&

atme

ATME

College of Engineering

Department of Electronics and Communication Engineering

(ACADEMIC YEAR 2025-26)

LABORATORY MANUAL

SUBJECT: FPGA Based System Design Lab Using Verilog
SUB CODE: BECL657A

SEMESTER: VI

Institute Vision & Mission

VISION:

Development of academically excellent, culturally vibrant, socially responsible, and globally

competent human resources

MISSION:

e To keep pace with advancements in knowledge and make the students competitive and
capable at the global level.

e To create an environment for the students to acquire the right physical, intellectual, emotional,
and moral foundations and shine as torch bearers of tomorrow's society.

e To strive to attain ever-higher benchmarks of educational excellence

Department Vision and Mission

VISION:
To develop highly skilled and globally competent professionals in the field of Electronics and

Communication Engineering to meet industrial and social requirements with ethical responsibility

MISSION:

e To provide State-of-art technical education in FElectronics and Communication at
undergraduate and post-graduate levels to meet the needs of the profession and society and to
adopt the best educational methods and achieve excellence in teaching-learning and research.

e To develop talented and committed human resource, by providing an opportunity for
innovation, creativity, and entrepreneurial leadership with high standards of professional
ethics, transparency, and accountability.

e To function collaboratively with technical Institutes/Universities/Industries and offer

opportunities for Long-term interaction with academia and industry

PROGRAM OUTCOMES (POs)

Engineering Graduates will be able to:

PO1. Engineering knowledge: Apply the knowledge of mathematics, science, engineering fundamentals,
and an engineering specialization to the solution of complex engineering problems.

PO2. Problem analysis: Identify, formulate, review research literature, and analyze complex engineering
problems reaching substantiated conclusions using first principles of mathematics, natural sciences,
and engineering sciences.

PO3. Design/development of solutions: Design solutions for complex engineering problems and design
system components or processes that meet the specified needs with appropriate consideration for the
public health and safety, and the cultural, societal, and environmental considerations.

PO4. Conduct investigations of complex problems: Use research-based knowledge and research methods
including design of experiments, analysis and interpretation of data, and synthesis of the
information to provide valid conclusions.

POS5. Modern tool usage: Create, select, and apply appropriate techniques, resources, and modern
engineering and IT tools including prediction and modeling to complex engineering activities with
an understanding of the limitations.

PO6. The engineer and society: Apply reasoning informed by contextual knowledge to assess societal,
health, safety, legal and cultural issues and the consequent responsibilities relevant to professional
engineering practice.

PO7. Environment and sustainability: Understand the impact of professional engineering solutions in
societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable
development.

PO8. Ethics: Apply ethical principles and commit to professional ethics and responsibilities and norms of
engineering practice.

PO9. Individual and teamwork: Function effectively as an individual, and as a member or leader in diverse
teams, and in multidisciplinary settings.

PO10.Communication: Communicate effectively on complex engineering activities with the engineering
community and with society at large, such as, being able to comprehend and write effective reports
and design documentation, make effective presentations, and give and receive clear instructions.

PO11. Project management and finance: Demonstrate knowledge and understanding of the engineering and
management principles and apply these to one’s own work, as a member and leader in a team, to
manage projects and in multidisciplinary environments.

PO12. Life-long learning: Recognize the need for, and have the preparation and ability to engage in

independent and life-long learning in the broadest context of technological change

PROGRAM SPECIFIC OUTCOMES (PSOs)

* To have the capability to understand and adopt to technological advancements with the usage of
modern tool to analyze and design embedded system or processes for variety of applications.

* To work effectively in a group as an independent visionary, team member and leader having the
ability to understand the requirement and develop feasible solutions to emerge as potential core or

electronic engineer.
PROGRAM EDUCATIONAL OBJECTIVES (PEO’s)

* To Produce Graduates to excel in the profession, higher education and pursue research exercises in
Electronics and Communication Engineering.
* To create technically able alumni with the capacity to examine, plan, create and execute Electronics

and Communication frameworks thereby involving in deep rooted learning.

Introduction to HDL

An HDL is a programming language used to describe electronic circuit essentially digital logic circuits. It
can be used to describe the operation, design and organization of a digital circuit. It can also be used to
verify the behavior by means of simulations. The principle difference between HDL and other
programming languages is that HDL is a concurrent language whereas the others are procedural i.e. single
threaded. HDL has the ability to model multiple parallel processes like adders, flip-flops etc. which execute
automatically and independently of each other. It is like building many circuits that can operate
independently of each other.

The two widely used HDLs are:

o VHDL: Very High Speed Integrated Circuits HDL
e Verilog HDL

VHDL (VHSIC Hardware Description Language) is a hardware description language used in electronic
design automation to describe digital and mixed-signal systems such as field-programmable gate arrays and
integrated circuits. VHDL can also be used as a general purpose parallel programming language.

Verilog, standardized as IEEE 1364, is a hardware description language (HDL) used to model electronic
systems. It is most commonly used in the design and verification of digital circuits at the register-transfer
level of abstraction. It is also used in the verification of analog circuits and mixed-signal circuits, as well as

in the design of genetic circuits.

Difference between Verilog and VHDL

1. VHDL is based on Pascal and ADA while Verilog is based on C language.

2. VHDL is strongly typed i.e., does not allow the intermixing, or operation of variables, with different
classes whereas Verilog is weakly typed.

3. VHDL is case insensitive and Verilog is case sensitive.

4. Verilog is easier to learn compared to VHDL.

5. Verilog has very simple data types, while VHDL allows users to create more complex data types.

6. Verilog lacks the library management, like that of VHDL.

FPGA DESIGN FLOW

1.

Design Entry — the first step in creating a new design is to specify it's structure and functionality. This
can be done either by writing an HDL model using some text editor or drawing a schematic diagram

using schematic editor.

Design Synthesis — next step in the design process is to transform design specification into a more
suitable representation that can be further processed in the later stages in the design flow. This
representation is called the netlist. Prior to netlist creation synthesis tool checks the model syntax and
analyze the hierarchy of your design which ensures that your design is optimized for the design
architecture you have selected. The resulting netlist is saved to a Native Generic Circuit (NGC) file (for
Xilinx® Synthesis Technology (XST) compiler) or an Electronic Design Interchange Format (EDIF) file
(for Precision, or Simplify /Simplify Pro tools).

3. Design Implementation

Implementation step maps netlist produced by the synthesis tool onto particular device's internal
structure. It consists from three steps:
3.1 Translate step — merges all incoming netlists and constraints into a Xilinx Native Generic

Database (NGD) file.

3.2 Map step - maps the design, specified by an NGD file, into available resources on the target FPGA

device, such as LUTs, Flip-Flops, BRAMs,... As a result, an Native Circuit Description (NCD) file is

created.

3.3 Place and Route step - takes a mapped-NativeCircuit Descripti file] places and routes the
il i
design, and produces an NCD file that| ismisediasanput-forbit stream generation.
Y
[Design Synthesis]
Xilinx Synthesis Technology (XST)

v

[3] Design Implementation
G1) Transiate

| NGD Builder
Map

(8]

Estimate Power

(4]

B3 Place & Route

Design

Verification
ISIM/Modelsim

XPower

v
(5] Generate

Programming File
bitGen

[@ Programming]

iMPACT Programmer

(7] Testing

l ChipScope / External Appl

Figure: FPGA Design Flow
Design Verification — is very important step in design process. Verification is comprised of seeking
out problems in the HDL implementation in order to make it compliant with the design specification. A
verification process reduces to extensive simulation of the HDL code. Design Verification is usually

performed using two approaches: Simulation and Static Timing Analysis.

There are two types of simulation:

Functional (Behavioral) Simulation — enables you to simulate or verify a code syntax and functional
capabilities of your design. This type of simulation tests your design decisions before the design is
implemented and allows you to make any necessary changes early in the design process. In functional

(behavioral) simulation no timing information is provided.

Timing Simulation — allows you to check does the implemented design meet all functional and timing
requirements and behaves as you expected. The timing simulation uses the detailed information about
the signal delays as they pass through various logic and memory components and travel over
connecting wires. Using this information it is possible to accurately simulate the behaviour of the
implemented design. This type of simulation is performed after the design has been placed and routed
for the target PLD, because accurate signal delay information can now be estimated. A process of
relating accurate timing information with simulation model of the implemented design is called Back-
Annotation.

Static Timing Analysis — helps you to perform a detailed timing analysis on mapped, placed only or
placed and routed FPGA design. This analysis can be useful in evaluating timing performance of the
logic paths, especially if your design doesn't meet timing requirements. This method doesn't require any

type of simulation.

Generate Programming File — this option runs BitGen, the Xilinx bitstream generation program, to
create a bitstream file that can be downloaded to the device.
Programming — iMPACT Programmer uses the output from the Generate Programming File process

to configure your target device.

Testing — after configuring your device, you can debug your FPGA design using the Xilinx ChipScope

Pro tool or some external logic analyzer.

8. Estimate Power — after implementation, you can use the XPower Analyzer for estimation and power
analysis. XPower Analyzer is delivered with ISE Design Suite. With this tool you can estimate power,

based on the logic and routing resources of the actual design.

ABOUT XILINX ISE SOTWARE

Xilinx ISE (Integrated Synthesis Environment) is a software tool produced by Xilinx for synthesis
and analysis of HDL designs, enabling the developer to synthesize ("compile") their designs, perform timing
analysis, examine RTL diagrams, simulate a design's reaction to different stimuli, and configure the target

device with the programmer.

Xilinx ISE is a design environment for FPGA(Field programmable gate arrays) products from
Xilinx, and is tightly-coupled to the architecture of such chips, and cannot be used with FPGA products
from other vendors. The Xilinx ISE is primarily used for circuit synthesis and design, while ISIM or the

ModelSim logic simulator is used for system-level testing

STEPS TO EXECUTE A PROGRAM

1) Starting the ISE software
Start _program _XILINX ISE 7 _Project Navigator

2) Creating a New Project in ISE
A project is a collection of all files necessary to create and to download a design to a selected
FPGA or CPLD devices
Project name:
Project location:
Top-Level Source Type: HDL
Click Next to move to the project properties page.

3) Fill in the properties in the table as shown below
Device Family: Spartan 3
Device: XC3S50
Package: PQ208Speed
Speed: -5

https://en.wikipedia.org/wiki/Xilinx
https://en.wikipedia.org/wiki/Hardware_description_language
https://en.wikipedia.org/wiki/Logic_synthesis
https://en.wikipedia.org/wiki/Static_timing_analysis
https://en.wikipedia.org/wiki/Static_timing_analysis
https://en.wikipedia.org/wiki/Register_transfer_level
https://en.wikipedia.org/wiki/Programmer_%28hardware%29
https://en.wikipedia.org/wiki/ModelSim

4)

Top-Level Module Type: HDL
HDL Synthesis Tool: XST(VHDL/VERILOG)
Simulator: ISE Simulator (VHDL/ Verilog)

Creating an HDL Source

Create a top-level HDL file for the design. Determine the language that you wish to use (Verilog
module or VHDL module).

This simple AND Gate design has two inputs: A and B. This design has one output called C

Click New Source in the New Project Wizard to add one new source to your project.

a) Select VERILOG MODULE as the source type in the New Source dialog box.
b) Type in the file name for ex: and gate

c) Verify that the Add to project checkbox is selected.

d) Click Next.

e) Define the ports for your Verilog source.

In the Port Name column, type the port names on three separate rows: A, B and C.

In the Direction column, indicate whether each port is an input, output, or inout.

For A and B, select in from the list. For C, select out from the list.

5)

6)

7)

8)

Click next in the Define Verilog Source dialog box.

Click Finish in the New Source Information dialog box to complete the new source file template.

Click Next in the New Project Wizard. Click next again.

Click Finish in the New Project Information dialog box.

ISE creates and displays the new project in the Sources in Project window and adds the and gate.v file

to the project.

Double-click on the and_gate.v file in the Sources in Project window to open the Verilog file in the
ISE Text Editor.
The and_gate.v file contains:

Module name with the inputs and outputs declared.

9) Add the relationship between input and output after the input and output declared in module. Save the
file by selecting File > Save.
10) When the source files are complete, the next step is to check the syntax of the design. Syntax

errors and typos can be found using this step.

a) Select the counter design source in the ISE Sources window to display the related processes
in the Processes for Source window.

b) Click the “+’next to the Synthesize-XST process to expand the hierarchy.

¢) Double-click the Check Syntax process.

11) When an ISE process completes, you will see a status indicator next to the process name.
a) If the process completed successfully, a green check mark appears.
b) If there were errors and the process failed, a red X appears.
c) A yellow exclamation point means that the process completed successfully, but some Warnings
occurred.
d) An orange question mark means the process is out of date and should be run again.
e) Look in the Console tab of the Transcript window and read the output and status messages

produced by any process that you run.

Caution! You must correct any errors found in your source files. If you continue without valid

syntax, you will not be able to simulate or synthesize your design.

12) After the successful check syntax in the process Examine RTL diagrams.

13) To Create Testbench waveform, Right click on file name in source window, and_gate.v and add source.

14) Add testbench waveform source with a new file name and click next.

15) A timing window pops up. Click on combinatorial and click next.

16) A graphical window of input and output appears. Make changes according to the truth table and save.

17) <file_name>.tb file is added to the project.

18) In source window change implementation to behavioral simulation.

10

19) In process window click on Xilix ISE simulator and RUN. Output window appears. Analyze the wave

forms according to the truth table.

20) Double-click the Assign Package Pins process found in the User Constraints process group. ISE runs the
Synthesis and Translate step and automatically creates a User Constraints File(UCF). You will be

prompted with the following message.

Xilinx Project Navigator

0 | This process requres that an implementation Constraink Fie (UCF) be added to the project and associated with the
1 \-/ selected design modude, Would you lke Project Navigator to automatically create a UCF and add Rtothe propsct &t L
this tieme? IF you select "No® you il need to create or add an existing UCF to the peoject before running this process. |

=] w |

4 E v

21) Click Yes to add the UCF file to your project. The file is added to your project and is visible in the

Sources in Project.

22) Now the Xilinx Pin out and Area Constraints Editor (PACE) opens.

23) You can see your I/O Pins listed in the Design Object List window. Enter a pin location for each pin in
the Loc column as specified below

A: P1,B:P2, C:P3

24) Click on the Package View tab at the bottom of the window to see the pins you just added. Put

your mouse over grid number to verify the pin assignment.

Xilinx PACE - C:\tutoriallandgate. ucf

11

25) Close PACE

Creating Configuration Data

The Program File is a encoded file that is the equivalent of the design in a form that can be downloaded

into the CPLD device.

The final phase in the software flow is to generate a program file and configure the device

Generating a Program File

1. The Program File is created. It is written into a file called andgate.jed This is the actual configuration

data

2. Double Click the Generate Programming File process located near the bottom of the Processes for

Source window.

Sources in Project |

e -

B tutorialise
= €3 %or3128407tq144

[0) andgate.uct

" B Module View [t Snapshot _ | I[) Library View

Alx

Processes for Source: "andgate-behavioral” [l

O View Technology Schemati
o7 Check Syntax
G Translate
B Translation Report
=G Fit
[® Fitter Report
SRR @ W et Programming File

8§ Configurs Device (MPACT]
“ @

Optional Implementation Tools |

kil o
L Process View

‘M andgae

20 library IEEE;

21 use IEEE.STD_LOGIC_1164.ALL:

22 use IEEE.STD_LOGIC_ARITH.ALL;
22 use IEEE.STD_LOGIC_UNSIGNED.ALL:

30 entity andgate is
21 Port (a,b : in std_logic;

52 ¢ : out std logic):

133 end andgate;

34

35 architecture Behavioral of andgate is
136

137 begin

138

129 c<=a and b;

40

141 end Behavioral;

&

26 ---- Uncomment the following library declaration if instantiating
26 ---- any Xilinx primitives in this code.

27 --library UNISIN:

28 --use UNISIM.VComponents.all:

3. This section provides simple instructions for configuring a Spartan-3 xc3s200 device connected to

your PC.

4. Note: Your board must be connected to your PC before proceeding. If the device on your board does

not match the device assigned to the project, you will get errors. Please refer to the IMPACT Help

for more information. To access the help, select Help > Help Topics

5. To configure the device:

6. Click the “+” sign to expand the Generate Programming File processes

Processes for Source: ''andgate-behavioral'’

«|

] B2 Process View I

@” “iew Synthesis Report

= Wiew RTL Schematic
Yiew Technology Schemati

2¢” Check Syntax

+ e Translate
+ Oy Fit
= o& Generate Programming File
=%
+ @ Optional Implementation Tools

-

S i

12

7. Double click on the Configure device IMPACT
8. In the Configure Devices dialog box, verify that Boundary-Scan Mode is selected and Click Next

9. Verify that Automatically connect to cable and identify Boundary-Scan chain is selected and click

Finish.
Boundary-Scan Mode Selection @

i+ Automatically connect to cable and identify
Boundary-Scan chain

" Enter a Boundary-Scan Chain

10. If you get a message saying that there was one device found, click OK to continue

Boundary-Scan Chain Contents Summary @

i There was one device detected in the boundary-scan chain.
\) iMPACT will now direct vou to associate a programming or
BSDL file with this device...

11. The iMPACT will now show the detected device, right click the device and select New

Configuration File.

" c:\Mutorialftutorial.ipf [Configuration Mode] - iMPACT

File Edit view Mode Operations Output Debug Help
D | %82 2| 2823|5558 LFE|=S
Boundary-Scan | Slave Serial | SelectMAP | Desktop Confi

&

TDI
Erase...
| Blank Check
xcﬁl‘ Readback...
TDO | Get Device ID
Get Device Checksum e

ECP base afd
Cable connec

CB_PROGRESS . g P > s
El_apsecl % 79 Assign New Configuration File...

o mwy mar— - ——

IDCODE Looping...

12. The Assign New Configuration File dialog box appears. Assign a configuration file to each device in

the JTAG chain. Select the andgate.jed file and click Open

13

13. Right-click on the counter device image, and select Program... to open the Program Options dialog

box.
14. Click OK to program the device. ISE programs the device and displays Programming Succeeded if

the operation was successful

15. Close IMPACT without saving

14

15

FPGA Based System design Lab Using Verilog

Course Code: BECL657A CIE Marks: 50
SEE Marks: 50

. Write a Verilog description for the following combinational logic, verify the design using Verilog
test bench and perform the synthesis by downloading the design on to FPGA device.

a. Structural modeling of Full adder using two half adders and or Gate
b. BCD to Excess-3 code converter

. Write a Verilog description for the following Sequential Circuits, Verify the design using Verilog
test bench and perform the synthesis by downloading the design on to FPGA device.

a. Mod-N counter
b. Random sequence counter

. Write a Verilog description for the following Sequential Circuits, Verify the design using Verilog
test bench and perform the synthesis by downloading the design on to FPGA device.

a. SISO and PISO shift register
b. Ring counter

. Write a Verilog description for the following Digital Circuits, Verify the functionality using Verilog
test bench and perform the synthesis by downloading the design on to FPGA device.

a. 4-Bit Ripple Carry Adder
b. 4-Bit Linear Feedback shift register

. Write a Verilog description for the following Digital Circuits, Verify the functionality using Verilog
test bench and perform the synthesis by downloading the design on to FPGA device.

a. 4-bit Array Multiplication
b. 4-bit Booth Multiplication@ 12112024

. Write a Verilog description to design a clock divider circuit that generates !/>, /3 and /4™ clock
from a given input clock. Port the design to FPGA and validate the functionality using output device.

. Interface a Stepper motor to FPGA and Write a Verilog description to control Stepper motor
rotation.

. Interface a DAC to FPGA and Write a Verilog description to generate Square wave of frequency F
KHz. Modify the code to down sample the frequency to F/2 KHz. Display the original and down
sampled signals by connecting them to an output device.

. Write a Verilog description to convert an analog input of a sensor to digital form and to display the
same on a suitable display like set of simple LEDs like 7-Segment display digits.

16

FPGA Based System design Lab Using Verilog

Course Code: BECL657A CIE Marks: 50
SEE Marks: 50

Cycle -1

. Write a Verilog description for the following combinational logic, verify the design using Verilog
test bench and perform the synthesis by downloading the design on to FPGA device.

a. Structural modeling of Full adder using two half adders and or Gate

b. BCD to Excess-3 code converter

. Write a Verilog description for the following Sequential Circuits, Verify the design using Verilog
test bench and perform the synthesis by downloading the design on to FPGA device.

a. Mod-N counter

b. Random sequence counter

. Write a Verilog description for the following Sequential Circuits, Verify the design using Verilog
test bench and perform the synthesis by downloading the design on to FPGA device.

a. SISO and PISO shift register
b. Ring counter

Cycle —2

. Write a Verilog description for the following Digital Circuits, Verify the functionality using Verilog
test bench and perform the synthesis by downloading the design on to FPGA device.

a. a.4-Bit Ripple Carry Adder

b. 4-Bit Linear Feedback shift register

. Write a Verilog description for the following Digital Circuits, Verify the functionality using Verilog
test bench and perform the synthesis by downloading the design on to FPGA device.

a. 4-bit Array Multiplication

b. 4-bit Booth Multiplication@12112024

. Write a Verilog description to design a clock divider circuit that generates !/>, '/3 and /4™ clock
from a given input clock. Port the design to FPGA and validate the functionality using output device.

Cycle -3

. Interface a Stepper motor to FPGA and Write a Verilog description to control Stepper motor
rotation.

. Interface a DAC to FPGA and Write a Verilog description to generate Square wave of frequency F
KHz. Modify the code to down sample the frequency to F/2 KHz. Display the original and down
sampled signals by connecting them to an output device.

. Write a Verilog description to convert an analog input of a sensor to digital form and to display the
same on a suitable display like set of simple LEDs like 7-Segment display digits.

17

DETAILS OF ON BOARD CONNECTIONS AND SPARTAN -3 IC

Signal CN9 Connection XC3S50 - SPARTAN
AN1 PIN 5 PIN 2
AN2 PIN 6 PIN 3
AN3 PIN 7 PIN 7
AN4 PIN 8 PIN 9
Signal CN12 Connection XC3S50 - SPARTAN
AN5 PIN 37 PIN 166
ANG6 PIN 38 PIN 167
Signal CN9 Connection XC3S50 - SPARTAN
SEG 1/RS PIN 9 PIN 10
SEG 2/RW PIN 10 PIN 11
SEG 3/El PIN 11 PIN 12
SEG 4/DT0 PIN 12 PIN 13
SEG 4/DT1 PIN 13 PIN 15
SEG 4/DT2 PIN 14 PIN 16
SEG 4/DT3 PIN 15 PIN 18
SEG 8 PIN 16 PIN 19
IN1 PIN 20 PIN 21
IN 2 PIN 22 PIN 27
IN 3 PIN 24 PIN 29
IN 4 PIN 26 PIN 35
IN5 PIN 28 PIN 37
IN 6 PIN 30 PIN 40
IN 7 PIN 32 PIN 43
IN 8 PIN 34 PIN 45
IN 9 PIN 36 PIN 48
IN 10 PIN 38 PIN 52
Signal CN10 Connection XC3S50 - SPARTAN
IN 11 PIN 6 PIN 58
IN 12 PIN 8 PIN 62
IN 13 PIN 10 PIN 64
IN 14 PIN 12 PIN 67
IN 15 PIN 14 PIN 71
IN 16 PIN 16 PIN 74
IN 17 PIN 24 PIN 58
IN 18 PIN 26 PIN 62
IN 19 PIN 28 PIN 64
IN 20 PIN 30 PIN 67
IN 21 PIN 32 PIN 71
IN 22 PIN 34 PIN 74
IN 23 PIN 36 PIN 74
Signal CN11 Connection XC3S50 - SPARTAN
IN 24 PIN 4 PIN 107
IN 25 PIN 6 PIN 113
IN 26 PIN 8 PIN 115

18

IN 27 PIN 10 PIN 117
IN 28 PIN 12 PIN 120
IN 29 PIN 14 PIN 123
IN 30 PIN 16 PIN 125
IN 31 PIN 18 PIN 131
IN 32 PIN 20 PIN 133
Signal CN9 Connection XC3S50 - SPARTAN
OPLED 1 PIN 19 PIN 20
OPLED 2 PIN 21 PIN 26
OPLED 3 PIN 23 PIN 28
OPLED 4 PIN 25 PIN 34
OPLED 5 PIN 27 PIN 36
OPLED 6 PIN 29 PIN 39
OPLED 7 PIN 31 PIN 42
OPLED 8 PIN 33 PIN 44
OPLED 9 PIN 35 PIN 46
OPLED 10 PIN 37 PIN 51
Signal CN10 Connection XC3S50 - SPARTAN
OPLED 11 PIN 5 PIN 57
OPLED 12 PIN 7 PIN 61
OPLED 13 PIN 9 PIN 63
OPLED 14 PIN 11 PIN 65
OPLED 15 PIN 13 PIN 68
OPLED 16 PIN 15 PIN 72
OPLED 17 PIN 23 PIN 78
OPLED 18 PIN 25 PIN 81
OPLED 19 PIN 27 PIN 85
OPLED 20 PIN 29 PIN 87
OPLED 21 PIN 31 PIN 93
OPLED 22 PIN 33 PIN 95
OPLED 23 PIN 35 PIN 101
Signal CN11 Connection XC3S50 - SPARTAN
OPLED 24 PIN 3 PIN 44
OPLED 25 PIN 5 PIN 46
OPLED 26 PIN 7 PIN 51
OPLED 27 PIN 9 PIN 36
OPLED 28 PIN 11 PIN 39
OPLED 29 PIN 13 PIN 42
OPLED 30 PIN 15 PIN 44
OPLED 31 PIN 17 PIN 46
OPLED 32 PIN 19 PIN 51
10MHzCLK PIN 18 PIN 79
CLK1 PIN 19 PIN 76
CLK2 PIN 20 PIN 77
GREEN_E PIN 23 PIN 187
RED_E PIN 24 PIN 185

19

GREEN_S PIN 25 PIN 184
RED_S PIN 27 PIN 183
GREEN_W PIN 28 PIN 194
RED_W PIN 29 PIN 191
Hexa Keypad & Seven Segment
E
Display (UCF) Gnerator of waveform (UCF) levator (UCF)

NET"clk"LOC="p79"

NET"clk"LOC="p79"

NET"pclk"LOC="p79"

NET"disp<0>"LOC="p10"

NET"rst"LOC="p21"

NET"pdspseg<0>"LOC="p176"

NET"disp<1>"LOC="p11"

NET"dout<0>"LOC="p187"

NET"pdspseg<1>"LOC="p176"

NET"disp<2>"LOC="p12"

NET"dout<1>"LOC="p185"

NET"pdspseg<2>"LOC="p176"

NET"disp<3>"LOC="p13"

NET"dout<2>"LOC="p190"

NET"pdspseg<3>"LOC="p176"

NET"disp<4>"LOC="p15"

NET"dout<3>"LOC="p189"

NET"fircal<0>"LOC="p183"

NET"disp<5>"LOC="p16"

NET"dout<4>"LOC="p194"

NET"fircal<1>"LOC="p184"

NET"disp<6>"LOC="p18"

NET"dout<5>"LOC="p191"

NET"fircal<2>"LOC="p181"

NET"disp_ent<0>"LOC="p2"

NET"dout<6>"LOC="p197"

NET"fircal<3>"LOC="p182"

NET"disp_ent<1>"LOC="p3"

NET"dout<7>"LOC="p196"

NET"crnt_fir<0>"LOC="p189"

NET"disp_ent<2>"LOC="p7"

STEPPER MOTOR (UCF)

NET"crnt_fir<1>"LOC="p190"

NET"disp_ent<3>"LOC="p9"

NET"clk"LOC="p79"

NET"crnt_fir<2>"LOC="p185"

NET"read_1_in<3>"LOC="p147"

NET"rst"LOC="p21"

NET"crnt_fir<3>"LOC="p187"

NET"read_1_in<2>"LOC="p146"

NET"dir"LOC="p29"

DC MOTOR (UCF)

NET"read_1_in<1>"LOC="p144"

NET"dout<0>"LOC="p169"

NET"clk"LOC="p79"

NET"read_1_in<0>"LOC="p143"

NET"dout<1>"LOC="p175"

NET"pdcm"LOC="p203"

NET"cscan<3>"LOC="p141"

NET"dout<2>"LOC="p176"

NET"psw<0>"LOC="p21"

NET"cscan<2>"LOC="p140"

NET"dout<3>"LOC="p178"

NET"psw<1>"LOC="p27"

NET"cscan<1>"LOC="p139"

Clock devider

NET"psw<2>"LOC="p29"

NET"cscan<0>"LOC="p138" NET"clk"LOC="p79" CN-10
NET"new_clk"LOC="p57" 5
NET"clk_by_2"LOC="p61" 7
NET"clk_by_3"LOC="p63" 9
NET"clk_by 4"LOC="p65" 11

20

Experiment 1a:
Logic Diagram:

Truth Table:

Amts

Half Adder

Half Adder

é > (.um

Figure 1.1: Logic Diagram for Full Adder Using Two Half Adders

Wl. ADOB
B A S D
Ce =
w2 -t
Y
- AB W3

INPUTS OUTPUTS
A B Cin S Cout
0 0 0 0 0
0 0 1 1 0
0 1 0 1 0
0 1 1 0 1
1 0 0 1 0
1 0 1 0 1
1 1 0 0 1
1 1 1 1 1

21

Date:
Experiment-1: Write a Verilog description for the following combinational logic, verify the design
using Verilog test bench and perform the synthesis by downloading the design on to
FPGA device.

a. Structural modeling of Full adder using two half adders and or Gate
b. BCD to Excess-3 code converter

Objective: To verify and synthesize the structural modeling of Full adder and BCD Excess-3 Code
Converter using FPGA

Full Adder Module:

module fulladder (A, B, Cin, Sum, Carry);

input A, B, Cin;

output Sum, Carry;

wire W1,W2,W3;

halfadder h1(.A(A),.B(B),.S(W1),.Cout(W2));
halfadder h2(.A(W1),.B(Cin),.S(Sum),.Cout(W3));
assign Carry=W2|W3;

endmodule

module halfadder (A, B, S, Cout);
input A, B;

output S, Cout;

xor gl(S, A, B);

and g2(Cout, A, B);

endmodule

User Constraint File (UCF):

NET "A" LOC ="p21" | IOSTANDARD =LVTTL ;

NET "B" LOC ="p27" |IOSTANDARD =LVTTL;

NET "Cin" LOC ="p29" | IOSTANDARD =LVTTL ;
NET "S<0>" LOC ="p20" | IOSTANDARD =LVTTL ;
NET "Cout<1>" LOC ="p26" | IOSTANDARD =LVTTL ;

22

Test Bench Waveform for Full Adder:

Experiment-1b

Figure: Test bench waveform for Full adder

Truth Table:
INPUTS OUTPUTS
B[3] | B[2] | B[1] | B[0] | E[3] | E[2] | E[1] | E[0]
0 0 0 0 0 0 1 1
0 0 0 1 0 1 0 0
0 0 1 0 0 1 0 1
0 0 1 1 0 1 1 0
0 1 0 0 0 1 1 1
0 1 0 1 1 0 0 0
0 1 1 0 1 0 0 1
0 1 1 1 1 0 1 0
1 0 0 0 1 0 1 1
1 0 0 1 1 1 0 0
1 0 1 0 X X X X
1 0 1 1 X X X X
1 1 0 0 X X X X
1 1 0 1 X X X X
1 1 1 0 X X X X
1 1 1 1 X X X X

Name Value
T 0 LT

23

Experiment 1b: BCD to Excess-3 Converter

BCD to Excess-3 Converter Module:

module BCD to Excess3 (

input [3:0] BCD, // 4-bit BCD input
output reg [3:0] Excess3 // 4-bit Excess-3 code output

);
always @(BCD)
begin
if(BCD<=4'b1001)
Excess3 = BCD +4'b0011;
else
Excess3=4'bxxxx;
end
/I Add 3 (Excess-3) to the BCD input
endmodule

User Constraint File (UCF):

NET "BCD[0]" LOC ="p21" ;
NET "BCD[1]" LOC = "p27" ;
NET "BCD[2]" LOC = "p29" ;
NET "BCD[3]" LOC ="p35" ;
NET "Excess3[0]" LOC = "p20" ;
NET "Excess3[1]" LOC = "p26" ;
NET "Excess3[2]" LOC ="p28" ;
NET "Excess3[3]" LOC ="p34" ;

Outcome: Verified and synthesized the
Converter using FPGA

structural modeling of Full adder and BCD Excess-3 Code

24

Exepriment-2: Write a Verilog description for the following Sequential Circuits, Verify the design
using Verilog test bench and perform the synthesis by downloading the design on to
FPGA device.

A. Mod-N counter
B. Random sequence counter

Objective: To verify and synthesize the structural modeling of Mod-N Counter and Random Sequence
Counter using FPGA.

2A. Mod-N Counter

module mod n_counter (

input wire clk, // System clock
input wire reset, /I Asynchronous reset
output reg [3:0] count // 4-bit counter output (can be adjusted for higher Mod-N)

// Parameter for the modulus (N)
parameter N = 16; // Change this for different Mod-N (e.g., 10 for Mod-10)

/I Clock divider parameters
parameter DIVISOR = 5000000; // Assuming 5 MHz clock
reg [25:0] clk_div; // Divider register (adjust size based on the clock frequency)

// Clock enable
reg clk 1Hz en;

// Clock divider to create a 1 Hz clock enable
always @(posedge clk or posedge reset) begin
if (reset)
begin
clk div<=0;
clk 1Hz en <=0;
end
else begin
if (clk_div == (DIVISOR - 1)) begin
clk div <=0;
clk 1Hz en <= 1; // Generate clock enable signal
end else begin
clk div<=clk div+1;
clk 1Hz en <= 0; // Hold clock enable low
end
end
end

25

// Mod-N counter
always @(posedge clk or posedge reset) begin
if (reset) begin
count <= 0;
end else if (clk_1Hz en) begin
if (count == (N - 1)) begin
count <= 0; // Reset to 0 when reaching N
end else begin
count <= count + 1; // Increment counter
end
end
end
endmodule

User Constraint File (UCF):

NET "clk" LOC="p79”

NET "reset" LOC = "p27"
NET "Count [3]" LOC = "p20"
NET "Count [2]" LOC = "p26"
NET "Count [1]" LOC = "p28"
NET "Count [0]" LOC = "p34"

2B. Random Sequence Counter

2. module random_sequence generator (
input wire clk, // System clock (e.g., 50 MHz)
input wire reset, // Asynchronous reset

output reg [3:0] rand_out // 4-bit random output

// Clock divider parameters

parameter DIVISOR =10000000; // Assuming a 10 MHz clock
reg [25:0] clk div; // Divider register

reg clk 1Hz; // 1 Hz clock signal

// Simple Linear Feedback Shift Register (LFSR) for random sequence

26

reg [3:0] Ifsr; // 4-bit LFSR

wire Ifsr feedback;

// LFSR feedback logic (example taps)
assign Ifsr_feedback = Ifsr[3] » Ifsr[2]; // Feedback from bits 3 and 2

// Clock divider to create a 1 Hz clock
always @(posedge clk or posedge reset) begin
if (reset) begin
clk div <=0;
clk 1Hz <= 0;
end else begin
if (clk_div == (DIVISOR - 1)) begin
clk div<=0;
clk 1Hz <=~clk 1Hz; // Toggle the 1Hz clock
end else begin
clk_div <=clk div+1;
end
end
end

// LFSR for random number generation
always @(posedge clk 1Hz or posedge reset) begin
if (reset) begin
Ifsr <= 4'b1010; // Seed value for LFSR
end else begin
Ifsr <= {lfsr[2:0], Ifsr_feedback}; // Shift left and insert feedback
end
end

/I Assign the output
always @(posedge clk 1Hz or posedge reset) begin
if (reset) begin
rand_out <=4'b0000; // Reset output
end else begin
rand_out <= Ifsr; // Output the current LFSR value
end
end

endmodule

Outcome: Verified and synthesized the structural modeling of Mod-N Counter and Random Sequence

Counter using FPGA.

27

Experiment-3:

Truthtable for SISO:
ClK [D-=Q. [Q:=D: |Q:= Q:=D- Q-
Y T Y
(i) 1 1=t 59 0 0 0
I Y T
()| | 1—1 »1 1 0 0
(iii) l ¢ [ERSE 1 1 0
Y Y Y
(v | f— 1 5 ¢ 1 1 1
—» Direction of data travel
Truth table for PISO:
CIlk Qa Qb Qc Qd (Out)
0 0 0 0 0
1 1 1 0 1
2 0 1 1 0
3 0 0 1 1
4 0 0 0 1

28

Experiment-3: Write a Verilog description for the following Sequential Circuits, Verify the design
using Verilog test bench and perform the synthesis by downloading the design on to
FPGA device.

a. SISO and PISO shift register
b. Ring counter

Objective: To verify and synthesize SISO, PISO and Ring Counter using FPGA Counter.

3A. SISO (Serial in Serial Out) Shift Register

module SISo (

input clk, // Input clock
input rst_n, /I Active-low reset
input serial in, // Serial input data

output reg serial out, // Serial output data
output reg [3:0] shift_reg // Internal 8-bit shift register

/I Clock divider to reduce the clock to 1 Hz
reg [24:0] clk_div_counter; / Assuming 50 MHz input clock, 50 million counts for 1 Hz

always @(posedge clk or negedge rst_n) begin
if (~rst_n) begin
clk div_counter <= 25'd0; // Reset the counter
end else if (clk_div_counter == 25'd49999999) begin
clk _div_counter <= 25'd0; // Reset the counter when it reaches 50 million
end else begin
clk div _counter <= clk div counter + 1;
end
end

wire clk 1Hz = (clk_div_counter == 25'd49999999); // Generate 1 Hz clock signal

// Shift register logic
always @(posedge clk 1Hz or negedge rst_n) begin
if (~rst_n) begin
shift reg <=4'D0; // Reset the shift register
serial out<=0; // Reset the serial output
end else begin
shift reg <= {shift reg[2:0], serial in}; // Shift left and insert serial input at the LSB
serial out <= shift reg[3]; /I Output the MSB of the shift register
end

29

end

endmodule

User Constraint File (UCF):

NET "clk" LOC ="p79" ;

NET "rst n" LOC ="p21" ;

NET "serial_in" LOC ="p48" ;
NET "serial out" LOC ="p20" ;
NET "shift reg[0]" LOC ="p46" ;
NET "shift reg[1]" LOC="p51" ;
NET "shift_reg[2]" LOC="p57" ;
NET "shift_reg[3]" LOC="p61" ;

3A. PISO (Parallel in Serial Out) Shift Register

module PISO 1Hz (

input wire clk, /I System clock (e.g., 50 MHz)
input wire reset, // Reset signal

input wire [3:0] parallel in, // 8-bit parallel input
output reg serial out // Serial output

//' 50 MHz clock divider for 1 Hz
reg [25:0] counter; // 26-bit counter to count up to 50 million

// 8-bit shift register
reg [3:0] shift_reg;

// Reset or shift logic
always @(posedge clk or posedge reset) begin
if (reset) begin
counter <= 26'd0; // Reset counter
shift reg <= parallel in; // Load parallel input to shift register
serial_out <= 1'b0; // Initial serial output
end else begin
if (counter == 26'd5000000 - 1) begin
counter <= 26'd0; // Reset counter when it reaches 50 million
serial out <= shift reg[3]; // Output the most significant bit
shift reg <= shift reg <<1; // Shift left by 1
end else begin
counter <= counter + 1; // Increment counter
end
end

30

end

endmodule
User Constraint File (UCF):

NET "clk" LOC ="p76" ;

NET "parallel in[0]" LOC ="p21" ;
NET "parallel in[1]" LOC ="p27" ;
NET "parallel in[2]" LOC ="p29" ;
NET "parallel in[3]" LOC ="p35" ;

NET "reset" LOC ="p48" ;
NET "serial out" LOC ="p20" ;

Truth table for Ring Counter:

@t oo lo o
1 0 0 0 1
2 0 0 1 0
3 0 1 0 0
4 1 0 0 0
5 0 0 0 1
6 0 0 1 0
7 0 1 0 0
8 1 0 0 0

31

3B. Ring Counter

module ring_counter (

input clk, // System clock
input rst_n, /I Active-low reset
output reg [3:0] q // 4-bit ring counter output

// Clock divider to generate 1Hz clock from high-frequency input clock
reg [24:0] clk div_counter; // Assuming 50 MHz input clock

always @(posedge clk or negedge rst n) begin
if (~rst_n) begin
clk_div_counter <= 25'd0;
end else if (clk_div_counter == 25'd49999999) begin
clk div_counter <= 25'd0;
end else begin
clk _div_counter <=clk div_counter + 1;
end
end

wire clk 1Hz = (clk_div_counter == 25'd49999999); // 1Hz clock pulse

// 4-bit Ring Counter
always @(posedge clk 1Hz or negedge rst n) begin
if (~rst_n)
q <=4'b0001; // Reset state (initial value)
else
q <= {q[2:0], q[3]}; // Shift left in a ring pattern
end

endmodule

Outcome: Verified and synthesized SISO, PISO and Ring Counter using FPGA Counter.

32

Experiment-4A

Logic Diagram

[R

&2 | Full Adder [G2 | Full Adder [C1 | Full Adder [CO | Full Adder | Cin

A

D c B A
S3 S2 S1 So

Figure 4A: 4-bit Ripple Carry Adder

Design Object List - /O Pins IERIEREE
L0 Mame | L0 Direction Loc Bank [F{a 3
Al Input pdh BAMNKE
Al1] Input pd3 BAMNKE
AlZ] Input pd0 BAMNKE
Al3] Input p37 BAMNKE
B[O] Input pb62 BAMNKS
B[1] Input ph8 BAMNKS
B[Z] Input ph2 BEAMNKE
B[3] Input pd8 BEAMNKE
Cin Imput pZ1 BAMET
Cout Output p20 BAMNKT
Sum[0] Output pd4 BAMNKE
Sum[1] Output pd2 BAMNKE
Sum[[Z] Output p39 BAMEEG
Sum[3] Output p36 BAMNKE

UCEF Pin Configuration for 4-bit Ripple Carry Adder

Experiment-4: Write a Verilog description for the following Digital Circuits, Verify the functionality
using Verilog test bench and perform the synthesis by downloading the design on to
FPGA device.

A. 4-Bit Ripple Carry Adder
B. 4-Bit Linear Feedback shift register

A. 4-Bit Ripple Carry Adder
A Ripple Carry Adder (RCA) adds two binary numbers bit by bit, where each sum bit depends on the carry

from the previous stage.
module ripple carry adder (
input [3:0] A, // 4-bit input A
input [3:0] B, // 4-bit input B
input Cin, // Carry-in (initial carry)
output [3:0] Sum, // 4-bit sum
output Cout); // Carry-out
wire cl, ¢2, ¢3; // Internal carry signals
// First bit (LSB)
full_adder FAO (.A(A[0]), .B(B[0]), .Cin(Cin), .Sum(Sum|[0]), .Cout(cl));
// Second bit
full _adder FA1 ((LA(A[1]), .B(B[1]), .Cin(c1), .Sum(Sum([1]), .Cout(c2));
// ' Third bit
full adder FA2 (.A(A[2]), .B(B[2]), .Cin(c2), .Sum(Sum[2]), .Cout(c3));
// Fourth bit (MSB)
full adder FA3 (.A(A[3]), .B(B[3]), .Cin(c3), .Sum(Sum|[3]), .Cout(Cout));

endmodul

// Full Adder module used in the Ripple Carry Adder
module full adder (
input A, B, Cin, // 1-bit inputs
output Sum, Cout // 1-bit outputs (Sum and Carry-out)
);
assign Sum = A * B * Cin; // Sum is XOR of inputs
assign Cout = (A & B) | (Cin & (A * B)); // Carry-out is generated from ANDs and ORs

endmodule

34

Experiment-4B

Clock

XOR

4

D 3 Q

Flip-Flop

R

4

D 2 Q

Flip-Flop

R

v

D 1 Q

Flip-Flop

Flip-Flop
D>

D 0 Q i

R

=

CLEAR

Figure 4B: Logic Diagram for 4 bit LFSR

Outcome: Verified and Synthesized 4-bit Ripple Carry Adder and 4-bit LFSR using FPGA.

Cycle | Ifsr[3] | Ifsr[2] | Msr[1] | Ifsr[0] Fféf&?ﬁ%ﬁ?’ New LFSR Value
0 1 0 0 1 1 XOR1=0 0100
1 0 1 0 0 0 XOR 0 =0 0010
2 0 0 1 0 0 XOR 0 =0 0001
3 0 0 0 1 1 XOR0=1 1000
4 1 0 0 0 0XOR1=1 1100
5 1 1 0 0 0XOR 1=1 1110
6 1 1 1 0 0XOR 1=1 1111
7 1 1 1 1 1 XOR1=0 0111
8 0 1 1 1 1 XORO0=1 1011
9 1 0 1 1 1 XOR 1=0 1101
10 0 1 0 1 1 XOR0=1 1010
11 1 0 1 0 0XOR 1=1 0101
12 1 0 0 1 1 XOR 1=0 1001

35

4B. 4-Bit Linear Feedback Shift Register (LFSR)

module LFSR with clock divider(
input wire clk, // 10 MHz system clock
input wire rst, // Asynchronous reset
output reg [3:0] Ifsr, // 4-bit LFSR output
output reg clk out // 1 Hz output clock
);
// Clock Divider Logic (for 1 Hz from 10 MHz)
reg [23:0] counter; // 24-bit counter for clock division
always @(posedge clk or posedge rst) begin
if (rst) begin
counter <= 24'b0;
clk out <=0;
end else begin
if (counter == 24'd9999999) begin // Counter value for 1 Hz clock (10 MHz / 10"7 =1 Hz)
counter <= 24'b0;
clk_out <= ~clk out; // Toggle output clock
end else begin
counter <= counter + 1;
end
end
end
// LFSR Logic
always @(posedge clk out or posedge rst) begin
if (rst) begin
Ifsr <=4'b1001; // Initial seed for LFSR (can be any non-zero value)
end else begin
// Shift left and feedback XOR the 4th and 3rd bits

Ifsr[3] <= (Ifsr[3] ~ 1fsr[0]); // Feedback from bit 3 and 0
Ifsr[2] <= Ifsr[3];
Ifsr[1] <= Ifsr[2];
Ifsr[0] <= Ifsr[1];
end
end

—) e d

36

endmodule

Experiment-5A

T o a3 w
wllellelle
 [. 4 bit adder l]o
ettt o2
1t —1ft—=F =
Fogn
< Cs G G G <G G G

Figure 5A: Logic Diagram of 4-bit Array mutliplier

37

Experiment-5: Write a Verilog description for the following Digital Circuits, Verify the functionality

using Verilog test bench and perform the synthesis by downloading the design on to

FPGA device.

A. 4-bit Array Multiplication
B. 4-bit Booth Multiplication

Objective: To verify and Synthesize 4-bit Array multiplier and Booth Multiplier using FPGA.

5A. 4-bit Array Multiplier

module Array Multiplier(
input [3:0] A, // 4-bit input A
input [3:0] B, // 4-bit input B
output [7:0] Product // 8-bit output product
);
// Internal wires to hold partial products
wire [3:0] pO0, p1, p2, p3;

// Generate partial products

assign p0 = A[0] ? B : 4'b0000;
assign pl = A[1] ? B : 4'b0000;
assign p2 = A[2] ? B : 4'b0000;
assign p3 = A[3] ? B : 4'b0000;

// Sum partial products
assign Product = p0 + (pl << 1) + (p2 <<2) + (p3 << 3);
endmodule

38

4-bit Booth Multiplier Block Diagram:

+ +
I I

A [3:0] --|--> Multiplicand/
I I
I I

B [3:0] --|--> Multiplier /
I I

+ +
|
\%
+ +
I I
| Booth’s Algorithm |
| (Multiplier Shift |
|and Addition Logic)|
+ +
I
\%
+ +

I I
|Final Product (8-bit) |

+ +

39

5B. 4-bit Booth Multiplier:

module booth multiplier (
input [3:0] A, /l 4-bit input A
input [3:0] B, // 4-bit input B
output reg [7:0] Product // 8-bit output product
);
reg [7:0] M, Q, Qnl; // Registers for multiplicand, multiplier, and Qnl
integer i,
always @(A or B) begin
// Initialize the registers
M = {4'b0000, A}; // Extend A with zeroes (4 bits)
Q= {4'b0000, B}; // Extend B with zeroes (4 bits)
Qnl = 1'b0; // Initialize Qn1 (the previous QO bit)
Product = 8'b0; // Clear the product register

for (i=0; i<4; i=1 + 1) begin
case ({Q[0].Qnl})
2'b01:Product = Product + M; // Add M to the product
2'b10:Product = Product - M; // Subtract M from the product

endcase

/I Arithmetic shift right (ASR) to prepare for the next iteration
Qnl = Q[0];
Q = {Product[0], Q[7:1]}; // Shift the Q register
Product = {Product[7], Product[7:1]}; // Shift the Product register
end
end

endmodule

Outcome: Verified and Synthesized 4-bit Array multiplier and Booth Multiplier using FPGA.

40

Experiment-6: Write a Verilog description to design a clock divider circuit that generates /2, !/3" and

1/4M clock from a given input clock. Port the design to FPGA and validate the
functionality using output device.

Verilog Code for Clock Divider Circuit:

module ClockDivider (
input wire clk in, // Input clock signal
input wire reset, // Reset signal
output reg clk out 2, // Output clock signal divided by 2
output reg clk out 3, // Output clock signal divided by 3
output reg clk out 4 // Output clock signal divided by 4

// Internal counters for dividing the clock

reg [1:0] counter 2; // 2-bit counter for division by 2
reg [1:0] counter 3; // 2-bit counter for division by 3
reg [2:0] counter 4; // 3-bit counter for division by 4

// Process to divide the input clock for 1/2, 1/3, and 1/4 clocks
always @(posedge clk _in or posedge reset) begin
if (reset) begin
// Reset the counters and clock outputs
counter 2 <= 2'b00;
counter 3 <= 2'b00;
counter_4 <= 3'b000;
clk out 2 <=0;
clk out 3 <=0;
clk out 4 <=0;
end else begin
// Dividing by 2
counter 2 <= counter 2+ 1;
if (counter 2 ==2'b01) begin
clk out 2 <=~clk out 2;
counter 2 <= 2'b00;
end

// Dividing by 3

counter 3 <=counter 3 + 1;

if (counter 3 ==2'b10) begin
clk out 3 <=~clk out 3;
counter 3 <= 2'b00;

end

41

// Dividing by 4

counter 4 <= counter 4 + 1;

if (counter 4 ==3'b011) begin
clk out 4 <=~clk out 4;
counter 4 <= 3'b000;

end

end
end

endmodule
Outcome: Verified clock division using FPGA.

42

Experiment-7:

EllBmnnm
o pree
a1

[u!

-
-
-

'I'l:

i

b1 I
—
LA
—* 5
H P Bl
o
fr
P

-
2y

"u

i
3 Pl RRG

4 AT POAWERRMATE

1
El
i
-
k]
£ vk Y POWTRAAATE
F

m
T AT POEERARTE

I —
|

HCADER S0

Black A Unipoar Drive
order | A| B | C
1 [+[+[-
Green C

2 +
Red B 3 |—=|—I|+
4

Clockwise
Blue D

Figure: Interfacing of a Stepper Motor

anticlockwise

43

Experiment-7: Interface a Stepper motor to FPGA and Write a Verilog description to control Stepper

motor rotation.

Objective: To interface a Stepper motor to FPGA and control motor rotation

module stepper_motor_controller (

input clk, // Input clock signal (e.g., 50 MHz)
input reset, /I Reset signal
input direction, /I Direction control: 0 = clockwise, 1 = counterclockwise

input [31:0] speed, // Speed control: Delay count for each step
output reg [3:0] motor pins // 4-bit output to control the stepper motor
);
reg [31:0] counter; // Counter for speed control
reg [3:0] step_sequence [0:7]; // Step sequence for 4-phase control

reg [2:0] step_index; // Index to keep track of the current step

/I Step sequence for full step (could be modified for half-step)

initial begin
step_sequence[0] =4b0001; // Step 1: Coil 1 active
step_sequence[1] =4b0010; // Step 2: Coil 2 active
step_sequence[2] =4b0100; // Step 3: Coil 3 active
step_sequence[3] = 4b1000; // Step 4: Coil 4 active
step_sequence[4] =4b1000; // Step 5: Coil 4 active
step_sequence[S5] =4b0100; // Step 6: Coil 3 active
step_sequence[6] = 4b0010; // Step 7: Coil 2 active
step_sequence[7] = 4b0001; // Step 8: Coil 1 active

end

// Main clock logic for stepping
always @(posedge clk or posedge reset) begin
if (reset) begin
counter <= 0;
step_index <= 0;

motor_pins <= 4b0001; // Start with step 1 (coil 1 active)

44

end else if (counter < speed) begin
counter <= counter + 1;
end
else
begin
// Time to move to the next step

counter <= 0;

// Update step_index for direction

if (direction == 0) begin // Clockwise: Increase step_index
step_index <= step index + 1;
if (step_index == 7) step_index <= 0; // Wrap around

end else begin // Counterclockwise: Decrease step index
if (step_index == 0) step_index <=7;
else step index <= step index - 1;

end

// Set the motor control pins according to the current step

motor_pins <= step_sequence[step index];

end
end

endmodule

45

Experiment-8: Interface a DAC to FPGA and Write a Verilog description to generate Square wave of
frequency F KHz. Modify the code to down sample the frequency to F/2 KHz. Display
the original and down sampled signals by connecting them to an output device.

Objective: To interface a DAC (Digital-to-Analog Converter) to an FPGA and generate a square wave
signal of frequency F kHz.

module SquareWaveGenerator (
input wire clk in, // Input clock signal (e.g., 100 MHz)
input wire reset, // Reset signal
output reg dac_out 1, // Original square wave (F kHz)
output reg dac_out 2 // Downsampled square wave (F/2 kHz)

);

// Counter for original square wave (F kHz)

reg [15:0] counter 1;

reg [15:0] counter 2; // Counter for downsampled square wave (F/2 kHz)
reg clk div_1; // Clock for original square wave

reg clk div_2; // Clock for downsampled square wave

// Parameters to configure the frequency of the square wave (F kHz and F/2 kHz)
/I Assuming input clock is 100 MHz

parameter CLK._FREQ =100 000 _000; // 100 MHz clock input

parameter F_kHz = 10_000; // Target frequency F = 10 kHz

parameter F2 kHz=F kHz/2; // Downsampled frequency F/2

// Calculate clock division factors for F kHz and F/2 kHz
parameter DIV_FACTOR 1 =CLK FREQ/ (2 * F kHz); // Divide by 2 for square wave frequency
parameter DIV_FACTOR 2 =CLK FREQ/ (2 * F2_kHz); // Divide by 2 for downsampled frequency

always @(posedge clk in or posedge reset) begin
if (reset) begin
/I Reset counters and outputs

counter 1 <=0;
46

counter 2 <=0;
dac out 1 <=0;
dac_out 2 <=0;
end else begin
// Generate original square wave with frequency F kHz
if (counter 1>=DIV_FACTOR 1 - 1) begin
counter 1 <=0;
dac_out 1 <=~dac out 1; // Toggle square wave
end else begin
counter 1 <=counter 1+ 1;

end

// Generate downsampled square wave with frequency F/2 kHz
if (counter 2 >=DIV_FACTOR 2 - 1) begin
counter 2 <=0;
dac_out 2 <=~dac out 2; // Toggle downsampled square wave
end else begin
counter 2 <=counter 2 + 1;
end
end

end

endmodule

Outcome: Learnt successful interfacing of the DAC to FPGA.

47

Experiment-9: Write a Verilog description to convert an analog input of a sensor to digital form and

to display the same on a suitable display like set of simple LEDs like 7-Segment

display digits.

Objective: To interface an ADC to FPGA to convert an analog input of a sensor to digital form and to

display the same on a suitable display

Module 1: ADC Interface

module adc_simulator (
input clk,
input reset,

output reg [9:0] adc_data // 10-bit ADC data (simulated)
);

// Simulate an ADC value by incrementing it every clock cycle
always @(posedge clk or posedge reset) begin
if (reset)
adc_data <= 10'b0; // Reset ADC data
else
adc_data <= adc_data + 1; // Simulate increasing ADC value
end

endmodule
Module 2: 7-Segment Display Decoder

module seven segment decoder (
input [3:0] digit, /I 4-bit input digit (0-15)
output reg [6:0] seg // 7-segment display output (a-g)
);
always @/(digit) begin
case (digit)
4'd0: seg="7b1111110;//0
4'd1: seg = 7'b0110000; // 1
4'd2: seg ="7b1101101;// 2
4'd3: seg="7b1111001;// 3
4'd4: seg=7b0110011; // 4
4'd5: seg =7b1011011;// 5
4'd6: seg="7b1011111;// 6

48

4'd7: seg="7b1110000; // 7
4'd8: seg="7Dbl111111;//8
4'd9: seg="7b1111011;//9
4'd10: seg="7bl1110111;// A
4'd11: seg="7b0011111;//b
4'd12: seg="7b1001110; // C
4'd13:seg=7b0111101;//d
4'd14: seg="7'b1001111;// E
4'd15: seg="7b1000111; // F
default: seg = 7'0000000; // Default: Blank
endcase
end
endmodule

Module 3:
The top-level module interfaces the ADC simulator, the 7-segment display decoder, and handles displaying

the ADC value on a 7-segment display.

module adc _to 7segment display (
input clk, // Clock input
input reset, // Reset signal
output [6:0] segl, // 7-segment display for digit 1 (MSB)
output [6:0] seg2, // 7-segment display for digit 2
output [6:0] seg3, // 7-segment display for digit 3
output [6:0] seg4 // 7-segment display for digit 4
);
wire [9:0] adc_data; // 10-bit ADC data
// Instantiate the ADC simulator

adc_simulator adc_inst (
.clk(clk),
.reset(reset),
.adc_data(adc_data)

)
wire [3:0] digitl, digit2, digit3, digit4;

// Extract digits from the 10-bit ADC data (divide it into 4 digits)

assign digitl = adc_data[9:8]; // Most significant digit (MSD)
assign digit2 = adc_data[7:4]; // 2nd digit
assign digit3 = adc_data[3:2]; // 3rd digit
assign digit4 = adc_data[1:0]; // Least significant digit (LSD)

// Instantiate 7-segment display decoders for each digit

49

seven_segment decoder segl decoder (
digit(digitl),
.seg(segl)

);

seven_segment decoder seg2 decoder (
.digit(digit2),
.seg(seg?)

);

seven_segment decoder seg3 decoder (
.digit(digit3),
.seg(seg3)

);

seven_segment decoder seg4 decoder (
.digit(digit4),
.seg(seg4)

);

endmodule

Outcome: Learnt successful interfacing of ADC with FPGA.

50

