

ATME COLLEGE OF ENGINEERING

13th Kilometer, Bannur Road, Mysuru - 570028

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

(ACADEMIC YEAR 2025-26)

ODD SEMESTER

NOTES OF LESSON

SUBJECT: INTERNET OF THINGS

SUB CODE: BCS701

SEMESTER: VII

INSTITUTIONAL VISSION AND MISSION

Objectives

• To provide quality education and groom top-notch professionals, entrepreneurs and leaders for

different fields of engineering, technology and management.

• To open a Training-R & D-Design-Consultancy cell in each department, gradually introduce

doctoral and postdoctoral programs, encourage basic & applied research in areas of social

relevance, and develop the institute as a center of excellence.

• To develop academic, professional and financial alliances with the industry as well as the

academia at national and transnational levels.

• To cultivate strong community relationships and involve the students and the staff in local

community service.

 • To constantly enhance the value of the educational inputs with the participation of students,

faculty, parents and industry.

Vision

• Development of academically excellent, culturally vibrant, socially responsible, and globally

competent human resources.

Mission

• To keep pace with advancements in knowledge and make the students competitive and capable

at the global level.

• To create an environment for the students to acquire the right physical, intellectual, emotional

and moral foundations and shine as torch bearers of tomorrow's society.

• To strive to attain ever-higher benchmarks of educational excellence.

Vision of the Department

• To develop highly talented individuals in Computer Science and Engineering to deal with real

world challenges in industry, education, research and society.

Mission of the Department

• To inculcate professional behavior, strong ethical values, innovative research capabilities and

leadership abilities in the young minds & to provide a teaching environment that emphasizes depth,

originality and critical thinking.

• Motivate students to put their thoughts and ideas adoptable by industry or to pursue higher studies

leading to research.

Program Educational Objectives (PEO'S)

1. Empower students with a strong basis in the mathematical, scientific and engineering

fundamentals to solve computational problems and to prepare them for employment, higher

learning and R&D.

2. Gain technical knowledge, skills and awareness of current technologies of computer science

engineering and to develop an ability to design and provide novel engineering solutions for

software/hardware problems through entrepreneurial skills.

3. Exposure to emerging technologies and work in teams on interdisciplinary projects with

effective communication skills and leadership qualities.

4. Ability to function ethically and responsibly in a rapidly changing environment by applying

innovative ideas in the latest technology, to become effective professionals in Computer Science

to bear a life-long career in related areas.

Program Specific Outcomes (PSOs)

PSO1: Ability to apply skills in the field of algorithms, database design, web design, cloud

computing and data analytics.

PSO2: Apply knowledge in the field of computer networks for building network and internet-based

applications.

Course
Code

Course Title Core / Elective Prerequisite

Contact
Total
Hrs/

Sessions
 Hours

L T P

BCS701 Internet of Things Core
Networking, Basic

programming
Knowledge

3

0

2

40 Theory +

8/10

Practical

sessions

Course

Objectives

1. Understand the fundamentals of Internet of Things and its building blocks

along with their characteristics.

2. Understand the recent application domains of IoT in everyday life.

3. Understand the protocols and standards designed for IoT and the current

research on it.

4. Understand the other associated technologies like cloud and fog computing in

the domain of IoT.

5. Improve their knowledge about the various cutting-edge technologies in the

field of IoT and machine learning applications.

6. Gain insights about the current trends of machine learning and AI techniques

used in IoT to orient towards the present industrial scenario.

Topics Covered as per Syllabus

Module-1

Introduction to Internet of Things: Introduction, Physical design of IOT, Logical Design of IOT,

IOT enabling technologies, IOT Levels & Deployment Templates.

Module-2

IOT and M2M: Introduction: M2M, Difference between IoT and M2M, SDN and NFV for IOT,

IOT System Management with NETCONF-YANG, Need for IOT Systems Management, Simple

Network Management Protocol (SNMP), Network operator requirements, NETCONF, YANG,

IoT Systems Management with NETCONF-YANG.

Module-3

IoT Platforms Design Methodology: Introduction, IoT Design Methodology, Case Study on IoT

System for Weather Monitoring, loT Systems - Logical Design using Python: Introduction,

Installing Python, Python Data Types and Data structures, Control flow, Functions, Modules,

Packages, File Handling, Operations, Classes, Python Packages of Interest for IoT.

Module-4

IoT Physical Devices & End points: What is a loT Device, Raspberry Pi, About the Board, Linux

on Raspberry Pi, Raspberry Pi interfaces, Programming Raspberry Pi with Python, Case Studies

illustrating IoT design – Home Automation, Cities, Agriculture.

Module-5

Data Analytics for IoT: Introduction, Apache Hadoop, Using Hadoop MapReduce for Batch Data

Analytics, Apache Oozie, Apache Spark, Apache Storm, Using Apache Storm for Real-time Data

Analysis.

Laboratory Component:

1. Develop a program to blink 5 LEDs back and forth.

2. Develop a program to interface a relay with Arduino board.

3. Develop a program to deploy an intrusion detection system using Ultrasonic and sound sensors.

4. Develop a program to control a DC motor with Arduino board.

5. Develop a program to deploy smart street light system using LDR sensor.

6. Develop a program to classify dry and wet waste with the Moisture sensor (DHT22).

7. Develop a program to read the pH value of a various substances like milk, lime and water.

8. Develop a program to detect the gas leakage in the surrounding environment.

9. Develop a program to demonstrate weather station readings using Arduino.

10. Develop a program to setup a UART protocol and pass a string through the protocol.

11. Develop a water level depth detection system using Ultrasonic sensor.

12. Develop a program to simulate interfacing with the keypad module to record the keystrokes.

List of Textbook

Arshdeep Bahga, Vijay Madisetti, “Internet of Things- A Hands On Approach”, Universities press,

2014.

Course

Outcomes

1. Describe the basics of the Internet of Things, including its design, technologies,

and different types of deployments.

2. Explain the concepts of IoT and M2M and describe the use of network

management protocols

3. Apply basic IoT design steps and programming to create simple IoT applications

4. Describe the architecture and interfaces of Raspberry Pi and implement Python-

based IoT applications for different domains

5. Elaborate the need for Data Analytics in IoT.

Module-1

Introduction to Internet of Things

Introduction

Internet of Things (IoT) comprises things that have unique identities and are connected to the

internet.

• Existing devises, such as networked computers or 4G enabled mobile phones, already

have some form of unique identities and are also connected to the internet, the focus on

IoT in the configuration, control and networking via the internet of devices or things,

that are traditionally not associated with the Internet. These include devices such as

thermostats, utility meters, a blue tooth- connected headset, irrigation pumps and sensor

or control circuits for an electric car’s engine

• The scope of IoT is not limited to just connected things (Devices, appliance, machines)

to the Internet.

• Applications on IoT networks extract and create information from lower-level data by

filtering, processing, categorizing, condensing and contextualizing the data. The

information obtained is then organized and structured to infer knowledge about the

system and or its user, its environment and its operations and progress towards its

objectives, allowing a smarter performance.

Definition of IoT

A dynamic global network infrastructure with self – configuring capabilities based on standard

and interoperable communication protocols where physical and virtual “things” have

identified, physical attributes, and virtual personalities and use intelligent interfaces, often

communicate data associated with users and their environment.

Characteristics of IoT

• Dynamic and self-Adapting: IoT devices and systems may have the capability to

dynamically adapt with the changing contexts and take actions based on their operating

condition. Ex: Surveillance cameras can adapt their modes based on whether it is day

or night.

• Self – Configuring: IoT devices may have self-Configuring capability allowing many

devices to work together to provide certain functionality.

• Interoperable communication protocols: IoT Devices may support a few interoperable

communication protocols and can communicate with other devices and with the

infrastructure.

• Unique Identity: Each IoT devices has a unique identity and a unique identifier. IP

address, URI). IoT systems may have intelligent interfaces which adapt based on the

context, allow communication with users and the environment contexts.

• Integrated into information network: IoT devices are usually integrated into the

information network that allows them to communicate and exchange data with other

devices and systems.

Physical design of IoT

1. Things of IoT

The “Things” in IoT usually refers to IoT devices which have unique identities and can perform

remote sensing, Actuating and monitoring capabilities. IoT devices can exchange data with

other connected devices and applications (directly or indirectly), or collect data from other

devices and process the data locally or send the data to Centralized servers or cloud based

applications back ends for processing the data or from some task locally and other task within

the IoT infrastructure, based on temporal and space constraints (i.e.: Memory, processing

calibrators, communication latencies and speed and deadlines).

Fig.1.1 Generic block diagram of an IoT device

An IoT device may consist of several interfaces’ connections to other devices, both wired and

wireless. These include

• IoT interfaces for sensors

• interfaces for internet connectivity

• memory and storage interfaces

• audio video interfaces.

An IoT Device can collect various types of data from the onboard or attached sensors, such as

temperature, humidity, light intensity.

IoT devices can also be varied types, for instance, wearable sensors, smart watches, LED light

automobiles and industrial machines. Almost all I would advise generate data in Some form or

the other which when processed by Data Analytics systems leads to Useful information to guide

further actions locally or remotely.

2. IoT Protocols

Link Layer

Link Layer protocols determine how the data is physically sent over the networks physical

layer or medium (example copper wire, electrical cable, or radio wave). The Scope of The

Link Layer is the Last Local Network connections to which host is attached. Host on the same

link exchange data packets over the link layer using the link layer protocol. Link layer

determines how the packets are coded and signalled by the hardware device over the medium

to which the host is attached.

• 802.3 Ethernet:

802.3 is a collections of wired Ethernet standards for the link layer. For example, 802.3

10BASE5 Ethernet that uses coaxial cable as a shared medium, 802.3.i is standard for 10

BASET Ethernet over copper twisted pair connection, Standards provide data rates from 10

Mb/s to 40 gigabits per second and the higher. The shared medium in Ethernet can be a coaxial

cable, twisted pair wire or and Optical Fiber. Shared medium carries the communication for all

the devices on the network.

• 802.1- WI-FI:

IEEE 802.3 is a collections of wireless Local area network (WLAN) communication standards,

including extensive descriptions of the link layer. For example, 802.11a operate in the 5 GHz

band, 802.11b and 802.11g operate in the 2.4 GHz band. 802.11ac operates in the 5G hertz

band.

• 802.16 wiMAX:

IEEE 802.16 is a collection of wireless broadband and Standards, including extensive

descriptions for the link layer also called WiMAX. This standard provides a data rates from

1.5Mb/s to 1Gb/s the recent update provides data rates of hundred megabits per second for

mobile station.

• 802.15.4 LR-WPAN:

IEEE 802.1 5.4 is a collection of standards for low-rate wireless personal area network

(LRWPAN). This standard form the basis of specifications for high level communication

Zigbee. LR-WPAN standards provide data rates from 40 k b/ s. These standards provide low

cost and low speed Communications for power constrained devices.

• 2G / 3G / 4G mobile communications:

These are the different generations of mobile communication standards including second

generation (2G including GSM and CDMA). 3rd Generation (3G including UMTS and

CDMA2000) and 4th generation 4G including LTE.

Network / internet layer:

The network layer is responsible for sending of IP datagrams from the source network to the

destination network. This layer Performs the host addressing and packet routing. The datagrams

contain a source and destination address which are used to route them from the source to the

destination across multiple networks. Host Identification is done using the hierarchy IP

addressing schemes such as ipv4 or IPv6.

• IPV4: Internet protocol versions for open parents close (IPV4) is there most deployed

internet protocol that is used to identify the device is on a network using a hierarchy

latest scheme. It uses 32-bit addresses scheme that allows total of 2 32 address. As more

and more devices got connected to the internet. The Ipv4 has succeeded by IPv6.

• IPv6: It is the newest versions of internet protocol and successor to IPv4. IPv6 uses

128-bit address schemes that are lost total of 2 128 are 3.4* 10 38 address.

• 6LoWPAN: IPv6 over low power wireless personal area networks brings IP protocol

to the low power device which have limited processing capability it operates in the 2.4

GHz frequency range and provide the data transfer rate off to 50 kb/s.

Transport layer:

The Transport layer protocols provide end-to-end message transfer capability independent of

the underlying network. The message transfer capability can be set up on connections, either

using handshake or without handshake acknowledgements. Provides functions such as error

control, segmentation, flow control and congestion control.

• TCP: Transmission control protocol is the most widely used to transport layer protocol

that is used by the web browsers along with HTTP, HTTPS application layer protocols

email program (SMTP application layer protocol) and file transfer protocol. TCP is a

connection Oriented and stateful protocol while IP protocol deals with sending packets,

TCP ensures reliable transmissions of packets in order. TCP also provide error

deduction capability so that duplicate packets can be discarded and low packets are

retransmitted. The flow control capability ensures that the rate at which the sender since

the data is now high for the receiver to process.

• UDP: unlike TCP, which requires carrying out an initial setup procedure, UDP is a

connection less protocol. UDP is useful for time sensitive application they have very

small data units to exchange and do not want the overhead of connection setup. UDP is

a transactions oriented and stateless protocol. UDP does not provide guaranteed

delivery, ordering of messages and duplicate eliminations.

Application layer:

Application layer protocol defines how the application interfaces with the lower layer protocols

to send the data over the network. Data are typically in files, is encoded by the application layer

protocol and encapsulated in the transport layer protocol. Application layer protocol enables

process-to-process connection using ports.

• Http: Hypertext transfer protocol is the application layer protocol that forms the

foundations of world wide web http includes, commands such as GET, PUT, POST,

DELETE, HEAD, TRACE, OPTIONS etc. The protocol follows a request response

model where are client sends request to server using the http, commands. Http is a

stateless protocol, and each http request is independent father request and http client

can be a browser or an application running on the client example and application

running on an IoT device, mobile applications or other software.

• CoAP: Constrained application protocol is an application layer protocol for machine-

to-machine application M2M meant for constrained environment with constrained

devices and constrained networks. Like http CoAP is a web transfer protocol and uses

a request- response model, however it runs on the top of the UDP instead of TC CoAP

uses a client –server architecture where client communicate with server using

connectionless datagrams. It is designed to easily interface with http like http, CoAP

supports method such as GET, PUT, DELETE.

• WebSocket: WebSocket protocol allows full duplex communication over a single

socket connection for sending message between client and server. WebSocket is based

on TCP and Allows streams of messages to be sent back and forth between the client

and server while keeping the TCP connection open. The client can be a browser, a

mobile application and IoT device

• MQTT: Message Queue Telemetry Transport it is a lightweight message protocol based

on public -subscribe model MQTT uses a client server Architecture by the clients such

as an IoT device connect to the server also called the MQTT broker and publishers’

message to topic on the server. The broker forwards the message to the clients

subscribed to topic MQTT is well suited for constrained and environments.

• XMPP: Extensible Messaging and Presence Protocol it is a protocol for real-time

communication and streaming XML data between network entities XMPP powers wide

range of applications including messaging, presence, data syndication, gaming

multiparty chat and voice / voice calls. XMPP Allows sending small chunks of XML

data from one network entity to another in real time. XMPP supports both client to

server and server –client communication path.

• DDS: Data distribution service is the date centric middleware standard for device to-

device machine to machine communication DDS uses a publish subscribe model where

publisher example device that generate data create topics to which subscribers per can

subscribe publisher is an object responsible for data distributions and the subscriber

responsible for receiving published data. DDS provide quality of service (QoS) control

and configurable reliability

• AMQP: Advanced Message Queuing protocols. it is an open application layer protocol

for business messaging. AMQP support point to point and publish - subscribe model

routing and queuing. AMQP broker receive message from publisher’s example devices

or applications that generate data and about them over connections to consumers

publishers publish the message to exchange which then distribute message copies to

queues.

Fig.1.2 IoT protocols

Logical Design of IoT

Logical design of an IoT system refers to an abstract representation of the entities and process

without going into low level specification of the implementations.

1. IoT functional block

An IoT system comprises of several functional blocks that provide the system the capabilities

for identification, sensing, actuation, communication and Management as shown in fig.1.3. The

function blocks are described as follows:

• Devices: An IoT system comprises of the devices that provide sensing, actuation,

monitoring and control function

• Communication: communication block handles the communication systems

• Services: An IoT system uses various types of IoT services such as services for device

monitoring, device control services, data publishing services and services for device

Discovery.

• Management: Functional blocks provide various functions to govern the IoT system

• Security: Security functional block security IoT system and by providing functions such

as application authorization message and content integrity and data security.

• Application: IoT application provides and interface that the user can used to control and

monitor various aspects of the IoT system. Application also allows users to view the

system status and view or analyze the processed to data.

Fig.1.3 Functional blocks of IoT

2. IoT communication model

• Request response: Request-response is a Communications model in which the client

sends request to the server and the server responds to the requests. when the server

receives a request, it decides how to respond, if it shows the data retrieved resources

definitions for the response and then send the response to the client. Access to response

model is a stateless communication model and each request response per is independent

of others the crime and server interactions in the request response model.

• Publish - Subscribe: Respect is a communication model that involve Publishers brokers

and consumers. Publishers are the source of data. Publishers send the data to the topics

which is managed by the broker. Publishers are not aware of the consumer. Consumers

Subscribe to the topic which are managed by the broker. When the broker receives the

data for a topic from the publisher, it sends the data to all the subscribed consumers.

• Push pull: Push pull is communication model in which the data producers push the data

to queues and the consumers pull the data from the queues. Producers do not need to be

aware of the consumer. Queues help in decoupling the messaging between the

Producers and Consumers. It also acts as a buffer which helps in situations when there

is a mismatch between the rate at which the produces push data and the rate at which

the consumers full the data.

• Exclusive pair: Exclusive pair is a bidirectional, fully duplex communication model

that uses a persistent connection between the client and the server. once the condition

is setup it remains open until the client sends a request to close the connection. client

and server can send messages to each other after connection setup. Exclusive pair is a

stateful Communications model and the server is aware of all the open connections.

3. IoT communication APIs

REST- based communication API:

Representational state transfer is a set of architectural principles by which you can design web

service and Web API that focus on a system resource and how resources states and addressed

the transferred. REST API follow the request- response communication model. The REST

architectural constraints apply to the components, connectors, and data elements.

• Client server: The principle behind the client-server conference separations of concerns

for example client should not be concerned with the storage of data which is their

concern of the server. Similarly, the server should not be concerned about the user

interface which is a concern of the client. separation allows client and server to be

independently deployed and updated.

• Stateless: Each request from client to server must contain all the information necessary

to understand the request and cannot take advantage of any stored context on the server.

• Catchable: Catch constrain requires that the data within the response to a request be

implicitly or explicitly labelled as catchable or non-catchable. Then a client cache is

given the right to reuse that response data for later, equivalent requests. completely

eliminate some attractions and improve efficiency and scalability.

• Layered system: System constraint come off constraints, constrains the behaviour of

components such that each component cannot see beyond the immediate layer with

which they are interacting. Example client cannot tell whether it is connected directly

to the end server or to an intermediary along the way system scalability can be improved

allowing intermediaries to respond to request instead of tender server.

• Uniform interface: Uniform interface constraints requires that the method of

communication between client and server must be uniform. Resources are identified in

the request and separate from the representation of the resource that are returned to the

client. When climbing holds, a representation of your resource it has all the information

required to update or delete the resource

• Code on demand: Service can provide executable code script for clients to execute in

their context.

Fig.1.4 Communication with REST APIs

Fig.1.5 Request-response model used by REST

WebSocket based communication API:

WebSocket API allow bidirectional, full duplex communication between client and server.

Unlike request-response API allow full duplex communication and do not require new

connection to be set up for each message to be sent. WebSocket communication begins with

connection setup request send by the client to the server. The request is sent over http, and the

server interprets it as an upgrade request. If the server support protocol response to the website

handshake response after the connection setup the client and the server can send data or

messages to each other in full duplex model. WebSocket API reduce network traffic and latency

as there is no overhead for connection setup and determination records to each message.

Fig.1.6 Exclusive pair model used by WebSocket APIs

IoT enabling technologies

It is enabled by several Technologies including wireless sensor networks, cloud computing big

Data Analytics, embedded system, security protocols and architectures, communication

protocols, web service, mobile internet and semantic search engine.

1. Wireless Sensor Network

Wireless sensor network comprises of distributed devices with the sensor which are used to

monitor the environmental and physical conditions. A WSN consists of a number of end nodes

and routers and a coordinator. End nodes have several sensors attached to them. End node can

also act as a router. Routers are responsible for routing the data packet from end nodes to the

coordinator. The coordinator node collects the data from all the notes coordinators also act as

a Gateway that connects the WSN to the internet. IoT systems are described as follows

• Weather monitoring system using WSN in which the nodes collect temperature,

humidity and other data which is aggregated and analysed.

• Indoor air quality monitoring system using WSN to collect data on the indoor air quality

and connections of various gases.

• Soil moisture monitoring system using WSN to monitor soil moisture at various

location.

• Surveillance systems use WSN for collecting surveillance data (motion detection data)

• Smart grids use wireless sensor network for monitoring the grid at various point.

• Structural health monitoring systems use WSN to monitor the health of structure by

writing vibration data from sensor nodes deployed at various points in the structure.

2. Cloud computing

Cloud Computing is a transformative computing paradigm that involves delivering applications

and services over the internet. Cloud Computing involves provisioning of computing

networking and storage resources on demand and providing these resources as metered services

to the users, in a “pay as you go” model. Cloud Computing resources can be provisioned on

demand by the user without requiring interactions with the Cloud Service Provider. The process

of provisioning resources used automatic Cloud Computing resources can be accessed then it

worked using standard access mechanism that provide platform-independent access using

heterogeneous client platforms such as workstations laptops tablets and Smartphones the

computing and storage resources provided by Cloud Service Provider our food to serve

multiple users using multi-Tenancy. Multi-tenant aspects on the multiple users to be served by

the same physical hardware.

Cloud Computing services are offered to user in different forms

• Infrastructure as a service (IAAS): IaaS provides the user the ability provision

computing and storage resources. These resources are provided to the users as virtual

machine instances and virtual storage. Users can start, stop configure and manage the

virtual machines instance on the virtual storage using can deploy operating systems and

applications on their choice on the actual resources provisions in the cloud. Cloud

Service Provider manages the underlying infrastructure.

• Platform as a service (PaaS): Platform as a service provides the user the ability to

develop and deploy application in the cloud using the deployment tool application

programming interfaces API, software libraries and services provided by the Cloud

Service Provider. The Cloud Service Provider manages the underlying cloud

infrastructure including servers, network, operating systems and storage.

• Software as a service (SaaS): Provide the user a complete software application of the

user interface to the application itself. The Cloud Service Provider manage the

underlying cloud infrastructure including server, network storage and application

software, and the user is unaware of the underlying architecture of the cloud.

Applications are provided to the user through a thin client interface example Browser

application. SaaS applications are accessed from various client smartphones running

different operating system.

3. Big Data Analytics

Big data is defined as collections of data set whose volume, velocity in terms of its temporal

variations) or variety, is so large that it is difficult to store, manage, process and analyse the

data using traditional database and data processing tools. Big Data Analytics involving several

steps starting from Data cleaning data munging data processing and visualization.

Some examples of big data generated by IoT systems are described as follows:

1. Sensor data generated by IoT system such as weather monitoring stations

2. Machine sensor data collected from sensor embedded in Industrial and energy system for

monitoring their files and protecting failure

3. Health and fitness data generated by IoT devices such as wearable fitness band.

4. Data generated by IoT system for Location tracking of vehicle.

5. Data generated by retail inventory monitoring system.

Characteristics of data include:

• Volume: Through there is no fixed threshold for volume of data to be considered as big

data, however the term big data is used for massive scale data that is difficult to store,

manage and process using traditional data bases and data processing architecture. The

volume of data generated by modern IT, industrial and Healthcare systems for example

is a growing exponentially driven by the lowering cost of data storage and processing

architectures and the need to extract valuable insights from the data to improve business

processes, efficiency and services to consumer.

• Velocity: Velocity is another important characteristic of big data and the primary

reasons for exponential growth of data velocity of the data of a store how fast the data

is generated and how frequently it varies. Modern IT Industrial and other systems are

generating data at increasing the highest speeds.

• Variety: Variety refers to the forms of the data. Big data comes in for different forms

such as structured or unstructured data including text data, audio, video and sensor data.

4. Communications protocol

Communications protocols form the backbone of IoT system and enable network connectivity

and coupling to applications. Communications protocols allow device to exchange data over

the network. These protocols define the data exchange formats and data encoding schemes for

devices and routing of packets from source to destination. Other function of the protocol

includes sequence control flow control and transmissions of Lost packet.

5. Embedded systems

An Embedded system is computer system that has computer hardware and software embedded

perform specific task. In contrast to general purpose computers or personal computers which

can perform various types of tasks, embedded systems are designed to perform a specific set

of tasks. Embedded system includes Microprocessor and Microcontroller memory Ram ROM

cache networking units (Ethernet WI-FI adaptor) input/output unit display keyboard, display

and storage such as Flash Memory some embedded system have specialist processes such as

digital signal processor DSP graphic processor and application.

IoT levels and Deployment Templates

This section defines various levels of IoT systems with increasing completely. IoT system

comprises of the following components:

1. Device: An IoT device allow identification, remote sensing, actuating and remote monitoring

capabilities.

2. Resources: Resources are software components on the device for accessing and storing

information for controlling actuator connected to the device also include software components

that enable network access for the device.

3. controller service: Controller Service is a native service that runs on the device and interact

with the web services. Controller service sends data from the device to the web service receive

command from the application from controlling the device.

4. Database: Database can be either local or in the cloud and stores the data generated by the

IoT device.

5. Web service: Serve as a link between the device, application database and analysis

components. Web Services can be implemented using HTTP and REST principles or using

website protocol.

A comparison of restaurant website is provided below:

• Stateless/stateful: Rest services stateless in nature. Each request contains all the

information needed to process it. Requests are independent of each other. Website on

the other hand is stateful in nature where the server maintains the state and is aware of

all the open connections.

• Directional / Bi-directional: REST service operates over http and unidirectional.

Request is always sent by a client and the server response to the request. And other hand

website is a bidirectional product server to send message to each other

• Request response / full duplex: REST service follower request response

Communications model where the client sends request and the server response to the

request. Website and the other hand Allow full-duplex Communications between the

client and server, it means both client and server can send messages to can

independently.

• TCP connections: For REST Service each http request involves setting up in a new TCP

connections WebSocket on the other hand involves a single TCP connection over which

the client and server communicate in a full duplex mode.

• Headache Overhead: REST service operates over http, and each request is independent

of others. Thus, each request carries http header which is an overhead. Due to the

overhead of http headers, REST is not suitable for real time applications left hand does

not involve overhead of headers. After the initial handshake the client and server

exchange messages with minimal frame information.

• Scalability: Scalability is easier in this case of the REST services of request are

independent and no state information needs to be maintained by the server. Thus, both

horizontal out and vertical scaling solutions are possible for REST services. For

WebSocket’s horizontal scaling can be cumbersome due to stateful nature of the

communication. Since the server maintains the state of our connection, vertical scaling

is easier for WebSocket than horizontal scaling.

• Analysis component: The analysis component is responsible for analysing the IoT data

and generate results in the form which are easy for the user to understand. Analysis of

IoT data can be performed either locally or in the cloud. Analysed results are stored in

the local or cloud database.

• Application: IoT applications provide an interface that the user can use to control and

monitor various aspects of the IoT system. Applications also allow user to view the

system status and view the processed data.

IoT level 1

Level One IoT system has a single node / device that performs sensing and/or actuation, stores

data, reforms analysis and the host to the application. Level 1 IoT systems are suitable for

modelling low cost and low complexity solutions where the data involving is not big, and the

analysis requirements are not computationally intensive.

Consider an example of Level 1 IoT system for home automation. This system consists of the

single node that allows controlling the lights and appliances in your home remotely. The device

used in this system interface with their lights and appliances using electronic relay switches.

Fig.1.7 IoT level 1

The status information of each light or appliance is maintained in a local database. REST

service deployed locally Allow retrieving and updating the state of each light or appliances in

the status database.

The controller service continuously monitors the state of each light or appliance and triggers

the relay switches accordingly. The applications which are deployed locally has a user interface

for controlling the lights or appliances. since the device is connected to the internet, the

application can be accessed remotely as well.

IoT level 2

Level 2 IoT system has a single node that performs sensing and/or actuation and local analysis.

Data is stored in the cloud and application is usually cloud based systems are suitable for

solutions where the data in world is big, however the primary analysis requirement is not

computationally intensive and can be done local itself.

Construct an example of Level 2 IoT system for smart irrigation.

The system consists of the single node that monitor the soil moisture level and control

segregation system. The device used in this system collect soil moisture data from sensor the

controller service continuously monitors the moisture level. If the monster level drops below a

threshold t, the irrigation system is turned on. For controlling the irrigation system actuators

such as solenoid valve can be used. Rest Web Services is used for storing and retrieving data

which is stored in the cloud database. A cloud-based application is used for visualizing the

moisture level over a period, which can help in making decisions about irrigation schedules.

Fig.1.8 IoT level 2

IoT Level 3

Level 3 system has a single node. Data is stored and analysed in the cloud application is cloud-

based. Level 3 IoT system suitable for solutions where the data involved is big and analysis

requirements computationally intensive.

Fig.1.9 IoT level 3

Consider example of Level 3 IoT system tracking package handling. The system consists of a

single node that monitors the vibration level for package being shipped. The device in the

system uses accelerometer and gyroscope sensor for monitoring vibration levels. The controller

service sends sensor data to the cloud in real time using a website service. The data is stored in

the cloud and visualized using a cloud-based application.

The analysis component in the cloud can Trigger alert the vibration level becomes greater than

threshold. The benefit of using WebSocket service instead of the REST service this example

the sensor data can be sent in real-time to the cloud. Cloud based application can subscribe to

the sensor data feeds for you in the real-time data.

IoT level 4

A level 4 IoT system has multiple notes that perform local analysis. Data is stored in the cloud

and application is cloud based, level 4 contains local and cloud-based observer notes which

can subscribe to and receive information collected in the cloud from IoT devices.

Observer node can process information and use it for various applications; however, observer

notes do not perform any control function. level 4 IoT systems are suitable for solutions where

multiple nodes are required the data involved is big and the analysis requirements are

computationally intensive.

Consider an example of level four IoT system for noise monitoring. The system consists of

multiple notes placed in different locations for monitoring noise level in an area. In this

example with sound sensor. Nodes are independent of each other each node runs in one

controller service that sends the data to the cloud. The data is stored in a cloud database the

analysis of the data collected from several notes is done in the cloud

Fig.1.10 IoT level 4

IoT Level 5

IoT system has multiple end nodes and one coordinator notes and notes that perform sensing

and / or actuation. Coordinator node collects data from the entry and send to the cloud. Data is

stored and analysed in the cloud and applications is cloud based. Level 5 IoT system are

suitable for forest fire detection. The system consists of multiple nodes placed in different

locations for monitoring temperature, humidity and carbon dioxide levels in a forest.

The endnotes in this example are equipped with various sensors such as temperature humidity

and to CO2. The coordinator node collects the data from the end nodes and act as a Gateway

that provides internet connectivity to the IoT system. The controller service on the coordinator

device sends the collected data to the cloud. The data is stored in the cloud database. The

analysis of the data is done in the computing cloud to aggregate the data and make prediction.

Fig.1.11 IoT level 5

IoT Level 6

IoT Level 6 system has multiple Independent and nodes that perform sensing and / or actuations

and send data to the cloud. Data is stored in the cloud and applications is cloud based.

 The analytics component analyses the data and stores the results in the cloud database. The

results are visualized with the cloud-based application. The centralized controller is aware of

the status of all the end notes and send control commands to the notes.

Consider an example of the level 6 IoT system for weather monitoring. The system consists of

multiple nodes placed in different location for monitoring temperature, humidity and pressure

in an area. The end nodes are equipped with various sensors such as temperature, pressure and

humidity. The end nodes send the data to the cloud in real time using a WebSocket service. The

data is stored in a cloud database. The analysis of the data is done in the cloud to aggregate the

data and make predictions. A cloud-based applications is used for visualizing the data.

Fig.1.12 IoT level 6

Module-2

Chapter 1: IoT and M2M

Introduction to M2M

Machine to machine (M2M) refers to networking of Machines for the purpose of remote

monitoring and control and data exchange. The end-to-end architecture for M2M systems

comprising of M2M area networks, Communications Network and application domain.

An M2M area network comprises of machines which have embedded hardware module for

sensing actuation and communication. Various Communication protocols can be used for M2M

local area network such as Zigbee, Bluetooth, Modbus M–bus, wireless, power LINE

Communication ,6LoWPAN.

These Communications protocols provide connectivity between M2M nodes within and M2M

area network. The Communications Network provides connectivity to remote M2M area

network. communication network can use wired or wireless network. The M2M area network

use either proprietary or non-IP based protocol.

The communication between the M2M nodes and the M2M Gateway is based on the

communication protocol. M2M Gateway protocol translation to enable IP connectivity for

M2M. M2M Gateway act as a proxy performing translation from / to native protocol to M2M

area network.

M2M data is gathered into point solution such as enterprise applications, service management

application for remote monitoring applications. M2M has various application domain such as

smart metering, Home Automation, industrial Automation, smart grid.

Difference between IoT and M2M

The difference between m2m and IoT are described as follows:

• Communication protocols:

M2m and IoT can differ in how the communication between the machines are device happens.

M2M uses other proprietary or not IP based communication protocol for communication with

in the M2M area networks. Commonly uses M2m protocol include zigbee, Bluetooth, ModBus,

wireless M-Bus, power line communication. The focus of communication in M2M is usually

on the protocols below the network layer. Focus of communication in IoT is usually a protocol

in network layer such as http web sockets, MQTT, XMPP, DDS, AMQP.

• Machines in M2M vs Things in IoT:

The " things " IoT refers to Physical objects that have unique identifier and can sense and

communicate with the external environment or their internal physical status. The unique

identifiers the things in IoT are the IP addresses. Things have software component for accessing

processing and storing sensor information on controlling actuator connector. IoT system can

include IoT devices of various types such as fire alarms, door alarms, lighting control devices.

• Hardware versus software emphasis:

while the emphasis of M2M is more on hardware with embedded modules, the emphasis

modules, the emphasis of IoT is more on software. IoT devices run specialist software sensor

Data Collection, data analysis and interfacing with cloud through IP based communication.

• Data collection and analysis:

M2M data is collected in point solutions and often in on premises storage infrastructure. In

contrast to M2M, the data in IoT is connected in the cloud. The analytical component analysis

the data and stores the result in the cloud database. Data and analysis results are visualized with

the cloud-based applications. The centralized controller is aware of the status of all the nodes

and send Control Commands to the nodes.

• Applications:

M2m data is collected in point solutions and can be accessed by on premises application

diagnosis applications, service management applications, and on-premises enterprise

application.

SDN and NFV for IOT

Software defined networking (SDN) and the network function virtualization (NFV) and their

applications for IoT.

Software Defined Networking

Software defined networking (SDN) is the networking architecture that separates the control

plan from the data plan and centralizes race the network controller. Conventional network

architecture builds with specialized hardware (switches, router etc).

Network device in conventional architectures is getting exceedingly Complex with the

increasing number of distributed products has been implemented and the use of proprietary

hardware and interfaces. Control plan is the part of the network that carries the signal and

routing message traffic while the data plan is a part of network that carries the payload data

traffic.

The limitations of the conventional network architecture as follows:

• Complex network devices: Interoperability is limited due to the lack of standard and

open interfaces. Network devices use proprietary hardware and software and have slow

product lifecycle limiting innovations. The convention networks were well suited for

static traffic pattern and had many products was decided for specific applications which

are applied in cloud computing environment traffic patterns are more dynamic. Due to

complexity of conventional network devices making changes in the networks to meet

the dynamic traffic pattern has become increasingly difficult.

• Management overhead: conventional networks involve significant manager overhead.

Network managers find it increasingly difficult to manage multiple network devices

and interfaces from multiple vendors. Up gradation of network configuration changes

in multiple devices.

• Limited scalability: The Virtualization technologies used in cloud computing

environment has increased the number of its host repairing network access IoT

applications hosted in the cloud are distributed across multiple virtual machines that

require exchange of traffic.

Fig.2.1 SDN layers

Components of IoT applications run distributed algorithms on many virtual machines that

require huge amounts of data exchange between virtual machines. Such computing

environment requires highly scalable and easy to manage network architectures with minimal

manual configuration which is becoming raising a difficult with a conventional network. Key

Elements of SDN and follow:

• Centralized network controller: with Decoupled control and the data plan and

centralized network controller, the network administrator can rapidly configure the

network. SDN applications can be deployed Programmable open API. This speed has

innovation as the network status no longer need to wait for other device vendors to

embed features in their proprietary hardware.

• Programmable open APIs: SDN architecture propose Programmable open API for

interface between the SDN application and control layers with these open API is various

network services can be implemented such as routing quality of services access.

• Standard communication interface (Open Flow): SDN architecture uses a standard

communication interface between the control and infrastructure layers. OpenFlow,

which is Defined by the open networking Foundation is the broadly accepted SDN

protocol for the southbound interface. Open flow, the forwarding plan of the network

devices can be directly accessed and manipulated.

Open floor uses the concept of close try different network traffic based on three different rules.

Floor can be programmed statically and dynamically by the SDN control software.

Components of and OpenFlow switch comprising one or more tables and their group table

which perform packet lookup and forwarding, and open flow channels to an external Controller

System OpenFlow protocol is implemented at both sides of the interface between the controller

and the network devices.

Network function virtualization

Network function virtualization is a technology that leverages virtualization to consolidate the

heterogeneous network devices on to industry standard high-volume service switches and

storage. NFV is complementary to SDN as NFV can provide at the infrastructure on which

SDN can run. NFV and SDN mutually beneficial to each other but not dependent. Network

functions can be virtualized without SDN, similarly SDN can run without NFV.

Fig.2.2 NFV architecture

Elements of architecture as follows:

• Virtualize to network function VNF: VNF is a software implementation of a network

function which can run over the enough Infrastructures

• NVF Infrastructure NFVI: It into Computer Network and storage resources that are

visualized.

• NFV management and orchestrations: Orchestrations focuses on all visualization

specific management task and the covers the orchestrations and lifecycle management

of physical and / or software resources that support the infrastructure utilization and the

lifecycle management of VNF.

NFV comprises of network functions implemented in software that run on Virtualized resources

in the cloud. NFC enabled separations of network function which are implemented in software

from the underlying hardware.

Chapter 2: IoT System Management with NETCONF-YANG

Need for IoT Systems Management

Managing multiple devices within a single system requires advanced management capabilities.

The need for managing IoT systems is described as follows:

• Automating Configuration: IoT system management capabilities can help in automating

the system configuration.

• Monitoring Operational & Statistical Data: Management systems can help in

monitoring operational and statistical data of a system. This data can be used for fault

diagnosis or prognosis.

• Improved Reliability: A management system that allows validating the system

Configurations before they are put into effect can help in improving the system

reliability.

• System Wide Configurations: For IoT systems that consists of multiple devices or

nodes, ensuring system wide configuration can be critical for the correct functioning of

the system.

• Multiple System Configurations: For some systems it may be desirable to have multiple

valid configurations which are applied at different times or in certain conditions.

• Retrieving & Reusing Configurations: Management systems which have the capability

of retrieving configurations from devices can help in reusing the configurations for

other devices of the same type.

Simple Network Management Protocol (SNMP)

SNMP allows monitoring and configuring network devices such as routers, switches, servers,

printers etc. Entities involved in managing a device with SNMP are Network Management

Station (NMS), Managed devices, Management information base (MIB) and the SNMP Agent.

SNMP is an application layer protocol that uses UDP as the transport protocol.

Limitations of SNMP

• SNMP was designed to provide a simple management interface between the

management applications and the managed devices. SNMP is stateless in nature and

each SNMP request contains all the information to process the request. The application

needs to be intelligent to manage the device.

• SNMP is a connectionless protocol which uses UDP as the transport protocol, making

it unreliable as there was no support for acknowledgement of requests.

• It is difficult to differentiate between configuration and state data in MIBs.

• Retrieving the current configuration from a device can be difficult with SNMP.

• Earlier versions of SNMP did not have strong security features making the

management information vulnerable to network intruders.

Network operator requirements

• Ease of use: From the operator’s point of view, ease of use is the key requirement for

any network management technology.

• Distinction between configuration and state data: Configuration data is the set of

writable data that is required to transform the system from its initial state to its current

state. State data includes operational data which is collected by the system at runtime

and statistical data which describes the system performance. It is important to make a

clear distinction between configuration and state data.

• Fetch configuration and state data separately

• Configuration of the network as a whole

• Configuration transactions across devices

• Configuration deltas

• Dump and restore configurations

• Configuration validation

• Configuration database schemas

• Comparing configuration

• Role based access control

• Consistency of access control lists

• Multiple configuration sets

• Support for both data-oriented and task-oriented access control

NETCONF

Network Configuration Protocol is a session-based network management protocol. It allows

retrieving state or configuration data and manipulating configuration data on network devices.

The configuration data resides within a NETCONF datastore on the server. The NETCONF

server resides on the network device. The management application plays the role of a

NETCONF client. For managing a network device, the client establishes a NETCONF session

with the server. When a session is established the client and server exchange ‘hello’ messages

which contain information on their capabilities.

Client can then send multiple requests to the server for retrieving or editing the configuration

data. NETCONF allows the management client to discover the capabilities of the server.

NETCONF gives access to the native capabilities of the device.

Fig.2.3 NETCONF protocol layers

YANG

YANG is a data modelling language used to model configuration and state data manipulated

by the NETCONF protocol. YANG modules contain the definitions of the configuration data,

state data, RPC calls that can be issued and the format of the notifications.

YANG modules define the data exchanged between the NETCONF client and server. A module

comprises of several ‘leaf’ nodes which are organized into a hierarchical tree structure. The

‘leaf’ nodes are specified using the ‘leaf’ or ‘leaf-list’ constructs. Leaf nodes are organized

using ‘container’ or ‘list’ constructs. YANG can model both configuration data and state data

using ‘config’ statement. YANG defines 4 types of nodes for data modelling.

Table: YANG Node Types

Node Type Description

Leaf Nodes

Contains simple data structures such as an

integer or a string. Leaf has exactly one value

of a particular type and no child nodes.

Leaf-list Nodes
Is a sequence of leaf nodes with exactly one

value of a particular type per leaf.

Container Nodes

Used to group related nodes in a subtree. A

container has only child nodes and no value.

A container may contain any number of child

nodes of any type (including leafs, lists,

containers and leaf-lists).

List Nodes

Defines a sequence of list entries. Each entry

is like a structure or a record instance and is

uniquely identified by the value of its key

leafs. A list can define multiple key leafs and

may contain any number of child nodes of

any type.

IoT Systems Management with NETCONF-YANG

Figure 2.4 shows the generic approach of IoT device management with NETCONF-YANG.

Fig.2.4 IoT device management with NETCONF-YANG – a generic approach

Roles of various components are:

• Management System: The operator uses a management system to send NETCONF

messages to configure the IoT device and receives state information and notifications

from the device as NETCONF messages.

• Management API: allows management application to start NETCONF sessions.

• Transaction Manager: executes all the NETCONF transactions and ensures that ACID

properties hold true for the transactions.

• Rollback Manager: is responsible for generating all the transactions necessary to

rollback a current configuration to its original state.

• Data Model Manager: Keeps track of all the YANG data models and the corresponding

managed objects. Also keeps track of the applications which provide data for each part

of a data model.

• Configuration Validator: checks if the resulting configuration after applying a

transaction would be a valid configuration.

• Configuration Database: contains both configuration and operational data.

• Configuration API: Using the configuration API the application on the IoT device can

be read configuration data from the configuration datastore and write operational data

to the operational datastore.

• Data Provider API: Applications on the IoT device can register for callbacks for various

events using the Data Provider API. Through the Data Provider API, the applications

can report statistics and operational data.

NETOPEER

It is set of open source NETCONF tools built on the Libnetconf library. The Netopeer tools

include:

• Netopeer-server: It is a NETCONF protocol server that runs on the managed device.

Netopeer-server provides an environment for configuring the device using NETCONF

RPC operations and also retrieving the state data from the device.

• Netopeer-agent: It is the NETCONF protocol agent running as a SSH/TLS subsystem.

It accepts incoming NETCONF connection and passes the NETCONF RPC operations

received from the NETCONF client to the Netopeer server.

• Netopeer-cli: It is a NETCONF client that provides a command line interface for

interacting with the Netopeer-server. The operator can use the Netopeer-cli from the

management system to send NETCONF RPC operations for configuring the device and

retrieving the state information.

• Netopeer-manager: Netopeer-manager allows managing the YANG and Libnetconf

Transaction API (TransAPI) modules on the Netopeer-server. With Netopeer-manager

modules can be loaded or removed from the server.

• Netopeer-configurator: It is a tool that can be used to configure the Netopeer-server.

Steps for IoT device Management with NETCONF-YANG

1) Create a YANG model of the system that defines the configuration and state data of the

system.

2) Complete the YANG model with the ‘Inctool’ which comes with Libnetconf.

3) Fill in the IoT device management code in the Trans API module.

4) Build the callbacks C file to generate the library file.

5) Load the YANG module and the TransAPI module into the Netopeer server using Netopeer

manager tool.

6) The operator can now connect from the management system to the Netopeer server using

the Netopeer CLI.

7) Operator can issue NETCONF commands from the Netopeer CLI. Command can be issued

to change the configuration data, get operational data or execute an RPC on the IoT device.

Module-3

Chapter 1: IoT Platforms Design Methodology

Introduction

Designing IoT systems can be a complex and challenging task as these systems involve

interactions between various components such as IoT devices and network resources, web

services, analytics components, applications and database servers. IoT system designers often

tend to design IoT systems keeping specific products/services in mind. Updating the system

design to add new features or replacing a particular product becomes very complex, and in

many cases may require complete re-design of the system.

IoT Design Methodology

Figure.3.1 shows the steps involved in the IoT system design methodology.

Fig.3.1 Steps involved in IoT system design methodology

Step 1: Purpose & Requirements Specification:

The first step in IoT system design methodology is to define the purpose and requirements of

the system. In this step, the system purpose, behaviour and requirements (such as data

collection requirements, data analysis requirements, system management requirements, data

privacy and security requirements, user interface requirements, ...) are captured.

Step 2: Process Specification:

The second step in the IoT design methodology is to define the process specification. In this

step, the use cases of the IoT system are formally described based on and derived from the

purpose and requirement specifications.

Step 3: Domain Model Specification:

The third step in the IoT design methodology is to define the Domain Model. The domain

model describes the main concepts, entities and objects in the domain of IoT system to be

designed.

Domain model defines the attributes of the objects and relationships between objects. Domain

model provides an abstract representation of the concepts, objects and entities in the IoT

domain, independent of any specific technology or platform. With the domain model, the IoT

system designers can get an understanding of the IoT domain for which the system is to be

designed.

Step 4: Information Model Specification:

The fourth step in the IoT design methodology is to define the Information Model. Information

Model defines the structure of all the information in the IoT system, for example, attributes of

Virtual Entities, relations, etc. Information model does not describe the specifics of how the

information is represented or stored. To define the information model, we first list the Virtual

Entities defined in the Domain Model. Information model adds more details to the Virtual

Entities by defining their attributes and relations.

Step 5: Service Specifications:

The fifth step in the IoT design methodology is to define the service specifications. Service

specifications define the services in the IoT system, service types, service inputs/output, service

endpoints, service schedules, service preconditions and service effects.

Step 6: IoT Level Specification:

The sixth step in the IoT design methodology is to define the IoT level for the system.

Step 7: Functional View Specification:

The seventh step in the IoT design methodology is to define the Functional View. The

Functional View (FV) defines the functions of the IoT systems grouped into various Functional

Groups (FGs). Each Functional Group either provides functionalities for interacting with

instances of concepts defined in the Domain Model or provides information related to these

concepts.

Step 8: Operational View Specification:

The eighth step in the IoT design methodology is to define the Operational View Specifications.

In this step, various options pertaining to the IoT system deployment and operation are defined,

such as, service hosting options, storage options, device options, application hosting options,

etc

Step 9: Device & Component Integration:

The ninth step in the IoT design methodology is the integration of the devices and components.

Figure 3.2 shows a schematic diagram of the home automation IoT system.

Fig.3.2 Schematic diagram of the home automation IoT system showing the device, sensor

and actuator integrated.

Step 10: Application Development:

The final step in the IoT design methodology is to develop the IoT application. Figure 3.3

shows a screenshot of the home automation web application.

Fig. 3.3 Home automation web application screenshot

Case Study on IoT System for Weather Monitoring

The purpose of the weather monitoring system is to collect data on environmental conditions

such as temperature, pressure, humidity and light in an area using multiple end nodes. The end

nodes send the data to the cloud where the data is aggregated and analysed.

Figure 3.4 shows the process specification for the weather monitoring system. The process

specification shows that the sensors are read after fixed intervals, and the sensor measurements

are stored.

Fig.3.4 Process specification for weather monitoring IoT system

Fig.3.5 Domain model for weather monitoring IoT system

Figure 3.5 shows the domain model for the weather monitoring system. The physical entity is

the environment which is being monitored. There is a virtual entity for the environment.

Resources are software components which can be either on-device or network-resources.

Services include the controller service that monitors the temperature, pressure, humidity and

light and sends reading to the cloud.

Chapter 2: IoT Systems - Logical Design using Python: Introduction

Python is a general-purpose high level programming language and suitable for providing a

solid foundation to the reader around cloud computing.

The main characteristics of Python are:

1. Multi-paradigm programming language.

2. Python supports more than one programming paradigms including object- oriented

programming and structured programming.

3. Interpreted Language.

4. Python is an interpreted language and does not require an explicit compilation step.

5. The Python interpreter executes the program source code directly, statement by

statement, as a processor or scripting engine does.

6. Interactive Language

7. Python provides an interactive mode in which the user can submit commands at the

Python prompt and interact with the interpreter directly.

Installing Python

Python is a highly portable language that works on various platforms such as Windows, Linux,

Mac etc.

Windows:

Download the Installer:

Visit the official Python downloads page (python.org/downloads) and download the latest

stable Windows installer (e.g., "Windows installer (64-bit)").

Run the Installer:

Execute the downloaded .exe file.

Add to PATH:

Crucially, on the first screen of the installer, check the box that says "Add Python X.Y to PATH"

(where X.Y is the version number). This allows you to run Python commands from any

command prompt.

Install:

Click "Install Now" (or customize features if desired) and follow the prompts to complete the

installation.

Verify:

Open a Command Prompt or PowerShell and type python --version to confirm the installation

and version.

Linux:

Many Linux distributions come with Python pre-installed. However, it might be an older

version or Python 2. To ensure you have Python 3 and its necessary components: Update

Package Lists.

Code

 sudo apt update # For Debian/Ubuntu-based systems

 sudo yum update # For Red Hat/CentOS-based systems

Install Python 3 and pip.

Code

 sudo apt install python3 python3-pip # For Debian/Ubuntu-based systems

 sudo yum install python3 python3-pip # For Red Hat/CentOS-based systems

Verify: In the terminal, run python3 --version and pip3 --version.

Python Data Types and Data structures

Numbers: Number data types are used to store numeric values. Numbers are immutable data

types, therefore changing the values of a number data type results in a newly allocated object.

#Integer

>>>a=5 >>>type(a)

<type ‘int’>

#Floating point

>>>b=2.5

>>>type(b)

<type ‘float’>

#Long

>>>x=243577889L

>>>type(x)

<type ‘long’>

#Complex

>>>Y=2+5j

>>>y

(2+5j)

>>>type(y)

<type ‘complex’>

>>>y.real

2

>>>y.imag

5

#Addition

>>>c=a+b

>>>c

7.5

>>>type(c)

<type ‘float’>

#Subtraction

>>>d=a-b

>>>d

2.5

>>>type(d)

<type ‘float’>

#Multiplication

>>>e=a*b

>>>e

12.5

>>>type(e)

<type ‘float’>

#division

>>>f=b/a

>>>f

0.5

>>>type(f)

<type ‘float’>

#Power

>>>g=a**2

>>>g

25

Strings

A string is simply a list of characters in order. There are no limits to the number of characters

you can have in a string. A string which has zero characters is called an empty string.

Working with Strings in Python:

#Create String

>>>s= "hello World!"

>>>type(S)

<type ‘str’>

#String Concatenation

>>>t= "This is sample program".

>>>r=s+t

>>>r

‘Hello World! This is sample program’.

#Get length of string

>>>len(s)

12

#Convert String to integers

>>>X= "100"

>>>type(s)

<type ‘str’>

>>>y=int(x)

>>>y

100

#Print String

>>>print S

Hello World!

#Formatting Output

>>>print "The string(%s) has %d characters "%(S, len(S)))

The string (Hello World!) has 12 characters

#Convert to upper/lower case

>>>S.upper()

‘HELLO WORLD’

>>>S.lower() ‘hello world!’

 #Accessing Sub-String

>>>S[0]

‘H’

>>>S[6:]

‘world!’

>>>S[6:-1]

‘world’

#Strip: Return a copy of the string with

#the leading and trailing characters removed.

>>>S.strip("!")

‘Hello World’

Lists

List is a compound data type used to group together other values. List items need not all have

the same type. A list contains items separated by commas and enclosed within square brackets.

Working with lists in Python

>>>fruits=[‘apple’, ‘orange’, ‘banana’, ‘mango’]

>>>type(fruits)

<type ‘list’>

>>>len(fruits)

4

>>>fruits[1]

‘orange’

>>>fruits[1:3]

[‘orange’ , ‘banana’]

>>>fruits[1:]

[‘orange’,’banana’,’mango’]

#Appending an item to a list

>>>fruits.append(‘pear’)

>>>fruits

[‘apple’, ‘orange’, ‘banana’, ‘mango’, ‘pear’]

#Removing an item from a list

>>>fruits.remove(‘mango’)

>>>fruits [‘apple’, ‘orange’, ‘banana’, ‘pear’]

#Inserting an item to a list

>>>fruits.insert(1, ‘mango’)

>>>fruits [‘apple’, ‘mango’, ‘orange’, ‘banana’, ‘pear’]

#Combining lists

>>>vegetables=[‘potato’, ‘carrot’, ‘onion’, ‘beans’, ‘radish’]

>>>vegetables

[‘potato’, ‘carrot’, ‘onion’, ‘beans’, ‘radish’]

>>>eatable=fruits+vegetables

>>>eatable

[‘apple’, ‘mango’, ‘orange’, ‘banana’, ‘pear’, ‘potato’, ‘carrot’, ‘onion’ ,’beans’, ‘radish’]

#Mixed data types in a list

>>>mixed=[‘data’, 5, 100.1, 8287398L]

>>>type(mixed)

<type ‘list’>

>>>type(mixed[0])

<type ‘str’>

>>>type(mixed[1])

<type ‘int’>

>>>type(mixed[2])

<type ‘float’>

>>>type(mixed[3])

<type ‘long’>

#It is possible to change individual elements of a list

>>>mixed[0]=mixed[0]+ "items"

>>>mixed[1]=mixed[1]+1

>>>mixed[2]=mixed[2]+ 0.05

>>>mixed

[‘data items’, 6, 100.14999999999999, 8287398L]

#Lists can be nested

>>>nested=[fruits, vegetables]

>>>nested

[[‘apple’, ‘mango’, ‘orange’, ‘banana’, ‘pear’],[‘potato’, ‘carrot’, ‘onion’, ‘beans’, ‘radish’]]

Tuples

A Tuple is a sequence data type that is similar to the list. A Tuple consists of values separated

by commas and enclosed within parentheses. Unlike lists, the elements of tuple cannot be

changed, so tuple can be thought of as read-only lists.

Working with Tuples in Python:

>>>fruits=("apple", "mango", "banana", "pineapple")

>>>fruits

(‘apple’, ‘mango’, ‘banana’, ‘pineapple’)

>>>type(fruits)

<type ‘tuple’>

#Get length of tuple

>>>len(fruits)

4

#Get an element from a Tuple

>>>fruits[0]

‘apple’

>>>fruits[:2]

(‘apple’, ‘mango’)

#Combining tuples

>>>vegetable= (‘potato’, ‘carrot’, ‘onion’, ‘radish’)

>>>eatebles= fruits+vegetable

>>>eatables

(‘apple’, ‘mango’, ‘banana’, ‘pineapple’, ‘potato’, ‘carrot’, ‘onion’, ‘radish’)

Dictionaries

Dictionary is a mapping data type or a kind of hash table that maps key to values. Keys in a

dictionary can be of any data type, through numbers and strings are commonly used for keys.

Values in a dictionary can be any data type or object.

Working with Dictionaries with Python:

>>>students={‘name’: ‘Mary’, ‘id’: ‘8776’, ‘major’: ‘cs’}

>>>students

{‘major’: ‘cs’, ‘name’: ‘Mary’, ‘id’: ‘8776’}

>>>type(student) <type ‘dict’>

#Get length of a Dictionary

>>>len(student)

3

#Get the value of a key in dictionary

>>>student[‘name’]

‘Mary’

#Get all items in a dictionary

>>>student.tems()

[(‘major’,’CS’), (‘name’, ‘Mary’), (‘id’, ‘8776’)]

#Get all keys in a dictionary

>>>student.keys()

[‘major’, ‘name’, ‘id’]

#Get all values in a dictionary

>>>student.values()

[‘cs’, ‘Mary’, ‘8776’]

>>>students

{‘major’: ‘cs’, ‘name’: ‘Mary’, ‘id’: ‘8776’}

#A value in a dictionary can be another dictionary

>>>student1= {‘major’: ‘ece’, ‘name’: ‘David’, ‘id’: ‘9876’}

>>>students={‘1’:student, ‘2’:student1}

{‘1’:{‘major’:’cs’, ‘name’: ‘Mary’, ‘id’: ‘8776’},

‘2’: { ‘major’: ‘ece’, ‘name’: ‘David’, ‘id’: ‘9876’}}

#Check if dictionary has a key

>>>student.has_key(‘name’)

True

>>>student.has_key(‘grade’)

False

Type Conversions

Type Conversion examples

#Convert to String

>>>a=10000

>>>str(a)

‘10000’

#Convert to int

>>>b= "2013"

>>>int(b)

2013

#Convert to float

>>>float(b)

2013.0

#Convert to long

>>>long(b)

2013L

#Convert to list

>>>s= "aeiou"

>>>list(s)

[‘a’, ‘e’, ‘i’, ‘o’, ‘u’]

#Convert to Set

>>>x=[‘mango’, ‘apple’, ‘banana’, ‘mango’, ‘banana’]

>>>set(x)

set([‘mango’, ‘apple’, ‘banana’])

Control Flow

Let us look at the control flow statements in Python.

if

The if statement in Python is similar to the if statement in other languages.

examples:

>>>a=25**5

>>>if a>10000:

 print "More"

else:

 print "Less"

More

>>>if a>10000:

 If a<100000:

 print "Between 10k and 100k"

 else:

 print "More than 100k"

elif a==10000:

 print "Equal to 10k"

else:

 print "Less than 10k"

More than 100k

>>>S= "Hello World"

>>>if "world" in S:

 S=S+ "!"

 Print S

Hello World!

>>>student ={‘name’: ‘mary’, ‘id’: ‘8776’}

>>>if not student.has_key(„major‟):

Student[‘major’]= ‘cs’

>>>student

{‘major’: ‘cs’, ‘name’: ‘Mary’, ‘id’: ‘8776’}

for

The for statement in python iterates over items of any sequence (list, String, etc.) in the order

in which they appear in the sequence. This behaviour is different from the for statement in other

languages such as C in which an initialization, incrementing and stopping criteria are provided.

Example:

helloString= "Hello World"

fruits=[‘apple’, ‘orange’, ‘banana’, ‘mango’]

student = ‘name’ : ‘Mary’, ‘id’ : ‘8776’ , ‘major’: ‘CS’

#looping over characters in a string

for c in helloString:

 print c

#looping over items in a list

i=0

for item in fruits:

print “Fruit-%d: %s” %(i, item)

 i=i+1

#looping over keys in a dictionary

for key in student:

 print”%s: %s” % (key, student[key])

while

The while statement in Python executes the statements within the while loop as long as the

while condition is true.

Example:

#prints even numbers upto 100

>>>i=0

>>>while i<<=100:

if i%2 == 0:

print i

i=i+1

range

the range statement n Python executes the statements within the while loop as long as the while

condition is true.

Example:

#Generate a list of numbers from 0-9

>>>range (10)

[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]

#Generate a list of numbers from 10-100 with increments of 10

>>>range(10,110,10)

[10, 20, 30, 40, 50, 60, 70, 80, 90, 100]

break/continue

The break and continue statements in python are similar to the statement in C. The break

statement breaks out of the for/while loop where as the continue statement continues with the

next iteration.

Example:

#Break Statement example

>>>y=1

>>>for x in range(4, 256, 4):

y=y*x

if y>512:

 break

print y

4

32

384

#continue Statement example

>>>fruit=[‘apple’, ‘orange’ , ‘banana’ , ‘mango’]

>>> for item in fruits :

if item == "banana" :

 continue

else:

 print item

apple

orange

mango

pass

The pass statement in python is a null operation. The pass statement is used when a statement

is required syntactically but you do not want any command or code to execute.

Example:

fruits = [‘apple’, ‘orange’, ‘banana’, ‘mango’]

for item in fruits:

 if item == "banana":

pass

 else: print item

apple

orange

mango

Functions

A function is a block of code that takes information in (in the form of parameters), does some

computation, and returns a new piece of information based on the parameter information. A

function in python is a block of code that begins with the keyword def followed by the function

name and parenthesis. The function parameters are enclosed within the parenthesis. The code

block within a function begins after a colon that comes after the parenthesis. The code block

within a function begins after a colon that comes after the parenthesis enclosing the parameters.

The first statement of the function body can optionally be a documentation string or docstring.

Example:

students= {‘1’: {‘name’: ‘Bob’, ‘grade’: 2.5},

‘2’: {‘name’: ‘Mary’, ‘grade’ :3.5},

‘3’: {‘name’: ‘David’, ‘grade’ :4.2},

‘4’: {‘name’: ‘John’, ‘grade’ :4.1},

‘5’: {‘name’: ‘Alex’, ‘grade’ :3.8}}

def averageGrade (students):

"This function computes the average grade"

sum = 0.0

for key in student:

sum=sum +student[key][‘garde’]

average= sum/len(students)

return average

avg= averageGrade(students)

print " The average grade is: %0.2f" %(avg)

Function can have default values of the parameters. If a function with default values is called

with fewer parameters or without any parameter, the default values of the parameter are used

as shown in the example.

Example of function with default arguments

>>>def displayFruits(fruits = [‘apple’, ‘orange’]):

print "There are %d fruits in the list "% (len(fruits))

for item in fruits:

 print item

#Using default arguments

>>>displayFruits()

Apple

Orange

>>>fruits=[‘banana’ , ‘pear’, ‘mango’]

>>>displayFruits(fruits)

Banana

Pear

Mango

All parameter in the python functions are passed by reference. Therefore, if a parameter is

changed within a function the change also reflected block in the calling function.

Example of passing by reference

>>>def displayFruits(fruits):

print "There are %d fruits is the list" % (len(fruits))

for item in fruits:

print item

print "Adding one more fruit"

fruits.append(‘mango’)

>>>fruits=[‘banana’, ‘pear’, ‘apple’]

>>>displayFruits(fruits)

There are 3 fruits in the list

Banana

Pear

Apple

Adding one more fruits

>>>print "There are %d fruits in the list"%(len(fruits))

There are 4 fruits in the list

Function can also be called using keyword arguments that identify the arguments by the

parameter name when the function is called.

examples of keyword arguments

>>>def printStudentRecords(name, age=20, major= ‘CS’):

print "Name:" +name

print "Age:" +str(age)

print "Major:" + major

#This will give error as name is required argument

>>>printStudentRecords()

Traceback (most recent call last):

File "<stdin>", line1, in <module>

TypeError: printStudentRecords() takes at least 1 argument (0 given)

>>>printStudentRecords(name= ‘Alex’)

Name: Alex

Age:20

Major:CS

>>>printStudentRecords(name= ‘Bob’, age=22, major= ‘ECE’)

Name: Bob

Age:22

Major:ECE

>>> printStudentRecords(name= ‘Alan’, major= ‘ECE’)

Name: Alan

Age:20

Major: ECE

#name is a format argument.

#**kwargs is a keyword argument that receives all

#arguments except the formal argument as a dictionary

>>>def student(name, **kwargs):

print "Student Name:" +name

for key in kwargs:

print key + ‘:’ + kwargs[key]

>>>Student(name= ‘Bob’, age= ‘20’, major= ‘CS’)

Student Name: Bob

Age :20

Major: CS

Python functions can have variable length arguments. These variable length arguments are

passed as a tuple to the function with an argument prefixed with asterix(*)

Example of variable length arguments

def student(name, *varargs):

 print "Student Name:" +name

 for item in varargs :

 print item

>>>Student (‘Nav’)

Student Name : Nav

>>>Student (‘Amy’ , ‘Age: 24’)

Student Name: Amy

Age:24

>>>Student(‘Bob’ , ‘Age:20’, ‘Major: CS’)

Student Name: Bob

Age:20

Major: CS

Modules

Python allows organizing of the program code into different code into different modules which

improves the code readability and Management. A module is a python file that defines some

functionality in the form of functions or classes. Modules can be imported using the import

keyword. Modules to be imported must be present in the search path.

Module Student

def averageGrade(student):

sum=0.0

for key in students:

sum=sum+students[key][‘grade’]

average =sum/len(students)

return average

def printRecords(students):

print "There are %d students" %(len(students))

i=1

for key in students:

print "Student -%d :" %(i)

print "Name:" +Students[key][‘name’]

print "Grade:" +str(students[key][‘grade’])

 i=i+1

Using module Student

>>>import student

>>>student= ‘1’: ‘name’: ‘Bob’, ‘grade’:2.5,

‘2’: ‘name’: ‘mary’, ‘grade’:3.5,

‘3’: ‘name’: ‘David’, ‘grade’:4.2,

‘4’: ‘name’: ‘John’, ‘grade’:4.1,

‘5’: ‘name’: ‘Alex’, ‘grade’:3.8

>>>Student.printRecords(Students)

There are 5 students

Student - 1:

Name: Bob

Grade:2.5

Student - 2:

Name: David

Grade:4.2

Student - 3:

Name: Mary

Grade:3.5

Student - 4:

Name: Alex

Grade: 3.8

Student - 5:

Name: John

Grade: 4.1

>>>Avg= Student averageGrade (students)

>>>print "The average grade is: % 0.2f" %(avg)

3.62

The import keyword followed by module name imports all the functions in the module. If you

want to use only a specific function it is recommended to import only that function using the

keyword from as shown in the example. Importing a specific function from the module

>>>from student import averageGrade

>>> Students = „1‟ : ‘Name’ : ‘Bob’, ‘Grade’ : 2.5,

‘2’ : ‘Name’ : ‘Mary’ , ‘Grade’ : ‘3.5’,

‘3’:’Name’: ‘David’ , ‘grade’: ‘4.2,

‘4’:’Name’: ‘John’, ‘grade’: ‘4.1’,

‘5’:’Name’: ‘Alex’, ‘grade’: 3.8

>>>avg =averageGrade(students)

>>>print "The average grade is :%0.2f" %(avg)

3.62

Python comes with a number of standard,modules such as system related modules(sys), OS

related module(OS), mathematical modules(math, fractions). Standard modules are available

in the python documentation.

Listing all names defined in a module

>>>import email

>>>dir(email)

[‘charset’ , ‘encoder’, ‘errors’, ‘feedparser’, ‘Generator’, ‘Header’, ‘Iterators’, ‘LazyImporter’,

‘MIMEaudio’, ‘MIMEImage’, ‘MIMEMessage’, ‘MIMEMultipart’, ‘MIMENonMultipart’,

‘MIMEText’, ‘Message’, ‘Parser’, ‘utils’, ‘_LOWERNAMES’, ‘_MINENAME’, ‘_all_’,

‘_builtins_’, ‘_doc_’, ‘_file_’, ‘_name_’, ‘_package_’, ‘_path_’, ‘_version_’, ‘_name’,

‘base64MIME’, ‘email’, ‘importer’, ‘message_from_file’, ‘message_from_string’, ‘mime’,

‘quoprimeMINE’, ‘Sys’]

Packages

Python package is hierarchical file structure that consists of modules and subpackages.

Packages allow better organization of modules related to a single applications environment.

For example, below show the listing of the skimage package that provides image processing

algorithms. The package is organized into a root directory (skimage) with sub-directories

(color, draw,etc) which are sub_packages within the skimage package. Each directory contains

a special file named_init_. Py which tells python to treat directories as packages. This file can

either be an empty file or contain some initialization code for the package.

Skimage package listing

Skimage/ Top level package

 __init__.py Treat directionary as a package

 Color/ color subpackage

 __init__.py

 Colorconv.py

 Colorlabel.py

 rgb_colors.py

 Draw/ draw subpackage

__init__.py

draw.py

setup.py

exposure/ exposure subpackage

__init__.py

__adapthist.py

Exposure.py

Feature/ feature subpackage

__init__.py

__brief.py

__daisy.py

File Handling

Python allows reading and writing to files using the files object. The open(filename, mode)

function is used to get a file object. The mode can be read(r), write(w),append(a),read and

write(r+ or w+), read- binary (rb), write-binary(wb), etc.

Shows an example of reading an entire file with read function. After the file contents have been

read the close function is called which closes the file object.

Example of reading an entire file

>>>fp = open(‘file.txt’, ‘r’)

>>>content =fp.read()

>>>print content

Python supports more than one programming paradigms

including object-oriented programming and structured programming.

Python is an interpreted language and does not require an explicit compilation step.

>>>fp.close()

Shows an example of reading line by line from a file using the readline function. Example of

reading line by line

>>>fp.close()

>>>fp=open(‘file.txt’, ‘r’)

 >>>print "Line-1: "+fp.readline()

Line-1:python supports more than one programming paradigms including object-oriented

programming and structure programming.

>>>print "Line-2:" +fp.readline()

Line-2: Python is an interpreted language and does not require an explicit compilation step.

>>>fp.close

Shows an example of reading lines of a file in a loop using the read lines function. Example of

reading line in a loop

>>>fp = open(‘file.txt’, ‘r’)

>>>lines= fp.readlines()

>>>for line in lines:

Print line

Python supports more than one programming paradigms including object- Oriented

programming and structured programming.

Python is an interpreted language and does not require an explicit compilation step.

Shows an example of reading a certain number of bytes from a file using the read(size) function

Example of reading a certain number of byte

>>>fp=open(‘file.txt’ , ‘r’)

>>>fp.read(10)

‘python soup’

>>>fp.close()

Shows an example of getting the current position of read using the tell function. Example of

getting the current position of read

>>>fp=open (‘file.txt’, ‘r’)

>>>fp.read(10)

‘python sup’

>>>currentpos=fp.tell

>>>print currentpos

< built-in method of file object at 0x0000000000002391390>

>>>fp.close

Shows an example of seeking to a certain position in a file using the seek function. Example

of seeking a certain position

>>>fp=open (‘file.txt’, ‘r’)

>>>fp.seek(10,0)

>>>content = fp.read(10)

>>>print content

Ports more

>>>fp.close()

Shows an example of writing a file using the write function. Example of writing to a file

>>>fp=open (‘file1.txt’, ‘w’)

>>>content = ‘This is an example of writing to a file in pyhton’.

>>>fo.write(content)

>>>fo.close()

Date/Time Operations

Python provides several functions for date and time access and conversions. The datetime

module allows manipulating date and time in several ways.

Example of manipulating with date

>>> from datetime import date

>>>now =date.today()

>>>print "Date:" + now.strftime("%m-%d-%y")

Date:07-24-13

>>>print "Date of week:" + now.strftime("%A")

Day of week: Wednesday

>>>print "Month:" + now.strftime("%B")

Month: July

>>>

>>>then =date(2013,6,7)

>>>timediff=now-then

>>>timediff.days

47

The time module in python provides various time-related functions. Example of manipulating

with time

>>>import time

>>>nowtime=time.time()

>>>time.localtime(nowtime)

Time.struct_time(tm_year=2013, tm_mon=7, tm_mday=24, tm_ec=51, tm_wday=2,

tm_yday=205, tm_isdst=0)

>>>time.asct(time.localtime(nowtime))

‘wed Jul 24 16:14:51 2013’

>>>time.strftime("The date is %d-%m-%y. Today is a %A. It is %H hours, %M minutes and

%S seconds now.")

‘The date is 24-07-13. Today is a Wednesday. It is 16 hours, 15 minutes and 14 seconds now.’

Classes

Python is an Object-Oriented Programming (OOP) language. Python provides all the standard

features of object-oriented programming such as classes, class variables, class methods,

inheritance, function overloading and operator overloading.

Class

A class is simply a representation of a type of object and user-defined prototype for an object

that is composed of three things: a name, attribute and operations/methods.

Instance/object

Object is an instance of the data structure defined by a class.

Inheritance

Inheritance is the process of forming a new class from an existing class or base class.

Function Overloading

Function overloading is a form of polymorphism that allows a function to have different

meanings, depending on its context.

Operator overloading

Operator overloading is a form of polymorphism that allows assignment of more than one

function to a particular operator.

Function overriding

Function overriding allows a child class to provide a specific implementation of a function that

is already provided by the base class. Child class implemented of the overridden function has

the same name, parameters and return type as the function in the base class.

Shows an example of a class. The variable student Count is a class variable that is shared by

all instances of the class student and is accessed by student and is accessed by student. Student

Count. The variables name, id and grades are instance variables which are specific to each

instance of the class. There is a special method by the name_init_() which is the constructor.

The class constructor initializes new instances when it is created. The function _del_() is the

class destructor.

Example of a class

>>>class student:

StudentCount=0

Def_init_(self,name,id):

Print "Constructor called"

Self.name=name

Self.id=id

Student.studentCount = Student.studentCount+1

Self.grades=

def_del_(self):

print "Destruction called"

def getStudentCount(self):

return student.studentCount

def addGrade (self,key,value):

self.grades(key)=value

def getGrade(self,key):

return self.grades(key)

def printGrades(self):

for key in self.grades:

print key + ":"+Self.grades(key)

>>> S = Student (‘Steve’, ‘98928’)

Constructor called

>>> S.addGrade(‘Math’, ‘90’)

>>>S.addGrade(‘physics’, ‘85’)

>>>S.printGrade()

Physics: 85

Math: 90

>>>mathgrade=S.getGrade(‘Math’)

>>>print mathgrade

90

>>>count =S.getStudentCount()

>>>print count

1

>>>del s

Destructor called

Shows an example of class inheritance. In this example shape is the base class and circle is

the derived class. The class circle inherits the attributes of the shape class. The child class Circle

overrides the methods and attributes of the base class (eg. draw() function defined in the base

class shape is overridden in child class Circle). It is possible to hide some class attributes by

naming them with a double underscore prefix. For example, _label attribute is hidden and

cannot be directly accessed using the object (cir._label gives an error). To hide the attributes

with double underscore prefix, python changes their names internally and prefixes the class

name(e.g._label is changed to _Circle_label).

Examples of class inheritance:

>>>class Shape:

def _init_(self):

print "Base class constructor"

self. color = ‘Green’

self. lineWeight = 10.0

def draw(self):

print "Draw -to be implemented"

def SetColor(self,c):

self.color=c

def getColor(self):

return self.color

def setLineWeight(self,lwt):

self.LineWeight=lwt

def setLineWeight(self):

return self.LineWeight

>>>Class Circle (Shape):

def_init_(self,c,r):

print "Circle class constructor"

self.center=c

self.radius=r

self.color= ‘Green’

self.lineWeight=10.0

self._label = ‘Hidden circle label’

def setCenter (self,c):

self.centre=c

def getCenter(self):

return self.center

def setRadius(self,r):

self.radius=r

def getRadius(self):

return self.radius

def draw(self)

print "Draw circle (overridden function)"

>>>class point:

def_init_(self,x,y):

self.x Cooradinate=x

self.y Cooradinate=y

def setx Coordinate(self,X):

self.X Cooradinate=X

def getXCoordinate (self):

return self.xcoordinate

def setyCoordinate(self,y):

self.yCoordinate =y

def getycoordinate(self):

return self.ycoordinate

>>>p=point(2,4)

>>>circ =circle(p,7)

Child class constructor

>>>circ.getColor()

‘Green’

>>>circ.setColor(‘Red’)

>>>circgetColor()

‘Red’

>>>circ.getLineWeight()

10.0

>>>circ.getCenter().getXCoordinate()

2

>>>circ.getCenter().getYCoordinate()

4

>>>circ.draw()

Draw Circle (overridden function)

>>>circle.radius

7

>>>circ._label Traceback (most recent call last):

File "<stdin>", line1 , in<module>

AttributeError: Circle instance has no attribute ‘_Label’

>>>circ._Circle_label

‘Hidden circle label’

Python Packages of Interest for IoT

1. JSON

Javascript object Notation (JSON) is an easy to read and write data-interchange format. JSON

is used as an alternative to XML and is wasy for machines to parse and generate. JSON is built

on two structure- a collection of name-value pairs (e.g. a python dictionary) and ordered lists

of values (e.g. a python list).

JSON format is often used for serializing and transmitting structure data over a network

connection, for example, transmitting data between a server and web application.

JSON Example -A Twitter tweet object

{

"created_at":

"sat Jun 01 11:39:43+000 2013",

"id" : 340794787059875841,

"text": "What a bright and sunny day today!",

"truncated" : false,

"in_reply_to_status_id": null,

"user": {

"id":383825039,

"name": "Harry",

"followers_count":316,

"friends_count": 298,

"listed_count": 0,

"create_at": "sun oct 02 15:15:61 +0000 2011",

"favourites_count":251,

"statuses_count":1707,

:

"notifications": null

},

"geo":{

"type": "point",

"coordinate":[26.92782727,75.78908449]

},

"coordinates":{

"type":"point",

"coordinates":[75.78908449, 26.92782727]

},

"place":null,

"contributors": null,

"retweet_count":0,

"favourite_count":0,

"entities": {

"hastags":[],

"symbol": [],

"urls": [],

"user_mentions": []

},

"favourite": false,

"retweeted":false,

"filter_level": "medium",

"lang": "nl"

}

Exchange of information encoded as JSON involves encoding and decoding steps. The python

JSON package[109] provides functions for encoding and decoding JSON.

Encoding and Decoding JSON in python:

>>>import json

>>>meassage={

"Created": "wed Jun 31 2013",

"id": "001",

"text": "This is a test message.", }

>>>json.dumps(message)

 ‘{"text": "This is a test message." "id" : "001", "created": "Wed Jun 31 2013"}’

>>>decodeMsg = json.loads (‘{"text": " This a test message”, "id": "001", "created": "Wed Jun

31 2013"}’}

>>>decode Msg [‘created’]

u ‘Wed Jun 31 2013’

>>>decodedMsg [‘text’]

U ‘This is a test message’.

2. XML

XML (Extensible Markup Language) is a data format for structured document interchange.

Shows an example of an XML file. In this section you will learn how to parse, read and write

XML with python. The python minidom library provides a minimal implementation of the

document object Model interface and has an API similar to that in other language. Shows a

python program for parsing an XML file.

Shows a python program for creating an XML file. XML example

<?xml version = "1.0"?>

<catalog>

<plant id= ‘1’>

<common> Bloodroot</common>

<botanical>Sanguinaria Canadensis </botanical>

<Zone> 4</Zone>

<light> Mostly Shady </light>

<price> 2.44 </price>

<availablility> 031599</availability>

</plant>

<plant id= ‘2’>

<common> Columbine </common>

<botanical> Aquilegia Canadensis </botanical>

<zone> 3</zone>

<light> Mostly Shady </light>

<price> 9.37 </price>

<availability> 030699 </availability>

</plant>

<plant id= ‘3’>

<common> Marsh Marigold </common>

<botanical> Caltha palustris </botanical>

 <zone>4</zone>

<light>Mostly Sunny</light>

<price> 6.81 </price>

<availability> 051799 </availability>

</plant>

</catalog>

Parsing an XML file in python

From xml.dom.minidom import parse

dom= parse ("test.xml")

For node in dom.getElementByTagName(‘plant’):

Id= node.gteAttribute(‘id’)

print "plantID:", id

Common=node.getElementsByTagName(‘common’)[0].childNodes[0].nodeValue

print "Common:", common

botanical =node.GetElementsByTagName(‘botanical’)[0].childNodes[0].nodeValue

print "Botanical:", botanical zone= node.getElementsByTagName(‘zone’)[0]

childNodes[0].nodeValue

print "Zone:",Zone

Creating an XML file with python

#python example to create the following XML:

#’<?xml version = "1.0"> <class><student>

#<Name>Alex</Name> <Major> ECE </Major> </student></class>

From xml.dom.minidom import Document

doc= Document()

#Create base element

Base= doc.createElement(‘class’)

doc.appendChild(base)

#create an entry element

Entry=doc.createElement(‘Student’)

Base.appendChild(entry)

#create an element and append to entry element

name= doc.createElement(‘Name’)

nameContent = doc.CreateTextNode(‘Alex’)

name.appendChild(nameContent)

entry.appendChild(name)

#create an element and append to entry element

major=doc.createElement(‘Major’)

majorContent=doc.createTextNode(‘ECE’)

major.appendChild(majorContent)

entry.appendChild(major)

fp=open(‘foo.xml’, ‘w’)

doc.writexml()

fp.close()

3. HTTPLib & URLLib

HTTPLib2 and URLLib2 are python libraries used in network/internet programming.

HTTPLib2 is an HTTP client library and URRLib2 is a library for fetching URLS.

Shows an example of an HTTP GET request using the HTTPLib. The variable resp contains

the response headers and content contains the content retrieved from the URL.

HTTP GET request example using HTTPLib

>>> import httplib2

>>> h=httplib2.HTTP()

>>> resp,content =h.request("http://example.com", "GET")

>>>resp { ‘status’ : ‘200’, ‘content-length’: ‘1270’, ‘content-location’: ‘http://example.com’,

‘x-cache’: ‘HIT’, ‘acccept_range’: ‘bytes’, ‘server’ : ‘ECS (cmp/F858’, ‘last_modified’:

‘Thu,25 APR 2013 16:13:23 GMT’, ‘etag’: ‘ "780602-4f6-4db3lb2978 eco"’, ‘date’: ‘wed, 31

Jul 2013 12:36:05 GMT’, ‘content-type’: ‘text/html ; charset= UTF-8’}

>>>content

‘<!doctype html> \n <html>\n <head> \n

<title> example Domain </title>\n\n

<meta charset = "utf-8‟/>\n:

Show an HTTP Request example using URLLib2. A request object is created by calling urllib2.

Request with the URL to fetch as input parameter. Then urllib2.urlopen is called with the

request object which returns the response object for the requested URL. The response object is

read by calling read function.

HTTP request example using URLLib2

>>>import urllib2

>>>

>>>req=urllib2.Request(‘http://example.com’)

>>>response=urllib2.urlopen(req)

>>>response_page=response.read()

>>.response_page

‘<!doctype html>\n <html>\n <head>\n

<title> Example Domain </title>\n\n

<meta charset = "utf-8"/>\n

Shows an example of an HTTP POST request. The data in the POST body is encoded using the

urlencode function from urllib.

HTTP POST example using HTTPLib2

>>>import httplib2

>>>import urllib

>>>h = httplib2.Http()

>>>data = {‘title’: ‘Cloud computing’}

>>>resp, content =h.request(“http://www.htmlcodetutorial.com/cgi-bin/mycgi.p1”, "POST",

urllib.urlencode(data))

>>>resp

{‘Status’: ‘200’, ‘transfer-encoding’: ‘chunked’, ‘server’: ‘Apache/2.0.64(unix) mod\-ssd/

2.0.64 openSSL/0.9.70 mod_auth_passthrought/2.1 mod_bwlimited/1.4 frontpage/5.0.2.2635

PHP/5.3.10’, ‘connection’: ‘close’, ‘date’: ‘Wed, 31 Jul 2013 12:41:20 GMT’, ‘content-type’:

‘text/html; charset=ISO -8859-1’}

>>>content

‘<HTML> \n <HEAD> \n <TITLE> Idocs Guide to HTML: My CGI </TITLE>\n <\HEAD>:

Shows an example of sending data to a URL using URL using URLLib2 (e.g an HTML from

submission). This example is similar to the HTTP POST example and uses URLLib2 request

object instead of HTTPLib2.

Example of sending data to a URL

>>>import urllib

>>>import urllib2

>>>

>>> url = ‘http://www.htmlcodetutorial.com/cgi-bin/mycgi.p1’

>>>values ={‘title’ : ‘cloud computing’, ... ‘language’ : ‘python’}

>>>

>>>data =urllib.urlencode(values)

>>>req=urllib2.Request(url,data)

>>>response =urllib2.urlopen(req)

>>>the_page =response.read()

>>>the_page ‘<HTML>/n <HEAD>\n <TITLE>Idocs Guide to HTML: My CGI </TITLE>\n

</HEAD>

4. SMTPLib

Simple Mail Transfer Protocol (SMTP) is a protocol which handle sending email and routing

e-mail between mail servers. The python smtplib module provides an STMP client session

object that can be used to send email.

Shows a python example of sending email from a Gmail account. The string message contains

the email message to be sent. To send email from a Gmail account the Gmail STMP server is

specified in the server string.

To send an email, first a connection is established with the STMP server by calling

smtplib.SMTP with SMTP server name and port. The username and password provided are

then used to login into the server. The email is then sent by calling server.sendmail function

with the fom address, to address list and message as input parameters.

Python example of sending email

Import smtplib

from_email= ‘<enter-gmail-address>’

recipients_list =[‘<enter_sender_email>’]

cc_list=[]

subject= ‘Hello’

message = ‘This is a test message’

username= ‘<enter -gmail_username>’

password= ‘<enter-gmail_password>’

server = ‘smtp.gmail.com:587’

def sendemail (from_addr, to_addr_list, cc_addr_list, subject, message, login, password,

smtpserver):

header= ‘from: %s\n’ %from_addr

header+ = ‘To: %s\n’ % ‘,’.join(to-addr_list)

header+= ‘Cc: %s\n’ % ‘,’.join(cc_addr_list)

header+= ‘subject : %s\n\n’ %subject

message =header+message

server =smtplib.SMTP(smtpserver)

server.starttls()

server.login (login, password)

problems = server.sendmial (from_addr, to_addr_list, message)

server.quit()

#send email

Sendmail(from_email, recipients_list, cc_list, subject, message, username, password, server)

