
 ATME COLLEGE OF ENGINEERING

13th KM Stone, Bannur Road, Mysore - 560 028

 DEPARTMENT OF COMPUTER SCIENCE ENGINEERING

(DATA SCIENCE)

(ACADEMIC YEAR 2024-25)

LABORATORY MANUAL

COURSE: MONGODB LABORATORY

Course CODE: BDSL456B

SEMESTER: IV-2022 CBCS Scheme

Prepared By Approved By

Dr.Vinod Kumar P Dr. Anitha D B

 Faculty In-charge HOD, CSE-DSE

INSTITUTIONAL MISSION AND VISION

Objectives

 To provide quality education and groom top-notch professionals, entrepreneurs and

leaders for different fields of engineering, technology and management.

 To open a Training-R & D-Design-Consultancy cell in each department, gradually

introduce doctoral and postdoctoral programs, encourage basic & applied research

in areas of social relevance, and develop the institute as a center of excellence.

 To develop academic, professional and financial alliances with the industry as well as

the academia at national and transnational levels

 To develop academic, professional and financial alliances with the industry as well as

the academia at national and transnational levels.

 To cultivate strong community relationships and involve the students and the staff in

local community service.

 To constantly enhance the value of the educational inputs with the participation of

students, faculty, parents and industry.

Vision

 Development of academically excellent, culturally vibrant, socially responsible and

globally competent human resources.

Mission

 To keep pace with advancements in knowledge and make the students competitive and

capable at the global level.

 To create an environment for the students to acquire the right physical, intellectual,

emotional and moral foundations and shine as torch bearers of tomorrow’s society.

 To strive to attain ever-higher benchmarks of educational excellence.

DEPARTMENT OF COMPUTER SCIENCE ENGINEERING AND ENGINEERING

(DATA SCIENCE &ENGINEERING)

Vision of The Department

• To impart technical education in the field of data science of excellent quality with a high

level of professional competence, social responsibility, and global awareness among the

students

Mission

• To impart technical education that is up to date, relevant and makes students competitive

and employable at global level

• To provide technical education with a high sense of discipline, social relevance in an

intellectually, ethically and socially challenging environment for better tomorrow

• Educate to the global standards with a benchmark of excellence and to kindle the spirit of

innovation.

Program Outcomes(PO)

 Engineering knowledge: Apply the knowledge of mathematics, science, engineering

fundamentals, and an engineering specialization to the solution of complex engineering

problems.

 Problem analysis: Identify, formulate, review research literature, and analyze complex

engineering problems reaching substantiated conclusions using first principles of

mathematics, natural sciences, and engineering sciences.

 Design/development of solutions: Design solutions for complex engineering problems

and design system components or processes that meet the specified needs with appropriate

consideration for the public health and safety, and the cultural, societal, and environmental

considerations.

 Conduct investigations of complex problems: Use research-based knowledge and

research methods including design of experiments, analysis and interpretation of data, and

synthesis of the information to provide valid conclusions.

 Modern tool usage: Create, select, and apply appropriate techniques, resources, and

modern engineering and IT tools including prediction and modeling to complex

engineering activities with an understanding of the limitations.

 The engineer and society: Apply reasoning informed by the contextual knowledge to

assess societal, health, safety, legal and cultural issues and the consequent responsibilities

relevant to the professional engineering practice

 Environment and sustainability: Understand the impact of the professional engineering

solutions in societal and environmental contexts, and demonstrate the knowledge of, and

need for sustainable development.

 Ethics: Apply ethical principles and commit to professional ethics and responsibilities and

norms of the engineering practice.

 Individual and team work: Function effectively as an individual, and as a member or

leader in diverse teams, and in multidisciplinary settings.

 Communication: Communicate effectively on complex engineering activities with the

engineering community and with society at large, such as, being able to comprehend and

write effective reports and design documentation, make effective presentations, and give

and receive clear instructions.

 Project management and finance: Demonstrate knowledge and understanding of the

engineering and management principles and apply these to one’s own work, as a member

and leader in a team, to manage projects and in multidisciplinary environments.

 Life-long learning: Recognize the need for, and have the preparation and ability to engage

in independent and life-long learning in the broadest context of technological change.

Program Specific Outcomes (PSOs)

 PSO1: Develop relevant programming skills to become a successful data scientist

 PSO2: Apply data science concepts and algorithms to solve real world problems of the

society

 PSO3: Apply data science techniques in the various domains like agriculture, education

healthcare for better society

Program Educational Objectives (PEOs):

PEO1: Develop cutting-edge skills in data science and its related technologies, such as machine

learning, predictive analytic, and data engineering.

PEO2: Design and develop data-driven solutions to real-world problems in a business, research,

or social environment.

PEO3: Apply data engineering and data visualization techniques to discover, investigate, and

interpret data.

PEO4: Demonstrate ethical and responsible data practices in problem solving

PEO5: Integrate fields within computer science, optimization, and statistics to develop better

solutions

Sl.NO

Experiments

Page No.

1 a. Illustration of Where Clause, AND,OR operations in MongoDB.

b. Execute the Commands of MongoDB and operations in MongoDB : Insert, Query,

Update, Delete and Projection. (Note: use any collection)

[Refer: Book 1 chapter 4].

1-10

2 a. Develop a MongoDB query to select certain fields and ignore some fields of the

documents from any collection.

b. Develop a MongoDB query to display the first 5 documents from the results

obtained in a. [use of limit and find]

[Refe: Book1 Chapter 4, book 2: chapter 5]

11-14

3 a. Execute query selectors (comparison selectors, logical selectors) and list out the

results on any collection

b. Execute query selectors (Geospatial selectors, Bitwise selectors) and list out the

results on any collection

[Refer: Book 3 Chapter 13]

15-24

4 Create and demonstrate how projection operators ($, $elematch and $slice) would be used in

the MondoDB.

[Refer: Book 3 Chapter 14]

25-32

5
Execute Aggregation operations ($avg, $min,$max, $push, $addToSet etc.). students encourage

to execute several queries to demonstrate various aggregation operators)

[Refer: Book 3 Chapter 15]

33-41

6
Execute Aggregation Pipeline and its operations (pipeline must contain $match, $group,

$sort, $project,
$skip etc. students encourage to execute several queries to demonstrate various aggregation

operators) [refer book 2: chapter 6]

42-48

7 a. Find all listings with listing_url, name, address, host_picture_url in the listings And

Reviews collection that have a host with a picture url

Using E-commerce collection write a query to display reviews summary. [refer Book2: chapter 6]

49-59

8 a. Demonstrate creation of different types of indexes on collection (unique, sparse,

compound and multikey indexes)

b. Demonstrate optimization of queries

using indexes. Refer: Book 2: Chapter 8 and

Book 3: Chapter 12]

60-62

9 a. Develop a query to demonstrate Text search using catalog data collection for a given

word

Develop queries to illustrate excluding documents with certain words and phrases

Refer: Book 2: Chapter 9]

63-73

10 Develop an aggregation pipeline to illustrate Text search on Catalog data collection.

Refer: Book 2 :Chapter 9]

74

MongoDB (AEC Course) BDSL456B

 1 Department of CSE-Data Science, ATMECE

Program 1

a. Illustration of Where Clause, AND, OR operations in MongoDB.

Create a database of Students and collection details in Mongo DB IDE.

Add the following documents in the details collection in MongoDB IDE.

{

 "rno" : 1,

 "name" : "Bhavana",

"location": "Chennai"

}

{

 "rno" : 2,

 "name" : "Amit",

"location": "Delhi"

MongoDB (AEC Course) BDSL456B

 2 Department of CSE-Data Science, ATMECE

}

{

 "rno" : 3,

 "email_id" : "a@gmail.com" ,

 "location":"Chennai"

}

{

 "rno" : 4,

 "name" : "Akash" ,

 "location":"Bangalore"

}

MongoDB (AEC Course) BDSL456B

 3 Department of CSE-Data Science, ATMECE

--

1. Where Clause in MongoDB: In MongoDB, the find() method is used to query

documents from a collection. The find() method can accept a query document as a

parameter which acts as a "WHERE" clause.

Syntax: db.collection.find({ field: value })

In Mongodb shell, execute the following code:

> use Students

> db.details.find()

Output:

MongoDB (AEC Course) BDSL456B

 4 Department of CSE-Data Science, ATMECE

//findOne to show only first record

> db. details.findOne()

Output:

2. AND Operation in MongoDB: MongoDB provides the $and operator to perform

logical AND operation between multiple conditions in a query.

Syntax: db.collection.find({ $and: [{ field1: value1 }, { field2: value2 }] })

>db.details.find({$and: [{"location": "Chennai"}] })

 Output:

3. OR Operation in MongoDB: Similarly, MongoDB provides the $or operator to

perform logical OR operation between multiple conditions in a query.

Syntax: db.collection.find({ $or: [{ field1: value1 }, { field2: value2 }] })

MongoDB (AEC Course) BDSL456B

 5 Department of CSE-Data Science, ATMECE

>db.details.find({$or: [{"location": "Chennai"}, {"location": "Delhi"}] })

Output:

b. Execute the Commands of MongoDB and operations in MongoDB: Insert, Query,

Update, Delete and Projection. (Note: use any collection).

1. Insert Operation: Use the insertOne() method to insert a single document into a

collection.

Syntax: db.collection.insertOne({ field1: value1, field2: value2, field3: value3 })

 Every row/document can be different than other

> db.details.insert({name:'Amar',rno:5})

Output:

MongoDB (AEC Course) BDSL456B

 6 Department of CSE-Data Science, ATMECE

Verification Code:

>db.details.find({name:'Amar',rno:5})

> db.details.insert({rno:6, email_id:'d@gmail.com'})

Output:

Verification Code:

>db.details.find({rno:6, email_id:'d@gmail.com'})

--

// To insert date use ISODate function

> db.details.insert({rno:15, name:'Ravina', dob: ISODate("2019-09-14")})

MongoDB (AEC Course) BDSL456B

 7 Department of CSE-Data Science, ATMECE

 Verification Code:

//Insert multiple documents at once

> db.details.insert([{rno:7,name:'a'},{rno:8,name:'b'},{rno:8,name:'c'}])

Output:

Verification Code: db.details.find({rno:7,name:’a’})

// to insert multiple values for one key using []

>db.details.insert({rno:10,name:'Ankit',hobbies:['singing','cricket','swimming',

'music'],age:21})

Output:

MongoDB (AEC Course) BDSL456B

 8 Department of CSE-Data Science, ATMECE

Verification Code:

db.details.find({rno:10,name:'Ankit',hobbies:['singing','cricket','swimming',

'music'],age:21})

2. Query Operation: Use the find() method to query documents from a collection.

Syntax: db.collection.find({ field: value })

 >db.details.find({rno:1})

Output:

3.Delete Operation: Use the deleteOne() method to delete a single document from a collection.

Syntax: db.collection.deleteOne({ field: value })

>db.details.deleteOne({rno:1})

Output:

Verification Code:

MongoDB (AEC Course) BDSL456B

 9 Department of CSE-Data Science, ATMECE

>db. details.deleteMany({ location: "Chennai" })

Output:

Verification Code:

4.Projection Operation: Use the second parameter of the find() method to specify which fields

to include or exclude in the query result.

Syntax: db.collection.find({}, { field1: 1, field2: 1, _id: 0 })

// Find command to show only names without condition

> db. details.find({},{name:1,_id:0})

MongoDB (AEC Course) BDSL456B

 10 Department of CSE-Data Science, ATMECE

MongoDB (AEC Course) BDSL456B

 11 Department of CSE-Data Science, ATMECE

Program 2

a. Develop a MongoDB query to select certain fields and ignore some fields of the

documents from any collection.

Syntax: db.collection.find({}, { field1: 1, field2: 1, _id: 0 })

• db.collection.find({}) is used to retrieve all documents from the collection.

• { field1: 1, field2: 1, _id: 0 } specifies the projection document where:

• field1: 1 and field2: 1 indicates that these fields will be included in the result.

• _id: 0 indicates that the _id field will be excluded from the result.

//Find command with condition with giving name field only to show

> db. details.find({rno:5},{name:1})

Output:

//Find command with condition with giving name field only to show and _id to hide

>db. details.find({rno:5},{name:1,_id:0})

Output:

MongoDB (AEC Course) BDSL456B

 12 Department of CSE-Data Science, ATMECE

// Find command to show only names without condition

> db. details.find({},{name:1,_id:0})

MongoDB (AEC Course) BDSL456B

 13 Department of CSE-Data Science, ATMECE

b. Develop a MongoDB query to display the first 5 documents from the results

obtained in a. [use of limit and find]

Limit Operation: Used to restrict the number of documents returned by a query. This is

particularly useful when you're dealing with large datasets and you only need a subset of

documents.

Syntax: db.collection.find({}, { field1: 1, field2: 1, _id: 0 }).limit(5)

• Limit (5) limits the number of documents returned to 5.

• // Limit use to show only some records from starting- following command shows

only first 2 records from collection

> db. details.find().limit(2)

Output:

> db. details.find().limit(5)

Output:

MongoDB (AEC Course) BDSL456B

 14 Department of CSE-Data Science, ATMECE

MongoDB (AEC Course) BDSL456B

 15 Department of CSE-Data Science, ATMECE

Program 3

a. Execute query selectors (comparison selectors, logical selectors) and list out the

results on any collection

b. Execute query selectors (Geospatial selectors, Bitwise selectors) and list out the

results on any collection

 Comparison Selectors: Comparison selectors are used to compare fields against specific

values or other fields. Here are some common comparison selectors:

$eq - Matches values that are equal to a specified value.

$ne - Matches all values that are not equal to a specified value.

$gt - Matches values that are greater than a specified value.

$gte - Matches values that are greater than or equal to a specified value.

$lt - Matches values that are less than a specified value.

$lte - Matches values that are less than or equal to a specified value.

$in - Matches any of the values specified in an array.

$nin - Matches none of the values specified in an array.

Logical Selectors: Logical selectors are used to combine multiple conditions in a query. Here

are some common logical selectors:

$and - Joins query clauses with a logical AND and requires that all conditions be true.

$or - Joins query clauses with a logical OR and requires that at least one condition be true.

$not - Inverts the effect of a query expression and returns documents that do not match the

query expression.

$nor - Joins query clauses with a logical NOR and requires that none of the conditions be true.

Create a database Store and collection customers in Mongo DB IDE.

MongoDB (AEC Course) BDSL456B

 16 Department of CSE-Data Science, ATMECE

In MongoDB Shell:

>use Store

> db.customers.insertMany([{ _id: 1, name: "Alice", age: 30, city: "New York" },

 { _id: 2, name: "Bob", age: 25, city: "San Francisco" },

 { _id: 3, name: "Charlie", age: 35, city: "Los Angeles" },

 { _id: 4, name: "David", age: 28, city: "Chicago" },

 {_id: 5, name: "Eve", age: 32, city: "Miami" }])

a. Execute query selectors (comparison selectors, logical selectors) and list out the

results on any collection.

Using Comparison Selectors

1. Find customers aged 28:

>db.customers.find({ "age": { "$eq": 28 } })

Output:

MongoDB (AEC Course) BDSL456B

 17 Department of CSE-Data Science, ATMECE

2. Find customers older than 30:

>db.customers.find({ "age": { "$gt": 30 } })

Output:

 Using Logical Selectors

3. Find customers in city is New York OR city is Los Angeles:

>db.customers.find({

 $or: [

 { city: "New York" },

 { city: " Los Angeles" }

] })

MongoDB (AEC Course) BDSL456B

 18 Department of CSE-Data Science, ATMECE

Output:

4. Find customers age 30 and city New York

>db.customers.find({

 $and: [

 { age: 30 },

 { city:"New York" }

] })

Output:

MongoDB (AEC Course) BDSL456B

 19 Department of CSE-Data Science, ATMECE

 Using Both Comparison and Logical Selectors

5. Find customers greater than or equal to 18, less than 35, in city New York or

Miami

>db.customers.find({$and: [

 { age: { $gte: 18 } }, // age greater than or equal to 18

 { age: { $lt: 35 } }, // age less than 35

 { city: { $in: ["New York", "Miami"] } } // city is either "New York" or

"Miami"

]})

Output:

b. Execute query selectors (Geospatial selectors, Bitwise selectors) and list out the

results on any collection

Under database Store, create a collection places in Mongo DB IDE.

MongoDB (AEC Course) BDSL456B

 20 Department of CSE-Data Science, ATMECE

Geospatial Selectors: MongoDB supports geospatial queries for geospatial data. It

provides two types of geospatial indexes: 2d indexes and 2d sphere indexes.

Add the following documents in the places collection in MongoDB Shell.

 >db.places.insertMany([

{ id: 1, name: "Place A", location: { type: "Point", coordinates: [-73.97, 40.77] } }, // New

York

 { id: 2, name: "Place B", location: { type: "Point", coordinates: [-122.43, 37.77] } }, //

San Francisco

 { id: 3, name: "Place C", location: { type: "Point", coordinates: [-118.25, 34.05] } }, //

Los Angeles

 { id: 4, name: "Place D", location: { type: "Point", coordinates: [-87.63, 41.88] } }, //

Chicago

 { id: 5, name: "Place E", location: { type: "Point", coordinates: [-80.19, 25.77] } } //

Miami

])

 Create a 2dsphere Index on location:

>db.places.createIndex({ location: "2dsphere" })

Geospatial Query (Find places within 10km of a given point):

>db.places.find({ location: {

$near: {

MongoDB (AEC Course) BDSL456B

 21 Department of CSE-Data Science, ATMECE

 $geometry: {

 type: "Point",

 coordinates: [-73.97, 40.77]

 }, $maxDistance: 10000 // 10km in meters

 }}})

2. Bitwise Selectors

Under database Store, create a collection devices in Mongo DB IDE.

We'll use a collection devices with fields id, name, and status (where status is a bitwise flag).

>db.devices.insertMany([

 { id: 1, name: "Device A", status: 5 }, // 0101 in binary

 { id: 2, name: "Device B", status: 3 }, // 0011 in binary

 { id: 3, name: "Device C", status: 6 }, // 0110 in binary

 { id: 4, name: "Device D", status: 12 }, // 1100 in binary

 { id: 5, name: "Device E", status: 7 } // 0111 in binary])

MongoDB (AEC Course) BDSL456B

 22 Department of CSE-Data Science, ATMECE

Bitwise AND Query (Find devices where the 2nd bit is set):

>db.devices.find({ status: { $bitsAllSet: 2 } })

Bitwise OR Query (Find devices where any bit in 0101 is set):

To find all devices where any of the bits at positions 0 or 3 are set (i.e., either the least significant

bit or the fourth bit is set), you can use the $bitsAnySet operator as follows:

> db.devices.find({ "status": { "$bitsAnySet": [0, 3] } })

MongoDB (AEC Course) BDSL456B

 23 Department of CSE-Data Science, ATMECE

In MongoDB, the main geospatial query operators include:

1. $geoWithin: Finds documents within a specified geometry (e.g., a polygon).

2. $geoIntersects: Finds documents that intersect with a specified geometry.

3. $near: Finds documents near a specified point, using a 2dsphere index.

4. $nearSphere: Similar to $near, but calculates distances using spherical geometry.

5. $center: Finds documents within a circular area (used with legacy coordinate pairs).

6. $centerSphere: Finds documents within a circular area on a sphere (used with legacy

coordinate pairs).

MongoDB (AEC Course) BDSL456B

 24 Department of CSE-Data Science, ATMECE

7. $box: Finds documents within a rectangular area (used with legacy coordinate pairs).

8. $polygon: Finds documents within a polygon defined by multiple points (used with legacy

coordinate pairs).

In MongoDB, the main bitwise query operators include:

1. $bitsAllClear: Matches documents where all of the given bit positions are clear (i.e., 0).

2. $bitsAllSet: Matches documents where all of the given bit positions are set (i.e., 1).

3. $bitsAnyClear: Matches documents where any of the given bit positions are clear (i.e., 0).

4. $bitsAnySet: Matches documents where any of the given bit positions are set (i.e., 1).

Explanation

• Geospatial Selector:

o $near: Finds documents near a specified point. Requires a 2dsphere index on the

location field.

o $geometry: Specifies the reference point as a GeoJSON object.

o $maxDistance: Limits the distance from the reference point (in meters).

• Bitwise Selector:

o $bitsAllSet: Matches documents where all of the given bit positions are 1.

o $bitsAnySet: Matches documents where any of the given bit positions are 1.

By executing these queries, you can filter documents based on geospatial proximity and bitwise

conditions.

MongoDB (AEC Course) BDSL456B

 25 Department of CSE-Data Science, ATMECE

Program 4

Create and demonstrate how projection operators ($, $elematch and $slice) would be used

in the MongoDB.

$elemMatch: The $elemMatch operator is used to match documents that contain an array field

with at least one element that matches all the specified query criteria.

 $slice: The $slice projection operator is used within the projection document to limit the number

of elements returned from an array field.

Create a database School and collection students in Mongo DB IDE.

Add the following documents in the details collection in MongoDB IDE.

{

"_id": 1,

 "name": "Alice",

 "scores": [{ "type": "exam", "score": 90 }, { "type": "quiz", "score": 85 }, { "type":

"homework", "score": 80 }]

}

MongoDB (AEC Course) BDSL456B

 26 Department of CSE-Data Science, ATMECE

 {

"_id": 2,

"name": "Bob",

 "scores": [{ "type": "exam", "score": 75 }, { "type": "quiz", "score": 90 }, { "type":

"homework", "score": 85 }]

 }

MongoDB (AEC Course) BDSL456B

 27 Department of CSE-Data Science, ATMECE

{

 "_id": 3,

 "name": "Charlie",

 "scores": [

 { "type": "exam", "score": 70 },

 { "type": "quiz", "score": 80 },

 { "type": "homework", "score": 90 }

]

}

MongoDB (AEC Course) BDSL456B

 28 Department of CSE-Data Science, ATMECE

{

 "_id": 4,

 "name": "David",

 "scores": [

 { "type": "exam", "score": 85 },

 { "type": "quiz", "score": 75 },

 { "type": "homework", "score": 80 }

]

}

MongoDB (AEC Course) BDSL456B

 29 Department of CSE-Data Science, ATMECE

{

 "_id": 5,

 "name": "Eve",

 "scores": [

 { "type": "exam", "score": 95 },

 { "type": "quiz", "score": 85 },

 { "type": "homework", "score": 90 }

]

}

MongoDB (AEC Course) BDSL456B

 30 Department of CSE-Data Science, ATMECE

1. $ Operator

 The $ operator is used to project a single element from an array that matches

a specified condition. For instance, to find the exam score of Alice, you would

use:

// To project only the first element in the grades array that is greater than or equal to 85, we

can use the following query:

db.students.find(

 { "name": "Alice", "scores.type": "exam" },

 { "name": 1, "scores.$": 1 }

)

Output:

MongoDB (AEC Course) BDSL456B

 31 Department of CSE-Data Science, ATMECE

2. $elemMatch Operator

The $elemMatch operator is used to project the first matching element from an array. To get the

quiz score of Bob, you would use:

>db.students.find(

 { "name": "Bob" },

 { "name": 1, "scores": { $elemMatch: { "type": "quiz" } } }

)

Output:

MongoDB (AEC Course) BDSL456B

 32 Department of CSE-Data Science, ATMECE

3. $slice Operator

The $slice operator is used to limit the number of elements returned from an array. To get the first

two scores of Charlie, you would use:

db.students.find({ "name": "Charlie" }, { scores: { $slice: 2 } });

Alternatively, you can use negative values with $slice to get elements from the end of the array.

To get the last score of Eve, you would use:

Output:

MongoDB (AEC Course) BDSL456B

 33 Department of CSE-Data Science, ATMECE

Program 5

Execute Aggregation operations ($avg, $min, $max, $push, $addToSet etc.). Encourage students

to execute several queries to demonstrate various aggregation operators.

Create a database of Academics and a collection of students in Mongo IDE.

Add the following documents in the students collection in MongoDB IDE.

{

"name": "Alice",

"age": 22,

 "grade": 88,

 "courses": ["Math", "Physics"]

 }

MongoDB (AEC Course) BDSL456B

 34 Department of CSE-Data Science, ATMECE

{

 "name": "Bob",

 "age": 25,

 "grade": 92,

 "courses": ["Math", "Chemistry"]

 }

MongoDB (AEC Course) BDSL456B

 35 Department of CSE-Data Science, ATMECE

{

 "name": "Charlie",

 "age": 23,

 "grade": 79,

 "courses": ["Biology", "Physics"]

}

MongoDB (AEC Course) BDSL456B

 36 Department of CSE-Data Science, ATMECE

 {

 "name": "David",

 "age": 22,

 "grade": 95,

 "courses": ["Chemistry", "Biology"]

 }

MongoDB (AEC Course) BDSL456B

 37 Department of CSE-Data Science, ATMECE

{

 "name": "Eve",

 "age": 25,

 "grade": 85,

 "courses": ["Math", "Biology"]

 }

MongoDB (AEC Course) BDSL456B

 38 Department of CSE-Data Science, ATMECE

1. $avg - Calculate the average grade of all students

> db.students.aggregate([

 {

 $group: {

 _id: null,

 averageGrade: { $avg: "$grade" }

 }

 }

])

Output:

MongoDB (AEC Course) BDSL456B

 39 Department of CSE-Data Science, ATMECE

2. $min - Find the minimum age of students

>db.students.aggregate([

 {

 $group: {

 _id: null,

 minAge: { $min: "$age" }

 }

 }

])

Output:

3. $max - Find the maximum grade among students

>db.students.aggregate([

 {

 $group: {

 _id: null,

 maxGrade: { $max: "$grade" }

 }

 }

])

Output:

MongoDB (AEC Course) BDSL456B

 40 Department of CSE-Data Science, ATMECE

4. $push - List all student names in an array

db.students.aggregate([

 {

 $group: {

 _id: null,

 allNames: { $push: "$name" }

 }

 }

])

Output:

5. $addToSet - List all unique courses taken by students

>db.students.aggregate([

 {

 $unwind: "$courses"

 },

 {

 $group: {

MongoDB (AEC Course) BDSL456B

 41 Department of CSE-Data Science, ATMECE

 _id: null,

 uniqueCourses: { $addToSet: "$courses" }

 }

 }

])

Output:

MongoDB (AEC Course) BDSL456B

 42 Department of CSE-Data Science, ATMECE

Program 6

Execute Aggregation Pipeline and its operations (pipeline must contain $match, $group,

$sort, $project, $skip etc. students encourage to execute several queries to demonstrate

various aggregation operators)

Create a database Academics1 and collection students in Mongo IDE.

Add the following documents in the students collection in MongoDB IDE.

{

"name": "Jayanth ",

 "age": 20,

 "grade": "A",

"scores": { "math": 85, "english": 92, "science": 88 }

}

MongoDB (AEC Course) BDSL456B

 43 Department of CSE-Data Science, ATMECE

{

 "name": "Janaki",

"age": 22,

"grade": "B",

"scores": { "math": 78, "english": 85, "science": 80 }

}

MongoDB (AEC Course) BDSL456B

 44 Department of CSE-Data Science, ATMECE

{

 "name": "Amit",

 "age": 21,

 "grade": "A",

"scores": { "math": 92, " english": 90, "science": 91 }

}

{

 "name": "Baskhar",

 "age": 23,

 "grade": "C",

 "scores": {" math": 65, "english": 70, "science": 72 }

}

MongoDB (AEC Course) BDSL456B

 45 Department of CSE-Data Science, ATMECE

{

"name": "Chaitra",

"age": 20,

"grade": "B",

"scores": { "math": 80, "english": 75, "science": 78 }

}

MongoDB (AEC Course) BDSL456B

 46 Department of CSE-Data Science, ATMECE

In MongoDB Shell

>use Academics1

Now, let's execute an aggregation pipeline with several stages:

1. $match: Filter students who are 21 years or older.

2. $group: Group by grade and calculate the average age.

3. $sort: Sort by average age in descending order.

4. $project: Project the grade and average age.

5. $skip: Skip the first result.

db.students.aggregate([

 {

$match: { age: { $gte: 21 } }

MongoDB (AEC Course) BDSL456B

 47 Department of CSE-Data Science, ATMECE

 },

{

 $group: {

 _id: "$grade",

 averageAge: { $avg: "$age" }

 }

},

{

 $sort: { averageAge: -1 }

},

{

 $project: {

 _id: 0,

 grade: "$_id",

 averageAge: 1

 }

},

{

MongoDB (AEC Course) BDSL456B

 48 Department of CSE-Data Science, ATMECE

 $skip: 1

}])

Output:

Let's break down each stage:

1. $match: Filters documents to include only those where age is greater than or equal to 21.

2. $group: Groups the documents by grade and computes the average age for each grade.

3. $sort: Sorts the resulting documents by averageAge in descending order.

4. $project: Projects the fields grade and averageAge, excluding the _id field.

5. $skip: Skips the first document in the sorted results.

When you execute this pipeline, you will get a result that first filters students by age, groups them

by grade, calculates the average age, sorts by this average age in descending order, and finally

skips the first result.

MongoDB (AEC Course) BDSL456B

 49 Department of CSE-Data Science, ATMECE

Program 7

a. Find all listings with listing_url, name, address, host_picture_url in the listings And

Reviews collection that have a host with a picture url.

 Create a database Airbnb and collection listingsAndReviews in Mongo IDE.

Add the following documents in the listingsAndReviews collection in MongoDB IDE.

 {

"listing_url": "http://example.com/listing1",

 "name": "Beautiful Apartment in the City",

"address": { "city": "New York", "country": "USA" },

 "host": { "host_picture_url": "http://example.com/host1.jpg" }

}

MongoDB (AEC Course) BDSL456B

 50 Department of CSE-Data Science, ATMECE

{

"listing_url": "http://example.com/listing2",

 "name": "Cozy Cottage",

"address": { "city": "Austin", "country": "USA" },

"host": { "host_picture_url": "http://example.com/host2.jpg" }

}

MongoDB (AEC Course) BDSL456B

 51 Department of CSE-Data Science, ATMECE

In MongoDB Shell

>use Airbnb

db.listingsAndReviews.aggregate([

 { $match: { "host.host_picture_url": { $exists: true, $ne: null } } },

 {

 $project: {

 listing_url: 1,

 name: 1,

 address: 1,

 host_picture_url: "$host.host_picture_url" }

 }])

Output:

MongoDB (AEC Course) BDSL456B

 52 Department of CSE-Data Science, ATMECE

 b. Using E-commerce collection write a query to display reviews summary.

Create a database CommerceDB and collection reviews in Mongo IDE.

MongoDB (AEC Course) BDSL456B

 53 Department of CSE-Data Science, ATMECE

Add the following documents in the reviews collection in MongoDB IDE.

{

 "product_id": 1,

 "product_name": "Wireless Mouse",

 "review_id": 101,

 "review_text": "Great mouse, very responsive.",

 "rating": 5

 }

MongoDB (AEC Course) BDSL456B

 54 Department of CSE-Data Science, ATMECE

 {

 "product_id": 1,

 "product_name": "Wireless Mouse",

 "review_id": 102,

 "review_text": "Good value for the price.",

 "rating": 4

 }

{

 "product_id": 2,

 "product_name": "Bluetooth Keyboard",

 "review_id": 202,

 "review_text": "Compact and portable.",

 "rating": 4

MongoDB (AEC Course) BDSL456B

 55 Department of CSE-Data Science, ATMECE

 }

{

 "product_id": 3,

 "product_name": "USB-C Hub",

 "review_id": 302,

 "review_text": "Works well with my laptop.",

 "rating": 5

}

MongoDB (AEC Course) BDSL456B

 56 Department of CSE-Data Science, ATMECE

 In MongoShell

>use CommerceDB

 Query to Display Reviews Summary

db.reviews.aggregate([

 {

 $group: {

 _id: "$product_id",

 product_name: { $first: "$product_name" },

 total_reviews: { $sum: 1 },

 average_rating: { $avg: "$rating" },

MongoDB (AEC Course) BDSL456B

 57 Department of CSE-Data Science, ATMECE

 latest_reviews: {

 $push: {

 review_id: "$review_id",

 review_text: "$review_text",

 rating: "$rating",

 }

 }

 }

 },

 {

 $project: {

 product_id: "$_id",

 product_name: 1,

 total_reviews: 1,

 average_rating: "$average_rating",

 latest_reviews: {

 $slice: ["$latest_reviews", -3] // Adjust the number of latest reviews as needed

 }

 }

MongoDB (AEC Course) BDSL456B

 58 Department of CSE-Data Science, ATMECE

 },

 {

 $sort: { total_reviews: -1 } // Sort by total reviews in descending order

 }

])

Output:

MongoDB (AEC Course) BDSL456B

 59 Department of CSE-Data Science, ATMECE

MongoDB (AEC Course) BDSL456B

 60 Department of CSE-Data Science, ATMECE

Program 8

8. a. Demonstrate creation of different types of indexes on collection (unique, sparse,

compound and multikey indexes)

 Create a database IndexDB and collection users in Mongo IDE.

 Add the following documents in the users collection in MongoDB Shell.

db.users.insert({

username: "John",

age: 30,

city:"Chennai",

"interests":["music","garden"],

Description:["good","avg","excellent"],

"hashedField": "hashedValue1",

"location": { "type": "Point", "coordinates": [-73.97, 40.77] },

MongoDB (AEC Course) BDSL456B

 61 Department of CSE-Data Science, ATMECE

"createdAt": ISODate("2023-01-01T00:00:00Z") })

1. Unique index:

A unique index ensures that the indexed field(s) do not have duplicate values

 db.users.createIndex({ "username": 1 }, { unique: true })

 Output:

2. Sparse Index:

A sparse index only includes documents that have the indexed field.

db.users.createIndex({ "city": 1 }, { sparse: true })

 Output:

3. Compound Index:

A compound index includes multiple fields within a single index.

 db.users.createIndex({ “username”: 1, “age”: 1 })

Output:

4. Multikey Index

A multikey index is created on an array field, indexing each value of the array.

db.users.createIndex({ "interests": 1 })

 Assuming interests is an array field in the user documents.

db.users.createIndex({ description: "text" })

Output:

MongoDB (AEC Course) BDSL456B

 62 Department of CSE-Data Science, ATMECE

MongoDB provides text indexes to support text search queries on string content. text indexes

can include any field whose value is a string or an array of string elements. Remember that you

can have only one text index per collection so after creating one if you create another text

index, you will get an error.

Hashed Index: Indexes where MongoDB hashes the index keys to create a more even

distribution of keys.

db. users.createIndex({ city: "hashed" })

Hashed indexes are beneficial for sharding collections in MongoDB.

They distribute data across shards based on the hash value of the indexed field, improving

query performance for filtering based on that field

Output:

Geo-spatial Index: Indexes used for geo-spatial queries.

db. users.createIndex({ location: "2dsphere" })

Output:

TTL (Time-To-Live) Index: Indexes that automatically expire documents after a certain

amount of time.

db. users.createIndex({ createdAt: 1 }, { expireAfterSeconds: 3600 })

Output:

https://www.mongodb.com/docs/v5.3/core/index-text/#std-label-index-feature-text

MongoDB (AEC Course) BDSL456B

 63 Department of CSE-Data Science, ATMECE

Program 9

9. a. Develop a query to demonstrate Text search using catalog data collection for a given

word

 b. Develop queries to illustrate excluding documents with certain words and phrases.

 Create a database CatalogDB and collection products in Mongo IDE.

 Add the following documents in the collection products in MongoDB IDE.

{

 "name": "Apple iPhone 14",

 "description": "Latest model of iPhone with advanced features",

 "category": "Electronics"

}

MongoDB (AEC Course) BDSL456B

 64 Department of CSE-Data Science, ATMECE

 {

 "name": "Samsung Galaxy S21",

 "description": "Newest Samsung smartphone with great camera",

 "category": "Electronics"

 }

 {

 "name": "Sony Headphones",

MongoDB (AEC Course) BDSL456B

 65 Department of CSE-Data Science, ATMECE

 "description": "Noise-cancelling headphones for immersive sound",

 "category": "Audio"

}

{

 "name": "Dell Laptop",

 "description": "High performance laptop for work and play",

 "category": "Computers"

}

MongoDB (AEC Course) BDSL456B

 66 Department of CSE-Data Science, ATMECE

In MongoShell

>use CatalogDB

a. 1. Create a Text Index

To enable text search, you need to create a text index on the fields you want to search. Here,

we'll create a text index on the name and description fields:

db.products.createIndex({ name: "text", description: "text" })

Output:

2. Perform a Text Search

Now, let's perform a text search. Suppose you want to search for products related to the word

"latest":

db.products.find({ $text: { $search: "latest" } })

Output:

MongoDB (AEC Course) BDSL456B

 67 Department of CSE-Data Science, ATMECE

db.products.find({ $text: { $search: "High performance" } })

Output:

b. Develop queries to illustrate excluding documents with certain words and phrases.

In MongoDB, you can use the $not operator combined with the $regex operator to exclude

documents that contain certain words or phrases. Below are some examples of queries to

illustrate this.

Add the following documents in the collection articles in MongoDB IDE.

{

 "_id": 1,

MongoDB (AEC Course) BDSL456B

 68 Department of CSE-Data Science, ATMECE

 "title": "MongoDB Basics",

 "content": "This article explains the basics of MongoDB."

}

{

 "_id": 2,

 "title": "Advanced MongoDB",

 "content": "This article covers advanced MongoDB topics."

}

MongoDB (AEC Course) BDSL456B

 69 Department of CSE-Data Science, ATMECE

{

"_id": 3,

"title": "MongoDB Indexes",

"content": "Indexes in MongoDB can improve query performance."

}

{

MongoDB (AEC Course) BDSL456B

 70 Department of CSE-Data Science, ATMECE

 "_id": 4,

 "title": "Introduction to Databases",

 "content": "This article gives an introduction to databases in general."

}

1. Exclude Documents Containing a Specific Word

To exclude documents that contain the word "advanced" in the ‘content’ field:

db.articles.find({

 "content": {

 $not: /advanced/

 }

})

Output:

MongoDB (AEC Course) BDSL456B

 71 Department of CSE-Data Science, ATMECE

2. Exclude Documents Containing Any of Multiple Words

To exclude documents that contain either "improve" or "performance" in the ‘content’ field:

db.articles.find({

 "content": {

 $not: /(improve|performance)/

 }

})

Output:

MongoDB (AEC Course) BDSL456B

 72 Department of CSE-Data Science, ATMECE

3. Exclude Documents Containing a Specific Phrase

To exclude documents that contain the phrase "MongoDB Basics" in the ‘title’ field:

db.articles.find({

 "title": {

 $not: /MongoDB Basics/

 }

})

MongoDB (AEC Course) BDSL456B

 73 Department of CSE-Data Science, ATMECE

Output:

4. Exclude Documents Based on Multiple Fields

To exclude documents that contain "MongoDB" in the ‘title’ or "advanced" in the ‘content’:

db.articles.find({

 $and: [

 { "title": { $not: /MongoDB/ } },

 { "content": { $not: /advanced/ } }

]

})

Output:

MongoDB (AEC Course) BDSL456B

 74 Department of CSE-Data Science, ATMECE

Program 10

Develop an aggregation pipeline to illustrate Text search on Catalog data collection.

 Create a database TextDB and collection catalog in Mongo IDE.

 Add the following documents in the catalog collection in MongoDB Shell.

 {

 "name": "Apple iPhone 14",

 "description": "Latest model of iPhone with advanced features",

 "category": "Electronics"

}

MongoDB (AEC Course) BDSL456B

 75 Department of CSE-Data Science, ATMECE

 {

 "name": "Samsung Galaxy S21",

 "description": "Newest Samsung smartphone with great camera",

 "category": "Electronics"

 }

{

 "name": "Sony Headphones",

MongoDB (AEC Course) BDSL456B

 76 Department of CSE-Data Science, ATMECE

 "description": "Noise-cancelling headphones for immersive sound",

 "category": "Audio"

}

 In MongoShell

>use TextDB

Create a Text Index

First, create a text index on the ‘name’ and ‘description’ fields.

db.catalog.createIndex({ name: "text", description: "text" });

Output:

Define the Aggregation Pipeline

Now, create an aggregation pipeline to perform the text search and process the results. Below is

an example pipeline:

db.catalog.aggregate([

MongoDB (AEC Course) BDSL456B

 77 Department of CSE-Data Science, ATMECE

 { $match: {

 $text: { $search: " Apple iPhone 14" } }

 },

 {$project: {

 name: 1,

 description: 1,

 category: 1,

 score: { $meta: "textScore" }

 }

 },

 {

 $sort: {

 score: { $meta: "textScore" }

 } },

 {

 $limit: 10

 }]);

Output:

