DATA STRUCTURES LABORATORY

SEMESTER — 111
Subject Code BCSL305 CIE Marks 50
Number of Contact Hours/Week 0:0:2 SEE Marks 50
Total Number of Lab Contact Hours 28 Exam Hours 3 Hrs.
Credits -1

Course Learning Objectives: This course (18CSL38) will enable students to:
This laboratory courses enables students to get practical experience in design, develop, implement,
analyze and evaluation/testing of

e Dynamic memory management

e Linear data structures and their applications such as stacks, queues and lists

o Non-Linear data structures and their applications such as trees and graphs

Descriptions (if any):
Implement all the programs in “C” Programming Language and Linux OS.
Programs List:

1. Develop a Program in C for the following:
Declare a calendar as an array of 7 elements (A dynamically Created array) to represent 7
days of a week. Each Element of the array is a structure having three fields. The first field
is the name of the Day (A dynamically allocated String), The second field is the date of
the Day (A integer), the third field is the description of the activity for a particular day (A
dynamically allocated String).
Write functions create(), read() and display(); to create the calendar, to read the data from
the keyboard and to print weeks activity details report on screen.

2. Develop a Program in C for the following operations on Strings.

a. Read a main String (STR), a Pattern String (PAT) and a Replace String (REP)

b. Perform Pattern Matching Operation: Find and Replace all occurrences of PAT in
STR with REP if PAT exists in STR. Report suitable messages in case PAT does not
exist in STR

Support the program with functions for each of the above operations. Don't use Built-in
functions.

3. Design a menu driven Program in C for the following operations on STACK of Integers
(Array Implementation of Stack with maximum size MAX)
Push an Element onto Stack
Pop an Element from Stack
Demonstrate how Stack can be used to check Palindrome
Demonstrate Overflow and Underflow situations on Stack
Display the status of Stack
f. Exit
Support the program with appropriate functions for each of the above operations

Poooe

4. Develop a Program in C for converting an Infix Expression to Postfix Expression. Program
should support for both parenthesized and free parenthesized expressions with the operators:
+, -, *, [, % (Remainder), ~ (Power) and alphanumeric operands.

5. Design a Program in C for the following Stack Applications
a. Evaluation of Suffix expression with single digit operands and operators: +, -, *, /, %,
N
b. Solving Tower of Hanoi problem with n disks
6. Develop amenu driven Program in C for the following operations on Circular QUEUE
of Characters (Array Implementation of Queue with maximum size MAX)
a. Insert an Element on to Circular QUEUE
b. Delete an Element from Circular QUEUE
c. Demonstrate Overflow and Underflow situations on Circular QUEUE
d. Display the status of Circular QUEUE
e. Exit
Support the program with appropriate functions for each of the above operations
7. Develop a menu driven Program in C for the following operations on Singly Linked List
(SLL) of Student Data with the fields: USN, Name, Programme, Sem, PhNo
a. Create a SLL of N Students Data by using frontinsertion.
b. Display the status of SLL and count the number of nodes in it
c. Perform Insertion / Deletion at EndofSLL
d. Perform Insertion/ Deletion at Front of SLL(Demonstration ofstack)
e. Exit
8. Develop a menu driven Program in C for the following operations on Doubly Linked List
(DLL) of Employee Data with the fields: SSN, Name, Dept, Designation, Sal, PhNo
a. Create a DLL of N Employees Data by using endinsertion.
b. Display the status of DLL and count the number of nodes init
c. PerformInsertion and Deletion at End of DLL
d. PerformInsertionand Deletionat Front ofDLL
e. Demonstrate how this DLL can be used as Double EndedQueue.
f. Exit
9. Develop a Program in C for the following operations on Singly Circular Linked List
(SCLL) with header nodes
a. Represent and Evaluate a Polynomial P (X, y, z) = 6x2y2z—4y25+3x3yz+2xy52—2xyz3
b. Find the sum of two polynomials POLY1(x,y,z) and POLY2(x,y,z) and
store the result inPOLYSUM(x,y,z)
Support the program with appropriate functions for each of the above operations
10. Develop a menu driven Program in C for the following operations on Binary Search Tree
(BST) of Integers.
a. Createa BST of N Integers: 6, 9, 5, 2, 8, 15,24, 14, 7,8,5,2
b. Traverse the BST in Inorder, Preorder and Post Order
c. Searchthe BST for a given element (KEY) and report the appropriate message
d. Exit
11. Develop a Program in C for the following operations on Graph(G) of Cities

a. Create a Graph of N cities using Adjacency Matrix.
b. Print all the nodes reachable froma given starting node in a digraph using
DFS/BFS method

12. Given a File of N employee records with a set K of Keys (4-digit) which uniquely
determine the records in file F. Assume that file F is maintained in memory by a Hash
Table (HT) of m memory locations with L as the set of memory addresses (2-digit) of
locations in HT. Let the keys in K and addresses in L are Integers. Design and develop a
Program in C that uses Hash function H: K (1L as H(K)=K mod m (remainder method),
and implement hashing technique to map a given key K to the address space L. Resolve the
collision (if any) using linear probing.

Laboratory Outcomes: The student should be able to:

e Analyze various linear and non-linear data structures

o Demonstrate the working nature of different types of data structures and their applications
e Use appropriate searching and sorting algorithms for the give scenario.

o Apply the appropriate data structure for solving real world problems

Conduct of Practical Examination:

e Experiment distribution
o For laboratories having only one part: Students are allowed to pick one experiment from
the lot with equal opportunity.
o For laboratories having PART A and PART B: Students are allowed to pick one
experiment from PART A and one experiment from PART B, with equal opportunity.
e Change of experiment is allowed only once and marks allotted for procedure to be made zero of
the changed part only.
e Marks Distribution (Need to change in accordance with university regulations)
a) For laboratories having only one part — Procedure + Execution + Viva-Voce: 15+70+15 =
100 Marks
b)For laboratories having PART A and PART B
i. Part A — Procedure + Execution + Viva = 6 + 28 + 6 = 40 Marks
ii. Part B — Procedure + Execution + Viva =9 + 42 + 9 = 60 Marks

CONTENTS

SI.No. EXPERIMENT NAME Page No
1. Introduction 1
2. Program 1 : Array Operations 6
3. Program 2 : String Operations 13
4. Program 3 : Stack Operations 19
5. Program 4 : Infix to Postfix Conversion 29
6. Program 5: Design, Develop and Implement Program in C

for the following Stack Applications

a Evaluation of Suffix expression with single 34
digit operands and operators: +, -, *,/,%, .
b. Solving Tower of Hanoiproblemwithndisks 38

7. Program 6 : Circular Queue Operations 41
8. Program 7 : Implementation of Singly Linked List 48
9. Program 8 : Implementation of Doubly Linked List 64
10. Program 9 : Polynomial Evaluation & Addition using

SCLL with header node 80
11. Program 10 : Implementation of Binary Search tree 90
12. Program 11 : Implementation of Graphs (BFS & DFS

Methods) 99
13. Program 12 : Implementation of Hashing & Linear Probing 108

DATA STRUCTURES LABORATORY BCSL305

Introduction to Data Structure

Basic Concepts

The logical or mathematical model of a particular organization of data is called data
structures. Data structures is the study of logical relationship existing between individual data
elements, the way the data is organized in the memory and the efficient way of storing,
accessing and manipulating the data elements.

Data Structures can be classifiedas:
e Primitive data structures
e Non-Primitive data structures.

Primitive data structures are the basic data structures that can be directly
manipulated/operated by machine instructions. Some of these are character, integer, real,
pointers etc.

Non-primitive data structures are derived from primitive data structures, they cannot be
directly manipulated/operated by machine instructions, and these are group of homogeneous or
heterogeneous data items. Some of these are Arrays, stacks, queues, trees, graphs etc.

Data structures are also classified as
e Linear data structures
e Non-Linear data structures.

In the Linear data structures processing of data items is possible in linear fashion, i.e., data can
be processed one by one sequentially.
Example of such data structures are:

e Array
Linked list
Stacks
Queues

A data structure in which insertion and deletion is not possible in a linear fashion is
called as non linear data structure. i.e., which does not show the relationship of logical
adjacency between the elements is called as non-linear data structure. Such as trees, graphs and
files.

Data structure operations:
The particular data structures that one chooses for a given situation depends largely on
the frequency with which specific operations are performed.

DEPT OF CSE, ATMECE, MYSURU Page 1

DATA STRUCTURES LABORATORY BCSL305

The following operations play major role in the processing of data.
) Traversing.

i) Searching.

ii) Inserting.

V) Deleting.

V) Sorting.

vii Merging

STACKS:

A stack is an ordered collection of items into which new items may be inserted and
from which items may be deleted at the same end, called the TOP of the stack. A stack is a
non-primitive linear data structure.1 2345

As all the insertion and deletion are done from the same end, the first element inserted
into the stack is the last element deleted from the stack and the last element inserted into the
stack is the first element to be deleted. Therefore, the stack is called Last-In First-Out (LIFO)
data structure.

QUEUES:

A queue is a non-primitive linear data structure. Where the operation on the queue is
based on First-In-First-Out FIFO process — the first element in the queue will be the first one
out. This is equivalent to the requirement that whenever an element is added, all elements that
were added before have to be removed before the new element can be removed.

For inserting elements into the queue are done from the rear end and deletion is done
from the front end, we use external pointers called as rear and front to keep track of the status
of the queue. During insertion, Queue Overflow condition has to be checked. Likewise during
deletion, Queue Underflow condition is checked.

APPLICATION OF QUEUE

Queue, as the name suggests is used whenever we need to have any group of objects in an
order in which the first one coming in, also gets out first while the others wait for their turn,
like in the following scenarios :

e Serving requests on a single shared resource, like a printer, CPU task scheduling etc.

e Inreal life, Call Center phone systems will use Queues, to hold people calling them in an
order, until a service representative is free.

¢ Handling of interrupts in real-time systems. The interrupts are handled in the same order as
they arrive, First come first served.

DEPT OF CSE, ATMECE, MYSURU Page 2

DATA STRUCTURES LABORATORY BCSL305

LINKED LIST
Disadvantages of static/sequential allocation technique:

e Ifan item has to be deleted then all the following items will have to be moved by one
allocation. Wastage of time.

e Inefficient memory utilization.
e If no consecutive memory (free) isavailable, execution is not possible.

Linear Linked Lists
Types of Linked lists:

e Single Linked lists

e Circular Single Linked Lists
e Double Linked Lists

e Circular Double Linked Lists.

NODE:

Each node consists of two fields. Information (info) field and next address (next) field. The
info field consists of actual information/data/item that has to be stored in a list. The second
field next/link contains the address of the next node. Since next field contains the address,

It is of type pointer. Here the nodes in the list are logically adjacent to each other. Nodes that
are physically adjacent need not be logically adjacent in the list.

The entire linked list is accessed from an external pointer FIRST that points to (contains the
address of) the first node in the list. (By an “external” pointer, we mean, one that is not
included within a node. Rather its value can be accessed directly by referencing a variable).

NODE

INFO | NEXT
Fig-1 Linked List

The list containing 4 items/data 10, 20, 30 and 40 is shown below.

INFO NEXT INFO NEXT INFO NEXT NFO NEXT
FIRST - =
10 * " 20 . » 30 . o 10
NODE1 NODE2 NODE3 NODE4

Fig-2 Linked List
The nodes in the list can be accessed using a pointer variable. In the above fig. FIRST is the
pointer having the address of the first node of the list, initially before creating the list, as list is
empty. The FIRST will always be initialized to NULL in the beginning. Once the list is
created, FIRST contains the address of the first node of the list.

DEPT OF CSE, ATMECE, MYSURU Page 3

DATA STRUCTURES LABORATORY BCSL305

As each node is having only one link/next, the list is called single linked list and all the
nodes are linked in one direction. Each node can be accessed by the pointer pointing (holding
the address) to that node, Say P is pointer to a particular node, then the information field of that
node can be accessed using info(P) and the next field can be accessed using next(P).

The arrows coming out of the next field in the fig. indicates that the address of the
succeeding node is stored in that field. The link field of last node contains a special value
known as NULL which is shown using a diagonal line pictorially. This NULL pointer is used
to signal the end of a list.

The basic operations of linked lists are Insertion, Deletion and Display. A list is a
dynamic data structure. The number of nodes on a list may vary dramatically as elements are
inserted and deleted(removed).

The dynamic nature of list may be contrasted with the static nature of an array, whose
size remains constant. When an item has to inserted, we will have to create a node, which has
to be got from the available free memory of the computer system, So we shall use a mechanism
to find an unused node which makes it available to us. For this purpose we shall use the
getnode operation (getnode() function).

The C language provides the built-in functions like malloc(), calloc(), realloc() and
free(), which are stored in alloc.h or stdlib.h header files. To dynamically allocate and release
the memory locations from/to the computer system.

TREES:
Definition:

A data structure which is accessed beginning at the root node. Each node is either a
leaf or an internal node. An internal node has one or more child nodes and is called the parent
of its child nodes. All children of the same node are siblings. Contrary to a physical tree, the
root is usually depicted at the top of the structure, and the leaves are depicted at the bottom. A
tree can also be defined as a connected, acyclic di-graph.

Tree is a non-linear data structure which organizes data in hierarchical structure and this is a
recursive definition.
A tree data structure can also be defined as follows...

Tree data structure is a collection of data (Node) which is organized in hierarchical structure
and this is a recursive definition

black: root
=Y @ @ green: leaf

Figure: tree data structure

Fig-3 Tree data structure

DEPT OF CSE, ATMECE, MYSURU Page 4

DATA STRUCTURES LABORATORY BCSL305

Binary tree: A tree with utmost two children for each node.

Complete Binary Tree: A binary tree in which every level, except possibly the deepest, is
completely filled. At depth n, the height of the tree, all nodes must be as far left as possible.
Binary search tree: A binary tree where every node’s left subtree has keys less than the node's
key, and every right subtree has keys greater than the node's key.

Tree traversal is a technique for processing the nodes of a tree in some order.The
different tree traversal techniques are Pre-order, In-order and Post-order traversal.In Pre-order
traversal, the tree node is visited first and the left subtree is traversed recursively and later right
sub-tree is traversed recursively.

DEPT OF CSE, ATMECE, MYSURU Page 5

DATA STRUCTURES LABORATORY BCSL305

PROGRAM 1

Develop a Program in C for the following:

a) Declare a calendar as an array of 7 elements (A dynamically Created
array) to represent 7 days of a week. Each Element of the array is a
structure having three fields. The first field is the name of the Day (A
dynamically allocated String), The second field is the date of the Day (A
integer), the third field is the description of the activity for a particular day
(A dynamically allocated String).

b) Write functions create(), read() and display(); to create the calendar, to
read the data from the keyboard and to print weeks activity details report
on screen.

Program objective:
o Understand the working of array data structures.

o Understand the use of functions to implement each array operation.
o Understand what is dynamic memory allocation

THEORY:

Array is a collection of elements of the same type. In this program we need to use functions for
various operations

Create (): Create an array for the size given by the user Display

(): Display the elements of the array

Insert (): Insert an element at the position given by the user
Delete (): Delete an element from the position specified by the user Exit
(): Terminate

Arrays are the kind of data structure that can store a fixed-size sequential collection of
elements of the same type. An array is used to store a collection of data, but it is often more
useful to think ofanarrayas a collection of variables of the sametype.

Declaring Arrays

To declare an array in C, a programmer specifies the type of the elements and the number of
elements required by an array as follows —

type array Name [arraySize],

This is called a single-dimensional array. The array Size must be an integer constant greater
than zero and type can be any valid C data type.

For example, to declare a 10-element array called balance of type double, use this statement —
double balance [10];

DEPT OF CSE, ATMECE, MYSURU Page 6

DATA STRUCTURES LABORATORY BCSL305

Here balance is a variable array which is sufficient to hold up to 10 double numbers.
Initializing Arrays

You can initialize an array in C either one by one or using a single statement as follows —
double balance[5] = {1000.0, 2.0, 3.4, 7.0, 50.0};

Accessing Array Elements

An element is accessed by indexing the array name. This is done by placing the index of the
element within square brackets after the name of the array.

For example — double salary = balance [9];

The above statement will take the 10" element from the array and assign the value to salary
variable

PROGRAM:

#include <stdio.h>
#include <stdlib.h>
#include <string.h>

/I Structure to represent a day in the calendar
struct Day {

char* dayName;

int date;

char* activity;

}

/l Function to create the calendar
struct Day* createCalendar()

{
struct Day* calendar = (struct Day*)malloc(7 * sizeof(struct Day));
for (inti=0;1<7;i++)
{

calendar[i].dayName = (char*)malloc(20 * sizeof(char)); // Assuming a
maximum of 20 characters for day name

calendarl[i].activity = (char*)malloc(100 * sizeof(char)); // Assuming a
maximum of 100 characters for activity description

¥

return calendar;

¥

DEPT OF CSE, ATMECE, MYSURU Page 7

DATA STRUCTURES LABORATORY BCSL305

// Function to read data from the keyboard
void readCalendarData(struct Day* calendar)

{
for (inti=0;1<7;i++)
{
printf("Enter the day name for Day %d: ", i + 1);

scanf("%s", calendar[i].dayName);

printf("Enter the date for Day %d: ", i + 1);
scanf("%d", &calendar[i].date);

printf("Enter the activity for Day %d: ", i + 1);
scanf(" %[™n]s", calendar[i].activity);

¥

// Function to display the calendar
void displayCalendar(struct Day* calendar)

{
printf("Weekly Activity Report:\n\n");
for (inti=0;i1<7;i++)
{
printf("Day %d: %s\n", i + 1, calendar[i].dayName);
printf("Date: %d\n", calendar[i].date);
printf("Activity: %s\n", calendar[i].activity);
printf("\n");
¥
¥
int main()
{

struct Day* calendar = createCalendar();

readCalendarData(calendar);
displayCalendar(calendar);

Il Free memory

for (inti=0;1<7; i++)

{
free(calendar[i].dayName);
free(calendar[i].activity);

¥

free(calendar);

DEPT OF CSE, ATMECE, MYSURU Page 8

DATA STRUCTURES LABORATORY
return O;

Output

Enter the day name for Day 1: Monday
Enter the date for Day 1: 12

Enter the activity for Day 1: NSS

Enter the day name for Day 2: Tuesday
Enter the date for Day 2: 13

Enter the activity for Day 2: Project work
Enter the day name for Day 3: Wednesday
Enter the date for Day 3: 14

Enter the activity for Day 3: Assignment
Enter the day name for Day 4: Thursday
Enter the date for Day 4: 15

Enter the activity for Day 4: Seminar
Enter the day name for Day 5: Friday
Enter the date for Day 5: 16

Enter the activity for Day 5: Council Meeting
Enter the day name for Day 6: Saturday
Enter the date for Day 6: 17

Enter the activity for Day 6: Project Report
Enter the day name for Day 7: Sunday
Enter the date for Day 7: 18

Enter the activity for Day 7: Holiday

Weekly Activity Report:

Day 1: Monday
Date: 12
Activity: NSS

Day 2: Tuesday
Date: 13
Activity: Project work

Day 3: Wednesday
Date: 14
Activity: Assignment

Day 4: Thursday
Date: 15
Activity: Seminar
DEPT OF CSE, ATMECE, MYSURU

BCSL305

Page 9

DATA STRUCTURES LABORATORY BCSL305

Day 5: Friday
Date: 16
Activity: Council Meeting

Day 6: Saturday
Date: 17
Activity: Project Report

Day 7: Sunday
Date: 18
Activity: Holiday

Program outcome:
o Implement the arrays in C program

o Implement dynamically creation and allocation of arrays
+ Identify the different applications where arrays can be used.

o Familiarized with the usage of structures and functions in program.

Viva Questions:

o What isan array?

o What is astructure ?

* How to access elements of array?

o Can you change size of array once created?
o What is dynamic memory management?

o How An array elements are always stored in memory locations.?

DEPT OF CSE, ATMECE, MYSURU Page 10

DATA STRUCTURES LABORATORY BCSL305

PROGRAM 2

Design, develop and implement a Program in C for the following operations
on Strings

a. ReadamainString (STR), a Pattern String (PAT) and a Replace String
(REP)

b. Perform Pattern Matching Operation: Find and Replace all occurrences
of PAT in STR with REP if PAT exists in STR. Report suitable messages
in case PAT does notexistin STR

Support the program with functions for each of the above operations. Don't
use Built-in functions

Program objective:
o Understand the implementation of string function’s using arrays.

o Understand pattern matching algorithm and theimplementationtechniqueof
the same without using built-in functions.
o Understand the pattern replacement methodology.

Algorithm:
Step 1: Start.

Step 2: Read main string STR, pattern string PAT and replace string REP.

Step 3: compare pattern string in main string,

Step 4: if PAT is found then replace all occurrences of PAT in main string STR
with REP string.

Step 5: if PAT is not found give a suitable error message.

Step 6: Stop.

DEPT OF CSE, ATMECE, MYSURU Page 11

DATA STRUCTURES LABORATORY BCSL305

THEORY

Strings are actually one-dimensional array of characters terminated by a null character "\0'.
Thus a null-terminated string contains the characters that comprise the string followed by a
null.

The following declaration and initialization create a string consisting of the word "Hello". To
hold the null character at the end of the array, the size of the character array containing the
string is one more than the number of characters in the word "Hello."

char greeting[6] = {"'H’, "e', 'I', 'I', '0", "\0'};

If you follow the rule of array initialization then you can write the above statement as follows:

char greeting[] = ""Hello™";
C language supports a wide range of built-in functions that manipulate null-terminated strings
as follows:

strcpy(sl, s2); Copies string s2 into string s1.

strcat(s1, s2); Concatenates string s2 onto the end of string s1.

strlen(s1); Returns the length of string s1.

strcmp(sl, s2);Returns 0 if s1 and s2 are the same; less than O if s1<s2; greater than O if s1>s2.
strchr(s1, ch); Returns a pointer to the first occurrence of character ch in string s1.

strstr(s1, s2); Returns a pointer to the first occurrence of string s2 in string s1.

DEPT OF CSE, ATMECE, MYSURU Page 12

DATA STRUCTURES LABORATORY

PROGRAM:

#include<stdio.h>
void read();
void match();

char STR[100],PAT[100],REP[100], ANS[100];

intc,i,j,k,m,flag=0;
main()

{

read();

match();

b

void read()

{

printf("enter the main string STR:");
gets(STR);

printf("enter pattern string PAT:");
gets(PAT);

printf("enter replace string REP:");
gets(REP);

by

void match()

{

c=i=j=k=m=0;

while(STR[c]!'="0")

{

IF(STR[m]==PATIi])

{

I++:m++;

flag=1;

If(PAT[i]=="0)

{

for(k=0;REP[K]!="0";k++,j++)
ANSI[j]=REP[K];

i1=0;
DEPT OF CSE, ATMECE, Mysuru

BCSL305

Page 16

DATA STRUCTURES LABORATORY

c=m;

}

}

else

{

ANS[j]=STR]c];

JH+;c+t;

m=c;

1=0;

}

}

if(flag==0)

printf(*'pattern not found");
else

{

ANSJ[j]=\0,
printf("resultant string is %s",ANS);
}

DEPT OF CSE, ATMECE, Mysuru

BCSL305

Page 17

DATA STRUCTURES LABORATORY BCSL305

Output 1
Enter the MAIN string:

atme college of engg
Enter a PATTERN string:

engg
Enter a REPLACE string:

engineering

The RESULTANT string is: atme college of engineering
Output 2

Enter the MAIN string:

atme college of engg

Enter a PATTERN string:

for

Enter a REPLACE string:

if

Pattern doesn't found!!!

DEPT OF CSE, ATMECE, MYSURU Page 17

DATA STRUCTURES LABORATORY BCSL305

Output 3
Enter the MAIN string:

This is Data Structure lab

Enter a PATTERN string:

Data Structure

Enter a REPLACE string:

Data structure with C

The RESULTANT string is: This is Data structure with C lab

Program outcomes:

o Implement string matchingand string replacement algorithmwithout using
built-in library functions.

o Apply the knowledge of array usage to implement string functions.
o Identify different applications of string matching andstringreplacement.

Viva Questions:

o What isa string?
o How strings are represented in C language? What does strlen do in C?

o Isthereastring datatype in C? What isthe use of char in Cprogramming?

DEPT OF CSE, ATMECE, MYSURU Page 18

DATA STRUCTURES LABORATORY BCSL305

PROGRAM 3

Design, Develop and Implement a menu driven Program in C for the
following operations on STACK of Integers (Array Implementation of Stack
with maximum size MAX)

a. Push an Element ontoStack

b Pop an Element fromStack

¢ Demonstrate how Stack can be used to check Palindrome

d Demonstrate Overflow and Underflow situations on Stack

e Display the status of Stack

f. Exit
Support the program with appropriate functions for each of the
above operations.

Program objective:
o Understand the concept of palindrome.

o Understand the stack data structures.

o Understandthe different functions onstacksi.e., push, popand implementthe
same.

o Understand stack overflow and underflow.

Algorithm:

PUSH (item)

Step 1: Read an element to be pushed on to stack item

Step 2: check overflow condition of stack before inserting element into
stack Top=max-1

Step 3: update the top pointer and insert an element into stack
Top=top+1

S[top] <-item

POP (item)

Stepl: check underflow condition of stack before deleting element from stack
top=-1

Step2: Display deleted element pointed by top

Deleted element<- s[top]

Step3: Decrement top pointer by 1

top<-top-1

DEPT OF CSE, ATMECE, MYSURU Page 19

DATA STRUCTURES LABORATORY BCSL305

Palindrome

Step 1: Two pointers are required , one is pointed to top of stack

another is bottom of stack

Step 2: compare top and bottom elements of stack if it is equal update top and
bottom pointer byl

Step 3: ifall elements are equal, then stack content is palindrome

DEPT OF CSE, ATMECE, MYSURU Page 20

DATA STRUCTURES LABORATORY BCSL305

THEORY

It is called as last in, first out. The element inserted first is the last one to be deleted. It
is used for various applications like infix to postfix expression, postfix evaluation and for
maintaining stack frames for function calling

A real-world stack allows operations at one end only. For example, we can place or
remove a card or plate from top of the stack only. Likewise, Stack ADT allows all data
operations at one end only.

At any given time, we can only access the top element of a stack. This feature makes it
LIFO data structure. LIFO stands for Last-in-first-out. Here, the element which is placed
(inserted or added) last is accessed first. In stack terminology, insertion operation is called
PUSH operation and removal operation is called POP operation.

Below given diagram tries to depict a stack and its operations —

Push

2]

Pop

N .

A

Stack

Fig4-Example of Stack

A stack can be implemented by means of Array, Structure, Pointer and Linked-List. Stack
can either be a fixed size one or it may have a sense of dynamic resizing.

Here, we are going to implement stack using arrays which makes it a fixed size stack
implementation.

Basic Operations performed on stack:
« push() - pushing (storing) an element on the stack.

« pop() - removing (accessing) an element from the stack.

To use a stack efficiently we need to check status of stack as well. For the same
purpose, the following functionality is added to stacks;
« peek() — get the top data element of the stack, without removing it.

e isFull() — check if stack is full.
« iISEmpty() — check if stack is empty.

DEPT OF CSE, ATMECE, MYSURU Page 21

DATA STRUCTURES LABORATORY
PROGRAM:

#include<stdio.h>
#include<stdlib.h>
#define MAX 4
intstack| MAX],top=-1,item;
void push();

void pop();

void palindrome();
void display();
void main()

{

intchoice;
while(1)

{

Printf(**------- STACK OPERATIONS
printf(**1.push\n 2.pop\n 3.palindrome\n 4.display\n 5.exit\n");

printf(“enter choice");
scanf("%d",&choice);
switch(choice)
{
case 1:push();
break;
case 2:pop();
break;
case 3:palindrome();
break;
case 4:display();
break;
case 5:exit(0);
break;
default:printf("invalid choice\n");
break;

}
}
}

DEPT OF CSE, ATMECE, MYSURU

BCSL305

Page 22

DATA STRUCTURES LABORATORY BCSL305

void push()

{

if(top==MAX-1)
printf("stack overflow");
else

{

printf(“enter the item to be pushed\n™);
scanf("'%d",&item);
top=top+1;
stack[top]=item;

b

b

void pop()

{

if(top==-1)

printf("stack underflow™);
else

{

item=stack[top];
top=top-1,
printf("deleted item is %d",item);
¥

¥

void display()

{

inti;

if(top==-1)

printf("stack is empty");
else

{

for(i=top;i>=0;i--)
printf("%d\t",stack[i]);

by

¥

DEPT OF CSE, ATMECE, MYSURU Page 23

DATA STRUCTURES LABORATORY
void palindrome()

{
intnum[10],i=0,k,flag=1;
k=top;

while(k!=-1)

num[i++]=stack[k--];
for(i=0;i<=top;i++)

{

If(num[i]==stack[i])
continue;

else

flag=0;

¥

if(top==-1)
printf("stack is empty");
else

{

if(flag)
printf("palindrome");
else

printf("'not a palindrome");

ky
k

DEPT OF CSE, ATMECE, MYSURU

BCSL305

Page 24

DATA STRUCTURES LABORATORY BCSL305

Output

——————— STACK OPERATIONS ------
1. Push

2. Pop

3. Palindrome

4. Display

5. Exit

Enter your choice 1

enter element to be inserted
10

1. Push

2. Pop

3. Palindrome

4. Display

5. Exit

Enter your choice 1

enter element to be inserted
20

1. Push

2. Pop

3. Palindrome
4. Display

5. Exit

DEPT OF CSE, ATMECE, MYSURU Page 25

DATA STRUCTURES LABORATORY BCSL305

Enter your choice 1
enter element to be inserted
30

1. Push

2. Pop

3. Palindrome

4. Display

5. Exit

Enter your choice 1

enter element to be inserted
40

1. Push

2. Pop

3. Palindrome

4. Display

5. Exit

Enter your choice 1

enter element to be inserted
50

1. Push

2. Pop

3. Palindrome

4. Display

5. Exit

Enter your choice 1
Stack Overflow:

1. Push

2. Pop

3. Palindrome
4. Display

5. Exit

Enter your choice 4

DEPT OF CSE, ATMECE, MYSURU Page 26

DATA STRUCTURES LABORATORY BCSL305

stack elements are:
50 40 30 20 10

1.Push

2.Pop

3. Palindrome

4. Display

5. Exit

Enter your choice 2
The poped element: 50
------- STACK OPERATIONS------
1.Push

2.Pop

3. Palindrome

4. Display

5. Exit

Enter your choice 2
The poped element: 40
------- STACK OPERATIONS------
1.Push

2.Pop

3. Palindrome

4. Display

5. Exit

Enter the choice

2

The poped element: 30
------- STACK OPERATIONS------
1. Push

2. Pop

3. Palindrome

4. Display

5. Exit

Enter your choice 2
The poped element: 20

DEPT OF CSE, ATMECE, MYSURU Page 27

DATA STRUCTURES LABORATORY

Push

1. Pop

2. Palindrome

3. Display

4. Exit

Enter the choice

2

The poped element: 10

------- STACK OPERATIONS------
L. Push

2. Pop

3. Palindrome
4. Display

5. Exit

The enter the choice 2
Stack is Empty

BCSL305

Program outcome :

o Analyze the stack overflow and underflow conditions.
o Identify different application ofstacks.
o Implement to check palindrome numbers using stacks.

o Familiarized with push and pop operations on stack.

Viva Questions:

o What is Stack and where it can be used?
o What is the difference between PUSH and POP?
o Differentiate STACK from ARRAY.

o What is the difference between a stack and a Queue?

DEPT OF CSE, ATMECE, MYSURU

Page 28

DATA STRUCTURES LABORATORY BCSL305

PROGRAM 4

Design, develop and implement a Program in C for converting an Infix
Expression to Postfix Expression. Program should support for both
parenthesized and free parenthesized expressions with the operators: +, -, *,
/, %(Remainder), (Power) and alphanumeric operands.

Program objective:
o Understand different notations to represent regular expression.

o Understand infix to postfix conversion.
o Understand the precedence of operators.

Algorithm:
Step 1: Read the infix expression as a string.
Step 2: Scan the expression character by character till the end. Repeat the
following operations
1. Ifitisan operand add it to the postfixexpression.
2. Ifitisaleft parenthesis push it onto the stack.

3. Ifitisaright parentheses pop out elements from the stack and assign it to
the postfix string. Pop out the left parentheses but don’t assign topostfix.

Step 3: If it is an operator compare its precedence with that of the element at the
top of stack.

L. If itis greater push it onto the stack.

2. Else pop and assignelements inthe stack to the postfixexpression until
you find one such element.

Step 4: If you have reached the end of the expression, pop out any leftover
elements in the stack till it becomes empty.

Step 5: Append a null terminator at the end display the result

Operator priority

0
(1
- 2
* | % 3
A 4

DEPT OF CSE, ATMECE, MYSURU Page 29

DATA STRUCTURES LABORATORY BCSL305

THEORY
Infix: Operators are written in-between their operands. Ex: X +Y

Prefix: Operators are written before their operands. Ex: +X Y postfix: Operators are written
after their operands. Ex: XY+

Examples of Infix, Prefix, and Postfix

Infix Expression Prefix Expression Postfix Expression
A+B +AB AB+
A+B*C +A*BC ABC*+

Infix to prefix conversion Expression = (A+B~C)*D+EN5

Step 1. Reverse the infix expression.
57"E+D*)CB+A(

Step 2. Make Every'("as) and every ") as '(’
SAE+D*(CMB+A)

Step 3. Convert expression to postfix form.

Step 4. Reverse the expression.
+*+ANBCD"E

Step 5. Result
+*+A’BCD"E5

DEPT OF CSE, ATMECE, MYSURU Page 30

DATA STRUCTURES LABORATORY

PROGRAM:

#include<stdio.h>
#include<ctype.h>
#define SIZE 50
char s[SIZE];
inttop=-1,;

void push(char elem)
{

s[++top]=elem;

}
char pop()
{

return s[top--];

}

int pr(char elem)

{

switch(elem)

{

case '#'".return 0,
case '(:return 1;
case '+"

case '-"return 2;
case "

case '/".

case '%'".return 3;
case M:return 4;

¥

¥

void main()

{

charinfix[50],postfix[50],ch,elem;
int i=0,k=0;

printf("enter the infix expression\n™);
gets(infix);

push(#);

while((ch=infix[i++])!="0)

DEPT OF CSE, ATMECE, MYSURU

BCSL305

Page 31

DATA STRUCTURES LABORATORY

{
if(ch=="(")
push(ch);

else if(isalnum(ch))
postfix[k++]=ch;
else if(ch==")")

{

while(s[top]!'="(")
postfix[k++]=pop();
elem=pop();

}

else

{
while(pr(s[top])>=pr(ch))
postfix[k++]=pop();
push(ch);

}

}

while(s[top]!="#")
postfix[k++]=pop();
postfix[k]="0";

printf("infix expression is %s\n postfix expression is %s\n",infix,postfix);

}

DEPT OF CSE, ATMECE, MYSURU

BCSL305

Page 32

DATA STRUCTURES LABORATORY

Outputl
enter the Infix Expression

((a+b)*c)
Given Infix Expn is: ((a+b)*c)
The Postfix Expn is: ab+c*

Output 2
enter the Infix Expression

(a+ (b-c)*d)
Given Infix Expn is: (a+ (b-c)*d)
The Postfix Expn is: abc-d*+

BCSL305

Program outcome :
o Identify the applications of infix and postfix.

o Implement C program to convert infix to postfix.
o Identify the different operators.

Viva Questions:

o What is a postfix expression?
o What are Infix, prefix, Postfix notations?

o What isthe evaluation order according to which an infixexpressionis
converted to postfix expression ?

o which data structure is used for infix to postfix conversion

DEPT OF CSE, ATMECE, MYSURU

Page 33

DATA STRUCTURES LABORATORY BCSL305

PROGRAM 5

Design, develop and implement a Program inC for the following Stack
Applications

a. Evaluation of Suffixexpression withsingle digit operands

and operators: +, -, *, /,%,

b. Solving Tower of Hanoi problem with n disks

Program objective :
o Understand different polish notation.

o Understand the methodology of evaluating suffix expression.
o Getthe knowledge of operator precedence and associativity.

Algorithm
Step 1: Read the suffix/postfix expression

Step 2: Scan the postfix expression from left to right character by character
Step 3: if scanned symbol is operand push data into stack.

If scanned symbol is operator pop two elements from stack Evaluate result
and result is pushed onto stack

Step 4: Repeat step 2-3 until all symbols are scanned completely

DEPT OF CSE, ATMECE, MYSURU Page 34

DATA STRUCTURES LABORATORY BCSL305

PROGRAM:

#include<stdio.h>
#include<stdlib.h>
#include<string.h>
#include<math.h>
#define MAX 50
char postfMAX];
intstack| MAX],top=-1,i;
void pushstack(int);
void calculator(char);
main()
{
printf("enter suffix expression\n");
gets(post);
for(i=0; i<strlen(post); i++)
{
if(post[i]>'0'&& post[i]<="9")
pushstack(i);
else
calculator(post[i]);

¥
printf(*'result=%d\n" stack[top]);

}
void pushstack(int i)

{
top=top+1;
stack[top]=(int)(post[i]-48);
}

void calculator(char c)

{

inta,b,ans;
b=stack[top--];
a=stack[top--];

DEPT OF CSE, ATMECE, MYSURU Page 35

DATA STRUCTURES LABORATORY BCSL305

switch(c)

{

case '+":ans=a+b;break;

case '-":ans=a-b;break;

case *":ans=a*b;break;

case '/".ans=a/b;break;

case '%".ans=a%b;break;
case M:ans=pow(a,b);break;
default :printf("wrong input\n™);
exit(0);

}

top++;

stack[top]=ans;

¥

DEPT OF CSE, ATMECE, MYSURU Page 36

DATA STRUCTURES LABORATORY

Outputl

enter suffix expression:
23+

The resultis 5

Output2
enter suffix expression:

123-4*+
The result is -3.

Output3
enter suffix expression:

623+-382/+*2%$3+
The result is 52

BCSL305

Program outcome:

¢ Identify the applications of suffix expression.
o Familiarized with the methodology of suffix evaluation.

o Familiarized the operator precedence and associativity.

Viva Questions

o What is Suffix Expression?

DEPT OF CSE, ATMECE, MYSURU

Page 37

DATA STRUCTURES LABORATORY BCSL305

5 b. Solving Tower of Hanoi problem with n disks

Program objective:
o Understand tower of Hanoi problem.

o Understand recursive functions and its disadvantages.

Algorithm:

MAIN FUNCTION ()
Step 1: Read No of disks called n from keyboard.

Step 2: Check if n is not zero or a negative no. if yes display suitable message
else go to step3.

Step 3: Call tower of Hanoi function with nasparameter,
Step 4: Stop

TOWERS OF HANOI FUNCTION TO MOVE DISKSFROMATOC
USING B ()
Step 1: If nis equal to 1 then move the single disk from A to C and stop

Step 2: Move the top n

Step 1 disks from A to B using c as auxiliary.
Step 3: Move the remaining disk from A to C.
Step 4: Move the n-1 disks from B to C using as auxiliary.

THEORY

The Tower of Hanoi is a mathematical game or puzzle. It consists of three rods, and a
number of disks of different sizes which can slide onto any rod. The puzzle starts with the
disks in a neat stack in ascending order of size on one rod, the smallest at the top, thus making
a conical shape.

The program objective of the puzzle is to move the entire stack to another rod, obeying
the following simple rules:

e Onlyone disk can be moved at a time.

e Each move consists of taking the upper disk from one of the stacks and placing it on top
of another stack i.e. a disk can only be moved if it is the uppermost disk on a stack.

¢ No disk maybe placed on top of a smallerdisk.

With three disks, the puzzle can be solved in seven moves. The minimum number of moves
required to solve a Tower of Hanoi puzzle is 2n - 1, where n is the number of disks

DEPT OF CSE, ATMECE, MYSURU Page 38

DATA STRUCTURES LABORATORY BCSL305

PROGRAM:

#include<stdio.h>

Void tower(int n,char frompeg,char topeg,char auxpeg); int
n;

void main()

{
printf("Enter the no. of discs: \n");

scanf("%d",&n);

printf("the number of moves in tower of henoi problem\n");
tower(n,'’A",'C",'B");

}

void tower(int n,char frompeg,char topeg,char auxpeg)

{
if(n==1)
{
printf("move disk1 from %C to %C\n ",frompeg,topeg);

return;

}

tower(n-1,frompeg,auxpeg,topeg);

printf("move disk%d from %C to %C\n",n,frompeg,topeg);
tower(n-1,auxpeg,topeg,frompeg);

}

Output
Enter the no. of discs:

3

the number of moves in tower of henoi problem
Move disc 1 from Ato C

Move disc 2 from Ato B

Move disc 1 from C to B

Move disc 3 from Ato C

Move disc 1 from B to A

Move disc 2 from B to C

Move disc 1 from Ato C

DEPT OF CSE, ATMECE, MYSURU Page 39

DATA STRUCTURES LABORATORY BCSL305

Program outcome:
o ldentify the application of Tower of Hanoi problem.

o Implement the methodology to solve Tower of Hanoi problem.
o Implement the given problem using recursive function.

Viva Questions
* Howdoyousolvethe problemofthe Tower of Hanoi usingrecursion?
o What is recursion? And what is tower of Hanoi problem?

DEPT OF CSE, ATMECE, MYSURU Page 40

DATA STRUCTURES LABORATORY BCSL305

PROGRAM 6

Design, develop and implement a menu driven Program in C for the
following operations on Circular QUEUE of Characters (Array
Implementation of Queue with maximum size MAX)

a Insert an Element on to Circular QUEUE

b Delete an Element from Circular QUEUE

¢ Demonstrate Overflow and Underflow situations on Circular QUEUE
d Display the status of Circular QUEUE

e Exit

Support the program with appropriate functions for each of the above
operations

Program objective:
o Understand the working of circularqueue

o Know the advantages of circular queue over liner queue.
o Understand the insertion and deletion operation oncircular queue.

o Understand overflow and underflow conditions incircularqueue.

ALGORITHM:
Stepl: Initialize front and rear pointer and also count

front->0,count<-0,rear<--1

Step2: Insert an element into queue before check overflow condition
Count=max

Insert an element rear<-(rear+1) %max

g[rear]<-itemand count=count+1

Step3: Delete an element from queue .check underflow condition
Count=0 underflow condition. Count<-count-1

Item<-qg[front]Deleted element

Step4: Display contents of queue. Number of elements represents count.
Check empty queue condition before displaying an element

DEPT OF CSE, ATMECE, MYSURU Page 41

DATA STRUCTURES LABORATORY BCSL305

THEORY
Circular queue is a linear data structure. It follows FIFO principle. In circular queue the last
node is connected back to the first node to make a circle.

It is also called FIFO structure. Elements are added at the rear end and the elements are deleted
at front end of the queue. The queue is considered as a circular queue when the positions 0 and
MAX-1 are adjacent.

B = B _Aront

Rear ”

Fig6-circular queue

The limitation of simple queue is that even if there is a free memory space available in the
simple queue we cannot use that free memory space to insert element. Circular Queue is
designed to overcome the limitation of Simple Queue.

DEPT OF CSE, ATMECE, MYSURU Page 42

DATA STRUCTURES LABORATORY

PROGRAM:

#include<stdio.h>

#include<stdlib.h>

#define MAX5
Char g[MAX],item;

int f=0,r=-1,count=0;

void insert();

void delete();

void display();

main()

{

intch;

while(1)

{

printf("1.insert 2.delete 3.display 4.exit\n");

printf("enter choice\n");
scanf("%d",&ch);
switch(ch)
{
case 1:getchar();insert();
break;
case 2:.delete();
break;
case 3:display();
break;
case 4:exit(0);
default :printf("Invalid choice\n");
break;

DEPT OF CSE, ATMECE, MYSURU

BCSL305

Page 43

DATA STRUCTURES LABORATORY BCSL305

}

}

}

void insert()

{

if(count==MAX)
printf(“queue overflow\n");
else

{

printf(“enter the item to be inserted\n™);
scanf("%c",&item);
r=(r+1)%MAX;
q[r]=item;

count++;

}

}

voiddelete()

{

if(count==0)
printf(“queue underflow\n™);
else

{

printf("deleted itemis%c\n",q[f]);
f=(f+1)%MAX;
count--;

}

}

void display()

{

intj=f,i;

DEPT OF CSE, ATMECE, MYSURU Page 44

DATA STRUCTURES LABORATORY BCSL305

if(count==0)
printf("queue is empty\n");
else

{

printf("contentsofcircularqueue\n®);
for(i=1;i<=count;i++)

{

printf("%c\t",q[j]);

JI=(j+1)%MAX;

}

printf(“total number of items=%d\n",count);
}

}

DEPT OF CSE, ATMECE, MYSURU Page 45

DATA STRUCTURES LABORATORY

Output
1. Insert 2. Delete 3. Display 4. Exit

Enter the choice: 1

Enter the item to be inserted: A

1. Insert 2. Delete 3. Display 4. Exit
Enter the choice: 1

Enter the item to be inserted: B

1. Insert 2. Delete 3. Display 4. Exit
Enter the choice: 1

Enter the item to be inserted: C

1. Insert 2. Delete 3. Display 4. Exit
Enter the choice: 1

Enter the item to be inserted: D

1. Insert 2. Delete 3. Display 4. Exit
Enter the choice: 3

Contents of Queue is:

ABCD

1. Insert 2. Delete 3. Display 4. Exit
Enter the choice: 1

Enter the character / item to be inserted: F

Queue is Full

1. Insert 2. Delete 3. Display 4. Exit
Enter the choice: 2

Deleted itemis: A

1. Insert 2. Delete 3. Display 4. Exit
Enter the choice: 2

Deleted item is: B

1. Insert 2. Delete 3. Display 4. Exit
Enter the choice: 3

Contents of Queue is:

CD

1. Insert 2. Delete 3. Display 4. Exit
Enter the choice: 1

Enter the item to be inserted: K

1. Insert 2. Delete

Enter the choice: 3

DEPT OF CSE, ATMECE, MYSURU

BCSL305

Page 46

DATA STRUCTURES LABORATORY BCSL305

Contents of Queue is:
CDK

1. Insert 2. Delete 3. Display4.Exit
Enter the choice: 4

Program outcome:
¢ Identify the applications of circular queue.

o Implement insert and delete operations on circular queue.

Viva Questions:

o What is a queue ?what are applications of queue?
o What is Circular Queue? What isthe difference between a Stack and aQueue?

DEPT OF CSE, ATMECE, MYSURU Page 47

DATA STRUCTURES LABORATORY BCSL305

PROGRAM 7
Design, Develop and Implement a menu driven Program in C for the

following operations on Singly Linked List (SLL) of Student Data with the
fields: USN, Name, Branch, Sem, PhNo

d

b
C
d
e
f

Create a SLL of N Students Data by using front insertion.
Display the status of SLL and count the number of nodes in it
Perform Insertion and Deletion at End of SLL

Perform Insertion and Deletion at Front of SLL

Demonstrate how this SLL can be used asSTACKandQUEUE
Exit

Program objective:

Understand the Singly Linked List (SLL) data structures.

Understand the methodology to insertand delete the element at the frontof
SLL.

Understand the methodology to insert and delete the element at theendof
SLL.

Get the knowledge of how SLL and be used as both stack and queue.

Algorithm
Step 1: declarestructure of node createemptylist

head->null

Step2: Insert at front end
head<-null

returntemp

if list is empty
temp->link=head

return head

Step 3:Insert at rear end

head=null
returntemp

if list is empty
cur->head
while(cur!=null)
cur=cur->link

cur->link=temp;
return head

DEPT OF CSE, ATMECE, MYSURU Page 48

DATA STRUCTURES LABORATORY

Step 4: Delete at front end
head->link=null;

return null

if list has only one node
cur=head

head=head->link

free(cur)

Step 5:Delete at Rear end
head->link=null

return null

if only one node
cur<-head
while(cur!=null)
prev<-cur, cur=cur<-link;
free(cur);

DEPT OF CSE, ATMECE, MYSURU

BCSL305

Page 49

DATA STRUCTURES LABORATORY BCSL305

THEORY

Linked List is a linear data structure and it is very common data structure which consists of
group of nodes in a sequence which is divided in two parts. Each node consists of its own data
and the address of the next node and forms a chain. Linked Lists are used to create trees and
graphs.

In any single linked list, the individual element is called as "Node". Every "Node" contains two

fields, data and next. The data field is used to store actual value of that node and next field is
used to store the address of the next node in the sequence.

The graphical representation of a node in a single linked list is as follows...

Stores Address of next node

pata AR,

Stores Actual value

Fig-7 Graphical Representation of Linked List
In a single linked list, the address of the first node is always stored in a reference node known
as "front" (Some times it is also known as "head").Always next part (reference part) of the last
node must be NULL.

They are a dynamic in nature which allocates the memory when required.

e Insertion and deletion operations can be easilyimplemented.

e Stacks and queues can be easily executed.

e Linked List reduces the access time.

e Linked lists are used to implement stacks, queues, graphs, etc.

e Linked lists let you insert elements at the beginning and end of the list.
e In Linked Lists we don’t need to know the size in advance.

Advantages over arrays
1) Dynamic size
J) Ease of insertion/deletion

Drawbacks:

1) Random access is not allowed. We have to access elements sequentially starting fromthe
first node. So we cannot do binary search with linked lists.

J) Extra memory space for a pointer is required with each element of the list.

DEPT OF CSE, ATMECE, MYSURU Page 50

DATA STRUCTURES LABORATORY

PROGRAM:
#include<stdio.h>
#include<stdlib.h>
#include<string.h>
void create();
void insert_front();
void insert_rear();
void display();
void delete_front();
void delete_rear();
int count=0;
struct node{
char usn[20],name[50],branch[10];
intsem;
unsigned long long int phno;

structnode*link;

b

struct node *first=NULL,*last=NULL,*temp=NULL,*p;
void main()

{

int ch,n,i;

while(1)

{

BCSL305

printf("1.create SLL 2.insert at front 3.insert at rear 4.display 5.delete at front 6.delete at

rear 7.exit\n");
printf("enter choice\n");
scanf("%d",&ch);
switch(ch)

{

DEPT OF CSE, ATMECE, MYSURU

Page 51

DATA STRUCTURES LABORATORY
case 1:printf("enter the no.of students\n");

scanf("%d",&n);
for(i=1;i<=n;i++)
insert_front();
break;
case 2:insert_front();
break;
case 3:insert_rear();break;
case 4.display();break;
case 5:delete front();break;
case 6:delete rear();break;
case 7:exit(0);
default:printf("invalid choice\n");break;
}
}
}
void create()
{
char usn[20],name[50],branch[10];
intsem;

unsigned long long int phno;

temp=(struct node*)malloc(sizeof(struct node));

printf("enter usn,name,branch,sem,phno\n™);

scanf("%s%s%s%d%Ilu",usn,name,branch,&sem,&phno);

strcpy(temp->usn,usn);
strcpy(temp->name,name);
strepy(temp->hranch,branch);
temp->sem=sem;
temp->phno=phno;
count++;

DEPT OF CSE, ATMECE, MYSURU

BCSL305

Page 52

DATA STRUCTURES LABORATORY BCSL305

}

void insert_front()
{
if(first==NULL)
{

create();
temp->link=NULL;
first=temp;
last=temp;

}

else

{

create();
temp->link=first;
first=temp;

}

}
voidinsert_rear()
{
if(first==NULL)
{

create();
temp->link=NULL;
first=temp;
last=temp;

}

else

{

create();

DEPT OF CSE, ATMECE, MYSURU Page 53

DATA STRUCTURES LABORATORY
temp->link=NULL,;

last->link=temp;
last=temp;
}

}

void display()

{

if(first==NULL)

{

printf("list is empty\n");
}

else

{

p=first;
printf("content of list is\n");
while(p!=NULL)

{

printf("%s\t%s\t%s\t%a\t%Ilu\n",p->usn,p->name,p->branch,p->sem,p->phno);

p=p->link;
}

printf(“total no.of students %d\n",count);

}
}

void delete_front()

{
p=first;
if(first==NULL)

{
printf("list is empty\n");

DEPT OF CSE, ATMECE, MYSURU

BCSL305

Page 54

DATA STRUCTURES LABORATORY BCSL305

}
else if(p->link==NULL)

{

printf(“deleted node s %s\t%s\t%s\t%a\t%llu\n",p->usn,p->name,p->branch,p->sem,p->phno);
free(p);

first=NULL,;

count--;

}

else

{

first=p->link;

printf("deleted node is 9%s\t%s\t%s\t%a\t%llu\n",p->usn,p->name,p->branch,p->sem,p->phno);
free(p);

count--;

}

}

void delete_rear()

{

p=first;
if(first==NULL)

{

printf("list is empty\n");
}

else if(p->link==NULL)
{

printf("deleted node is %s\t%s\t%s\t%d\t%Ilu\n",p->usn,p->name,p->branch,p->sem,p->phno);
free(p);

first=NULL:

count--;

DEPT OF CSE, ATMECE, MYSURU Page 55

DATA STRUCTURES LABORATORY BCSL305

}

else

{
while(p->link!=last)
p=p->link;

printf("deleted node is %s\t%s\t%s\t%d\t%Ilu\n" last->usn, last->name, last->branch, last-
>sem, last->phno);

free(last);
p->link=NULL,;
last=p;
count--;

}

}

DEPT OF CSE, ATMECE, MYSURU Page 56

DATA STRUCTURES LABORATORY

Output

MENU-

1 create a SLL of nemp

2 - Display from beginning
3 - Insert at end

4 - delete at end

5 - Insert at beg

6 - delete at beg

7 - exit

Enter choice :

2
List empty to display

MENU-

1 create a SLL of nemp

2 - Display frombeginning
3 - Insert at end

4 - delete at end

5 - Insert at beg

6 - delete at beg

7 - exit

Enter choice :1

Enter no of students :
2

DEPT OF CSE, ATMECE, MYSURU

BCSL305

Page 57

DATA STRUCTURES LABORATORY

Enter usn,name, branch, sem, phno of student :
4ad16¢s022 harsha cs 3 9912367789

Enter usn,name, branch, sem, phno of student :
4ad16c¢s024 deepak cs 3 9538218822

MENU-

1 create a SLL of nemp

2 - Display frombeginning
3 - Insert at end

4 - delete at end

5 - Insert at beg

6 - delete at beg

7 - exit

Enter choice :
2

Linked list elements from begining :

4ad16cs024 deepak cs 3 9538218822
4ad16¢s022 harsha c¢cs 3 9912367789

No of students = 2
MENU-

1 createa SLL of nemp

2 - Displayfrombeginning
3 - Insert at end

4 - delete at end

5 - Insert at beg

6 - delete at beg
7 - exit

DEPT OF CSE, ATMECE, MYSURU

BCSL305

Page 58

DATA STRUCTURES LABORATORY
Enter choice :

3

Enter usn,name, branch, sem, phno of student :
4ad16¢s011 bharath cs 3 9912698467

MENU-

1 create a SLL of nemp

2 - Display frombeginning
3 - Insert at end

4 - delete at end

5 - Insert at beg

6 - delete at beg

7 - exit

Enter choice :
2

Linked list elements from begining :

4ad16cs024 deepak cs 3 9538218822
4ad16¢s022 harsha c¢cs 3 9912367789
4ad16c¢s011 bharath c¢cs 3 0912698467

No of students = 3
MENU-

1 createa SLL of nemp

2 - Display frombeginning
3 - Insert at end

4 - delete at end

5 - Insert at beg

6 - delete at beg

7 - exit

DEPT OF CSE, ATMECE, MYSURU

BCSL305

Page 59

DATA STRUCTURES LABORATORY
Enter choice :

5

Enter usn,name, branch, sem, phno of student :
4ad16¢s033 jayakumar cs 3 8903478345

MENU-

1 createa SLL of nemp

2 - Display frombeginning
3 - Insert at end

4 - delete at end

5 - Insert at beg

6 - delete at beg

7 - exit

Enter choice :
2

Linked list elements from begining :

4ad16cs033 jayakumar cs 3 8903478345
4ad16cs024 deepak cs 3 9538218822
4ad16¢s022 harsha c¢cs 3 9912367789
4ad16cs011 bharath cs 3 9912698467

No of students = 4

MENU-

1 createa SLL of nemp

2 - Displayfrombeginning
3 - Insert at end

4 - delete at end

5 - Insert at beg

6 - delete at beg
7 - exit

DEPT OF CSE, ATMECE, MYSURU

BCSL305

Page 60

DATA STRUCTURES LABORATORY

Enter choice :
4
4ad16c¢s011 bharath cs 3 9912698467

MENU-

1 create a SLL of nemp

2 - Display frombeginning
3 - Insert at end

4 - delete at end

5 - Insert at beg

6 - delete at beg

7 - exit

Enter choice :
2

Linked list elements from begining :

4ad16cs033 jayakumar cs 3 8903478345
4ad16cs024 deepak cs 3 9538218822
4ad16cs022 harsha cs 3 9912367789

No of students = 3

MENU-
1 create a SLL of nemp

2 - Display frombeginning
3 - Insert at end
4 - delete at end
5 - Insert at beg
6 - delete at beg

7 - exit

DEPT OF CSE, ATMECE, MYSURU

BCSL305

Page 61

DATA STRUCTURES LABORATORY

Enter choice :
6
4ad16¢s033 jayakumar cs 3 8903478345

MENU-

1 createa SLL of nemp

2 - Display frombeginning
3 - Insert at end

4 - delete at end

5 - Insert at beg

6 - delete at beg

7 - exit

Enter choice :
2

Linked list elements from begining :

4ad16cs024 deepak cs 3 9538218822
4ad16¢s022 harsha c¢s 3 9912367789

No of students = 2

MENU-

1 createa SLL of nemp

2 - Displayfrombeginning
3 - Insert at end

4 - delete at end

5 - Insert at beg

6 - delete at beg

7 - exit

DEPT OF CSE, ATMECE, MYSURU

BCSL305

Page 62

DATA STRUCTURES LABORATORY

Enter choice :
8

wrong choice

MENU-

1 create a SLL of nemp

2 - Display frombeginning
3 - Insert at end

4 - delete at end

5 - Insert at beg

6 - delete at beg

7 - exit

Enter choice :
7

BCSL305

Program outcome :
o Implement Singly Linked List.

o Implement insertion at the front and end of SLL.
o Implement deletion at the front and end of SLL.

¢ Identify the applications of SLL.

o Familiarized how SLL can be used as both stack and queue.

Viva Questions :

o What isa Linked List and What are its types? What is a node?

o Whatarethe parts ofalinked list? What are the advantages of linked list?

¢ Mention what is traversal in linked lists?

DEPT OF CSE, ATMECE, MYSURU

Page 63

DATA STRUCTURES LABORATORY BCSL305

PROGRAM 8

Design, Develop and Implement a menu driven Program in C for the
following operations on Doubly Linked List (DLL) of Employee Data with
the fields: SSN, Name, Dept, Designation,Sal, PhNo

Create a DLL of N Employees Data by using end insertion.

Display the status of DLL and count the number of nodes in it

Perform Insertion and Deletion at End of DLL

Perform Insertion and Deletion at Front of DLL

Demonstrate how this DLL can be used as Double Ended Queue

Exit

D O OO T

Program objective:
o Understand the Doubly Linked List (DLL) data structures.

o Understand the methodology to insertand delete the element at the frontof
DLL.

o Understand the methodology to insert and delete the element at the endof
DLL.

o Getthe knowledge of how DLL and be used as double ended queue.

Algorithm

Insertion at front end of list.

Step 1: Allocate memory for temp node and assign values to node
Step2: if list is empty, temp is attached to list directly

head=null

returntemp

if list is not empty

temp->rlink=head

head->llink=temp

return head

Insertion at rear end of list.
Stepl: Read node information and allocate memory for temp node

Step?2: traverse the cur node upto to end of list then attach node cur to temp
cur->rlink=temp;

temp->llink=cur

Step 3:return starting address of list

DEPT OF CSE, ATMECE, MYSURU Page 64

DATA STRUCTURES LABORATORY BCSL305
return head:

Delete from front end of list.
Step 1: check if list has only one node

head=NULL;

return null;

if list is empty

head->rlink=NULL

return NULL;

if list has oOnly one node

Step 2:otherwise first node address is shifted to next node
cur=head

head=head->rlink

free(cur)

Step 3: return starting address of list
return head

Delete node from rear end
Step 1: two pointers requires one is cur and prev

Cur is one which points, node to be deleted.

Step 2: Traverse the cur node upto end of list before updating current pointer save
the

Address to prev pointer.
While(cur->rlink!=null)
{

prev=cur;

cur=cur->rlink;

}

prev->rlink=null;

cur->llink=null;

free(cur);

Step3: return starting address of the list

DEPT OF CSE, ATMECE, MYSURU Page 65

DATA STRUCTURES LABORATORY BCSL305

THEORY

e In computer science, a doubly linked list is a linked data structure that consists of a set
of sequentially linked records called nodes.

e Each node contains two fields, called links, that are references to the previous and to
the next node in the sequence of nodes. The beginning and ending nodes' previous and
next links, respectively, point to some kind of terminator, typically a sentinel node or
null, to facilitate traversal of the list. If there is only one sentinel node, then the list is
circularly linked via the sentinel node. It can be conceptualized as two singly linked
lists formed from the same data items, but in opposite sequential orders.

e A doubly linked list whose nodes contain three fields: an integer value, the link to the
next node, and the link to the previous node.

e The two node links allow traversal of the list in either direction. While adding or
removing a node in a doubly linked list requires changing more links than the same
operations on a singly linked list, the operations are simpler and potentially more
efficient (for nodes other than first nodes) because there is no need to keep track of the
previous node during traversal or no need to traverse the list to find the previous node,
so that its link can be modified.

DEPT OF CSE, ATMECE, MYSURU Page 66

DATA STRUCTURES LABORATORY

PROGRAM:

#include<stdio.h>
#include<stdlib.n>
#include<string.h>
void create(); void
insert_front(); void
insert_rear(); void
display();
void delete_front();
void delete_rear();
int count=0;
struct node
{
intssn;
char name[50],dept[20],desg[20];
floatsal;
unsigned long long int phno;
struct node *Ilink, *rlink;
b
struct node *first=NULL,*last=NULL,*temp;
main()
{
intch,n,i;
while(1)
{

printf("1.create\n2.insert_front\n3.insert_rear\n4.display\n5.delete_front\n 6.delete_rear\n

7.exit\n");

printf("enter choice\n");

DEPT OF CSE, ATMECE, MYSURU

BCSL305

Page 67

DATA STRUCTURES LABORATORY
scanf("%d",&ch);

switch(ch)

{

case L:printf("enter the number of employee\n");
scanf("%d",&n);
for(i=0;i<n;i++)
insert_rear();
break;

case 2:insert_front();break;

case 3:insert_rear();break;

case 4.display();break;

case 5:delete front();break;

case 6:delete rear();break;

case 7:exit(0);

default:printf("invalid choice\n");break;

}

}

}

void create()

{
intssn;
char name[50],dept[20],desg[20];
floatsal;

unsigned long long int phno;
temp=(struct node*)malloc(sizeof(struct node));

temp->llink=temp->rlink=NULL;

printf("enter ssn,name,dept,desg,salaryand phno\n");
scanf("%ad%s%s%s%f%llu",&ssn,name,dept,desg,&sal,&phno);

temp->ssn=ssn;

DEPT OF CSE, ATMECE, MYSURU

BCSL305

Page 68

DATA STRUCTURES LABORATORY BCSL305
strcpy(temp->name,name);

strcpy(temp->dept,dept);

strcpy(temp->desg,desg);

temp->sal=sal;
temp->phno=phno;
count++;

}

voidinsert_front()
{
if(first==NULL)
{
create();
first=temp;

last=temp;

else

create();
temp->rlink=first;
first->llink=temp;

first=temp;

}

void insert_rear()

{
if(first==NULL)

{

create();

first=temp;

DEPT OF CSE, ATMECE, MYSURU Page 69

DATA STRUCTURES LABORATORY

last=temp;
}
else
{
create();
last->rlink=temp;
temp->llink=last;
temp->rlink=NULL;
last=temp;
}
}
void display()
{
struct node *p;
if(first==NULL)
{
printf("listisempty\n");
return;
}
p=first;

printf("contentsof list\n");
while(p!=NULL)

{

printf("%d\t%s\t%s\t%s\t%M\t%llu\n" p->ssn,p->name,p->dept,p->desg,p->sal,p->phno);

p=p->rlink;
}

printf(“total no. of employee %d\n",count);

}

DEPT OF CSE, ATMECE, MYSURU

BCSL305

Page 70

DATA STRUCTURES LABORATORY BCSL305
void delete_front()

{

struct node *p;

if(first==NULL)

{

printf("list is empty,cannot delete\n");
}

else if(first->rlink==NULL)

{

printf("deleted data is %0a\t%s\t%s\t%s\t%f\t%llu\n" first->ssn,first->name first->dept, first->desg, first-
>sal first->phno);

first=NULL;
free(first);
count--;

}

else

{
p=first;

first=p->rlink;

printf("deleted data
>phno);

S %d\t%s\t%s\t%s\t%M\t%Ilu\n", p->ssn,p->name,p->dept, p->desg, p->sal, p-

free(p);

count--;

}
}

void delete_rear()

{

struct node*p;
if(first==NULL)
{

DEPT OF CSE, ATMECE, MYSURU Page 71

DATA STRUCTURES LABORATORY BCSL305
printf("list is empty,cannot delete\n™);

}
else if(first->rlink==NULL)

{

printf("deleted data is %ad\t%s\t%s\t%s\t%At%Ilu\n" first->ssn first->name, first-
>(lept,first->desg, first->sal first->phno);

first=NULL,;
free(first);
count--;

}

else

{

p=last;
last=p->1link;

printf("deleted data is %d\t%s\t%s\t%s\t%Mt%Ilu\n",p->ssn,p->name,p->dept,p->desg,p-
>sal,p->phno);

free(p);
last->rlink=NULL;

count--;

}

DEPT OF CSE, ATMECE, MYSURU Page 72

DATA STRUCTURES LABORATORY

Output

MENU-

1- create a DLL of nemp
2 - Display frombeginning
3 - Insert at end

4 - delete at end

5 - Insert at beg

6 - delete at beg

7 - exit

Enter choice :
2
List empty to display

MENU-

1- create a DLL of nemp
2 - Display frombeginning
3 - Insert at end

4 - delete at end

5 - Insert at beg

6 - delete at beg

7 - exit

Enter choice :
1

Enter no of employees :
2

Enter ssn,name,department, designation, salary and phno ofemployee :
120 harsha cs instructor 14000 9912378956

DEPT OF CSE, ATMECE, MYSURU

BCSL305

Page 73

DATA STRUCTURES LABORATORY

Enter ssn,name,department, designation, salary and phno ofemployee :

121 sanjay cs programmer 15000 9538215567

MENU-

1- create a DLL of nemp
2 - Display frombeginning
3 - Insert at end

4 - delete at end

5 - Insert at beg

6 - delete at beg

7 - exit

Enter choice :
2

Linked list elements from begining :

120 harsha cs instructor 14000.000000 9912378956
121 sanjay c¢s programmer 15000.000000 9538215567
No of employees = 2

MENU-

1- create a DLL of nemp
2 - Display frombeginning
3 - Insert at end

4 - delete at

end 5 - Insert at

beg 6 - delete

atbeg 7 -exit

Enter choice :
3

DEPT OF CSE, ATMECE, MYSURU

BCSL305

Page 74

DATA STRUCTURES LABORATORY

Enter ssn,name,department, designation, salary and phno ofemployee :

123 deepak cs instructor 14000 9534567812

MENU-

1- create a DLL of nemp
2 - Display frombeginning
3 - Insert at end

4 - delete at end

5 - Insert at beg

6 - delete at beg

7 - exit

Enter choice :
2

Linked list elements from begining :
120 harsha cs instructor 14000.000000 9912378956
121 sanjay c¢s programmer 15000.000000 9538215567
123 deepak c¢s instructor 14000.000000 9534567812
No of employees = 3

MENU-

1- create a DLL of nemp
2 - Display frombeginning
3 - Insert at end

4 - delete at end

5 - Insert at beg

6 - delete at beg

7 - exit

Enter choice :
5

DEPT OF CSE, ATMECE, MYSURU

BCSL305

Page 75

DATA STRUCTURES LABORATORY BCSL305

Enter ssn,name,department, designation, salary and phno ofemployee :
124 lohith cs lecturer 20000 9967834578

MENU-

1- create a DLL of nemp
2 - Display frombeginning
3 - Insert at end

4 - delete at end

5 - Insert at beg

6 - delete at beg

7 - exit

Enter choice :
2

Linked list elements from begining :

124 lohith cs lecturer ~ 20000.000000 9967834578
120 harsha cs instructor ~ 14000.000000 9912378956
121 sanjay cs programmer 15000.000000 9538215567
123 deepak c¢s instructor 14000.000000 9534567812
No of employees = 4

MENU-

1- create a DLL of nemp
2 - Display frombeginning
3 - Insert at end

4 - delete at end

5 - Insert at beg

6 - delete at beg

7 - exit

Enter choice :
4
123 deepak c¢s instructor 14000.000000 9534567812

DEPT OF CSE, ATMECE, MYSURU Page 76

DATA STRUCTURES LABORATORY

MENU-

1- create a DLL of nemp
2 - Display frombeginning
3 - Insert at end

4 - delete at end

5 - Insert at beg

6 - delete at beg

7 - exit

Enter choice :
2

Linked list elements from begining :

124 lohith cs lecturer ~ 20000.000000 9967834578
120 harsha cs instructor 14000.000000 9912378956
121 sanjay c¢s programmer 15000.000000 9538215567
No of employees = 3

MENU-

1- create a DLL of nemp
2 - Display frombeginning
3 - Insert at end

4 - delete at end

5 - Insert at beg

6 - delete at beg

7 - exit

Enter choice :
6

124lohithcs lecturer 20000.000000 9967834578

DEPT OF CSE, ATMECE, MYSURU

BCSL305

Page 77

DATA STRUCTURES LABORATORY

MENU-

1- create a DLL of nemp
2 - Display frombeginning
3 - Insert at end

4 - delete at end

5 - Insert at beg

6 - delete at beg

7 - exit

Enter choice :
2

Linked list elements from begining :
14000.000000 9912378956

120 harsha c¢s instructor
121 sanjay €S programmer
No of employees = 2

MENU-

15000.000000

1- create a DLL of nemp
2 - Display frombeginning
3 - Insert at end

4 - delete at end

5 - Insert at beg

6 - delete at beg

7 - exit

Enter choice :
8
wrong choice
MENU-

DEPT OF CSE, ATMECE, MYSURU

9538215567

BCSL305

Page 78

DATA STRUCTURES LABORATORY BCSL305

1- create a DLL of nemp

2 - Display from beginning
3 - Insert at end

4 - delete at end

5 - Insert at beg

6 - delete at beg

7 - exit

Enter choice :
7
$

Program outcome:

o Implement Doubly Linked List.

o Implement insertion at the front and end of DLL.
o Implement deletion at the front and end of DLL.
o Identify the applications of DLL.

o Familiarized how DLL can be used as double ended queue.

Viva Questions:
o What are doubly linked lists?

o What is the difference between singly and doubly linked lists?
o What are the advantages of double linked list over single linked list?

DEPT OF CSE, ATMECE, MYSURU Page 79

DATA STRUCTURES LABORATORY BCSL305

PROGRAM 9

Design, Develop and Implement a Program in C for the following operations
on Singly Circular Linked List (SCLL) with header nodes

a Represent and Evaluate a Polynomial P(X,y,z) = 6x2y?z-4yz°+3x3yz+2xy°z-
2xyz3

b Find the sum of two polynomials POLY1(x,y,z) and POLY2(x,y,z) and
store the result in POLYSUM(X,y,z)

Program objective: .
o Understand the working of Singly Circular Linked List (SCLL).

o Understand the use of header nodes.
o Understand the methodology to evaluate polynomial usingSCLL.

o Understand the methodology to add twopolynomialusingSCLL.

Algorithm:

Evaluate a Polynomial
Stepl: allocate memory for newly created node assign values to that node

Step 2: attach newly created node to list in circular fashion.
Step3: Evaluate each node information up to header node

Addition of two Polynomial
Stepl: Read exponent values and co-efficient values for each node

Step2: newly created node are attached to polynomials (p1, p2, p3)
Step3: Addition/Evaluation of list is performed
Step 5: Result is displayed

DEPT OF CSE, ATMECE, MYSURU Page 80

DATA STRUCTURES LABORATORY BCSL305

THEORY

Circular Linked List:
In the circular linked list the last node of the list contains the address of the first node
and forms a circular chain.

Circular Linked List is a variation of Linked list in which the first element points to the
last element and the last element points to the first element. Both Singly Linked List and
Doubly Linked List can be made into a circular linked list.

data next data next data next
| |
3 }7 10 — 2 |
HEAD Last Element points back to First

Fig-8- Circular Linked List

DEPT OF CSE, ATMECE, MYSURU Page 81

DATA STRUCTURES LABORATORY

PROGRAM:
#include<stdio.h>

#include<stdlib.h>
#include<math.h>
struct node
{
int co,ex,ey,ez;
struct node *link;
3
typedef struct node NODE;
NODE *createnode(int,int,int,int);

NODE *attachnode(NODE* NODE¥*);

NODE *readpoly();
void display(NODE*);
voidevaluate(NODE¥);

NODE *addpoly(NODE* NODE*,NODE™):

NODE *createnode(int co,int ex,int ey, int ez)

{
NODE *temp;

temp=(NODE*)malloc(sizeof(NODE));
temp->c0=co;
temp->ex=ex;

temp->ey=ey;

temp->ez=ez;

temp->link=NULL,;

return temp;

}

DEPT OF CSE, ATMECE, MYSURU

BCSL305

Page 82

DATA STRUCTURES LABORATORY BCSL305

NODE *attachnode(NODE *temp,NODE *head)
{
NODE *cur;
cur=head->link;
while(cur->link!=head)
{
cur=cur->link;
}
cur->link=temp;
temp->link=head;
return head;

b
NODE *readpoly()

{

inti,n,co,ex,ey,ez;

NODE *head=(NODE*)malloc(sizeof(NODE));
NODE *temp;

head->link=head;
printf(“enter the number of terms\n");

scanf("%d",&n);

for(i=0;i<n;i++)

{
printf(*'term %d\n",i+1);
printf(“enter the coefficient\n™);
scanf("'%d",&co);
printf(“enter exponent values of x,yand z\n");
scanf(""%d%d%d",&ex,&ey, &ez);

DEPT OF CSE, ATMECE, MYSURU Page 83

DATA STRUCTURES LABORATORY

temp=createnode(co,ex,ey,ez);

head=attachnode(temp,head);
}

return head:

}

void display(NODE *poly)
{

NODE *cur;
cur=poly->link;

while(cur!=poly)

{
printf("%dx"%dy"%dz"%d+",cur->co,cur->ex,cur->ey,cur->ez);
cur=cur->link;

¥

printf(*\n");

}

void evaluate(NODE *poly)
{
NODE *cur;
intx,y,z,res=0;
cur=poly->link;
printf("enter the values of x,y,z\n");

scanf("%d%d%d",&x,&y,&2);
while(cur!=poly)

{

DEPT OF CSE, ATMECE, MYSURU

BCSL305

Page 84

DATA STRUCTURES LABORATORY BCSL305

res+=cur->co*pow(x,cur->ex)*pow(y,cur->ey)*pow(z,cur->ez);

cur=cur->link;

}

printf("result=%d\n",res);

}

NODE *addpoly(NODE *p1,NODE *p2,NODE *poly)
{

int comp;

NODE *a,*b,*temp;

a=pl->link;

b=p2->link;

while(a!l=pl&&b!=p2)

{
if(a->ex==b->ex && a->ey==b->ey && a->ez==p->e2)
comp=0;
else if(a->ex>b->ex)
comp=1,
else if(a->ex==b->ex && a->ey==Db->ey)
comp=1;
else if(a->ex==b->ex && a->ey==b->ey && a->ez>b->ez)
comp=1;
else
comp=-1;
switch(comp)
{

case O0:temp=createnode(a->co+b->co, a->ex, a->ey, a->€z);
poly=attachnode(temp,poly);
a=a->link;

DEPT OF CSE, ATMECE, MYSURU Page 85

DATA STRUCTURES LABORATORY

b=b->link;
break:

case 1:temp=createnode(a->co, a->ex,a->ey,a->ez);

poly=attachnode(temp,poly);
a=a->link;
break;

case-1:temp=createnode(b->co,b->ex,b->ey,b->ez);
poly=attachnode(temp,poly);

b=b->link;
break;
}
by
while(a!=p1)
{

temp=createnode(a->co0,a->ex,a->ey,a->ez);
poly=attachnode(temp,poly);

a=a->link;

b

while(b!=p2)

{ temp=createnode(b->co,b->ex,b->ey,b->ez);

poly=attachnode(temp,poly);
b=b->link;
¥

return poly;

}

main()

{

int ch;

DEPT OF CSE, ATMECE, MYSURU

BCSL305

Page 86

DATA STRUCTURES LABORATORY BCSL305

NODE *p1,*p2,*p3;
p3=(NODE*)malloc(sizeof(NODE));
p3->link=p3;
while(1)
{
printf("'1.represent and evaluate 2.add two polynomial 3.exit\n");
printf("enter choice\n");
scanf("%d",&ch);
switch(ch)
{
case 1:printf("enter a polynomial\n");
pl=readpoly();
display(pl);
evaluate(pl);
break;
case 2:printf("enter polynomial 1\n");
pl=readpoly();
display(p1);
printf(" enter polynomial 2\n");
p2=readpoly();
display(p2);
p3=addpoly(p1,p2,p3);
printf(“'the resultant polynomial is\n");
display(p3);
break;
case 3:exit(0);
default:printf("invalid choice\n™);
break;

}
}}

DEPT OF CSE, ATMECE, MYSURU Page 87

DATA STRUCTURES LABORATORY

Output
<< MENU >>

Polynomial Operations : 1.Add 2.Evaluate
3.Exit

Enter your choice==>1

Enter no of terms of polynomial==>3

Enter coef& expo==>

4

3

Enter coef& expo==>22

Enter coef& expo==>51

The polynomial is==>5x"(1) + 2x(2) + 4x"(3)
Enter no of terms of polynomial==>3

Enter coef& expo==>41

Enter coef& expo==>

3

2

Enter coef& expo==>53

The polynomial is==>4x"(1) + 3x(2) + 5x”(3)
Addition of polynomial==>

The polynomial is==>9x"(1) + 5x(2) + 9x”(3)
Enter your choice==>2

Enter no of terms of polynomial==>3

Enter coef& expo==>

3

1

Enter coef& expo==> 42

Enter coef& expo==>54

The polynomial is==>3x"(1) + 4x\(2) + 5x”(4)
Enter the value of x=2

Value of polynomial=102

Enter your choice==>3

exit

DEPT OF CSE, ATMECE, MYSURU

BCSL305

Page 88

DATA STRUCTURES LABORATORY BCSL305

Program outcome :
o Implement Singly Circular Linked List (SCLL) using header node.

o ldentify the application of SCLL.
o Familiarized withthe methodology ofpolynomial evaluationandpolynomial

addition using SCLL.

Viva Questions:

o Whatis circular linked list.?
o What are Advantages and Disadvantages of Circular Linked List?

DEPT OF CSE, ATMECE, MYSURU Page 89

DATA STRUCTURES LABORATORY BCSL305

PROGRAM 10

Design, Develop and Implement a menu driven Program in C for the
following operations on Binary Search Tree (BST) of Integers

A Create aBST of N Integers: 6,9, 5, 2,8, 15, 24, 14,7, 8,5, 2

B Traverse the BST in In-order, Preorder and PostOrder

C Searchthe BST foragivenelement (KEY)and reporttheappropriate
message

D Deleteanelement (ELEM) fromBST

E Exit

Program objective:
o Understand the concept of Binary Search Tree (BST).

o Understand the different traversal method on BST.
o Getto know the methodology of searching a key element in BST.

o Understand the methodology of deleting an element from BST.

Algorithm:

Preorder Traversal

Step 1: Display root information

Step2: Traverse left sub tree in preorder
Step 3: Traverse right sub tree in preorder

Inorder Traversal
Step 1: Traverse the left sub tree in order

Step 2: Display root information
Step3: Traverse right sub tree in order

Post order Traversal
Step 1: traverse the left sub tree in post order

Step 2: traverse the right sub tree in post order
Step 3: Display root information

DEPT OF CSE, ATMECE, MYSURU Page 90

DATA STRUCTURES LABORATORY BCSL305

THEORY
A binary search tree (BST) is a tree in which all nodes follows the below mentioned properties

e The left sub-tree ofa node has key less thanor equalto its parent node’s V key.
e The right sub-tree of a node has key greater than or equal to its parent node'skey.

Thus, a binary search tree (BST) divides all its sub-trees into two segments; left sub-tree and
right sub-tree and can be defined as

left_subtree (keys) < node (key) <right_subtree (keys)

14/ \35
/= /=

Fig: An example of BST
Fig 9-Example of BST

Following are basic primary operations of a tree which are following.
e Search —search anelement ina tree.

e Insert —insertan element ina tree.
e Preorder Traversal — traverse a tree in apreordermanner.

e Inorder Traversal — traverse a tree in an inorder manner.
e Postorder Traversal — traverse a tree in a postorder manner.

DEPT OF CSE, ATMECE, MYSURU Page 91

DATA STRUCTURES LABORATORY BCSL305

PROGRAM:
#include<stdio.h>

#include<stdlib.n>

typedef struct bst

{

int data;

struct bst *rchild,*Ichild,;
}node;

node* getnode();

void insert(node*,node*);
void inorder(node*);
void preorder(node*);
void postorder(node*);
intsearch(node*,int);
intn;

node* getnode()

{

node *temp;
temp=(node*)malloc(sizeof(node));
temp->Ichild=NULL,
temp->rchild=NULL,;

return temp;

}

void main()

{
int ch;
intkey,ans=1;

DEPT OF CSE, ATMECE, MYSURU Page 92

DATA STRUCTURES LABORATORY

node*newnode,*root,*temp,*parent;
root=NULL,

while(1)

{

printf("'1.create 2.search 3.travers 4.exit\n");
printf("enter choice\n");

scanf("%d",&ch);

switch(ch)

{

case 1:while(ans==1)

{

newnode=getnode();
printf("enter the element\n™);
scanf("%d",&newnode->data);
if(root==NULL)
root=newnode;

else

insert(root,newnode);
printf("want to continue[0/1]\n");
scanf("'%d",&ans);
}
break;
case 2:printf("enter the element to search\n");
scanf("%d",&key);
search(root,key);
if(n==1)
printf("'searchsuccessful\n");

else

DEPT OF CSE, ATMECE, MYSURU

BCSL305

Page 93

DATA STRUCTURES LABORATORY

printf(""searchunsuccessful\n™);
break;

case 3:if(root==NULL)
printf("tree is empty\n");
else
{
printf("\n inorder traversal\n");
inorder(root);
printf(*\n postorder traversal\n");
postorder(root);
printf(*\n preorder traversal\n");

preorder(root);

¥

break;
case 4:exit(0);break;
default :printf("wrong choice\n");
break;

}
k
k

void insert(node *root,node *newnode)

{

if(root->data<newnode->data)

{
if(root->rchild==NULL)
root->rchild==newnode;

else

insert(root->rchild,newnode);

DEPT OF CSE, ATMECE, MYSURU

BCSL305

Page 94

DATA STRUCTURES LABORATORY BCSL305

}

else

{
if(root->Ichild==NULL)
root->Ichild=newnode;
else

insert(root->Ichild,newnode);

b

b

void inorder(node *ptr)
{

if(ptr'=NULL)

{

inorder(ptr->Ichild);
printf("%d\t",ptr->data);
inorder(ptr->rchild);

b

b

void preorder(node*ptr)
{

if(ptr'=NULL)

{

printf("%d\t",ptr->data);
preorder(ptr->Ichild);
preorder(ptr->rchild);

}
}

void postorder(node *ptr)

{
if(ptr'=NULL)

DEPT OF CSE, ATMECE, MYSURU Page 95

DATA STRUCTURES LABORATORY BCSL305

{
postorder(ptr->Ichild);

postorder(ptr->rchild);
printf("%d\t",ptr->data);

by

b

int search(node*root,int key)
{

node *temp;

temp=root;

if(root!=NULL)

{

if(temp->data==key)

n=1;

else if (key>temp->data)
search(temp->rchild,key);
else
search(temp->Ichild,key);
b

else n=0;

return n;

}

DEPT OF CSE, ATMECE, MYSURU Page 96

DATA STRUCTURES LABORATORY BCSL305

Output
program for binary search tree

1.Create

2. Search

3. RecursiveTraversals

4.Exit

Enter your Choice=1

Enter the element=15

Want to entermoreelements?(1/0)1
Enter the element=25

Want to entermoreelements?(1/0)1
Enter the element=35

Want to entermoreelements?(1/0)1
Enter the element=45

Want to entermoreelements?(1/0)1
Enter the element=5

Want to entermoreelements?(1/0)1
Enter the element=7

Want to enter more elements?(1/0)0
1.Create

2. Search

3. RecursiveTraversals

4.Exit

Enter your choice=2

Enter elements to be searched=7
The 7 element is present

parent of node 7 is 5

1.Create

2. Search
3. RecursiveTraversals

4.Exit
Enter your choice=2

Enter elements to be searched=88
the 88 element is not present

DEPT OF CSE, ATMECE, MYSURU Page 97

DATA STRUCTURES LABORATORY BCSL305

1.Create

2.Search

3.Recursive Traversals

4.Exit

Enter your choice=3

The inorder display =5 7 15 25 35 45
The preorder display=155 7 25 35 45
The postorder display=7 5 45 35 25 15
1.Create

2. Search
3. RecursiveTraversals
4. Exit

Enter your choice=4

Program outcome:
o Implement Binary Search Tree (BST).

o Implement the different traversal methodology on BST.
o Familiarized with the methodology to search a key element in BST.
o Implement the methodology to delete an element from BST.

o Identify the applications of BST

Viva Questions:

o What are binary trees?

o Explain Binary Search Tree

o How to check if a given Binary Tree is BST or not?

o What is the minimum number of nodes that a binary tree can have?
o What are the different types of traversing?

o Define pre-order traversal?

o Define post-order traversal?

o Define in -order traversal?

DEPT OF CSE, ATMECE, MYSURU Page 98

DATA STRUCTURES LABORATORY BCSL305

PROGRAM 11

Design, develop and implement a Program in C for the following operations
on Graph (G) of Cities

a Create a Graph of N cities using Adjacency Matrix.

b Printall the nodes reachable from a given starting node ina digraph
using BFS method

¢ Checkwhether a given graph is connected or notusingDFS
Method.

Program objective:
o Understand the concept of trees and adjacency matrix.

o Understand the concept of connected graph.
o Understand the Breath First Search(BFS) and Depth First Search(DFS)
traversal methodologies.

Algorithm:

Step 1: Initialize front,rear,visit and number of nodes

Step 2: Read adjacency matrix for graph

Step 3: select source vertex from graph i.e v

Step 4: source node is added into queue and cover all the nodes (adjacent) to v.
Once it is covered adjacent/traversed mark as visited.

Step 5: Read next vertex from queue and cover all the nodes .if it is not visited,

visit the nodes.

Step 6: Repeat the process 3-5 until all nodes are covered in queue

DEPT OF CSE, ATMECE, MYSURU Page 99

DATA STRUCTURES LABORATORY BCSL305

THEORY

BFS first visits all the vertices that are adjacent to a starting vertex. Every time it adds the
adjacent vertex to a queue array g. On each successive iteration of the algorithm, the next
vertex on the queue is examined to see if there are any unvisited vertices adjacent to it which
can be added to the queue. Whenever a new vertex is taken from the queue, it is marked as a
visited node in the visited array.

Applications of BFS:
e To check connectivity of a graph (number oftimes queue becomesemptytellsthe
number of components inthegraph)
e To check ifa graph is acyclic. (no cross edges indicates no cycle)

e To find minimum edge path ina graph

Depth first search is a graph algorithm required for processing vertices or edges of a
graph in a systematic fashion. Depth first search starts visiting vertices of a graph at an
arbitrary vertex by marking it as having been visited. On each iteration, the algorithm proceeds
to an unvisited vertex that is adjacent to one it is currently in.

The algorithm backs up one edge to the vertex it came from and tries to continue
visiting unvisited vertices from there. The algorithm eventually halts after backing up to
starting vertex, with the latter being dead end. By then, all vertices in the same connected
component as the starting vertex have been visited. If unvisited vertices still remain, the depth
first search must be restarted at any one of them.

Here we use a STACK to trace the depth first search. We push a vertex onto the stack
when the vertex is reached for the first time, and we pop a vertex off the stack when it
becomes a dead end.

Applications of DFS:
e The two orderings are advantageous for various applications liketopologicalsorting,
etc.

e To check connectivity ofa graph (number oftimes stack becomes emptytells the
number of components inthegraph)

e To check ifa graph is acyclic. (no back edges indicates no cycle)
e To findarticulation point ina graph

DEPT OF CSE, ATMECE, MYSURU Page 100

DATA STRUCTURES LABORATORY

PROGRAM:
#include<stdio.h>
#include<stdlib.h>
int n,a[10][10],1,J,source,s[10],choice,count;
void bfs(int n,int a[10][10],int source,int s[])
{
int q[10],u;
intfront=1,rear=1;
s[source]=1,;
g[rear]=source;
while(front<=rear)
{
u=q[front];
front=front+1;
for(i=1;i<=n;i++)
if(a[u][i]==1 &&s[i]==0)

{
rear=rear+1;
q[rear]=i;
s[i]=1;
}
}
}
void dfs(int n,int a[10][10],int source,int s[])
{

s[source]=1;
for(i=1;i<=n;i++)
if(a[source][i]==1 && s[i]==0)
dfs(n,a,i,s);
}
int main()
{
printf("Enter the number of nodes : \n");
scanf("%d",&n);
printf("\n Enter the adjacency matrix\n");
for(i=1;i<=n;i++)
for(j=1;j<=n;j++)

DEPT OF CSE, ATMECE, MYSURU

BCSL305

Page 101

DATA STRUCTURES LABORATORY
scanf("%d",&a[i][j]);

while(1)
{

printf("\n\n1.BFS\n 2.DFS\n 3.Exit\n");
printf(*\nenter your choice\n");
scanf("%d",&choice);

switch(choice)

{

case 1: printf(*\n Enter the source :\n");
scanf("%d",&source);
for(i=1;i<=n;i++)
s[i]=0;
bfs(n,a,source,s);
for(i=L;i<=n;i++)
{
if(s[i]==0)
printf("\n The node %d is not reachable\n™,i);
else
printf("\n The node %d is reachable\n",i);
}
break;
case 2:printf(*\nEnter the source vertex :\n");
scanf(""%d",&source);
count=0;
for(i=1;i<=n;i++)
s[i]=0;
dfs(n,a,source,s).
for(i=1;i<=n;i++)
if(s[i])
count=count+L;
if(count==n)
printf("\nThe graph is connected.");
else
printf(*\nThe graph is not connected.");
break;
case 3: exit(0);

DEPT OF CSE, ATMECE, MYSURU

BCSL305

Page 102

DATA STRUCTURES LABORATORY

}

Outputl

Enter the number of nodes
4

Enter the adjacencymatrix
0010
1010

0000
0000

1. BFS
2. DFS
3. Exit

enter your choice
1

Enter the source :
1

The node 1 is reachable
The node 2 is notreachable
The node 3 is reachable

The node 4 is notreachable

1. BFS
2. DFS
3. Exit

enter your choice
2

DEPT OF CSE, ATMECE, MYSURU

BCSL305

Page 103

DATA STRUCTURES LABORATORY

Enter the source vertex :
1

The graph is not connected.

1.BFS

2. DFS
3. Exit

enter your choice
3

Output2

Enter the number of nodes :
3

Enter the adjacencymatrix
011

000
000

1. BFS
2. DFS
3. Exit

enter your choice
1

Enter the source :
1

The node 1 is reachable
The node 2 is reachable

The node 3 is reachable

DEPT OF CSE, ATMECE, MYSURU

BCSL305

Page 104

DATA STRUCTURES LABORATORY

1. BFS

2. DFS
3. Exit

enter your choice
2

Enter the source vertex:
1

The graph is not connected.

1.BFS

2. DFS
3. Exit

enter your choice
3

Output3

Enter the number of nodes
'3

Enter the adjacencymatrix
010
001
100

1. BFS
2. DFS
3. Exit

enter your choice
1

DEPT OF CSE, ATMECE, MYSURU

BCSL305

Page 105

DATA STRUCTURES LABORATORY

Enter the source :
1

The node 1 is reachable
The node 2 is reachable
The node 3 is reachable
1. BFS
2. DFS

3. Exit

enter your choice
2

Enter the source vertex:
1

The graph is connected.
1.BFS
2. DFS
3. Exit

enter your choice
3

DEPT OF CSE, ATMECE, MYSURU

BCSL305

Page 106

DATA STRUCTURES LABORATORY BCSL305

Program outcomes:
o Create graph using adjacency matrix.

o Implement Breadth First Search (BFS) and Depth First Search(DFS).
o Familiarized with connected graph.

o ldentify the applications of graphs.

Viva Questions:

* Whatisa graph?

o Whatisa tree?

o What is BFS and DFS?

o Which data structures are used for BFS and DFS of a graph?

DEPT OF CSE, ATMECE, MYSURU Page 107

DATA STRUCTURES LABORATORY BCSL305

PROGRAM 12

Given a File of N employee records with a set K of Keys(4-digit) which
uniquely determine the records in file F. Assume that file F is maintained in
memory by a Hash Table(HT) of mmemory locations with L as the set of
memory addresses (2-digit) of locations in HT. Let the keys in K and
addresses in L are Integers.

Design and develop a Program in C that uses Hash function H: K->L as
H(K)=K mod m (remainder method), and implement hashing technique to
map a given key K to the address space L. Resolve the collision (if any) using
linear probing.

Program objective:
o Understand what is hashing and hashing function.

o Understand the concept of linear probing.
o Understand the concept ofcollision detectionand avoidance usinglinear
probing.

Algorithm:

Step 1: Start

Step 2: Initialize all memory locations with some values to identity as space
a[i]=-1

Step 3: Read Employee key value .calculate hash key using remainder method

hk<-key%100

Step 4: Inserting Employee record using key

Inserting hash dull function

If(count=m)

If space is available for that key

If(H[K]==-1)

H[hk] <-key

If collision occurs, it can be solved using linear probing method.

Checking free space from key to end

for(i=hk+1;i<m;i++)

Checking free space from beginning to key value.

for(i=0;i<hk&& flag==0;i++)

Step 5: Display all memory location with index and employee key

DEPT OF CSE, ATMECE, MYSURU Page 108

DATA STRUCTURES LABORATORY

#include<stdio.h>

#include<stdlib.h>

#define MAX 100

void display(intalMAX]);

int create(int num);

void linearprob(int a [MAX],int key,int num);
void main()

{

int a[MAX],i,num key,ans=1;
printf("collission handling by linear probing\n");
for(i=0;i<MAX;i++)

a[i]=-1;

do

{

printf(“enter the data\n");
scanf(*'%4d",&num);

key=create(num);

linearprob(a,key,num);

printf(do yuou want to continue[1/0]\n");
scanf("'%d",&ans);

Ywhile(ans);

display(a);

b

int create(int num)

{

int key;

key=num%?100;

return key;

}

DEPT OF CSE, ATMECE, MYSURU

BCSL305

Page 109

DATA STRUCTURES LABORATORY

void linearprob(int af MAX],int key, int num)
{

intflag=0,count=0,i;
if(a[key]==-1)

a[key]=num;

else

{

printf(*\n collision deleted\n");
1=0;
while((i<key)&&(flag==0))

{

if(a[i]l==-1)

{

a[i]=num;

flag=1;

break;

void display(int afMAX])
{

int ch,i;

printf("\n 1.display all 2.filtered display\n");
printf("enter choice\n™);
scanf("%d",&ch);

if(ch==1)

{

for(i=0;i<MAX;i++)
printf("%d\t%d\n",i,a[i]);
by

DEPT OF CSE, ATMECE, MYSURU

BCSL305

Page 110

DATA STRUCTURES LABORATORY

else

{

for(i=0;i<MAX;i++)

{

if(afi]'=-1)

{
printf("%d\t%d\n",i,a[i]);
continue;

}

}
}
}

DEPT OF CSE, ATMECE, MYSURU

BCSL305

Page 111

DATA STRUCTURES LABORATORY BCSL305

Output

collision handling by linear probing :
Enter the datal234

Do you wishto continue ?(1/0)1
Enter the data2548

Do you wishto continue ?(1/0)1
Enter the data3256

Do you wishto continue ?(1/0)1
Enter the datal299

Do you wishto continue ?(1/0)1
Enter the datal298

Do you wishto continue ?(1/0)1
Enter the datal398

Collision Detected...!!!
Collision avoided successfully using LINEAR PROBING

Do you wish to continue ? (1/0) 0
1.Display ALL
2.Filtered Display
the hash table is
01398
341234
482548
563256
981298
991299

Program outcome:

o Implement hashing function.

o Implement linear probing.

o Familiarized the concept ofcollusion detectionand avoidance and detection
using linear probing.

+ Identify the application of hashing and linear probing.

Viva Questions:
o What is Hashing?

o What is Linear Probing?

DEPT OF CSE, ATMECE, MYSURU Page 112

DEPT OF CSE, ATMECE, MYSURU Page 17

