ATME COLLEGE OF ENGINEERING

13" KM Stone, Bannur Road, Mysore - 560 028

AT M E

J College of Engineering

DEPARTMENT OF COMPUTER SCIENCE ENGINEERING
(DATA SCIENCE)

(ACADEMIC YEAR 2024-25)
LABORATORY MANUAL

COURSE: MONGODB LABORATORY
Course CODE: BDSL456B
SEMESTER: 1VV-2022 CBCS Scheme

Prepared By Approved By

Dr.Vinod Kumar P Dr. AnithaD B
Faculty In-charge HOD, CSE-DSE




INSTITUTIONAL MISSION AND VISION

Objectives

[1 To provide quality education and groom top-notch professionals, entrepreneurs and

leaders for different fields of engineering, technology and management.

[1 To open a Training-R & D-Design-Consultancy cell in each department, gradually
introduce doctoral and postdoctoral programs, encourage basic & applied research

in areas of social relevance, and develop the institute as a center of excellence.

[1 To develop academic, professional and financial alliances with the industry as well as

the academia at national and transnational levels

[1 To develop academic, professional and financial alliances with the industry as well as

the academia at national and transnational levels.

[1 To cultivate strong community relationships and involve the students and the staff in

local community service.

1 To constantly enhance the value of the educational inputs with the participation of

students, faculty, parents and industry.

Vision

(1 Development of academically excellent, culturally vibrant, socially responsible and

globally competent human resources.

Mission

To keep pace with advancements in knowledge and make the students competitive and
capable at the global level.

To create an environment for the students to acquire the right physical, intellectual,
emotional and moral foundations and shine as torch bearers of tomorrow’s society.

To strive to attain ever-higher benchmarks of educational excellence.




DEPARTMENT OF COMPUTER SCIENCE ENGINEERING AND ENGINEERING

(DATA SCIENCE &ENGINEERING)

Vision of The Department

* To impart technical education in the field of data science of excellent quality with a high
level of professional competence, social responsibility, and global awareness among the
students

Mission
» To impart technical education that is up to date, relevant and makes students competitive
and employable at global level
To provide technical education with a high sense of discipline, social relevance in an
intellectually, ethically and socially challenging environment for better tomorrow
Educate to the global standards with a benchmark of excellence and to kindle the spirit of

innovation.

Program Outcomes(PO)

e Engineering knowledge: Apply the knowledge of mathematics, science, engineering
fundamentals, and an engineering specialization to the solution of complex engineering

problems.

Problem analysis: Identify, formulate, review research literature, and analyze complex
engineering problems reaching substantiated conclusions using first principles of

mathematics, natural sciences, and engineering sciences.




Design/development of solutions: Design solutions for complex engineering problems

and design system components or processes that meet the specified needs with appropriate
consideration for the public health and safety, and the cultural, societal, and environmental
considerations.

Conduct investigations of complex problems: Use research-based knowledge and
research methods including design of experiments, analysis and interpretation of data, and
synthesis of the information to provide valid conclusions.

Modern tool usage: Create, select, and apply appropriate techniques, resources, and
modern engineering and IT tools including prediction and modeling to complex

engineering activities with an understanding of the limitations.

The engineer and society: Apply reasoning informed by the contextual knowledge to
assess societal, health, safety, legal and cultural issues and the consequent responsibilities
relevant to the professional engineering practice

Environment and sustainability: Understand the impact of the professional engineering
solutions in societal and environmental contexts, and demonstrate the knowledge of, and

need for sustainable development.

Ethics: Apply ethical principles and commit to professional ethics and responsibilities and

norms of the engineering practice.

Individual and team work: Function effectively as an individual, and as a member or

leader in diverse teams, and in multidisciplinary settings.

Communication: Communicate effectively on complex engineering activities with the
engineering community and with society at large, such as, being able to comprehend and
write effective reports and design documentation, make effective presentations, and give

and receive clear instructions.




e Project management and finance: Demonstrate knowledge and understanding of the
engineering and management principles and apply these to one’s own work, as a member
and leader in a team, to manage projects and in multidisciplinary environments.

Life-long learning: Recognize the need for, and have the preparation and ability to engage

in independent and life-long learning in the broadest context of technological change.

Program Specific Outcomes (PSOs)

e PSO1: Develop relevant programming skills to become a successful data scientist

PSO2: Apply data science concepts and algorithms to solve real world problems of the
society

PSO3: Apply data science techniques in the various domains like agriculture, education
healthcare for better society

Program Educational Objectives (PEOSs):

PEOL: Develop cutting-edge skills in data science and its related technologies, such as machine

learning, predictive analytic, and data engineering.

PEO2: Design and develop data-driven solutions to real-world problems in a business, research,

or social environment.

PEO3: Apply data engineering and data visualization techniques to discover, investigate, and
interpret data.

PEO4: Demonstrate ethical and responsible data practices in problem solving

PEOS: Integrate fields within computer science, optimization, and statistics to develop better
solutions




Experiments

a. Illustration of Where Clause, AND,OR operations in MongoDB.

b. Execute the Commands of MongoDB and operations in MongoDB : Insert, Query,
Update, Deleteand Projection. (Note: use any collection)

[Refer: Book 1 chapter 4].

a. Develop a MongoDB query to select certain fields and ignore some fields of the
documents fromany collection.
b. Develop a MongoDB query to display the first 5 documents from the results
obtained in a.[use of limit and find]
[Refe: Book1 Chapter 4, book 2: chapter 5]

a. Execute query selectors (comparison selectors, logical selectors ) and list out the
results on any collection
b. Execute query selectors (Geospatial selectors, Bitwise selectors ) and list out the
results on any collection
[Refer: Book 3 Chapter 13]

Create and demonstrate how projection operators ($, $elematch and $slice) would be used in

theMondoDB.
[Refer: Book 3 Chapter 14]

Execute Aggregation operations ($avg, $min,$max, $push, $addToSet etc.). students encourage
to execute several queries to demonstrate various aggregation operators)
[Refer: Book 3 Chapter 15]

Execute Aggregation Pipeline and its operations (pipeline must contain $match, $group,

$sort, $project,
$skip etc. students encourage to execute several queries to demonstrate various aggregation

operators)[refer book 2: chapter 6 ]

a. Find all listings with listing_url, name, address, host_picture_url in the listings And
Reviewscollection that have a host with a picture url
Using E-commerce collection write a query to display reviews summary.[refer Book2: chapter 6]

a. Demonstrate creation of different types of indexes on collection (unique, sparse,
compound andmultikey indexes)
b. Demonstrate optimization of queries
using indexes.Refer: Book 2: Chapter 8 and
Book 3: Chapter 12]

a. Develop a query to demonstrate Text search using catalog data collection for a given

word
Develop queries to illustrate excluding documents with certain words and phrases

Refer: Book 2: Chapter 9]

Develop an aggregation pipeline to illustrate Text search on Catalog data collection.

Refer: Book 2 :Chapter 9]




MongoDB (AEC Course) BDSL456B

Program 1

a. Mlustration of Where Clause, AND, OR operations in MongoDB.
Create a database of Students and collection details in Mongo DB IDE.

Create Database

Database Name

Q
P
detailg 3

O Time-Series

Time-series collections efficiently store sequences of measurements over a period
@

of time. Learn More

2 Additional preferences (e.g. Custom collation, Capped, Clustered collections)

Ganeel

Add the following documents in the details collection in MongoDB IDE.
{

rno™ 1 1,
"name"' : ""Bhavana",
"location': ""Chennai"'

}

Insert Document

To collection Students.details

Jx
* Paste one or more documents here

" : "Bhavana",
"location": "Chennai"

}

| ancsl

{

rno" : 2,
"name"" : "Amit",
"location'"; "'Delhi""

1 Department of CSE-Data Science, ATMECE



MongoDB (AEC Course) BDSL456B

Insert Document

To collection Students.details

frx
* Paste one or more documents here
*/
> {
Ml B Ay
"name" : "Amit",
"location": "Delhi"

}

Cunoel

{
rno™ : 3,
“email_id" : "a@gmail.com™ ,
"location"":""Chennai™’

}

Insert Document
To collection Students.details

view (K8}

Jiex
= Paste one or more documents here
*/
Vol
"rno" : 3,
"email_id" : "a@gmail.com" ,
"location":"Chennai"

}

Saneel

{
"rno" : 4,
"name" : "Akash",
"location':""Bangalore""

}

2 | Department of CSE-Data Science, ATMECE



MongoDB (AEC Course) BDSL456B

Insert Document

To collection Students.details

+ Paste one or more documents here

@l
"ot : 4

: "Akash" ,

on":"Bangalore"

Ganoel m

1. Where Clause in MongoDB: In MongoDB, the find() method is used to query
documents from a collection. The find() method can accept a query document as a
parameter which acts as a "WHERE" clause.

Syntax: db.collection.find({ field: value })

In Mongodb shell, execute the following code:

> use Students
> db.details.find()
Output:
: ObjectId('665366c71d397fel33a7ade9'),

D |

: 'Bhavana’

tId('665367841d397fel33a7adeb'),

: 'a@gmail.com'

tId('665367991d397fel33a7aded'},

1 1
mit',

3 Department of CSE-Data Science, ATMECE



MongoDB (AEC Course) BDSL456B

/[findOne to show only first record
> db. details.findOne()

ectId('665366c71d397fel33a7ade9'),

2. AND Operation in MongoDB: MongoDB provides the $and operator to perform
logical AND operation between multiple conditions in a query.

Syntax: db.collection.find({ $and: [ { field1: valuel }, { field2: value2 } 1})

>db.details.find({$and: [{*'location™: ""Chennai''}] })
Output:

jectId('66537e4f1ld397fel33a7adfl'),

: 'Bhavana’,

on: 'Chennai'

ObjectId('6653824c1d397fel33a7adf5'),

id: 'a@gmail.com',

on: 'Chennai'

3. OR Operation in MongoDB: Similarly, MongoDB provides the $or operator to
perform logical OR operation between multiple conditions in a query.

Syntax: db.collection.find({ $or: [ { field1: valuel }, { field2: value2 } 1})

4 Department of CSE-Data Science, ATMECE



MongoDB (AEC Course) BDSL456B

>db.details.find({$or: [{*"location': "*Chennai"'}, {*'location™: *'Delhi*'}] })

Output:

ObjectId('66537e4f1d397fel33a7adf1'),
o: 1,
'Bhavana',

on: 'Chennai'

jectId('66537e741d397fel33a7adf3'),

'Amit',

on: 'Delhi'

jectId('6653824c1d397fel33a7adf5'),

id: 'a@gmail.com',

on: 'Chennai'

b. Execute the Commands of MongoDB and operations in MongoDB: Insert, Query,
Update, Delete and Projection. (Note: use any collection).

1. Insert Operation: Use the insertOne() method to insert a single document into a
collection.

Syntax: db.collection.insertOne({ field1: valuel, field2: value2, field3: value3 })

Every row/document can be different than other
> db.details.insert({name:'Amar’,rno:5})
Output:

5 Department of CSE-Data Science, ATMECE



MongoDB (AEC Course) BDSL456B

: ObjectId('665386afafe50186baf8fd4b')

Verification Code:
>db.details.find({name:'Amar’,rno:5})

bbjectId('665386afafe50186baf8fdab'),

e: 'Amar',

> db.details.insert({rno:6, email_id:'d@gmail.com'})
Output:

2d: true,
jectId('66538753afe50186baf8fd4c')

Verification Code:
>db.details.find({rno:6, email_id:'d@gmail.com'})

jectId('66538753afe50186baf8fdac'),

id: 'd@gmail.com'

/l To insert date use ISODate function
> db.details.insert({rno:15, name:'Ravina’, dob: ISODate(**2019-09-14"")})

6 Department of CSE-Data Science, ATMECE



MongoDB (AEC Course) BDSL456B

Verification Code:

db.details.find({rno:15, name:'Ravina', dob: ISODate("2019-09-14")})
{

: ObjectId('66538842afe50186baf8fdad'),

'Ravina’,

)9-14T00:

/lInsert multiple documents at once
> db.details.insert([{rno:7,name:'a’},{rno:8,name:'b'},{rno:8,name:'c'}])
Output:

jectId('66538970afe50186baf8fd4e'),
ectId('66538970afe50186baf8fd4f'),
: ObjectId('66538970afe50186baf8fd50"')

db.details.find({rno:7,name:"'a'})

{
d: ObjectId('66538970afe50186bafsfdde'),

/ to insert multiple values for one key using []
>db.details.insert({rno:10,name:'Ankit',hobbies:['singing",'cricket’,’swimming’,
‘music'],age:21})

Output:

7 Department of CSE-Data Science, ATMECE



MongoDB (AEC Course) BDSL456B

Verification Code:
db.details.find({rno:10,name:'Ankit’,hobbies:['singing’,"cricket’,"'swimming’,
‘music’],age:21})

db.details.find({rno:10,name:'Ankit',hobbies:['singing', 'cricket', 'swimming', 'music'],age:21})

tId('66538a35afe50186baf8fd51'),

'singing',
'cricket!',
'swimming',

"music'

2. Query Operation: Use the find() method to query documents from a collection.
Syntax: db.collection.find({ field: value })

>db.details.find({rno:1})
Output:

id: ObjectId('66537e4f1d397fel33a7adfl'),

no: 1,

'Bhavana',

ion: 'Chennai'

3.Delete Operation: Use the deleteOne() method to delete a single document from a collection.
Syntax: db.collection.deleteOne({ field: value })

>db.details.deleteOne({rno:1})
Output:

Verification Code:

8 Department of CSE-Data Science, ATMECE



MongoDB (AEC Course) BDSL456B

db.details.find({rno:1})

>db. details.deleteMany( { location: ""Chennai** })
Output:

Verification Code:

db.details.find( { location: "Chennai" } )

4.Projection Operation: Use the second parameter of the find() method to specify which fields
to include or exclude in the query result.

Syntax: db.collection.find({}, { fieldl: 1, field2: 1, id:0})

/I Find command to show only names without condition
> db. details.find({},{name:1, id:0})

ame: 'Ravina'

ame: 'Reena'

9 Department of CSE-Data Science, ATMECE



MongoDB (AEC Course) BDSL456B

me: 'Ankit!'

10 Department of CSE-Data Science, ATMECE



MongoDB (AEC Course) BDSL456B

Program 2

a. Develop a MongoDB query to select certain fields and ignore some fields of the

documents from any collection.

Syntax: db.collection.find({}, { fieldl: 1, field2: 1, id:0})

e db.collection.find({}) is used to retrieve all documents from the collection.
o {fieldl: 1, field2: 1, _id: O } specifies the projection document where:
o fieldl: 1 and field2: 1 indicates that these fields will be included in the result.

e id: O indicates that the _id field will be excluded from the result.

//[Find command with condition with giving name field only to show
> db. details.find({rno:5},{name:1})
Output:

: ObjectId('665386afafe50186baf8fdab'),

1e: '"Amar'!

/[Find command with condition with giving name field only to show and _id to hide
>db. details.find({rno:5},{name:1,_id:0})
Output:

1e: 'Reena'’

11 Department of CSE-Data Science, ATMECE



MongoDB (AEC Course) BDSL456B

/I Find command to show only names without condition
> db. details.find({},{name:1,_id:0})

e: 'Amit!

e: '"Amit!'

1e: '"Amar'

CHEREVALER

1e: 'Reena'’

12 Department of CSE-Data Science, ATMECE



MongoDB (AEC Course) BDSL456B

b. Develop a MongoDB query to display the first 5 documents from the results
obtained in a. [use of limit and find]

Limit Operation: Used to restrict the number of documents returned by a query. This is

particularly useful when you're dealing with large datasets and you only need a subset of

documents.
Syntax: db.collection.find({}, { field1: 1, field2: 1, _id: 0 }).limit(5)

e Limit (5) limits the number of documents returned to 5.

e // Limit use to show only some records from starting- following command shows
only first 2 records from collection
> db. details.find().limit(2)
Output:

bjectId('66537e741d397fel33a7adf3'),

ie: '"Amit',
ion: 'Delhi'

id: ObjectId('665385f4afe50186baf8fd49'),

e: 'Amit',

> db. details.find().limit(5)
Output:

13 Department of CSE-Data Science, ATMECE



MongoDB (AEC Course) BDSL456B

ectId('66537e741d397fel33a7adf3"'),
'Amit',

'Delhi!

jectId('665385f4afe50186baf8fd49'),

'Amit',

ctId('66538667afe50186baf8fd4a'),

'a@gmail.com'

ctId('665386afafe50186baf8fdab'),

'"Amar',

d: ObjectId('66538753afe50186baf8fd4c'),

6,

id: 'd@gmail.com'

14 Department of CSE-Data Science, ATMECE



MongoDB (AEC Course) BDSL456B

Program 3
a. Execute query selectors (comparison selectors, logical selectors) and list out the

results on any collection

b. Execute query selectors (Geospatial selectors, Bitwise selectors) and list out the

results on any collection

Comparison Selectors: Comparison selectors are used to compare fields against specific

values or other fields. Here are some common comparison selectors:
$eq - Matches values that are equal to a specified value.
$ne - Matches all values that are not equal to a specified value.
$gt - Matches values that are greater than a specified value.
$gte - Matches values that are greater than or equal to a specified value.
$It - Matches values that are less than a specified value.
$lte - Matches values that are less than or equal to a specified value.
$in - Matches any of the values specified in an array.

$nin - Matches none of the values specified in an array.

Logical Selectors: Logical selectors are used to combine multiple conditions in a query. Here

are some common logical selectors:
$and - Joins query clauses with a logical AND and requires that all conditions be true.
$or - Joins query clauses with a logical OR and requires that at least one condition be true.

$not - Inverts the effect of a query expression and returns documents that do not match the

query expression.

$nor - Joins query clauses with a logical NOR and requires that none of the conditions be true.

Create a database Store and collection customers in Mongo DB IDE.

15 Department of CSE-Data Science, ATMECE



MongoDB (AEC Course)

BDSL456B

Create Database

Database Name

Store

Collection Name

customers

O Time-Series

of time. Learn More®

3

Time-series collections efficiently store sequences

of measurements over a period

> Additional preferences (e.g. Custom collation, Capped, Clustered collections)

In MongoDB Shell:

>use Store

> db.customers.insertMany([ { _id: 1, name: ""Alice", age: 30, city: ""New York" },

{ __id: 2, name: ""Bob"", age: 25, city: "'San Francisco" },

{ __id: 3, name: ""Charlie™, age: 35, city: ""Los Angeles" },

{ _id: 4, name: ""David", age: 28, city: ""Chicago" },
{{id: 5, name: "Eve", age: 32, city: "Miami' }])

a. Execute query selectors (comparison selectors, logical selectors) and list out the

results on any collection.

Using Comparison Selectors

1.

Find customers aged 28:

>db.customers.find({ ""age': { "$eq': 28} })

Output:

16

Department of CSE-Data Science, ATMECE



MongoDB (AEC Course)

BDSL456B

: 'David’',

LG,

: '"Chicago'

2. Find customers older than 30:
>db.customers.find({ "age™: { "$gt"*: 30 } })
Output:

d. 3,

'Charlie’',

e 'E\re‘,

SZ,

"Miami'

Using Logical Selectors

3. Find customers in city is New York OR city is Los Angeles:

>db.customers.find({
$or: [
{ city: ""New York™ },
{city: " Los Angeles™ }
1

17 | Department of CSE-Data Science, ATMECE



MongoDB (AEC Course) BDSL456B

Output:

3,
1e: 'Charlie’',

35,

y: 'Los Angeles'

4. Find customers age 30 and city New York
>db.customers.find({
$and: [
{age: 30},
{ city:""New York™ }
13

v: '"New York'

18 Department of CSE-Data Science, ATMECE



MongoDB (AEC Course) BDSL456B

Using Both Comparison and Logical Selectors

5. Find customers greater than or equal to 18, less than 35, in city New York or

Miami

>db.customers.find({$and: [

{age: { $gte: 181} }, Il age greater than or equal to 18
{age: {$It: 35} }, /1 age less than 35
{ city: { $in: [""New York", "*Miami**] } } // city is either "New York™ or
"Miami*'
)
Output:

id: 1,
: 'Alice’,
30,

: '"New York!'

ity: "Miami!

b. Execute query selectors (Geospatial selectors, Bitwise selectors) and list out the
results on any collection

Under database Store, create a collection places in Mongo DB IDE.

19 Department of CSE-Data Science, ATMECE



MongoDB (AEC Course) BDSL456B

Create Collection

Collection Name

places

O Time-Series &

Time-series collections efficiently store sequences of measurements over a period

of time. Learn More @

» Additicnal preferences (e.g. Custom collation, Capped, Clustered collections)

Cancel Create Collection

Geospatial Selectors: MongoDB supports geospatial queries for geospatial data. It
provides two types of geospatial indexes: 2d indexes and 2d sphere indexes.

Add the following documents in the places collection in MongoDB Shell.
>db.places.insertMany([

{id: 1, name: ""Place A", location: { type: ""Point", coordinates: [ -73.97,40.77 ] } }, // New
York
{id: 2, name: ""Place B, location: { type: ""Point™, coordinates: [ -122.43, 37.77 ]} }, //
San Francisco

{id: 3, name: ""Place C", location: { type: ""Point™, coordinates: [ -118.25, 34.05]} }, //
Los Angeles

{id: 4, name: ""Place D", location: { type: ""Point", coordinates: [ -87.63, 41.88 ]} }, //
Chicago

{id: 5, name: ""Place E", location: { type: ""Point", coordinates: [ -80.19, 25.77]1}} //
Miami
D

Create a 2dsphere Index on location:

>db.places.createlndex({ location: "2dsphere™ })

Geospatial Query (Find places within 10km of a given point):
>db.places.find({ location: {

$near: {

20 | Department of CSE-Data Science, ATMECE



MongoDB (AEC Course)

BDSL456B

$geometry: {
type: ""Point",
coordinates: [ -73.97, 40.77 ]
}, $maxDistance: 10000 // 10km in meters

1)

2. Bitwise Selectors

Under database Store, create a collection devices in Mongo DB IDE.

Create Collection

Collection Name

deciveq

O Time-Series
Time-series collections efficiently store sequences of measurements over a period
of time. Learn More®

> Additional preferences (e.g. Custom collation, Capped, Clustered collections)

Cancel Create Collection

We'll use a collection devices with fields id, name, and status (where status is a bitwise flag).

>db.devices.insertMany([

{id: 1, name: ""Device A", status: 5 }, // 0101 in binary

{id: 2, name: ""Device B", status: 3 }, // 0011 in binary

{id: 3, name: ""Device C", status: 6 }, // 0110 in binary

{id: 4, name: ""Device D", status: 12 }, // 1100 in binary

{id: 5, name: ""Device E", status: 7 } // 0111 in binary ])

21 | Department of CSE-Data Science, ATMECE



MongoDB (AEC Course) BDSL456B

Bitwise AND Query (Find devices where the 2nd bit is set):

>db.devices.find({ status: { $bitsAllSet: 2} })

ObjectId('66583668f7e76d265¢c992a45"),

1e: 'Device B',

ObjectId('66583668f7e76d265¢c992a46"),

1e: 'Device C',

id: ObjectId('66583668f7e76d265c992a48"),

: 'Device E',

Bitwise OR Query (Find devices where any bit in 0101 is set):

To find all devices where any of the bits at positions 0 or 3 are set (i.e., either the least significant

bit or the fourth bit is set), you can use the $bitsAnySet operator as follows:

> db.devices.find({ 'status': { ""$bitsAnySet': [0, 3]} })

22 Department of CSE-Data Science, ATMECE



MongoDB (AEC Course) BDSL456B

d: ObjectId('66583668f7e76d265¢c992a44"),
id: 1,

'Device A',

d: ObjectId('66583668f7e76d265c992a45'),
d: 2,

'Device B',

d: ObjectId('66583668f7e76d265¢c992a47"'),

d: 4,

'Device D',

In MongoDB, the main geospatial query operators include:

$geoWithin: Finds documents within a specified geometry (e.g., a polygon).
$geolntersects: Finds documents that intersect with a specified geometry.

$near: Finds documents near a specified point, using a 2dsphere index.
$nearSphere: Similar to $near, but calculates distances using spherical geometry.

$center: Finds documents within a circular area (used with legacy coordinate pairs).

o o~ wbd

$centerSphere: Finds documents within a circular area on a sphere (used with legacy

coordinate pairs).

23 Department of CSE-Data Science, ATMECE



MongoDB (AEC Course) BDSL456B

7. $box: Finds documents within a rectangular area (used with legacy coordinate pairs).
8. $polygon: Finds documents within a polygon defined by multiple points (used with legacy

coordinate pairs).

In MongoDB, the main bitwise query operators include:

1. $bitsAllClear: Matches documents where all of the given bit positions are clear (i.e., 0).

2. $bitsAllSet: Matches documents where all of the given bit positions are set (i.e., 1).

3. $bitsAnyClear: Matches documents where any of the given bit positions are clear (i.e., 0).

4. $bitsAnySet: Matches documents where any of the given bit positions are set (i.e., 1).
Explanation

o Geospatial Selector:
o $near: Finds documents near a specified point. Requires a 2dsphere index on the
location field.
o $geometry: Specifies the reference point as a GeoJSON object.
o $maxDistance: Limits the distance from the reference point (in meters).
« Bitwise Selector:
o $bitsAllSet: Matches documents where all of the given bit positions are 1.

o $bitsAnySet: Matches documents where any of the given bit positions are 1.

By executing these queries, you can filter documents based on geospatial proximity and bitwise

conditions.

24 Department of CSE-Data Science, ATMECE



MongoDB (AEC Course) BDSL456B

Program 4

Create and demonstrate how projection operators ($, $elematch and $slice) would be used
in the MongoDB.

$elemMatch: The $elemMatch operator is used to match documents that contain an array field

with at least one element that matches all the specified query criteria.

$slice: The $slice projection operator is used within the projection document to limit the number

of elements returned from an array field.

Create a database School and collection students in Mongo DB IDE.

Create Database

Database Name

School a

Collection Name

students Q
-

O Time-Series
Time-series collections efficiently store sequences of measurements over a period

of time. Learn More®

> Additional preferences (e.g. Custom collation, Capped, Clustered collections)

Cancel Create Database

Add the following documents in the details collection in MongoDB IDE.

{
" id": 1,
"name": "Alice",

"scores": [ { "type": "exam", "score": 90 }, { "type": "quiz", "score": 85 }, { "type":

"homework", "score": 80 } ]

}

25 Department of CSE-Data Science, ATMECE



MongoDB (AEC Course) BDSL456B

Insert Document

To collection School.students

J**
* Paste one or more documents here

0_ga@l’g alg
""name": "Alice",
"scores": [
{ "type": "exam", "score": 90 },
{ "type": "quiz", "score": 85 },
{ "type": "homework", '"score": 80 }

1
2
3
4
5
6
T
8

‘ ance' ‘ ﬁ

" id": 2,
"name": "Bob",

"scores": [ { "type": "exam", "score": 75 }, { "type": "quiz", "score": 90 }, { "type":

"homework", "score": 85 } ]

26 Department of CSE-Data Science, ATMECE



MongoDB (AEC Course) BDSL456B

Insert Document

To collection School.students

[x
* Paste one or more documents here

": "exam", "score": 75 },
{ "type": "quiz", '"score": 90 },
{ "type": "homework", "score": 85 } ]

1
2
3
4
5
6
7
8
9
0
1

o

‘ Cancel ‘ Insert

"_id": 3’
"name": "Charlie",

"scores": [

{ "type": "exam", "score": 70 },

{ "type": "quiz", "score": 80 },

{ "type": "homework", "score": 90 }

27 Department of CSE-Data Science, ATMECE



MongoDB (AEC Course) BDSL456B

Insert Document

To collection School.students

J**x
* Paste one or more documents here
*/
"_qd": 3,
"name": "Charlie",
"scores": [
{ "type": "exam", "score": 70 },
{ "type": "quiz", "score": 80 },
": "homework", "score": 90 }

‘ Cancel ‘ Insert

"id": 4,
"name™: "David",
"scores™: [
{"type": "exam", ""score'": 85},

{"type': "quiz", "'score': 75},
{"type": ""homework"", **score'": 80 }

28 Department of CSE-Data Science, ATMECE



MongoDB (AEC Course) BDSL456B

Insert Document

To collection School.students

[x%
* Paste one or more documents here
*/
v 4
"_dd": 4,
"name": "David",
"scores": [
{ "type": "exam", "score": 85 },
{ "type": "quiz", "score": 75 },
{ "type": "homework", '"score": 80 }

1

1
2
3
4
5
6
7
8
9

}

‘ Cancel ‘ Insert

" id™: 5,
""name’: "Eve",
"'scores™: [

{"type": "exam", "'score': 95},

{"type": "quiz", "'score': 85 },
{ "type": ""homework", **score': 90 }

29 Department of CSE-Data Science, ATMECE



MongoDB (AEC Course) BDSL456B

Insert Document

To collection School.students

J**
* Paste one or more documents here

"_id": s,
"hame": "Eve",
"scores": [

{ "type": "exam", "score": 95 },

{ "type": "quiz", "score": 85 },

{ "type": "homework", "score": 90 }

]

a
2
8
4
5
6
7
8

‘ ancel ‘ ﬁ

1. $ Operator

The $ operator is used to project a single element from an array that matches
a specified condition. For instance, to find the exam score of Alice, you would

use:

// To project only the first element in the grades array that is greater than or equal to 85, we

can use the following query:

db.students.find(
{ "name"': "Alice", "'scores.type'’: ""'exam" },
{"name": 1, "'scores.$'"": 1}

)

Output:

30 Department of CSE-Data Science, ATMECE



MongoDB (AEC Course) BDSL456B

2. $elemMatch Operator

The $elemMatch operator is used to project the first matching element from an array. To get the
quiz score of Bob, you would use:

>db.students.find(
{""name™: ""Bob" },

{"name": 1, "'scores™: { $elemMatch: { ""type'": ""quiz' } } }

31 Department of CSE-Data Science, ATMECE



MongoDB (AEC Course) BDSL456B

3. $slice Operator

The $slice operator is used to limit the number of elements returned from an array. To get the first

two scores of Charlie, you would use:

db.students.find({ "name": "Charlie" }, { scores: { $slice: 2 } });

U. S,

'Charlie’',

Alternatively, you can use negative values with $slice to get elements from the end of the array.
To get the last score of Eve, you would use:

Output:

32 Department of CSE-Data Science, ATMECE



MongoDB (AEC Course) BDSL456B

Program 5

Execute Aggregation operations ($avg, $min, $max, $push, $addToSet etc.). Encourage students

to execute several queries to demonstrate various aggregation operators.

Create a database of Academics and a collection of students in Mongo IDE.

Create Database

Database Name

Academics Q

Collection Name

students 3

O Time-Series
Time-series collections efficiently store sequences of measurements over a peri

of time. Learn More

Additional preferences (e.g. Custom collation, Capped, Clustered collections]
] PP

Cancel Create Database

Add the following documents in the students collection in MongoDB IDE.
{

"name": "Alice",

age': 22,

""grade': 88,

"courses™: ["Math™, ""Physics™]

}

33 Department of CSE-Data Science, ATMECE



MongoDB (AEC Course) BDSL456B

Insert Document

To collection Academics.students

[ x*

* Paste one or more documents here
*/

{

"name": "Alice",

"age": 22,

"grade": 88,

"courses": ["Math", "Physics"]

3

1
2
3
4
5
6
7
8
9
(o]

1

{

"name'': "'Bob",

"age": 25,

""grade': 92,

"courses™: [""Math™, ""Chemistry'’]

}

34 Department of CSE-Data Science, ATMECE



MongoDB (AEC Course) BDSL456B

Insert Document

To collection Academics.students

VIEW IRt =
1 [x*
2 # Paste one or more documents here
3 */
4w
5 "name": "Bob",
6 "age": 25,
7 "grade": 92,
8 "courses": ["Math", "Chemistry"]
9 }
10

‘ Cancel ‘ Insert

"name™: ""Charlie™,
"'age'": 23,
""grade': 79,

"courses': ['Biology", ""Physics"]

35 Department of CSE-Data Science, ATMECE



MongoDB (AEC Course) BDSL456B

Insert Document

To collection Academics.students

VIEW =

1 JE*

2 * Paste one or more documents here

3 */

4~ q

5 "name": "Charlie",

6 "age": 23,

T "grade": 79,

8 "courses": ["Biology", "Physics"]
9 }
10

"name’’: ""David",
"'age': 22,
""grade': 95,
"courses™: [""Chemistry™, "'Biology"]

}

36 Department of CSE-Data Science, ATMECE



MongoDB (AEC Course) BDSL456B

4 B |

Insert Document

To collection Academics.students

VIEW R =
1 Jxx
2 * Paste one or more documents here
3 */
4w {
5 "name'": "David",
6 "age": 22,
7 "grade": 95,
8 "courses": ["Chemistry", "Biolegy'"]
9 1
10

{

"name'': "Eve"',

"'age'": 25,

""grade': 85,

"courses™: ["Math™, ""Biology"’]
}

37 Department of CSE-Data Science, ATMECE



MongoDB (AEC Course)

BDSL456B

Insert Document

To collection Academics.students

[ **

* Paste one or more documents here

"name": "Eve',

"age": 25,

"grade": 85,

"courses'": ["Math", "Biology"]

1
2
3
4
5
6
-
8
9
Q

1

1. $avg - Calculate the average grade of all students
> db.students.aggregate([
{
$group: {
_id: null,

averageGrade: { $avg: ""$grade’ }

38 Department of CSE-Data Science, ATMECE



MongoDB (AEC Course)

BDSL456B

2. $min - Find the minimum age of students

>db.students.aggregate([
{

$group: {
_id: null,

minAge: { $min: "$age" }

3. $max - Find the maximum grade among students

>db.students.aggregate([
{

$group: {
_id: null,

maxGrade: { $max: ""$grade" }

39 Department of CSE-Data Science, ATMECE



MongoDB (AEC Course) BDSL456B

4. $push - List all student names in an array
db.students.aggregate([
{
$group: {
_id: null,

allNames: { $push: ""$name" }

"Alice',
'Bob',
'Charlie’',

'David’,

'Eve’

5. $addToSet - List all unique courses taken by students

>db.students.aggregate([

$unwind: ""$courses"

$group: {

40 Department of CSE-Data Science, ATMECE



MongoDB (AEC Course) BDSL456B

_id: null,

uniqueCourses: { $addToSet: ""$courses™ }

D

Output:

: null,

'Physics’',

"Chemistry',

'Biology'

“oX

'Math’

41 Department of CSE-Data Science, ATMECE



MongoDB (AEC Course) BDSL456B

Program 6
Execute Aggregation Pipeline and its operations (pipeline must contain $match, $group,
$sort, $project, $skip etc. students encourage to execute several queries to demonstrate

various aggregation operators)

Create a database Academicsl and collection students in Mongo IDE.

Create Database

Database Name

‘ Academicsl a

[ ColEeten Name |

[ students '1‘

e

O Time-Series
Time-series collections efficiently store sequences of measurements over a period
of time. Learn More ®

2 Additional preferences (e.g. Custom collation, Capped, Clustered collections)

‘ Cancel ‘ Create Database

Add the following documents in the students collection in MongoDB IDE.

{

"name’: ""Jayanth "',

"age': 20,

“grade™: "A",

""scores™: { ""math: 85, ""english™: 92, "*science': 88 }
}

42 Department of CSE-Data Science, ATMECE



MongoDB (AEC Course) BDSL456B

Insert Document

To collection Academicsl.students

[ H*
* Paste one or more documents here
*/
VA
"name": "Jayanth ",
"age": 20,
"grade": "A",
"scores": { "math": 85, "english": 92, "science": 88 }

}

1
2
3
4
5
6
T
8
9
e

1

—_—
| Cuncel| Insert
N J

"name"': ""Janaki"’,
""age': 22,
""grade’: "'B",

""scores': { "math: 78, ""english"": 85, "'science': 80 }

Insert Document

To collection Academicsl.students

1 /**

2 * Paste one or more documents here

3 */

4. {

5 "name": "Janaki",

6 "age'": 22,

7 "grade”: !I'Bll’

8 "scores": { "math": 78, "english": 85, "science": 80 }
9
Q

—
‘ Cuncel‘ Insert
L J

43 Department of CSE-Data Science, ATMECE



MongoDB (AEC Course) BDSL456B

"name’: "Amit",

"age': 21,

“grade™: "A",

""scores': { "math': 92, " english'': 90, "'science: 91 }

Insert Document

To collection Academicsl.students

VIEW BE#j =
1 [ *x*
2 * Paste one or more documents here
3 */
4y {
5 "name": "Amit",
6 "age": 21,
7 "grade": "A",
8 "scores'": { "math": 92, " english": 90, "science": 91 }
9 1}
10

| Cancel | Insert

"name": "'Baskhar"’,

"age': 23,

""grade™: "C",

""scores™: {"* math™: 65, ""english™: 70, "'science': 72 }

44 Department of CSE-Data Science, ATMECE



MongoDB (AEC Course) BDSL456B

Insert Document

To collection Academicsl.students

VIEW [R§] =

1 [**

2 * Paste one or more documents here

3 x/

4~ q

5 "name": "Baskhar",

6 "age": 23,

7 "grade": "C",

8 "scores": {" math": 65, "english": 70, "science": 72 }
9
0]

| Cancel | Insert

4

"name"': ""Chaitra",
""age"": 20,
""grade’: "'B",

""scores': { ""math: 80, ""english: 75, "'science': 78 }

45 Department of CSE-Data Science, ATMECE



MongoDB (AEC Course) BDSL456B

Insert Document

To collection Academicsl.students

/**

* Paste one or more documents here

*/

* {

"name": "Chaitra",
"age": 20,
"grade": "B",
"scores": { "math": 80, "english": 75, "science": 78 }

O W~ Um kWM

=

‘ ancel‘ Insert

A

In MongoDB Shell

>use Academicsl
Now, let's execute an aggregation pipeline with several stages:

$match: Filter students who are 21 years or older.
$group: Group by grade and calculate the average age.
$sort: Sort by average age in descending order.
$project: Project the grade and average age.

$skip: Skip the first result.

o > w0 NP

db.students.aggregate([

$match: { age: { $gte: 21} }

46 | Department of CSE-Data Science, ATMECE



MongoDB (AEC Course) BDSL456B

$group: {
_id: "$grade™,
averageAge: { $avg: “"$age" }

}

$sort: { averageAge: -1}

$project: {
_id: 0,
grade: "'$_id",

averageAge: 1

47 | Department of CSE-Data Science, ATMECE



MongoDB (AEC Course) BDSL456B

$skip: 1

)

Let's break down each stage:
1.
2.
3.
4,
5.

When you execute this pipeline, you will get a result that first filters students by age, groups them

$match: Filters documents to include only those where age is greater than or equal to 21.
$group: Groups the documents by grade and computes the average age for each grade.
$sort: Sorts the resulting documents by averageAge in descending order.

$project: Projects the fields grade and averageAge, excluding the _id field.

$skip: Skips the first document in the sorted results.

by grade, calculates the average age, sorts by this average age in descending order, and finally

skips the first result.

48 Department of CSE-Data Science, ATMECE



MongoDB (AEC Course) BDSL456B

Program 7

a. Find all listings with listing_url, name, address, host_picture_url in the listings And
Reviews collection that have a host with a picture url.

Create a database Airbnb and collection listingsAndReviews in Mongo IDE.

Create Database

Database Name

Airbnb

Collection Name

[ listingsAndReviews| -1 ]

—d

O Time-Series
Time-series collections efficiently store sequences of measurements over a period
of time. Learn More®

> Additional preferences (e.g. Custom collation, Capped, Clustered collections)

Cancel Create Database

4

Add the following documents in the listingsAndReviews collection in MongoDB IDE.

{

"listing_url": ""http://example.com/listingl™,

"name": ""Beautiful Apartment in the City",

"address: { "'city"": ""New York™, "country': "USA" },

"host™: { ""host_picture_url": "http://example.com/host1.jpg" }

}

49 Department of CSE-Data Science, ATMECE



MongoDB (AEC Course)

BDSL456B

Insert Document

To collection Airbnb.listingsAndReviews

VIEW IE§; =
1 /**
2 * Paste one or more documents here
3 */
4 - {
5
6 "listing_url": "http://example.com/Llistingl",
7 "name": "Beautiful Apartment in the City",
8 "address'": { "city": "New York", "country": "USA"™ },
9 "host": { "host_picture_url": "http://example.com/hostl.j
10 }
11

‘ Cancel ‘ Insert

A

{

"listing_url™: ""http://example.com/listing2",

"name": ""Cozy Cottage"’,

"address™: { “'city"": ""Austin™, "country'': ""USA™" },

"host™: { ""host_picture_url": ""http://example.com/host2.jpg" }

}

50 Department of CSE-Data Science, ATMECE



MongoDB (AEC Course) BDSL456B

x
Insert Document
To collection Airbnb.listingsAndReviews
VIEW =

1 [ xx

2 * Paste one or more documents here

& */

4 {

5 "listing_url": "http://example.com/listing2",

6 "name": "Cozy Cottage",

7 "address": { "city": "Austin", "country": "USA" },

8 "host": { "host_picture_url": "http://example.com/host2.jp

9 }

10

‘ Cancel ‘

In MongoDB Shell

>use Airbnb
db.listingsAndReviews.aggregate([
{ $match: { ""host.host_picture_url": { $exists: true, $ne: null } } },

{

$project: {
listing_url: 1,
name: 1,
address: 1,

host_picture_url: ""$host.host_picture_url* }

)

Output:

51 Department of CSE-Data Science, ATMECE



MongoDB (AEC Course) BDSL456B

ctId('66722251¢c234660bcc7dd143"),

listing_url: '"http://example.com/listingl',

'Beautiful Apartment in the City',
{

"New York',

'USA!

"http://example.com/hostl.jpg'’

ctId('667222e4c234660bcc7dd145"),
listing_url: 'http://example.com/listing2',
name: 'Cozy Cottage',

{

"Austin',

'USA'

"http://example.com/host2.

b. Using E-commerce collection write a query to display reviews summary.

Create a database CommerceDB and collection reviews in Mongo IDE.

52 Department of CSE-Data Science, ATMECE



MongoDB (AEC Course)

BDSL456B

Add the following documents in the reviews collection in MongoDB IDE.

{

}

Create Database

Database Name

CommerceDB Q

Collection Name

reviews ;

O Time-Series
Time-series collections efficiently store sequences of measuremants over a period

of time. Learn More®

> Additional preferences (c.g. Custom collation, Capped, Clustered collections)

"product_id": 1,

"product_name™: "Wireless Mouse"’,
"review_id": 101,

"review_text": ""Great mouse, very responsive.",

"rating": 5

r

A

Insert Document

To collection CommerceDB.reviews

VIEW Rt =
1 [H*
2 * Paste one or more documents here
8 */
4 v {
5 "product_id": 1,
6 "product_name": "Wireless Mouse",
7 "review_id": 101,
8 "review_text": "Great mouse, very responsive.",
9 "rating": 5
10 3

| Cancel | Insert

4

Ganeel

53

Department of CSE-Data Science, ATMECE



MongoDB (AEC Course) BDSL456B

{
"product_id*: 1,
"product_name'": ""Wireless Mouse",
"review_id™: 102,
"review_text": ""Good value for the price.",
"rating': 4

}

Insert Document

To collection CommerceDB.reviews

[ *x

* Paste one or more documents here

*/

< {

"product_id": 1,
"product_name": "Wireless Mouse",
"review_id": 102,
"review_text": "Good value for the price.",
"rating": 4

}

@ W~ U e wWwNE

‘ Cancel‘ Insert

"product_id": 2,

"product_name™: ""Bluetooth Keyboard™,
"review_id": 202,

"review_text": ""Compact and portable.”,

"rating": 4

54 Department of CSE-Data Science, ATMECE



MongoDB (AEC Course) BDSL456B

r 3

Insert Document

To collection CommerceDB.reviews

VIEW [ =
1 [ *x
2 * Paste one or more documents here
3 */
4~ q
5 "product_id": 2,
6 "product_name": "Bluetooth Keyboard",
7 "review_id": 202,
8 "review_text": "Compact and portable.",
9 "rating": 4
(¢}

-

‘ Cuncel‘ Insert

A 4

"product_id": 3,

"product_name™: ""USB-C Hub",
"review_id": 302,

"review_text": ""Works well with my laptop.",

"rating”: 5

55 Department of CSE-Data Science, ATMECE



MongoDB (AEC Course) BDSL456B

Insert Document

To collection CommerceDB.reviews

[ Fx

* Paste one or more documents here

*/

v {

"product_id": 3,
"product_name": "USB-C Hub",
"review_id": 302,
"review_text": "Works well with my laptop.",
"rating": 5

HOWoL-~ouk WK

e

‘ Cancel ‘ Insert

A

In MongoShell
>use CommerceDB
Query to Display Reviews Summary

db.reviews.aggregate([

$group: {
_id: "$product_id",
product_name: { $first: "$product_name" },
total_reviews: { $sum: 1},

average_rating: { $avg: ""$rating™ },

56 | Department of CSE-Data Science, ATMECE



MongoDB (AEC Course) BDSL456B

latest_reviews: {
$push: {
review_id: "$review_id",
review_text: ""$review_text",

rating: ""$rating"’,

$project: {
product_id: "'$_id",
product_name: 1,
total _reviews: 1,
average_rating: ""$average_rating",
latest_reviews: {

$slice: [""$latest_reviews', -3] // Adjust the number of latest reviews as needed

57 | Department of CSE-Data Science, ATMECE



MongoDB (AEC Course) BDSL456B

$sort: { total_reviews: -1 } // Sort by total reviews in descending order

e: 'Wireless Mouse',

xt: 'Great mouse, very responsive.'

102
B2,

xt: 'Good value for the price.',

58 Department of CSE-Data Science, ATMECE



MongoDB (AEC Course) BDSL456B

'Compact and portable.',

: '"Works well with my laptop.’',

59 Department of CSE-Data Science, ATMECE



MongoDB (AEC Course)

BDSL456B

Program 8

8. a. Demonstrate creation of different types of indexes on collection (unique, sparse,

compound and multikey indexes)

Create a database IndexDB and collection users in Mongo IDE.

Create Database

Database Name

IndexDB

d

Collection Name

users

O Time-Series

3

Time-series collections efficiently store sequences of measurements over a period

of time. Learn More®

> Additional preferences (e.g. Custom collation, Capped, Clustered collections)

Add the following documents in the users collection in MongoDB Shell.

db.users.insert({
username: ""John",
age: 30,
city:""Chennai"’,

"interests™:[""music™,"'garden’"],

Description:["'good™, "avg", "excellent™],

"hashedField": "*hashedValuel",

Cancel Create Database

"location™: { ""type'*: ""Point™, ""coordinates™: [ -73.97, 40.77 ] },

60 | Department of CSE-Data Science, ATMECE



MongoDB (AEC Course) BDSL456B

"createdAt": 1ISODate(*'2023-01-01T00:00:00Z™) })

1. Unique index:
A unique index ensures that the indexed field(s) do not have duplicate values

db.users.createlndex({ ""'username™: 1 }, { unique: true })

Output:

username_1

2. Sparse Index:
A sparse index only includes documents that have the indexed field.

db.users.createlndex({ ""city"": 1 }, { sparse: true })
Output:

3. Compound Index:
A compound index includes multiple fields within a single index.

db.users.createIndex({ “username”: 1, “age”: 1})

Output:

4. Multikey Index
A multikey index is created on an array field, indexing each value of the array.

db.users.createlndex({ "interests': 1 })

interests_1

Assuming interests is an array field in the user documents.
db.users.createlndex( { description: "text” })

Output:

description_text

61 | Department of CSE-Data Science, ATMECE



MongoDB (AEC Course) BDSL456B

MongoDB provides text indexes to support text search queries on string content. text indexes
can include any field whose value is a string or an array of string elements. Remember that you
can have only one text index per collection so after creating one if you create another text

index, you will get an error.

Hashed Index: Indexes where MongoDB hashes the index keys to create a more even

distribution of keys.
db. users.createlndex({ city: ""hashed™ })
Hashed indexes are beneficial for sharding collections in MongoDB.

They distribute data across shards based on the hash value of the indexed field, improving

query performance for filtering based on that field

Output:

city_hashed

Geo-spatial Index: Indexes used for geo-spatial queries.
db. users.createlndex({ location: ""2dsphere' })

Output:

location_2dsphere

TTL (Time-To-Live) Index: Indexes that automatically expire documents after a certain

amount of time.
db. users.createlndex({ createdAt: 1 }, { expireAfterSeconds: 3600 })

Output:

createdAt_1

62 Department of CSE-Data Science, ATMECE


https://www.mongodb.com/docs/v5.3/core/index-text/#std-label-index-feature-text

MongoDB (AEC Course) BDSL456B

Program 9
9. a. Develop a query to demonstrate Text search using catalog data collection for a given
word

b. Develop queries to illustrate excluding documents with certain words and phrases.

Create a database CatalogDB and collection products in Mongo IDE.

Create Database

Database Name

CatalogDB Q

Collection Name ~

[ prod uotsl j ]

O Time-Series
Time-series collections efficiently store sequences of measurements over a period
of time. Learn More &

> Additional preferences (e.g. Custom collation, Capped, Clustered collections)

> |

Add the following documents in the collection products in MongoDB IDE.
{
"name': ""Apple iPhone 14",
"description™: ""Latest model of iPhone with advanced features™,

""category'': ""Electronics"

}

63 Department of CSE-Data Science, ATMECE



MongoDB (AEC Course)

BDSL456B

4

Insert Document

To collection CatalogDB.products

A

VIEW 4] =
1 [ *x
2 * Paste one or more documents here
3 */
4w
5 "name'": "Apple iPhone 14",
6 "description": "Latest model of iPhone with advanced featu
T "category": "Electronics"
8 1

‘ Cancel | Insert

"name': ""Samsung Galaxy S21",

"description': ""Newest Samsung smartphone with great camera™,

""category’’: ""Electronics"

}

v

Insert Document

To collection CatalogDB.products

[ **
* Paste one or more documents here
x/

O d

"name": "Samsung Galaxy S21",

"category'": "Electronics"

}

W ~NoWumbwNE

VIEW =

"description": "Newest Samsung smartphone with great came¢

‘ Cancel ‘ Insert

"name": ""Sony Headphones',

64 | Department of CSE-Data Science, ATMECE



MongoDB (AEC Course) BDSL456B

"description': ""Noise-cancelling headphones for immersive sound™,

""category'’: ""Audio”

}

Insert Document

To collection CatalogDB.products

[xx
* Paste one or more documents here
x/
< 4
"name": "Sony Headphones",
"description": "Noise-cancelling headphones for immersiwve¢
"category": "Audio"

}

=~ o0 dbwNE

‘ Cancel ‘ Insert

""name’’: ""Dell Laptop™,
"description™: ""High performance laptop for work and play",

""category'': ""Computers"

65 Department of CSE-Data Science, ATMECE



MongoDB (AEC Course) BDSL456B

r D

Insert Document

To collection CatalogDB.products

VIEW Kl =
1 [ Hx
2 * Paste one or more documents here
3 *f
4w
5 ""name": "Dell Laptop",
6 "description": "High performance laptop for work and pl:
7 "category": "Computers"
8 1}
‘ Cancel ‘

In MongoShell
>use CatalogDB
a. 1. Create a Text Index

To enable text search, you need to create a text index on the fields you want to search. Here,
we'll create a text index on the name and description fields:

db.products.createlndex({ name: ""text", description: ""text" })

Output:
name_text_description_text

2. Perform a Text Search

Now, let's perform a text search. Suppose you want to search for products related to the word
"latest™:

db.products.find({ $text: { $search: "latest' } })

Output:

66 Department of CSE-Data Science, ATMECE



MongoDB (AEC Course) BDSL456B

jectId('6683756d028a2202a8ch7087"),

'"Apple 1iPhone 14',
'Latest model of iPhone with advanced features',

'Electronics'

db.products.find({ $text: { $search: ""High performance" } })
Output:

jectId('66837a7a028a2202a8ch708d"),
'Dell Laptop',
'High performance laptop for work and play'
gn | PTof ptay”,

'Computers'

b. Develop queries to illustrate excluding documents with certain words and phrases.

In MongoDB, you can use the $not operator combined with the $regex operator to exclude
documents that contain certain words or phrases. Below are some examples of queries to
illustrate this.

Add the following documents in the collection articles in MongoDB IDE.

Create Collection

Collection Name

articles

0 Time-Series a

Time-series collections efficiently store sequences of measurements over a period

. 2
of time. Learn More &

> Additional preferences (e.g. Custom collation, Capped, Clustered collections]

Cancel Create Collection

4

{
" id 1,

67 | Department of CSE-Data Science, ATMECE



MongoDB (AEC Course) BDSL456B

"title': ""MongoDB Basics",

""content™': ""This article explains the basics of MongoDB."

x
Insert Document
To collection CatalogDB.articles
VIEW [E§] =
1 /**
2 * Paste one or more documents here
3 */
4+ {
5 "_dd": 1,
6 "title": "MongoDB Basics',
7 "content": "This article explains the basics of MongoDB."
8 1}
=
m M n,
_id™: 2,

"title'": ""Advanced MongoDB",

"content™’: ""This article covers advanced MongoDB topics."

}

68 Department of CSE-Data Science, ATMECE



MongoDB

(AEC Course)

BDSL456B

v

A
{

Insert Document

To collection CatalogDB.articles

"oid™: 3,

llti

""content™: ""Indexes in MongoDB can improve query performance.”

}
r

tle': ""MongoDB Indexes",

Insert Document

To collection CatalogDB.articles

VIEW [BE§] =
1 [*%
2 * Paste one or more documents here
3 */
4 {
5 _id": 3,
6 "title": "MongoDB Indexes",
7 "content": "Indexes in MongoDB can improve query performanc
8 1}

‘ Cancel | Insert

VIEW ERH; =
1 [ *x
2 * Paste one or more documents here
3 *f
4 {
5 "_id": 2,
6 "title": "Advanced MongoDB",
T "content": "This article covers advanced MongoDB topics."
8 }

‘ Cancel ‘ Insert

v

y

69 | Department of CSE-Data Science, ATMECE



MongoDB (AEC Course) BDSL456B

"_id": 4,
"title’: "Introduction to Databases",
""content™: ""This article gives an introduction to databases in general."

}

x
Insert Document
To collection CatalogDB.articles
VIEW [E§; =
1 [**
2 * Paste one or more documents here
3 */
4 v {
5 "_id": 4,
6 "title": "Introduction to Databases",
7 "content": "This article gives an introduction to databa:
8 3
= -

1. Exclude Documents Containing a Specific Word
To exclude documents that contain the word "advanced" in the ‘content’ field:
db.articles.find({

"content™: {

$not: /advanced/

)

Output:

70 Department of CSE-Data Science, ATMECE



MongoDB (AEC Course) BDSL456B

e: 'MongoDB Basics',

: 'This article explains the basics of MongoDB.'

'MongoDB Indexes',

1t: 'Indexes in MongoDB can improve query performance.'

: 'Introduction to Databases',

: 'This article gives an introduction to databases in general.'

2. Exclude Documents Containing Any of Multiple Words
To exclude documents that contain either "improve" or "performance" in the ‘content’ field:
db.articles.find({

"content™: {
$not: /(improve|performance)/

}
)

Output:

71 Department of CSE-Data Science, ATMECE



MongoDB (AEC Course) BDSL456B

'MongoDB Basics',

'"This article explains the basics of MongoDB.'

'Advanced MongoDB',

'"This article covers advanced MongoDB topics.'

'Introduction to Databases',

'"This article gives an qintroduction to databases in general.'

3. Exclude Documents Containing a Specific Phrase
To exclude documents that contain the phrase "MongoDB Basics" in the ‘tit1e’ field:
db.articles.find({

"title': {

$not: /MongoDB Basics/

)

72 Department of CSE-Data Science, ATMECE



MongoDB (AEC Course) BDSL456B

Output:

e: 'Advanced MongoDB',

: 'This article covers advanced MongoDB topics.'

: "MongoDB Indexes',

: 'Indexes in MongoDB can improve query performance.'

: '"Introduction to Databases',

: 'This article gives an introduction to databases in general.'

4. Exclude Documents Based on Multiple Fields
To exclude documents that contain "MongoDB" in the ‘title’ or "advanced" in the ‘content’:
db.articles.find({
$and: [
{ "title": { $not: /MongoDB/ } },

{"content": { $not: /advanced/ } }

'Introduction to Databases',

'This article gives an 1introduction to databases in general.'

73 Department of CSE-Data Science, ATMECE



MongoDB (AEC Course) BDSL456B

Program 10
Develop an aggregation pipeline to illustrate Text search on Catalog data collection.

Create a database TextDB and collection catalog in Mongo IDE.

Create Database

Database Name

TextDB Q

Collection Name

cataleg ;

O Time-Series
Time-series collections efficiently store sequences of measurements over a period

of time. Learn More @

> Additional preferences (e.g. Custom collation, Capped, Clustered collections)

‘Cancel Create Database

v |

Add the following documents in the catalog collection in MongoDB Shell.

{
"name": "Apple iPhone 14",

"description™: ""Latest model of iPhone with advanced features™,

""category'': ""Electronics"

}

74 Department of CSE-Data Science, ATMECE



MongoDB (AEC Course)

BDSL456B

r

Insert Document

To collection TextDB.catalog

VIEW R{ =
1 [ **
2 * Paste one or more documents here
3 */
4 v {
5 "name": "Apple iPhone 14",
6 "description": "Latest model of iPhone with advanced feati
7 "category'": "Electronics"
8 }
9

‘ Cancel ‘ Insert

A

""name’’: "'Samsung Galaxy S21",

"description': ""Newest Samsung smartphone with great camera™,

""category’’: ""Electronics"

}

4

Insert Document

To collection TextDB.catalog

"name": ""Sony Headphones",

view [y =
1 [x*
2 * Paste one or more documents here
B3] */
4 - {
5 "name": "Samsung Galaxy S21",
6 "description": "Newest Samsung smartphone with great
7 "category": "Electronics"
8 ]
9

‘ Cancel ‘ Insert

V|

75 | Department of CSE-Data Science, ATMECE



MongoDB (AEC Course)

BDSL456B

"description': ""Noise-cancelling headphones for immersive sound™,

""category'’: ""Audio”

%X
Insert Document
To collection TextDB.catalog
VIEW =
1 Jxx
2 * Paste one or more documents here
3 */
4~ {
5 "name": "Sony Headphones",
6 "description'": "Noise-cancelling headphones for immersive
7 "category": "Audio"
8 1
9
o (D

In MongoShell
>use TextDB

Create a Text Index

First, create a text index on the ‘name’ and ‘description’ fields.

db.catalog.createlndex({ name: ""text', description: ""text" });

Output:

name_text_description_text

Define the Aggregation Pipeline

Now, create an aggregation pipeline to perform the text search and process the results. Below is

an example pipeline:

db.catalog.aggregate(][

76 Department of CSE-Data Science, ATMECE



MongoDB (AEC Course) BDSL456B

{ $match: {
$text: { $search: " Apple iPhone 14" } }

h
{$project: {

name: 1,

description: 1,

category: 1,

score: { $meta: ""textScore" }

}

h

{
$sort: {

score: { $meta: ""textScore™ }
Hh
{
$limit: 10
)

Output:

: ObjectId('e684foff8dcd2f606e5e6243"),

'"Apple 1iPhone 14',
n: 'Latest model of 1iPhone with advanced features',

: 'Electronics',

77 Department of CSE-Data Science, ATMECE



