BIATME

atme |College of Engineering

Department of Electronics and Communication Engineering

(ACADEMIC YEAR 2025-26)

LABORATORY MANUAL

Course: IOT (INTERNET OT THINGS) LABORATORY MANUAL

Course Code: BEC657C
SEMESTER: VI

Prepared by

Nagesh M S
Assistant Professor
Dept. of ECE

INSTITUTION VISION AND MISSION

VISION:

Development of academically excellent, culturally vibrant, socially responsible and globally

competent human resources.

MISSION:

To keep pace with advancements in knowledge and make the students competitive and
capable at the global level.

To create an environment for the students to acquire the right physical, intellectual,
emotional and moral foundations and shine as tourch bearers of tomorrow's society.

To strive to attain ever-higher benchmarks of educational excellence

DEPARTMENT VISION AND MISSION

VISION

To develop highly skilled and globally competent professionals in the field of Electronics and

Communication Engineering to meet industrial and social requirements with ethical

responsibility.

MISSION

To provide State-of-art technical education in Electronics and Communication at
undergraduate and post-graduate levels, to meet the needs of the profession and society
and achieve excellence in teaching-learning and research.

To develop talented and committed human resource, by providing an opportunity for
innovation, creativity and entrepreneurial leadership with high standards of professional
ethics, transparency and accountability.

To function collaboratively with technical Institutes/Universities/Industries, offer
opportunities for interaction among faculty-students and promote networking with alumni,

industries and other stake-holders.

Program Outcomes (POs)

PO1: Engineering Knowledge: Apply knowledge of mathematics, natural science,
computing, engineering fundamentals and an engineering specialization to the solution

of complex engineering problems.

PO2: Problem Analysis: Identify, formulate, review research literature and analyze
complex engineering problems reaching substantiated conclusions with consideration

for sustainable development.

PO3: Design/Development of Solutions: Design creative solutions for complex
engineering problems and design/develop systems/components/processes to meet
identified needs with consideration for the public health and safety, whole-life cost, net

zero carbon, culture, society and environment as required.

PO4: Conduct Investigations of Complex Problems: Conduct investigations of
complex engineering problems using research-based knowledge including design of

experiments, modelling, analysis & interpretation of data to provide valid conclusions.

POS: Engineering Tool Usage: Create, select and apply appropriate techniques,
resources and modern engineering & IT tools, including prediction and modelling

recognizing their limitations to solve complex engineering problems.

POG6: The Engineer and The World: Analyze and evaluate societal and environmental
aspects while solving complex engineering problems for its impact on sustainability

with reference to economy, health, safety, legal framework, culture and environment.

PO7: Ethics: Apply ethical principles and commit to professional ethics, human values,

diversity and inclusion; adhere to national & international laws.

PO8: Individual and Collaborative Team work: Function effectively as an

individual, and as a member or leader in diverse/multi-disciplinary teams.

PO9: Communication: Communicate effectively and inclusively within the
engineering community and society at large, such as being able to comprehend and
write effective reports and design documentation, make effective presentations

considering cultural, language, and learning differences

PO10: Project Management and Finance: Apply knowledge and understanding of
engineering management principles and economic decision-making and apply these to
one’s own work, as a member and leader in a team, and to manage projects and in

multidisciplinary environments.

POL11: Life-Long Learning: Recognize the need for, and have the preparation and
ability for 1) independent and life-long learning ii) adaptability to new and emerging

technologies and 1ii) critical thinking in the broadest context of technological change.

Program Specific Outcomes (PSOs)

PSO1: To have the capability to understand and adopt the technological
advancements with the usage of modern tool to analyze and design embedded

system or processes for variety of applications.

PS02: To work effectively in a group as an independent visionary, team member
and leader having the ability to understand the requirement and develop feasible

solutions to emerge as potential core or electronic engineer

Program Educational Objectives (PEOs)

PEO1: To produce graduates to excel in the profession, higher education and

pursue research exercises in Electronics and Communication Engineering.

PEQO2: To create technically able alumni with the capacity to examine, plan, to
create and execute Electronics and Communication frameworks thereby

involving in deep routed learning.

loT LAB-BEC657C 2025-2026

0T (Internet of Things) Lab Semester 6
Course Code BEC657C CIE Marks 50
Teaching Hours/Week (L:T:P: S) 0:0:2:0 SEE Marks 50
Credits 01 Exam Hours 3
Examination type (SEE)

Course Obijectives:

This course will enable students to
e To impart necessary and practical knowledge of components of the Internet of Things
e Todevelop skills required to build real-life 10T-based projects.

SI.No. Experiments

1(i) To interface LED/Buzzer with Arduino /Raspberry Pi and write aiprogram to ‘turn ON’ LED
for 1 sec after every 2 seconds.
1(ii) | To interface the Push button/Digital sensor (IR/LDR)with*Arduino /Raspberry Pi and write
aprogram to ‘turn ON” LED when a push button is pressed or at sensor detection.
2()) | To interface the DHT11 sensor with Arduino /Raspberry Pi and write a program to print
temperature and humidity readings.
2(ii) | To interface OLED with Arduino /Raspberry Pi and write a program to print its temperature
and humidity readings.
3 To interface the motor using arelay with’ Arduino /Raspberry Pi and write a program to ‘turn
ON” the motor when a push.button is pressed.

4() | Write an Arduino/Raspberry.Pi program to interface the Soil Moisture Sensor.
4(ii) | Write an Arduino/Raspberry Piprogram to interface the LDR/Photo Sensor.

5 Write a program to-nterface an Ultrasonic Sensor with Arduino /Raspberry Pi.

6 Write a program on, Arduino/Raspberry Pi to upload temperature and humidity data
to thingspeak cloud.
7 Write a program. on Arduino/Raspberry Pi to retrieve temperature and humidity data
from thingspeak cloud.

8 Write a program to interface LED using Telegram App.

9 Write a program on Arduino/Raspberry Pi to publish temperature data to the MQTT broker.
10 Write a program to create a UDP server on Arduino/Raspberry Pi and respond with humidity
data to the UDP client when requested.
1 Write a program to create a TCP server on Arduino /Raspberry Pi and respond with humidity
data to the TCP client when requested.
12 Write a program on Arduino / Raspberry Pi to subscribe to the MQTT broker for temperature
data and print it.

Course outcomes (Course Skill Set):
At the end of the course, the student will be able to:

o Explain the Internet of Things and its hardware and software components.
e Interface I/O devices, sensors & communication modules.

e Remotely monitor data and control devices.

o Develop real-life loT-based projects.

Dept of ECE, ATMECE, Mysuru

loT LAB-BEC657C 2025-2026

Assessment Details (both CIE and SEE)

The weightage of Continuous Internal Evaluation (CIE) is 50% and for Semester End Exam (SEE) is 50%. The minimum
passing mark for the CIE is 40% of the maximum marks (20 marks out of 50) and for the SEE minimum passing mark is
35% of the maximum marks (18 out of 50 marks). A student shall be deemed to have satisfied the academic requirements
and earned the credits allotted to each subject/ course if the student secures a minimum of 40% (40 marks out of 100) in the
sum total of the CIE (Continuous Internal Evaluation) and SEE (Semester End Examination) taken together.

Continuous Internal Evaluation (CIE):

CIE marks for the practical course are 50 Marks.

The split-up of CIE marks for record/ journal and test are in the ratio 60:40.

e Each experiment will be evaluated for conduction with an observation sheet and record write-up. Rubrics for the
evaluation of the journal/write-up for hardware/software experiments are designed by the faculty who is handling the
laboratory session and are made known to students at the beginning of the practical session.

o Therecord should contain all the specified experiments in the syllabus and each experiment write-up will be evaluated
for 10 marks.

e Thetotal marks scored by the students are scaled down to 30 marks (60% of maximum marks).

o Weightage is to be given for neatness and submission of record/write-up on time.

e The department shall conduct a test of 100 marks after the completion of all the experiments listed in the
syllabus.

e Inatest, test write-up, conduction of experiment, acceptable result, and procedural knowledge will carry a
weightage of 60% and the rest 40% for viva-voce.

e The suitable rubrics can be designed to evaluate each student’s performance and learning ability.

e The marks scored shall be scaled down to 20 marks (40% of the. maximum marks).

The Sum of scaled-down marks scored in the report write-up/journal and marks of a test is the total CIE marks scored by
the student.

Semester End Evaluation (SEE):

e SEE marks for the practical course are 50/Marks.

e SEE shall be conducted jointly by the two examiners of the same institute, examiners are appointed by the
Head of the Institute.

e The examination schedule and names of examiners are informed to the university before the conduction of the
examination. These practical.examinations are to be conducted within the schedule mentioned in the university's
academic calendar.

o All laboratory experiments.are to be included for practical examination.

e (Rubrics) Breakup of.marks and the instructions printed on the cover page of the answer script to be strictly adhered
to by the examiners.”OR based on the course requirement evaluation rubrics shall be decided jointly by examiners.

e Students can pick one question (experiment) from the questions lot prepared by the examiners jointly.

e Evaluation of test write-up/ conduction procedure and result/viva will be conducted jointly by examiners. General

rubrics suggested for SEE are mentioned here, writeup-20%, Conduction procedure and result in -60%, Viva-voce 20%

of maximum marks. SEE for practical shall be evaluated for 100 marks and scored marks shall be scaled down to 50

marks (however, based on course type, rubrics shall be decided by the examiners)

Change of experiment is allowed only once and 15% of Marks allotted to the procedure part are to be made

zero.The minimum duration of SEE is 02 hours

Suggested Learning Resources:

« Vijay Madisetti, Arshdeep Bahga, Internet of Things. "A Hands-on Approach”, University Press

o Dr. SRN Reddy, Rachit Thukral, and Manasi Mishra, "Introduction to Internet of Things: A Practical
Approach”, ETI Labs

o Pethuru Raj and Anupama C Raman, "The Internet of Things: Enabling Technologies, Platforms, and
Use Cases", CRC Press

e JeevaJose, "Internet of Things", Khanna Publishing House, Delhi

e Adrian McEwen, "Designing the Internet of Things", Wiley

Raj Kamal, "Internet of Things: Architecture and Design", McGraw Hill

Dept of ECE, ATMECE, Mysuru

loT LAB-BEC657C

Subject: Internet of Things Lab

CYCLE OF EXPERIMENTS

CYCLE-I

2025-2026

Subject Code: BECL657C

1.(a) To interface LED/Buzzer with Arduino /Raspberry Pi and write a program to ‘turn ON’ LED for 1 sec

after every 2 seconds.

1.(b) To interface the Push button/Digital sensor (IR/LDR) with Arduino /Raspberry Pi and write a
program to ‘turn ON’ LED when a push button is pressed or at sensor detection.

2.(a) To interface the DHT11 sensor with Arduino /Raspberry Pi and write a program to print temperature

and humidity readings.

2.(b) To interface OLED with Arduino /Raspberry Pi and write a program,to print its temperature and

humidity readings.

3. To interface the motor using a relay with Arduino /Raspberry Pi.andwwrite a program to ‘turn ON’
the motor when a push button is pressed.

4.(a) Write an Arduino/Raspberry Pi program to interface the*Seil Moisture Sensor.

4.(b) Write an Arduino/Raspberry Pi program to interface the LDR/Photo Sensor.

5. Write a program to interface an Ultrasonic Sensor with Arduino /Raspberry Pi.

Cycle-II

6. Write a program on Arduino/Raspberry Pi to upload temperature and humidity data to thing speak cloud.

7. Write a program on Arduino/Raspberry Pi to retrieve temperature and humidity data from thing

speak cloud

8. Write a program to interface LED using Telegram App.

9. Write a program on Arduino/Raspberry Pi to publish temperature data to the MQTT broker.

10. Write a program to create a UDP server on Arduino/Raspberry Pi and respond with humidity data to the

UDP client when requested.

11. Write a program to create a TCP server on Arduino /Raspberry Pi and respond with humidity data to the

TCP client when requested.

12. Write a program on Arduino / Raspberry Pi to subscribe to the MQTT broker for temperature data and

print it.

Dept of ECE, ATMECE, Mysuru

loT LAB-BEC657C 2025-2026

10T LAB - QUESTION BANK —2025-2026
Program .
No. List of Programs
1 To interface LED with Arduino /Raspberry Pi and write a program to ‘turn ON’ LED for 1
' sec after every 2 seconds.
9 To interface Buzzer with Arduino /Raspberry Pi and write a program to ‘turn ON’ Buzzer
' for 1 sec after every 2 seconds.
3 To interface the DHT11 sensor with Arduino /Raspberry Pi and write a program to
' print temperature and humidity readings.
4 To interface OLED with Arduino /Raspberry Pi andwrite a program to print its
' temperature and humidity readings.
5 To interface the motor using a relay with‘Arduino /Raspberry Pi and write a program to
' ‘turn ON’ the motor when a push button is pressed.
6. Write an Arduino/Raspberry Pi program to. interface the Soil Moisture Sensor.
7. Write an Arduino/Raspberry Pi program to interface the LDR.
8. Write a program to interface an Ultrasonic Sensor with Arduino /Raspberry Pi.
9 Write a program on Arduino/Raspberry Pi to upload temperature and humidity
' datato thingspeak-cloud.
10 Write a program on Arduino/Raspberry Pi to retrieve temperature and humidity
' data from thingspeak cloud.
11. Write a program to interface LED using Telegram App
12 Write a program on Arduino/Raspberry Pi to publish temperature data to the
' MQTT broker.
13 Write a program to create a UDP client on Arduino/Raspberry Pi and respond with
' humidity data to the UDP server when requested.
14 Write a program to create a TCP client on Arduino /Raspberry Pi and respond with
' humidity data to the TCP server when requested.
15 Write a program on Arduino / Raspberry Pi to subscribe to the MQTT broker for
' temperature data and print it

Dept of ECE, ATMECE, Mysuru

loT LAB-BEC657C 2025-2026

Introduction to Internet of Things (1oT)

Introduction: IOT stands for “Internet of Things”. The IOT is a name for the vast collection of
“things” that are being networked together in the home and workplace (up to 20 billion by 2020

according to Gardner, a technology consulting firm).

Characteristics of the 10T

These 10T devices talk to one another (M2M communication) or to servers
Networking located in the local network or on the Internet:Being on the network allows the
device the common ability to consume and produce data.

Sensing 10T devices sense something about their environment.

Actuators 10T devices that do something. Lock doors, beep, turn lights on, or turn the TV on

Data, Security, BPM, BRM,

Internet Analytics, 0SS & BSS
(loT Management Services)
WiFi, Mobile, DSL, Fibre ,
WAN (Wired , Wireless)
Gateway
(Gateway Functions)

6LowPAN, Zigbee, RFID, NFC

LAN, Low Power Wireless, RFID

Things
- (Sensors)
Sensors (Temp., Power, Humidity etc.) '
{} loT Technologies

loT Structure

Communications in loT

Dept of ECE, ATMECE, Mysuru

loT LAB-BEC657C 2025-2026
Communications are important to IOT projects. In fact, communications are core to the whole genre.

There is a trade-off for IOT devices. The more complex the protocols and higher the data rates, the
more powerful processor needed and the more electrical power the IOT device will consume.

TCP/IP base communications (think web servers; HTTP-based commutation (like REST servers);
streams of data; UDP) provide the most flexibility and functionality at a cost of processor and electrical
power.

Low-power Bluetooth and Zigbee types of connections allow much lower power for connections with
the corresponding decrease in bandwidth and functionality. 10T projects can be all over the map

with requirements for communication flexibility and data bandwidth requirements.

Arduino in loT

In 10T applications the Arduino is used to collect the data from the sensors/devices to send

it to the internet and receives data for purpose of control of actuators.

Dept of ECE, ATMECE, Mysuru

loT LAB-BEC657C 2025-2026

Arduino Uno

Introduction: The Arduino Uno is an open-source microcontroller board based on the
Microchip ATmega328P microcontroller and developed by Arduino.cc. The board is
equipped with sets of digital and analog input/output (I/O) pins that may be interfaced to
various expansion boards (shields) and other circuits. The board has 14 digital 1/0 pins (six
capable of PWM output), 6 analog I/O pins, and is programmable with the Arduino IDE
(Integrated Development Environment), via a type B USB cable. It can be powered by the
USB cable or by an external 9-volt battery, though it accepts voltages between 7 and 20 volts.
The word "uno” means "one" in Italian and was chosen to mark the initial release of Arduino

Software.

Analogue reference pin

Serial data acquisition (SDA)

Digital ground ,
Serial out (TX)

Serial clock (SCL)

Digital 1/0 pins (2-13) Serial in (RX)

Y60 o eiaes

googat ICSP for ATmega16U2
e e On-board LED (pin 13)
Power LED indicator

TX and RX LEDs
ICSP for ATmega328

Reset button

USB socket —

ATmega 16U2 microcontroller

Voltage regulator

External power supply socket

_ Analogue pins (0-5)

Voltage in pin

IOREF pin
Reset pin

Voltage out pin (3.3V)
Voltage out pin (5V)

Ground pins

Features of the Arduino
1. Arduino boards are able to read analog or digital input signals from different sensors and

turn it into an output such as activating a motor, turning LED on/off, connect to the cloud

and many other actions.

Dept of ECE, ATMECE, Mysuru

ATmega 328 microcontroller

l1oT LAB-BEC657C 2025-2026
2. The board functions can be controlled by sending a set of instructions to the

microcontroller on the board via Arduino IDE.
3. Arduino IDE uses a simplified version of C++, making it easier to learn to program.

4. Arduino provides a standard form factor that breaks the functions of the micro- controller
into a more accessible package.
Arduino IDE(Integrated Development Environment)
Introduction: The Arduino Software (IDE) is easy-to-use and is based on the Processing programming
environment. The Arduino Integrated Development Environment (IDE) is a cross-platform application
(for Windows, macOS, Linux) that is written in functions from C and C++. The open-source Arduino

Software (IDE) makes it easy to write code and upload it to the board. This software can be used with
any Arduino board.

The Arduino Software (IDE) — contains:

e A text editor for writing code
® A message area

e A text consoles

e A toolbar with buttons for. common functions and a series of menus. It connects

to the Arduino hardware to upload programs and communicate with them.

Dept of ECE, ATMECE, Mysuru

loT LAB-BEC657C
Installation of Arduino Software (IDE)

Arduino Setup: Installation Folder

Destination Folder

Setup will install Arduino in the following folder. To install in a different
5.2) folder, dlick Browse and select another folder. Click Install to start the

— X

)

at

Space required: 392.7M8
Space available: 24.6GB C

Cmcell

Keep the default one

lick it

fotal)

Stepl: Downloading

2025-2026

» To install the Arduino software, download.this page: http://arduino.cc/en/Main/Software and

proceed with the installation by allowing the driver installation process.

Check the components you want to instal and uncheck the components
you don't want to install. Click Next to continue.

Select components to install:

Space required: 392.7M8

_ Concel |

Dept of ECE, ATMECE, Mysuru

[1nstal Arduno software
[install USE driver

[Create Start Menu shortout
[Create Desktop shortout
[Assocate .no fies

Click it

loT LAB-BEC657C 2025-2026
Step 2: Directory Installation

» Choose the installation directory.

Step 3: Extraction of Files

» The process will extract and install all the required files to execute properly the Arduino
Software (IDE)

€® Arduino Setup: Installing

Step 4: Connecting the board

» The USB connection with the PC is necessary to program the board and not just to power
it up. The Uno and Mega automatically draw power from either the USB or an external

power supply. Connect the board to the computer using the USB cable. The green power
LED (labelled PWR) should go on.

Step 5: Working on the new project

» Open the Arduino IDE software on your computer. Coding in the Arduino language will
control your circuit.

» Open a new sketch File by clicking on New.

Dept of ECE, ATMECE, Mysuru

loT LAB-BEC657C 2025-2026
D sk i et 14 Lo 1 tech e i 116 =l
| [Fle] £t Sheteh Teoks Help Fée Ed0 Skech Took Melp
[New CoN

Open.. el
Seetchbook ' shokh jy
Examples ’ .
Close Coew
e Codes
Sove As. Cbe Shite§
Uplosd (el
Upload Using Programemer Civle Shita U
Page Setvp ClbeShite P pE—
Prirt Cdep
Preferencer Cteds Comma
Que eQ
Step 6: Working on an existing project
» To open an existing project example, select File — Example —Basics — Blink.
OI.W; ’ AnsloghesdSenial
| 02Digaal B EareMinimum
03.Asslcg 3 Eank
04.Comvmunication b DigtalReadSenst
05.Centsct L3 Fade
ﬁllhkl 108 06 Servars » = &;M\:qvoch
[Fie) £t Sketeh Tocks Hefp Ry % f o
New CrdeN e ” 1 2 ok | Adimo 1048 EREOR =)
05.Use L3 Ld Fle ESe Sioetch Teols Mely
e Shee0 10, Starterke »
Sketchbook » Ardusinels®
By H | Teawy '
Close Ceae W 2
Save Crde$ AcceiStepper
Save As.., Crde Shifte S Adafrat CCI000
Upload Cede Adafeot L0
Upload Using Programmar Ctde Shift<U Adafeuie 15341

Page Setup CodeShift-#
Pt Cedep
Preferences Cede Comema
Quit CrdeQ

Adafrst_NecPivel
Adafeut_nRFEON
Adafeut RASETS
Adafeut_S501306
Adafrue STIS
Adafrust STMPE610
Adafrue V51053
ADC

AnSelSenal
Astnet

Audwe

Bounce
CapactiveSersar

Dmudample
Dogled

Step 7: Select your Arduino board.

r led » 1%

st} {

» To avoid any error while uploading your program to the board, you must select the correct

Arduino board name, which matches with the board connected to your computer.

Dept of ECE, ATMECE, Mysuru

loT LAB-BEC657C 2025-2026
» Go to Tools — Board and select your board.

Teensy 3.2 /31
Teensy 3.0
Teensy LC

=2 Blink | Arduinc 1.0.6 Teensy 2.0

File Edit Sketch Help Teensy++ 2.0
S =5 Auto Format Ceet=T © | Asduino Uno
Arduine Duemilanove w/ ATmega328

Archive Sketch

Blink S Fix Encoding &t Reload Arduino Diecimila or Duemilanove w/ ATmegal6s

Arduine Nanc w/ ATmega328

Serial Monitor Ctri=Shift+M
Arduino Nano w/ ATmegal6s
Board: "Arduino Uno™ L Arduino Mega 2560 or Mega ADK

Serial Port > Asrduino Mega (ATmegal 280)
pe Asrduino Leonardo
Arduino Esplora

ayout > Arduino Micro
= Asrduino Mini w/ ATmega328
Arduino Mini w/ ATmegal6s

Programmer

Burn Bootlcader
Asduino Ethernet

Asrduino Fio
Arduino BT w/ ATmega328
Asduino BT w/ ATmegal6s
LilyPad Arduino USBE
LihyPad Arduino w/ ATmega328

< LilyPad Arduino w/ ATmegal6s
Arduine Pro or Pro Mini (5V. 16 MHz2) w/ ATmega328
Arduino Pro or Pro Mini (SV. 16 MHz) w/ ATmegal6s
Arduino Pro or Pro Mini (3.3V. 8 MHz) w/ ATmega328
Asduino Pro or Pro Mini (2.3V. 8 MHz) w/ ATmegal6s
Arduino NG or older w/ ATmegal6s
Asduino NG or older w/ ATmegaS

Arduino Robot Control
Asduino Robot Motor

Step 8: Select your serial port

» Select the serial device of the Arduino board.

» Go to Tools — Serial Port menu. This is likely to be COM3 or higher (COM1 and COM2 are
usually reserved for hardware serial ports):

» To find out, you can disconnect your Arduino board and re-open the menu, the entry that

disappears should be of the Arduino board. Reconnect the board and select that serial port.

Blink | Arduino 1.0.6 | = O <

File Edit Sketch Help

o o | Auto Format Ctrl+T E
Archive Sketch =
Blink & Fix Encoding & Reload

Serial Monitor Ctrl+ Shift+ M

Board: "Arduino Uno”
Sernal Port

USE Type

CPU Speed

CORAL
COp2
COpAZ

¥ ¥yyye

Keyboard Layout

r

Programmer

Burn Bootloader

o Uno aon CORATS

Dept of ECE, ATMECE, Mysuru

loT LAB-BEC657C 2025-2026
Step 9: Upload the program to your board.

» Click the "Upload" button in the environment.
» Wait a few seconds; you will see the RX and TX LEDs on the board, flashing.

> If the upload is successful, the message "Done uploading™ will appear in the status bar.

A Verify

B Upload

C New

D Open

E Save

F Serial Motor

File Edit Sketch Tools Help e

File Edit Sketch Tocls Help

BareMinimum §

ABCD E F = Global Area
' p code here, to run once: 3
4 wvoid secup{) i
} - Setup Area
= 3
void loop() { 10 jvera Teeni
// put your main code here, to run repeatedly: 1L
12 Loop Area
13
14 ¥

}

Dept of ECE, ATMECE, Mysuru

loT LAB-BEC657C 2025-2026

Arduino Breadboard
Another very important item when working with Arduino is a solderless breadboard.
This device allows you to prototype your Arduino project without having to
permanently solder the circuit together. Using a breadboard allows you to create
temporary prototypes and experiment with different circuit designs. Inside the holes
(tie points) of the plastic housing, are metal clips which are connected to each other

by strips of conductive material.

These pins connect vertically

immemen
Umwwnw
mmmnn
mmmmmw
Zimmwww
e mmow
Emmmnn

These pins connect horizontally

On a side note, the breadboard is.notpowered on its own and needs power brought to it from
the Arduino board using jumper wires. These wires are also used to form the circuit by
connecting resistors, switches and other components together.

,,,,,

Dept of ECE, ATMECE, Mysuru

loT LAB-BEC657C 2025-2026

Here is a visual of what a completed Arduino circuit looks like when connected to a
breadboard.

e
“
-
-
-
-
-
"
-
-
-
"
-
-
-
"

How To Program Arduino

Once the circuit has been created on the breadboard, you‘ll need to upload the

program (known as a sketch) to the Arduino. Steps to execute program.

1. Install the Arduino IDE:

Download and install the Arduino IDE (Integrated Development Environment) from the
official Arduino website: Arduino Software.

2.Connect Arduino Uno to Your . Computer:

Use a USB cable to connect your/Arduino Uno to

your computer. 3.0pen Arduino IDE:

Launch the Arduino IDEon your computer.

4. Select Board and Port:

Go to "Tools" and select the appropriate board model (e.g., Arduino Uno) from the
"Board" menu.

Also, select the correct port your Arduino Uno is connected to from

the "Port™ menu. 5.Write or Open a Program:

Write your program in the Arduino IDE or open an existing one.

If you're new to Arduino, you might start with a simple example from the "File" ->
"Examples" menu.

6.Verify and Compile:

Click the "Verify" (checkmark) button to check for any syntax

errors in your code. If there are no errors, the code will be compiled.

Dept of ECE, ATMECE, Mysuru 18

loT LAB-BEC657C 2025-2026

7.Upload the Program:
Click the "Upload" (right arrow) button to upload the compiled code to your
Arduino Uno. 8.Monitor Serial Output (Optional):

If your program uses Serial communication, you can open the Serial Monitor by clicking

"Tools"

->"Serial Monitor."

9. Power Your Arduino Uno (if disconnected):

If your Arduino Uno is not externally powered and you've disconnected it during
the programming process, ensure it has a power source before expecting your
program to run.

10. Observe Results:

Once the upload is complete, your Arduino Uno will run the program. Observe the
results, which might include LEDs blinking, motors moving, or.any other actions
based on your code.

11.Troubleshooting:

If you encounter any issues, check the error messages in the Arduino IDE.
Common issues include incorrect board selection, port selection, or syntax errors in

the code.

Dept of ECE, ATMECE, Mysuru

19

loT LAB-BEC657C 2025-2026

Aim:
la. To interface LED/Buzzer with Arduino /Raspberry Pi and write a program to ‘turn ON’
LED for 1 sec after every 2 seconds.

Hardware Required:

SI No Components Quantity
1. AURDUINO UNO 1
2. LED or Buzzer 1
3. USB cable for AURDUINO 1
UNO
4. Connecting wires --
5. Bread Board 1

Theory:

LED Stands for Light Emitting Diode is a semiconductor device.that.emits light when an
electric current passes through it. LEDs are widely used for various applications due to their
energy efficiency, long lifespan, and versatility. Here are some key points about LEDs. Basic
Operation: LEDs work on the principle of electroluminescence. When electrons and holes
(positive counterparts of electrons) recombine within the'semiconductor material, they release
energy in the form of photons, which produces light. Pin Connection Arduino UNO LED GND
Cathode D13 Anode Item Mi n Max Unit Forward Current 20 30 mA Forward Voltage 1.8 2.2

Vv
Item Min | Max | Unit
+ —
Ty camiopg; Il . Forward Current 20 30 mA
& n Forward Voltage 18 | 22 \%
Code:

void setup()

{

// initialize digital pin LED_BUILTIN as an output.
pinMode(13, OUTPUT);

}

/I the loop function runs over and over again forever
void loop()

{

digitalWrite(13, HIGH);//turn the LED on
delay(1000); // wait for a second (1 sec = 1000ms)
digitalWrite(LED_BUILTIN, LOW); // turn the LED off by making the voltage LOW
delay(2000); // wait for a second (2 sec = 2000ms)

¥

Dept of ECE, ATMECE, Mysuru 20

loT LAB-BEC657C

Circuit Diagram:

<00 o .;,

RX W8N ARDUINO

Procedure:

1. Connect the Arduino Uno:

2025-2026

Pin Connection

Arduino UNO LED

GND

Cathode

D13

Anode

e Connect the Arduino Uno to your computer using a USB cable (USB A to USB B).

e The green power LED (PWR) on the Arduino Uno should light up.

e Connect the LED to pin 13 and ground
2. Open the Arduino IDE:

e Launch the Arduino IDE application on your computer.

3. Configure the Board and Port:

e Goto Tools > Board.

e Select "Arduino Uno" (or the specific board version you have).

e Goto Tools > Port.

o Select the COM port associated with your Arduino Uno (e.g., COM3).

4. Load and Upload a Sketch:

e Open a sketch (program) in the Arduino IDE
e Click the "Upload" button (or press Ctrl + U).
e The IDE will compile the code and upload it to the Arduino Uno.

e Observ the RX and TX LEDs on the Arduino Uno flashing during the upload process.

RESULT: LED is successfully turned on for 2 seconds using Arduino microcontroller Board.

Dept of ECE, ATMECE, Mysuru

21

loT LAB-BEC657C

2025-2026

1b. To interface the Push button/Digital sensor (IR/LDR) with Arduino /Raspberry Pi and
write a program to ‘turn ON’ LED when a push button is pressed or at sensor detection.

Introduction:

Push-button is a very simple mechanism which is used to control electronic signal either by
blocking it or allowing it to pass. This happens when mechanical pressure is applied to
connect two points of the switch together. Push buttons or switches connect two points in a
circuit when pressed. When the push-button is released, there is no connection between the
two legs of the push-button. Here it turns on the built-in LED on pin 11 when the button is

pressed. The LED stays ON as long as the button is being pressed.

Push Button

™ -

o
w® 0

Specifications:

Size 6 X 6 X 5mm
Temperature -30 ~ +70 Centigrade
Hardware Required:
SI No Components Quantity
1. AURDUINO UNO 1
2. LED or Buzzer 1
3. USB cable for AURDUINO 1
UNO
4, Connecting wires --
5. Bread Board 1

Dept of ECE, ATMECE, Mysuru

22

loT LAB-BEC657C 2025-2026

Circuit Diagram:

Rx " ARDUINO

Code:

/I Define constants for pin numbers

const int pushPin = 2;// Pin number for the push button
const int ledPin = 13;// Pin number for the LED

/I Variable to hold the state of the button
int buttonState = 0;// Initial state of the button (LOW)

/I The setup function runs once when you press reset or power the board
void setup() {
pinMode(ledPin, OUTPUT);// Set the LED pin as an output
pinMode(pushPin, INPUT);// Set the push button pin as an input

}

/l The loop function runs over and over again forever
void loop() {
/I Read the state of the push button
buttonState = digitalRead(pushPin);

/I Check if the button is pressed (HIGH)
if (buttonState == HIGH) {
digitalWrite(ledPin, HIGH);// Turn on the LED
}
else {
digitalWrite(ledPin, LOW);// Turn off the LED
}
}

Steps of working
1. Connect the Arduino Uno:

Insert the push button into your breadboard and connect it to the digital pin
7(D7) which act as INPUT.
Insert the LED into the breadboard. Attach the positive leg (the longer leg) to

Dept of ECE, ATMECE, Mysuru 23

loT LAB-BEC657C 2025-2026

o

T ®»®» Mo

digital pin 11 of the Arduino Uno, and the negative leg via the 220-ohm resistor
to GND. The pin D11 is taken as OUTPUT.
The 10kQ resistor used as PULL-UP resistor and 220 Q resistors is used to limit
the current through the LED.

2. Open the Arduino IDE:

Launch the Arduino IDE application on your computer.

3. Configure the Board and Port:
Go to Tools > Board.
Select "Arduino Uno™ (or the specific board version you have).
Go to Tools > Port.

Select the COM port associated with your Arduino Uno (e.g., COM3).
Load and Upload a Sketch:
Open a sketch (program) in the Arduino IDE

Click the "Upload" button (or press Ctrl + U).
The IDE will compile the code and upload it to the Arduino Uno.

The initial state of the button is set to OFF.
After that the run a loop that continually reads the state from the pushbutton and sends that
value as voltage to the LED. The LED will be ON accordingly.

Dept of ECE, ATMECE, Mysuru 24

loT LAB-BEC657C 2025-2026

2(a)To interface the DHT11 sensor with Arduino /Raspberry Pi and write a program to
print temperature and humidity readings.

Component Required:

SI No Components Quantity
1 ARDUINO UNO 1
2 DHT11 Temperature sensor 1
3 USB cable Ato B 1
4 Connecting wires
Theory
The DHT11 sensor is a low-cost digital temperature and humidity sensor. It
v operates ata voltage of 3.3V to 5V and can measure
;“;‘

temperatures rangingfrom 0°C to 50°C with.an accuracy
of £2°C. Additionally, it can measure relative humidity

ranging from 20% to 90% with-an‘accuracy of 5% .

The humidity sensing capacitor has two electrodes with

Ground

VCC ® pata

a moisture holding-substrate as a dielectric between
them. Change in the capacitance value occurs with the
change in humidity levels. The IC measure, process this
changed resistance values and change them into digital
form. For-measuring temperature this sensor uses a
Negative Temperature coefficient thermistor, which
causes a decrease in its resistance value with increase in
temperature.
DHT11 Specifications

Operating Voltage: 3.5V to 5.5V

Operating current: 0.3mA (measuring) 60uA (standby)

Output: Serial data

Temperature Range: 0°C to 50°C

Humidity Range: 20% to 90%

Resolution: Temperature and Humidity both are 16-bit

Accuracy: +1°C and £1%

Libraries are a collection of code that makes it easy for you to connect to a sensor,
display, module, etc. There are thousands of libraries available for download directly
through the Arduino IDE, andyou can find all of them listed at the Arduino Library

Dept of ECE, ATMECE, Mysuru 25

loT LAB-BEC657C

Reference.
Steps to Add DHT11 Sensor Library

1) Open your Arduino IDE and go to Sketch > Include Library >

Manage Libraries. The Library Manager should open.
2) Search DHT then find the DHT Sensor library by Adafruit

3) Click install button to install library

4) Ifask click on install all button to install library dependencies

Program

/ILibraries
#include <DHT.h>

//Constants

#define DHTPIN 2 // what pin we're connected to
#define DHTTYPE DHT11 // DHT 11 (AM2302)
/I Initialize DHT sensor for normal 16mhz Arduino
DHT dht(DHTPIN, DHTTYPE);

//Variables

int led=13;

int chk;

float hum; //Stores humidity value
float temp; //Stores temperature value

void setup()
{

Dept of ECE, ATMECE, Mysuru

2025-2026
ARDUINO DHT11
UNO
GND GND
5v VCC
D2 DATA
26

loT LAB-BEC657C

Serial.begin(9600);
dht.begin();
pinMode(led, OUTPUT);

¥

void loop()
{

//IRead data and store it to variables hum and temp

hum = dht.readHumidity();

temp= dht.readTemperature();

/[Print temp and humidity values to serial monitor

Serial.print("Humidity: ");
Serial.print(hum);
Serial.print(" %, Temp: ");
Serial.print(temp);
Serial.printin(" Celsius");
digitalWrite(led, LOW);
if (temp>2)
{
digitalWrite(led, HIGH);
Serial.print("™);

Serial.print(" HOT CLIMATE");

}

delay(2000); //Delay 2 sec.
}

2025-2026

2 (b) To interface OLED with Arduino /Raspberry Pi and write a program to print its
temperature and humidity readings.

Component Required:

SI No Components Quanti

ty
1. AURDUINO UNO 1
2. LED or Buzzer 1
3. USB cable for AURDUINO 1

UNO

4, DHT11 Sensor 1
5. OLED 1
6. Connecting wires --
7. Bread Board 1
8. AURDUINO UNO 1

Dept of ECE, ATMECE, Mysuru

27

loT LAB-BEC657C 2025-2026

Theory

The SSD1306 OLED 12C 128X64 OLED Display module is a small
monochrome rganic light- emitting diode (OLED) display that is controlled through an
12C interface. It has a display resolution of 128x64 pixels, and the SSD1306 is the

controller chip that manages the .
display. It‘'s commonly used for | Specification of OLED
display purposes in various

electronics projects and is compact | Size 0.96 inch

low power, and easily readable in .

low light conditions. Terminals 4
Pixels or Resolution 128x64
Communication 12C only
VCC 3.3V-5V

To control the OLED display libraries. Follow the next instructions to install those
libraries.

1. Open Arduino IDE & navigate to the Sketch >:Include Library > Manage
Libraries
Search by typing _SD1306°.
2. Look and Search for ESP8266-and ESP32 OLED driver for
SSD1306 displays. Click on.that entry, and then select Install.
3.After successfully installing the library Add library to
program by typing: #include "SSD1306Wire.hl and #include
<Wire.h>

B EEEE e M

Q0w g

Rx ® ARDU [NOD

Dept of ECE, ATMECE, Mysuru 28

loT LAB-BEC657C 2025-2026

#include <Wire.h> // Include the Wire library for 12C communication

#include <Adafruit_GFX.h>// Include the Adafruit Graphics library for display functions

#include <Adafruit_SSD1306.h> // Include the Adafruit SSD1306 library for OLED display control
#include "DHT.h" // Include the DHT library for temperature and humidity sensor

#define DHTPIN 6 // Define the pin where the DHT sensor is connected

#define DHTTYPE DHT22 // Define the type of DHT sensor being used (DHT22)
#define OLED_RESET -1 // Define OLED reset pin (-1 indicates no reset pin)
#define SCREEN_ADDRESS 0x3C // Define the 12C address for the OLED display
#define SCREEN_WIDTH 128 // Define the width of the OLED display in pixels
#define SCREEN_HEIGHT 64 // Define the height of the OLED display in pixels

/I Create an instance of the SSD1306 display with specified width, height, and 12C connection
Adafruit_SSD1306 oled(SCREEN_WIDTH, SCREEN_HEIGHT, &\Wire, OLED_RESET);
/I Create an instance of the DHT sensor with specified pin and type

DHT dht(DHTPIN, DHTTYPE);

void setup() {

dht.begin(); // Initialize the DHT sensor

oled.begin(SSD1306_EXTERNALVCC, SCREEN_ADDRESS); // Initialize the OLED display with
external VCC

delay(2000); // Wait for 2 seconds to allow setup to complete

oled.clearDisplay(); // Clear any previous display content
oled.setTextSize(1); // Set text size for display
oled.setTextColor(WHITE); // Set text color to white
oled.setCursor(10, 20); // Set cursor position on display
oled.printin(*“TEMP and HUMIDITY™); // Display title
oled.setCursor(10, 30); // Move cursor down for subtitle
oled.printin("MONITORING DEVICE"); // Display subtitle
oled.display(); // Update the display to show current content
delay(2000); // Wait for another 2 seconds before entering loop

¥

void loop() {
float temperature = dht.readTemperature(); / Read temperature from DHT sensor
float humidity = dht.readHumidity(); // Read humidity from DHT sensor

oled.clearDisplay(); // Clear previous readings from display
oled.setTextSize(1.8); // Set larger text size for readings
oled.setTextColor(WHITE); // Set text color to white again
oled.setCursor(0, 0); // Reset cursor position to top left of display
oled.print("Temperature = "); // Print temperature label
oled.printIn(temperature); // Print temperature value
oled.print("Humidity = "); // Print humidity label
oled.printin(humidity); // Print humidity value

oled.display(); // Update the display with new readings
delay(2000); // Wait for 2 seconds before next loop iteration}

Dept of ECE, ATMECE, Mysuru 29

loT LAB-BEC657C 2025-2026

3. To interface the motor using a relay with Arduino /Raspberry Pi and write a program to
‘turn ON’ the motor when a push button is pressed.

SI No | Components Quantity
1 AURDUINO UNO 1
2 Relay 2 Channel 1
3 USB cable for NODE MCU | 1
4 Connecting wires --
5 Push Button 1
6 Power Supply 1
7 DC motor 1

Theory:
Servo motors are high torque motors which are commonly used in robotics and several other
applications due to the fact that it’s easy to control their rotation. Servo motors have a geared
output shaft which can be electrically controlled to turn one (1) degree at a time. For the sake of
control, unlike normal DC motors, servo motors usually have an additional pin besides the two
power pins (VVcc and GND) which is the signal pin. The signal pin is used to control the servo

motor, turning its shaft to any desired angle.

Dept of ECE, ATMECE, Mysuru 30

loT LAB-BEC657C

Program

/I Include the Servo library for servo motor control
#include <Servo.h>

/I Define the pin for the button input
int buttonpin = 7;

/I Store the last state of the button (HIGH or LOW)
int last_state = HIGH,;

// Define the pin for the relay output
int relaypin = 8;

Il Create a Servo object
Servo myservo;,

/I Initialize the servo position variable
int pos = 0;

void setup() {
/I Initialize serial communication at a baud rate of 115200
Serial.begin(115200);

I/ Set the button pin as an input with internal pull-up resistor
pinMode(buttonpin, INPUT_PULLUP);

/I Set the relay pin as an output
pinMode(relaypin, OUTPUT);

/I Attach the servo to pin 9
myservo.attach(9);

¥

void loop() {
/I Read the current state of the button
int value = digitalRead(buttonpin);

/I Check if the button state has changed
if (last_state != value) {

/I Update the last state

last_state = value;

/I'1f the button is released (HIGH state due to pull-up resistor)
if (value == HIGH) {

/I Turn off the relay

digitalWrite(relaypin, LOW);

Serial.printin(“released");

Dept of ECE, ATMECE, Mysuru

2025-2026

31

loT LAB-BEC657C 2025-2026

// Move the servo from 0 to 180 degrees
for (pos = 0; pos <= 180; pos += 1) {
/I Set the servo position
myservo.write(pos);
/l Wait for 15 milliseconds before moving to the next position
delay(15);
}

}else {
/I 1f the button is pressed (LOW state)

// Turn on the relay
digitalWrite(relaypin, HIGH);
Serial.printin("pressed");
}
}
}

4 (a) Write an Arduino/Raspberry Pi program to interface the Soil Moisture Sensor.

Overview of Soil Moisture

Soil Moisture Sensor

Dept of ECE, ATMECE, Mysuru

32

loT LAB-BEC657C 2025-2026

Soil moisture is basically the content of water present in the soil. This can be measured using
a soil moisture sensor which consists of two conducting probes that act as a probe. It can

measure the moisture content in the soil based on the change in resistance between the two
conducting plates.

The resistance between the two conducting plates varies in an inverse manner with the amount
of moisture present in the soil.

Interfacing Soil Moisture Sensor With Arduino UNO

“Aa 0 0 000
0. 0. 0. U U, V.V

Y. 0. 0.0 U U.U

¥
-

Measure soil moisture using Arduino Uno

Here, the analog output of soil moisture sensor is processed using ADC. The moisture content
in terms of percentage is displayed on the serial monitor.

Dept of ECE, ATMECE, Mysuru

33

loT LAB-BEC657C 2025-2026

The output of the soil moisture sensor changes in the range of ADC value from 0 to 1023.
This can be represented as moisture value in terms of percentage using formula given below.
ADCValue

1023
Moisture in percentage = 100 — (Analog output * 100)

AnalogOutput =

For zero moisture, we get maximum value of 10-bit ADC, i.e. 1023. This, in turn, gives 0%
moisture.

2 soil moisture sensor
= Breakout =

"name": "soil moisture sensor",

void setup()
{

/I Set the serial monitor baudrate to 9600
Serial.begin(9600);
}

void loop()

{
I/ Variable to store ADC value (0 to 1023)

int level;
/I analogRead function returns the integer 10 bit integer (0 to 1023)
level = analogRead(0);

/I Print text in serial monitor
Serial.printin("Analog value:");

/I Print analog value in serial monitor
Serial.printin(level);

4 (b) Write an Arduino/Raspberry Pi program to interface the LDR/Photo Sensor.

LDR SENSOR is a light-dependent resistor, its resistance changes according to changes in light
intensity. A light-dependent resister is also known as LDR SENSOR, which is used to detect

Dept of ECE, ATMECE, Mysuru 34

loT LAB-BEC657C 2025-2026

the intensity of light. In this blog we will discuss what LDR SENSOR is and how it can be used
with the Arduino Development Board.

stud lights are LED that are mounted on the road and used as indicators. These indicators only
turn on during the night and are off during the day And the reason behind this was LDR
SENSOR.

Those stud lights have LDR SENSOR, battery, controller unit and solar panel inbuilt. In the
daytime, when there will be sufficient sunlight, the controller unit receives input from the LDR
sensor and according to the received input the control unit either charges the battery or turns
on the light.

Component Required:

SINo | Components Quantity
1 Arduino Uno 1

2 Bluetooth Module HC-05 1

3 USB cable Ato B 1

4 Connecting wires --

5 LED

6 Smart Phone with Arduino Bluetooth Controller app

(N 1] BE g owen AnALGE TN
EE5 08 2z22314®

LDR interfacing With Arduino

LDR Working Principle

LDR SENSOR is nothing but a light-dependent resistor, its resistance changes according to
changes in light intensity.

The LDR SENSOR is made of photosensitive material. The zig-zag lines you see on the
sensor are nothing but a photosensitive material.

When light falls on this material the resistance of the material changes and hence
conductivity. This was the original operation of LDR SENSOR

Connections
the LDR sensor is only a resistor and can be directly connected to any GPIO pin. So for this

application we are connecting this LDR SENSOR to A0 pin of Arduino and connecting the
second pin of LDR SENSOR to the 5v pin of Arduino.

Dept of ECE, ATMECE, Mysuru 35

loT LAB-BEC657C

/I Define constants for the LED pin and LDR pin
const int ledPin = 12; // Pin for the LED
const int IdrPin = AQ; // Pin for the Light Dependent Resistor (LDR)

/I Define the threshold value for determining brightness
int threshold = 600; // VValue below which it is considered dark

void setup() {
/I Initialize serial communication at a baud rate of 9600
Serial.begin(9600);

/I Set the LED pin as an output
pinMode(ledPin, OUTPUT);

/l Set the LDR pin as an input
pinMode(ldrPin, INPUT);
}

void loop() {
/l Read the analog value from the LDR
int IdrStatus = analogRead(ldrPin);

/I Check if it's dark based on the threshold value
if (IdrStatus <= threshold) {

/[Turn on the LED

digitalWrite(ledPin, HIGH);

// Print a message indicating it's dark and the LED is on
Serial.print("It's dark, turn on LED: ");
Serial.printin(ldrStatus);

}else {
/I Turn off the LED

digitalWrite(ledPin, LOW);

// Print a message indicating it's bright and the LED is off
Serial.print("It's bright, turn off LED: ");
Serial.printIn(ldrStatus);

¥
}

5. Write a program to interface an Ultrasonic Sensor with Arduino /Raspberry Pi.

Working of HC-SR04

2025-2026

The HC-SR04 emits ultrasonic waves at 40,000 Hz. In order to make it emit waves, we need
to give a 10 microseconds HIGH pulse at the Trigger pin. The module responds by emitting a
sonic burst of 8 pulses. This 8-pulse pattern helps differentiate the pulses emitted by the module
from the ambient noise. As soon as the pulses are transmitted, the ECHO pin goes HIGH, and

Dept of ECE, ATMECE, Mysuru

36

loT LAB-BEC657C 2025-2026

stays HIGH till all the reflected pulses are received. The module times out after 38ms, if all the
reflected pulses are not received in this duration.

HC-SR04 Timing Chart

TRIG pin ||

10ps trigger pulse

T piezzo JHIHJIJIHM

8x40kHz sound wave

ECHO pin < g

Time it takes pulse to leave and return to sensor

The timing diagram explains the behavior of the module —

The time for which the Echo pin remains HIGH can help determine the distance of the sensor
from the reflecting surface. The speed of sound in air.is'340 m/s, or 0.034 cm/ microsecond. If
the ECHO pin stays HIGH for, say 100 microseconds, then the distance travelled by the waves
is: 100*0.034 = 3.4cm. Therefore, the distance from the surface is 3.4/2 = 1.7 cm (since the
waves reflect back from the surface and-cover the same distance again)

/I Define pins for the ultrasonic sensor
#define ECHO_PIN 2 // Pin connected to the echo output of the sensor
#define TRIG_PIN 3 // Pin connected to the trigger input of the sensor

Dept of ECE, ATMECE, Mysuru 37

loT LAB-BEC657C 2025-2026

void setup() {
/I Initialize serial communication at a baud rate of 115200
Serial.begin(115200);

/I Set the built-in LED pin as an output
pinMode(LED_BUILTIN, OUTPUT);

/I Set the trigger pin as an output and the echo pin as an input
pinMode(TRIG_PIN, OUTPUT);
pinMode(ECHO_PIN, INPUT);

}

/I Function to read the distance in centimeters using the ultrasonic sensor
float readDistanceCM() {

/I Set the trigger pin low for a short duration to ensure a clean start
digitalWrite(TRIG_PIN, LOW);
delayMicroseconds(2);

// Send a 10 microsecond pulse to the trigger pin to initiate measurement
digitalWrite(TRIG_PIN, HIGH);

delayMicroseconds(10);

digitalWrite(TRIG_PIN, LOW);

/I Measure the time it takes for the echo signal to return
int duration = pulseln(ECHO_PIN, HIGH);

// Calculate the distance using the speed of sound (approximately 0.034 cm/us)
return duration * 0.034 / 2; // Divide by 2 because the sound travels to the object and back

}

void loop() {
/I Read the current distance from the sensor
float distance = readDistanceCM();

[/l Determine if an object is nearby (within 100 cm)
bool isNearby = distance < 100;

/I Turn the LED on if an object is nearby, otherwise turn it off
digitalWrite(LED_BUILTIN, isNearby);

/I Print the measured distance to the serial console
Serial.print(“Measured distance: ");

Serial.printin(readDistanceCMJ()); // Note: This reads the distance again, consider storing the first reading

/I Wait for 100 milliseconds

Dept of ECE, ATMECE, Mysuru 38

loT LAB-BEC657C 2025-2026

Introduction to Node MCU ESP8266 module

The NodeMCU (Node Micro-Controller Unit) is an open-source software and hardware
development environment built around an inexpensive System-on-a-Chip (SoC) called the
ESP8266. The ESP8266, designed and manufactured by Espressif Systems, contains the
crucial elements of a computer: CPU, RAM, networking (WiFi), and even a modern operating
system and SDK. That makes it an excellent choice for Internet of Things (1oT) projects of
all kinds.

NodeMCU ESP8266 Specifications & Features and Pin out

Microcontroller: Tensilica 32-bit RISC CPU Xtensa LX106
Operating Voltage: 3.3V

Input Voltage: 7-12V

Digital 1/0 Pins (DIO): 16

Analog Input Pins (ADC): 1

UARTs: 1

SPIs: 1

12Cs: 1

Flash Memory: 4 MB

SRAM: 64 KB

Clock Speed: 80 MHz

USB-TTL based on CP2102 is included onboard, Enabling Plug n Play
PCB Antenna

+ Small Sized module to fit smartly inside your 10T projects

ESP-12E Chip 3.3V Voltage Regulator

. ‘ PIN CODE
';g' - 5| g6 GPIO16 AQ A0
' = o GPIOS GPIO 16 DO
i) GPIO4
SDD3 s GPIO10 E’@' ‘ o GPIO0 GPIO 5 D1
SDD2 o GPIOS 8 3 G : GP102 GPIO 4 D2
MOSI & SDD1 u GPIOB : ;, n 3 33V
CS__u SDCMD g GPIO11 T e GND GPIO O D3
u R s | GPIO14 2 HSCLK
SCLK u SDCLK g GPIOB g GPIO12 g HMISO GPIO 2 D4
GND ‘i'g GPIO13 § HMOSI = GIS0 GPI1014 D5
— A GPIO15 w HCS g RTSO
GPIO3 g RXDO GPIO 12 D6
‘;:'g’ TXDG GPIO 13 D7
3.3V GPIO 15 D8
GPIO 9 SD2
GPIO10 SD3
B rower control [12c @ srt @ sbcard Ay PWM GPIO3 Rx
@@cvo B aAac @Bcrio @ uArRT [Reserved GPIO1 Tx

Steps to install Node MCU

1. Download and install Arduino IDE
2. Open the IDE and follow this path. File -> preferences -> Additional board manager URL.
3. Now paste the URL in the dialog box :

Dept of ECE, ATMECE, Mysuru 39

loT LAB-BEC657C 2025-2026
Pin Co nnectlon details
NODE MCU DHT11
GND GND
3Vv3 VCC
D5/D4 DATA

http://arduino.esp8266.com/stable/package esp8266com index.json

Then, click the “OK” button.

Now follow this path. Tools -> Board -> Boards Manager

Search for ESP8266 and install the “ESP8266 by ESP8266 Community*

After this, restart your Arduino IDE.

Then, go to Tools > Board and check that you have ESP8266 boards available.

First, make sure you have an ESP8266 selected in Tools > Board. If you’re using the ESP8266-12E
NodeMCU Kit as shown in previous pictures, select the NodeMCU 1.0 (ESP-12E Module) option.

NG~

6 Write a program on Arduino/Raspberry Pi to upload temperature and humidity
datato thingspeak cloud.

o
o
o
po
o
o
o
o

Theory:

ThingSpeak is an open-source Internet of Things (1oT) application and API that allows users
to collect and store sensor data in the cloud and perform analytics on that data. It allows
users to create “channels” to collect data from multiple sensors, and also has built-in support
for visualizing and analyzing the data. ThingSpeak can be used for a variety of applications,
such as monitoring environmental conditions, tracking the location of assets, and controlling
devices remotely. It is available for free and also has paid subscription plans for additional
features and support. The device that sends the data must be configured with the correct
channel information, such as the channel ID and write API key.

> ThingSpeak is a platform providing various services exclusively targeted for building
loT applications.

> It offers the capabilities of real-time data collection, visualizing the collected data
in the form of charts, ability to create plugins and apps for collaborating with web
services, social network and other APIs.

The core element of ThingSpeak is a ‘ThingSpeak Channel’.
A channel stores the data that we send to ThingSpeak and comprises of the below elements:

Dept of ECE, ATMECE, Mysuru 40

loT LAB-BEC657C 2025-2026

8 fields for storing data of any type - These can be used to store the data from a sensor or
from an embedded device.
3 location fields - Can be used to store the latitude, longitude and the elevation. These
are very useful for tracking a moving device.
1 status field - A short message to describe the data stored in the channel.

< To use ThingSpeak, we need to sign up and create a channel.

.

% Once we have a channel, we can send the data, allow ThingSpeak to process it and
also retrieve the same.

®,

Creating a ThingSpeak Channel

Step 1: Open https://thingspeak.com/ and click on the ‘Get Started Now’ button on the
center of the page and you will be redirected to the sign-up page(you. will reach the same
page when you click the ‘Sign Up’ button on the extreme right).

Fill out the required details and click on the ‘Create Account’ button

< C @ thingspeak.com/login?skipSSOCheck=true © A« » 0P :

[JThingSpeak™ Channels Apps Support~
08

0 'sen a faster t0 | NINgSPeak or o send more data Irom more devices, consider the paid license options for commercial, acagemic,
home and student usage.

Create MathWorks Account

Email Address

DATA AGGREGATION
AND ANALYTICS

Location C]ThingSpeak

‘ MATLAB
India v =
D
First Name ToT oot — I
— Lan
Chetan Anand] l -7 SMART CONNECTED DEVICES
Last Name ? ALGORITHM DEVELOPMENT
SENSOR ANALYTICS
Chetan Anand Nanjundaiah Q
Cance
A *

Now you should see a page with a confirmation that the account was successfully

created. The confirmation message disappears after a few seconds and the final page should
look as in the below screen:

Dept of ECE, ATMECE, Mysuru 41

loT LAB-BEC657C 2025-2026

) Inkermet Of Thinge = Thisge "R () Channets - ThingSpeak < -°m

LY thingtpesk.com o - | A 08 % A

Step 2: Go ahead and click on ‘New Channel’. You should see a page like the below:

D Thingspeak Channels ~ Apps Plugins Account ~

® Watch

l Private View I Public View [Channel Settings [APl Keys I Data Import / Export -

Percentage Complete 15%
Help
Channel ID 18991
Name Channel 18991 Make this channel p

charts without usin

By using the URL fie
Description information for youi
webpage about the

Change the name to fit:your need

Add a description corresponding to the channel

E] Thingspeak Channels ~ Apps Plugins Account ~

Make Public? v

b 7 7 Fields 1 to 8 - These are the
Videa Ypmwhe:s Mare fields which correspond to the
Pl Pl [emerc fev data sent by a sensor or a
Field 2 SaRsoriapir [emoec e ‘thing’. A field has to be added
Field 3 [add fieid before it can be used to store
Field 4 [add fietd data. By default, Field 1 is
Field 5 [add field added.Once you have edited
Field 6 [Jadd field the fields, click on ‘Save
Field 7 [Jadd field Channel” button.

Field 8 [Jadd field

Dept of ECE, ATMECE, Mysuru 42

loT LAB-BEC657C 2025-2026

Latitude, longitude and elevation:

'I;]hese fields correspond to the location of a ‘thing” and are especially significant for moving
things.

Make Public?

- If the channel is made public, anyone can view the channel's data feed and the
corresponding charts. If this check box is not checked, the channel is private, which means
for every read or write operation, the user has to pass a corresponding API key.

URL :

This can be the URL of your blog or website and if specified, will appear on the public view
of the channel

Video ID:

This is the ID corresponding to your YouTube or Vimeo ID. If specified, the video appears
on the public view of the channel.

Step 3: ‘Private View’ tab is defaulted:

[T o [e [| e s I

Smart_Channel
Channel Stats

d 2014-11-22 17:26:31 UTC
14-11-22 18:15:54 UTC

The Private View shows a chart corresponding to each of the fields that we have added.
Now click on the ‘Public View’ tab. This should look exactly similar to the what we see
in the ‘Private View’ tab since our channel is public.

Step 4: click on the ‘API Keys’ tab

Write API Key Helg
| Read API

Notes are

track of »

Read API Keys

Generate New Read APl Key

Dept of ECE, ATMECE, Mysuru 43

loT LAB-BEC657C 2025-2026

The write API key is used for sending data to the channel
The read API key(s) is used to read the channel data

Share the Read API keys with people who are approved and authorized to view your
channel.

Step 5: Installing the ThingSpeak

Library

To send or receive sensor readings to ThingSpeak, we’1l use the ThingSpeak Arduino
library. Go to Sketch > Include Library > Manage Libraries... and search for "ThingSpeak
in Library Manager. Install the ThingSpeak library by MathWorks

Field 2 Chart g odx

ﬂE A T
) l'i‘:f'
— I;
Sending data over fa
the Internet :
13 143] FAH
Dt

TAEpEIL T

ESP8266 Module Pins

X GND
EN 102

RST

ESPB2GE

/I Include the ESP8266 WiFi library
#include <ESP8266WiFi.h>

/I Include the ThingSpeak library for sending data to the ThingSpeak server

Dept of ECE, ATMECE, Mysuru 44

loT LAB-BEC657C

#include <ThingSpeak.h>

/lInclude the DHT sensor library
#include <DHT.h>

/I Define the GPIO pin connected to the DHT11 sensor
#define DHTPIN 4

/I Define the type of DHT sensor being used
#define DHTTYPE DHT11

Il Create a DHT object named 'dht'
DHT dht(DHTPIN, DHTTYPE);

/I Variables to hold sensor readings
int chk;

float hum; // Humidity

float temp; // Temperature

/I WiFi client used by ThingSpeak
WiFiClient client;

/I'Your ThingSpeak channel number and API key
long myChannelNumber = 2887065;
const char myWriteAPIKey[] = "7GVIQLJ2TG2UARNI";

void setup() {
/I Start the serial communication
Serial.begin(9600);

/I Connect to WiFi with SSID, password, and channel number
WiFi.begin("TECMCA", "tec&2020mca", 6);

/' Wait until WiFi is connected
while(WiFi.status() '= WL_CONNECTED)
{
delay(200);
Serial.print(".."); // Indicate ongoing connection attempt

}

/I Once connected, print the IP address
Serial.printin(};

Serial.printin("Esp32 is connected!");
Serial.printin(WiFi.locallP());

/I Initialize the DHT sensor
dht.begin();

/I Initialize ThingSpeak with the WiFi client
ThingSpeak.begin(client);

Dept of ECE, ATMECE, Mysuru

2025-2026

45

loT LAB-BEC657C

void loop() {
// Read humidity and temperature values from the DHT sensor
hum = dht.readHumidity();
temp = dht.readTemperature();

/I Print the temperature and humidity to the Serial Monitor
Serial.printin("Temperature: " + (String) temp);
Serial.printin("Humidity: " + (String) hum);

I/l Write the temperature value to field 1 of the ThingSpeak channel
ThingSpeak.writeField(myChannelNumber, 1, temp, myWriteAP1Key);

I/l Write the humidity value to field 2 of the ThingSpeak channel
ThingSpeak.writeField(myChannelNumber, 2, hum, myWriteAPIKey);

// Wait for 2 seconds before sending the next set of data
delay(2000);
}

7 Write a program on Arduino/Raspberry Pi to~retrieve temperature and humidity

data from thingspeak cloud

Theory:

To read values from Thingspeak we need to upload some data in real time, to do this, first upload temperature and humidity data to

Thingspeak using previous experiment using NodeMCU 8266

Thingspeak loT
Cloud

Interne/ N‘ternet
Arduino/ ESP8266/ LCD/
» ESP8266 NodeMCU ‘ Serial Monitor

[Sending Data to Thingspeak] [Reading Data from Thingspeak]

Channel Settings for reading data

=

Go to your Thingspeak account and do the following setting to receive temperature and humidity data.

Go to channel setting put ‘tick” mark for both filed 1 and filed 2 and scroll down to bottom and save it.

3. You need your channel ID to read the fields on your channel you wish to read so that copy your
channel id and paste in the code

4. You need your Read API key from your channel and copy Read API key.

5. Use this Read API key in our code.

N

Write following program and upload in the Node MCU82666

After successful upload Open the serial monitor; you will be able to see the values read from your channel.

Dept of ECE, ATMECE, Mysuru 46

loT LAB-BEC657C 2025-2026

#include <ThingSpeak.h> // Library to interact with ThingSpeak
#include <ESP8266WiFi.h> // Library to connect ESP8266 to WiFi

/I WiFi credentials
const char* ssid = "TECMCA"; /I WiFi SSID
const char* password = "tec&2020mca"; // WiFi Password

// ThingSpeak channel details
unsigned long CHANNEL_ID = 2887065; [/l Channel ID for ThingSpeak
const char* READ_API_KEY = "N1H6LJ3920T31I11V"; // APl Key for reading data

/I Fields in ThingSpeak channel
const int Field1 = 1; // Field 1 for Temperature
const int Field2 = 2; // Field 2 for Humidity

WiFiClient client; // Create WiFi client object

void setup()

{
Serial.begin(9600); // Start Serial communication at 9600 baud rate

WiFi.begin(ssid, password); // Connect to WiFi network
WiFi.mode(WIFI_STA); /I Set WiFi mode to Station (client mode)

ThingSpeak.begin(client); // Initialize ThingSpeak with WiFi client

/I Wait for WiFi to connect

while (WiFi.status() '= WL_CONNECTED) {
delay(500);
Serial.printin("Wifi connecting ");

¥

Serial.printin("Wifi connected successfully *;

¥

void loop() {

I -==mme Reading Field 1 (Temperature) ---------

long temp = ThingSpeak.readLongField(CHANNEL_ID, Fieldl, READ_API_KEY); // Read temperature
value from Field 1

int statusCode = ThingSpeak.getLastReadStatus(); // Get status of last read operation

if (statusCode == 200) {
Serial.print("Temperature: ");
Serial.printin(temp); // Print temperature if read was successful

Yelse {

Serial.printin(*Unable to read channel / No internet connection™); // Error message

¥

Dept of ECE, ATMECE, Mysuru 47

loT LAB-BEC657C 2025-2026

delay(100); // Short delay

/e Reading Field 2 (Humidity) ---------

long humidity = ThingSpeak.readLongField(CHANNEL _ID, Field2, READ_API_KEY); // Read
humidity value from Field 2

statusCode = ThingSpeak.getLastReadStatus(); / Update status code

if (statusCode == 200) {
Serial.print("Humidity: ");
Serial.printin(humidity); // Print humidity if read was successful

}else {

Serial.printin("Unable to read channel / No internet connection™); // Error message

¥

delay(100); // Short delay before next loop iteration
}

8.Write a program to interface LED using Telegram App.

// Include WiFi library for ESP32 WiFi functions

#include <ESP9266WiFi.h>

/I Include WiFiClientSecure for secure (HTTPS) connections

#include <WiFiClientSecure.h>

/I Include UniversalTelegramBot library to interact with Telegram Bot API
#include <UniversalTelegramBot.h>

// Include ArduinoJson for parsing JSON data from Telegram

#include <ArduinoJson.h>

/I Define your Telegram Bot token (keep this private in real projects)

#define BOT_TOKEN "7742829309:AAFQSIrRF45CTRV-AYqySdpynJ9TSGRINBYA™
/I Define the chat ID to which the bot will respond

#define CHAT_ID "1032626606"

/I Define the pin number for the LED

#define LED_PIN 15

/I Create a secure WiFi client object

WiFiClientSecure secured_client;

/Il Create a Telegram bot object using the bot token and secure client
UniversalTelegramBot bot(BOT_TOKEN, secured_client);

/[Variables to manage bot polling timing
unsigned long lastTimeBotRan;
const int botRequestDelay = 1000; // Delay between bot requests (in ms)

void setup() {
Serial.begin(9600); // Start serial communication for debugging

Dept of ECE, ATMECE, Mysuru

48

loT LAB-BEC657C 2025-2026

pinMode(LED_PIN, OUTPUT); // Set the LED pin as output
WiFi.begin(™, "); // Connect to WiFi network (SSID, password)

/I Wait until WiFi is connected
while (WiFi.status() '= WL_CONNECTED) {
delay(250);

¥

/I Set the root certificate for Telegram (required for HTTPS)
secured_client.setCACert(TELEGRAM_CERTIFICATE_ROOT);
Serial.printin("WiFi connected"); // Print confirmation

}

void loop() {
/I Check if it's time to poll the bot for new messages
if (millis() - lastTimeBotRan > botRequestDelay) {
/I Get new messages from Telegram
int numNewMessages = bot.getUpdates(bot.last_message received + 1);

// Process all new messages
while (numNewMessages) {
for (int i = 0; i < numNewMessages; i++) {
String chat_id = bot.messages[i].chat_id; // Get sender's chat 1D
String text = bot.messages[i].text; // Get message text

// Only respond to messages from the authorized chat ID
if (chat_id == CHAT_ID) {
if (text =="/led_on") {
digitalWrite(LED_PIN, HIGH); // Turn LED on
bot.sendMessage(chat_id, "LED turned ON", ""); // Confirm action
} else if (text == "/led_off") {
digitalWrite(LED_PIN, LOW); // Turn LED off
bot.sendMessage(chat_id, "LED turned OFF", ""); // Confirm action
} else if (text == "/state™) {
/I Report current LED state
String state = (digitalRead(LED_PIN) == HIGH) ? "ON" : "OFF",
bot.sendMessage(chat_id, "LED is " + state, "");
}
}
}

// Check for more new messages
numNewMessages = bot.getUpdates(bot.last_message_received + 1);

}
lastTimeBotRan = millis(); / Update the last bot polling time

ki
ki

1. To Start a Conversation: Click the "Start" button to initiate a chat with BotFather.

Dept of ECE, ATMECE, Mysuru 49

loT LAB-BEC657C 2025-2026

S A

Create a Bot: Type or select the "/newbot" command.
Choose a Name: BotFather will prompt you to enter a name for your bot.
Choose a Username: Enter a unique username for your bot, ensuring it ends with "bot".

Receive the Token: BotFather will provide you with a unique bot token, which you need to

authenticate your bot.

8. Save the Token: Copy and save the bot token securely, as it is required to interact with your
bot through the Telegram Bot API.

2. Obtaining the Chat ID:

a.

Add the newly created bot to the desired Telegram chat or group where you want to
receive messages.

Open a web browser and enter the following URL, replacing <YourBotToken> with
the token you received from BotFather:

https://api.telegram.org/bot<YourBotToken>/getUpdates

JSON response that contains information about the most recent messages received
by your bot.

Check for the "chat" object in the response, which contains details about the chat
your bot is part of.

The "id" field within the "chat" object corresponds to the chat ID of the group or
channel. Make note of this chat ID; you will need it to send messages to the chat.

Sending the text message using Telegram to NodeMCU
https://github.com/witnessmenow/Universal-Arduino-Telegram-Bot

Extract the library and add it to the libraries folder path of Arduino IDE.

Dept of ECE, ATMECE, Mysuru 50

loT LAB-BEC657C 2025-2026

For information about how to add a custom library to the Arduino IDE and use examples
from it, refer Adding Library To Arduino IDE in the Basics section.

Now install another library which is Arduinojson library for the above example. We need to
install the Arduinojson library using the Arduino Library Manager.

e Open the Arduino IDE
e Navigate to Sketch » Include Library » Manage Libraries...

sketch_jun20a | Arduino 1.8.19
File Edit MTOOIS Help
Verify/Compile Ctrl+R
Upload Ctrl+U
sketc Upload Using Programmer Ctrl+Shift+U

1 voi Export compiled Binary Ctrl+Alt+S

2/

3 Show Sketch Folder Ctrl+K

4} I Include Library m——— :

- - Manage Libraries... Ctrl+Shift+]
= Add File...

olves toobt) A Add ZIP Library...

7 // put your main code here, to run 1

Arduino libraries
ArduinoHttpClient
Bridge

Crmlara

. The library Manager window will pop up. Now enter Arduinojson into the
search box, and click Install on the Arduinojson option to install version 6.12.2 or
higher. As shown below image.

Dept of ECE, ATMECE, Mysuru 51

loT LAB-BEC657C 2025-2026

@ Library Manager %

Type |All | Topic |All lerduinonoN I

Arduinolson ~
by Benoit Blanchon

A simple and efficient JSON library for embedded C++. Arduinolson supports v serialization, ¥ deserialization, ¥ MessagePack, v fixed
allocation, ¥ zero-copy, ¥ streams, « filtering, and more. It is the most popular Arduino library on GitHub *%%¥%_ Check out arduinojson.org

for a comprehensive documentation.

Mare info

| version 6.21.2 v | Install ||

cloud4rpi-esp-arduino

by Cloud4RPi

Connect a board to the Cloud4RPi control panel using MQTT - https://cloud4rpi.io. Cloud4RPi client library for ESP8266 and ESP32 based
boards. Dependencies: Arduinolson, PubSubClient.

Mare info

ConfigStorage
by Tost69
Library to store configuration parameters in the file system using LittleFS or SPIFFS for ESP8266 and ESP32. Using the Arduinolson
library the parameters are stored in memory as a JSON document and saved as a JSON file.
Mare info

Constellation v

Control the led using Telegram
Let’s control the LED from telegram using the ESP32 and Arduino IDE.

Before uploading the code make sure you have added your SSID, Password, Token
ID, and Chat ID

11:02 © & A

10T .

/led_off 1054 o

. LEDturned OFF .,

/led_off 1455

/led_on .91
=

LED turned OFF | ..

LED is OFF .,
LED turned ON .,

LED turned OFF |,

®© Message 2 O

g [=

Dept of ECE, ATMECE, Mysuru 52

loT LAB-BEC657C 2025-2026

9 Write a program on Arduino/Raspberry Pi to publish temperature data to the MQTT broker.

Component Required:

Sl Components Quanti
No ty

1 Node MCU ESP 8266 1

2 Temperature sensor DHT11 1

3 USB cable 1

4 Connecting wires --

6 Breadboard 1

Circuit Diagram

NODEMCU (ESP8266) BOARD

CEECEEEE

GhO16

otaic] DHT11 SENSOR
GPIO4
GO0
oMO2
13V
ot

RARARARARAR

[S003 »<GMO10
2002 » GhOa
[SDDY > MOS
SO > €S

TSO00 >« MISO
[SDCIK > 50X

(=

N{
GPIO14
GPIO12
G013
GPIOLS
GMo3)

3.3V

PIN Configuration : NODMCU 3.3V to DHT VCC Pin
NODMCU GND to DHT GND pin
NODMCU GPIO2 to DHT DATA

pin

Theory:

MQTT stands for Message Queuing Telemetry Transport. MQTT is a simple messaging
protocol, designed for constrained devices with low bandwidth. So, it’s the perfect solution

to exchange data between multiple 10T devices.
Devices publish messages on a specific topic. All devices that are subscribed to that topic

receive the message.

Dept of ECE, ATMECE, Mysuru 53

loT LAB-BEC657C

Publisher

2025-2026

MQTT Architecture

message _ ¥ D

message - Subscriber

e MQTT
Broker -
message ~ . E‘
Visual channel E‘i‘l be
Topic

Subscriber

In a publish and subscribe system, a device can publish a message on a topic, or it can be
subscribed to a particular topic to receive messages.

The MQTT broker is responsible for receiving all messages, filtering the messages, deciding
who is interested in them, and then publishing the message to all subscribed clients.

The MQTT broker is the central point of communication, and it is in charge of dispatching
all messages between the senders and the rightful receivers. A client is any device that
connects to the broker and can publish or subscribe to topics to access the information. A
topic contains the routing information for the broker. Each client.that wants to send messages
publishes them to a certain topic, and each client that wants:to.receive messages subscribes
to a certain topic. The broker delivers all messages with the matehing topic to the appropriate

clients.

In this Experiment, we will create a setup that allows a NODE MCUESP8266 board to send
data to another MCU ESP 8266, using MQTT (Message Queuing Telemetry Transport). The
sender device simply publishes a message toabroker service, which then can be subscribed

to by a receiver device.

The data we will send consists of readings from a DHT11 sensor, including temperature and
humidity data, from a NODE MCU ESP8266 to another NODE MCU. This experiment
utilizes the broker test. mosquitto.org, an open-source service that is free for anyone to use.

To view the data:

1. Go to http://www.hivemq.com/demos/websocket-client/

2. Click "Connect"

3. Under Subscriptions, click "Add New Topic Subscription™
4. In the Topic field, type "weather” then click "Subscribe™

change the temperature/humidity, and you should see
the message appear on the MQTT Broker, in the "Messages" pane.

Program:

#include <ESP8266WiFi.h>
#include <PubSubClient.h>
#include <DHT.h>
#include <ArduinoJson.h>

Dept of ECE, ATMECE, Mysuru

/Il Library to connect ESP8266 to WiFi
/I MQTT client library
/I DHT sensor library
// JSON handling library

54

loT LAB-BEC657C 2025-2026

/I WiFi credentials
const char* ssid = "Enter your Hot spot ID"; // Replace with your WiFi SSID
const char* password = "Password"; /I Replace with your WiFi password

/I MQTT broker details

const char* mqtt_server = "broker.mqttdashboard.com™; // Public MQTT broker
const int mqtt_port = 1883; // Default MQTT port

const char* mqtt_topic = "weather monitoring"; /l Topic to publish data

const char* mqtt_client_id = "arduino-weather-demo"; // Unique MQTT client ID

// DHT Sensor setup

#define DHTPIN D4 /I GPIO pin where DHT11 is connected

#define DHTTYPE DHT11 /I Specify the type of DHT sensor used (DHT11)
DHT dht(DHTPIN, DHTTYPE); // Create DHT object

/I Create WiFi and MQTT client objects
WiFiClient espClient;
PubSubClient client(espClient);

/I Variable to track previous payload to avoid redundant publishing
String prevPayload =",

// Connect to WiFi
void connectToWiFi() {
Serial.print("Connecting to WiFi");
WiFi.begin(ssid, password); // Start connecting to WiFi
while (WiFi.status() '= WL_CONNECTED) {
Serial.print(™.");
delay(500); // Wait until connected
¥

Serial.printin(* Connected!");

¥

// Connect to MQTT broker
void connectTOMQTT() {
Serial.print("Connecting to MQTT... ");
while ('client.connected()) {
if (client.connect(mqtt_client_id)) {
Serial.printin("Connected!";
}else {
Serial.print("Failed. Retry in 5 seconds. State: ");
Serial.printin(client.state());
delay(5000); I Retry after delay
}
}
}

void setup() {

Dept of ECE, ATMECE, Mysuru 55

loT LAB-BEC657C 2025-2026

Serial.begin(9600); /[Start serial communication for debugging
dht.begin(); /I Initialize the DHT sensor
connectToWiFi(); /I Connect to WiFi
client.setServer(mqtt_server, mqtt_port); // Set MQTT broker details
connectToMQTT(); // Connect to MQTT broker

}

void loop() {
if (!client.connected()) {

connectToMQTT(); // Reconnect if MQTT connection is lost

}
client.loop(); /I Maintain MQTT connection

Serial.print(*Measuring weather conditions...);
float temperature = dht.readTemperature(); // Read temperature
float humidity = dht.readHumidity(); /I Read humidity

/I Check if readings are valid

if (isnan(temperature) || isnan(humidity)) {
Serial.printin("Failed to read from DHT sensor!™);
return;

¥

// Prepare JSON payload
StaticJsonDocument<100> jsonDoc;
jsonDoc["temp"] = temperature;
jsonDoc["humidity"] = humidity;

String payload,;
serializeJson(jsonDaoc, payload); // Convert JSON object to string

// Publish only if data has changed
if (payload !'= prevPayload) {
Serial.printin("Updated!";
Serial.print("Reporting to MQTT topic ");
Serial.print(mqtt_topic);
Serial.print(": ");
Serial.printin(payload);
client.publish(mgtt_topic, payload.c_str()); // Publish to MQTT topic

prevPayload = payload; /I Update previous payload
}else {

Serial.printin("No change"); /I Skip publish if no change
}

delay(1000); // Delay before next reading (1 second)
}

Dept of ECE, ATMECE, Mysuru 56

loT LAB-BEC657C

2025-2026

10 Write a program to create a UDP server on Arduino/Raspberry Pi and respond with

humidity data to the UDP client when requested.

Component Required:

GPIOs
GO0
OMO2

rosea
[S003 »< MO0
TRD0E > GROa

Sl Components Quanti
No ty
1 Node MCU ESP 8266 1
2 Temperature sensor DHT11 1
3 USB cable 1
4 Connecting wires --
6 Breadboard 1
Circuit Diagram
NODEMCU (ESP8266) BOARD
GhO16
] DHT11 SENSOR

(SD01 >« MOSI
(RO

i3V
-

NI
GMO14

TSO00 >« MISO
[SDCIK < 50X GPI012
Gh GMO13

ND
33V GPIOLS)

GMO3)

pin

PIN Configuration : NODMCU 3.3V to DHT VCC Pin

NODMCU GND to DHT GND pin
NODMCU D4 (GPI10O2) to DHT DATA

Dept of ECE, ATMECE, Mysuru

S7

loT LAB-BEC657C

Theory

User Datagram Protocol (UDP) is a network communication protocol that operates at the
transport layer of the Internet Protocol (IP) suite. It is a connectionless and lightweight
protocol designed for fast and efficient data transmission, but it does not provide the same
level of reliability and error-checking as Transmission Control Protocol (TCP).

UDP is a lightweight, connectionless, and fast protocol that prioritizes low-latency data

transmission over reliability. It is suitable for applications where occasional packet loss or out-

2025-2026

of-order delivery can be tolerated, and real-time communication is essential. However, for

applications that require guaranteed delivery and error recovery, TCP is a better choice.

#include <ESP8266WiFi.h> // WiFi library for ESP8266
#include <WiFiUdp.h> /I UDP communication library
#include <DHT.h> /I DHT sensor library

#define DHTPIN D4 /I Define the pin connected to the DHT sensor (GP102)
#define DHTTYPE DHT11 // Sensor type is DHT11; use DHT22 if applicable

DHT dht(DHTPIN, DHTTYPE); // Create DHT sensor object

/' WiFi credentials (change to match your network)
const char* ssid = "SYS123";
const char* password = "12345678";

I Server IP and port (must match the server configuration)
const char* udpServerlIP = "192.168.0.168"; // Server IP address
const uintl6_t udpPort = 1234; / UDP port number

WiFiUDP udp; // Create a UDP object

void setup() {
Serial.begin(9600); // Start serial communication for debugging
delay(1000); [/ Short delay before starting

WiFi.begin(ssid, password); // Connect to WiFi
Serial.printIn(*Connecting to WiFi...");

// Wait until WiFi is connected

while (WiFi.status() '= WL_CONNECTED) {
delay(500);
Serial.print(".");

}

/Il WiFi connected

Serial.printin("\nWiFi connected successfully™);
Serial.print("1P address: ");
Serial.printin(WiFi.locallP()); // Print device's IP address

Dept of ECE, ATMECE, Mysuru

58

loT LAB-BEC657C

dht.begin(); // Initialize the DHT sensor
}

void loop() {
float temp = dht.readTemperature(); // Read temperature in Celsius

/I Check if reading is valid

if (isnan(temp)) {
Serial.printin("Failed to read from DHT sensor!");
return;

}

/I Print temperature to serial monitor
Serial.print("Temperature in degree Celsius: ");
Serial.printin(temp);

Il Convert float temperature to a string
String tempStr = String(temp);

/I Send temperature via UDP to the server
udp.beginPacket(udpServerlP, udpPort); // Begin UDP packet
udp.write(tempStr.c_str()); /[' Write temperature string
udp.endPacket(); // Send the packet

delay(2000); // Wait for 2 seconds before sending again
}

Python program for server
import socket # Import socket module for network communication

host ='0.0.0.0" # Listen on all network interfaces
port =1234 # UDP port (must match ESP8266's target port)

Create a UDP socket
server_socket = socket.socket(socket. AF_INET, socket. SOCK_DGRAM)

Bind the socket to the host and port
server_socket.bind((host, port))

print(f*"UDP server on {host}:{port}")
Continuously listen for incoming UDP data
while True:

data, addr = server_socket.recvfrom(1024) # Receive up to 1024 bytes
print(f"Received from {addr}: {data.decode()} °C") # Print received data

Dept of ECE, ATMECE, Mysuru

2025-2026

59

loT LAB-BEC657C 2025-2026

Procedure

To run Python code for UDP Server

1) Install python software
2) Open python IDLE

3) In python IDLE go to File - New File (it opens new script windows) -Type the
code

4) Click on Run button and Save the program from script window
5) See the output from IDLE shell (command prompt)

Result: Python program used to create UDP server and Arduino program written
to respond with humidity data to UDP client when requested.

11 Write a program to create a TCP server on Arduino /Raspberry Pi and respond with
humidity data to the TCP client when requested.

Component Required:

Sl Components Quanti
No ty

1 Node MCU ESP 8266 1

2 Temperature sensor DHT11 1

3 USB cable 1

4 Connecting wires --

6 Breadboard 1

Circuit Diagram

NODEMCU (ESP8266) BOARD

GhO16
GMOS
GPIOs
GO0
OMO2
13V
v,

DHT11 SENSOR

9 |=

[S003 »<GMO10
8002 > GhOa
[SDDY >« MOSH
CROW TS

CSDCIK > SCLX

RARARAARR

g(u

NI
GPO14
G012
Gh013
OPIOLS)
GMO3)
GPOY

I3V
N

Dept of ECE, ATMECE, Mysuru 60

loT LAB-BEC657C 2025-2026

PIN Configuration: NODMCU 3.3V to DHT VCC Pin

NODMCU GND to DHT GND pin
NODMCU D4 (GPIO2) to DHT DATA

pin

Theory

The Transmission Control Protocol (TCP) is a widely used protocol in the Internet Protocol
(IP) suite. It is a connection-oriented protocol that provides reliable, ordered, and error-
checked delivery of data between applications running on hostsl. In IoT, TCP is used to
establish connections between clients and servers, allowing devices to interact with each
other and resolve common problems.

A TCP server is a program that listens for incoming connections from clients and responds
to their requests. When a client connects to the server, it sends a request for data. The server
then sends back the requested data to the client. In 10T, TCP servers are used to provide
access to data from sensors and other devices

In the context of the Internet of Things (10T), a TCP server refers to a network service running
on a device or gateway that listens for incoming TCP connections fromether 10T devices or
clients

In the context of 10T, TCP (Transmission Control Protocol) and UDP (User Datagram
Protocol) are two protocols of the Transport Layer that are used to transmit data between
devices over a network.

TCP is a connection-oriented protocol that provides reliable delivery services by keeping
track of the segments being transmitted or received by assigning numbers to every single one
of them. It also implements an error/control'mechanism for reliable data transfer and takes
into account the level of congestion in.the network .

On the other hand, UDP is a connectionless protocol that is used for simple request-response
communication when the'size of data is less and hence there is lesser concern about flow and
error control. It is a_suitable protocol for multicasting as UDP supports packet switching.
Normally used for real-time applications which cannot tolerate uneven delays between
sections of a received message.

In summary, TCP is more reliable but slower than UDP, while UDP is faster but less reliable
than TCP

Finding IP address of your computer
1) Search command Prompt from your PC
2) Type ipconfig in command prompt
3) Search IPv4 Adress: 192.168.137.1 like this in prompt
4) Copy and paste the same in the program at tcpServerlP

#include <ESP8266WiFi.h> // Include ESP8266 WiFi library
#include <DHT.h> /l Include DHT sensor library

Dept of ECE, ATMECE, Mysuru 61

loT LAB-BEC657C

#define DHTPIN D4 /I Define the GPIO pin connected to the DHT sensor (D4)
#define DHTTYPE DHT11 /I Define sensor type (use DHT22 if using that instead)
DHT dht(DHTPIN, DHTTYPE); // Create a DHT sensor object

const char* ssid = "SYS123"; /I WiFi network SSID (replace with your network)
const char* password = "12345678"; // WiFi password

const char* tcpServerIP = "192.168.0.168"; // IP address of the server (e.g., your PC)
const uintl6_t port = 1234; // TCP port to connect to the server

WiFiClient client; // Create a TCP client object

void setup() {
Serial.begin(9600); // Start serial communication for debugging
delay(1000); /I Short delay for stability

WiFi.begin(ssid, password); /I Start WiFi connection
Serial.printin("Connecting to WiFi...");

while (WiFi.status() '= WL_CONNECTED) { // Wait until connected
delay(500);
Serial.print(".");

¥

Serial.printin("\nWiFi connected successfully");
Serial.print("IP address: ");
Serial.printin(WiFi.locallP()); // Print local IP for reference

dht.begin(); // Initialize the DHT sensor
}

void loop() {
if ('client.connect(tcpServerlP, port)) { // Try connecting to the server
Serial.printin("Connection to server failed");
delay(1000);
return; // Skip sending if connection fails

}

float temp = dht.readTemperature(); // Read temperature in Celsius

if (isnan(temp)) { // Check if reading failed
Serial.printIin("Failed to read from DHT sensor!");
return;

¥

Serial.print("Temperature in degree Celsius: ");
Serial.printin(temp);

client.print(temp); // Send temperature as plain text over TCP

Dept of ECE, ATMECE, Mysuru

2025-2026

62

loT LAB-BEC657C 2025-2026

client.stop(); // Close the TCP connection
(2000); /I Wait 2 seconds before sending the next reading

¥

//server program in python
import socket # Import socket module for networking

host ='0.0.0.0" # Listen on all interfaces (any IP)
port = 1234 # Port to listen on (must match NodeMCU client)

Create a TCP/IP socket

server_socket = socket.socket(socket. AF_INET, socket. SOCK_STREAM)
server_socket.bind((host, port)) # Bind to the specified host and port
server_socket.listen(1) # Start listening for incoming connections

(f"Server listening on {host}:{port}")
while True:
client_socket, addr = server_socket.accept() # Accept new connection
(f"Connection from {addr}")
try:
while True: # Keep receiving data until connection is closed
data = client_socket.recv(1024) # Receive up to 1024 bytes
if not data: break # If no data, client disconnected
(f"Received: {data.decode()} °C") # Decode and temperature
finally:
client_socket.close() # Close client connection when done

12 Write a program on Arduine / Raspberry Pi to subscribe to the MQTT broker for
temperature data and print_it.

Component Required:

Sl Components Quanti
No ty
1 Node MCU ESP 8266 1
2 USB cable 1
3 Connecting wires --
4 Breadboard 1
Theory
The MQTT protocol was first introduced in 1999, as a light-

weight publish and subscribe system. It is particularly useful for devices with low-bandwidth,
here we can send commands, sensor values or messages over the Internet with little effort.

Dept of ECE, ATMECE, Mysuru 63

loT LAB-BEC657C

m SUBSCRIBE
PAYLOAD: 27.5

LA R R X

—_ ceces _—
Iy sssee -
T
L2 R 3
- L]

2025-2026

TOFPIC: home/temp mgtt-broker.org TOPIC: home/temp
TOKEN: Z6ACulLwr5T TOKEN: Z6ACulLwr5T

A basic explanation on how it works is that a node, for example and Arduino

stores payloads sent to it, in something called topics. A topic,.is.a definition of

data it contains, it could for example be "humidity" or " temperature™. Another node can then

subscribe to this information, from the broker, and voila, data'has been moved from Node A to

Node B over the Internet.

One way to protect the data is for example, by using a token, something that is quite common
when working with various 10T services, For-instance, if we are publishing something to a

broker, anyone that has the URL, e.g. randombroker.org/randomtopic can subscribe to it.

with a Wi-Fi
module, sends a payload to a broker. A broker is a kind of "middle-point" server, that essentially

what type of

But if we add a unique token on both-sides, they wouldn't be able to. These tokens could for

example be Z6ACuULwr5T, which is not exactly something easy to guess

Il Include the ESP8266 WiFi library to connect to WiFi networks
#include <ESP8266WiFi.h>

[l Include the Arduino MQTT client library for MQTT communication
#include <ArduinoMgttClient.h>

/I WiFi credentials (update with your own network's SSID and password)
const char *ssid = "SYS123"; // Replace with your WiFi SSID
const char *password = "12345678"; // Replace with your WiFi password

/I MQTT broker information
const char broker[] = "test. mosquitto.org"; // Public test MQTT broker
int port = 1883; // Default MQTT port

/] Topic to subscribe to (temperature topic)
const char topicT[] = "home/temp";

Dept of ECE, ATMECE, Mysuru

64

loT LAB-BEC657C

/I Create a WiFi client to handle the network connection
WiFiClient wifiClient;

/I Create an MQTT client using the WiFi client
MgqttClient mqttClient(wifiClient);

void setup()

{
Serial.begin(9600); // Start the serial monitor at 9600 baud

/I Connect to the WiFi network
Serial.print("Wifi connecting to *);
Serial.printin(ssid);
WiFi.begin(ssid, password);

/' Wait until the device is connected to WiFi
while (WiFi.status() '= WL_CONNECTED) {
Serial.printin("Connecting...");
delay(500);
}

Serial.printin("WiFi connected successfully™);

/I Attempt to connect to the MQTT broker
Serial.print(""Attempting to connect to the MQTT broker: *;
Serial.printin(broker);
if (ImqttClient.connect(broker, port)) {
Serial.print(*"MQTT connection failed! Error code =");
Serial.printin(mqttClient.connectError());
while (1); // Halt the program if connection fails

}

Serial.printin("You're connected to the MQTT broker!");

/I Set the callback function to handle incoming messages
mqttClient.onMessage(onMqttMessage);

/I Subscribe to the specified topic
Serial.print(""Subscribing to topic: ");
Serial.printin(topicT);
mqttClient.subscribe(topicT);

Serial.print("Topic Temperature: ");
Serial.printIn(topicT);
}

void loop()
{

Dept of ECE, ATMECE, Mysuru

2025-2026

65

loT LAB-BEC657C 2025-2026

/I Poll the MQTT client to handle incoming messages and keep the connection alive
mqttClient.poll();
delay(1000); // Wait for a second before the next poll

}

/I Callback function that is called when a message is received
void onMgttMessage(int messageSize) {
Serial.printin("Received a message with topic ™);
Serial.print(mgttClient. messageTopic());
Serial.print("", length ");
Serial.print(messageSize);
Serial.printin(" bytes:");

/I Print the message contents
while (mgttClient.available()) {
Serial.print((char)mgttClient.read());

}

Serial.printin();
Serial.printin();
delay(1500); // Delay to help with readability of output

Dept of ECE, ATMECE, Mysuru 66

	Front Sheet
	New Program Outcomes
	IOT Lab Manual
	Untitled

