
Department of Electronics and Communication Engineering

(ACADEMIC YEAR 2025-26)

LABORATORY MANUAL

Course: IOT (INTERNET OT THINGS) LABORATORY MANUAL

Course Code: BEC657C

SEMESTER: VI

 Prepared by

Nagesh M S
Assistant Professor

Dept. of ECE

INSTITUTION VISION AND MISSION

VISION:

Development of academically excellent, culturally vibrant, socially responsible and globally

competent human resources.

MISSION:

 To keep pace with advancements in knowledge and make the students competitive and

capable at the global level.

 To create an environment for the students to acquire the right physical, intellectual,

emotional and moral foundations and shine as tourch bearers of tomorrow's society.

 To strive to attain ever-higher benchmarks of educational excellence

DEPARTMENT VISION AND MISSION

VISION

To develop highly skilled and globally competent professionals in the field of Electronics and

Communication Engineering to meet industrial and social requirements with ethical

responsibility.

MISSION

 To provide State-of-art technical education in Electronics and Communication at

undergraduate and post-graduate levels, to meet the needs of the profession and society

and achieve excellence in teaching-learning and research.

 To develop talented and committed human resource, by providing an opportunity for

innovation, creativity and entrepreneurial leadership with high standards of professional

ethics, transparency and accountability.

 To function collaboratively with technical Institutes/Universities/Industries, offer

opportunities for interaction among faculty-students and promote networking with alumni,

industries and other stake-holders.

Program Outcomes (POs)

PO1: Engineering Knowledge: Apply knowledge of mathematics, natural science,

computing, engineering fundamentals and an engineering specialization to the solution

of complex engineering problems.

PO2: Problem Analysis: Identify, formulate, review research literature and analyze

complex engineering problems reaching substantiated conclusions with consideration

for sustainable development.

PO3: Design/Development of Solutions: Design creative solutions for complex

engineering problems and design/develop systems/components/processes to meet

identified needs with consideration for the public health and safety, whole-life cost, net

zero carbon, culture, society and environment as required.

PO4: Conduct Investigations of Complex Problems: Conduct investigations of

complex engineering problems using research-based knowledge including design of

experiments, modelling, analysis & interpretation of data to provide valid conclusions.

PO5: Engineering Tool Usage: Create, select and apply appropriate techniques,

resources and modern engineering & IT tools, including prediction and modelling

recognizing their limitations to solve complex engineering problems.

PO6: The Engineer and The World: Analyze and evaluate societal and environmental

aspects while solving complex engineering problems for its impact on sustainability

with reference to economy, health, safety, legal framework, culture and environment.

PO7: Ethics: Apply ethical principles and commit to professional ethics, human values,

diversity and inclusion; adhere to national & international laws.

PO8: Individual and Collaborative Team work: Function effectively as an

individual, and as a member or leader in diverse/multi-disciplinary teams.

PO9: Communication: Communicate effectively and inclusively within the

engineering community and society at large, such as being able to comprehend and

write effective reports and design documentation, make effective presentations

considering cultural, language, and learning differences

PO10: Project Management and Finance: Apply knowledge and understanding of

engineering management principles and economic decision-making and apply these to

one’s own work, as a member and leader in a team, and to manage projects and in

multidisciplinary environments.

PO11: Life-Long Learning: Recognize the need for, and have the preparation and

ability for i) independent and life-long learning ii) adaptability to new and emerging

technologies and iii) critical thinking in the broadest context of technological change.

Program Specific Outcomes (PSOs)

PSO1: To have the capability to understand and adopt the technological

advancements with the usage of modern tool to analyze and design embedded

system or processes for variety of applications.

PSO2: To work effectively in a group as an independent visionary, team member

and leader having the ability to understand the requirement and develop feasible

solutions to emerge as potential core or electronic engineer

Program Educational Objectives (PEOs)

PEO1: To produce graduates to excel in the profession, higher education and

pursue research exercises in Electronics and Communication Engineering.

PEO2: To create technically able alumni with the capacity to examine, plan, to

create and execute Electronics and Communication frameworks thereby

involving in deep routed learning.

ATMECE, M
ys

uru

IoT LAB-BEC657C 2025-2026

Dept of ECE, ATMECE, Mysuru

IoT (Internet of Things) Lab Semester 6

Course Code BEC657C CIE Marks 50

Teaching Hours/Week (L:T:P: S) 0:0:2:0 SEE Marks 50

Credits 01 Exam Hours 3

Examination type (SEE) Practical

Course Objectives:

This course will enable students to

• To impart necessary and practical knowledge of components of the Internet of Things

• To develop skills required to build real-life IoT-based projects.

Sl.No. Experiments

1(i) To interface LED/Buzzer with Arduino /Raspberry Pi and write a program to ‘turn ON’ LED

for 1 sec after every 2 seconds.

1(ii) To interface the Push button/Digital sensor (IR/LDR) with Arduino /Raspberry Pi and write

a program to ‘turn ON’ LED when a push button is pressed or at sensor detection.

2 (i) To interface the DHT11 sensor with Arduino /Raspberry Pi and write a program to print

temperature and humidity readings.

2(ii) To interface OLED with Arduino /Raspberry Pi and write a program to print its temperature

and humidity readings.

3 To interface the motor using a relay with Arduino /Raspberry Pi and write a program to ‘turn

ON’ the motor when a push button is pressed.

4(i) Write an Arduino/Raspberry Pi program to interface the Soil Moisture Sensor.
4(ii) Write an Arduino/Raspberry Pi program to interface the LDR/Photo Sensor.

5 Write a program to interface an Ultrasonic Sensor with Arduino /Raspberry Pi.
6 Write a program on Arduino/Raspberry Pi to upload temperature and humidity data

to thingspeak cloud.

7 Write a program on Arduino/Raspberry Pi to retrieve temperature and humidity data

from thingspeak cloud.

8 Write a program to interface LED using Telegram App.
9 Write a program on Arduino/Raspberry Pi to publish temperature data to the MQTT broker.

10 Write a program to create a UDP server on Arduino/Raspberry Pi and respond with humidity

data to the UDP client when requested.

11 Write a program to create a TCP server on Arduino /Raspberry Pi and respond with humidity

data to the TCP client when requested.

12 Write a program on Arduino / Raspberry Pi to subscribe to the MQTT broker for temperature

data and print it.

Course outcomes (Course Skill Set):

At the end of the course, the student will be able to:

• Explain the Internet of Things and its hardware and software components.

• Interface I/O devices, sensors & communication modules.

• Remotely monitor data and control devices.

• Develop real-life IoT-based projects.

ATMECE, M
ys

uru

IoT LAB-BEC657C 2025-2026

 Dept of ECE, ATMECE, Mysuru

Assessment Details (both CIE and SEE)

The weightage of Continuous Internal Evaluation (CIE) is 50% and for Semester End Exam (SEE) is 50%. The minimum

passing mark for the CIE is 40% of the maximum marks (20 marks out of 50) and for the SEE minimum passing mark is

35% of the maximum marks (18 out of 50 marks). A student shall be deemed to have satisfied the academic requirements

and earned the credits allotted to each subject/ course if the student secures a minimum of 40% (40 marks out of 100) in the

sum total of the CIE (Continuous Internal Evaluation) and SEE (Semester End Examination) taken together.

Continuous Internal Evaluation (CIE):

CIE marks for the practical course are 50 Marks.

The split-up of CIE marks for record/ journal and test are in the ratio 60:40.

• Each experiment will be evaluated for conduction with an observation sheet and record write-up. Rubrics for the

evaluation of the journal/write-up for hardware/software experiments are designed by the faculty who is handling the

laboratory session and are made known to students at the beginning of the practical session.

• The record should contain all the specified experiments in the syllabus and each experiment write-up will be evaluated

for 10 marks.

• The total marks scored by the students are scaled down to 30 marks (60% of maximum marks).

• Weightage is to be given for neatness and submission of record/write-up on time.

• The department shall conduct a test of 100 marks after the completion of all the experiments listed in the

syllabus.

• In a test, test write-up, conduction of experiment, acceptable result, and procedural knowledge will carry a

weightage of 60% and the rest 40% for viva-voce.

• The suitable rubrics can be designed to evaluate each student’s performance and learning ability.

• The marks scored shall be scaled down to 20 marks (40% of the maximum marks).

The Sum of scaled-down marks scored in the report write-up/journal and marks of a test is the total CIE marks scored by

the student.

Semester End Evaluation (SEE):

• SEE marks for the practical course are 50 Marks.

• SEE shall be conducted jointly by the two examiners of the same institute, examiners are appointed by the

Head of the Institute.

• The examination schedule and names of examiners are informed to the university before the conduction of the

examination. These practical examinations are to be conducted within the schedule mentioned in the university's

academic calendar.

• All laboratory experiments are to be included for practical examination.

• (Rubrics) Breakup of marks and the instructions printed on the cover page of the answer script to be strictly adhered

to by the examiners. OR based on the course requirement evaluation rubrics shall be decided jointly by examiners.

• Students can pick one question (experiment) from the questions lot prepared by the examiners jointly.

• Evaluation of test write-up/ conduction procedure and result/viva will be conducted jointly by examiners. General

rubrics suggested for SEE are mentioned here, writeup-20%, Conduction procedure and result in -60%, Viva-voce 20%

of maximum marks. SEE for practical shall be evaluated for 100 marks and scored marks shall be scaled down to 50

marks (however, based on course type, rubrics shall be decided by the examiners)

Change of experiment is allowed only once and 15% of Marks allotted to the procedure part are to be made

zero.The minimum duration of SEE is 02 hours
Suggested Learning Resources:

• Vijay Madisetti, Arshdeep Bahga, Internet of Things. "A Hands-on Approach", University Press

• Dr. SRN Reddy, Rachit Thukral, and Manasi Mishra, "Introduction to Internet of Things: A Practical

Approach", ETI Labs
• Pethuru Raj and Anupama C Raman, "The Internet of Things: Enabling Technologies, Platforms, and

Use Cases", CRC Press

• Jeeva Jose, "Internet of Things", Khanna Publishing House, Delhi
• Adrian McEwen, "Designing the Internet of Things", Wiley

Raj Kamal, "Internet of Things: Architecture and Design", McGraw Hill

ATMECE, M
ys

uru

IoT LAB-BEC657C 2025-2026

 Dept of ECE, ATMECE, Mysuru

CYCLE OF EXPERIMENTS

Subject: Internet of Things Lab Subject Code: BECL657C

9. Write a program on Arduino/Raspberry Pi to publish temperature data to the MQTT broker.

10. Write a program to create a UDP server on Arduino/Raspberry Pi and respond with humidity data to the

UDP client when requested.

11. Write a program to create a TCP server on Arduino /Raspberry Pi and respond with humidity data to the

TCP client when requested.

12. Write a program on Arduino / Raspberry Pi to subscribe to the MQTT broker for temperature data and

print it.

CYCLE-I

1.(a) To interface LED/Buzzer with Arduino /Raspberry Pi and write a program to ‘turn ON’ LED for 1 sec
after every 2 seconds.

 1.(b) To interface the Push button/Digital sensor (IR/LDR) with Arduino /Raspberry Pi and write a
program to ‘turn ON’ LED when a push button is pressed or at sensor detection.

2.(a) To interface the DHT11 sensor with Arduino /Raspberry Pi and write a program to print temperature
and humidity readings.

2.(b) To interface OLED with Arduino /Raspberry Pi and write a program to print its temperature and
humidity readings.

3. To interface the motor using a relay with Arduino /Raspberry Pi and write a program to ‘turn ON’
the motor when a push button is pressed.

4.(a) Write an Arduino/Raspberry Pi program to interface the Soil Moisture Sensor.

4.(b) Write an Arduino/Raspberry Pi program to interface the LDR/Photo Sensor.

5. Write a program to interface an Ultrasonic Sensor with Arduino /Raspberry Pi.

Cycle-II

6. Write a program on Arduino/Raspberry Pi to upload temperature and humidity data to thing speak cloud.

7. Write a program on Arduino/Raspberry Pi to retrieve temperature and humidity data from thing

speak cloud

8. Write a program to interface LED using Telegram App.

ATMECE, M
ys

uru

IoT LAB-BEC657C 2025-2026

 Dept of ECE, ATMECE, Mysuru

Program

No. List of Programs

1.
To interface LED with Arduino /Raspberry Pi and write a program to ‘turn ON’ LED for 1

sec after every 2 seconds.

2.
To interface Buzzer with Arduino /Raspberry Pi and write a program to ‘turn ON’ Buzzer

for 1 sec after every 2 seconds.

3.
To interface the DHT11 sensor with Arduino /Raspberry Pi and write a program to

print temperature and humidity readings.

4.
To interface OLED with Arduino /Raspberry Pi and write a program to print its

temperature and humidity readings.

5.
To interface the motor using a relay with Arduino /Raspberry Pi and write a program to

‘turn ON’ the motor when a push button is pressed.

6. Write an Arduino/Raspberry Pi program to interface the Soil Moisture Sensor.

7. Write an Arduino/Raspberry Pi program to interface the LDR.

8. Write a program to interface an Ultrasonic Sensor with Arduino /Raspberry Pi.

9.
Write a program on Arduino/Raspberry Pi to upload temperature and humidity

data to thingspeak cloud.

10.
Write a program on Arduino/Raspberry Pi to retrieve temperature and humidity

data from thingspeak cloud.

11. Write a program to interface LED using Telegram App

12.
 Write a program on Arduino/Raspberry Pi to publish temperature data to the

 MQTT broker.

13.
Write a program to create a UDP client on Arduino/Raspberry Pi and respond with

humidity data to the UDP server when requested.

14.
Write a program to create a TCP client on Arduino /Raspberry Pi and respond with

humidity data to the TCP server when requested.

15.
Write a program on Arduino / Raspberry Pi to subscribe to the MQTT broker for

temperature data and print it

IOT LAB - QUESTION BANK – 2025-2026

ATMECE, M
ys

uru

IoT LAB-BEC657C 2025-2026

 Dept of ECE, ATMECE, Mysuru

Introduction to Internet of Things (IoT)

Introduction: IOT stands for “Internet of Things”. The IOT is a name for the vast collection of

“things” that are being networked together in the home and workplace (up to 20 billion by 2020

according to Gardner, a technology consulting firm).

Characteristics of the IOT

Networking

These IOT devices talk to one another (M2M communication) or to servers

located in the local network or on the Internet. Being on the network allows the

device the common ability to consume and produce data.

 Sensing IOT devices sense something about their environment.

 Actuators

Communications in IoT

IOT devices that do something. Lock doors, beep, turn lights on, or turn the TV on

ATMECE, M
ys

uru

IoT LAB-BEC657C 2025-2026

 Dept of ECE, ATMECE, Mysuru

Communications are important to IOT projects. In fact, communications are core to the whole genre.

There is a trade-off for IOT devices. The more complex the protocols and higher the data rates, the

more powerful processor needed and the more electrical power the IOT device will consume.

TCP/IP base communications (think web servers; HTTP-based commutation (like REST servers);

streams of data; UDP) provide the most flexibility and functionality at a cost of processor and electrical

power.

Low-power Bluetooth and Zigbee types of connections allow much lower power for connections with

the corresponding decrease in bandwidth and functionality. IOT projects can be all over the map

with requirements for communication flexibility and data bandwidth requirements.

Arduino in IoT

In IoT applications the Arduino is used to collect the data from the sensors/devices to send

it to the internet and receives data for purpose of control of actuators.

ATMECE, M
ys

uru

IoT LAB-BEC657C 2025-2026

 Dept of ECE, ATMECE, Mysuru

Arduino Uno

Introduction: The Arduino Uno is an open-source microcontroller board based on the

Microchip ATmega328P microcontroller and developed by Arduino.cc. The board is

equipped with sets of digital and analog input/output (I/O) pins that may be interfaced to

various expansion boards (shields) and other circuits. The board has 14 digital I/O pins (six

capable of PWM output), 6 analog I/O pins, and is programmable with the Arduino IDE

(Integrated Development Environment), via a type B USB cable. It can be powered by the

USB cable or by an external 9-volt battery, though it accepts voltages between 7 and 20 volts.

The word "uno" means "one" in Italian and was chosen to mark the initial release of Arduino

Software.

Features of the Arduino

1. Arduino boards are able to read analog or digital input signals from different sensors and

turn it into an output such as activating a motor, turning LED on/off, connect to the cloud

and many other actions.

ATMECE, M
ys

uru

IoT LAB-BEC657C 2025-2026

 Dept of ECE, ATMECE, Mysuru

2. The board functions can be controlled by sending a set of instructions to the

microcontroller on the board via Arduino IDE.

3. Arduino IDE uses a simplified version of C++, making it easier to learn to program.

4. Arduino provides a standard form factor that breaks the functions of the micro- controller

into a more accessible package.

Arduino IDE(Integrated Development Environment)

Introduction: The Arduino Software (IDE) is easy-to-use and is based on the Processing programming

environment. The Arduino Integrated Development Environment (IDE) is a cross-platform application

(for Windows, macOS, Linux) that is written in functions from C and C++. The open-source Arduino

Software (IDE) makes it easy to write code and upload it to the board. This software can be used with

any Arduino board.

The Arduino Software (IDE) – contains:

• A text editor for writing code

• A message area

• A text consoles

• A toolbar with buttons for common functions and a series of menus. It connects

to the Arduino hardware to upload programs and communicate with them.

ATMECE, M
ys

uru

IoT LAB-BEC657C 2025-2026

 Dept of ECE, ATMECE, Mysuru

Installation of Arduino Software (IDE)

Step1: Downloading

➢ To install the Arduino software, download this page: http://arduino.cc/en/Main/Software and

proceed with the installation by allowing the driver installation process.

ATMECE, M
ys

uru

IoT LAB-BEC657C 2025-2026
Step 2: Directory Installation

➢ Choose the installation directory.

Step 3: Extraction of Files

➢ The process will extract and install all the required files to execute properly the Arduino

Software (IDE)

Step 4: Connecting the board

➢ The USB connection with the PC is necessary to program the board and not just to power

it up. The Uno and Mega automatically draw power from either the USB or an external

power supply. Connect the board to the computer using the USB cable. The green power

LED (labelled PWR) should go on.

Step 5: Working on the new project

➢ Open the Arduino IDE software on your computer. Coding in the Arduino language will

control your circuit.

➢ Open a new sketch File by clicking on New.

 Dept of ECE, ATMECE, Mysuru

ATMECE, M
ys

uru

IoT LAB-BEC657C 2025-2026

 Dept of ECE, ATMECE, Mysuru

Step 6: Working on an existing project

➢ To open an existing project example, select File → Example → Basics → Blink.

Step 7: Select your Arduino board.

➢ To avoid any error while uploading your program to the board, you must select the correct

Arduino board name, which matches with the board connected to your computer.

ATMECE, M
ys

uru

IoT LAB-BEC657C 2025-2026

 Dept of ECE, ATMECE, Mysuru

➢ Go to Tools → Board and select your board.

Step 8: Select your serial port

➢ Select the serial device of the Arduino board.

➢ Go to Tools → Serial Port menu. This is likely to be COM3 or higher (COM1 and COM2 are

usually reserved for hardware serial ports).

➢ To find out, you can disconnect your Arduino board and re-open the menu, the entry that

disappears should be of the Arduino board. Reconnect the board and select that serial port.

ATMECE, M
ys

uru

IoT LAB-BEC657C 2025-2026

 Dept of ECE, ATMECE, Mysuru

Step 9: Upload the program to your board.

➢ Click the "Upload" button in the environment.

➢ Wait a few seconds; you will see the RX and TX LEDs on the board, flashing.

➢ If the upload is successful, the message "Done uploading" will appear in the status bar.

A Verify

B Upload

C New

D Open

E Save

F Serial Motor

ATMECE, M
ys

uru

Arduino Breadboard

Another very important item when working with Arduino is a solderless breadboard.

This device allows you to prototype your Arduino project without having to

permanently solder the circuit together. Using a breadboard allows you to create

temporary prototypes and experiment with different circuit designs. Inside the holes

(tie points) of the plastic housing, are metal clips which are connected to each other

by strips of conductive material.

On a side note, the breadboard is not powered on its own and needs power brought to it from

the Arduino board using jumper wires. These wires are also used to form the circuit by

connecting resistors, switches and other components together.

 Dept of ECE, ATMECE, Mysuru

IoT LAB-BEC657C 2025-2026

ATMECE, M
ys

uru

IoT LAB-BEC657C 2025-2026

 Dept of ECE, ATMECE, Mysuru 18

Here is a visual of what a completed Arduino circuit looks like when connected to a

breadboard.

How To Program Arduino

Once the circuit has been created on the breadboard, you‘ll need to upload the

program (known as a sketch) to the Arduino. Steps to execute program.

1. Install the Arduino IDE:

Download and install the Arduino IDE (Integrated Development Environment) from the

official Arduino website: Arduino Software.

2.Connect Arduino Uno to Your Computer:

Use a USB cable to connect your Arduino Uno to

your computer. 3.Open Arduino IDE:

Launch the Arduino IDE on your computer.

4. Select Board and Port:

Go to "Tools" and select the appropriate board model (e.g., Arduino Uno) from the

"Board" menu.

Also, select the correct port your Arduino Uno is connected to from

the "Port" menu. 5.Write or Open a Program:

Write your program in the Arduino IDE or open an existing one.

If you're new to Arduino, you might start with a simple example from the "File" ->

"Examples" menu.

6. Verify and Compile:

Click the "Verify" (checkmark) button to check for any syntax

errors in your code. If there are no errors, the code will be compiled.

ATMECE, M
ys

uru

IoT LAB-BEC657C 2025-2026

 Dept of ECE, ATMECE, Mysuru 19

7. Upload the Program:

Click the "Upload" (right arrow) button to upload the compiled code to your

Arduino Uno. 8.Monitor Serial Output (Optional):

If your program uses Serial communication, you can open the Serial Monitor by clicking

"Tools"

-> "Serial Monitor."

9. Power Your Arduino Uno (if disconnected):

If your Arduino Uno is not externally powered and you've disconnected it during

the programming process, ensure it has a power source before expecting your

program to run.

10. Observe Results:

Once the upload is complete, your Arduino Uno will run the program. Observe the

results, which might include LEDs blinking, motors moving, or any other actions

based on your code.

11.Troubleshooting:

If you encounter any issues, check the error messages in the Arduino IDE.

Common issues include incorrect board selection, port selection, or syntax errors in

the code.

ATMECE, M
ys

uru

IoT LAB-BEC657C 2025-2026

 Dept of ECE, ATMECE, Mysuru 20

Aim:

 1a. To interface LED/Buzzer with Arduino /Raspberry Pi and write a program to ‘turn ON’
LED for 1 sec after every 2 seconds.

Hardware Required:

Sl No Components Quantity

1. AURDUINO UNO 1

2. LED or Buzzer 1

3. USB cable for AURDUINO

UNO

1

4. Connecting wires --

5. Bread Board 1

Theory:

LED Stands for Light Emitting Diode is a semiconductor device that emits light when an

electric current passes through it. LEDs are widely used for various applications due to their

energy efficiency, long lifespan, and versatility. Here are some key points about LEDs. Basic

Operation: LEDs work on the principle of electroluminescence. When electrons and holes

(positive counterparts of electrons) recombine within the semiconductor material, they release

energy in the form of photons, which produces light. Pin Connection Arduino UNO LED GND

Cathode D13 Anode Item Mi n Max Unit Forward Current 20 30 mA Forward Voltage 1.8 2.2

V

Code:

void setup()

{

// initialize digital pin LED_BUILTIN as an output.

pinMode(13, OUTPUT);

}

// the loop function runs over and over again forever

void loop()

{

digitalWrite(13, HIGH);//turn the LED on

delay(1000); // wait for a second (1 sec = 1000ms)

digitalWrite(LED_BUILTIN, LOW); // turn the LED off by making the voltage LOW

delay(2000); // wait for a second (2 sec = 2000ms)

}

Item Min Max Unit

Forward Current 20 30 mA

Forward Voltage 1.8 2.2 V

ATMECE, M
ys

uru

IoT LAB-BEC657C 2025-2026

 Dept of ECE, ATMECE, Mysuru 21

Circuit Diagram:

Procedure:

1. Connect the Arduino Uno:

• Connect the Arduino Uno to your computer using a USB cable (USB A to USB B).

• The green power LED (PWR) on the Arduino Uno should light up.

• Connect the LED to pin 13 and ground

2. Open the Arduino IDE:

• Launch the Arduino IDE application on your computer.

3. Configure the Board and Port:

• Go to Tools > Board.

• Select "Arduino Uno" (or the specific board version you have).

• Go to Tools > Port.

• Select the COM port associated with your Arduino Uno (e.g., COM3).

4. Load and Upload a Sketch:

• Open a sketch (program) in the Arduino IDE

• Click the "Upload" button (or press Ctrl + U).

• The IDE will compile the code and upload it to the Arduino Uno.

• Observ the RX and TX LEDs on the Arduino Uno flashing during the upload process.

RESULT: LED is successfully turned on for 2 seconds using Arduino microcontroller Board.

Pin Connection

Arduino UNO LED

GND Cathode

D13 Anode

ATMECE, M
ys

uru

IoT LAB-BEC657C 2025-2026

 Dept of ECE, ATMECE, Mysuru 22

1b. To interface the Push button/Digital sensor (IR/LDR) with Arduino /Raspberry Pi and
write a program to ‘turn ON’ LED when a push button is pressed or at sensor detection.

Introduction:

Push-button is a very simple mechanism which is used to control electronic signal either by

blocking it or allowing it to pass. This happens when mechanical pressure is applied to

connect two points of the switch together. Push buttons or switches connect two points in a

circuit when pressed. When the push-button is released, there is no connection between the

two legs of the push-button. Here it turns on the built-in LED on pin 11 when the button is

pressed. The LED stays ON as long as the button is being pressed.

Push Button

Specifications:

Size 6 x 6 x 5mm

Temperature -30 ~ +70 Centigrade

Hardware Required:

Sl No Components Quantity

1. AURDUINO UNO 1

2. LED or Buzzer 1

3. USB cable for AURDUINO

UNO

1

4. Connecting wires --

5. Bread Board 1

ATMECE, M
ys

uru

IoT LAB-BEC657C 2025-2026

 Dept of ECE, ATMECE, Mysuru 23

Circuit Diagram:

Code:

// Define constants for pin numbers

const int pushPin = 2;// Pin number for the push button

const int ledPin = 13;// Pin number for the LED

// Variable to hold the state of the button

int buttonState = 0;// Initial state of the button (LOW)

// The setup function runs once when you press reset or power the board

void setup() {

 pinMode(ledPin, OUTPUT);// Set the LED pin as an output

 pinMode(pushPin, INPUT);// Set the push button pin as an input

}

// The loop function runs over and over again forever

void loop() {

 // Read the state of the push button

buttonState = digitalRead(pushPin);

 // Check if the button is pressed (HIGH)

 if (buttonState == HIGH) {

 digitalWrite(ledPin, HIGH);// Turn on the LED

 }

 else {

 digitalWrite(ledPin, LOW);// Turn off the LED

 }

}

Steps of working
1. Connect the Arduino Uno:

Insert the push button into your breadboard and connect it to the digital pin

7(D7) which act as INPUT.

Insert the LED into the breadboard. Attach the positive leg (the longer leg) to

ATMECE, M
ys

uru

IoT LAB-BEC657C 2025-2026

 Dept of ECE, ATMECE, Mysuru 24

digital pin 11 of the Arduino Uno, and the negative leg via the 220-ohm resistor

to GND. The pin D11 is taken as OUTPUT.

The 10kΩ resistor used as PULL-UP resistor and 220 Ω resistors is used to limit

the current through the LED.

2. Open the Arduino IDE:

Launch the Arduino IDE application on your computer.

3. Configure the Board and Port:

a. Go to Tools > Board.

b. Select "Arduino Uno" (or the specific board version you have).

c. Go to Tools > Port.

d. Select the COM port associated with your Arduino Uno (e.g., COM3).

4. Load and Upload a Sketch:

a. Open a sketch (program) in the Arduino IDE

b. Click the "Upload" button (or press Ctrl + U).

c. The IDE will compile the code and upload it to the Arduino Uno.

5. The initial state of the button is set to OFF.

6. After that the run a loop that continually reads the state from the pushbutton and sends that

value as voltage to the LED. The LED will be ON accordingly.

ATMECE, M
ys

uru

IoT LAB-BEC657C 2025-2026

 Dept of ECE, ATMECE, Mysuru 25

2(a)To interface the DHT11 sensor with Arduino /Raspberry Pi and write a program to
print temperature and humidity readings.

Component Required:

Sl No Components Quantity

1 ARDUINO UNO 1

2 DHT11 Temperature sensor 1

3 USB cable A to B 1

4 Connecting wires --

Theory

The DHT11 sensor is a low-cost digital temperature and humidity sensor. It

operates ata voltage of 3.3V to 5V and can measure

temperatures rangingfrom 0°C to 50°C with an accuracy

of ±2°C. Additionally, it can measure relative humidity

ranging from 20% to 90% with an accuracy of ±5% .

The humidity sensing capacitor has two electrodes with

a moisture holding substrate as a dielectric between

them. Change in the capacitance value occurs with the

change in humidity levels. The IC measure, process this

changed resistance values and change them into digital

form. For measuring temperature this sensor uses a

Negative Temperature coefficient thermistor, which

causes a decrease in its resistance value with increase in

temperature.

DHT11 Specifications

• Operating Voltage: 3.5V to 5.5V

• Operating current: 0.3mA (measuring) 60uA (standby)

• Output: Serial data

• Temperature Range: 0°C to 50°C

• Humidity Range: 20% to 90%

• Resolution: Temperature and Humidity both are 16-bit

• Accuracy: ±1°C and ±1%

Libraries are a collection of code that makes it easy for you to connect to a sensor,

display, module, etc. There are thousands of libraries available for download directly

through the Arduino IDE, and you can find all of them listed at the Arduino Library

ATMECE, M
ys

uru

IoT LAB-BEC657C 2025-2026

 Dept of ECE, ATMECE, Mysuru 26

Reference.

Steps to Add DHT11 Sensor Library
1) Open your Arduino IDE and go to Sketch > Include Library >

Manage Libraries. The Library Manager should open.
2) Search DHT then find the DHT Sensor library by Adafruit
3) Click install button to install library
4) If ask click on install all button to install library dependencies

Program

//Libraries

#include <DHT.h>

//Constants

#define DHTPIN 2 // what pin we're connected to

#define DHTTYPE DHT11 // DHT 11 (AM2302)

// Initialize DHT sensor for normal 16mhz Arduino

DHT dht(DHTPIN, DHTTYPE);

//Variables

int led=13;

int chk;

float hum; //Stores humidity value

float temp; //Stores temperature value

void setup()

{

ARDUINO

UNO

DHT11

GND GND

5v VCC

D2 DATA

ATMECE, M
ys

uru

IoT LAB-BEC657C 2025-2026

 Dept of ECE, ATMECE, Mysuru 27

 Serial.begin(9600);

 dht.begin();

 pinMode(led, OUTPUT);

}

void loop()

{

 //Read data and store it to variables hum and temp

 hum = dht.readHumidity();

 temp= dht.readTemperature();

 //Print temp and humidity values to serial monitor

 Serial.print("Humidity: ");

 Serial.print(hum);

 Serial.print(" %, Temp: ");

 Serial.print(temp);

 Serial.println(" Celsius");

 digitalWrite(led, LOW);

 if (temp>2)

 {

 digitalWrite(led, HIGH);

 Serial.print("");

 Serial.print(" HOT CLIMATE");

 }

 delay(2000); //Delay 2 sec.

}

2 (b) To interface OLED with Arduino /Raspberry Pi and write a program to print its
temperature and humidity readings.

Component Required:

Sl No Components Quanti

ty

1. AURDUINO UNO 1

2. LED or Buzzer 1

3. USB cable for AURDUINO

UNO

1

4. DHT11 Sensor 1

5. OLED 1

6. Connecting wires --

7. Bread Board 1

8. AURDUINO UNO 1

ATMECE, M
ys

uru

IoT LAB-BEC657C 2025-2026

 Dept of ECE, ATMECE, Mysuru 28

Theory

The SSD1306 OLED I2C 128X64 OLED Display module is a small

monochrome rganic light- emitting diode (OLED) display that is controlled through an

I2C interface. It has a display resolution of 128×64 pixels, and the SSD1306 is the

controller chip that manages the

display. It‘s commonly used for

display purposes in various

electronics projects and is compact

low power, and easily readable in

low light conditions.

To control the OLED display libraries. Follow the next instructions to install those

libraries.

1. Open Arduino IDE & navigate to the Sketch > Include Library > Manage

Libraries

Search by typing ‗SD1306‘.

2. Look and Search for ESP8266 and ESP32 OLED driver for

SSD1306 displays. Click on that entry, and then select Install.

3.After successfully installing the library Add library to

program by typing: #include "SSD1306Wire.h‖ and #include

<Wire.h>

Specification of OLED

Size 0.96 inch

Terminals 4

Pixels or Resolution 128×64

Communication I2C only

VCC 3.3V-5V

Operating Temperature -40℃ to +80℃

ATMECE, M
ys

uru

IoT LAB-BEC657C 2025-2026

 Dept of ECE, ATMECE, Mysuru 29

#include <Wire.h> // Include the Wire library for I2C communication

#include <Adafruit_GFX.h> // Include the Adafruit Graphics library for display functions

#include <Adafruit_SSD1306.h> // Include the Adafruit SSD1306 library for OLED display control

#include "DHT.h" // Include the DHT library for temperature and humidity sensor

#define DHTPIN 6 // Define the pin where the DHT sensor is connected

#define DHTTYPE DHT22 // Define the type of DHT sensor being used (DHT22)

#define OLED_RESET -1 // Define OLED reset pin (-1 indicates no reset pin)

#define SCREEN_ADDRESS 0x3C // Define the I2C address for the OLED display

#define SCREEN_WIDTH 128 // Define the width of the OLED display in pixels

#define SCREEN_HEIGHT 64 // Define the height of the OLED display in pixels

// Create an instance of the SSD1306 display with specified width, height, and I2C connection

Adafruit_SSD1306 oled(SCREEN_WIDTH, SCREEN_HEIGHT, &Wire, OLED_RESET);

// Create an instance of the DHT sensor with specified pin and type

DHT dht(DHTPIN, DHTTYPE);

void setup() {

 dht.begin(); // Initialize the DHT sensor

oled.begin(SSD1306_EXTERNALVCC, SCREEN_ADDRESS); // Initialize the OLED display with

external VCC

delay(2000); // Wait for 2 seconds to allow setup to complete

 oled.clearDisplay(); // Clear any previous display content

 oled.setTextSize(1); // Set text size for display

oled.setTextColor(WHITE); // Set text color to white

 oled.setCursor(10, 20); // Set cursor position on display

 oled.println("TEMP and HUMIDITY"); // Display title

 oled.setCursor(10, 30); // Move cursor down for subtitle

 oled.println("MONITORING DEVICE"); // Display subtitle

oled.display(); // Update the display to show current content

 delay(2000); // Wait for another 2 seconds before entering loop

}

void loop() {

 float temperature = dht.readTemperature(); // Read temperature from DHT sensor

 float humidity = dht.readHumidity(); // Read humidity from DHT sensor

 oled.clearDisplay(); // Clear previous readings from display

 oled.setTextSize(1.8); // Set larger text size for readings

 oled.setTextColor(WHITE); // Set text color to white again

 oled.setCursor(0, 0); // Reset cursor position to top left of display

 oled.print("Temperature = "); // Print temperature label

 oled.println(temperature); // Print temperature value

 oled.print("Humidity = "); // Print humidity label

 oled.println(humidity); // Print humidity value

 oled.display(); // Update the display with new readings

 delay(2000); // Wait for 2 seconds before next loop iteration}

ATMECE, M
ys

uru

IoT LAB-BEC657C 2025-2026

 Dept of ECE, ATMECE, Mysuru 30

3. To interface the motor using a relay with Arduino /Raspberry Pi and write a program to
‘turn ON’ the motor when a push button is pressed.

Sl No Components Quantity

1 AURDUINO UNO 1

2 Relay 2 Channel 1

3 USB cable for NODE MCU 1

4 Connecting wires --

5 Push Button 1

6 Power Supply 1

7 DC motor 1

Theory:

Servo motors are high torque motors which are commonly used in robotics and several other

applications due to the fact that it’s easy to control their rotation. Servo motors have a geared

output shaft which can be electrically controlled to turn one (1) degree at a time. For the sake of

control, unlike normal DC motors, servo motors usually have an additional pin besides the two

power pins (Vcc and GND) which is the signal pin. The signal pin is used to control the servo

motor, turning its shaft to any desired angle.

ATMECE, M
ys

uru

IoT LAB-BEC657C 2025-2026

 Dept of ECE, ATMECE, Mysuru 31

Program

// Include the Servo library for servo motor control

#include <Servo.h>

// Define the pin for the button input

int buttonpin = 7;

// Store the last state of the button (HIGH or LOW)

int last_state = HIGH;

// Define the pin for the relay output

int relaypin = 8;

// Create a Servo object

Servo myservo;

// Initialize the servo position variable

int pos = 0;

void setup() {

 // Initialize serial communication at a baud rate of 115200

 Serial.begin(115200);

// Set the button pin as an input with internal pull-up resistor

 pinMode(buttonpin, INPUT_PULLUP);

 // Set the relay pin as an output

 pinMode(relaypin, OUTPUT);

 // Attach the servo to pin 9

 myservo.attach(9);

}

void loop() {

 // Read the current state of the button

 int value = digitalRead(buttonpin);

 // Check if the button state has changed

 if (last_state != value) {

 // Update the last state

 last_state = value;

 // If the button is released (HIGH state due to pull-up resistor)

 if (value == HIGH) {

 // Turn off the relay

 digitalWrite(relaypin, LOW);

 Serial.println("released");

ATMECE, M
ys

uru

IoT LAB-BEC657C 2025-2026

 Dept of ECE, ATMECE, Mysuru 32

 // Move the servo from 0 to 180 degrees

 for (pos = 0; pos <= 180; pos += 1) {

 // Set the servo position

 myservo.write(pos);

 // Wait for 15 milliseconds before moving to the next position

 delay(15);

 }

 } else {

 // If the button is pressed (LOW state)

 // Turn on the relay

 digitalWrite(relaypin, HIGH);

 Serial.println("pressed");

 }

 }

}

4 (a) Write an Arduino/Raspberry Pi program to interface the Soil Moisture Sensor.

Overview of Soil Moisture

Soil Moisture Sensor

ATMECE, M
ys

uru

IoT LAB-BEC657C 2025-2026

 Dept of ECE, ATMECE, Mysuru 33

 Soil moisture is basically the content of water present in the soil. This can be measured using

a soil moisture sensor which consists of two conducting probes that act as a probe. It can

measure the moisture content in the soil based on the change in resistance between the two

conducting plates.

The resistance between the two conducting plates varies in an inverse manner with the amount

of moisture present in the soil.

Interfacing Soil Moisture Sensor With Arduino UNO

Measure soil moisture using Arduino Uno

Here, the analog output of soil moisture sensor is processed using ADC. The moisture content

in terms of percentage is displayed on the serial monitor.

TM
CE, M

ys
uru

IoT LAB-BEC657C 2025-2026

 Dept of ECE, ATMECE, Mysuru 34

The output of the soil moisture sensor changes in the range of ADC value from 0 to 1023.

This can be represented as moisture value in terms of percentage using formula given below.

Moisture in percentage = 100 – (Analog output * 100)

For zero moisture, we get maximum value of 10-bit ADC, i.e. 1023. This, in turn, gives 0%

moisture.

{

 "name": "soil moisture sensor",

 "

void setup()

{

 // Set the serial monitor baudrate to 9600

 Serial.begin(9600);

}

void loop()

{

 // Variable to store ADC value (0 to 1023)

 int level;

 // analogRead function returns the integer 10 bit integer (0 to 1023)

 level = analogRead(0);

 // Print text in serial monitor

 Serial.println("Analog value:");

 // Print analog value in serial monitor

 Serial.println(level);

}

4 (b) Write an Arduino/Raspberry Pi program to interface the LDR/Photo Sensor.

LDR SENSOR is a light-dependent resistor, its resistance changes according to changes in light

intensity. A light-dependent resister is also known as LDR SENSOR, which is used to detect

TM
CE, M

ys
uru

IoT LAB-BEC657C 2025-2026

 Dept of ECE, ATMECE, Mysuru 35

the intensity of light. In this blog we will discuss what LDR SENSOR is and how it can be used

with the Arduino Development Board.

stud lights are LED that are mounted on the road and used as indicators. These indicators only

turn on during the night and are off during the day And the reason behind this was LDR

SENSOR.

Those stud lights have LDR SENSOR, battery, controller unit and solar panel inbuilt. In the

daytime, when there will be sufficient sunlight, the controller unit receives input from the LDR

sensor and according to the received input the control unit either charges the battery or turns

on the light.

Component Required:

Sl No Components Quantity

1 Arduino Uno 1

2 Bluetooth Module HC-05 1

3 USB cable A to B 1

4 Connecting wires --

5 LED 1

6 Smart Phone with Arduino Bluetooth Controller app 1

When light falls on this material the resistance of the material changes and hence

conductivity. This was the original operation of LDR SENSOR

Connections

the LDR sensor is only a resistor and can be directly connected to any GPIO pin. So for this

application we are connecting this LDR SENSOR to A0 pin of Arduino and connecting the

second pin of LDR SENSOR to the 5v pin of Arduino.

A

The LDR SENSOR is made of photosensitive material. The zig-zag lines you see on the

LDR Working Principle

LDR SENSOR is nothing but a light-dependent resistor, its resistance changes according to

changes in light intensity.

sensor are nothing but a photosensitive material.

LDR interfacing With Arduino

TM
CE, M

ys
uru

IoT LAB-BEC657C 2025-2026

 Dept of ECE, ATMECE, Mysuru 36

// Define constants for the LED pin and LDR pin

const int ledPin = 12; // Pin for the LED

const int ldrPin = A0; // Pin for the Light Dependent Resistor (LDR)

// Define the threshold value for determining brightness

int threshold = 600; // Value below which it is considered dark

void setup() {

 // Initialize serial communication at a baud rate of 9600

 Serial.begin(9600);

 // Set the LED pin as an output

 pinMode(ledPin, OUTPUT);

 // Set the LDR pin as an input

 pinMode(ldrPin, INPUT);

}

void loop() {

 // Read the analog value from the LDR

 int ldrStatus = analogRead(ldrPin);

 // Check if it's dark based on the threshold value

if (ldrStatus <= threshold) {

 // Turn on the LED

 digitalWrite(ledPin, HIGH);

 // Print a message indicating it's dark and the LED is on

 Serial.print("It's dark, turn on LED: ");

 Serial.println(ldrStatus);

 } else {

 // Turn off the LED

 digitalWrite(ledPin, LOW);

 // Print a message indicating it's bright and the LED is off

 Serial.print("It's bright, turn off LED: ");

 Serial.println(ldrStatus);

 }

}

5. Write a program to interface an Ultrasonic Sensor with Arduino /Raspberry Pi.

Working of HC-SR04

The HC-SR04 emits ultrasonic waves at 40,000 Hz. In order to make it emit waves, we need

to give a 10 microseconds HIGH pulse at the Trigger pin. The module responds by emitting a

sonic burst of 8 pulses. This 8-pulse pattern helps differentiate the pulses emitted by the module

from the ambient noise. As soon as the pulses are transmitted, the ECHO pin goes HIGH, and

TMECE, M
ys

uru

IoT LAB-BEC657C 2025-2026

 Dept of ECE, ATMECE, Mysuru 37

stays HIGH till all the reflected pulses are received. The module times out after 38ms, if all the

reflected pulses are not received in this duration.

The timing diagram explains the behavior of the module −

The time for which the Echo pin remains HIGH can help determine the distance of the sensor

from the reflecting surface. The speed of sound in air is 340 m/s, or 0.034 cm/ microsecond. If

the ECHO pin stays HIGH for, say 100 microseconds, then the distance travelled by the waves

is: 100*0.034 = 3.4cm. Therefore, the distance from the surface is 3.4/2 = 1.7 cm (since the

waves reflect back from the surface and cover the same distance again)

// Define pins for the ultrasonic sensor

#define ECHO_PIN 2 // Pin connected to the echo output of the sensor

#define TRIG_PIN 3 // Pin connected to the trigger input of the sensor

TMECE, M
ys

uru

IoT LAB-BEC657C 2025-2026

 Dept of ECE, ATMECE, Mysuru 38

void setup() {

 // Initialize serial communication at a baud rate of 115200

 Serial.begin(115200);

 // Set the built-in LED pin as an output

 pinMode(LED_BUILTIN, OUTPUT);

 // Set the trigger pin as an output and the echo pin as an input

 pinMode(TRIG_PIN, OUTPUT);

 pinMode(ECHO_PIN, INPUT);

}

// Function to read the distance in centimeters using the ultrasonic sensor

float readDistanceCM() {

 // Set the trigger pin low for a short duration to ensure a clean start

 digitalWrite(TRIG_PIN, LOW);

 delayMicroseconds(2);

// Send a 10 microsecond pulse to the trigger pin to initiate measurement

 digitalWrite(TRIG_PIN, HIGH);

 delayMicroseconds(10);

 digitalWrite(TRIG_PIN, LOW);

 // Measure the time it takes for the echo signal to return

 int duration = pulseIn(ECHO_PIN, HIGH);

 // Calculate the distance using the speed of sound (approximately 0.034 cm/us)

 return duration * 0.034 / 2; // Divide by 2 because the sound travels to the object and back

}

void loop() {

 // Read the current distance from the sensor

 float distance = readDistanceCM();

 // Determine if an object is nearby (within 100 cm)

 bool isNearby = distance < 100;

 // Turn the LED on if an object is nearby, otherwise turn it off

 digitalWrite(LED_BUILTIN, isNearby);

 // Print the measured distance to the serial console

 Serial.print("Measured distance: ");

 Serial.println(readDistanceCM()); // Note: This reads the distance again, consider storing the first reading

 // Wait for 100 milliseconds

TMECE, M
ys

uru

IoT LAB-BEC657C 2025-2026

 Dept of ECE, ATMECE, Mysuru 39

Introduction to Node MCU ESP8266 module

The NodeMCU (Node Micro-Controller Unit) is an open-source software and hardware

development environment built around an inexpensive System-on-a-Chip (SoC) called the

ESP8266. The ESP8266, designed and manufactured by Espressif Systems, contains the

crucial elements of a computer: CPU, RAM, networking (WiFi), and even a modern operating

system and SDK. That makes it an excellent choice for Internet of Things (IoT) projects of

all kinds.

NodeMCU ESP8266 Specifications & Features and Pin out

• Microcontroller: Tensilica 32-bit RISC CPU Xtensa LX106

• Operating Voltage: 3.3V

• Input Voltage: 7-12V

• Digital I/O Pins (DIO): 16

• Analog Input Pins (ADC): 1

• UARTs: 1

• SPIs: 1

• I2Cs: 1

• Flash Memory: 4 MB

• SRAM: 64 KB

• Clock Speed: 80 MHz

• USB-TTL based on CP2102 is included onboard, Enabling Plug n Play

• PCB Antenna

• Small Sized module to fit smartly inside your IoT projects

Steps to install Node MCU

1. Download and install Arduino IDE

2. Open the IDE and follow this path. File -> preferences -> Additional board manager URL.

3. Now paste the URL in the dialog box :

PIN CODE

A0 A0

GPIO 16 D0

GPIO 5 D1

GPIO 4 D2

GPIO 0 D3

GPIO 2 D4

GPIO14 D5

GPIO 12 D6

GPIO 13 D7

GPIO 15 D8

GPIO 9 SD2

GPIO10 SD3

GPIO3 Rx

GPIO1 Tx

TM
CE, M

ys
uru

IoT LAB-BEC657C 2025-2026

 Dept of ECE, ATMECE, Mysuru 40

http://arduino.esp8266.com/stable/package_esp8266com_index.json

4. Then, click the “OK” button.

5. Now follow this path. Tools -> Board -> Boards Manager

6. Search for ESP8266 and install the “ESP8266 by ESP8266 Community“

7. After this, restart your Arduino IDE.

8. Then, go to Tools > Board and check that you have ESP8266 boards available.

First, make sure you have an ESP8266 selected in Tools > Board. If you’re using the ESP8266-12E

NodeMCU Kit as shown in previous pictures, select the NodeMCU 1.0 (ESP-12E Module) option.

6 Write a program on Arduino/Raspberry Pi to upload temperature and humidity
data to thingspeak cloud.

Theory:

ThingSpeak is an open-source Internet of Things (IoT) application and API that allows users

to collect and store sensor data in the cloud and perform analytics on that data. It allows

users to create “channels” to collect data from multiple sensors, and also has built-in support

for visualizing and analyzing the data. ThingSpeak can be used for a variety of applications,

such as monitoring environmental conditions, tracking the location of assets, and controlling

devices remotely. It is available for free and also has paid subscription plans for additional

features and support. The device that sends the data must be configured with the correct

channel information, such as the channel ID and write API key.

➢ ThingSpeak is a platform providing various services exclusively targeted for building

IoT applications.

➢ It offers the capabilities of real-time data collection, visualizing the collected data

in the form of charts, ability to create plugins and apps for collaborating with web

services, social network and other APIs.

The core element of ThingSpeak is a ‘ThingSpeak Channel’.

A channel stores the data that we send to ThingSpeak and comprises of the below elements:

Pin Connection details

NODE MCU DHT11

GND GND

3V3 VCC

D5/D4 DATA

TM
CE, M

ys
uru

IoT LAB-BEC657C 2025-2026

 Dept of ECE, ATMECE, Mysuru 41

8 fields for storing data of any type - These can be used to store the data from a sensor or

from an embedded device.

3 location fields - Can be used to store the latitude, longitude and the elevation. These

are very useful for tracking a moving device.

1 status field - A short message to describe the data stored in the channel.

❖ To use ThingSpeak, we need to sign up and create a channel.

❖ Once we have a channel, we can send the data, allow ThingSpeak to process it and

also retrieve the same.

Creating a ThingSpeak Channel

Step 1: Open https://thingspeak.com/ and click on the ‘Get Started Now’ button on the

center of the page and you will be redirected to the sign-up page(you will reach the same

page when you click the ‘Sign Up’ button on the extreme right).

Fill out the required details and click on the ‘Create Account’ button

Now you should see a page with a confirmation that the account was successfully

created. The confirmation message disappears after a few seconds and the final page should

look as in the below screen:

TM
CE, M

ys
uru

IoT LAB-BEC657C 2025-2026

 Dept of ECE, ATMECE, Mysuru 42

Step 2: Go ahead and click on ‘New Channel’. You should see a page like the below:

Change the name to fit your need

Add a description corresponding to the channel

Fields 1 to 8 - These are the

fields which correspond to the

data sent by a sensor or a

‘thing’. A field has to be added

before it can be used to store

data. By default, Field 1 is

added.Once you have edited

the fields, click on ‘Save

Channel’ button.

TM
CE, M

ys
uru

IoT LAB-BEC657C 2025-2026

 Dept of ECE, ATMECE, Mysuru 43

Latitude, longitude and elevation:

These fields correspond to the location of a ‘thing’ and are especially significant for moving
things.

Make Public?

- If the channel is made public, anyone can view the channel's data feed and the

corresponding charts. If this check box is not checked, the channel is private, which means

for every read or write operation, the user has to pass a corresponding API key.

URL :

This can be the URL of your blog or website and if specified, will appear on the public view
of the channel

Video ID:

This is the ID corresponding to your YouTube or Vimeo ID. If specified, the video appears

on the public view of the channel.

Step 3: ‘Private View’ tab is defaulted:

The Private View shows a chart corresponding to each of the fields that we have added.

Now click on the ‘Public View’ tab. This should look exactly similar to the what we see

in the ‘Private View’ tab since our channel is public.

Step 4: click on the ‘API Keys’ tab

TM
CE, M

ys
uru

IoT LAB-BEC657C 2025-2026

 Dept of ECE, ATMECE, Mysuru 44

The write API key is used for sending data to the channel

The read API key(s) is used to read the channel data

Share the Read API keys with people who are approved and authorized to view your

channel.

Step 5: Installing the ThingSpeak

Library

To send or receive sensor readings to ThingSpeak, we’ll use the ThingSpeak Arduino

library. Go to Sketch > Include Library > Manage Libraries… and search for "ThingSpeak
in Library Manager. Install the ThingSpeak library by MathWorks

“

// Include the ESP8266 WiFi library

#include <ESP8266WiFi.h>

// Include the ThingSpeak library for sending data to the ThingSpeak server

TM
CE, M

ys
uru

IoT LAB-BEC657C 2025-2026

 Dept of ECE, ATMECE, Mysuru 45

#include <ThingSpeak.h>

//Include the DHT sensor library

#include <DHT.h>

// Define the GPIO pin connected to the DHT11 sensor

#define DHTPIN 4

// Define the type of DHT sensor being used

#define DHTTYPE DHT11

// Create a DHT object named 'dht'

DHT dht(DHTPIN, DHTTYPE);

// Variables to hold sensor readings

int chk;

float hum; // Humidity

float temp; // Temperature

// WiFi client used by ThingSpeak

WiFiClient client;

// Your ThingSpeak channel number and API key

long myChannelNumber = 2887065;

const char myWriteAPIKey[] = "7GVIQLJ2TG2UARNI";

void setup() {

 // Start the serial communication

 Serial.begin(9600);

 // Connect to WiFi with SSID, password, and channel number

WiFi.begin("TECMCA", "tec&2020mca", 6);

 // Wait until WiFi is connected

 while(WiFi.status() != WL_CONNECTED)

 {

 delay(200);

 Serial.print(".."); // Indicate ongoing connection attempt

 }

 // Once connected, print the IP address

 Serial.println();

 Serial.println("Esp32 is connected!");

 Serial.println(WiFi.localIP());

 // Initialize the DHT sensor

dht.begin();

 // Initialize ThingSpeak with the WiFi client

 ThingSpeak.begin(client);

TM
CE, M

ys
uru

IoT LAB-BEC657C 2025-2026

 Dept of ECE, ATMECE, Mysuru 46

}

void loop() {

 // Read humidity and temperature values from the DHT sensor

 hum = dht.readHumidity();

 temp = dht.readTemperature();

 // Print the temperature and humidity to the Serial Monitor

 Serial.println("Temperature: " + (String) temp);

 Serial.println("Humidity: " + (String) hum);

 // Write the temperature value to field 1 of the ThingSpeak channel

 ThingSpeak.writeField(myChannelNumber, 1, temp, myWriteAPIKey);

 // Write the humidity value to field 2 of the ThingSpeak channel

 ThingSpeak.writeField(myChannelNumber, 2, hum, myWriteAPIKey);

 // Wait for 2 seconds before sending the next set of data

 delay(2000);

}

7 Write a program on Arduino/Raspberry Pi to retrieve temperature and humidity
data from thingspeak cloud

Theory:

To read values from Thingspeak we need to upload some data in real time, to do this, first upload temperature and humidity data to

Thingspeak using previous experiment using NodeMCU 8266

Channel Settings for reading data

1. Go to your Thingspeak account and do the following setting to receive temperature and humidity data.

2. Go to channel setting put ‘tick’ mark for both filed 1 and filed 2 and scroll down to bottom and save it.

3. You need your channel ID to read the fields on your channel you wish to read so that copy your

channel id and paste in the code
4. You need your Read API key from your channel and copy Read API key.

5. Use this Read API key in our code.

Write following program and upload in the Node MCU82666

After successful upload Open the serial monitor; you will be able to see the values read from your channel.

TM
CE, M

ys
uru

IoT LAB-BEC657C 2025-2026

 Dept of ECE, ATMECE, Mysuru 47

#include <ThingSpeak.h> // Library to interact with ThingSpeak

#include <ESP8266WiFi.h> // Library to connect ESP8266 to WiFi

// WiFi credentials

const char* ssid = "TECMCA"; // WiFi SSID

const char* password = "tec&2020mca"; // WiFi Password

// ThingSpeak channel details

unsigned long CHANNEL_ID = 2887065; // Channel ID for ThingSpeak

const char* READ_API_KEY = "N1H6LJ392OT31I1V"; // API Key for reading data

// Fields in ThingSpeak channel

const int Field1 = 1; // Field 1 for Temperature

const int Field2 = 2; // Field 2 for Humidity

WiFiClient client; // Create WiFi client object

void setup()

{

Serial.begin(9600); // Start Serial communication at 9600 baud rate

WiFi.begin(ssid, password); // Connect to WiFi network

 WiFi.mode(WIFI_STA); // Set WiFi mode to Station (client mode)

ThingSpeak.begin(client); // Initialize ThingSpeak with WiFi client

 // Wait for WiFi to connect

 while (WiFi.status() != WL_CONNECTED) {

 delay(500);

Serial.println("Wifi connecting ");

 }

 Serial.println("Wifi connected successfully ");

}

void loop() {

 // --------- Reading Field 1 (Temperature) ---------

 long temp = ThingSpeak.readLongField(CHANNEL_ID, Field1, READ_API_KEY); // Read temperature

value from Field 1

 int statusCode = ThingSpeak.getLastReadStatus(); // Get status of last read operation

 if (statusCode == 200) {

 Serial.print("Temperature: ");

 Serial.println(temp); // Print temperature if read was successful

 } else {

 Serial.println("Unable to read channel / No internet connection"); // Error message

 }

TM
CE, M

ys
uru

IoT LAB-BEC657C 2025-2026

 Dept of ECE, ATMECE, Mysuru 48

 delay(100); // Short delay

 // --------- Reading Field 2 (Humidity) ---------

 long humidity = ThingSpeak.readLongField(CHANNEL_ID, Field2, READ_API_KEY); // Read

humidity value from Field 2

 statusCode = ThingSpeak.getLastReadStatus(); // Update status code

 if (statusCode == 200) {

 Serial.print("Humidity: ");

 Serial.println(humidity); // Print humidity if read was successful

 } else {

 Serial.println("Unable to read channel / No internet connection"); // Error message

 }

 delay(100); // Short delay before next loop iteration

}

8.Write a program to interface LED using Telegram App.

// Include WiFi library for ESP32 WiFi functions

#include <ESP9266WiFi.h>

// Include WiFiClientSecure for secure (HTTPS) connections

#include <WiFiClientSecure.h>

// Include UniversalTelegramBot library to interact with Telegram Bot API

#include <UniversalTelegramBot.h>

// Include ArduinoJson for parsing JSON data from Telegram

#include <ArduinoJson.h>

// Define your Telegram Bot token (keep this private in real projects)

#define BOT_TOKEN "7742829309:AAFQSrRF45CTRv-AYqySdpynJ9TSGRlNByA"

// Define the chat ID to which the bot will respond

#define CHAT_ID "1032626606"

// Define the pin number for the LED

#define LED_PIN 15

// Create a secure WiFi client object

WiFiClientSecure secured_client;

// Create a Telegram bot object using the bot token and secure client

UniversalTelegramBot bot(BOT_TOKEN, secured_client);

// Variables to manage bot polling timing

unsigned long lastTimeBotRan;

const int botRequestDelay = 1000; // Delay between bot requests (in ms)

void setup() {

 Serial.begin(9600); // Start serial communication for debugging

TM
CE, M

ys
uru

IoT LAB-BEC657C 2025-2026

 Dept of ECE, ATMECE, Mysuru 49

 pinMode(LED_PIN, OUTPUT); // Set the LED pin as output

 WiFi.begin("", ""); // Connect to WiFi network (SSID, password)

 // Wait until WiFi is connected

 while (WiFi.status() != WL_CONNECTED) {

 delay(250);

 }

 // Set the root certificate for Telegram (required for HTTPS)

 secured_client.setCACert(TELEGRAM_CERTIFICATE_ROOT);

 Serial.println("WiFi connected"); // Print confirmation

}

void loop() {

 // Check if it's time to poll the bot for new messages

 if (millis() - lastTimeBotRan > botRequestDelay) {

 // Get new messages from Telegram

 int numNewMessages = bot.getUpdates(bot.last_message_received + 1);

 // Process all new messages

 while (numNewMessages) {

 for (int i = 0; i < numNewMessages; i++) {

String chat_id = bot.messages[i].chat_id; // Get sender's chat ID

 String text = bot.messages[i].text; // Get message text

// Only respond to messages from the authorized chat ID

 if (chat_id == CHAT_ID) {

 if (text == "/led_on") {

 digitalWrite(LED_PIN, HIGH); // Turn LED on

 bot.sendMessage(chat_id, "LED turned ON", ""); // Confirm action

 } else if (text == "/led_off") {

digitalWrite(LED_PIN, LOW); // Turn LED off

 bot.sendMessage(chat_id, "LED turned OFF", ""); // Confirm action

 } else if (text == "/state") {

 // Report current LED state

 String state = (digitalRead(LED_PIN) == HIGH) ? "ON" : "OFF";

 bot.sendMessage(chat_id, "LED is " + state, "");

 }

 }

 }

 // Check for more new messages

 numNewMessages = bot.getUpdates(bot.last_message_received + 1);

 }

 lastTimeBotRan = millis(); // Update the last bot polling time

 }

}

1. To Start a Conversation: Click the "Start" button to initiate a chat with BotFather.

TM
CE, M

ys
uru

IoT LAB-BEC657C 2025-2026

 Dept of ECE, ATMECE, Mysuru 50

4. Create a Bot: Type or select the "/newbot" command.

5. Choose a Name: BotFather will prompt you to enter a name for your bot.

6. Choose a Username: Enter a unique username for your bot, ensuring it ends with "bot".

7. Receive the Token: BotFather will provide you with a unique bot token, which you need to

authenticate your bot.

8. Save the Token: Copy and save the bot token securely, as it is required to interact with your

bot through the Telegram Bot API.

2. Obtaining the Chat ID:

a. Add the newly created bot to the desired Telegram chat or group where you want to

receive messages.

b. Open a web browser and enter the following URL, replacing <YourBotToken> with

the token you received from BotFather:

https://api.telegram.org/bot<YourBotToken>/getUpdates

c. JSON response that contains information about the most recent messages received

by your bot.

d. Check for the "chat" object in the response, which contains details about the chat

your bot is part of.

e. The "id" field within the "chat" object corresponds to the chat ID of the group or

channel. Make note of this chat ID; you will need it to send messages to the chat.

Sending the text message using Telegram to NodeMCU

https://github.com/witnessmenow/Universal-Arduino-Telegram-Bot

Extract the library and add it to the libraries folder path of Arduino IDE.

TM
CE, M

ys
uru

IoT LAB-BEC657C 2025-2026

 Dept of ECE, ATMECE, Mysuru 51

For information about how to add a custom library to the Arduino IDE and use examples

from it, refer Adding Library To Arduino IDE in the Basics section.

Now install another library which is Arduinojson library for the above example. We need to

install the Arduinojson library using the Arduino Library Manager.

● Open the Arduino IDE

● Navigate to Sketch ► Include Library ► Manage Libraries…

● The library Manager window will pop up. Now enter Arduinojson into the

search box, and click Install on the Arduinojson option to install version 6.12.2 or

higher. As shown below image.

TM
CE, M

ys
uru

IoT LAB-BEC657C 2025-2026

 Dept of ECE, ATMECE, Mysuru 52

Control the led using Telegram

Let’s control the LED from telegram using the ESP32 and Arduino IDE.

Before uploading the code make sure you have added your SSID, Password, Token

ID, and Chat ID

TM
CE, M

ys
uru

IoT LAB-BEC657C 2025-2026

 Dept of ECE, ATMECE, Mysuru 53

9 Write a program on Arduino/Raspberry Pi to publish temperature data to the MQTT broker.

Component Required:

Sl

No

Components Quanti

ty

1 Node MCU ESP 8266 1

2 Temperature sensor DHT11 1

3 USB cable 1

4 Connecting wires --

6 Breadboard 1

Circuit Diagram

PIN Configuration : NODMCU 3.3V to DHT VCC Pin

NODMCU GND to DHT GND pin

NODMCU GPIO2 to DHT DATA

pin

Theory:

MQTT stands for Message Queuing Telemetry Transport. MQTT is a simple messaging

protocol, designed for constrained devices with low bandwidth. So, it’s the perfect solution

to exchange data between multiple IoT devices.

Devices publish messages on a specific topic. All devices that are subscribed to that topic

receive the message.

TM
CE, M

ys
uru

IoT LAB-BEC657C 2025-2026

 Dept of ECE, ATMECE, Mysuru 54

In a publish and subscribe system, a device can publish a message on a topic, or it can be

subscribed to a particular topic to receive messages.

The MQTT broker is responsible for receiving all messages, filtering the messages, deciding

who is interested in them, and then publishing the message to all subscribed clients.

The MQTT broker is the central point of communication, and it is in charge of dispatching

all messages between the senders and the rightful receivers. A client is any device that

connects to the broker and can publish or subscribe to topics to access the information. A

topic contains the routing information for the broker. Each client that wants to send messages

publishes them to a certain topic, and each client that wants to receive messages subscribes

to a certain topic. The broker delivers all messages with the matching topic to the appropriate

clients.

In this Experiment, we will create a setup that allows a NODE MCUESP8266 board to send

data to another MCU ESP 8266, using MQTT (Message Queuing Telemetry Transport). The

sender device simply publishes a message to a broker service, which then can be subscribed

to by a receiver device.

The data we will send consists of readings from a DHT11 sensor, including temperature and

humidity data, from a NODE MCU ESP8266 to another NODE MCU. This experiment

utilizes the broker test.mosquitto.org, an open-source service that is free for anyone to use.

To view the data:

1. Go to http://www.hivemq.com/demos/websocket-client/

2. Click "Connect"

3. Under Subscriptions, click "Add New Topic Subscription"

4. In the Topic field, type "weather" then click "Subscribe"

change the temperature/humidity, and you should see

the message appear on the MQTT Broker, in the "Messages" pane.

Program:

#include <ESP8266WiFi.h> // Library to connect ESP8266 to WiFi

#include <PubSubClient.h> // MQTT client library

#include <DHT.h> // DHT sensor library

#include <ArduinoJson.h> // JSON handling library

TM
CE, M

ys
uru

IoT LAB-BEC657C 2025-2026

 Dept of ECE, ATMECE, Mysuru 55

// WiFi credentials

const char* ssid = "Enter your Hot spot ID"; // Replace with your WiFi SSID

const char* password = "Password"; // Replace with your WiFi password

// MQTT broker details

const char* mqtt_server = "broker.mqttdashboard.com"; // Public MQTT broker

const int mqtt_port = 1883; // Default MQTT port

const char* mqtt_topic = "weather monitoring"; // Topic to publish data

const char* mqtt_client_id = "arduino-weather-demo"; // Unique MQTT client ID

// DHT Sensor setup

#define DHTPIN D4 // GPIO pin where DHT11 is connected

#define DHTTYPE DHT11 // Specify the type of DHT sensor used (DHT11)

DHT dht(DHTPIN, DHTTYPE); // Create DHT object

// Create WiFi and MQTT client objects

WiFiClient espClient;

PubSubClient client(espClient);

// Variable to track previous payload to avoid redundant publishing

String prevPayload = "";

// Connect to WiFi

void connectToWiFi() {

 Serial.print("Connecting to WiFi");

WiFi.begin(ssid, password); // Start connecting to WiFi

 while (WiFi.status() != WL_CONNECTED) {

 Serial.print(".");

 delay(500); // Wait until connected

 }

Serial.println(" Connected!");

}

// Connect to MQTT broker

void connectToMQTT() {

 Serial.print("Connecting to MQTT... ");

 while (!client.connected()) {

 if (client.connect(mqtt_client_id)) {

 Serial.println("Connected!");

 } else {

 Serial.print("Failed. Retry in 5 seconds. State: ");

 Serial.println(client.state());

 delay(5000); // Retry after delay

 }

 }

}

void setup() {

TM
CE, M

ys
uru

IoT LAB-BEC657C 2025-2026

 Dept of ECE, ATMECE, Mysuru 56

 Serial.begin(9600); // Start serial communication for debugging

 dht.begin(); // Initialize the DHT sensor

 connectToWiFi(); // Connect to WiFi

 client.setServer(mqtt_server, mqtt_port); // Set MQTT broker details

 connectToMQTT(); // Connect to MQTT broker

}

void loop() {

 if (!client.connected()) {

 connectToMQTT(); // Reconnect if MQTT connection is lost

 }

 client.loop(); // Maintain MQTT connection

 Serial.print("Measuring weather conditions... ");

 float temperature = dht.readTemperature(); // Read temperature

 float humidity = dht.readHumidity(); // Read humidity

 // Check if readings are valid

 if (isnan(temperature) || isnan(humidity)) {

 Serial.println("Failed to read from DHT sensor!");

 return;

 }

 // Prepare JSON payload

 StaticJsonDocument<100> jsonDoc;

 jsonDoc["temp"] = temperature;

 jsonDoc["humidity"] = humidity;

 String payload;

 serializeJson(jsonDoc, payload); // Convert JSON object to string

// Publish only if data has changed

 if (payload != prevPayload) {

 Serial.println("Updated!");

 Serial.print("Reporting to MQTT topic ");

 Serial.print(mqtt_topic);

 Serial.print(": ");

 Serial.println(payload);

 client.publish(mqtt_topic, payload.c_str()); // Publish to MQTT topic

 prevPayload = payload; // Update previous payload

 } else {

 Serial.println("No change"); // Skip publish if no change

 }

 delay(1000); // Delay before next reading (1 second)

}

TM
CE, M

ys
uru

IoT LAB-BEC657C 2025-2026

 Dept of ECE, ATMECE, Mysuru 57

10 Write a program to create a UDP server on Arduino/Raspberry Pi and respond with

humidity data to the UDP client when requested.

Component Required:

Sl

No

Components Quanti

ty

1 Node MCU ESP 8266 1

2 Temperature sensor DHT11 1

3 USB cable 1

4 Connecting wires --

6 Breadboard 1

Circuit Diagram

PIN Configuration : NODMCU 3.3V to DHT VCC Pin

NODMCU GND to DHT GND pin

NODMCU D4 (GPIO2) to DHT DATA

pin

TM
CE, M

ys
uru

IoT LAB-BEC657C 2025-2026

 Dept of ECE, ATMECE, Mysuru 58

Theory

User Datagram Protocol (UDP) is a network communication protocol that operates at the

transport layer of the Internet Protocol (IP) suite. It is a connectionless and lightweight

protocol designed for fast and efficient data transmission, but it does not provide the same

level of reliability and error-checking as Transmission Control Protocol (TCP).

UDP is a lightweight, connectionless, and fast protocol that prioritizes low-latency data

transmission over reliability. It is suitable for applications where occasional packet loss or out-

of-order delivery can be tolerated, and real-time communication is essential. However, for

applications that require guaranteed delivery and error recovery, TCP is a better choice.

#include <ESP8266WiFi.h> // WiFi library for ESP8266

#include <WiFiUdp.h> // UDP communication library

#include <DHT.h> // DHT sensor library

#define DHTPIN D4 // Define the pin connected to the DHT sensor (GPIO2)

#define DHTTYPE DHT11 // Sensor type is DHT11; use DHT22 if applicable

DHT dht(DHTPIN, DHTTYPE); // Create DHT sensor object

// WiFi credentials (change to match your network)

const char* ssid = "SYS123";

const char* password = "12345678";

// Server IP and port (must match the server configuration)

const char* udpServerIP = "192.168.0.168"; // Server IP address

const uint16_t udpPort = 1234; // UDP port number

WiFiUDP udp; // Create a UDP object

void setup() {

 Serial.begin(9600); // Start serial communication for debugging

 delay(1000); // Short delay before starting

 WiFi.begin(ssid, password); // Connect to WiFi

 Serial.println("Connecting to WiFi...");

 // Wait until WiFi is connected

 while (WiFi.status() != WL_CONNECTED) {

 delay(500);

 Serial.print(".");

 }

 // WiFi connected

 Serial.println("\nWiFi connected successfully");

 Serial.print("IP address: ");

 Serial.println(WiFi.localIP()); // Print device's IP address

TM
CE, M

ys
uru

IoT LAB-BEC657C 2025-2026

 Dept of ECE, ATMECE, Mysuru 59

 dht.begin(); // Initialize the DHT sensor

}

void loop() {

 float temp = dht.readTemperature(); // Read temperature in Celsius

 // Check if reading is valid

 if (isnan(temp)) {

 Serial.println("Failed to read from DHT sensor!");

 return;

 }

 // Print temperature to serial monitor

 Serial.print("Temperature in degree Celsius: ");

 Serial.println(temp);

 // Convert float temperature to a string

 String tempStr = String(temp);

 // Send temperature via UDP to the server

udp.beginPacket(udpServerIP, udpPort); // Begin UDP packet

 udp.write(tempStr.c_str()); // Write temperature string

 udp.endPacket(); // Send the packet

 delay(2000); // Wait for 2 seconds before sending again

}

Python program for server

import socket # Import socket module for network communication

host = '0.0.0.0' # Listen on all network interfaces

port = 1234 # UDP port (must match ESP8266's target port)

Create a UDP socket

server_socket = socket.socket(socket.AF_INET, socket.SOCK_DGRAM)

Bind the socket to the host and port

server_socket.bind((host, port))

print(f"UDP server on {host}:{port}")

Continuously listen for incoming UDP data

while True:

 data, addr = server_socket.recvfrom(1024) # Receive up to 1024 bytes

 print(f"Received from {addr}: {data.decode()} °C") # Print received data

TM
CE, M

ys
uru

IoT LAB-BEC657C 2025-2026

 Dept of ECE, ATMECE, Mysuru 60

Procedure

To run Python code for UDP Server

1) Install python software

2) Open python IDLE

3) In python IDLE go to File - New File (it opens new script windows) -Type the

code

4) Click on Run button and Save the program from script window

5) See the output from IDLE shell (command prompt)

Result: Python program used to create UDP server and Arduino program written

to respond with humidity data to UDP client when requested.

11 Write a program to create a TCP server on Arduino /Raspberry Pi and respond with

humidity data to the TCP client when requested.

Component Required:

Sl

No

Components Quanti

ty

1 Node MCU ESP 8266 1

2 Temperature sensor DHT11 1

3 USB cable 1

4 Connecting wires --

6 Breadboard 1

Circuit Diagram

TM
CE, M

ys
uru

IoT LAB-BEC657C 2025-2026

 Dept of ECE, ATMECE, Mysuru 61

PIN Configuration : NODMCU 3.3V to DHT VCC Pin

NODMCU GND to DHT GND pin

NODMCU D4 (GPIO2) to DHT DATA

pin

Theory

The Transmission Control Protocol (TCP) is a widely used protocol in the Internet Protocol

(IP) suite. It is a connection-oriented protocol that provides reliable, ordered, and error-

checked delivery of data between applications running on hosts1. In IoT, TCP is used to

establish connections between clients and servers, allowing devices to interact with each

other and resolve common problems.

A TCP server is a program that listens for incoming connections from clients and responds

to their requests. When a client connects to the server, it sends a request for data. The server

then sends back the requested data to the client. In IoT, TCP servers are used to provide

access to data from sensors and other devices

In the context of the Internet of Things (IoT), a TCP server refers to a network service running

on a device or gateway that listens for incoming TCP connections from other IoT devices or

clients

In the context of IoT, TCP (Transmission Control Protocol) and UDP (User Datagram

Protocol) are two protocols of the Transport Layer that are used to transmit data between

devices over a network.

TCP is a connection-oriented protocol that provides reliable delivery services by keeping

track of the segments being transmitted or received by assigning numbers to every single one

of them. It also implements an error control mechanism for reliable data transfer and takes

into account the level of congestion in the network .

On the other hand, UDP is a connectionless protocol that is used for simple request-response

communication when the size of data is less and hence there is lesser concern about flow and

error control. It is a suitable protocol for multicasting as UDP supports packet switching.

Normally used for real-time applications which cannot tolerate uneven delays between

sections of a received message.

In summary, TCP is more reliable but slower than UDP, while UDP is faster but less reliable

than TCP

Finding IP address of your computer

1) Search command Prompt from your PC

2) Type ipconfig in command prompt

3) Search IPv4 Adress …….: 192.168.137.1 like this in prompt

4) Copy and paste the same in the program at tcpServerIP

#include <ESP8266WiFi.h> // Include ESP8266 WiFi library

#include <DHT.h> // Include DHT sensor library

TM
CE, M

ys
uru

IoT LAB-BEC657C 2025-2026

 Dept of ECE, ATMECE, Mysuru 62

#define DHTPIN D4 // Define the GPIO pin connected to the DHT sensor (D4)

#define DHTTYPE DHT11 // Define sensor type (use DHT22 if using that instead)

DHT dht(DHTPIN, DHTTYPE); // Create a DHT sensor object

const char* ssid = "SYS123"; // WiFi network SSID (replace with your network)

const char* password = "12345678"; // WiFi password

const char* tcpServerIP = "192.168.0.168"; // IP address of the server (e.g., your PC)

const uint16_t port = 1234; // TCP port to connect to the server

WiFiClient client; // Create a TCP client object

void setup() {

 Serial.begin(9600); // Start serial communication for debugging

 delay(1000); // Short delay for stability

 WiFi.begin(ssid, password); // Start WiFi connection

 Serial.println("Connecting to WiFi...");

while (WiFi.status() != WL_CONNECTED) { // Wait until connected

 delay(500);

 Serial.print(".");

 }

 Serial.println("\nWiFi connected successfully");

 Serial.print("IP address: ");

Serial.println(WiFi.localIP()); // Print local IP for reference

 dht.begin(); // Initialize the DHT sensor

}

void loop() {

 if (!client.connect(tcpServerIP, port)) { // Try connecting to the server

 Serial.println("Connection to server failed");

 delay(1000);

 return; // Skip sending if connection fails

 }

 float temp = dht.readTemperature(); // Read temperature in Celsius

 if (isnan(temp)) { // Check if reading failed

 Serial.println("Failed to read from DHT sensor!");

 return;

 }

 Serial.print("Temperature in degree Celsius: ");

 Serial.println(temp);

 client.print(temp); // Send temperature as plain text over TCP

TM
CE, M

ys
uru

IoT LAB-BEC657C 2025-2026

 Dept of ECE, ATMECE, Mysuru 63

 client.stop(); // Close the TCP connection

 delay(2000); // Wait 2 seconds before sending the next reading

}

//server program in python

import socket # Import socket module for networking

host = '0.0.0.0' # Listen on all available interfaces (any IP)

port = 1234 # Port to listen on (must match NodeMCU client)

Create a TCP/IP socket

server_socket = socket.socket(socket.AF_INET, socket.SOCK_STREAM)

server_socket.bind((host, port)) # Bind to the specified host and port

server_socket.listen(1) # Start listening for incoming connections

print(f"Server listening on {host}:{port}")

while True:

 client_socket, addr = server_socket.accept() # Accept new connection

 print(f"Connection from {addr}")

 try:

 while True: # Keep receiving data until connection is closed

 data = client_socket.recv(1024) # Receive up to 1024 bytes

 if not data: break # If no data, client disconnected

print(f"Received: {data.decode()} °C") # Decode and print temperature

 finally:

client_socket.close() # Close client connection when done

12 Write a program on Arduino / Raspberry Pi to subscribe to the MQTT broker for

temperature data and print it.

Component Required:

Sl

No

Components Quanti

ty

1 Node MCU ESP 8266 1

2 USB cable 1

3 Connecting wires --

4 Breadboard 1

Theory

The MQTT protocol was first introduced in 1999, as a light-

weight publish and subscribe system. It is particularly useful for devices with low-bandwidth,

here we can send commands, sensor values or messages over the Internet with little effort.

TM
CE, M

ys
uru

IoT LAB-BEC657C 2025-2026

 Dept of ECE, ATMECE, Mysuru 64

A basic explanation on how it works is that a node, for example and Arduino with a Wi-Fi

module, sends a payload to a broker. A broker is a kind of "middle-point" server, that essentially

stores payloads sent to it, in something called topics. A topic, is a definition of what type of

data it contains, it could for example be "humidity" or " temperature". Another node can then

subscribe to this information, from the broker, and voilà, data has been moved from Node A to

Node B over the Internet.

One way to protect the data is for example, by using a token, something that is quite common

when working with various IoT services. For instance, if we are publishing something to a

broker, anyone that has the URL, e.g. randombroker.org/randomtopic can subscribe to it.

But if we add a unique token on both sides, they wouldn't be able to. These tokens could for

example be Z6ACuLwr5T, which is not exactly something easy to guess

// Include the ESP8266 WiFi library to connect to WiFi networks

#include <ESP8266WiFi.h>

// Include the Arduino MQTT client library for MQTT communication

#include <ArduinoMqttClient.h>

// WiFi credentials (update with your own network's SSID and password)

const char *ssid = "SYS123"; // Replace with your WiFi SSID

const char *password = "12345678"; // Replace with your WiFi password

// MQTT broker information

const char broker[] = "test.mosquitto.org"; // Public test MQTT broker

int port = 1883; // Default MQTT port

// Topic to subscribe to (temperature topic)

const char topicT[] = "home/temp";

TM
CE, M

ys
uru

IoT LAB-BEC657C 2025-2026

 Dept of ECE, ATMECE, Mysuru 65

// Create a WiFi client to handle the network connection

WiFiClient wifiClient;

// Create an MQTT client using the WiFi client

MqttClient mqttClient(wifiClient);

void setup()

{

 Serial.begin(9600); // Start the serial monitor at 9600 baud

 // Connect to the WiFi network

 Serial.print("Wifi connecting to ");

 Serial.println(ssid);

 WiFi.begin(ssid, password);

 // Wait until the device is connected to WiFi

 while (WiFi.status() != WL_CONNECTED) {

 Serial.println("Connecting...");

 delay(500);

 }

 Serial.println("WiFi connected successfully");

 // Attempt to connect to the MQTT broker

 Serial.print("Attempting to connect to the MQTT broker: ");

 Serial.println(broker);

 if (!mqttClient.connect(broker, port)) {

 Serial.print("MQTT connection failed! Error code = ");

 Serial.println(mqttClient.connectError());

while (1); // Halt the program if connection fails

 }

 Serial.println("You're connected to the MQTT broker!");

 // Set the callback function to handle incoming messages

 mqttClient.onMessage(onMqttMessage);

 // Subscribe to the specified topic

 Serial.print("Subscribing to topic: ");

 Serial.println(topicT);

 mqttClient.subscribe(topicT);

 Serial.print("Topic Temperature: ");

 Serial.println(topicT);

}

void loop()

{

TM
CE, M

ys
uru

IoT LAB-BEC657C 2025-2026

 Dept of ECE, ATMECE, Mysuru 66

 // Poll the MQTT client to handle incoming messages and keep the connection alive

 mqttClient.poll();

 delay(1000); // Wait for a second before the next poll

}

// Callback function that is called when a message is received

void onMqttMessage(int messageSize) {

 Serial.println("Received a message with topic '");

 Serial.print(mqttClient.messageTopic());

 Serial.print("', length ");

 Serial.print(messageSize);

 Serial.println(" bytes:");

 // Print the message contents

 while (mqttClient.available()) {

 Serial.print((char)mqttClient.read());

 }

 Serial.println();

 Serial.println();

 delay(1500); // Delay to help with readability of output

}

	Front Sheet
	New Program Outcomes
	IOT Lab Manual
	Untitled

