BJATME

atme College of Engineering

Internet of Things — BCS701

AY: 2025-26

BRYJATME

atme College of Engineering

Course Objectives

Internet of Things Semester VII
Course Code BCS701 CIE Marks 50
Teaching Hours/Week (L:T:P: S) 3:0:2:0 SEE Marks 50
Total Hours of Pedagogy 40 hours Theory + 8-10 Lab slots Total Marks 100
Credits 04 Exam Hours 03

1. Understand the fundamentals of Internet of Things and its building blocks along with their

characteristics.

Understand the recent application domains of [oT in everyday life.

Understand the protocols and standards designed for IoT and the current research on it.

Understand the other associated technologies like cloud and fog computing in the domain of IoT.

Improve their knowledge about the various cutting-edge technologies in the field of IoT and

machine learning applications.

6. Gain 1nsights about the current trends of machine learning and Al techniques used in IoT to orient
towards the present industrial scenario.

e

BRYJATME

atme College of Engineering

Course Content

MODULE-1
Introduction to Internet of Things: Introduction, Physical design of IOT, Logical Design of 10T,
IOT enabling technologies, IOT Levels & Deployment Templates.

MODULE-2
IOT and M2M: Introduction: M2M, Difference between IoT and M2M, SDN and NFV for 10T,
IOT. System Management with NETCONF-YANG: Need for IOT Systems Management, Simple
Network Management Protocol (SNMP), Network operator requirements, NETCONF, YANG, IoT
Systems Management with NETCONF-Y ANG.

MODULE-3
IoT Platforms Design Methodology: Introduction, IoT Design Methodology, Case Study on IoT
System for Weather Monitoring, loT Systems - Logical Design using Python: Introduction,
Installing Python, Python Data Types and Data structures, Control flow, Functions, Modules,
Packages, File Handling, Operations, Classes, Python Packages of Interest for IoT.

BRJATME

atme College of Engineering

Course Content

MODULE-4
IoT Physical Devices & End points: What is a l1oT Device, Raspberry Pi, About the Board, Linux on
Raspberry Pi, Raspberry P1 interfaces, Programming Raspberry Pi with Python, Case Studies
illustrating IoT design: Home Automation, Cities, Agriculture.

MODULE-5
Data Analytics for IoT: Introduction, Apache Hadoop, Using Hadoop MapReduce for Batch Data
Analytics, Apache Oozie, Apache Spark, Apache Storm, Using Apache Storm for Real-time Data
Analysis.

Suggested Learning Resources:
textbook
Arshdeep Bahga, Vijay Madisetti, “ Internet of Things- A Hands On Approach”, Universities press, 2014.

Reference Books
1. David Hanes, Gonzalo Salgueiro, Patrick Grossetete, Robert Barton, Jerome Henry,"loT Fundamentals:
Networking Technologies, Protocols, and Use Cases for the Internet of Things”, 1 stEdition, Pearson Education
(Cisco Press Indian Reprint). (ISBN: 978-9386873743)
2. Srinivasa K G, “Internet of Things”, CENGAGE Leaning India, 2017.

BJATME

atme College of Engineering

Course Outcomes

1. Describe the basics of the Internet of Things, including its design, technologies, and different
types of deployments.

2. Explain the concepts of [oT and M2M and describe the use of network management protocols

3. Apply basic IoT design steps and programming to create simple IoT applications

4. Describe the architecture and interfaces of Raspberry Pi1 and implement Python-based IoT
applications for different domains

5. Elaborate the need for Data Analytics in IoT.

BJATME

atme College of Engineering

Module - 1

Introduction to Internet of Things

By,

Roopa B
Asst. Professor
Dept. of CSE
ATMECE, Mysuru

BJATME

atme College of Engineering

Contents

* Introduction

* Physical design of IoT

* Logical Design of IoT

* IoT enabling technologies

* IoT Levels & Deployment Templates.

BRYJATME

atme College of Engineering

Introduction

* Internet of Things (IoT) comprises things that have unique identities and are connected to the
internet.

* Existing devises, such as networked computers or 4G enabled mobile phones, already have some
form of unique 1dentities and are also connected to the internet, the focus on IoT in the
configuration, control and networking via the internet of devices or things, that are traditionally
not associated with the Internet.

* The scope of IoT is not limited to just connected things (Devices, appliance, machines) to the
Internet.

* Applications on IoT networks extract and create information from lower-level data by filtering,
processing, categorizing, condensing and contextualizing the data.

* The information obtained is then organized and structured to infer knowledge about the system
and or 1its user, its environment and its operations and progress towards its objectives, allowing a
smarter performance.

BRJATME

atme College of Engineering

Characteristics of IoT

* Dynamic and self-Adapting

* Self — Configuring

* Interoperable communication protocols
* Unique Identity

* Integrated into information network

2AATME

atme College of Engineering

Physical design of IoT

1. Things of IoT

Connectivity Processor Audio/Video I/O Interface
Interfaces (for Sensors,
Actuators, etc)
USB Host o
CPU
RJ45/ETHERNET 3.5 mm audio UART
RCA video
SPI
Memory Graphics Storage Interfaces
I2C
NAND/NOR SD
GPU
DDR1/2/3 MMC
CAN
SDIO

BRJATME

atme College of Engineering

Physical design of IoT

2. 10T Protocols
Link Layer

 Link Layer protocols determine how the data is physically sent over the networks
physical layer or medium.
Example: 802.3 Ethernet
802.1- WI-FI
802.16 wiMAX
802.15.4 LR-WPAN
2G /3G / 4G mobile communications

BRJATME

atme College of Engineering

Physical design of IoT

2. 10T Protocols

Network / internet layer

* The network layer 1s responsible for sending of IP datagrams from the source network to
the destination network.

* This layer Performs the host addressing and packet routing.
Example: [IPV4

IPV6

6LoWPAN

BRJATME

atme College of Engineering

Physical design of IoT

2. 10T Protocols
Transport layer

* The Transport layer protocols provide end-to-end message transfer capability independent
of the underlying network.

* The message transfer capability can be set up on connections, either using handshake or
without handshake acknowledgements.
Example: TCP

UDP

BRJATME

atme College of Engineering

Physical design of IoT

2. 10T Protocols
Application layer
* Application layer protocol defines how the application interfaces with the lower layer
protocols to send the data over the network.
« Data are typically in files, 1s encoded by the application layer protocol and encapsulated
in the transport layer protocol.
Example: Http
CoAP
WebSocket
MQTT
XMPP
DDS
AMQP

BRJATME

atme College of Engineering

Physical design of IoT

Application Layer

HTTP CoAP WebSockets
MQTT XMPP DDS AMQP
Transport Layer
TCP UDP
Network layer
IPv4 IPv6 6LoOWPAN
Link Layer
802.3 - Ethernet 802.16 - WiMax
2G/3G/LTE-
Celluler
802.11 2 LR-WPA}

BRJATME

atme College of Engineering

Logical Design of IoT

* Logical design of an IoT system refers to an abstract representation of the entities and

process without going into low level specification of the implementations.
1. IoT functional block

2. ToT communication model
3. IoT communication APIs

BRJATME

atme College of Engineering

Logical Design of IoT

‘ APPLICATION \

‘ SERVICES ‘
MANAGEMENT SECURITY

‘ COMMUNICATION \

I DEVICE ‘

BRJATME

atme College of Engineering

Logical Design of IoT

2. 10T communication model

* Request response: Request-response 1s a Communications model in which the client sends
request to the server and the server responds to the requests. when the server receives a
request, it decides how to respond, if it shows the data retrieved resources definitions for the
response and then send the response to the client.

Client Server
Receives requests
Sends Request > from client,
requests to processes
server Response requests, looks 2 3 Resources
4 up/fetches

resources,
prepares
response and
sends response
to client

BRJATME

atme College of Engineering

Logical Design of IoT

2. 10T communication model

* Publish - Subscribe: Publishers are the source of data. Publishers send the data to the topics
which is managed by the broker and are not aware of the consumer. Consumers Subscribe to
the topic which are managed by the broker. When the broker receives the data for a topic from
the publisher, it sends the data to all the subscribed consumers.

Publisher Broker Consumar
Message published Topic-1 /
Sends to Topic-1 . Subscribers: <
messages to "~ Consumer-1,
topics Consumer-2 \ Consumer-2
Message published
to Topic-2 TopiF-Z
> Subscribers:)
Consumer-3 \
Consumer-3

BRJATME

atme College of Engineering

Logical Design of IoT

* Push pull: Push pull is communication model in which the data producers push the data to queues
and the consumers pull the data from the queues. Producers do not need to be aware of the
consumer.

* Exclusive pair: Exclusive pair 1s a bidirectional, fully duplex communication model that uses a
persistent connection between the client and the server. once the condition 1s setup it remains open
until the client sends a request to close the connection.

Queues Request to setup Connection
Publisher i
Response accepting the request
> Consumer-1 <
Sends
messages to . Message from Client to Server
queue Messages pushed Messages pulled Client ¢ Server
to queues from queues
q 9 Message from Server to Client
> Consumer-2 _
' Connection close request
¥ Connection close response

BRJATME

atme College of Engineering

Logical Design of IoT
3. IoT communication APIs
REST- based communication API:

* Representational state transfer 1s a set of architectural principles by which you can design

web service and Web API that focus on a system resource and how resources states and
addressed the transferred.

REST API follow the request- response communication model.

REST

= = = e

Client: |

l Reguest (GET, PUT, UPCATE or DELETE)
with payload (JSON or XhiL)

Response {(ISOMN or XNML)

Reqguest (GET, PUT, UPDATE or DELETE)

I
-
l wiith payload (JSON or XRML)

! Response (JSOMN aor XML)

2AA TME

atme College of Engineering

Logical Design of IoT

HTTP Client HTTP Packet HTTP Server
HTTP Command ‘
|
REST- GET PUT Authorization
Aware
HTTP Client | DY POST DELETE
REST.-ful Web
REST Payload Service
JSON XML
Resources
URI UR1
I 11 |
l Representations 1 Representations “
l Resource i | Resource I

BRJATME

atme College of Engineering

Logical Design of IoT

WebSocket based communication API:

WebSocket API allow bidirectional, full duplex communication between client and
SCIVCET. Client Server

Request to setup WebSocket Connection

>
Initial Handshake
Response accepting the request (over HTTP)
Data frame
T -
Data frame
¢ Bidirectional Communication
Data frame ™ (over persistent
> WebSocket connection)
Data frame
< -
Connection close request
i
. Closing Connection
Connection close response j_
<

BRJATME

atme College of Engineering

IoT enabling technologies

Iot 1s enabled by several technologies including
* Wireless sensor networks

* Cloud computing

* Big data analytics

 Embedded system

* Security protocols and architectures

* Communication protocols

* Web service

* Mobile internet and

* Semantic search engine.

BRJATME

atme College of Engineering

IoT enabling technologies

1. Wireless Sensor Network

* WSN comprises of distributed devices with the sensor which are used to monitor the
environmental and physical conditions.

* A WSN consists of several end nodes and routers and a coordinator.

* End nodes have several sensors attached to them. End node can also act as a router.

* Routers are responsible for routing the data packet from end nodes to the coordinator.

* The coordinator node collects the data from all the notes coordinators also act as a
Gateway that connects the WSN to the internet.

BRJATME

atme College of Engineering

IoT enabling technologies

2. Cloud computing

* Cloud Computing 1s a transformative computing paradigm that involves delivering
applications and services over the internet. Cloud Computing involves provisioning of
computing networking and storage resources on demand and providing these resources
as metered services to the users, in a “pay as you go”” model.

Cloud Computing services are offered to user in different forms:

» Infrastructure as a service (IAAS)

* Platform as a service (PaaS)

* Software as a service (SaaS)

BRJATME

atme College of Engineering

IoT enabling technologies

3. Big Data Analytics

* Big data is defined as collections of data set whose volume, velocity in terms of its
temporal variations or variety, 1s so large that it 1s difficult to store, manage, process
and analyse the data using traditional database and data processing tools.

* Big Data Analytics involving several steps starting from Data cleaning data munging
data processing and visualization.

Characteristics of data include:
* Volume

* Velocity
* Variety

BRYJATME

atme College of Engineering

IoT enabling technologies

4. Communications protocol

* Communications protocols form the backbone of IoT system and enable network
connectivity and coupling to applications. Communications protocols allow device to
exchange data over the network. These protocols define the data exchange formats and
data encoding schemes for devices and routing of packets from source to destination.

5. Embedded systems

* An Embedded system i1s computer system that has computer hardware and software
embedded perform specific task. In contrast to general purpose computers or personal
computers which can perform various types of tasks, embedded systems are designed to
perform a specific set of tasks.

BRYJATME

IoT Levels & Deployment Temp

[oT system comprises of the following components:

1. Device: An IoT device allow identification, remote sensing, actuating and remote monitoring
capabilities.

2. Resources: Resources are software components on the device for accessing and storing
information for controlling actuator connected to the device also include software components that
enable network access for the device.

3. Controller service: Controller Service i1s a native service that runs on the device and interact with
the web services. Controller service sends data from the device to the web service receive command
from the application from controlling the device.

4. Database: Database can be either local or in the cloud and stores the data generated by the IoT
device.

5. Web service: Serve as a link between the device, application database and analysis components.
Web Services can be implemented using HTTP and REST principles or using website protocol.

BRJATME

atme College of Engineering

Device

|
IoT Levels & Deployment Templates Local | Cloud
|
|
IoT level 1 . |
- eboockKe |
* Level 1 IoT system has a single node/ device that ?52,’4%,-‘2"-5‘"‘1 {
performs sensing and/or actuation, stores data, reforms | REST/WebSocket {
. . . Services I
analysis and the host to the application. e i
* Level 1 IoT systems are suitable for modelling low \E’ij’\f"f‘;‘ |
cost and low complexity solutions where the data — :
involving is not big, and the analysis requirements are 0 :
. . . I
not computationally intensive. Resource |
0 |
|
I

O

Monitoring Node
performs analysis, stores data

BRJATME

atme College of Engineering

IoT Levels & Deployment Templates

I
|
|
|
IoT level 2 |
| App
* Level 2 IoT system has a single node ; A
. . |
that performs sensing and/or actuation | REST/WebSocket
. ' Communication
and local analysis. REST/WebSocket '
Communication N
. . |
 Data i1s stored in the cloud and > et
. . . : |
application is wusually cloud based 2 | $
systems are suitable for solutions Resource | CR——

. . . Database
where the data in world 1s big, J : -
however the primary analysis Device !
requirement 1s not computationally
intensive and can be done local itself. O .

Monitoring Node

performs analysis Cloud Storage

BRJATME

atme College of Engineering

IoT Levels & Deployment Templates
IoT Level 3

* Level 3 system has a single node. Data is stored and
analysed in the cloud application is cloud-based.

* Level 3 IoT system suitable for solutions where the
data involved i1s big and analysis requirements
computationally intensive.

|
REST/WebSocket
Communication

Controller Service :<

¢

Resource

Device

REST/WebSocket
Communication

\ 4

. REST/WebSocket
= Communication

O

Monitoring Node

Cloud Storage & Analysis

BRJATME

atme College of Engineering

ToT Levels & Deployment ol e
|
Templates o ; > o
Node | /
IoT level 4 REST/WebSocket T
* A level 4 IoT system has multiple g o l
notes that perform local analysis. Contlroller S—— ks o
e Data is stored in the cloud and Service Sl - W
application 1s cloud based, level 4 T TS ': i T
contains local and cloud-based 0 $ | Database J°
observer notes which can subscribe Dovice e :

to and receive information collected
in the cloud from loT devices.

Monitoring Nodes
perform local analysis

Cloud Storage

BRJATME

atme College of Engineering

IoT Levels & Deployment Templates

IoT Level 5 Local : Cloud
e JoT system has multiple end |
b l rver
nodes and one coordinator notes Ohseryer : App M
. A\
and notes that perform sensing !
. REST/WebSocket
and / or actuation. Communication l
. |
e Coordinator node collects data | | l | PEehs
Controller Controller Controller | -> REST/WebSocket | Component
from the entry and send to the — “n - <> sewiees NS> Yot nteligence)
| l
ClOU.d. Resource Resource Resource : = _'V‘_ ii,i.>| T
* Data i1s stored and analysed in the 0 $ ¢ | !“’{"f"f"f
. . . Endpoint Endpoint Coordinator I
cloud and applications 1s cloud Device Device Device .
based. O
Routers/End Points e P .
P Coordinator
Cloud Storage &
Analysis

W""
“

(G

% 10

BRJATME

atme College of Engineering

IoT Levels & Deployment Templates

IoT Level 6 izl : Cloud
I
e [IoT Level 6 system has |
multiple Independent and Oeerier e : App M O
nodes that perform sensing and ol
/ or actuations and send data to , l l
the cloud ! = | l A
. 3 = nalytics
G B —— o S N e
. . A I (loT Intelligence)
* Data is stored in the cloud and v v | 7
. .) Resource Resource | = T
applications is cloud based. A 1 | patabase |
v |
Device Device :

Multiple Monitoring Nodes // .

7 Centralized
Controller Cloud Storage &
Analysis

Z{ATME O
atme College of Engineering T

Module - 2

Chapter 1: IoT and M2M

By,

Roopa B
Asst. Professor
Dept. of CSE
ATMECE, Mysuru

BJATME

atme College of Engineering

Contents

 Introduction to M2M
* Difference between [oT and M2M
e SDN and NFV for IOT

BRJATME

atme College of Engineering

Introduction to M2M

Machine to machine (M2M) refers to networking of Machines for the purpose of
remote monitoring and control and data exchange.

An M2M area network comprises of machines which have embedded hardware module
for sensing actuation and communication.

Various Communication protocols can be used for M2M local area network such as

Zigbee, Bluetooth, Modbus M-bus, wireless, power LINE Communication,
6LoWPAN.

BRJATME

atme College of Engineering

Difference between 1oT and M2M

M2M loT
| M2M is about direct communication The loT is about sensors automa-
| between machines. tion and Internet platform.
It supports point-to-point communication. | It supports cloud communication.
| Devices do not necessarily rely on an Devices rely on an Internet
| Internet connection. | connection.
| M2M is mostly hardware-based The loT is both hardware- and
| technology. ' software-based technology.
| Machines normally communicate with a | Many users can access at one
| single machine at a time. ' lime over the Internet.
| A device can be connected through Data delivery depends on the
| mobile or other network. Internet protocol (IP) network.

BJATME

atme College of Engineering

SDN and NFV for IoT

Software Defined Networking (SDN)

* SDN is the networking architecture that separates the control plan from the data plan
and centralizes race the network controller. Conventional network architecture builds
with specialized hardware (switches, router etc).

The limitations of the conventional network architecture as follows:

* Complex network devices

* Management overhead

* Limited scalability

FJATME
SE SDN and NFV for IoT

(7)
Business Applications
Application
Layer |)
Cloud Orchestration SDN Applications

_ J
Northbound
Interface

Control
Layer :> SDN Controller

Southbound Interface
(ex. OpenFlow)

SDN Architecture

Network Infrastructure

'""af;;‘::w"’ !:\J> (Core Network, Routers, Switches, Base-
stations, etc)

BJATME

atme College of Engineering

SDN and NFV for IoT

Network function virtualization (NFV)

* Network function virtualization 1s a technology that leverages virtualization to consolidate
the heterogeneous network devices on to industry standard high-volume service switches
and storage.

* NFV is complementary to SDN as NFV can provide at the infrastructure on which SDN
can run. NFV and SDN mutually beneficial to each other but not dependent. Network
functions can be virtualized without SDN, similarly SDN can run without NFV.

BRJATME

atme College of Engineering

SDN and NFV for loT

Virtualized Network Functions

VNF VNF VNF VNF

NFY Infrastructure (NFVI)

NFV
Virtual Virtual Virtual Management
Compute Storage Network and
Orchestration

Virtualization Layer

Compute Storage Network

Hardware Layer

BJATME

atme College of Engineering

Module - 2

Chapter 2: IoT System Management with
NETCONF-YANG

By,

Roopa B
Asst. Professor
Dept. of CSE
ATMECE, Mysuru

BRJATME

atme College of Engineering

Contents

* Need for IoT Systems Management

* Simple Network Management Protocol (SNMP)
* Network operator requirements

« NETCONF

* YANG

* [oT Systems Management with NETCONF-Y ANG.

BRJATME

atme College of Engineering

Need for IoT Systems Management

Managing multiple devices within a single system requires advanced management capabilities.
The need for managing IoT systems 1s described as follows:

* Automating Configuration

* Monitoring Operational & Statistical Data

* Improved Reliability

* System Wide Configurations

* Multiple System Configurations

* Retrieving & Reusing Configurations

BRYJATME

atme College of Engineering

Simple Network Management Protocol (SNMP)

 SNMP allows monitoring and configuring network devices such as routers, switches, servers,
printers etc. SNMP is an application layer protocol that uses UDP as the transport protocol.

 Entities involved in managing a device with SNMP are Network Management Station
(NMS), Managed devices, Management information base (MIB) and the SNMP Agent.

Limitations of SNMP

 SNMP is stateless in nature and each SNMP request contains all the information to process
the request. The application needs to be intelligent to manage the device.

« SNMP is a connectionless protocol which uses UDP as the transport protocol, making it
unreliable as there was no support for acknowledgement of requests.

« It is difficult to differentiate between configuration and state data in MIBs.

* Retrieving the current configuration from a device can be difficult with SNMP.

* Earlier versions of SNMP did not have strong security features making the management
information vulnerable to network intruders.

BRJATME

atme College of Engineering

Network operator requirements

* Ease of use

* Distinction between configuration and state data
* Fetch configuration and state data separately

* Configuration of the network as a whole

* Configuration transactions across devices

* Configuration deltas

* Dump and restore configurations

* Configuration validation

* Configuration database schemas

e Comparing configuration

* Role based access control

* Consistency of access control lists

* Multiple configuration sets

* Support for both data-oriented and task-oriented access control

BRJATME

atme College of Engineering

NETCONF

* Network Configuration Protocol is a session-based network management protocol. It

allows retrieving state or configuration data and manipulating configuration data on
network devices.

NETCONF Protocol Layer
Contont State Data Configuration Notification
% Data Data / Device \
(’- SER“IEE lllllllll : " & @ ¢ lllllllll *r L] ll--|| llllll & & ® @ {NETCDNF SEWErJ
NSTCON: Client) Operations <get>] [ﬁedit-mnﬁgr
SRR PEES I] NETCONF
IYANG defined! [[sreeeeees . ¢ ¢ Ceeaaaas N PEEN Configuration
' Models | M i ape>] | _Datastore
T) e sty <notification> IYANG defined!
Y 4{ PUEED 4' J ¢ 4 ' Models | _/
Transport SSH

BRJATME

atme College of Engineering

YANG

* YANG is a data modelling language used to model configuration and state data manipulated by the
NETCONF protocol. YANG modules contain the definitions of the configuration data, state data,
RPC calls that can be issued and the format of the notifications.

Contains simple data structures such as an integer or a string.
Leaf Nodes Leaf has exactly one value of a particular type and no child
nodes.

Is a sequence of leaf nodes with exactly one value of a
Leaf-list Nodes -
particular type per leaf.

Used to group related nodes in a subtree. A container has only
child nodes and no value. A container may contain any
number of child nodes of any type (including leafs, lists,
containers and leaf-lists).

Container Nodes

Defines a sequence of list entries. Each entry is like a
structure or a record instance and is uniquely identified by the
value of its key leafs. A list can define multiple key leafs and
may contain any number of child nodes of any type.

List Nodes

2AATME

atme College of Engineering

IoT Systems Management with NETCONF-YANG

—
A4
Management System
NETCONF
‘ NETCONF Server ¥ .
I (
|
I
| Management Transaction Roliback |
| APl Manager Manager .
| |
|
I
| |
|
| Data Model Configuration Authentication, |
| Manager Validator Authorization & i
[§ \ Auditing Modules |
| |
|
| S |
l | —
YANG | | Configuration Conhﬁgranon Data :rpc:vider :
Modules I Database |
| |
I

,____:__';__________—_:__“_4_,;7—0;,,};3__—_"_____:"_iT__';—_:"_:_A

| Applications
' Mar?agefi ‘ (Status, Statistics, Performance,
: Objects Alarms, Counters)

BJATME
atme College of Engineering NET OPEER

* Itis set of open source NETCONTF tools built on the Libnetconf library.

The Netopeer tools include:

* Netopeer-server: It 1s a NETCONF protocol server that runs on the managed device.
Netopeer-server provides an environment for configuring the device using NETCONF RPC
operations and also retrieving the state data from the device.

* Netopeer-agent: It is the NETCONF protocol agent running as a SSH/TLS subsystem. It
accepts incoming NETCONF connection and passes the NETCONF RPC operations received
from the NETCONPF client to the Netopeer server.

* Netopeer-cli: It is a NETCONF client that provides a command line interface for interacting
with the Netopeer-server. The operator can use the Netopeer-cli from the management system
to send NETCONF RPC operations for configuring the device and retrieving the state
information.

* Netopeer-manager: Netopeer-manager allows managing the YANG and Libnetconf
Transaction API (TransAPI) modules on the Netopeer-server. With Netopeer-manager
modules can be loaded or removed from the server.

* Netopeer-configurator: It is a tool that can be used to configure the Netopeer-server.

BJATME
atme College of Engineering NET OPEER

Steps for IoT device Management with NETCONF-YANG

1) Create a YANG model of the system that defines the configuration and state data of the
system.

2) Complete the YANG model with the ‘Inctool’ which comes with Libnetconf.

3) Fill in the IoT device management code in the Trans API module.
4) Build the callbacks C file to generate the library file.

5) Load the YANG module and the TransAPI module into the Netopeer server using Netopeer
manager tool.

6) The operator can now connect from the management system to the Netopeer server using the
Netopeer CLI.

7) Operator can 1ssue NETCONF commands from the Netopeer CLI. Command can be issued to
change the configuration data, get operational data or execute an RPC on the IoT device.

BJATME

atme College of Engineering

Module - 3

Chapter-1: IoT Design Methodology

By,

Roopa B
Asst. Professor
Dept. of CSE
ATMECE, Mysuru

BJATME

atme College of Engineering

Contents

* Introduction
* IoT Design Methodology
* Case Study on IoT System for Weather Monitoring

BRJATME

atme College of Engineering

IoT Design Methodology

Designing IoT systems can be a complex task as these systems involve interactions
between various components such as IoT device and network resources, web services,
analytics components, application and database servers.

IoT system designers often tend to design IoT systems keeping specific product or
services in mind. For such systems, updating the system design to add new feature
becomes very complex, and in many cases may require complete re-design of the
system.

24ATME

atme College of Engineering

Purpose & Requirements
Define Purpose & Requirements of loT system

IoT Design Methodology

Process Model Specification
Define the use cases

Domain Model Specification
Define Physical Entities, Virtual Entities, Devices, Resources and Services in the loT system

Information Model Specification
Define the structure (e.g. relations, attributes) of all the information in the loT system

Service Specifications
Map Process and Information Model to services and define service specifications

loT Level Specification
Define the loT level for the system

Functional View Specification
Map loT Level to functional groups

Operational View Specification
Define communication options, service hosting options, storage options, device options

Device & Component Integration
Integrate devices, develop and integrate the components

Application Development
Develop Applications

BRJATME

atme College of Engineering

Smart Home Automation System

O

/

Mode
/
auto manual
/ \[
Light-Level Light-State
Level: Low Level: High state: On state: Off
state: On state: Off state: On state: Off

2AA TME

atme College of Engineering

Smart Home Automation System

' . Virtual Entity:
Vlmg;’of:,m)’- T LightAppliance
EntityType : Room < EntityType : Appliance
ID : Room1 el
RoomiID : Room1
Attribute: Attribute:
Light-Level State
Attribu'teName : lightLevel AttributeName : lightState
AttributeType : level AttributeType : state

has light-level has light-level is in state

is in state

Level: High Level: Low State: On State: Off

2AA TME

atme College of Engineering

Case Study on IoT System for Weather Monitoring

Read Sensor - 2
Store Value
- Wait

Local

|
| Cloud
|
|
|
Observer | App —> Observer
Node ! Node
REST/WebSocket
Communication
') l
\L v I .
Controller Controller | Centrolized . —> REST/WebSocket CA;a’z::;t
Service Service <3 Services omp
1\ | Controlier (loT Intelligence)
v | $
| =0, £ =
Resource Resource I (G] T
/I\ :I: I Database <
\Z I e
|
Device Device |
Multiple Monitoring Nodes / .
Centralized
Controller Cloud Storage &
Analysis

BJATME

atme College of Engineering

Module - 3

Chapter-2: IoT Systems — Logical Design using Python

By,

Roopa B
Asst. Professor
Dept. of CSE
ATMECE, Mysuru

BJATME

atme College of Engineering

Contents

* Introduction to Python

* Python Data Types & Data Structures
* Control Flow

* Functions

* Modules

* Packages

* File Input/Output

* Date/Time Operations

* C(lasses

BRJATME

atme College of Engineering

Python

* Python is a general-purpose high level programming language

The main characteristics of Python are:

* Multi-paradigm programming language: Python supports more than one programming
paradigms including object-oriented programming and structured programming

* Interpreted Language: Python is an interpreted language and does not require an
explicit compilation step. The Python interpreter executes the program source code
directly, statement by statement, as a processor or scripting engine does.

* Interactive Language: Python provides an interactive mode in which the user can
submit commands at the Python prompt and interact with the interpreter directly.

BRJATME

atme College of Engineering

Python data types & Data Structures

#integer
=»=3=5

* Number data type is used to store numeric values. stype(a)
* Numbers are immutable data types, therefore changing <type int’>

the value of a number data type results in a newly gf:;ng Point

allocated object. >>>type(b)
<type 'float’>

N

#iLong
>>>x=9898878787676L
>>>type(x)

<type 'long’>

#Complex
>>>Y=245j

>>>y

(2+45j)

>>>type(y)

<type ‘complex’>
>>>y.real

2

>>>y.imag

5

24ATME

atme College of Engineering

Python data types & Data Structures

A string is simply a list of

characters in order.

#Create string
>>>5="Hello World!"
>>>type(s)

<type 'str'>

#S5tring concatenation

>>>t="This is sample program."
>>>r = 5+t

>33>r

"Hello World!This is sample program.’

#Get length of string
>>>len(s)
12

#Convert string to integer
>>>x="100"

>>>type(s)

<type 'str'>

>>>y=int(x)

>33y

100

#Print string
>>>print s
Hello World!

#Formatting output
>>>print "The string (The string (Hello World!)
has 12 characters

#Convert to upper/lower case
>>>s.upper()

'HELLO WORLDY

>>>5.lower()

‘hello world!”

#Accessing sub-strings
>>>5[0]

er

>>>5[6:]

"World!'

>>>5[6:-1]

"World’

BRJATME

atme College of Engineering

Python data types & Data Structures

#Create List
>>>fruits=|"apple’,'orange’,'banana’,'mango’]

* List a compound data type used to group together

Other Values >>>type(fruits)
. . . . <type ‘list’>
* List items need not all have the same type. A list
. . #Get Length of List
contains items separated by commas and enclosed >>>len(fruits)

within square brackets. ‘

#Access List Elements
>>>fruits[1]

'orange’

>>>fruits[1:3]

['orange’, "banana’|
>>>fruits[1:]

[‘'orange’, "‘banana’, ‘'mango’)

#Appending an item to a list
>>>fruits.append('pear’)

>>>fruits

['apple’, 'orange’, "banana’, ‘'mango’, ‘pear’]

BRYJATME

atme College of Engineering

Python data types & Data Structures

* A tuple 1s a sequence data type that is similar to the list. A tuple consists of a number of
values separated by commas and enclosed

* within parentheses. Unlike lists, the elements of tuples cannot be changed, so tuples can
be thought of as read-only lists.

#Create a Tuple #Get an element from a tuple
>>>fruits=("apple","mango","banana","pineapple") >>>fruits[0]

>>>fruits "apple’

(‘apple’, 'mango’, ‘banana’, ‘pineapple’) >>>fruits[:2]

(‘apple’, ‘'mango’)
>>>type(fruits)

<type "tuple’> #Combining tuples
>>>vegetables=("potato’,’ carrot’,’onion’, radish’)
#Get length of tuple >>>eatables=fruits+vegetables
>>>len(fruits) >>>eatables
4 (‘apple’, ‘mango’, ‘banana’, ‘pineapple’, ‘potato’, ‘carrot’, "onion’, 'radish’)

BRJATME

atme College of Engineering

Python data types & Data Structures

* Dictionary is a mapping data type or a kind of hash table that maps keys to values.
 Keys in a dictionary can be of any data type, though numbers and strings are
commonly used for keys. Values in a dictionary can be any data type or object.

#Create a dictionary
>>>student={"name’:'Mary’,’id":'"8776’,'major’.’C5'}
>>>student

{'major’: 'CS’, 'name’: ‘Mary’, 'id’: '8776'}
>>>type(student)

<type 'dict’>

#Get length of a dictionary
>>>len(student)
3

#Get the value of a key in dictionary
>>>student['name’)
"Mary’

#Get all items in a dictionary

>>>student.items|()

[[‘gender’, ‘female’), ('major’, 'CS’), ('name’, 'Mary’),
(id’, '8776')]

BRJATME

atme College of Engineering

Control Flow — if statement

>>>3 = 25%*5 >>>if a>10000:
>=>if a>10000: if a<1000000:
print "More" print "Between 10k and 100k"
else: else:
print "Less" print "More than 100k"
elif a==10000:
More print "Equal to 10k"
else:

print "Less than 10k"

More than 100k

>>>5="Hello World" >>>student={'name’:'Mary’,’id’:"8776'}
>>>if "World" in s: >>>if not student.has_key('major’):
s=g5+"1" student['major’]="C8’
print s
>>>student
Hello World! {'major’: 'CS’, 'name’: "Mary’, "id": '8776"}

BRJATME

atme College of Engineering

Control Flow — for and while statement

#Looping over characters in a string #Looping over items in a list
helloString = "Hello World" fruits=["apple’,’orange’,'banana’,'mango’]
for c in helloString: i=0
print c for item in fruits:
print "Fruit-%d: %s" % (i,item)
i=i+1

#Prints even numbers upto 100
>>> =0

>>> while i<=100:

if i%2 ==0:

print i
i =i+l

BRJATME

atme College of Engineering

Control Flow — break, continue statements

##Continue statement example

#iBreak statement example >>>fruits=["apple’,'orange’,’banana’,’mango’]
>»>y=1 >>>for item in fruits:
>>>for x in range(4,256,4): if item == "banana":

v=y*x continue

ify>512: else:

break print item

print y
A apple
2 e
384 .

BRYJATME

atme College of Engineering

Functions

* A function is a block of code that takes information in (in the form of parameters), does some
computation, and returns a new piece of information based on the parameter information.

students = {'1": {'name': 'Bob’, 'grade': 2.5},

2" {name": 'Mary", 'grade": 3.5}, >>>def displayFruits(fruits=["apple’,’orange’]):

. T . - sl .
'3': {name"; 'David’, 'grade": 4.2}, ?nr!: Thler;,- a.r:e .%d fruits in the list" % (len(fruits))
'4': {'name": 'John', 'grade': 4.1}, or item in frurts:

'5": {'name"; 'Alex’, 'grade': 3.8}} print item

#Using default arguments

def averageGrade(students): >>>displayFruits()
“This function computes the average grade” apple
sum = 0.0 orange

for key in students:
sum = sum + students[key]['grade’]

average = sum/len(students) >>>fruits = ['banana’, 'pear’, 'mango’]
return average >>>displayFruits(fruits)
banana
pear
avg = averageGrade(students) mango

print "The average garde is: %0.2f" % (avg)

BRYJATME

atme College of Engineering

Functions

Functions can also be called using keyword arguments that identifies the arguments by the
parameter name when the function 1s called. Python functions can have variable length
arguments. The variable length arguments are passed to as a tuple to the function with an
argument prefixed with asterix (*)

>>>def displayFruits(fruits):

* 5
print "There are %d fruits in the list" % (len(fruits)) >>>def student(name, *varargs):

print "Student Name: " + name

for item in fruits: #name is a formal ar
. gument. for item in varargs:
print item #**kwargs is a keyword argument that receives all fint item B
print "Adding one more fruit" arguments except the formal argument as a P
fruits.append('mango’) dictionary.
>>>student(’'Nav’)
>>>fruits = ['banana’, 'pear’, 'apple'] >>>def student(name, **kwargs): Student Name: Nav
>>>displayFruits(fruits) print "Student Name: " + name
There are 3 fruits in the list for key in kwargs: >>>student('Amy’, "Age: 24')
banana print key + : * + kwargs[key] Student Name: Amy
pear AgEZ 24
apple >>>student(name="Bob’, age="20’, major = 'CS’)
Student Name: Bob >>>student('Bob’, ‘Age: 20’, "Major: CS’)
#Adding one more fruit agg. ZPCS Student Name: Bob
>>>print "There are %d fruits in the list" % (len(fruits)) maior: Age: 20
There are 4 fruits in the list Major: CS

BRYJATME

atme College of Engineering

File Handling # Example of reading an entire file

>>>fp = open('file.txt','r")

Python allows reading and writing to files using the el i)
. >>>print content
file Ob_]GCt. This is a test file.
. . >>>fp.close()
» The open(filename, mode) function is used to get a
file ObjeCt. # Example of reading line by line
e The mode can be read (r), write (w), append (a), >>>fp = open(‘fileLtxt','r')
. . . >>>print "Line-1: " + fp.readline()
read and erte (I'"‘ or W+)a read-blnary (rb)a erte' Line-1: Python supports more than one programming paradigms.
: >>>print "Line-2: " + fp.readline()
blnary (Wb)’ ete. Line-2: Python is an interpreted language.
o After the file contents have been read the close >>>fp.close()

function 1is called which closes the file object.

Example of reading lines in a loop
>>>fp = open('filel.txt’,'r’)
>>>lines = fp.readlines()
>>>for line in lines:
print line

Python supports more than one programming paradigms.
Python is an interpreted language.

BRJATME

atme College of Engineering

File Handling

Example of reading a certain number of bytes # Example of seeking to a certain position
>>>fp = open('file.txt','r") >>>fp = open('file.txt','r")
>>>fp.read(10) >>>fp.seek(10,0)
'Python sup’ >>>content = fp.read(10)
>>>fp.close() >>>print content
ports more

>>>fp.close()

Example of getting the current position of read # Example of writing to a file

>>>fp = open('file.txt','r") >>>fo = open('filel.txt','w')

>>>fp.read(10) >>>content='"This is an example of writing to a file in
'Python sup' Python.'

>>>currentpos = fp.tell >>>fo.write(content)

>>>print currentpos >>>fo.close()

<built-in method tell of file object at 0x0000000002391390>
>>>fp.close()

24ATME

atme College of Engineering

* A module is a Python file that
defines some functionality in the
form of functions or classes.

* Modules can be imported using the
import keyword can be imported
must be present in the search path.

Modules

#student module - saved as student.py
def averageGrade(students):
sum = 0.0
for key in students:
sum = sum + students[key]['grade']
average = sum/len(students)
return average

def printRecords(students):
print "There are %d students" %(len(students))
i=1
for key in students:
print "Student-%d: " % (i)
print "Name: " + students[key]['name']
print "Grade: " + str(students[key]['grade'])
i=i+l

Importing a specific function from a module
>>>from student import averageGrade

Listing all names defines in a module
>>>dir(student)

#Using student module

>>>import student

>>>students = '1": 'name": 'Bob’, 'grade": 2.5,
2" 'name': '"Mary', 'grade": 3.5,

'3": 'name’: 'David’, 'grade": 4.2,

‘4" 'name': 'John', 'grade": 4.1,

'5": 'name': 'Alex’, 'grade": 3.8

>>>student.printRecords(students)
There are 5 students
Student-1:

Name: Bob

Grade: 2.5
Student-2:

Name: David

Grade: 4.2
Student-3:

Name: Mary

Grade: 3.5
Student-4:

Name: Alex

Grade: 3.8
Student-5:

Name: John

Grade: 4.1

BRJATME

atme College of Engineering

Packages

skimage package listing

skimage/ Top level package

* Python package is hierarchical file structure that " init_py Treatdirectory as a package
consists of modules and subpackages. S
* Packages allow better organization of modules __init__py

colorconv.py

related to a single application environment. colorlabel.py
rgb_colors.py

draw/ draw draw subpackage
__init__.py
draw.py
setup.py

exposure/ exposure subpackage
__init__.py
_adapthist.py
exposure.py

feature/ feature subpackage

__init__.py
_brief.py

_daisy.py

BRYJATME

atme College of Engineering

Date/Time Operations

* Python provides several functions for date and time access and conversions.
* The datetime module allows manipulating date and time in several ways.
e The time module in Python provides various time-related functions.

Examples of manipulating with date # Examples of manipulating with time
>>>from datetime import date >>>import time
>>>nowtime = time.time()
>>>now = date.today() >>>time.localtime(nowtime)
>>>print "Date: " + now.strftime("%m-%d-%y") time.struct_time(tm_year=2013, tm_mon=7, tm_mday=24, tm_ec=51, tm_wday=2, tm_yday=205,
Date: 07-24-13 tm_isdst=0)
>>>print "Day of Week: " + now.strftime("%A") >>>time.asctime(time.localtime(nowtime))
Day of Week: Wednesday 'Wed Jul 24 16:14:51 2013’
>>>print "Month: " + now.strftime("%B") >>>time.strftime("The date is %d-%m-%y. Today is a %A. It is %H hours, %M minutes and %S seconds now.")
Month: July 'The date is 24-07-13. Today is a Wednesday. It is 16 hours, 15 minutes and 14 seconds now.'

>>>then = date(2013, 6, 7)
>>>timediff = now - then
>>>timediff.days

47

BRYJATME

atme College of Engineering

Classes

Examples of a class >>>5 = Student('Steve’,'98928’)
. . lass Student: C lled
. A class is 81mply a class tustzz.tentcgunt=g onstructor calle
representation of a type of object det it (sol " ”‘“-ajggra:egj:ath’f?fjg’;}
ef _init_ (self, name, id): >>>s.addGrade(’Physics’,
and user-defined prototype for an print "Constructor called" >>>s.printGrades()
. . If. = Physics: 85
object that is composed of three e R
: . : Student.studentC = Student.studentC 1
thlIlgS.. a nhame, attrlbutes’ and s;:;.srr;fjsetsi{}?nt eunt =otudentstudenttount >>>mathgrade = s.getGrade(’Math’)
operations/methods. >>>print mathgrade
. def del (self): 90
Instance/ObJ ect print "Destructor called"
* ObJCCt iS an instance Of the def getStudentCount(self): zzz;?i%:tc;jftmsmdentcount”
return Student.studentCount 1
data structure defined by a class.
Inheritance def addGrade(self key,value): >>>del s
. . self.grades[key]=value Destructor called
 Inheritance is the process of def getGrade(self key):
forming a new class from an return self.grades[key]
existing class or base class. def printGrades(self):

for key in self.grades:

", n

print key +": " + self.grades[key]

24ATME

atme College of Engineering

Class Inheritance ClaSSES

* In this example Shape is the base class and Circle is the derived class. The class Circle inherits
the attributes of the Shape class.

e The child class Circle overrides the methods and attributes of the base class (eg. draw()
function defined in the base class Shape is overridden in child class Circle).

Examples of class inheritance class Circle(Shape): class Point: >>>p = Point(2,4)
class Shape: def _init_ (self, c,r): def _init_ (self, x, y): >>>circ = Circle(p,7)
def _init_ (self): print "Child class constructor" self.xCoordinate = x Child class constructor
print "Base class constructor" self.center=c¢ self.yCoordinate =y >>>circ.getColor()
self.color = 'Green’ self.radius =r 'Green’
self.lineWeight = 10.0 self.color = 'Green’ def setXCoordinate(self,x): >>>circ.setColor('Red’)
self.lineWeight = 10.0 self.xCoordinate = x >>>circ.getColor{)
def draw(self): self. label =’Hidden circle label’ 'Red’
print "Draw - to be implemented" def getXCoordinate(self): >>>circ.getlineWeight()
def setColor(self, c): def setCenter(self,c): return self.xCoordinate 10.0
self.color = ¢ self.center=c¢ >>>circ.getCenter().getXCoordinate()
def getColor(self): def getCenter(self): def setYCoordinate(self,y): 2
return self.color return self.center self.yCoordinate =y >>>circ.getCenter().getYCoordinate()
4
def setLineWeight(self,lwt): def setRadius(self,r): def getYCoordinate(self): s>>>circ.draw()
self.lineWeight = Iwt self.radius = r return self.yCoordinate Draw Circle (overridden function)
>>>circ.radius
def getLineWeight(self): def getRadius(self): 7
return self.lineWeight return self.radius
def draw(self):

print "Draw Circle (overridden function)"

BRYJATME

atme College of Engineering

Python Packages of Interest for IoT

1. JSON

« JavaScript object Notation (JSON) is an easy to read and write data-interchange format.

* JSON is used as an alternative to XML and is easy for machines to parse and generate.

e« JSON is built on two structure- a collection of name-value pairs (e.g. a python dictionary) and
ordered lists of values (e.g. a python list).

2. XML

XML (Extensible Markup Language) is a data format for structured document interchange.

3. HTTPLib & URLLIib

« HTTPLib2 and URLLib2 are python libraries used in network/internet programming.

« HTTPLib2 is an HTTP client library and URLLI1b2 is a library for fetching URLS.

4. SMTPLIib

* Simple Mail Transfer Protocol (SMTP) 1s a protocol which handle sending email and routing e-mail
between mail servers.

* The python smtplib module provides an STMP client session object that can be used to send email.

* Example: sending email from a Gmail account. To send email from a Gmail account the Gmail
STMP server is specified in the server string.

	Slide 1
	Slide 2: Course Objectives
	Slide 3: Course Content
	Slide 4: Course Content
	Slide 5: Course Outcomes
	Slide 6: Module - 1
	Slide 7: Contents
	Slide 8: Introduction
	Slide 9: Characteristics of IoT
	Slide 10: Physical design of IoT
	Slide 11: Physical design of IoT
	Slide 12: Physical design of IoT
	Slide 13: Physical design of IoT
	Slide 14: Physical design of IoT
	Slide 15: Physical design of IoT
	Slide 16: Logical Design of IoT
	Slide 17: Logical Design of IoT
	Slide 18: Logical Design of IoT
	Slide 19: Logical Design of IoT
	Slide 20: Logical Design of IoT
	Slide 21: Logical Design of IoT
	Slide 22: Logical Design of IoT
	Slide 23: Logical Design of IoT
	Slide 24: IoT enabling technologies
	Slide 25: IoT enabling technologies
	Slide 26: IoT enabling technologies
	Slide 27: IoT enabling technologies
	Slide 28: IoT enabling technologies
	Slide 29: IoT Levels & Deployment Templates
	Slide 30: IoT Levels & Deployment Templates
	Slide 31: IoT Levels & Deployment Templates
	Slide 32: IoT Levels & Deployment Templates
	Slide 33: IoT Levels & Deployment Templates
	Slide 34: IoT Levels & Deployment Templates
	Slide 35: IoT Levels & Deployment Templates
	Slide 36: Module - 2
	Slide 37: Contents
	Slide 38: Introduction to M2M
	Slide 39: Difference between IoT and M2M
	Slide 40: SDN and NFV for IoT
	Slide 41: SDN and NFV for IoT
	Slide 42: SDN and NFV for IoT
	Slide 43: SDN and NFV for IoT
	Slide 44: Module - 2
	Slide 45: Contents
	Slide 46: Need for IoT Systems Management
	Slide 47: Simple Network Management Protocol (SNMP)
	Slide 48: Network operator requirements
	Slide 49: NETCONF
	Slide 50: YANG
	Slide 51: IoT Systems Management with NETCONF-YANG
	Slide 52: NETOPEER
	Slide 53: NETOPEER
	Slide 54: Module - 3
	Slide 55: Contents
	Slide 56: IoT Design Methodology
	Slide 57: IoT Design Methodology
	Slide 58: Smart Home Automation System
	Slide 59: Smart Home Automation System
	Slide 60: Case Study on IoT System for Weather Monitoring
	Slide 61: Module - 3
	Slide 62: Contents
	Slide 63: Python
	Slide 64: Python data types & Data Structures
	Slide 65: Python data types & Data Structures
	Slide 66: Python data types & Data Structures
	Slide 67: Python data types & Data Structures
	Slide 68: Python data types & Data Structures
	Slide 69: Control Flow – if statement
	Slide 70: Control Flow – for and while statement
	Slide 71: Control Flow – break, continue statements
	Slide 72: Functions
	Slide 73: Functions
	Slide 74: File Handling
	Slide 75: File Handling
	Slide 76: Modules
	Slide 77: Packages
	Slide 78: Date/Time Operations
	Slide 79: Classes
	Slide 80: Classes
	Slide 81: Python Packages of Interest for IoT

