a large number of mechanical constraints that require a robust
simulation. Most Stewart platform variants have six lincarly actuated legs with varyving
combinations of leg-platform connections. The full assembly is a parallel moechanissn
consisting of a rigid body top or mobile plate connected to an immobile base plate and defined
by at least three stationary points on the grounded base connected to the legs.

The Stewart platform usoed here is connected to the base plate at six points by universal
joints as showmn in fig. 15 Each leg has two parts, an uappeoer and a lower, connected by a
cylindrical joint. Each upper leg is connected to the top plate by another universal joint
Thus the platform has 6°2 + 1 = 13 mobile parts and 63 = 18 joints connecting the parts.

Figz. 15. Stewart platformm

5.2.1 Modeling the physical Plant with SimMechanics

The Plant subsystem models the Stewart platform’s moving parts, the legs and top plate.
The model in the fig. 16 is obtained by using the SimMechanics toolbox. From the Matlab
demos we can open this subsystem.

- s sy S M ==)
File Edt View Semulstion Format Tools Help
D& XEB | g|=2<=|» = ho [Forma =1 50 =

IXTELT, LS TETT
Fore

-l

|Reaay 100% | an ‘odedS > |

Fig. 16. Stewart platform plant representation with SimMechanics

The entire Stewart platform plant model is contained in a subsystem called Plant. This
subsystem itself contains the base plate (the ground), the Top plate and the six platform legs.
Each of the legs is a subsystem containing the individual Body and Joint blocks that make
up the whole leg (see fig. 17).

Fig. 17. Leg Subsystem content

To wvisualise the content of this
select Look Under Mask.

m_\n—m'—u“
O @ XM - x|z =] > = fio [e=a =1 B) S

I

-
Wbty

Stewart Flatfornm Demo
ug T S I - J
— m—

Fig. 18 Stewart Platform Control Design Model

The bl (== i the Stewart platform plant presented in fig_ 18 The simulation
l:nodelmﬁg.lS:sdnoonuolofd:eS&ewaﬂph&msmw&thelmpuoporhml
in ivative (PID) feedback s P d in fig 19

=

Fig. 19. Stewart Platform PID Controller Subsystem

'l'heconttolmlsferfuncﬂmo(thePlDlmfeedb.ckconudsysmhmlhefm
Ka/s+K‘sJ*-Kp.Theconuolgak\sKLKp..ndeinlhelr P ive b fer to the

variables K, K, Ki defined in the workspace. Check th i lized val
K, = 10000

To simulate the Stewart platform with the PID controller:

- Open the Scope and start the simulation.

- Observe the controlled Stewart platform motion. The Scope results given in fig. 20 show
how the platform initially does not follow the reference trajectory, which starts in a position
different from the platform's h config tion. The motion errors and forces on the legs
are significant. Observe also that the leg forces saturate during the initial transient.

Fig. 20 Simulation results

Basics of Simscape

“*Simscape _is a physical modeling language and
envir_onment that e;na_bles you to rapidl_v create models of
physical systems within the Simulink environmentl.

«* With Simscape, vou build physical component models
based on physical connections that directly integrate with
block diagrams and other modeling paradigms!.

+*The Simscape language 1s a dedicated textual language for
modeling physical systems and has additional constructs
specific to physical modeling?.

+» The Simscape file 1s a dedicated file type in the MATLAB
environment with the extension.ssc

Link for study material simscap material
https://www.bing.com/videos/riverview/relatedvideo?g=what+is+simscape&mid=921D5
2B0D 4485D452FEC921D52B0D4485D452FEC&FORM=VIRE

Electrical Driveline | Multibody Fluids
§2 §2 54 51

'* Simscape
\.

What Is Simscape?

What s Simscape Muttibody?

e

Getting Started with Simacape

B Miccoack ting simple modols UsIng SiMscape %o mechancal sngnoorng 4 Q

Explom more wieos

N DC Motor 8

c] 2 b .
A -
Resistor fc =) G
&) W r—e—rC_1 D1
Chambar A Chamber B
-

Bridge Rectifier - " Refrigeration -

. : 6 . Compressor
] _' 2N -4 L }’, A : Y
N g —(F)

l - Compartment Evaporator 4

Wit is Simacape?

VouTube | WATLAN | & 1K views (& Jund

flro > Wnatis Simscape Multibedy?

Getting Started with Simscape
E wAWRL T AaD 4o o

g n o etk 4

