&

atme

ATME

College of Engineering

DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING

ATME COLLEGE OF ENGINEERING

13th Kilometer, Bannur Road, Mysuru - 570028

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING
(ACADEMIC YEAR 2025-26)
ODD SEMESTER

NOTES OF LESSON

SUBJECT: INTERNET OF THINGS
SUB CODE: BCS701
SEMESTER: VII

o 0821-2954081 info@atme.edu.in 13th Kilometer, Mysore -Kanakapura
0821-2954011 www.atme.edu.in -Bengaluru Road, Mysore - 570 028

4 ATME o)
25 O
atme | College of Engineering -
DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING
INSTITUTIONAL VISSION AND MISSION
Objectives
e To provide quality education and groom top-notch professionals, entrepreneurs and leaders for
different fields of engineering, technology and management.
e To open a Training-R & D-Design-Consultancy cell in each department, gradually introduce
doctoral and postdoctoral programs, encourage basic & applied research in areas of social
relevance, and develop the institute as a center of excellence.
e To develop academic, professional and financial alliances with the industry as well as the
academia at national and transnational levels.
e To cultivate strong community relationships and involve the students and the staff in local
community service.
¢ To constantly enhance the value of the educational inputs with the participation of students,
faculty, parents and industry.
Vision
e Development of academically excellent, culturally vibrant, socially responsible, and globally
competent human resources.
Mission
e To keep pace with advancements in knowledge and make the students competitive and capable
at the global level.
e To create an environment for the students to acquire the right physical, intellectual, emotional
and moral foundations and shine as torch bearers of tomorrow's society.
e To strive to attain ever-higher benchmarks of educational excellence.
o 0821-2954081 info@atme.edu.in 13th Kilometer, Mysore -Kanakapura

0821-2954011

www.atme.edu.in -Bengaluru Road, Mysore - 570 028

&

atme

ATME

College of Engineering

DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING

Vision of the Department

¢ To develop highly talented individuals in Computer Science and Engineering to deal with real
world challenges in industry, education, research and society.

Mission of the Department

¢ To inculcate professional behavior, strong ethical values, innovative research capabilities and
leadership abilities in the young minds & to provide a teaching environment that emphasizes depth,
originality and critical thinking.

e Motivate students to put their thoughts and ideas adoptable by industry or to pursue higher studies
leading to research.

Program Educational Objectives (PEQ'S)

1. Empower students with a strong basis in the mathematical, scientific and engineering
fundamentals to solve computational problems and to prepare them for employment, higher
learning and R&D.

2. Gain technical knowledge, skills and awareness of current technologies of computer science
engineering and to develop an ability to design and provide novel engineering solutions for
software/hardware problems through entrepreneurial skills.

3. Exposure to emerging technologies and work in teams on interdisciplinary projects with
effective communication skills and leadership qualities.

4. Ability to function ethically and responsibly in a rapidly changing environment by applying
innovative ideas in the latest technology, to become effective professionals in Computer Science
to bear a life-long career in related areas.

Program Specific Qutcomes (PSOs)

PSOI1: Ability to apply skills in the field of algorithms, database design, web design, cloud
computing and data analytics.

PSO2: Apply knowledge in the field of computer networks for building network and internet-based
applications.

0 0821-2954081
0821-2954011

info@atme.edu.in 13th Kilometer, Mysore -Kanakapura
www.atme.edu.in -Bengaluru Road, Mysore - 570 028

4 ATME

atme | College of Engineering

DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING

Contact Total
Course . . - ota
Code Course Title |Core/ Elective Prerequisite Hours Hl:S/
L TTTP Sessions
Networking, Basic 3ol o 40 1;31}613(())ry -
BCS701 |Internet of Things Core programming .
Knowledge Pracjucal
sessions
1. Understand the fundamentals of Internet of Things and its building blocks
Course along with their characteristics.

Objectives 2. Understand the recent application domains of IoT in everyday life.

3. Understand the protocols and standards designed for IoT and the current
research on it.

4. Understand the other associated technologies like cloud and fog computing in
the domain of IoT.

5. Improve their knowledge about the various cutting-edge technologies in the
field of IoT and machine learning applications.

6. Gain insights about the current trends of machine learning and Al techniques
used in [oT to orient towards the present industrial scenario.

Topics Covered as per Syllabus

Module-1

Introduction to Internet of Things: Introduction, Physical design of IOT, Logical Design of IOT,
IOT enabling technologies, IOT Levels & Deployment Templates.

Module-2

10T and M2M: Introduction: M2M, Difference between IoT and M2M, SDN and NFV for IOT,
IOT System Management with NETCONF-YANG, Need for IOT Systems Management, Simple
Network Management Protocol (SNMP), Network operator requirements, NETCONF, YANG,
IoT Systems Management with NETCONF-YANG.

Module-3

IoT Platforms Design Methodology: Introduction, [oT Design Methodology, Case Study on IoT
System for Weather Monitoring, 10T Systems - Logical Design using Python: Introduction,
Installing Python, Python Data Types and Data structures, Control flow, Functions, Modules,
Packages, File Handling, Operations, Classes, Python Packages of Interest for [oT.

Module-4

IoT Physical Devices & End points: What is a 1oT Device, Raspberry Pi, About the Board, Linux
on Raspberry Pi, Raspberry Pi interfaces, Programming Raspberry Pi with Python, Case Studies
illustrating IoT design — Home Automation, Cities, Agriculture.

Module-5

Data Analytics for IoT: Introduction, Apache Hadoop, Using Hadoop MapReduce for Batch Data

o 0821-2954081 info@atme.edu.in 13th Kilometer, Mysore -Kanakapura
0821-2954011 www.atme.edu.in -Bengaluru Road, Mysore - 570 028

&

atme

ATME

College of Engineering

DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING

I R

10
11

Analytics, Apache Oozie, Apache Spark, Apache Storm, Using Apache Storm for Real-time Data
Analysis.

Laboratory Component:

. Develop a water level depth detection system using Ultrasonic sensor.
12.

Develop a program to blink 5 LEDs back and forth.

Develop a program to interface a relay with Arduino board.

Develop a program to deploy an intrusion detection system using Ultrasonic and sound sensors.
Develop a program to control a DC motor with Arduino board.

Develop a program to deploy smart street light system using LDR sensor.

Develop a program to classify dry and wet waste with the Moisture sensor (DHT22).

Develop a program to read the pH value of a various substances like milk, lime and water.
Develop a program to detect the gas leakage in the surrounding environment.

. Develop a program to demonstrate weather station readings using Arduino.

Develop a program to setup a UART protocol and pass a string through the protocol.

Develop a program to simulate interfacing with the keypad module to record the keystrokes.

List of Textbook

Arshdeep Bahga, Vijay Madisetti, “Internet of Things- A Hands On Approach”, Universities press,
2014.

Course management protocols
Outcomes 3. Apply basic IoT design steps and programming to create simple [oT applications

1. Describe the basics of the Internet of Things, including its design, technologies,
and different types of deployments.
2. Explain the concepts of IoT and M2M and describe the use of network

4. Describe the architecture and interfaces of Raspberry Pi and implement Python-
based IoT applications for different domains
5. Elaborate the need for Data Analytics in IoT.

@ 0821-2954081 info@atme.edu.in 13th Kilometer, Mysore -Kanakapura

0821-2954011

www.atme.edu.in -Bengaluru Road, Mysore - 570 028

&

atme

ATME

College of Engineering

DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING

Module-1

Introduction to Internet of Things

Introduction

Internet of Things (IoT) comprises things that have unique identities and are connected to the
internet.

Existing devises, such as networked computers or 4G enabled mobile phones, already
have some form of unique identities and are also connected to the internet, the focus on
IoT in the configuration, control and networking via the internet of devices or things,
that are traditionally not associated with the Internet. These include devices such as
thermostats, utility meters, a blue tooth- connected headset, irrigation pumps and sensor
or control circuits for an electric car’s engine

The scope of 10T is not limited to just connected things (Devices, appliance, machines)
to the Internet.

Applications on IoT networks extract and create information from lower-level data by
filtering, processing, categorizing, condensing and contextualizing the data. The
information obtained is then organized and structured to infer knowledge about the
system and or its user, its environment and its operations and progress towards its
objectives, allowing a smarter performance.

Definition of IoT

A dynamic global network infrastructure with self — configuring capabilities based on standard
and interoperable communication protocols where physical and virtual “things” have
identified, physical attributes, and virtual personalities and use intelligent interfaces, often
communicate data associated with users and their environment.

Characteristics of IoT

Dynamic and self-Adapting: [oT devices and systems may have the capability to
dynamically adapt with the changing contexts and take actions based on their operating
condition. Ex: Surveillance cameras can adapt their modes based on whether it is day
or night.

Self — Configuring: IoT devices may have self-Configuring capability allowing many
devices to work together to provide certain functionality.

Interoperable communication protocols: IoT Devices may support a few interoperable
communication protocols and can communicate with other devices and with the
infrastructure.

Unique Identity: Each IoT devices has a unique identity and a unique identifier. IP
address, URI). IoT systems may have intelligent interfaces which adapt based on the
context, allow communication with users and the environment contexts.

e 0821-2954081
0821-2954011

info@atme.edu.in 13th Kilometer, Mysore -Kanakapura
www.atme.edu.in -Bengaluru Road, Mysore - 570 028

4 ATME

atme | College of Engineering

DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING

e Integrated into information network: IoT devices are usually integrated into the
information network that allows them to communicate and exchange data with other
devices and systems.

Physical design of IoT
1. Things of IoT

The “Things” in [oT usually refers to [oT devices which have unique identities and can perform
remote sensing, Actuating and monitoring capabilities. [oT devices can exchange data with
other connected devices and applications (directly or indirectly), or collect data from other
devices and process the data locally or send the data to Centralized servers or cloud based
applications back ends for processing the data or from some task locally and other task within
the IoT infrastructure, based on temporal and space constraints (i.e.: Memory, processing
calibrators, communication latencies and speed and deadlines).

Connectivity Processor Audio/Video /O Interface
Interfaces (for Sensors,
Actuators, etc)
USB Host =Ea
CPU __
RJ45/ETHERNET e
RCA video
SPI
Memory Graphics Storage Interfaces
12C
R
GPU
DDR1/2/3 MMC
CAN
SDIO

Fig.1.1 Generic block diagram of an [oT device

An IoT device may consist of several interfaces’ connections to other devices, both wired and
wireless. These include

e [oT interfaces for sensors

e interfaces for internet connectivity
e memory and storage interfaces

e audio video interfaces.

An IoT Device can collect various types of data from the onboard or attached sensors, such as
temperature, humidity, light intensity.

IoT devices can also be varied types, for instance, wearable sensors, smart watches, LED light
automobiles and industrial machines. Almost all I would advise generate data in Some form or

o 0821-2954081 info@atme.edu.in 13th Kilometer, Mysore -Kanakapura
0821-2954011 www.atme.edu.in -Bengaluru Road, Mysore - 570 028

ATME

atme | College of Engineering

DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING

the other which when processed by Data Analytics systems leads to Useful information to guide
further actions locally or remotely.

2. IoT Protocols

Link Layer

Link Layer protocols determine how the data is physically sent over the networks physical
layer or medium (example copper wire, electrical cable, or radio wave). The Scope of The
Link Layer is the Last Local Network connections to which host is attached. Host on the same
link exchange data packets over the link layer using the link layer protocol. Link layer
determines how the packets are coded and signalled by the hardware device over the medium
to which the host is attached.

e 802.3 Ethernet:

802.3 is a collections of wired Ethernet standards for the link layer. For example, 802.3
10BASES Ethernet that uses coaxial cable as a shared medium, 802.3.i is standard for 10
BASET Ethernet over copper twisted pair connection, Standards provide data rates from 10
Mb/s to 40 gigabits per second and the higher. The shared medium in Ethernet can be a coaxial
cable, twisted pair wire or and Optical Fiber. Shared medium carries the communication for all
the devices on the network.

e 802.1- WI-FI:

IEEE 802.3 is a collections of wireless Local area network (WLAN) communication standards,
including extensive descriptions of the link layer. For example, 802.11a operate in the 5 GHz
band, 802.11b and 802.11g operate in the 2.4 GHz band. 802.11ac operates in the 5G hertz
band.

e 802.16 wiMAX:

IEEE 802.16 is a collection of wireless broadband and Standards, including extensive
descriptions for the link layer also called WiMAX. This standard provides a data rates from
1.5Mb/s to 1Gb/s the recent update provides data rates of hundred megabits per second for
mobile station.

e 802.15.4 LR-WPAN:

IEEE 802.1 5.4 is a collection of standards for low-rate wireless personal area network
(LRWPAN). This standard form the basis of specifications for high level communication
Zigbee. LR-WPAN standards provide data rates from 40 k b/ s. These standards provide low
cost and low speed Communications for power constrained devices.

e 0821-2954081 info@atme.edu.in 13th Kilometer, Mysore -Kanakapura
0821-2954011 www.atme.edu.in -Bengaluru Road, Mysore - 570 028

atme

ATME

College of Engineering

DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING

e 2G /3G /4G mobile communications:

These are the different generations of mobile communication standards including second
generation (2G including GSM and CDMA). 3rd Generation (3G including UMTS and
CDMA2000) and 4th generation 4G including LTE.

Network / internet layer:

The network layer is responsible for sending of IP datagrams from the source network to the
destination network. This layer Performs the host addressing and packet routing. The datagrams
contain a source and destination address which are used to route them from the source to the
destination across multiple networks. Host Identification is done using the hierarchy IP
addressing schemes such as ipv4 or IPvo6.

e [PV4: Internet protocol versions for open parents close (IPV4) is there most deployed
internet protocol that is used to identify the device is on a network using a hierarchy
latest scheme. It uses 32-bit addresses scheme that allows total of 2 32 address. As more
and more devices got connected to the internet. The Ipv4 has succeeded by IPv6.

e [Pvo6: It is the newest versions of internet protocol and successor to IPv4. IPv6 uses
128-bit address schemes that are lost total of 2 128 are 3.4* 10 38 address.

e O6LoWPAN: IPv6 over low power wireless personal area networks brings IP protocol
to the low power device which have limited processing capability it operates in the 2.4
GHz frequency range and provide the data transfer rate off to 50 kb/s.

Transport lavyer:

The Transport layer protocols provide end-to-end message transfer capability independent of
the underlying network. The message transfer capability can be set up on connections, either
using handshake or without handshake acknowledgements. Provides functions such as error
control, segmentation, flow control and congestion control.

e TCP: Transmission control protocol is the most widely used to transport layer protocol
that is used by the web browsers along with HTTP, HTTPS application layer protocols
email program (SMTP application layer protocol) and file transfer protocol. TCP is a
connection Oriented and stateful protocol while IP protocol deals with sending packets,
TCP ensures reliable transmissions of packets in order. TCP also provide error
deduction capability so that duplicate packets can be discarded and low packets are
retransmitted. The flow control capability ensures that the rate at which the sender since
the data is now high for the receiver to process.

e UDP: unlike TCP, which requires carrying out an initial setup procedure, UDP is a
connection less protocol. UDP is useful for time sensitive application they have very
small data units to exchange and do not want the overhead of connection setup. UDP is
a transactions oriented and stateless protocol. UDP does not provide guaranteed
delivery, ordering of messages and duplicate eliminations.

o) 0821-2954081 info@atme.edu.in 13th Kilometer, Mysore -Kanakapura

0821-2954011

www.atme.edu.in -Bengaluru Road, Mysore - 570 028

atme

ATME

College of Engineering

DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING

Application layer:

Application layer protocol defines how the application interfaces with the lower layer protocols
to send the data over the network. Data are typically in files, is encoded by the application layer
protocol and encapsulated in the transport layer protocol. Application layer protocol enables
process-to-process connection using ports.

Http: Hypertext transfer protocol is the application layer protocol that forms the
foundations of world wide web http includes, commands such as GET, PUT, POST,
DELETE, HEAD, TRACE, OPTIONS etc. The protocol follows a request response
model where are client sends request to server using the http, commands. Http is a
stateless protocol, and each http request is independent father request and http client
can be a browser or an application running on the client example and application
running on an loT device, mobile applications or other software.

CoAP: Constrained application protocol is an application layer protocol for machine-
to-machine application M2M meant for constrained environment with constrained
devices and constrained networks. Like http CoAP is a web transfer protocol and uses
a request- response model, however it runs on the top of the UDP instead of TC CoAP
uses a client —server architecture where client communicate with server using
connectionless datagrams. It is designed to easily interface with http like http, CoAP
supports method such as GET, PUT, DELETE.

WebSocket: WebSocket protocol allows full duplex communication over a single
socket connection for sending message between client and server. WebSocket is based
on TCP and Allows streams of messages to be sent back and forth between the client
and server while keeping the TCP connection open. The client can be a browser, a
mobile application and IoT device

MQTT: Message Queue Telemetry Transport it is a lightweight message protocol based
on public -subscribe model MQTT uses a client server Architecture by the clients such
as an loT device connect to the server also called the MQTT broker and publishers’
message to topic on the server. The broker forwards the message to the clients
subscribed to topic MQTT is well suited for constrained and environments.

XMPP: Extensible Messaging and Presence Protocol it is a protocol for real-time
communication and streaming XML data between network entities XMPP powers wide
range of applications including messaging, presence, data syndication, gaming
multiparty chat and voice / voice calls. XMPP Allows sending small chunks of XML
data from one network entity to another in real time. XMPP supports both client to
server and server —client communication path.

DDS: Data distribution service is the date centric middleware standard for device to-
device machine to machine communication DDS uses a publish subscribe model where
publisher example device that generate data create topics to which subscribers per can
subscribe publisher is an object responsible for data distributions and the subscriber

e 0821-2954081 info@atme.edu.in
0821-2954011

13th Kilometer, Mysore -Kanakapura
www.atme.edu.in -Bengaluru Road, Mysore - 570 028

atme

ATME

College of Engineering

DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING

responsible for receiving published data. DDS provide quality of service (QoS) control

and configurable reliability

e AMAQP: Advanced Message Queuing protocols. it is an open application layer protocol
for business messaging. AMQP support point to point and publish - subscribe model
routing and queuing. AMQP broker receive message from publisher’s example devices
or applications that generate data and about them over connections to consumers
publishers publish the message to exchange which then distribute message copies to

queues.

Application Layer

HTTP

CoAP

WebSockets

MQTT

XMPP

DDS AMQP

Transport Layer

TCP

UDP

Network layer

IPv4

IPv6

6LoWPAN

Link Layer

802.3 - Ethernet

802.16 - WiMax

802.11 - WiFi

802.15.4 - LR-WPAN

2G/3GILTE-
Celluler

Logical Design of IoT

Fig.1.2 1oT protocols

Logical design of an IoT system refers to an abstract representation of the entities and process
without going into low level specification of the implementations.

1. IoT functional block

An IoT system comprises of several functional blocks that provide the system the capabilities
for identification, sensing, actuation, communication and Management as shown in fig.1.3. The
function blocks are described as follows:

e Devices: An IoT system comprises of the devices that provide sensing, actuation,
monitoring and control function

e Communication: communication block handles the communication systems

e 0821-2954081 info@atme.edu.in

0821-2954011

www.atme.edu.in

13th Kilometer, Mysore -Kanakapura
-Bengaluru Road, Mysore - 570 028

4 ATME

atme | College of Engineering

DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING

e Services: An [oT system uses various types of IoT services such as services for device
monitoring, device control services, data publishing services and services for device
Discovery.

e Management: Functional blocks provide various functions to govern the IoT system

e Security: Security functional block security [oT system and by providing functions such
as application authorization message and content integrity and data security.

e Application: IoT application provides and interface that the user can used to control and
monitor various aspects of the IoT system. Application also allows users to view the
system status and view or analyze the processed to data.

APPLICATION

SERVICES
MANAGEMENT SECURITY

COMMUNICATION

DEVICE

Fig.1.3 Functional blocks of [oT

2. 10T communication model

e Request response: Request-response is a Communications model in which the client
sends request to the server and the server responds to the requests. when the server
receives a request, it decides how to respond, if it shows the data retrieved resources
definitions for the response and then send the response to the client. Access to response
model is a stateless communication model and each request response per is independent
of others the crime and server interactions in the request response model.

e Publish - Subscribe: Respect is a communication model that involve Publishers brokers
and consumers. Publishers are the source of data. Publishers send the data to the topics
which is managed by the broker. Publishers are not aware of the consumer. Consumers
Subscribe to the topic which are managed by the broker. When the broker receives the
data for a topic from the publisher, it sends the data to all the subscribed consumers.

e Push pull: Push pull is communication model in which the data producers push the data
to queues and the consumers pull the data from the queues. Producers do not need to be
aware of the consumer. Queues help in decoupling the messaging between the
Producers and Consumers. It also acts as a buffer which helps in situations when there
is a mismatch between the rate at which the produces push data and the rate at which
the consumers full the data.

e 0821-2954081 info@atme.edu.in 13th Kilometer, Mysore -Kanakapura
0821-2954011 www.atme.edu.in -Bengaluru Road, Mysore - 570 028

&

atme

ATME

College of Engineering

DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING

e Exclusive pair: Exclusive pair is a bidirectional, fully duplex communication model
that uses a persistent connection between the client and the server. once the condition
is setup it remains open until the client sends a request to close the connection. client
and server can send messages to each other after connection setup. Exclusive pair is a
stateful Communications model and the server is aware of all the open connections.

3. IoT communication APIs

REST- based communication API:

Representational state transfer is a set of architectural principles by which you can design web
service and Web API that focus on a system resource and how resources states and addressed
the transferred. REST API follow the request- response communication model. The REST
architectural constraints apply to the components, connectors, and data elements.

e Clientserver: The principle behind the client-server conference separations of concerns
for example client should not be concerned with the storage of data which is their
concern of the server. Similarly, the server should not be concerned about the user
interface which is a concern of the client. separation allows client and server to be
independently deployed and updated.

e Stateless: Each request from client to server must contain all the information necessary
to understand the request and cannot take advantage of any stored context on the server.

e Catchable: Catch constrain requires that the data within the response to a request be
implicitly or explicitly labelled as catchable or non-catchable. Then a client cache is
given the right to reuse that response data for later, equivalent requests. completely
eliminate some attractions and improve efficiency and scalability.

e Layered system: System constraint come off constraints, constrains the behaviour of
components such that each component cannot see beyond the immediate layer with
which they are interacting. Example client cannot tell whether it is connected directly
to the end server or to an intermediary along the way system scalability can be improved
allowing intermediaries to respond to request instead of tender server.

e Uniform interface: Uniform interface constraints requires that the method of
communication between client and server must be uniform. Resources are identified in
the request and separate from the representation of the resource that are returned to the
client. When climbing holds, a representation of your resource it has all the information
required to update or delete the resource

e Code on demand: Service can provide executable code script for clients to execute in
their context.

o) 0821-2954081 info@atme.edu.in 13th Kilometer, Mysore -Kanakapura

0821-2954011

www.atme.edu.in -Bengaluru Road, Mysore - 570 028

4 ATME

atme | College of Engineering

DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING

HTTP Client HTTP Packet HTTP Server
HTTP Command
REST- GET PUT Authorization
Aware
HTTP Client POST DELETE .
REST-ful Web
REST Payload Service
JSON XML
3
r
Resources
URI URI
o 11 T ——
I Representations L,J [Representations lu
| Resource | [Resource |

Fig.1.4 Communication with REST APIs

REST
Coichents o]

Request (GET, PUT, UPCATE or DELETE)
wvrith payload (JSON or XML)

Responsc (JSON or XiVIL)

Reguest (GET, PUT, UPDATE or DELETE)
with payioad (JSON or XML)

Response (JSON or XML)

Fig.1.5 Request-response model used by REST

WebSocket based communication API:

WebSocket API allow bidirectional, full duplex communication between client and server.
Unlike request-response API allow full duplex communication and do not require new
connection to be set up for each message to be sent. WebSocket communication begins with
connection setup request send by the client to the server. The request is sent over http, and the
server interprets it as an upgrade request. If the server support protocol response to the website
handshake response after the connection setup the client and the server can send data or
messages to each other in full duplex model. WebSocket API reduce network traffic and latency
as there is no overhead for connection setup and determination records to each message.

® 0821-2954081 info@atme.edu.in 13th Kilometer, Mysore -Kanakapura
0821-2954011 www.atme.edu.in -Bengaluru Road, Mysore - 570 028

&

ATME

atme | College of Engineering
DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING
”_C—lte;x;] Server
Request to setup WebSocket Connection N
3 Initial Handshake
Response accepling the reguest (over HTTP)
Data frame J
Data frame
ki Bidirectional Communication
Data frame | (over persistent
> WebSocket connection)
bk Data frame
Connection close request "
Connection close response } Baciach it
Fig.1.6 Exclusive pair model used by WebSocket APIs
IoT enabling technologies
It is enabled by several Technologies including wireless sensor networks, cloud computing big
Data Analytics, embedded system, security protocols and architectures, communication
protocols, web service, mobile internet and semantic search engine.
1. Wireless Sensor Network
Wireless sensor network comprises of distributed devices with the sensor which are used to
monitor the environmental and physical conditions. A WSN consists of a number of end nodes
and routers and a coordinator. End nodes have several sensors attached to them. End node can
also act as a router. Routers are responsible for routing the data packet from end nodes to the
coordinator. The coordinator node collects the data from all the notes coordinators also act as
a Gateway that connects the WSN to the internet. IoT systems are described as follows
e Weather monitoring system using WSN in which the nodes collect temperature,
humidity and other data which is aggregated and analysed.
¢ Indoor air quality monitoring system using WSN to collect data on the indoor air quality
and connections of various gases.
e Soil moisture monitoring system using WSN to monitor soil moisture at various
location.
e Surveillance systems use WSN for collecting surveillance data (motion detection data)
e Smart grids use wireless sensor network for monitoring the grid at various point.
e Structural health monitoring systems use WSN to monitor the health of structure by
writing vibration data from sensor nodes deployed at various points in the structure.
0821-2954081 info@atme.edu.in 13th Kilometer, Mysore -Kanakapura
o 0821-2954011 www.atme.edu.in -Bengaluru Road, Mysore - 570 028

&

atme

ATME

College of Engineering

DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING

2. Cloud computing

Cloud Computing is a transformative computing paradigm that involves delivering applications
and services over the internet. Cloud Computing involves provisioning of computing
networking and storage resources on demand and providing these resources as metered services
to the users, in a “pay as you go” model. Cloud Computing resources can be provisioned on
demand by the user without requiring interactions with the Cloud Service Provider. The process
of provisioning resources used automatic Cloud Computing resources can be accessed then it
worked using standard access mechanism that provide platform-independent access using
heterogeneous client platforms such as workstations laptops tablets and Smartphones the
computing and storage resources provided by Cloud Service Provider our food to serve
multiple users using multi-Tenancy. Multi-tenant aspects on the multiple users to be served by
the same physical hardware.

Cloud Computing services are offered to user in different forms

e Infrastructure as a service (IAAS): laaS provides the user the ability provision
computing and storage resources. These resources are provided to the users as virtual
machine instances and virtual storage. Users can start, stop configure and manage the
virtual machines instance on the virtual storage using can deploy operating systems and
applications on their choice on the actual resources provisions in the cloud. Cloud
Service Provider manages the underlying infrastructure.

e Platform as a service (PaaS): Platform as a service provides the user the ability to
develop and deploy application in the cloud using the deployment tool application
programming interfaces API, software libraries and services provided by the Cloud
Service Provider. The Cloud Service Provider manages the underlying cloud
infrastructure including servers, network, operating systems and storage.

e Software as a service (SaaS): Provide the user a complete software application of the
user interface to the application itself. The Cloud Service Provider manage the
underlying cloud infrastructure including server, network storage and application
software, and the user is unaware of the underlying architecture of the cloud.
Applications are provided to the user through a thin client interface example Browser
application. SaaS applications are accessed from various client smartphones running
different operating system.

3. Big Data Analytics

Big data is defined as collections of data set whose volume, velocity in terms of its temporal
variations) or variety, is so large that it is difficult to store, manage, process and analyse the
data using traditional database and data processing tools. Big Data Analytics involving several
steps starting from Data cleaning data munging data processing and visualization.

Some examples of big data generated by loT systems are described as follows:
1. Sensor data generated by IoT system such as weather monitoring stations

e 0821-2954081
0821-2954011

info@atme.edu.in 13th Kilometer, Mysore -Kanakapura
www.atme.edu.in -Bengaluru Road, Mysore - 570 028

atme

ATME

College of Engineering

DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING

2. Machine sensor data collected from sensor embedded in Industrial and energy system for
monitoring their files and protecting failure

3. Health and fitness data generated by IoT devices such as wearable fitness band.

4. Data generated by IoT system for Location tracking of vehicle.

5. Data generated by retail inventory monitoring system.

Characteristics of data include:

e Volume: Through there is no fixed threshold for volume of data to be considered as big
data, however the term big data is used for massive scale data that is difficult to store,
manage and process using traditional data bases and data processing architecture. The
volume of data generated by modern IT, industrial and Healthcare systems for example
is a growing exponentially driven by the lowering cost of data storage and processing
architectures and the need to extract valuable insights from the data to improve business
processes, efficiency and services to consumer.

e Velocity: Velocity is another important characteristic of big data and the primary
reasons for exponential growth of data velocity of the data of a store how fast the data
is generated and how frequently it varies. Modern IT Industrial and other systems are
generating data at increasing the highest speeds.

e Variety: Variety refers to the forms of the data. Big data comes in for different forms
such as structured or unstructured data including text data, audio, video and sensor data.

4. Communications protocol

Communications protocols form the backbone of IoT system and enable network connectivity
and coupling to applications. Communications protocols allow device to exchange data over
the network. These protocols define the data exchange formats and data encoding schemes for
devices and routing of packets from source to destination. Other function of the protocol
includes sequence control flow control and transmissions of Lost packet.

5. Embedded systems

An Embedded system is computer system that has computer hardware and software embedded
perform specific task. In contrast to general purpose computers or personal computers which
can perform various types of tasks, embedded systems are designed to perform a specific set
of tasks. Embedded system includes Microprocessor and Microcontroller memory Ram ROM
cache networking units (Ethernet WI-FI adaptor) input/output unit display keyboard, display
and storage such as Flash Memory some embedded system have specialist processes such as
digital signal processor DSP graphic processor and application.

10T levels and Deployment Templates

This section defines various levels of IoT systems with increasing completely. IoT system
comprises of the following components:

e 0821-2954081 info@atme.edu.in
0821-2954011

13th Kilometer, Mysore -Kanakapura
www.atme.edu.in -Bengaluru Road, Mysore - 570 028

&

atme

ATME

College of Engineering

DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING

1. Device: An IoT device allow identification, remote sensing, actuating and remote monitoring
capabilities.

2. Resources: Resources are software components on the device for accessing and storing
information for controlling actuator connected to the device also include software components
that enable network access for the device.

3. controller service: Controller Service is a native service that runs on the device and interact
with the web services. Controller service sends data from the device to the web service receive
command from the application from controlling the device.

4. Database: Database can be either local or in the cloud and stores the data generated by the
IoT device.

5. Web service: Serve as a link between the device, application database and analysis
components. Web Services can be implemented using HTTP and REST principles or using
website protocol.

A comparison of restaurant website is provided below:

o Stateless/stateful: Rest services stateless in nature. Each request contains all the
information needed to process it. Requests are independent of each other. Website on
the other hand is stateful in nature where the server maintains the state and is aware of
all the open connections.

e Directional / Bi-directional: REST service operates over http and unidirectional.
Request is always sent by a client and the server response to the request. And other hand
website is a bidirectional product server to send message to each other

e Request response / full duplex: REST service follower request response
Communications model where the client sends request and the server response to the
request. Website and the other hand Allow full-duplex Communications between the
client and server, it means both client and server can send messages to can
independently.

e TCP connections: For REST Service each http request involves setting up in a new TCP
connections WebSocket on the other hand involves a single TCP connection over which
the client and server communicate in a full duplex mode.

e Headache Overhead: REST service operates over http, and each request is independent
of others. Thus, each request carries http header which is an overhead. Due to the
overhead of http headers, REST is not suitable for real time applications left hand does
not involve overhead of headers. After the initial handshake the client and server
exchange messages with minimal frame information.

e Scalability: Scalability is easier in this case of the REST services of request are
independent and no state information needs to be maintained by the server. Thus, both
horizontal out and vertical scaling solutions are possible for REST services. For
WebSocket’s horizontal scaling can be cumbersome due to stateful nature of the
communication. Since the server maintains the state of our connection, vertical scaling
is easier for WebSocket than horizontal scaling.

e 0821-2954081
0821-2954011

info@atme.edu.in 13th Kilometer, Mysore -Kanakapura
www.atme.edu.in -Bengaluru Road, Mysore - 570 028

&

atme

ATME

College of Engineering

DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING

e Analysis component: The analysis component is responsible for analysing the IoT data
and generate results in the form which are easy for the user to understand. Analysis of
IoT data can be performed either locally or in the cloud. Analysed results are stored in
the local or cloud database.

e Application: IoT applications provide an interface that the user can use to control and
monitor various aspects of the IoT system. Applications also allow user to view the
system status and view the processed data.

IoT level 1

Level One IoT system has a single node / device that performs sensing and/or actuation, stores
data, reforms analysis and the host to the application. Level 1 IoT systems are suitable for
modelling low cost and low complexity solutions where the data involving is not big, and the
analysis requirements are not computationally intensive.

Consider an example of Level 1 IoT system for home automation. This system consists of the
single node that allows controlling the lights and appliances in your home remotely. The device
used in this system interface with their lights and appliances using electronic relay switches.

Local Cloud

App.

REST/WebSocket
Communication

REST/WebSocket
Services

Database

> Controller Service
J
Resource

J

Device

O

Monitoring Node
performs analysis, stores data

Fig.1.7 10T level 1
The status information of each light or appliance is maintained in a local database. REST
service deployed locally Allow retrieving and updating the state of each light or appliances in
the status database.

® 0821-2954081 info@atme.edu.in 13th Kilometer, Mysore -Kanakapura

0821-2954011

www.atme.edu.in -Bengaluru Road, Mysore - 570 028

&

atme

ATME

College of Engineering

I

ic 1o ¥

£Aopt

DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING

The controller service continuously monitors the state of each light or appliance and triggers
the relay switches accordingly. The applications which are deployed locally has a user interface
for controlling the lights or appliances. since the device is connected to the internet, the
application can be accessed remotely as well.

IoT level 2

Level 2 IoT system has a single node that performs sensing and/or actuation and local analysis.
Data is stored in the cloud and application is usually cloud based systems are suitable for
solutions where the data in world is big, however the primary analysis requirement is not
computationally intensive and can be done local itself.

Construct an example of Level 2 [oT system for smart irrigation.

The system consists of the single node that monitor the soil moisture level and control
segregation system. The device used in this system collect soil moisture data from sensor the
controller service continuously monitors the moisture level. If the monster level drops below a
threshold t, the irrigation system is turned on. For controlling the irrigation system actuators
such as solenoid valve can be used. Rest Web Services is used for storing and retrieving data
which is stored in the cloud database. A cloud-based application is used for visualizing the
moisture level over a period, which can help in making decisions about irrigation schedules.

Local Cloud

|
|
|
|
|
| App

|

|

|

| REST/WebSocket

i Sy
REST/WebSocket Communication
Communication

e o : REST/WebSocket
.Conrralle(gerwce : I Se(vlces

| i
|
Resource |
{ |
|
|
]

(Se=as)
Device

O .

Monitoring Node

performs analysis Cloud Storage

Fig.1.8 10T level 2

0 0821-2954081
0821-2954011

info@atme.edu.in 13th Kilometer, Mysore -Kanakapura
www.atme.edu.in -Bengaluru Road, Mysore - 570 028

or,

o
o)

ic 1o ¥

4 ATME

atme | College of Engineering

DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING

IoT Level 3

Level 3 system has a single node. Data is stored and analysed in the cloud application is cloud-
based. Level 3 IoT system suitable for solutions where the data involved is big and analysis
requirements computationally intensive.

Local Cloud

|
|
|
|
|
| App
|
|
|

| REST/WebSocket
REST/WebSocket Communication
Communication

|
= ‘ REST/WebSocket
Controller Service <——9 Communication

|
|
|
Resource I (CEomeD)
¢ |
|
|

Device

Monitoring Node

Cloud Storage & Analysis
Fig.1.9 10T level 3

Consider example of Level 3 IoT system tracking package handling. The system consists of a
single node that monitors the vibration level for package being shipped. The device in the
system uses accelerometer and gyroscope sensor for monitoring vibration levels. The controller
service sends sensor data to the cloud in real time using a website service. The data is stored in
the cloud and visualized using a cloud-based application.

The analysis component in the cloud can Trigger alert the vibration level becomes greater than
threshold. The benefit of using WebSocket service instead of the REST service this example
the sensor data can be sent in real-time to the cloud. Cloud based application can subscribe to
the sensor data feeds for you in the real-time data.

IoT level 4

A level 4 10T system has multiple notes that perform local analysis. Data is stored in the cloud
and application is cloud based, level 4 contains local and cloud-based observer notes which
can subscribe to and receive information collected in the cloud from IoT devices.

o 0821-2954081 info@atme.edu.in 13th Kilometer, Mysore -Kanakapura
0821-2954011 www.atme.edu.in -Bengaluru Road, Mysore - 570 028

&

atme

ATME

College of Engineering

DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING

Observer node can process information and use it for various applications; however, observer
notes do not perform any control function. level 4 IoT systems are suitable for solutions where
multiple nodes are required the data involved is big and the analysis requirements are
computationally intensive.

Consider an example of level four IoT system for noise monitoring. The system consists of
multiple notes placed in different locations for monitoring noise level in an area. In this
example with sound sensor. Nodes are independent of each other each node runs in one
controller service that sends the data to the cloud. The data is stored in a cloud database the
analysis of the data collected from several notes is done in the cloud

Local Cloud

App —> Observer

Observer Node

Node

|
|
|
|
|
|
|
|

I
REST/WebSocket
Communication l

|
| |
Analytics

Controller Controller 4

|
i —L——t—3 REST Services S, Component
—_— e $ (loT Intelligence)

e

|

|

|

Resource Resource | =
| | Database
J J ! —_—

|
|

Device Device

Monitoring Nodes
perform local analysis

Cloud Storage

Fig.1.10 IoT level 4
IoT Level S

[oT system has multiple end nodes and one coordinator notes and notes that perform sensing
and / or actuation. Coordinator node collects data from the entry and send to the cloud. Data is
stored and analysed in the cloud and applications is cloud based. Level 5 IoT system are
suitable for forest fire detection. The system consists of multiple nodes placed in different
locations for monitoring temperature, humidity and carbon dioxide levels in a forest.

The endnotes in this example are equipped with various sensors such as temperature humidity
and to CO2. The coordinator node collects the data from the end nodes and act as a Gateway
that provides internet connectivity to the IoT system. The controller service on the coordinator

® 0821-2954081 info@atme.edu.in 13th Kilometer, Mysore -Kanakapura

0821-2954011

www.atme.edu.in -Bengaluru Road, Mysore - 570 028

&

atme

ATME

College of Engineering

DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING

device sends the collected data to the cloud. The data is stored in the cloud database. The
analysis of the data is done in the computing cloud to aggregate the data and make prediction.

Local [Cloud
|
I
|
Observer | App > Observer
Node] Node
I T
1
REST/WebSocket
Communication l
| " '
| Analytics
Controller Controller Controller I RE$T£We'bSocket Component
Service Service Service 6—‘_9| SRS (loT Intelligence)
i {
Resource Resource Resource : = j i =
$ $ (I> | Database
Endpoint Endpoint Coordinator : o
Device Device Device |
@ @
Routers/End Points
Coordinator
Cloud Storage &
Analysis
Fig.1.11 IoT level 5
IoT Level 6

IoT Level 6 system has multiple Independent and nodes that perform sensing and / or actuations
and send data to the cloud. Data is stored in the cloud and applications is cloud based.

The analytics component analyses the data and stores the results in the cloud database. The
results are visualized with the cloud-based application. The centralized controller is aware of
the status of all the end notes and send control commands to the notes.

Consider an example of the level 6 IoT system for weather monitoring. The system consists of
multiple nodes placed in different location for monitoring temperature, humidity and pressure
in an area. The end nodes are equipped with various sensors such as temperature, pressure and
humidity. The end nodes send the data to the cloud in real time using a WebSocket service. The
data is stored in a cloud database. The analysis of the data is done in the cloud to aggregate the
data and make predictions. A cloud-based applications is used for visualizing the data.

e 0821-2954081
0821-2954011

13th Kilometer, Mysore -Kanakapura

info@atme.edu.in
-Bengaluru Road, Mysore - 570 028

www.atme.edu.in

4 ATME

atme | College of Engineering

DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING

Local Cloud

Observer

App —> Observer
Node

Node

REST/WebSocket
Communication

[¢ :]! !

e

Controller Controller | Centrolized <3 REST/WebSocket Ana’yﬁs

Service | Semice <——+3 Services S, Component

¢ : Controller (10T Intelligence)
. {

Resource Resource | Q

Device Device :

Multiple Monitoring Nodes

. Centralized
Controller Cloud Storage &

Analysis

Fig.1.12 10T level 6

o 0821-2954081 info@atme.edu.in E 13th Kilometer, Mysore -Kanakapura
0821-2954011 www.atme.edu.in -Bengaluru Road, Mysore - 570 028

atme

ATME

College of Engineering

DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING

Module-2

Chapter 1: IoT and M2M
Introduction to M2M

Machine to machine (M2M) refers to networking of Machines for the purpose of remote
monitoring and control and data exchange. The end-to-end architecture for M2M systems
comprising of M2M area networks, Communications Network and application domain.

An M2M area network comprises of machines which have embedded hardware module for
sensing actuation and communication. Various Communication protocols can be used for M2M
local area network such as Zigbee, Bluetooth, Modbus M-bus, wireless, power LINE
Communication ,6LoWPAN.

These Communications protocols provide connectivity between M2M nodes within and M2M
area network. The Communications Network provides connectivity to remote M2M area
network. communication network can use wired or wireless network. The M2M area network
use either proprietary or non-IP based protocol.

The communication between the M2M nodes and the M2M Gateway is based on the
communication protocol. M2M Gateway protocol translation to enable IP connectivity for
M2M. M2M Gateway act as a proxy performing translation from / to native protocol to M2M
area network.

M2M data is gathered into point solution such as enterprise applications, service management
application for remote monitoring applications. M2M has various application domain such as
smart metering, Home Automation, industrial Automation, smart grid.

Difference between IoT and M2M
The difference between m2m and loT are described as follows:

e Communication protocols:
M2m and IoT can differ in how the communication between the machines are device happens.
M2M uses other proprietary or not IP based communication protocol for communication with
in the M2M area networks. Commonly uses M2m protocol include zigbee, Bluetooth, ModBus,
wireless M-Bus, power line communication. The focus of communication in M2M is usually
on the protocols below the network layer. Focus of communication in IoT is usually a protocol
in network layer such as http web sockets, MQTT, XMPP, DDS, AMQP.

e Machines in M2M vs Things in [oT:
The " things " 10T refers to Physical objects that have unique identifier and can sense and
communicate with the external environment or their internal physical status. The unique
identifiers the things in [oT are the IP addresses. Things have software component for accessing

o) 0821-2954081 info@atme.edu.in 13th Kilometer, Mysore -Kanakapura

0821-2954011

www.atme.edu.in -Bengaluru Road, Mysore - 570 028

&

atme

ATME

College of Engineering

DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING

processing and storing sensor information on controlling actuator connector. IoT system can
include IoT devices of various types such as fire alarms, door alarms, lighting control devices.

e Hardware versus software emphasis:
while the emphasis of M2M is more on hardware with embedded modules, the emphasis
modules, the emphasis of [oT is more on software. [oT devices run specialist software sensor
Data Collection, data analysis and interfacing with cloud through IP based communication.

e Data collection and analysis:
M2M data is collected in point solutions and often in on premises storage infrastructure. In
contrast to M2M, the data in IoT is connected in the cloud. The analytical component analysis
the data and stores the result in the cloud database. Data and analysis results are visualized with
the cloud-based applications. The centralized controller is aware of the status of all the nodes
and send Control Commands to the nodes.

e Applications:
M2m data is collected in point solutions and can be accessed by on premises application
diagnosis applications, service management applications, and on-premises enterprise
application.

SDN and NFYV for 10T

Software defined networking (SDN) and the network function virtualization (NFV) and their
applications for IoT.

Software Defined Networking

Software defined networking (SDN) is the networking architecture that separates the control
plan from the data plan and centralizes race the network controller. Conventional network
architecture builds with specialized hardware (switches, router etc).

Network device in conventional architectures is getting exceedingly Complex with the
increasing number of distributed products has been implemented and the use of proprietary
hardware and interfaces. Control plan is the part of the network that carries the signal and
routing message traffic while the data plan is a part of network that carries the payload data
traffic.

The limitations of the conventional network architecture as follows:

e Complex network devices: Interoperability is limited due to the lack of standard and
open interfaces. Network devices use proprietary hardware and software and have slow
product lifecycle limiting innovations. The convention networks were well suited for
static traffic pattern and had many products was decided for specific applications which
are applied in cloud computing environment traffic patterns are more dynamic. Due to
complexity of conventional network devices making changes in the networks to meet
the dynamic traffic pattern has become increasingly difficult.

e 0821-2954081
0821-2954011

info@atme.edu.in 13th Kilometer, Mysore -Kanakapura
www.atme.edu.in -Bengaluru Road, Mysore - 570 028

&

atme

ATME

College of Engineering

ic 1o ¥

£k
o)

DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING

Management overhead: conventional networks involve significant manager overhead.
Network managers find it increasingly difficult to manage multiple network devices
and interfaces from multiple vendors. Up gradation of network configuration changes
in multiple devices.

Limited scalability: The Virtualization technologies used in cloud computing
environment has increased the number of its host repairing network access [oT
applications hosted in the cloud are distributed across multiple virtual machines that
require exchange of traffic.

| Business Applications |

Application
Layer |:>
| Cloud Orchestration | | SDN Applications

Northbound
Interface

Control

Layer |:> [SDN Controller]
Southbound Interface
(ex. OpenFlow)

” Network Infrastructure
< ml_s;;‘:;'“'e |:> (Core Network, Routers, Switches, Base-
stations, etc)

SDN Architecture

Fig.2.1 SDN layers

Components of [oT applications run distributed algorithms on many virtual machines that
require huge amounts of data exchange between virtual machines. Such computing
environment requires highly scalable and easy to manage network architectures with minimal
manual configuration which is becoming raising a difficult with a conventional network. Key
Elements of SDN and follow:

Centralized network controller: with Decoupled control and the data plan and
centralized network controller, the network administrator can rapidly configure the
network. SDN applications can be deployed Programmable open API. This speed has
innovation as the network status no longer need to wait for other device vendors to
embed features in their proprietary hardware.

Programmable open APIs: SDN architecture propose Programmable open API for
interface between the SDN application and control layers with these open API is various
network services can be implemented such as routing quality of services access.
Standard communication interface (Open Flow): SDN architecture uses a standard
communication interface between the control and infrastructure layers. OpenFlow,
which is Defined by the open networking Foundation is the broadly accepted SDN

® 0821-2954081 info@atme.edu.in 13th Kilometer, Mysore -Kanakapura

0821-2954011

www.atme.edu.in -Bengaluru Road, Mysore - 570 028

&

atme

ATME

College of Engineering

ic 1o ¥

£k
o)

e

DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING

protocol for the southbound interface. Open flow, the forwarding plan of the network
devices can be directly accessed and manipulated.

Open floor uses the concept of close try different network traffic based on three different rules.
Floor can be programmed statically and dynamically by the SDN control software.
Components of and OpenFlow switch comprising one or more tables and their group table
which perform packet lookup and forwarding, and open flow channels to an external Controller
System OpenFlow protocol is implemented at both sides of the interface between the controller
and the network devices.

Network function virtualization

Network function virtualization is a technology that leverages virtualization to consolidate the
heterogeneous network devices on to industry standard high-volume service switches and
storage. NFV is complementary to SDN as NFV can provide at the infrastructure on which
SDN can run. NFV and SDN mutually beneficial to each other but not dependent. Network
functions can be virtualized without SDN, similarly SDN can run without NFV.

Virtualized Network Functions
VNF VNF VINF VNF
NFY Infrastructure (NFVI)
NFV
virtual Virtual Virtual Management
Compute Storage Metwork _ and
Orchestration
Virtualization Layer H
Compute Storage Network
Hardware Layer H
Fig.2.2 NFV architecture

Elements of architecture as follows:

e Virtualize to network function VNF: VNF is a software implementation of a network
function which can run over the enough Infrastructures

e NVF Infrastructure NFVI: It into Computer Network and storage resources that are
visualized.

e NFV management and orchestrations: Orchestrations focuses on all visualization
specific management task and the covers the orchestrations and lifecycle management

(&)

0821-2954081
0821-2954011

info@atme.edu.in
www.atme.edu.in

13th Kilometer, Mysore -Kanakapura
-Bengaluru Road, Mysore - 570 028

atme

ATME

College of Engineering

DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING

of physical and / or software resources that support the infrastructure utilization and the
lifecycle management of VNF.

NFV comprises of network functions implemented in software that run on Virtualized resources
in the cloud. NFC enabled separations of network function which are implemented in software
from the underlying hardware.

Chapter 2: IoT System Management with NETCONF-YANG
Need for IoT Systems Management

Managing multiple devices within a single system requires advanced management capabilities.
The need for managing IoT systems is described as follows:

e Automating Configuration: IoT system management capabilities can help in automating
the system configuration.

e Monitoring Operational & Statistical Data: Management systems can help in
monitoring operational and statistical data of a system. This data can be used for fault
diagnosis or prognosis.

e Improved Reliability: A management system that allows validating the system
Configurations before they are put into effect can help in improving the system
reliability.

e System Wide Configurations: For IoT systems that consists of multiple devices or
nodes, ensuring system wide configuration can be critical for the correct functioning of
the system.

e Multiple System Configurations: For some systems it may be desirable to have multiple
valid configurations which are applied at different times or in certain conditions.

e Retrieving & Reusing Configurations: Management systems which have the capability
of retrieving configurations from devices can help in reusing the configurations for
other devices of the same type.

Simple Network Management Protocol (SNMP)

SNMP allows monitoring and configuring network devices such as routers, switches, servers,
printers etc. Entities involved in managing a device with SNMP are Network Management
Station (NMS), Managed devices, Management information base (MIB) and the SNMP Agent.
SNMP is an application layer protocol that uses UDP as the transport protocol.

Limitations of SNMP

e SNMP was designed to provide a simple management interface between the
management applications and the managed devices. SNMP is stateless in nature and
each SNMP request contains all the information to process the request. The application
needs to be intelligent to manage the device.

o) 0821-2954081 info@atme.edu.in 13th Kilometer, Mysore -Kanakapura

0821-2954011

www.atme.edu.in -Bengaluru Road, Mysore - 570 028

M ATME %
& o)
atme | College of Engineering —

DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING

e SNMP is a connectionless protocol which uses UDP as the transport protocol, making
it unreliable as there was no support for acknowledgement of requests.

e [t is difficult to differentiate between configuration and state data in MIBs.

e Retrieving the current configuration from a device can be difficult with SNMP.

e Earlier versions of SNMP did not have strong security features making the
management information vulnerable to network intruders.

Network operator requirements

e FEase of use: From the operator’s point of view, ease of use is the key requirement for
any network management technology.

e Distinction between configuration and state data: Configuration data is the set of
writable data that is required to transform the system from its initial state to its current
state. State data includes operational data which is collected by the system at runtime
and statistical data which describes the system performance. It is important to make a
clear distinction between configuration and state data.

e Fetch configuration and state data separately

e Configuration of the network as a whole

e Configuration transactions across devices

e Configuration deltas

e Dump and restore configurations

e Configuration validation

e Configuration database schemas

e (Comparing configuration

e Role based access control

e Consistency of access control lists

e Multiple configuration sets

e Support for both data-oriented and task-oriented access control

NETCONF
Network Configuration Protocol is a session-based network management protocol. It allows
retrieving state or configuration data and manipulating configuration data on network devices.
The configuration data resides within a NETCONF datastore on the server. The NETCONF
server resides on the network device. The management application plays the role of a
NETCONEF client. For managing a network device, the client establishes a NETCONF session
with the server. When a session is established the client and server exchange ‘hello’ messages
which contain information on their capabilities.
Client can then send multiple requests to the server for retrieving or editing the configuration
data. NETCONF allows the management client to discover the capabilities of the server.
NETCONTF gives access to the native capabilities of the device.

e 0821-2954081 info@atme.edu.in 13th Kilometer, Mysore -Kanakapura

0821-2954011

www.atme.edu.in -Bengaluru Road, Mysore - 570 028

0821-2954011

4 ATME 7
atme | College of Engineering
DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING
NETCONF Protocol Layer
Configuration Notification
Content L State Data] Dt [Da:a J / Dovice \
seRVicE) [EEEY ZEERCLIRY e s (NETCONF Server)
(NETCONF Cllant) Operations <get>] <edit-config> NETCONE
WANG defined: | | cr e e e ¢ ¢ e L LConﬁgurauon—]
! _Models ! () _Datastore _
Tt Messages “Tpe <notification> 'YANG defined:
| <rpc-reply>) : Models E
............. ¢¢¢ \ /
Transport [SSH]
Fig.2.3 NETCONF protocol layers
YANG
YANG is a data modelling language used to model configuration and state data manipulated
by the NETCONF protocol. YANG modules contain the definitions of the configuration data,
state data, RPC calls that can be issued and the format of the notifications.
YANG modules define the data exchanged between the NETCONF client and server. A module
comprises of several ‘leaf’ nodes which are organized into a hierarchical tree structure. The
‘leaf” nodes are specified using the ‘leaf” or ‘leaf-list’ constructs. Leaf nodes are organized
using ‘container’ or ‘list’ constructs. YANG can model both configuration data and state data
using ‘config’ statement. YANG defines 4 types of nodes for data modelling.
Table: YANG Node Types
Node Type Description
Contains simple data structures such as an
Leaf Nodes integer or a string. Leaf has exactly one value
of a particular type and no child nodes.
. Is a sequence of leaf nodes with exactly one
Leaf-list Nodes .
value of a particular type per leaf.
Used to group related nodes in a subtree. A
container has only child nodes and no value.
Container Nodes A container may contain any number of child
nodes of any type (including leafs, lists,
containers and leaf-lists).
Defines a sequence of list entries. Each entry
is like a structure or a record instance and is
. uniquely identified by the value of its key
List Nodes leafs. A list can define multiple key leafs and
may contain any number of child nodes of
any type.
o 0821-2954081 info@atme.edu.in 13th Kilometer, Mysore -Kanakapura

www.atme.edu.in -Bengaluru Road, Mysore - 570 028

atme

ATME

College of Engineering

DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING

IoT Systems Management with NETCONF-YANG

Figure 2.4 shows the generic approach of IoT device management with NETCONF-YANG.

Fig.2.4 IoT device management with NETCONF-YANG — a generic approach

YANG
Modules

-

A J

Management System

i

NETCONF
NETCONF Server t "
|
Management Transaction Rollback |
API Manager Manager |
|
|
|
|
Data Model Configuration MABENTOMION, |
” Authorization & |
Manager Validator Auditing Modules |
|
|
|
cSSRCE i
Data Provider |
API :
|

Configuration Configuration
N M
Database API

Managed
Objects

(Status, Statistics, Performance,

Applications J
Alarms, Counters)

Roles of various components are:

e Management System: The operator uses a management system to send NETCONF
messages to configure the [oT device and receives state information and notifications

from the device as NETCONF messages.

e Management API: allows management application to start NETCONF sessions.
e Transaction Manager: executes all the NETCONF transactions and ensures that ACID

properties hold true for the transactions.

e Rollback Manager: is responsible for generating all the transactions necessary to

rollback a current configuration to its original state.

e Data Model Manager: Keeps track of all the YANG data models and the corresponding
managed objects. Also keeps track of the applications which provide data for each part
of a data model.

e 0821-2954081
0821-2954011

info@atme.edu.in
www.atme.edu.in

13th Kilometer, Mysore -Kanakapura
-Bengaluru Road, Mysore - 570 028

ATME

atme | College of Engineering -

DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING

e Configuration Validator: checks if the resulting configuration after applying a
transaction would be a valid configuration.

e Configuration Database: contains both configuration and operational data.

e Configuration API: Using the configuration API the application on the IoT device can
be read configuration data from the configuration datastore and write operational data
to the operational datastore.

e Data Provider API: Applications on the IoT device can register for callbacks for various
events using the Data Provider API. Through the Data Provider API, the applications
can report statistics and operational data.

NETOPEER

It is set of open source NETCONF tools built on the Libnetconf library. The Netopeer tools
include:

e Netopeer-server: It is a NETCONF protocol server that runs on the managed device.
Netopeer-server provides an environment for configuring the device using NETCONF
RPC operations and also retrieving the state data from the device.

e Netopeer-agent: It is the NETCONF protocol agent running as a SSH/TLS subsystem.
It accepts incoming NETCONF connection and passes the NETCONF RPC operations
received from the NETCONF client to the Netopeer server.

e Netopeer-cli: It is a NETCONF client that provides a command line interface for
interacting with the Netopeer-server. The operator can use the Netopeer-cli from the
management system to send NETCONF RPC operations for configuring the device and
retrieving the state information.

e Netopeer-manager: Netopeer-manager allows managing the YANG and Libnetconf
Transaction API (TransAPI) modules on the Netopeer-server. With Netopeer-manager
modules can be loaded or removed from the server.

e Netopeer-configurator: It is a tool that can be used to configure the Netopeer-server.

Steps for IoT device Management with NETCONF-YANG

1) Create a YANG model of the system that defines the configuration and state data of the
system.

2) Complete the YANG model with the ‘Inctool’” which comes with Libnetconf.

3) Fill in the IoT device management code in the Trans API module.

4) Build the callbacks C file to generate the library file.

5) Load the YANG module and the TransAPI module into the Netopeer server using Netopeer
manager tool.

6) The operator can now connect from the management system to the Netopeer server using
the Netopeer CLI.

7) Operator can issue NETCONF commands from the Netopeer CLI. Command can be issued
to change the configuration data, get operational data or execute an RPC on the IoT device.

o) 0821-2954081 info@atme.edu.in 13th Kilometer, Mysore -Kanakapura

0821-2954011

www.atme.edu.in -Bengaluru Road, Mysore - 570 028

&

atme

ATME

College of Engineering

DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING

Module-3
Chapter 1: IoT Platforms Design Methodology

Introduction

Designing IoT systems can be a complex and challenging task as these systems involve
interactions between various components such as IoT devices and network resources, web
services, analytics components, applications and database servers. [oT system designers often
tend to design IoT systems keeping specific products/services in mind. Updating the system
design to add new features or replacing a particular product becomes very complex, and in
many cases may require complete re-design of the system.

IoT Design Methodology

Figure.3.1 shows the steps involved in the [oT system design methodology.

Purpose & Requirements
Define Purpose & Requirements of loT system

Process Model Specification
Define the use cases

Domain Model Specification
Define Physical Entities, Virtual Entities, Devices, Resources and Services in the loT system

Information Model Specification

Define the structure (e.g. relations, attributes) of all the information in the loT system

Service Specifications
Map Process and Information Model to services and define service specifications

ication
r the system

Functional View Specification
Map loT Level to functional groups

Operational View Specification
Define communication options, service hosting options, storage options, device options

Device & Component Integration

Integrate devices, develop and integrate the components

Vel |

Develop Ai o

Fig.3.1 Steps involved in IoT system design methodology

® 0821-2954081 info@atme.edu.in 13th Kilometer, Mysore -Kanakapura

0821-2954011

www.atme.edu.in -Bengaluru Road, Mysore - 570 028

atme

ATME

College of Engineering

SC
%

Y
N3

s

DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING

Step 1: Purpose & Requirements Specification:

The first step in [oT system design methodology is to define the purpose and requirements of
the system. In this step, the system purpose, behaviour and requirements (such as data
collection requirements, data analysis requirements, system management requirements, data
privacy and security requirements, user interface requirements, ...) are captured.

Step 2: Process Specification:

The second step in the IoT design methodology is to define the process specification. In this
step, the use cases of the IoT system are formally described based on and derived from the
purpose and requirement specifications.

Step 3: Domain Model Specification:

The third step in the IoT design methodology is to define the Domain Model. The domain
model describes the main concepts, entities and objects in the domain of IoT system to be
designed.

Domain model defines the attributes of the objects and relationships between objects. Domain
model provides an abstract representation of the concepts, objects and entities in the IoT
domain, independent of any specific technology or platform. With the domain model, the IoT
system designers can get an understanding of the IoT domain for which the system is to be
designed.

Step 4: Information Model Specification:

The fourth step in the IoT design methodology is to define the Information Model. Information
Model defines the structure of all the information in the IoT system, for example, attributes of
Virtual Entities, relations, etc. Information model does not describe the specifics of how the
information is represented or stored. To define the information model, we first list the Virtual
Entities defined in the Domain Model. Information model adds more details to the Virtual
Entities by defining their attributes and relations.

Step 5: Service Specifications:

The fifth step in the IoT design methodology is to define the service specifications. Service
specifications define the services in the [oT system, service types, service inputs/output, service
endpoints, service schedules, service preconditions and service effects.

Step 6: IoT Level Specification:
The sixth step in the IoT design methodology is to define the IoT level for the system.

Step 7: Functional View Specification:

o) 0821-2954081 info@atme.edu.in 13th Kilometer, Mysore -Kanakapura

0821-2954011

www.atme.edu.in -Bengaluru Road, Mysore - 570 028

atme

ATME

College of Engineering

DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING

The seventh step in the IoT design methodology is to define the Functional View. The
Functional View (FV) defines the functions of the IoT systems grouped into various Functional
Groups (FGs). Each Functional Group either provides functionalities for interacting with
instances of concepts defined in the Domain Model or provides information related to these
concepts.

Step 8: Operational View Specification:

The eighth step in the [oT design methodology is to define the Operational View Specifications.
In this step, various options pertaining to the [oT system deployment and operation are defined,
such as, service hosting options, storage options, device options, application hosting options,
etc

Step 9: Device & Component Integration:
The ninth step in the IoT design methodology is the integration of the devices and components.
Figure 3.2 shows a schematic diagram of the home automation IoT system.

Fig.3.2 Schematic diagram of the home automation IoT system showing the device, sensor
and actuator integrated.
Step 10: Application Development:

The final step in the [oT design methodology is to develop the IoT application. Figure 3.3
shows a screenshot of the home automation web application.

® 0821-2954081 info@atme.edu.in 13th Kilometer, Mysore -Kanakapura

0821-2954011

www.atme.edu.in -Bengaluru Road, Mysore - 570 028

@ATME

atme | College of Engineering

DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING

Fig. 3.3 Home automation web application screenshot

Case Study on IoT System for Weather Monitoring

The purpose of the weather monitoring system is to collect data on environmental conditions
such as temperature, pressure, humidity and light in an area using multiple end nodes. The end
nodes send the data to the cloud where the data is aggregated and analysed.

Figure 3.4 shows the process specification for the weather monitoring system. The process
specification shows that the sensors are read after fixed intervals, and the sensor measurements

are stored.
O
),

Store Value

[

Fig.3.4 Process specification for weather monitoring [oT system

13th Kilometer, Mysore -Kanakapura

0821-2954081 info@atme.edu.in
S -Bengaluru Road, Mysore - 570 028

0821-2954011 www.atme.edu.in

&

atme

ATM

E

College of Engineering

DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING

User

interocts with

Active Digital Human User
Artefoct
App
: =
invokes/subscribes |~ | Virtual Entity relotes to Physical Entity
>
monitors
ossocioted|with | Room Room

I

Service |
I
|
I

b————— ossocioted|with — — | Virtual Entity ‘ relates to Physical Entity
? + «-— @
j exposes ‘ Appliance ’ Sppiance acts on
Resource associated with ‘
hosts Device
a4
: A] Minicomputer
Network OnDevice attached to ottached to
Resource Resource
Sensor Actuator
LOR Relay

Fig.3.5 Domain model for weather monitoring IoT system

Figure 3.5 shows the domain model for the weather monitoring system. The physical entity is
the environment which is being monitored. There is a virtual entity for the environment.
Resources are software components which can be either on-device or network-resources.
Services include the controller service that monitors the temperature, pressure, humidity and

light and sends reading to the cloud.

Chapter 2: IoT Systems - Logical Design using Python: Introduction

Python is a general-purpose high level programming language and suitable for providing a

solid foundation to the reader around cloud computing.

The main characteristics of Python are:

1. Multi-paradigm programming language.

2. Python supports more than one programming paradigms including object- oriented
programming and structured programming.

3. Interpreted Language.

4. Python is an interpreted language and does not require an explicit compilation step.

5. The Python interpreter executes the program source code directly, statement by

statement, as a processor or scripting engine does.

S

0821-2954081
0821-2954011

info@atme.edu.in
www.atme.edu.in

13th Kilometer, Mysore -Kanakapura
-Bengaluru Road, Mysore - 570 028

atme

ATME

College of Engineering

I

SN

ic 1o ¥

DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING

6. Interactive Language
7. Python provides an interactive mode in which the user can submit commands at the
Python prompt and interact with the interpreter directly.

Installing Python

Python is a highly portable language that works on various platforms such as Windows, Linux,
Mac etc.

Windows:

Download the Installer:
Visit the official Python downloads page (python.org/downloads) and download the latest
stable Windows installer (e.g., "Windows installer (64-bit)").

Run the Installer:
Execute the downloaded .exe file.

Add to PATH:

Crucially, on the first screen of the installer, check the box that says "Add Python X.Y to PATH"
(where X.Y is the version number). This allows you to run Python commands from any
command prompt.

Install:
Click "Install Now" (or customize features if desired) and follow the prompts to complete the
installation.

Verify:
Open a Command Prompt or PowerShell and type python --version to confirm the installation
and version.

Linux:

Many Linux distributions come with Python pre-installed. However, it might be an older
version or Python 2. To ensure you have Python 3 and its necessary components: Update
Package Lists.

Code
sudo apt update # For Debian/Ubuntu-based systems
sudo yum update # For Red Hat/CentOS-based systems

Install Python 3 and pip.

Code
sudo apt install python3 python3-pip # For Debian/Ubuntu-based systems
sudo yum install python3 python3-pip # For Red Hat/CentOS-based systems

Verify: In the terminal, run python3 --version and pip3 --version.

0821-2954081 info@atme.edu.in 13th Kilometer, Mysore -Kanakapura

0 0821-2954011

www.atme.edu.in -Bengaluru Road, Mysore - 570 028

atme

ATME

College of Engineering

DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING

Python Data Types and Data structures

Numbers: Number data types are used to store numeric values. Numbers are immutable data
types, therefore changing the values of a number data type results in a newly allocated object.

#Integer
>>>q=5 >>>type(a)
<type ‘int’>

#Floating point
>>>p=2.5
>>>type(b)
<type ‘float™>

#Long
>>>x=243577889L
>>>type(x)

<type ‘long’>

#Complex
>>>Y=2+5j

>>>y

(2+5j)
>>>type(y)
<type ‘complex’>
>>>y.real

2

>>>y.imag

5

#Addition
>>>c=a+b
>>>c

7.5
>>>type(c)
<type ‘float’™

#Subtraction
>>>d=a-b
>>>d

2.5
>>>type(d)
<type ‘float’™>

#Multiplication

e 0821-2954081
0821-2954011

info@atme.edu.in
www.atme.edu.in

13th Kilometer, Mysore -Kanakapura
-Bengaluru Road, Mysore - 570 028

atme

ATME

College of Engineering

DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING

>>>e=a%b
>>>e

12.5
>>>type(e)
<type ‘float™>
#division
>>>f=b/a
>>>f

0.5

>>>type(f)
<type ‘float™>
#Power
>>>g=g**)
>>>g

25

Strings

A string is simply a list of characters in order. There are no limits to the number of characters
you can have in a string. A string which has zero characters is called an empty string.

Working with Strings in Python:

#Create String
>>>s= "hello World!"
>>>type(S)

<type ‘str’>

#String Concatenation
>>>t="This 1s sample program".
>>>1r=s+t

>>>r

b

‘Hello World! This is sample program’.

#Get length of string
>>>len(s)
12

#Convert String to integers
>>>X="100"

>>>type(s)

<type ‘str’>

>>>y=int(X)

>>>y

0821-2954081

e info@atme.edu.in
0821-2954011 www.atme.edu.in

13th Kilometer, Mysore -Kanakapura
-Bengaluru Road, Mysore - 570 028

atme

ATME

College of Engineering

DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING

100

#Print String
>>>print S
Hello World!

#Formatting Output
>>>print "The string(%s) has %d characters "%(S, len(S)))
The string (Hello World!) has 12 characters

#Convert to upper/lower case
>>>S upper()

‘HELLO WORLD’

>>>§ lower() ‘hello world!”

#Accessing Sub-String
>>>$[0]

H?

>>>S[6:]

‘world!”’

>>>§[6:-1]

‘world’

#Strip: Return a copy of the string with

#the leading and trailing characters removed.
>>>S strip("!")

‘Hello World’

Lists

List is a compound data type used to group together other values. List items need not all have
the same type. A list contains items separated by commas and enclosed within square brackets.

Working with lists in Python

>>>fruits=[‘apple’, ‘orange’, ‘banana’, ‘mango’]
>>>type(fruits)

<type ‘list’™>

>>>]en(fruits)

4

>>>fruits[1]
‘orange’
>>>fruits[1:3]
[‘orange’, ‘banana’]
>>>fruits[1]

0821-2954081 info@atme.edu.in 13th Kilometer, Mysore -Kanakapura

e 0821-2954011

www.atme.edu.in -Bengaluru Road, Mysore - 570 028

atme

ATME

College of Engineering

DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING

[‘orange’,’banana’,’mango’]

#Appending an item to a list
>>>fruits.append(‘pear’)
>>>fruits

[‘apple’, ‘orange’, ‘banana’, ‘mango’, ‘pear’]

#Removing an item from a list

>>>fruits.remove(‘mango’)

>>>fruits [‘apple’, ‘orange’, ‘banana’, ‘pear’]

#Inserting an item to a list
>>>fruits.insert(1, ‘mango’)

>>>fruits [“apple’, ‘mango’, ‘orange’, ‘banana’, ‘pear’]

#Combining lists

>>>vegetables=[‘potato’, ‘carrot’, ‘onion’, ‘beans’, ‘radish’]

>>>vegetables

[‘potato’, ‘carrot’, ‘onion’, ‘beans’, ‘radish’]
>>>eatable=fruits+vegetables

>>>eatable

[‘apple’, ‘mango’, ‘orange’, ‘banana’, ‘pear’, ‘potato’, ‘carrot’, ‘onion’ ,’beans’, ‘radish’]

#Mixed data types in a list

>>>mixed=[‘data’, 5, 100.1, 8287398L]

>>>type(mixed)
<type ‘list’™>
>>>type(mixed[0])
<type ‘str’>
>>>type(mixed[1])
<type ‘int’>
>>>type(mixed|[2])
<type ‘float’™
>>>type(mixed[3])
<type ‘long’>

#It is possible to change individual elements of a list

>>>mixed[0]=mixed[0]+ "items"

>>>mixed[1]=mixed[1]+1

>>>mixed[2]=mixed[2]+ 0.05

>>>mixed

[‘data items’, 6, 100.14999999999999, 8287398L]

#Lists can be nested

>>>nested=[fruits, vegetables]

e 0821-2954081
0821-2954011

info@atme.edu.in
www.atme.edu.in

13th Kilometer, Mysore -Kanakapura
-Bengaluru Road, Mysore - 570 028

atme

or,

o
o)

ic 1o ¥

ATME

College of Engineering

DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING

>>>nested
[[‘apple’, ‘mango’, ‘orange’, ‘banana’, ‘pear’],[‘potato’, ‘carrot’, ‘onion’, ‘beans’, ‘radish’]]

Tuples

A Tuple is a sequence data type that is similar to the list. A Tuple consists of values separated
by commas and enclosed within parentheses. Unlike lists, the elements of tuple cannot be
changed, so tuple can be thought of as read-only lists.

Working with Tuples in Python:

nn

>>>fruits=("apple", "mango", "banana", "pineapple")
>>>fruits

(‘apple’, ‘mango’, ‘banana’, ‘pineapple’)
>>>type(fruits)

<type ‘tuple’>

#Get length of tuple
>>>]en(fruits)
4

#Get an element from a Tuple

>>>fruits[0]

‘apple’

>>>fruits[:2]

(‘apple’, ‘mango’)

#Combining tuples

>>>yegetable= (‘potato’, ‘carrot’, ‘onion’, ‘radish’)
>>>eatebles= fruits+vegetable

>>>eatables
(‘apple’, ‘mango’, ‘banana’, ‘pineapple’, ‘potato’, ‘carrot’, ‘onion’, ‘radish’)

Dictionaries

Dictionary is a mapping data type or a kind of hash table that maps key to values. Keys in a
dictionary can be of any data type, through numbers and strings are commonly used for keys.
Values in a dictionary can be any data type or object.

Working with Dictionaries with Python:

>>>students={‘name’: ‘Mary’, ‘id’: ‘8776’, ‘major’: ‘cs’}
>>>students

{*major’: ‘cs’, ‘name’: ‘Mary’, ‘id’: ‘8776’}
>>>type(student) <type ‘dict’>

#Get length of a Dictionary

® 0821-2954081 info@atme.edu.in 13th Kilometer, Mysore -Kanakapura

0821-2954011

www.atme.edu.in -Bengaluru Road, Mysore - 570 028

ATME

atme | College of Engineering

DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING

>>>]en(student)
3

#Get the value of a key in dictionary
>>>gtudent[‘name’]
GMary9

#Get all items in a dictionary
>>>student.tems()
[(‘major’,’CS”), (‘name’, ‘Mary’), (‘id’, ‘8776)]

#Get all keys in a dictionary
>>>gstudent.keys()
[‘major’, ‘name’, ‘id’]

#Get all values in a dictionary
>>>student.values()
[‘cs’, ‘Mary’, ‘8776]

>>>students
{‘major’: ‘cs’, ‘name’: ‘Mary’, ‘id’: ‘8776°}

#A value in a dictionary can be another dictionary
>>>studentl= {‘major’: ‘ece’, ‘name’: ‘David’, ‘id’: ‘9876’}
>>>students={‘1’:student, ‘2’:studentl}

{‘I’:{*major’:’cs’, ‘name’: ‘Mary’, ‘id’: ‘8776’},

2’: { ‘major’: ‘ece’, ‘name’: ‘David’, ‘id’: ‘9876’ }}

#Check if dictionary has a key
>>>student.has_key(‘name’)
True
>>>student.has_key(‘grade’)
False

Type Conversions
Type Conversion examples

#Convert to String
>>>3=10000
>>>str(a)

‘10000’

#Convert to int
>>>b="2013"
>>>1nt(b)

2013

o 0821-2954081 info@atme.edu.in 13th Kilometer, Mysore -Kanakapura
0821-2954011 www.atme.edu.in -Bengaluru Road, Mysore - 570 028

atme

ATME

College of Engineering

DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING

#Convert to float
>>>float(b)
2013.0

#Convert to long
>>>]ong(b)
2013L

#Convert to list
>>>g="aeiou"
>>>ist(s)

[‘a’, ‘e’, ‘1’, ‘0°, ‘u’]

#Convert to Set

>>>x=[‘mango’, ‘apple’, ‘banana’, ‘mango’, ‘banana’]

>>>set(X)
set([‘mango’, ‘apple’, ‘banana’])

Control Flow

Let us look at the control flow statements in Python.

if

The if statement in Python is similar to the if statement in other languages.

examples:

>>>=25%*5
>>>1f a>10000:
print "More"
else:
print "Less"

More

>>>1f a>10000:
If a<100000:
print "Between 10k and 100k"
else:
print "More than 100k"
elif a==10000:
print "Equal to 10k"
else:
print "Less than 10k"

More than 100k

0821-2954081

e info@atme.edu.in
0821-2954011 www.atme.edu.in

13th Kilometer, Mysore -Kanakapura
-Bengaluru Road, Mysore - 570 028

4 ATME 0
9 . O
atme | College of Engineering -
DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING
>>>S="Hello World"
>>>1f "world" in S:
S:S_"_ "!"
Print S
Hello World!
>>>student ={‘name’: ‘mary’, ‘id’: ‘8776°}
>>>if not student.has_key(,,major®):
Student| ‘major’]= ‘cs’
>>>gtudent
{‘major’: ‘cs’, ‘name’: ‘Mary’, ‘id’: ‘8776’ }
for
The for statement in python iterates over items of any sequence (list, String, etc.) in the order
in which they appear in the sequence. This behaviour is different from the for statement in other
languages such as C in which an initialization, incrementing and stopping criteria are provided.
Example:
helloString= "Hello World"
fruits=[‘apple’, ‘orange’, ‘banana’, ‘mango’]
student = ‘name’ : ‘Mary’, ‘id’: ‘8776’ , ‘major’: ‘CS’
#looping over characters in a string
for c in helloString:
print ¢
#looping over items in a list
=0
for item in fruits:
print “Fruit-%d: %s” %(1, item)
i=i+1
#looping over keys in a dictionary
for key in student:
print”%s: %s” % (key, student[key])
while
The while statement in Python executes the statements within the while loop as long as the
while condition is true.
Example:
#prints even numbers upto 100
>>>i=()
>>>while i<<=100:
0821-2954081 info@atme.edu.in 13th Kilometer, Mysore -Kanakapura
s 0821-2954011 www.atme.edu.in -Bengaluru Road, Mysore - 570 028

ATME

atme | College of Engineering

DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING

1f1%2 == 0:
print i
i=i+1

range

the range statement n Python executes the statements within the while loop as long as the while
condition is true.

Example:

#Generate a list of numbers from 0-9
>>>range (10)
[07 17 2’ 39 4’ 59 69 79 8’ 9]

#Generate a list of numbers from 10-100 with increments of 10
>>>range(10,110,10)
[10, 20, 30, 40, 50, 60, 70, 80, 90, 100]

break/continue

The break and continue statements in python are similar to the statement in C. The break
statement breaks out of the for/while loop where as the continue statement continues with the
next iteration.

Example:

#Break Statement example
>>>y=]
>>>for X in range(4, 256, 4):
y=y*x
if y>512:
break
print y

4
32
384

#continue Statement example
>>>fruit=[‘apple’, ‘orange’, ‘banana’, ‘mango’]
>>> for item in fruits :

if item == "banana" :
continue
else:
print item
o 0821-2954081 info@atme.edu.in 13th Kilometer, Mysore -Kanakapura
0821-2954011 www.atme.edu.in -Bengaluru Road, Mysore - 570 028

atme

ATME

College of Engineering

DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING

apple
orange
mango

pass

The pass statement in python is a null operation. The pass statement is used when a statement
is required syntactically but you do not want any command or code to execute.

Example:

fruits = [‘apple’, ‘orange’, ‘banana’, ‘mango’]
for item in fruits:
if item == "banana":
pass
else: print item

apple
orange
mango

Functions

A function is a block of code that takes information in (in the form of parameters), does some
computation, and returns a new piece of information based on the parameter information. A
function in python is a block of code that begins with the keyword def followed by the function
name and parenthesis. The function parameters are enclosed within the parenthesis. The code
block within a function begins after a colon that comes after the parenthesis. The code block
within a function begins after a colon that comes after the parenthesis enclosing the parameters.
The first statement of the function body can optionally be a documentation string or docstring.

Example:

students= {‘1°: {‘name’: ‘Bob’, ‘grade’: 2.5},
2’: {‘name’: ‘Mary’, ‘grade’ :3.5},

‘3’ {‘name’: ‘David’, ‘grade’ :4.2},

‘4>: {‘name’: ‘John’, ‘grade’ :4.1},

‘5’: {‘'name’: ‘Alex’, ‘grade’ :3.8}}

def averageGrade (students):
"This function computes the average grade
sum = 0.0
for key in student:
sum=sum +student[key][‘garde’]
average= sum/len(students)
return average

® 0821-2954081 info@atme.edu.in 13th Kilometer, Mysore -Kanakapura

0821-2954011

www.atme.edu.in -Bengaluru Road, Mysore - 570 028

ATME

atme | College of Engineering

P

DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING

avg= averageGrade(students)
print " The average grade is: %0.2f" %(avg)

Function can have default values of the parameters. If a function with default values is called
with fewer parameters or without any parameter, the default values of the parameter are used
as shown in the example.

Example of function with default arguments

>>>def displayFruits(fruits = [‘apple’, ‘orange’]):
print "There are %d fruits in the list "% (len(fruits))
for item in fruits:

print item

#Using default arguments
>>>displayFruits()

Apple

Orange

>>>fruits=[‘banana’, ‘pear’, ‘mango’]
>>>displayFruits(fruits)

Banana

Pear

Mango

All parameter in the python functions are passed by reference. Therefore, if a parameter is
changed within a function the change also reflected block in the calling function.

Example of passing by reference

>>>def displayFruits(fruits):

print "There are %d fruits is the list" % (len(fruits))
for item in fruits:

print item

print "Adding one more fruit"
fruits.append(‘mango’)

>>>fruits=[‘banana’, ‘pear’, ‘apple’]
>>>displayFruits(fruits)

There are 3 fruits in the list

Banana

Pear

Apple

Adding one more fruits

>>>print "There are %d fruits in the list"%(len(fruits))

o 0821-2954081 info@atme.edu.in 13th Kilometer, Mysore -Kanakapura
0821-2954011 www.atme.edu.in -Bengaluru Road, Mysore - 570 028

atme

ATME

College of Engineering

P
0

DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING

There are 4 fruits in the list

Function can also be called using keyword arguments that identify the arguments by the
parameter name when the function is called.

examples of keyword arguments

>>>def printStudentRecords(name, age=20, major= ‘CS’):
print "Name:" +name
print "Age:" +str(age)
print "Major:" + major

#This will give error as name is required argument
>>>printStudentRecords()

Traceback (most recent call last):

File "<stdin>", linel, in <module>

TypeError: printStudentRecords() takes at least 1 argument (0 given)
>>>printStudentRecords(name= ‘Alex’)

Name: Alex

Age:20

Major:CS

>>>printStudentRecords(name= ‘Bob’, age=22, major= ‘ECE’)
Name: Bob

Age:22

Major:ECE

>>> printStudentRecords(name= ‘Alan’, major= ‘ECE’)
Name: Alan

Age:20

Major: ECE

#name is a format argument.
#**kwargs is a keyword argument that receives all
#arguments except the formal argument as a dictionary
>>>def student(name, **kwargs):
print "Student Name:" +name
for key in kwargs:
print key + “:” + kwargs[key]

>>>Student(name= ‘Bob’, age= ‘20’, major= ‘CS’)
Student Name: Bob

Age :20

Major: CS

0821-2954081

info@atme.edu.in 13th Kilometer, Mysore -Kanakapura

s 0821-2954011 www.atme.edu.in -Bengaluru Road, Mysore - 570 028

atme

ATME

AN
o)
College of Engineering

ic 1o ¥

DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING

Python functions can have variable length arguments. These variable length arguments are
passed as a tuple to the function with an argument prefixed with asterix(*)

Example of variable length arguments

def student(name, *varargs):
print "Student Name:" +name
for item in varargs :
print item

>>>Student (‘Nav’)
Student Name : Nav

>>>Student (‘Amy’, ‘Age: 24°)
Student Name: Amy
Age:24

>>>Student(‘Bob’, ‘Age:20°, ‘Major: CS’)
Student Name: Bob

Age:20

Major: CS

Modules

Python allows organizing of the program code into different code into different modules which
improves the code readability and Management. A module is a python file that defines some
functionality in the form of functions or classes. Modules can be imported using the import
keyword. Modules to be imported must be present in the search path.

Module Student

def averageGrade(student):

sum=0.0

for key in students:
sum=sum-+students[key][‘grade’]

average =sum/len(students)

return average

def printRecords(students):

print "There are %d students" %(len(students))
i=1

for key in students:

print "Student -%d :" %(1)

print "Name:" +Students[key][‘name’]

print "Grade:" +str(students[key][‘grade’])
i=i+1

0821-2954081 info@atme.edu.in 13th Kilometer, Mysore -Kanakapura

G 0821-2954011

www.atme.edu.in -Bengaluru Road, Mysore - 570 028

ATME 5

atme | College of Engineering

DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING

Using module Student
>>>import student

>>>student= ‘1’: ‘name’: ‘Bob’, ‘grade’:2.5,
‘2’: ‘name’: ‘mary’, ‘grade’:3.5,

‘3’: ‘name’: ‘David’, ‘grade’:4.2,

‘4’: ‘name’: ‘John’, ‘grade’:4.1,

‘5’: ‘name’: ‘Alex’, ‘grade’:3.8

>>>Student.printRecords(Students)
There are 5 students

Student - 1:

Name: Bob

Grade:2.5

Student - 2:
Name: David
Grade:4.2

Student - 3:
Name: Mary
Grade:3.5

Student - 4:
Name: Alex
Grade: 3.8

Student - 5:
Name: John
Grade: 4.1

>>>Avg= Student averageGrade (students)
>>>print "The average grade is: % 0.2f" %(avg)
3.62

The import keyword followed by module name imports all the functions in the module. If you
want to use only a specific function it is recommended to import only that function using the
keyword from as shown in the example. Importing a specific function from the module

>>>from student import averageGrade

>>> Students = ,,1° : ‘Name’ : ‘Bob’, ‘Grade’ : 2.5,
2’: ‘Name’ : ‘Mary’, ‘Grade’: ‘3.5°,

‘3’:’Name’: ‘David’, ‘grade’: ‘4.2,

‘4>.’Name’: ‘John’, ‘grade’: ‘4.1°,

‘5’:’Name’: ‘Alex’, ‘grade’: 3.8

o 0821-2954081 info@atme.edu.in 13th Kilometer, Mysore -Kanakapura
0821-2954011 www.atme.edu.in -Bengaluru Road, Mysore - 570 028

M ATME ©
®
atme | College of Engineering —
DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING
>>>avg =averageGrade(students)
>>>print "The average grade is :%0.2f" %(avg)
3.62
Python comes with a number of standard,modules such as system related modules(sys), OS
related module(OS), mathematical modules(math, fractions). Standard modules are available
in the python documentation.
Listing all names defined in a module
>>>import email
>>>dir(email)
[‘charset’, ‘encoder’, ‘errors’, ‘feedparser’, ‘Generator’, ‘Header’, ‘Iterators’, ‘Lazylmporter’,
‘MIMEaudio’, ‘MIMEImage’, ‘MIMEMessage’, ‘MIMEMultipart’, ‘MIMENonMultipart’,
‘MIMEText’, ‘Message’, ‘Parser’, ‘utils’, * LOWERNAMES’, * MINENAME’, ° all ’,
‘ builtins ’, ‘< doc ’, ‘ file ’, ‘ name ’, ° package ’, ‘ path ’, ‘ version ’, ° name’,
‘base64MIME’, ‘email’, ‘importer’, ‘message from file’, ‘message from string’, ‘mime’,
‘quoprimeMINE’, ‘Sys’]
Packages
Python package is hierarchical file structure that consists of modules and subpackages.
Packages allow better organization of modules related to a single applications environment.
For example, below show the listing of the skimage package that provides image processing
algorithms. The package is organized into a root directory (skimage) with sub-directories
(color, draw,etc) which are sub_packages within the skimage package. Each directory contains
a special file named init . Py which tells python to treat directories as packages. This file can
either be an empty file or contain some initialization code for the package.
Skimage package listing
Skimage/ Top level package
__init__.py Treat directionary as a package
Color/ color subpackage
__init__.py
Colorconv.py
Colorlabel.py
rgb_colors.py
Draw/ draw subpackage
__init__.py
draw.py
setup.py
exposure/ exposure subpackage
__init__.py
__adapthist.py
0821-2954081 info@atme.edu.in 13th Kilometer, Mysore -Kanakapura
o 0821-2954011 www.atme.edu.in -Bengaluru Road, Mysore - 570 028

atme

ATME

College of Engineering

I

SN

ic 1o ¥

DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING

Exposure.py

Feature/ feature subpackage
__init__.py
__brief.py

__daisy.py
File Handling

Python allows reading and writing to files using the files object. The open(filename, mode)
function is used to get a file object. The mode can be read(r), write(w),append(a),read and
write(r+ or w+), read- binary (rb), write-binary(wb), etc.

Shows an example of reading an entire file with read function. After the file contents have been
read the close function is called which closes the file object.

Example of reading an entire file

>>>fp = open(‘file.txt’, ‘r’)

>>>content =fp.read()

>>>print content

Python supports more than one programming paradigms

including object-oriented programming and structured programming.

Python is an interpreted language and does not require an explicit compilation step.
>>>fp.close()

Shows an example of reading line by line from a file using the readline function. Example of
reading line by line

>>>fp.close()

>>>fp=open(‘file.txt’, ‘r’)

>>>print "Line-1: "+fp.readline()

Line-1:python supports more than one programming paradigms including object-oriented
programming and structure programming.

>>>print "Line-2:" +fp.readline()
Line-2: Python is an interpreted language and does not require an explicit compilation step.

>>>fp.close

Shows an example of reading lines of a file in a loop using the read lines function. Example of
reading line in a loop

>>>fp = open(‘file.txt’, ‘r”)
>>>lines= fp.readlines()
>>>for line in lines:

Print line
o 0821-2954081 info@atme.edu.in 13th Kilometer, Mysore -Kanakapura
0821-2954011 www.atme.edu.in -Bengaluru Road, Mysore - 570 028

A TME 70
) iy O
atme | College of Engineering -
DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING
Python supports more than one programming paradigms including object- Oriented
programming and structured programming.
Python is an interpreted language and does not require an explicit compilation step.
Shows an example of reading a certain number of bytes from a file using the read(size) function
Example of reading a certain number of byte
>>>fp=open(‘file.txt’, ‘r’)
>>>fp.read(10)
‘python soup’
>>>1p.close()
Shows an example of getting the current position of read using the tell function. Example of
getting the current position of read
>>>fp=open (‘file.txt’, ‘r’)
>>>fp.read(10)
‘python sup’
>>>currentpos=fp.tell
>>>print currentpos
< built-in method of file object at 0x0000000000002391390>
>>>1p.close
Shows an example of seeking to a certain position in a file using the seek function. Example
of seeking a certain position
>>>fp=open (‘file.txt’, ‘r’)
>>>fp.seek(10,0)
>>>content = fp.read(10)
>>>print content
Ports more
>>>fp.close()
Shows an example of writing a file using the write function. Example of writing to a file
>>>fp=open (‘filel.txt’, ‘w’)
>>>content = ‘This is an example of writing to a file in pyhton’.
>>>fo.write(content)
>>>fo.close()
Date/Time Operations
Python provides several functions for date and time access and conversions. The datetime
module allows manipulating date and time in several ways.
Example of manipulating with date
0821-2954081 info@atme.edu.in 13th Kilometer, Mysore -Kanakapura
o 0821-2954011 www.atme.edu.in -Bengaluru Road, Mysore - 570 028

atme

ATME

College of Engineering

I

SN

ic 1o ¥

DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING

>>> from datetime import date

>>>now =date.today()

>>>print "Date:" + now.strftime("%m-%d-%y")
Date:07-24-13

>>>print "Date of week:" + now.strftime("%A")
Day of week: Wednesday

>>>print "Month:" + now.strftime("%B")
Month: July

>>>

>>>then =date(2013,6,7)
>>>timediff=now-then

>>>timediff.days

47

The time module in python provides various time-related functions. Example of manipulating
with time

>>>import time

>>>nowtime=time.time()

>>>time.localtime(nowtime)

Time.struct_time(tm_year=2013, tm mon=7, tm mday=24, tm ec=51, tm_ wday=2,
tm_yday=205, tm_isdst=0)

>>>time.asct(time.localtime(nowtime))

‘wed Jul 24 16:14:51 2013°

>>>time.strftime("The date is %d-%m-%y. Today is a %A. It is %H hours, %M minutes and
%S seconds now.")
‘The date is 24-07-13. Today is a Wednesday. It is 16 hours, 15 minutes and 14 seconds now.’

Classes

Python is an Object-Oriented Programming (OOP) language. Python provides all the standard
features of object-oriented programming such as classes, class variables, class methods,
inheritance, function overloading and operator overloading.

Class

A class is simply a representation of a type of object and user-defined prototype for an object
that is composed of three things: a name, attribute and operations/methods.

Instance/object
Object is an instance of the data structure defined by a class.
Inheritance

Inheritance is the process of forming a new class from an existing class or base class.

0821-2954081 info@atme.edu.in 13th Kilometer, Mysore -Kanakapura

0 0821-2954011

www.atme.edu.in -Bengaluru Road, Mysore - 570 028

atme

ATME

College of Engineering

ATy,

SR
%,)

ic 1o ¥

DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING

Function Overloading

Function overloading is a form of polymorphism that allows a function to have different
meanings, depending on its context.

Operator overloading

Operator overloading is a form of polymorphism that allows assignment of more than one
function to a particular operator.

Function overriding

Function overriding allows a child class to provide a specific implementation of a function that
is already provided by the base class. Child class implemented of the overridden function has
the same name, parameters and return type as the function in the base class.

Shows an example of a class. The variable student Count is a class variable that is shared by
all instances of the class student and is accessed by student and is accessed by student. Student
Count. The variables name, id and grades are instance variables which are specific to each
instance of the class. There is a special method by the name init () which is the constructor.

The class constructor initializes new instances when it is created. The function del () is the
class destructor.

Example of a class

>>>class student:

StudentCount=0

Def init_(self,name,id):
Print "Constructor called"
Self.name=name
Self.id=id
Student.studentCount = Student.studentCount+1
Self.grades=

def del (self):
print "Destruction called"

def getStudentCount(self):
return student.studentCount

def addGrade (self key,value):
self.grades(key)=value

def getGrade(self key):
return self.grades(key)

def printGrades(self):

® 0821-2954081 info@atme.edu.in 13th Kilometer, Mysore -Kanakapura

0821-2954011

www.atme.edu.in -Bengaluru Road, Mysore - 570 028

ATME

ok
h—_— W
atme | College of Engineering

ic 1o ¥

DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING

for key in self.grades:
print key + ":"+Self.grades(key)

>>> § = Student (‘Steve’, ‘98928”)
Constructor called

>>> § addGrade(‘Math’, ‘90°)
>>>§ addGrade(‘physics’, ‘85”)
>>>§ printGrade()

Physics: 85

Math: 90
>>>mathgrade=S.getGrade(‘Math’)
>>>print mathgrade

90

>>>count =S.getStudentCount()
>>>print count

1

>>>del s

Destructor called

Shows an example of class inheritance. In this example shape is the base class and circle is
the derived class. The class circle inherits the attributes of the shape class. The child class Circle
overrides the methods and attributes of the base class (eg. draw() function defined in the base
class shape is overridden in child class Circle). It is possible to hide some class attributes by
naming them with a double underscore prefix. For example, label attribute is hidden and
cannot be directly accessed using the object (cir._label gives an error). To hide the attributes
with double underscore prefix, python changes their names internally and prefixes the class
name(e.g. label is changed to _Circle label).

Examples of class inheritance:

>>>class Shape:
def init (self):
print "Base class constructor"
self. color = ‘Green’
self. lineWeight = 10.0
def draw(self):
print "Draw -to be implemented"
def SetColor(self,c):
self.color=c
def getColor(self):
return self.color
def setLineWeight(self,lwt):
self.LineWeight=lwt

o 0821-2954081 info@atme.edu.in 13th Kilometer, Mysore -Kanakapura
0821-2954011 www.atme.edu.in -Bengaluru Road, Mysore - 570 028

atme

ATME

College of Engineering

DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING

def setLineWeight(self):
return self.LineWeight

>>>(lass Circle (Shape):
def init (self,c,r):
print "Circle class constructor"
self.center=c
self.radius=r
self.color= ‘Green’
self.lineWeight=10.0
self. label = ‘Hidden circle label’
def setCenter (self,c):
self.centre=c
def getCenter(self):
return self.center
def setRadius(self,r):
self.radius=r
def getRadius(self):
return self.radius
def draw(self)
print "Draw circle (overridden function)"

>>>class point:
def init_(self,x,y):
self.x Cooradinate=x
self.y Cooradinate=y

def setx Coordinate(self,X):
self.X Cooradinate=X
def getXCoordinate (self):
return self.xcoordinate
def setyCoordinate(self,y):
self.yCoordinate =y
def getycoordinate(self):
return self.ycoordinate

>>>p=point(2,4)
>>>circ =circle(p,7)
Child class constructor
>>>circ.getColor()
‘Green’
>>>circ.setColor(‘Red”)
>>>circgetColor()
‘Red’

0821-2954081 info@atme.edu.in

e 0821-2954011

www.atme.edu.in

13th Kilometer, Mysore -Kanakapura
-Bengaluru Road, Mysore - 570 028

atme

ATME

College of Engineering

P

DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING

>>>circ.getLineWeight()

10.0
>>>circ.getCenter().getXCoordinate()
2

>>>circ.getCenter().getY Coordinate()
4

>>>circ.draw()

Draw Circle (overridden function)

>>>circle.radius

7

>>>circ._label Traceback (most recent call last):

File "<stdin>", linel , in<module>

AttributeError: Circle instance has no attribute ¢ Label’
>>>circ. Circle label

‘Hidden circle label’

Python Packages of Interest for IoT
1. JSON

Javascript object Notation (JSON) is an easy to read and write data-interchange format. JSON
is used as an alternative to XML and is wasy for machines to parse and generate. JSON is built
on two structure- a collection of name-value pairs (e.g. a python dictionary) and ordered lists

of values (e.g. a python list).

JSON format is often used for serializing and transmitting structure data over a network
connection, for example, transmitting data between a server and web application.

JSON Example -A Twitter tweet object

{

"created_at":
"sat Jun 01 11:39:43+000 2013",
"1d" : 340794787059875841,
"text": "What a bright and sunny day today!",
"truncated" : false,
"in_reply to_status id": null,
"user": {
"id":383825039,

0821-2954081 info@atme.edu.in

e 0821-2954011

www.atme.edu.in

13th Kilometer, Mysore -Kanakapura
-Bengaluru Road, Mysore - 570 028

atme

ATME

College of Engineering

DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING

"name": "Harry",
"followers count":316,
"friends_count": 298,
"listed count": 0,

"create at": "sun oct 02 15:15:61 +0000 2011",

"favourites_count":251,
"statuses_count":1707,

"notifications": null

¥
"geo": {
"type": "point",
"coordinate":[26.92782727,75.78908449]
¥
"coordinates": {
"type":"point",
"coordinates":[75.78908449, 26.92782727]
¥
"place":mull,
"contributors": null,
"retweet_count":0,
"favourite_count":0,
"entities": {
"hastags":[],
"symbol": [],
"urls": [],
"user _mentions": []
¥
"favourite": false,
"retweeted":false,
"filter level": "medium",

n.n

"lang": "nl"

}

Exchange of information encoded as JSON involves encoding and decoding steps. The python
JSON package[109] provides functions for encoding and decoding JSON.

Encoding and Decoding JSON in python:
>>>import json

>>>meassage={
"Created": "wed Jun 31 2013",

"id": "001H’
e 0821-2954081 info@atme.edu.in
0821-2954011 www.atme.edu.in

13th Kilometer, Mysore -Kanakapura
-Bengaluru Road, Mysore - 570 028

atme

ATME

AN
o)
College of Engineering

ic 1o ¥

DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING

"text": "This is a test message.", }

>>>json.dumps(message)
“{"text": "This is a test message." "id" : "001", "created": "Wed Jun 31 2013"}’

>>>decodeMsg = json.loads (‘{"text": " This a test message”, "id": "001", "created": "Wed Jun
312013"}°}

>>>decode Msg [‘created’]
u ‘Wed Jun 31 2013°
>>>decodedMsg [‘text’]

U “This is a test message’.

2. XML

XML (Extensible Markup Language) is a data format for structured document interchange.
Shows an example of an XML file. In this section you will learn how to parse, read and write
XML with python. The python minidom library provides a minimal implementation of the
document object Model interface and has an API similar to that in other language. Shows a
python program for parsing an XML file.

Shows a python program for creating an XML file. XML example

<?xml version ="1.0"?>

<catalog>

<plant id= ‘1>

<common> Bloodroot</common>
<botanical>Sanguinaria Canadensis </botanical>
<Zone> 4</Zone>

<light> Mostly Shady </light>

<price> 2.44 </price>

<availablility> 031599</availability>
</plant>

<plant id= ‘2>

<common> Columbine </common>
<botanical> Aquilegia Canadensis </botanical>
<zone> 3</zone>

<light> Mostly Shady </light>

<price> 9.37 </price>

<availability> 030699 </availability>
</plant>

<plant id= ‘3>

<common> Marsh Marigold </common>
<botanical> Caltha palustris </botanical>
<zone>4</zone>

0821-2954081 info@atme.edu.in 13th Kilometer, Mysore -Kanakapura

G 0821-2954011

www.atme.edu.in -Bengaluru Road, Mysore - 570 028

atme

ATME

College of Engineering

I

SN

ic 1o ¥

DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING

<light>Mostly Sunny</light>
<price> 6.81 </price>

<availability> 051799 </availability>
</plant>

</catalog>

Parsing an XML file in python

From xml.dom.minidom import parse

dom= parse ("test.xml")

For node in dom.getElementByTagName(‘plant’):
Id= node.gteAttribute(‘id’)
print "plantID:", id
Common=node.getElementsByTagName(‘common’)[0].childNodes[0].nodeValue
print "Common:", common
botanical =node.GetElementsByTagName(‘botanical’)[0].childNodes[0].nodeValue
print "Botanical:", botanical zone= node.getElementsByTagName(‘zone’)[0]
childNodes[0].nodeValue
print "Zone:",Zone

Creating an XML file with python

#python example to create the following XML:
#<?xml version = "1.0"> <class><student>
#<Name>Alex</Name> <Major> ECE </Major> </student></class>

From xml.dom.minidom import Document
doc= Document()

#Create base element
Base= doc.createElement(‘class’)
doc.appendChild(base)

#create an entry element
Entry=doc.createElement(‘Student’)
Base.appendChild(entry)

#create an element and append to entry element
name= doc.createElement(‘Name”)
nameContent = doc.CreateTextNode(‘Alex’)
name.appendChild(nameContent)
entry.appendChild(name)

#create an element and append to entry element
major=doc.createElement(‘Major’)
majorContent=doc.create TextNode(‘ECE’)
major.appendChild(majorContent)

0821-2954081 info@atme.edu.in 13th Kilometer, Mysore -Kanakapura

0 0821-2954011

www.atme.edu.in -Bengaluru Road, Mysore - 570 028

atme

ATME

£k
L
College of Engineering

ic 1o ¥

DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING

entry.appendChild(major)

fp=open(‘foo.xml’, ‘w’)
doc.writexml()
fp.close()

3. HTTPLib & URLLIib

HTTPLib2 and URLLib2 are python libraries used in network/internet programming.
HTTPLib2 is an HTTP client library and URRLIib2 is a library for fetching URLS.

Shows an example of an HTTP GET request using the HTTPLib. The variable resp contains
the response headers and content contains the content retrieved from the URL.

HTTP GET request example using HTTPLib

>>> import httplib2
>>> h=httplib2.HTTP()
>>> resp,content =h.request("http://example.com", "GET")

>>>resp { ‘status’ : ‘200°, ‘content-length’: ‘1270°, ‘content-location’: ‘http://example.com’,
‘x-cache’: ‘HIT’, ‘acccept range’: ‘bytes’, ‘server’ : ‘ECS (cmp/F858°, ‘last modified’:
“Thu,25 APR 2013 16:13:23 GMT", ‘etag’: © "780602-4f6-4db31b2978 eco"’, ‘date’: ‘wed, 31
Jul 2013 12:36:05 GMT’, ‘content-type’: ‘text/html ; charset= UTF-8’}

>>>content

‘<!doctype html> \n <htmI>\n <head> \n
<title> example Domain </title>\n\n
<meta charset = "utf-8“/>\n:

Show an HTTP Request example using URLLib2. A request object is created by calling urllib2.
Request with the URL to fetch as input parameter. Then urllib2.urlopen is called with the
request object which returns the response object for the requested URL. The response object is
read by calling read function.

HTTP request example using URLLib2

>>>import urllib2

>>>

>>>req=urllib2.Request(‘http://example.com”’)
>>>response=urllib2.urlopen(req)
>>>response_page=response.read()

>> response_page

‘<!doctype html>\n <htmI>\n <head>\n
<title> Example Domain </title>\n\n

<meta charset = "utf-8"/>\n

0821-2954081 info@atme.edu.in 13th Kilometer, Mysore -Kanakapura

e 0821-2954011

www.atme.edu.in -Bengaluru Road, Mysore - 570 028

atme

ATME

£k
L
College of Engineering

ic 1o ¥

DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING

Shows an example of an HTTP POST request. The data in the POST body is encoded using the
urlencode function from urllib.

HTTP POST example using HTTPLib2

>>>import httplib2

>>>import urllib

>>>h = httplib2.Http()

>>>data = {‘title’: ‘Cloud computing’}

>>>resp, content =h.request(‘“‘http://www.htmlcodetutorial.com/cgi-bin/mycgi.p1”, "POST",
urllib.urlencode(data))

>>>1esp

{‘Status’: ‘200°, ‘transfer-encoding’: ‘chunked’, ‘server’: ‘Apache/2.0.64(unix) mod\-ssd/
2.0.64 openSSL/0.9.70 mod_auth passthrought/2.1 mod bwlimited/1.4 frontpage/5.0.2.2635
PHP/5.3.10°, ‘connection’: ‘close’, ‘date’: “Wed, 31 Jul 2013 12:41:20 GMT’, ‘content-type’:
‘text/html; charset=ISO -8859-1"}

>>>content
‘<HTML> \n <HEAD> \n <TITLE> Idocs Guide to HTML: My CGI </TITLE>\n <\HEAD>:

Shows an example of sending data to a URL using URL using URLLib2 (e.g an HTML from
submission). This example is similar to the HTTP POST example and uses URLLib2 request
object instead of HTTPLib2.

Example of sending data to a URL

>>>import urllib

>>>import urllib2

>>>

>>>url = ‘http://www.htmlcodetutorial.com/cgi-bin/mycgi.p1’
>>>values ={‘title’ : ‘cloud computing’, ... ‘language’ : ‘python’}
>>>

>>>data =urllib.urlencode(values)
>>>req=urllib2.Request(url,data)

>>>response =urllib2.urlopen(req)

>>>the page =response.read()

>>>the page ‘“<HTML>/n <HEAD>\n <TITLE>Idocs Guide to HTML: My CGI </TITLE>\n
</HEAD>

4. SMTPLib

Simple Mail Transfer Protocol (SMTP) is a protocol which handle sending email and routing
e-mail between mail servers. The python smtplib module provides an STMP client session
object that can be used to send email.

0821-2954081 info@atme.edu.in 13th Kilometer, Mysore -Kanakapura

e 0821-2954011

www.atme.edu.in -Bengaluru Road, Mysore - 570 028

atme

or,

o
o)

ic 1o ¥

ATME

College of Engineering

DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING

Shows a python example of sending email from a Gmail account. The string message contains
the email message to be sent. To send email from a Gmail account the Gmail STMP server is
specified in the server string.

To send an email, first a connection is established with the STMP server by calling
smtplib.SMTP with SMTP server name and port. The username and password provided are
then used to login into the server. The email is then sent by calling server.sendmail function
with the fom address, to address list and message as input parameters.

Python example of sending email
Import smtplib

from_email= ‘<enter-gmail-address>’
recipients_list =[‘<enter sender email>’]
cc_list=[]

subject= ‘Hello’

message = ‘This is a test message’
username= ‘<enter -gmail username>’
password= ‘<enter-gmail password>’
server = ‘smtp.gmail.com:587’

def sendemail (from addr, to addr list, cc_addr list, subject, message, login, password,
smtpserver):

header= ‘from: %s\n’ %from_addr

header+ = ‘To: %s\n’ % °,’.join(to-addr_list)
header+= ‘Cc: %s\n’ % °,”.join(cc_addr_list)
header+= ‘subject : %s\n\n’ %osubject
message =header+message

server =smtplib.SMTP(smtpserver)

server.starttls()

server.login (login, password)

problems = server.sendmial (from_addr, to_addr list, message)
server.quit()

#send email
Sendmail(from_email, recipients_list, cc_list, subject, message, username, password, server)

® 0821-2954081 info@atme.edu.in 13th Kilometer, Mysore -Kanakapura

0821-2954011

www.atme.edu.in -Bengaluru Road, Mysore - 570 028

®ATME

atme | College of Engineering

DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING

o 0821-2954081 info@atme.edu.in 13th Kilometer, Mysore -Kanakapura
0821-2954011 www.atme.edu.in -Bengaluru Road, Mysore - 570 028

