
1

Department of Electronics and Communication Engineering

(ACADEMIC YEAR 2025-26)

LABORATORY MANUAL

SUBJECT: FPGA Based System Design Lab Using Verilog

SUB CODE: BECL657A

SEMESTER: VI

2

Institute Vision & Mission

VISION:

 Development of academically excellent, culturally vibrant, socially responsible, and globally

competent human resources

MISSION:

• To keep pace with advancements in knowledge and make the students competitive and

capable at the global level.

• To create an environment for the students to acquire the right physical, intellectual, emotional,

and moral foundations and shine as torch bearers of tomorrow's society.

• To strive to attain ever-higher benchmarks of educational excellence

Department Vision and Mission

VISION:

To develop highly skilled and globally competent professionals in the field of Electronics and

Communication Engineering to meet industrial and social requirements with ethical responsibility

MISSION:

• To provide State-of-art technical education in Electronics and Communication at

undergraduate and post-graduate levels to meet the needs of the profession and society and to

adopt the best educational methods and achieve excellence in teaching-learning and research.

• To develop talented and committed human resource, by providing an opportunity for

innovation, creativity, and entrepreneurial leadership with high standards of professional

ethics, transparency, and accountability.

• To function collaboratively with technical Institutes/Universities/Industries and offer

opportunities for Long-term interaction with academia and industry

3

PROGRAM OUTCOMES (POs)

 Engineering Graduates will be able to:

PO1. Engineering knowledge: Apply the knowledge of mathematics, science, engineering fundamentals,

and an engineering specialization to the solution of complex engineering problems.

PO2. Problem analysis: Identify, formulate, review research literature, and analyze complex engineering

 problems reaching substantiated conclusions using first principles of mathematics, natural sciences,

 and engineering sciences.

PO3. Design/development of solutions: Design solutions for complex engineering problems and design

system components or processes that meet the specified needs with appropriate consideration for the

public health and safety, and the cultural, societal, and environmental considerations.

PO4. Conduct investigations of complex problems: Use research-based knowledge and research methods

including design of experiments, analysis and interpretation of data, and synthesis of the

information to provide valid conclusions.

PO5. Modern tool usage: Create, select, and apply appropriate techniques, resources, and modern

engineering and IT tools including prediction and modeling to complex engineering activities with

an understanding of the limitations.

PO6. The engineer and society: Apply reasoning informed by contextual knowledge to assess societal,

health, safety, legal and cultural issues and the consequent responsibilities relevant to professional

engineering practice.

PO7. Environment and sustainability: Understand the impact of professional engineering solutions in

societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable

development.

PO8. Ethics: Apply ethical principles and commit to professional ethics and responsibilities and norms of

engineering practice.

PO9. Individual and teamwork: Function effectively as an individual, and as a member or leader in diverse

teams, and in multidisciplinary settings.

PO10.Communication: Communicate effectively on complex engineering activities with the engineering

community and with society at large, such as, being able to comprehend and write effective reports

and design documentation, make effective presentations, and give and receive clear instructions.

PO11. Project management and finance: Demonstrate knowledge and understanding of the engineering and

management principles and apply these to one’s own work, as a member and leader in a team, to

manage projects and in multidisciplinary environments.

PO12. Life-long learning: Recognize the need for, and have the preparation and ability to engage in

independent and life-long learning in the broadest context of technological change

4

PROGRAM SPECIFIC OUTCOMES (PSOs)

• To have the capability to understand and adopt to technological advancements with the usage of

modern tool to analyze and design embedded system or processes for variety of applications.

• To work effectively in a group as an independent visionary, team member and leader having the

ability to understand the requirement and develop feasible solutions to emerge as potential core or

electronic engineer.

PROGRAM EDUCATIONAL OBJECTIVES (PEO’s)

• To Produce Graduates to excel in the profession, higher education and pursue research exercises in

Electronics and Communication Engineering.

• To create technically able alumni with the capacity to examine, plan, create and execute Electronics

and Communication frameworks thereby involving in deep rooted learning.

5

Introduction to HDL

An HDL is a programming language used to describe electronic circuit essentially digital logic circuits. It

can be used to describe the operation, design and organization of a digital circuit. It can also be used to

verify the behavior by means of simulations. The principle difference between HDL and other

programming languages is that HDL is a concurrent language whereas the others are procedural i.e. single

threaded. HDL has the ability to model multiple parallel processes like adders, flip-flops etc. which execute

automatically and independently of each other. It is like building many circuits that can operate

independently of each other.

The two widely used HDLs are:

• VHDL: Very High Speed Integrated Circuits HDL

• Verilog HDL

VHDL (VHSIC Hardware Description Language) is a hardware description language used in electronic

design automation to describe digital and mixed-signal systems such as field-programmable gate arrays and

integrated circuits. VHDL can also be used as a general purpose parallel programming language.

Verilog, standardized as IEEE 1364, is a hardware description language (HDL) used to model electronic

systems. It is most commonly used in the design and verification of digital circuits at the register-transfer

level of abstraction. It is also used in the verification of analog circuits and mixed-signal circuits, as well as

in the design of genetic circuits.

Difference between Verilog and VHDL

1. VHDL is based on Pascal and ADA while Verilog is based on C language.

2. VHDL is strongly typed i.e., does not allow the intermixing, or operation of variables, with different

 classes whereas Verilog is weakly typed.

3. VHDL is case insensitive and Verilog is case sensitive.

4. Verilog is easier to learn compared to VHDL.

5. Verilog has very simple data types, while VHDL allows users to create more complex data types.

6. Verilog lacks the library management, like that of VHDL.

6

FPGA DESIGN FLOW

1. Design Entry – the first step in creating a new design is to specify it's structure and functionality. This

can be done either by writing an HDL model using some text editor or drawing a schematic diagram

using schematic editor.

2. Design Synthesis – next step in the design process is to transform design specification into a more

suitable representation that can be further processed in the later stages in the design flow. This

representation is called the netlist. Prior to netlist creation synthesis tool checks the model syntax and

analyze the hierarchy of your design which ensures that your design is optimized for the design

architecture you have selected. The resulting netlist is saved to a Native Generic Circuit (NGC) file (for

Xilinx® Synthesis Technology (XST) compiler) or an Electronic Design Interchange Format (EDIF) file

(for Precision, or Simplify /Simplify Pro tools).

3. Design Implementation

Implementation step maps netlist produced by the synthesis tool onto particular device's internal

structure. It consists from three steps:

3.1 Translate step – merges all incoming netlists and constraints into a Xilinx Native Generic

Database (NGD) file.

3.2 Map step - maps the design, specified by an NGD file, into available resources on the target FPGA

device, such as LUTs, Flip-Flops, BRAMs,... As a result, an Native Circuit Description (NCD) file is

created.

3.3 Place and Route step - takes a mapped Native Circuit Description (NCD) file, places and routes the

design, and produces an NCD file that is used as input for bit stream generation.

7

Figure: FPGA Design Flow

4. Design Verification – is very important step in design process. Verification is comprised of seeking

out problems in the HDL implementation in order to make it compliant with the design specification. A

verification process reduces to extensive simulation of the HDL code. Design Verification is usually

performed using two approaches: Simulation and Static Timing Analysis.

There are two types of simulation:

• Functional (Behavioral) Simulation – enables you to simulate or verify a code syntax and functional

capabilities of your design. This type of simulation tests your design decisions before the design is

implemented and allows you to make any necessary changes early in the design process. In functional

(behavioral) simulation no timing information is provided.

• Timing Simulation – allows you to check does the implemented design meet all functional and timing

requirements and behaves as you expected. The timing simulation uses the detailed information about

the signal delays as they pass through various logic and memory components and travel over

connecting wires. Using this information it is possible to accurately simulate the behaviour of the

implemented design. This type of simulation is performed after the design has been placed and routed

for the target PLD, because accurate signal delay information can now be estimated. A process of

relating accurate timing information with simulation model of the implemented design is called Back-

Annotation.

• Static Timing Analysis – helps you to perform a detailed timing analysis on mapped, placed only or

placed and routed FPGA design. This analysis can be useful in evaluating timing performance of the

logic paths, especially if your design doesn't meet timing requirements. This method doesn't require any

type of simulation.

5. Generate Programming File – this option runs BitGen, the Xilinx bitstream generation program, to

create a bitstream file that can be downloaded to the device.

6. Programming – iMPACT Programmer uses the output from the Generate Programming File process

to configure your target device.

7. Testing – after configuring your device, you can debug your FPGA design using the Xilinx ChipScope

Pro tool or some external logic analyzer.

8

8. Estimate Power – after implementation, you can use the XPower Analyzer for estimation and power

analysis. XPower Analyzer is delivered with ISE Design Suite. With this tool you can estimate power,

based on the logic and routing resources of the actual design.

ABOUT XILINX ISE SOTWARE

Xilinx ISE (Integrated Synthesis Environment) is a software tool produced by Xilinx for synthesis

and analysis of HDL designs, enabling the developer to synthesize ("compile") their designs, perform timing

analysis, examine RTL diagrams, simulate a design's reaction to different stimuli, and configure the target

device with the programmer.

Xilinx ISE is a design environment for FPGA(Field programmable gate arrays) products from

Xilinx, and is tightly-coupled to the architecture of such chips, and cannot be used with FPGA products

from other vendors. The Xilinx ISE is primarily used for circuit synthesis and design, while ISIM or the

ModelSim logic simulator is used for system-level testing

STEPS TO EXECUTE A PROGRAM

1) Starting the ISE software

 Start _ program _ XILINX ISE 7 _ Project Navigator

2) Creating a New Project in ISE

A project is a collection of all files necessary to create and to download a design to a selected

FPGA or CPLD devices

Project name:

Project location:

Top-Level Source Type: HDL

Click Next to move to the project properties page.

3) Fill in the properties in the table as shown below

Device Family: Spartan 3

Device: XC3S50

Package: PQ208Speed

Speed: -5

https://en.wikipedia.org/wiki/Xilinx
https://en.wikipedia.org/wiki/Hardware_description_language
https://en.wikipedia.org/wiki/Logic_synthesis
https://en.wikipedia.org/wiki/Static_timing_analysis
https://en.wikipedia.org/wiki/Static_timing_analysis
https://en.wikipedia.org/wiki/Register_transfer_level
https://en.wikipedia.org/wiki/Programmer_%28hardware%29
https://en.wikipedia.org/wiki/ModelSim

9

Top-Level Module Type: HDL

HDL Synthesis Tool: XST(VHDL/VERILOG)

Simulator: ISE Simulator (VHDL/ Verilog)

4) Creating an HDL Source

Create a top-level HDL file for the design. Determine the language that you wish to use (Verilog

module or VHDL module).

This simple AND Gate design has two inputs: A and B. This design has one output called C

 Click New Source in the New Project Wizard to add one new source to your project.

a) Select VERILOG MODULE as the source type in the New Source dialog box.

b) Type in the file name for ex: and_gate

c) Verify that the Add to project checkbox is selected.

d) Click Next.

e) Define the ports for your Verilog source.

In the Port Name column, type the port names on three separate rows: A, B and C.

In the Direction column, indicate whether each port is an input, output, or inout.

For A and B, select in from the list. For C, select out from the list.

5) Click next in the Define Verilog Source dialog box.

6) Click Finish in the New Source Information dialog box to complete the new source file template.

Click Next in the New Project Wizard. Click next again.

7) Click Finish in the New Project Information dialog box.

 ISE creates and displays the new project in the Sources in Project window and adds the and_gate.v file

to the project.

8) Double-click on the and_gate.v file in the Sources in Project window to open the Verilog file in the

ISE Text Editor.

 The and_gate.v file contains:

 Module name with the inputs and outputs declared.

10

9) Add the relationship between input and output after the input and output declared in module. Save the

file by selecting File > Save.

10) When the source files are complete, the next step is to check the syntax of the design. Syntax

errors and typos can be found using this step.

a) Select the counter design source in the ISE Sources window to display the related processes

in the Processes for Source window.

b) Click the “+”next to the Synthesize-XST process to expand the hierarchy.

c) Double-click the Check Syntax process.

11) When an ISE process completes, you will see a status indicator next to the process name.

a) If the process completed successfully, a green check mark appears.

b) If there were errors and the process failed, a red X appears.

c) A yellow exclamation point means that the process completed successfully, but some Warnings

occurred.

d) An orange question mark means the process is out of date and should be run again.

e) Look in the Console tab of the Transcript window and read the output and status messages

produced by any process that you run.

Caution! You must correct any errors found in your source files. If you continue without valid

syntax, you will not be able to simulate or synthesize your design.

12) After the successful check syntax in the process Examine RTL diagrams.

13) To Create Testbench waveform, Right click on file name in source window, and_gate.v and add source.

14) Add testbench waveform source with a new file name and click next.

15) A timing window pops up. Click on combinatorial and click next.

16) A graphical window of input and output appears. Make changes according to the truth table and save.

17) <file_name>.tb file is added to the project.

18) In source window change implementation to behavioral simulation.

11

19) In process window click on Xilix ISE simulator and RUN. Output window appears. Analyze the wave

forms according to the truth table.

20) Double-click the Assign Package Pins process found in the User Constraints process group. ISE runs the

Synthesis and Translate step and automatically creates a User Constraints File(UCF). You will be

prompted with the following message.

21) Click Yes to add the UCF file to your project. The file is added to your project and is visible in the

Sources in Project.

22) Now the Xilinx Pin out and Area Constraints Editor (PACE) opens.

23) You can see your I/O Pins listed in the Design Object List window. Enter a pin location for each pin in

the Loc column as specified below

A: P1, B:P2, C:P3

24) Click on the Package View tab at the bottom of the window to see the pins you just added. Put

your mouse over grid number to verify the pin assignment.

12

25) Close PACE

 Creating Configuration Data

 The Program File is a encoded file that is the equivalent of the design in a form that can be downloaded

into the CPLD device.

 The final phase in the software flow is to generate a program file and configure the device

Generating a Program File

1. The Program File is created. It is written into a file called andgate.jed This is the actual configuration

data

2. Double Click the Generate Programming File process located near the bottom of the Processes for

Source window.

3. This section provides simple instructions for configuring a Spartan-3 xc3s200 device connected to

your PC.

4. Note: Your board must be connected to your PC before proceeding. If the device on your board does

not match the device assigned to the project, you will get errors. Please refer to the IMPACT Help

for more information. To access the help, select Help > Help Topics

5. To configure the device:

6. Click the “+” sign to expand the Generate Programming File processes

13

7. Double click on the Configure device IMPACT

8. In the Configure Devices dialog box, verify that Boundary-Scan Mode is selected and Click Next

9. Verify that Automatically connect to cable and identify Boundary-Scan chain is selected and click

Finish.

10. If you get a message saying that there was one device found, click OK to continue

11. The iMPACT will now show the detected device, right click the device and select New

Configuration File.

12. The Assign New Configuration File dialog box appears. Assign a configuration file to each device in

the JTAG chain. Select the andgate.jed file and click Open

14

13. Right-click on the counter device image, and select Program... to open the Program Options dialog

box.

14. Click OK to program the device. ISE programs the device and displays Programming Succeeded if

the operation was successful

15. Close IMPACT without saving

15

16

FPGA Based System design Lab Using Verilog

Course Code: BECL657A CIE Marks: 50

SEE Marks: 50

1. Write a Verilog description for the following combinational logic, verify the design using Verilog

test bench and perform the synthesis by downloading the design on to FPGA device.

a. Structural modeling of Full adder using two half adders and or Gate

b. BCD to Excess-3 code converter

2. Write a Verilog description for the following Sequential Circuits, Verify the design using Verilog

test bench and perform the synthesis by downloading the design on to FPGA device.

a. Mod-N counter

b. Random sequence counter

3. Write a Verilog description for the following Sequential Circuits, Verify the design using Verilog

test bench and perform the synthesis by downloading the design on to FPGA device.

a. SISO and PISO shift register

b. Ring counter

4. Write a Verilog description for the following Digital Circuits, Verify the functionality using Verilog

test bench and perform the synthesis by downloading the design on to FPGA device.

a. 4-Bit Ripple Carry Adder

b. 4-Bit Linear Feedback shift register

5. Write a Verilog description for the following Digital Circuits, Verify the functionality using Verilog

test bench and perform the synthesis by downloading the design on to FPGA device.

a. 4-bit Array Multiplication

b. 4-bit Booth Multiplication@12112024

6. Write a Verilog description to design a clock divider circuit that generates 1/2,
1/3

rd and 1/4
th clock

from a given input clock. Port the design to FPGA and validate the functionality using output device.

7. Interface a Stepper motor to FPGA and Write a Verilog description to control Stepper motor

rotation.

8. Interface a DAC to FPGA and Write a Verilog description to generate Square wave of frequency F

KHz. Modify the code to down sample the frequency to F/2 KHz. Display the original and down

sampled signals by connecting them to an output device.

9. Write a Verilog description to convert an analog input of a sensor to digital form and to display the

same on a suitable display like set of simple LEDs like 7-Segment display digits.

17

FPGA Based System design Lab Using Verilog

Course Code: BECL657A CIE Marks: 50

SEE Marks: 50

Cycle – 1

1. Write a Verilog description for the following combinational logic, verify the design using Verilog

test bench and perform the synthesis by downloading the design on to FPGA device.

a. Structural modeling of Full adder using two half adders and or Gate

b. BCD to Excess-3 code converter

2. Write a Verilog description for the following Sequential Circuits, Verify the design using Verilog

test bench and perform the synthesis by downloading the design on to FPGA device.

a. Mod-N counter

b. Random sequence counter

3. Write a Verilog description for the following Sequential Circuits, Verify the design using Verilog

test bench and perform the synthesis by downloading the design on to FPGA device.

a. SISO and PISO shift register

b. Ring counter

Cycle – 2

4. Write a Verilog description for the following Digital Circuits, Verify the functionality using Verilog

test bench and perform the synthesis by downloading the design on to FPGA device.

a. a.4-Bit Ripple Carry Adder

b. 4-Bit Linear Feedback shift register

5. Write a Verilog description for the following Digital Circuits, Verify the functionality using Verilog

test bench and perform the synthesis by downloading the design on to FPGA device.

a. 4-bit Array Multiplication

b. 4-bit Booth Multiplication@12112024

6. Write a Verilog description to design a clock divider circuit that generates 1/2,
1/3

rd and 1/4
th clock

from a given input clock. Port the design to FPGA and validate the functionality using output device.

Cycle – 3

7. Interface a Stepper motor to FPGA and Write a Verilog description to control Stepper motor

rotation.

8. Interface a DAC to FPGA and Write a Verilog description to generate Square wave of frequency F

KHz. Modify the code to down sample the frequency to F/2 KHz. Display the original and down

sampled signals by connecting them to an output device.

9. Write a Verilog description to convert an analog input of a sensor to digital form and to display the

same on a suitable display like set of simple LEDs like 7-Segment display digits.

18

DETAILS OF ON BOARD CONNECTIONS AND SPARTAN – 3 IC
Signal CN9 Connection XC3S50 - SPARTAN

AN1 PIN 5 PIN 2

AN2 PIN 6 PIN 3

AN3 PIN 7 PIN 7
AN4 PIN 8 PIN 9

Signal CN12 Connection XC3S50 - SPARTAN
AN5 PIN 37 PIN 166

AN6 PIN 38 PIN 167

Signal CN9 Connection XC3S50 - SPARTAN
SEG 1/RS PIN 9 PIN 10
SEG 2/RW PIN 10 PIN 11

SEG 3/EI PIN 11 PIN 12

SEG 4/DT0 PIN 12 PIN 13

SEG 4/DT1 PIN 13 PIN 15
SEG 4/DT2 PIN 14 PIN 16

SEG 4/DT3 PIN 15 PIN 18

SEG 8 PIN 16 PIN 19

IN 1 PIN 20 PIN 21
IN 2 PIN 22 PIN 27

IN 3 PIN 24 PIN 29

IN 4 PIN 26 PIN 35

IN 5 PIN 28 PIN 37
IN 6 PIN 30 PIN 40

IN 7 PIN 32 PIN 43

IN 8 PIN 34 PIN 45

IN 9 PIN 36 PIN 48

IN 10 PIN 38 PIN 52

Signal CN10 Connection XC3S50 - SPARTAN
IN 11 PIN 6 PIN 58

IN 12 PIN 8 PIN 62

IN 13 PIN 10 PIN 64
IN 14 PIN 12 PIN 67

IN 15 PIN 14 PIN 71

IN 16 PIN 16 PIN 74
IN 17 PIN 24 PIN 58

IN 18 PIN 26 PIN 62

IN 19 PIN 28 PIN 64

IN 20 PIN 30 PIN 67
IN 21 PIN 32 PIN 71

IN 22 PIN 34 PIN 74

IN 23 PIN 36 PIN 74

Signal CN11 Connection XC3S50 - SPARTAN
IN 24 PIN 4 PIN 107
IN 25 PIN 6 PIN 113

IN 26 PIN 8 PIN 115

19

IN 27 PIN 10 PIN 117

IN 28 PIN 12 PIN 120
IN 29 PIN 14 PIN 123

IN 30 PIN 16 PIN 125

IN 31 PIN 18 PIN 131

IN 32 PIN 20 PIN 133

Signal CN9 Connection XC3S50 - SPARTAN
OPLED 1 PIN 19 PIN 20

OPLED 2 PIN 21 PIN 26

OPLED 3 PIN 23 PIN 28

OPLED 4 PIN 25 PIN 34
OPLED 5 PIN 27 PIN 36

OPLED 6 PIN 29 PIN 39

OPLED 7 PIN 31 PIN 42

OPLED 8 PIN 33 PIN 44
OPLED 9 PIN 35 PIN 46

OPLED 10 PIN 37 PIN 51

Signal CN10 Connection XC3S50 - SPARTAN
OPLED 11 PIN 5 PIN 57

OPLED 12 PIN 7 PIN 61
OPLED 13 PIN 9 PIN 63

OPLED 14 PIN 11 PIN 65

OPLED 15 PIN 13 PIN 68

OPLED 16 PIN 15 PIN 72
OPLED 17 PIN 23 PIN 78

OPLED 18 PIN 25 PIN 81

OPLED 19 PIN 27 PIN 85

OPLED 20 PIN 29 PIN 87
OPLED 21 PIN 31 PIN 93

OPLED 22 PIN 33 PIN 95

OPLED 23 PIN 35 PIN 101

Signal CN11 Connection XC3S50 - SPARTAN
OPLED 24 PIN 3 PIN 44
OPLED 25 PIN 5 PIN 46

OPLED 26 PIN 7 PIN 51

OPLED 27 PIN 9 PIN 36
OPLED 28 PIN 11 PIN 39

OPLED 29 PIN 13 PIN 42

OPLED 30 PIN 15 PIN 44

OPLED 31 PIN 17 PIN 46

OPLED 32 PIN 19 PIN 51

10MHzCLK PIN 18 PIN 79

CLK1 PIN 19 PIN 76

CLK2 PIN 20 PIN 77

GREEN_E PIN 23 PIN 187

RED_E PIN 24 PIN 185

20

GREEN_S PIN 25 PIN 184

RED_S PIN 27 PIN 183
GREEN_W PIN 28 PIN 194

RED_W PIN 29 PIN 191

Hexa Keypad & Seven Segment
Display (UCF)

Gnerator of waveform (UCF) Elevator (UCF)

NET"clk"LOC="p79" NET"clk"LOC="p79" NET"pclk"LOC="p79"

NET"disp<0>"LOC="p10" NET"rst"LOC="p21" NET"pdspseg<0>"LOC="p176"

NET"disp<1>"LOC="p11" NET"dout<0>"LOC="p187" NET"pdspseg<1>"LOC="p176"

NET"disp<2>"LOC="p12" NET"dout<1>"LOC="p185" NET"pdspseg<2>"LOC="p176"

NET"disp<3>"LOC="p13" NET"dout<2>"LOC="p190" NET"pdspseg<3>"LOC="p176"

NET"disp<4>"LOC="p15" NET"dout<3>"LOC="p189" NET"fircal<0>"LOC="p183"

NET"disp<5>"LOC="p16" NET"dout<4>"LOC="p194" NET"fircal<1>"LOC="p184"

NET"disp<6>"LOC="p18" NET"dout<5>"LOC="p191" NET"fircal<2>"LOC="p181"

NET"disp_ent<0>"LOC="p2" NET"dout<6>"LOC="p197" NET"fircal<3>"LOC="p182"

NET"disp_ent<1>"LOC="p3" NET"dout<7>"LOC="p196" NET"crnt_fir<0>"LOC="p189"

NET"disp_ent<2>"LOC="p7" STEPPER MOTOR (UCF) NET"crnt_fir<1>"LOC="p190"

NET"disp_ent<3>"LOC="p9" NET"clk"LOC="p79" NET"crnt_fir<2>"LOC="p185"

NET"read_1_in<3>"LOC="p147" NET"rst"LOC="p21" NET"crnt_fir<3>"LOC="p187"

NET"read_1_in<2>"LOC="p146" NET"dir"LOC="p29" DC MOTOR (UCF)

NET"read_1_in<1>"LOC="p144" NET"dout<0>"LOC="p169" NET"clk"LOC="p79"

NET"read_1_in<0>"LOC="p143" NET"dout<1>"LOC="p175" NET"pdcm"LOC="p203"

NET"cscan<3>"LOC="p141" NET"dout<2>"LOC="p176" NET"psw<0>"LOC="p21"

NET"cscan<2>"LOC="p140" NET"dout<3>"LOC="p178" NET"psw<1>"LOC="p27"

NET"cscan<1>"LOC="p139" Clock devider NET"psw<2>"LOC="p29"

NET"cscan<0>"LOC="p138" NET"clk"LOC="p79" CN - 10

NET"new_clk"LOC="p57" 5

NET"clk_by_2"LOC="p61" 7

NET"clk_by_3"LOC="p63" 9

NET"clk_by_4"LOC="p65" 11

21

Experiment 1a:

Logic Diagram:

Figure 1.1: Logic Diagram for Full Adder Using Two Half Adders

Truth Table:

INPUTS OUTPUTS

A B Cin S Cout

0 0 0 0 0

0 0 1 1 0

0 1 0 1 0

0 1 1 0 1

1 0 0 1 0

1 0 1 0 1

1 1 0 0 1

1 1 1 1 1

22

 Date:

Experiment-1: Write a Verilog description for the following combinational logic, verify the design

 using Verilog test bench and perform the synthesis by downloading the design on to

 FPGA device.

a. Structural modeling of Full adder using two half adders and or Gate

b. BCD to Excess-3 code converter

Objective: To verify and synthesize the structural modeling of Full adder and BCD Excess-3 Code

Converter using FPGA

Full Adder Module:

module fulladder (A, B, Cin, Sum, Carry);

input A, B, Cin;

output Sum, Carry;

wire W1,W2,W3;

halfadder h1(.A(A),.B(B),.S(W1),.Cout(W2));

halfadder h2(.A(W1),.B(Cin),.S(Sum),.Cout(W3));

assign Carry=W2|W3;

endmodule

module halfadder (A, B, S, Cout);

input A, B;

output S, Cout;

xor g1(S, A, B);

and g2(Cout, A, B);

endmodule

User Constraint File (UCF):

NET "A" LOC = "p21" | IOSTANDARD = LVTTL ;

NET "B" LOC = "p27" | IOSTANDARD = LVTTL ;

NET "Cin" LOC = "p29" | IOSTANDARD = LVTTL ;

NET "S<0>" LOC = "p20" | IOSTANDARD = LVTTL ;

NET "Cout<1>" LOC = "p26" | IOSTANDARD = LVTTL ;

23

Test Bench Waveform for Full Adder:

Figure: Test bench waveform for Full adder

Experiment-1b

Truth Table:

INPUTS OUTPUTS

B[3] B[2] B[1] B[0] E[3] E[2] E[1] E[0]

0 0 0 0 0 0 1 1

0 0 0 1 0 1 0 0

0 0 1 0 0 1 0 1

0 0 1 1 0 1 1 0

0 1 0 0 0 1 1 1

0 1 0 1 1 0 0 0

0 1 1 0 1 0 0 1

0 1 1 1 1 0 1 0

1 0 0 0 1 0 1 1

1 0 0 1 1 1 0 0

1 0 1 0 X X X X

1 0 1 1 X X X X

1 1 0 0 X X X X

1 1 0 1 X X X X

1 1 1 0 X X X X

1 1 1 1 X X X X

24

Experiment 1b: BCD to Excess-3 Converter

BCD to Excess-3 Converter Module:

module BCD_to_Excess3 (

 input [3:0] BCD, // 4-bit BCD input

 output reg [3:0] Excess3 // 4-bit Excess-3 code output

);

 always @(BCD)

 begin

 if(BCD<=4'b1001)

 Excess3 = BCD + 4'b0011;

else

Excess3=4'bxxxx;

end

 // Add 3 (Excess-3) to the BCD input

endmodule

User Constraint File (UCF):

NET "BCD[0]" LOC = "p21" ;

NET "BCD[1]" LOC = "p27" ;

NET "BCD[2]" LOC = "p29" ;

NET "BCD[3]" LOC = "p35" ;

NET "Excess3[0]" LOC = "p20" ;

NET "Excess3[1]" LOC = "p26" ;

NET "Excess3[2]" LOC = "p28" ;

NET "Excess3[3]" LOC = "p34" ;

Outcome: Verified and synthesized the structural modeling of Full adder and BCD Excess-3 Code

Converter using FPGA

25

Exepriment-2: Write a Verilog description for the following Sequential Circuits, Verify the design

 using Verilog test bench and perform the synthesis by downloading the design on to

 FPGA device.

A. Mod-N counter

B. Random sequence counter

Objective: To verify and synthesize the structural modeling of Mod-N Counter and Random Sequence

 Counter using FPGA.

2A. Mod-N Counter

module mod_n_counter (

 input wire clk, // System clock

 input wire reset, // Asynchronous reset

 output reg [3:0] count // 4-bit counter output (can be adjusted for higher Mod-N)

);

 // Parameter for the modulus (N)

 parameter N = 16; // Change this for different Mod-N (e.g., 10 for Mod-10)

 // Clock divider parameters

 parameter DIVISOR = 5000000; // Assuming 5 MHz clock

 reg [25:0] clk_div; // Divider register (adjust size based on the clock frequency)

 // Clock enable

 reg clk_1Hz_en;

 // Clock divider to create a 1 Hz clock enable

 always @(posedge clk or posedge reset) begin

 if (reset)

begin

 clk_div <= 0;

 clk_1Hz_en <= 0;

 end

else begin

 if (clk_div == (DIVISOR - 1)) begin

 clk_div <= 0;

 clk_1Hz_en <= 1; // Generate clock enable signal

 end else begin

 clk_div <= clk_div + 1;

 clk_1Hz_en <= 0; // Hold clock enable low

 end

 end

 end

26

 // Mod-N counter

 always @(posedge clk or posedge reset) begin

 if (reset) begin

 count <= 0;

 end else if (clk_1Hz_en) begin

 if (count == (N - 1)) begin

 count <= 0; // Reset to 0 when reaching N

 end else begin

 count <= count + 1; // Increment counter

 end

 end

 end

endmodule

User Constraint File (UCF):

NET "clk" LOC="p79”

NET "reset" LOC = "p27"

NET "Count [3]" LOC = "p20"

NET "Count [2]" LOC = "p26"

NET "Count [1]" LOC = "p28"

NET "Count [0]" LOC = "p34"

2B. Random Sequence Counter

2. module random_sequence_generator (

 input wire clk, // System clock (e.g., 50 MHz)

 input wire reset, // Asynchronous reset

 output reg [3:0] rand_out // 4-bit random output

);

 // Clock divider parameters

 parameter DIVISOR =10000000; // Assuming a 10 MHz clock

 reg [25:0] clk_div; // Divider register

 reg clk_1Hz; // 1 Hz clock signal

 // Simple Linear Feedback Shift Register (LFSR) for random sequence

27

 reg [3:0] lfsr; // 4-bit LFSR

 wire lfsr_feedback;

 // LFSR feedback logic (example taps)

 assign lfsr_feedback = lfsr[3] ^ lfsr[2]; // Feedback from bits 3 and 2

 // Clock divider to create a 1 Hz clock

 always @(posedge clk or posedge reset) begin

 if (reset) begin

 clk_div <= 0;

 clk_1Hz <= 0;

 end else begin

 if (clk_div == (DIVISOR - 1)) begin

 clk_div <= 0;

 clk_1Hz <= ~clk_1Hz; // Toggle the 1Hz clock

 end else begin

 clk_div <= clk_div + 1;

 end

 end

 end

 // LFSR for random number generation

 always @(posedge clk_1Hz or posedge reset) begin

 if (reset) begin

 lfsr <= 4'b1010; // Seed value for LFSR

 end else begin

 lfsr <= {lfsr[2:0], lfsr_feedback}; // Shift left and insert feedback

 end

 end

 // Assign the output

 always @(posedge clk_1Hz or posedge reset) begin

 if (reset) begin

 rand_out <= 4'b0000; // Reset output

 end else begin

 rand_out <= lfsr; // Output the current LFSR value

 end

 end

endmodule

Outcome: Verified and synthesized the structural modeling of Mod-N Counter and Random Sequence

Counter using FPGA.

28

Experiment-3:

Truthtable for SISO:

Truth table for PISO:

Clk Qa Qb Qc Qd (Out)

0 0 0 0 0

1 1 1 0 1

2 0 1 1 0

3 0 0 1 1

4 0 0 0 1

29

Experiment-3: Write a Verilog description for the following Sequential Circuits, Verify the design

 using Verilog test bench and perform the synthesis by downloading the design on to

 FPGA device.

a. SISO and PISO shift register

b. Ring counter

Objective: To verify and synthesize SISO, PISO and Ring Counter using FPGA Counter.

3A. SISO (Serial in Serial Out) Shift Register

 module SISo (

 input clk, // Input clock

 input rst_n, // Active-low reset

 input serial_in, // Serial input data

 output reg serial_out, // Serial output data

 output reg [3:0] shift_reg // Internal 8-bit shift register

);

 // Clock divider to reduce the clock to 1 Hz

 reg [24:0] clk_div_counter; // Assuming 50 MHz input clock, 50 million counts for 1 Hz

 always @(posedge clk or negedge rst_n) begin

 if (~rst_n) begin

 clk_div_counter <= 25'd0; // Reset the counter

 end else if (clk_div_counter == 25'd49999999) begin

 clk_div_counter <= 25'd0; // Reset the counter when it reaches 50 million

 end else begin

 clk_div_counter <= clk_div_counter + 1;

 end

 end

 wire clk_1Hz = (clk_div_counter == 25'd49999999); // Generate 1 Hz clock signal

 // Shift register logic

 always @(posedge clk_1Hz or negedge rst_n) begin

 if (~rst_n) begin

 shift_reg <= 4'b0; // Reset the shift register

 serial_out <= 0; // Reset the serial output

 end else begin

 shift_reg <= {shift_reg[2:0], serial_in}; // Shift left and insert serial input at the LSB

 serial_out <= shift_reg[3]; // Output the MSB of the shift register

 end

30

 end

endmodule

User Constraint File (UCF):

NET "clk" LOC = "p79" ;

NET "rst_n" LOC = "p21" ;

NET "serial_in" LOC = "p48" ;

NET "serial_out" LOC = "p20" ;

NET "shift_reg[0]" LOC = "p46" ;

NET "shift_reg[1]" LOC = "p51" ;

NET "shift_reg[2]" LOC = "p57" ;

NET "shift_reg[3]" LOC = "p61" ;

3A. PISO (Parallel in Serial Out) Shift Register

 module PISO_1Hz (

 input wire clk, // System clock (e.g., 50 MHz)

 input wire reset, // Reset signal

 input wire [3:0] parallel_in, // 8-bit parallel input

 output reg serial_out // Serial output

);

 // 50 MHz clock divider for 1 Hz

 reg [25:0] counter; // 26-bit counter to count up to 50 million

 // 8-bit shift register

 reg [3:0] shift_reg;

 // Reset or shift logic

 always @(posedge clk or posedge reset) begin

 if (reset) begin

 counter <= 26'd0; // Reset counter

 shift_reg <= parallel_in; // Load parallel input to shift register

 serial_out <= 1'b0; // Initial serial output

 end else begin

 if (counter == 26'd5000000 - 1) begin

 counter <= 26'd0; // Reset counter when it reaches 50 million

 serial_out <= shift_reg[3]; // Output the most significant bit

 shift_reg <= shift_reg << 1; // Shift left by 1

 end else begin

 counter <= counter + 1; // Increment counter

 end

 end

31

 end

endmodule

User Constraint File (UCF):

NET "clk" LOC = "p76" ;

NET "parallel_in[0]" LOC = "p21" ;

NET "parallel_in[1]" LOC = "p27" ;

NET "parallel_in[2]" LOC = "p29" ;

NET "parallel_in[3]" LOC = "p35" ;

NET "reset" LOC = "p48" ;

NET "serial_out" LOC = "p20" ;

Truth table for Ring Counter:

Clock

Input
Q3 Q2 Q1 Q0

1 0 0 0 1

2 0 0 1 0

3 0 1 0 0

4 1 0 0 0

5 0 0 0 1

6 0 0 1 0

7 0 1 0 0

8 1 0 0 0

32

3B. Ring Counter

module ring_counter (

 input clk, // System clock

 input rst_n, // Active-low reset

 output reg [3:0] q // 4-bit ring counter output

);

 // Clock divider to generate 1Hz clock from high-frequency input clock

 reg [24:0] clk_div_counter; // Assuming 50 MHz input clock

 always @(posedge clk or negedge rst_n) begin

 if (~rst_n) begin

 clk_div_counter <= 25'd0;

 end else if (clk_div_counter == 25'd49999999) begin

 clk_div_counter <= 25'd0;

 end else begin

 clk_div_counter <= clk_div_counter + 1;

 end

 end

 wire clk_1Hz = (clk_div_counter == 25'd49999999); // 1Hz clock pulse

 // 4-bit Ring Counter

 always @(posedge clk_1Hz or negedge rst_n) begin

 if (~rst_n)

 q <= 4'b0001; // Reset state (initial value)

 else

 q <= {q[2:0], q[3]}; // Shift left in a ring pattern

 end

endmodule

Outcome: Verified and synthesized SISO, PISO and Ring Counter using FPGA Counter.

33

Experiment-4A

Logic Diagram

Figure 4A: 4-bit Ripple Carry Adder

4-Bit

 UCF Pin Configuration for 4-bit Ripple Carry Adder

34

Experiment-4: Write a Verilog description for the following Digital Circuits, Verify the functionality

 using Verilog test bench and perform the synthesis by downloading the design on to

 FPGA device.

A. 4-Bit Ripple Carry Adder

B. 4-Bit Linear Feedback shift register

A. 4-Bit Ripple Carry Adder

A Ripple Carry Adder (RCA) adds two binary numbers bit by bit, where each sum bit depends on the carry

from the previous stage.

 module ripple_carry_adder (

 input [3:0] A, // 4-bit input A

 input [3:0] B, // 4-bit input B

 input Cin, // Carry-in (initial carry)

 output [3:0] Sum, // 4-bit sum

 output Cout); // Carry-out

 wire c1, c2, c3; // Internal carry signals

// First bit (LSB)

 full_adder FA0 (.A(A[0]), .B(B[0]), .Cin(Cin), .Sum(Sum[0]), .Cout(c1));

// Second bit

 full_adder FA1 (.A(A[1]), .B(B[1]), .Cin(c1), .Sum(Sum[1]), .Cout(c2));

// Third bit

 full_adder FA2 (.A(A[2]), .B(B[2]), .Cin(c2), .Sum(Sum[2]), .Cout(c3));

// Fourth bit (MSB)

 full_adder FA3 (.A(A[3]), .B(B[3]), .Cin(c3), .Sum(Sum[3]), .Cout(Cout));

 endmodul

// Full Adder module used in the Ripple Carry Adder

 module full_adder (

 input A, B, Cin, // 1-bit inputs

 output Sum, Cout // 1-bit outputs (Sum and Carry-out)

);

assign Sum = A ^ B ^ Cin; // Sum is XOR of inputs

assign Cout = (A & B) | (Cin & (A ^ B)); // Carry-out is generated from ANDs and ORs

endmodule

35

Experiment-4B

Figure 4B: Logic Diagram for 4 bit LFSR

Outcome: Verified and Synthesized 4-bit Ripple Carry Adder and 4-bit LFSR using FPGA.

Cycle lfsr[3] lfsr[2] lfsr[1] lfsr[0]
Feedback (XOR)

lfsr[0] ^ lfsr[3]
New LFSR Value

0 1 0 0 1 1 XOR 1 = 0 0100

1 0 1 0 0 0 XOR 0 = 0 0010

2 0 0 1 0 0 XOR 0 = 0 0001

3 0 0 0 1 1 XOR 0 = 1 1000

4 1 0 0 0 0 XOR 1 = 1 1100

5 1 1 0 0 0 XOR 1 = 1 1110

6 1 1 1 0 0 XOR 1 = 1 1111

7 1 1 1 1 1 XOR 1 = 0 0111

8 0 1 1 1 1 XOR 0 = 1 1011

9 1 0 1 1 1 XOR 1 = 0 1101

10 0 1 0 1 1 XOR 0 = 1 1010

11 1 0 1 0 0 XOR 1 = 1 0101

12 1 0 0 1 1 XOR 1 = 0 1001

36

4B. 4-Bit Linear Feedback Shift Register (LFSR)

module LFSR_with_clock_divider(

 input wire clk, // 10 MHz system clock

 input wire rst, // Asynchronous reset

 output reg [3:0] lfsr, // 4-bit LFSR output

 output reg clk_out // 1 Hz output clock

);

// Clock Divider Logic (for 1 Hz from 10 MHz)

reg [23:0] counter; // 24-bit counter for clock division

always @(posedge clk or posedge rst) begin

 if (rst) begin

 counter <= 24'b0;

 clk_out <= 0;

 end else begin

 if (counter == 24'd9999999) begin // Counter value for 1 Hz clock (10 MHz / 10^7 = 1 Hz)

 counter <= 24'b0;

 clk_out <= ~clk_out; // Toggle output clock

 end else begin

 counter <= counter + 1;

 end

 end

end

// LFSR Logic

always @(posedge clk_out or posedge rst) begin

 if (rst) begin

 lfsr <= 4'b1001; // Initial seed for LFSR (can be any non-zero value)

 end else begin

 // Shift left and feedback XOR the 4th and 3rd bits

 lfsr[3] <= (lfsr[3] ^ lfsr[0]); // Feedback from bit 3 and 0

 lfsr[2] <= lfsr[3];

 lfsr[1] <= lfsr[2];

 lfsr[0] <= lfsr[1];

 end

end

37

endmodule

Experiment-5A

 Figure 5A: Logic Diagram of 4-bit Array mutliplier

38

Experiment-5: Write a Verilog description for the following Digital Circuits, Verify the functionality

 using Verilog test bench and perform the synthesis by downloading the design on to

 FPGA device.

A. 4-bit Array Multiplication

B. 4-bit Booth Multiplication

Objective: To verify and Synthesize 4-bit Array multiplier and Booth Multiplier using FPGA.

5A. 4-bit Array Multiplier

module Array_Multiplier(

 input [3:0] A, // 4-bit input A

 input [3:0] B, // 4-bit input B

 output [7:0] Product // 8-bit output product

);

// Internal wires to hold partial products

wire [3:0] p0, p1, p2, p3;

// Generate partial products

assign p0 = A[0] ? B : 4'b0000;

assign p1 = A[1] ? B : 4'b0000;

assign p2 = A[2] ? B : 4'b0000;

assign p3 = A[3] ? B : 4'b0000;

// Sum partial products

assign Product = p0 + (p1 << 1) + (p2 << 2) + (p3 << 3);

endmodule

39

4-bit Booth Multiplier Block Diagram:

 +-----------------------+

 | |

 A [3:0] --|--> Multiplicand/

 | |

 | |

 B [3:0] --|--> Multiplier /

 | |

 +-----------------------+

 |

 V

 +-----------------------+

 | |

 | Booth’s Algorithm |

 | (Multiplier Shift |

 |and Addition Logic)|

 +-----------------------+

 |

 V

 +-----------------------+

 | |

 |Final Product (8-bit) |

 | |

 +-----------------------+

40

5B. 4-bit Booth Multiplier:

module booth_multiplier (

 input [3:0] A, // 4-bit input A

 input [3:0] B, // 4-bit input B

 output reg [7:0] Product // 8-bit output product

);

reg [7:0] M, Q, Qn1; // Registers for multiplicand, multiplier, and Qn1

integer i;

always @(A or B) begin

 // Initialize the registers

 M = {4'b0000, A}; // Extend A with zeroes (4 bits)

 Q = {4'b0000, B}; // Extend B with zeroes (4 bits)

 Qn1 = 1'b0; // Initialize Qn1 (the previous Q0 bit)

 Product = 8'b0; // Clear the product register

 for (i=0; i<4; i=i + 1) begin

 case ({Q[0],Qn1})

 2'b01:Product = Product + M; // Add M to the product

 2'b10:Product = Product - M; // Subtract M from the product

 endcase

 // Arithmetic shift right (ASR) to prepare for the next iteration

 Qn1 = Q[0];

 Q = {Product[0], Q[7:1]}; // Shift the Q register

 Product = {Product[7], Product[7:1]}; // Shift the Product register

 end

end

endmodule

Outcome: Verified and Synthesized 4-bit Array multiplier and Booth Multiplier using FPGA.

41

Experiment-6: Write a Verilog description to design a clock divider circuit that generates 1/2, 1/3
rd and

 1/4
th clock from a given input clock. Port the design to FPGA and validate the

 functionality using output device.

Verilog Code for Clock Divider Circuit:

module ClockDivider (

 input wire clk_in, // Input clock signal

 input wire reset, // Reset signal

 output reg clk_out_2, // Output clock signal divided by 2

 output reg clk_out_3, // Output clock signal divided by 3

 output reg clk_out_4 // Output clock signal divided by 4

);

 // Internal counters for dividing the clock

 reg [1:0] counter_2; // 2-bit counter for division by 2

 reg [1:0] counter_3; // 2-bit counter for division by 3

 reg [2:0] counter_4; // 3-bit counter for division by 4

 // Process to divide the input clock for 1/2, 1/3, and 1/4 clocks

 always @(posedge clk_in or posedge reset) begin

 if (reset) begin

 // Reset the counters and clock outputs

 counter_2 <= 2'b00;

 counter_3 <= 2'b00;

 counter_4 <= 3'b000;

 clk_out_2 <= 0;

 clk_out_3 <= 0;

 clk_out_4 <= 0;

 end else begin

 // Dividing by 2

 counter_2 <= counter_2 + 1;

 if (counter_2 == 2'b01) begin

 clk_out_2 <= ~clk_out_2;

 counter_2 <= 2'b00;

 end

 // Dividing by 3

 counter_3 <= counter_3 + 1;

 if (counter_3 == 2'b10) begin

 clk_out_3 <= ~clk_out_3;

 counter_3 <= 2'b00;

 end

42

 // Dividing by 4

 counter_4 <= counter_4 + 1;

 if (counter_4 == 3'b011) begin

 clk_out_4 <= ~clk_out_4;

 counter_4 <= 3'b000;

 end

 end

 end

endmodule

Outcome: Verified clock division using FPGA.

43

Experiment-7:

Figure: Interfacing of a Stepper Motor

44

Experiment-7: Interface a Stepper motor to FPGA and Write a Verilog description to control Stepper

 motor rotation.

Objective: To interface a Stepper motor to FPGA and control motor rotation

module stepper_motor_controller (

 input clk, // Input clock signal (e.g., 50 MHz)

 input reset, // Reset signal

 input direction, // Direction control: 0 = clockwise, 1 = counterclockwise

 input [31:0] speed, // Speed control: Delay count for each step

 output reg [3:0] motor_pins // 4-bit output to control the stepper motor

);

reg [31:0] counter; // Counter for speed control

reg [3:0] step_sequence [0:7]; // Step sequence for 4-phase control

reg [2:0] step_index; // Index to keep track of the current step

// Step sequence for full step (could be modified for half-step)

initial begin

 step_sequence[0] = 4b0001; // Step 1: Coil 1 active

 step_sequence[1] = 4b0010; // Step 2: Coil 2 active

 step_sequence[2] = 4b0100; // Step 3: Coil 3 active

 step_sequence[3] = 4b1000; // Step 4: Coil 4 active

 step_sequence[4] = 4b1000; // Step 5: Coil 4 active

 step_sequence[5] = 4b0100; // Step 6: Coil 3 active

 step_sequence[6] = 4b0010; // Step 7: Coil 2 active

 step_sequence[7] = 4b0001; // Step 8: Coil 1 active

end

// Main clock logic for stepping

always @(posedge clk or posedge reset) begin

 if (reset) begin

 counter <= 0;

 step_index <= 0;

 motor_pins <= 4b0001; // Start with step 1 (coil 1 active)

45

 end else if (counter < speed) begin

 counter <= counter + 1;

 end

else

 begin

 // Time to move to the next step

 counter <= 0;

 // Update step_index for direction

 if (direction == 0) begin // Clockwise: Increase step_index

 step_index <= step_index + 1;

 if (step_index == 7) step_index <= 0; // Wrap around

 end else begin // Counterclockwise: Decrease step_index

 if (step_index == 0) step_index <= 7;

 else step_index <= step_index - 1;

 end

 // Set the motor control pins according to the current step

 motor_pins <= step_sequence[step_index];

 end

end

endmodule

46

Experiment-8: Interface a DAC to FPGA and Write a Verilog description to generate Square wave of

 frequency F KHz. Modify the code to down sample the frequency to F/2 KHz. Display

 the original and down sampled signals by connecting them to an output device.

Objective: To interface a DAC (Digital-to-Analog Converter) to an FPGA and generate a square wave

 signal of frequency F kHz.

module SquareWaveGenerator (

 input wire clk_in, // Input clock signal (e.g., 100 MHz)

 input wire reset, // Reset signal

 output reg dac_out_1, // Original square wave (F kHz)

 output reg dac_out_2 // Downsampled square wave (F/2 kHz)

);

 // Counter for original square wave (F kHz)

 reg [15:0] counter_1;

 reg [15:0] counter_2; // Counter for downsampled square wave (F/2 kHz)

 reg clk_div_1; // Clock for original square wave

 reg clk_div_2; // Clock for downsampled square wave

 // Parameters to configure the frequency of the square wave (F kHz and F/2 kHz)

 // Assuming input clock is 100 MHz

 parameter CLK_FREQ = 100_000_000; // 100 MHz clock input

 parameter F_kHz = 10_000; // Target frequency F = 10 kHz

 parameter F2_kHz = F_kHz / 2; // Downsampled frequency F/2

 // Calculate clock division factors for F kHz and F/2 kHz

 parameter DIV_FACTOR_1 = CLK_FREQ / (2 * F_kHz); // Divide by 2 for square wave frequency

 parameter DIV_FACTOR_2 = CLK_FREQ / (2 * F2_kHz); // Divide by 2 for downsampled frequency

 always @(posedge clk_in or posedge reset) begin

 if (reset) begin

 // Reset counters and outputs

 counter_1 <= 0;

47

 counter_2 <= 0;

 dac_out_1 <= 0;

 dac_out_2 <= 0;

 end else begin

 // Generate original square wave with frequency F kHz

 if (counter_1 >= DIV_FACTOR_1 - 1) begin

 counter_1 <= 0;

 dac_out_1 <= ~dac_out_1; // Toggle square wave

 end else begin

 counter_1 <= counter_1 + 1;

 end

 // Generate downsampled square wave with frequency F/2 kHz

 if (counter_2 >= DIV_FACTOR_2 - 1) begin

 counter_2 <= 0;

 dac_out_2 <= ~dac_out_2; // Toggle downsampled square wave

 end else begin

 counter_2 <= counter_2 + 1;

 end

 end

 end

endmodule

Outcome: Learnt successful interfacing of the DAC to FPGA.

48

Experiment-9: Write a Verilog description to convert an analog input of a sensor to digital form and

 to display the same on a suitable display like set of simple LEDs like 7-Segment

 display digits.

Objective: To interface an ADC to FPGA to convert an analog input of a sensor to digital form and to

 display the same on a suitable display

Module 1: ADC Interface

module adc_simulator (

 input clk,

 input reset,

 output reg [9:0] adc_data // 10-bit ADC data (simulated)

);

 // Simulate an ADC value by incrementing it every clock cycle

 always @(posedge clk or posedge reset) begin

 if (reset)

 adc_data <= 10'b0; // Reset ADC data

 else

 adc_data <= adc_data + 1; // Simulate increasing ADC value

 end

endmodule

Module 2: 7-Segment Display Decoder

module seven_segment_decoder (

 input [3:0] digit, // 4-bit input digit (0-15)

 output reg [6:0] seg // 7-segment display output (a-g)

);

 always @(digit) begin

 case (digit)

 4'd0: seg = 7'b1111110; // 0

 4'd1: seg = 7'b0110000; // 1

 4'd2: seg = 7'b1101101; // 2

 4'd3: seg = 7'b1111001; // 3

 4'd4: seg = 7'b0110011; // 4

 4'd5: seg = 7'b1011011; // 5

 4'd6: seg = 7'b1011111; // 6

49

 4'd7: seg = 7'b1110000; // 7

 4'd8: seg = 7'b1111111; // 8

 4'd9: seg = 7'b1111011; // 9

 4'd10: seg = 7'b1110111; // A

 4'd11: seg = 7'b0011111; // b

 4'd12: seg = 7'b1001110; // C

 4'd13: seg = 7'b0111101; // d

 4'd14: seg = 7'b1001111; // E

 4'd15: seg = 7'b1000111; // F

 default: seg = 7'b0000000; // Default: Blank

 endcase

 end

endmodule

Module 3:
The top-level module interfaces the ADC simulator, the 7-segment display decoder, and handles displaying

the ADC value on a 7-segment display.

module adc_to_7segment_display (

 input clk, // Clock input

 input reset, // Reset signal

 output [6:0] seg1, // 7-segment display for digit 1 (MSB)

 output [6:0] seg2, // 7-segment display for digit 2

 output [6:0] seg3, // 7-segment display for digit 3

 output [6:0] seg4 // 7-segment display for digit 4

);

 wire [9:0] adc_data; // 10-bit ADC data

 // Instantiate the ADC simulator

 adc_simulator adc_inst (

 .clk(clk),

 .reset(reset),

 .adc_data(adc_data)

);

 wire [3:0] digit1, digit2, digit3, digit4;

 // Extract digits from the 10-bit ADC data (divide it into 4 digits)

 assign digit1 = adc_data[9:8]; // Most significant digit (MSD)

 assign digit2 = adc_data[7:4]; // 2nd digit

 assign digit3 = adc_data[3:2]; // 3rd digit

 assign digit4 = adc_data[1:0]; // Least significant digit (LSD)

 // Instantiate 7-segment display decoders for each digit

50

 seven_segment_decoder seg1_decoder (

 .digit(digit1),

 .seg(seg1)

);

 seven_segment_decoder seg2_decoder (

 .digit(digit2),

 .seg(seg2)

);

 seven_segment_decoder seg3_decoder (

 .digit(digit3),

 .seg(seg3)

);

 seven_segment_decoder seg4_decoder (

 .digit(digit4),

 .seg(seg4)

);

endmodule

Outcome: Learnt successful interfacing of ADC with FPGA.

