

Advanced Java –Module 1

Module 1-The collections and Framework

1. Explainbriefaboutcollectionframework.

 TheJavaCollectionsFrameworkstandardizesthewayinwhichgroupsof

objects are handled by your programs.

 Theframeworkhadtobe high-performance.

 Theimplementationsforthefundamentalcollections(dynamicarrays,linked

lists, trees, and hash tables) are highly efficient.

 Theframeworkhadtoallowdifferenttypesofcollectionstoworkinasimilar manner

and with a high degree of interoperability.

 Extendingand/oradaptingacollection had tobeeasy.

 Mechanismswereaddedthatallowtheintegrationofstandardarraysintothe

Collections Framework.

 Algorithmsareanotherimportantpartofthecollection mechanism.

 Algorithmsoperateoncollectionsandaredefinedasstaticmethodswithinthe

Collections class.

 An iterator offers a general-purpose, standardized way of accessing the

elementswithinacollection,oneatatime.Thus,aniteratorprovidesameans of

enumerating the contents of a collection.

 BecauseeachcollectionimplementsIterator,theelementsofanycollection class

can be accessed through the methods defined by Iterator.

2. Whataretherecentchangestocollectionframework?

Recently,theCollectionsFrameworkunderwentafundamental changethat

significantlyincreased its power and streamlined its use. The changes were the addition of

generics, autoboxing/unboxing, and the for-each style for loop.

Generics

TheadditionofgenericscausedasignificantchangetotheCollectionsFramework because

the entire Collections Framework has been reengineered for it. All collections are now

generic, and many of the methods that operate on collections take generic type parameters

Generics add the one feature that collections had been missing: type safety.

Prior to generics, all collections stored Object references, which meant that any collection

couldstoreanytypeofobject.Thus,itwaspossibletoaccidentallystorein compatibletypes in a

collection.

Doingsocouldresultinrun-timetypemismatcherrors.Withgenerics,itispossibleto

explicitlystatethetypeofdatabeingstored, andrun-timetypemismatcherrorscanbe

avoided.

Autoboxing/unboxing

Autoboxingfacilitates theUseof PrimitiveTypes.

Autoboxing/unboxingfacilitates thestoringofprimitive typesin collections.

Asyouwillsee,acollectioncanstoreonlyreferences,notprimitivevalues. Inthepast,if you wanted

to store a primitive value, such as an int, in a collection, you had to manually box it into its

typewrapper.

Advanced Java–Module 1

Whenthevaluewasretrieved,itneededtobemanuallyunboxed(byusinganexplicitcast) into its

proper primitive type.

Because of autoboxing/unboxing, Java can automatically perform the proper boxing and

unboxingneededwhenstoringorretrievingprimitivetypes.Thereisnoneedtomanually perform

these operations.

TheFor-Each StyleforLoop

collectioncan be cycled through byuseofthefor-eachstyleforloop.

EarlieritwasdonewithIteratableinterface.For eachloopiseasierthanthe earlier iterator.

3. ListtheCollection Interfaces?

 The Collections Framework defines several interfaces. This section provides

anoverviewofeachinterface.Collectionenablesyoutoworkwithgroupsof

objects; it is at the top of the collections hierarchy.

 Dequeextends Queueto handleadouble-ended queue.

 ListextendsCollectiontohandlesequences

 NavigableSetextendsSortedSettohandleretrievalofelementsbasedon

closest-match searches.

 QueueextendsCollectiontohandlespecialtypes oflistsinwhichelements are

removed only from the head.

 SetextendsCollectiontohandlesets,which mustcontainuniqueelements.

 SortedSetextendsSettohandlesorted sets.

4. Givethesyntaxofcollectioninterface.Explainthemethodspresentincollection

interface.

interfaceCollection<E>

Especifiesthetypeofobjectsthatthecollection

Collection extends the Iterable interface.

Iteratingthroughthelistcanebedonethroughthe iteratable interface.

Methodsincollectioninterface

add

addAll

booleanadd(Eobj)

addsobj to theinvokingcollection.

Returnstrueifobj was added to thecollection.

Returnsfalseifobjisalreadyamemberofthecollectionand the

collection does not allow duplicates.

booleanaddAll(Collection<?extendsE>c)

Addsallthe elementsofcto theinvokingcollection.

Returns trueif theoperation succeeded

(i.e.,theelementswereadded).Otherwise,returnsfalse.

AdvancedJava–Module 1

clear

voidclear()

Removesallelements fromtheinvokingcollection.

contains

booleancontains(Objectobj)

Returnstrueifobjisanelementoftheinvokingcollection.

Otherwise, returns false.

containsAll

booleancontainsAll(Collection<?>c)

Returnstrueiftheinvokingcollectioncontainsallelementsofc. Otherwise,

returns false.

equals

booleanequals(Objectobj)

Returnstrueiftheinvokingcollectionandobjareequal. Otherwise,

returns false.

hashCode

inthashCode()Returnsthe hash code for theinvoking collection.

isEmpty

booleanisEmpty()

Returnstrueiftheinvokingcollectionisempty.

Otherwise, returns false.

iterator

Iterator<E>iterator() Returnsaniteratorfor theinvoking collection.

remove

booleanremove(Objectobj)

Removes one instance of obj from the invoking

collection.Returnstrueiftheelementwasremoved.Otherwise,returns

false.

removeAll

booleanremoveAll(Collection<?>c)

Removesallelements ofcfrom theinvokingcollection.

Advanced Java – Module 1

Returnstrueifthecollectionchanged(i.e.,elementswereremoved).

Otherwise, returns false.

retainAll

booleanretainAll(Collection<?>c)

Removesallelements fromtheinvokingcollectionexcept thosein c.

Returnstrueifthecollectionchanged(i.e.,elementswereremoved).

Otherwise, returns false.

size

intsize()Returnsthenumberofelementsheldintheinvoking collection.

toArray

Object[]toArray()

Returnsanarraythatcontainsalltheelementsstoredinthe invoking

collection.

Thearrayelementsarecopiesofthecollectionelements. The

arrayelements are copies of the collection elements.

Ifthesizeofarrayequalsthenumberofelements,thesearereturnedin array.

5. ExplainthemethodspresentinListinterface.

Listinterfaceextendscollectioninterface.Itincludesnewmethod.Whichare given

below.

voidadd(intindex,Eobj)

Insertsobjinto theinvokinglist attheindexpassedin index.

Anypreexistingelements at or beyond the pointof insertion areshiftedup.

booleanaddAll(intindex,Collection<?extends E>c)

Insertsallelements ofCinto theinvokinglist atthe indexpassed in

index. Anypreexistingelementsatorbeyondthepointofinsertionareshiftedup. Thus, no

elements are overwritten. Returns true if the invoking list changes and returns false

otherwise.

Eget(intindex)

Returnstheobjectstoredatthespecifiedindexwithintheinvokingcollection. int

indexOf(Object obj)

Advanced Java – Module 1

Returnstheindexofthefirstinstanceofobjintheinvokinglist.Ifobjisnot an element of the

list, –1 is returned.

intlastIndexOf(Objectobj)

Returnstheindexofthelastinstanceofobjintheinvokinglist.Ifobjisnot an element of the

list, –1 is returned.

ListIterator<E>listIterator()

Returnsaniteratorto the startof theinvokinglist.

ListIterator<E>listIterator(intindex)

Returnsaniteratortothe invokinglistthatbeginsatthespecifiedindex.

Eremove(intindex)

Removestheelementatpositionindex fromtheinvokinglistandreturnsthedeleted

element. The resultinglist is compacted. That is, the indexes of subsequent elements

are decremented by one.

Eset(int index, Eobj)

Assigns obj to thelocation specified byindexwithin the invoking list.

List<E>subList(intstart,intend)

Returnsalistthatincludeselementsfromstarttoend –1intheinvokinglist. Elements in the

returned list are also referenced by the invoking object.

6. ExplainSetInterface andset method:

TheSetinterfacedefines aset.

ItextendsCollectionanddeclaresthebehaviourofacollectionthatdoesnotallow duplicate

elements.

Therefore,theadd()methodreturnsfalseifanattempt. Set is

a generic interface that has this declaration:

interfaceSet<E>

Here,Especifiesthetypeofobjectsthatthesetwillhold. The

SortedSet Interface

TheSortedSetinterfaceextendsSetanddeclaresthebehaviorofasetsortedin ascending order.

SortedSetisagenericinterfacethathasthisdeclaration:interfaceSortedSet<E>Here, E

specifies the type of objects that the set will hold.

InadditiontothosemethodsdefinedbySet,theSortedSetinterfacedeclaresthe methods.

Comparator<?superE>comparator()

Returnstheinvokingsortedset’s comparator.

Advanced Java – Module 1

Ifthenaturalorderingisusedforthisset,nullisreturned. E

first()

Returnsthefirst elementintheinvokingsorted set.

SortedSet<E>headSet(Eend)

ReturnsaSortedSetcontainingthoseelementslessthanendthatarecontainedinthe invoking

sorted set.

Elementsinthereturnedsortedsetarealsoreferencedbytheinvokingsortedset. E last()

Returnsthelastelementintheinvokingsortedset.

SortedSet<E> subSet(E start , E end)

ReturnsaSortedSetthatincludesthoseelementsbetweenstartandend–1.Elements in the

returned collection are also referenced by the invoking object.

SortedSet<E>tailSet(Estart)

ReturnsaSortedSetthatcontainsthoseelementsgreaterthanorequaltostartthatare contained

in the sorted set. Elements in the returned set are also referenced by the invoking

object.

SeveralmethodsthrowaNoSuchElementExceptionwhennoitemsarecontainedin the

invoking set.

AClassCastExceptionisthrownwhenanobjectisincompatiblewiththeelementsin a set.

ANullPointerExceptionisthrownifanattemptismadetouseanullobjectandnull is not

allowed in the set.

AnIllegalArgumentExceptionisthrownifaninvalidargumentisused.

7. NavigableSetInterfaceandmethod

The NavigableSet interfaceextends SortedSet and declares the behavior of a

collectionthatsupportstheretrievalofelementsbasedontheclosestmatchtoagivenvalue or values.

NavigableSetisagenericinterfacethathasthisdeclaration: interface

NavigableSet<E>

Here,Especifiesthetypeofobjectsthatthesetwillhold. NavigableSet

adds the following

Eceiling(E obj)

Searchesthesetforthesmallest element

Ifsuchan elementisfound,itisreturned. Otherwise,nullisreturned.

Iterator<E>descendingIterator()

AdvancedJavaandJ2EE–Module2

Returnsaniteratorthatmovesfromthegreatesttoleast.Inotherwords,itreturnsa reverse

iterator.

NavigableSet<E>descendingSet()

ReturnsaNavigableSetthatisthereverseoftheinvokingset.Theresultingsetis backed by

the invoking set.

Efloor(E obj)

Searchesthesetforthelargestelementesuchthate<=obj.Ifsuchanelementis found, it is

returned. Otherwise, null is returned.

NavigableSet<E>headSet(EupperBound,booleanincl)

ReturnsaNavigableSetthatincludesallelementsfromtheinvokingsetthatareless than

upperBound . If incl is true, then an element equal to upperBound is included. The

resulting set is backed by the invoking set.

Ehigher(Eobj)Searchesthesetforthelargestelementesuchthate>obj.Ifsuchan element is

found, it is returned. Otherwise, null is returned.

E lower(E obj)

Searchesthesetforthelargestelementesuchthate<obj.Ifsuchanelementis found, it is

returned. Otherwise, null is returned.

EpollFirst()

Returnsthefirstelement,removingtheelementintheprocess.Becausethesetis sorted, this

is the element with the least value. null is returned if the set is empty.

E pollLast()

Returns the last element, removing the element in the process. Because the set is

sorted,thisistheelementwiththegreatestvalue.nullisreturnedifthesetisempty.

NavigableSet<E>subSet(ElowerBound,booleanlowIncl,EupperBound, boolean

highIncl)

ReturnsaNavigableSetthatincludesallelementsfromtheinvokingsetthatare

greater than lowerBound and less than upperBound .

If lowIncl is true, then an element equal to lowerBound is included.

IfhighInclistrue,thenanelementequaltoupperBoundisincluded. The

resulting set is backed by the invoking set.

NavigableSet<E>tailSet(ElowerBound,booleanincl)

Returns a NavigableSet that includes all elements from the invoking set that are

greaterthanlowerBound.Ifinclistrue,thenanelementequaltolowerBoundis included.

The resulting set is backed by the invoking set

8. TheQueueInterfaceand methods

AdvancedJavaandJ2EE–Module2

TheQueueinterface extends Collection and declares the behaviour of aqueue, which is

oftenafirst-in,first-outlist.However,therearetypesofqueuesinwhichtheorderingis based

upon other criteria. Queue is a generic interface that has this declaration:

interfaceQueue<E>

E element()

Returnstheelementattheheadofthequeue.Theelementisnotremoved.It throws

NoSuchElementException if the queue is empty.

booleanoffer(Eobj)

Attemptstoaddobjtothequeue.Returnstrueifobjwasaddedandfalseotherwise. E peek()

Returnstheelementattheheadofthequeue. Itreturnsnullifthequeueisempty.The element

is not removed.

E poll()

Returnstheelementattheheadofthequeue,removingtheelementintheprocess.It returns null

if the queue is empty.

Eremove()

Removestheelementattheheadofthequeue,returningtheelementintheprocess.It throws

NoSuchElementException if the queue is empty.

9. Dequeinterface

Itextends Queueand declaresthe behaviorofadouble-ended queue.

Double-endedqueuescanfunctionasstandard,first-in,first-outqueuesoras last-

in, first-out stacks.

Dequeisagenericinterfacethat hasthis declaration:

interfaceDeque<E>

voidaddFirst(Eobj)

Addsobjtotheheadofthedeque.ThrowsanIllegalStateExceptionifa

capacity-restricted deque is out of space.

voidaddLast(Eobj)

Addsobjtothetailofthedeque.ThrowsanIllegalStateExceptionifa

capacity-restricted deque is out of space.

Iterator<E>descendingIterator()

Returnsaniteratorthatmovesfromthetailtotheheadofthedeque. Inother words, it

returns a reverse iterator.

EgetFirst()

Returnsthefirstelementinthedeque.Theobjectisnotremovedfromthe deque. It

throws NoSuchElementException if the deque is empty.

AdvancedJavaandJ2EE–Module2

EgetLast()

Returnsthe lastelementin thedeque.

Theobjectisnotremovedfromthedeque.Itthrows NoSuchElementException if

the deque is empty.

booleanofferFirst(Eobj)

Attempts to add obj to the head of the deque. Returns true if obj was added

andfalseotherwise.Therefore,thismethodreturnsfalsewhenanattemptismadeto add obj

to a full, capacity-restricted deque.

booleanofferLast(Eobj)

Attemptstoaddobjtothetailofthedeque.Returnstrueifobjwasaddedand false

otherwise.

EpeekFirst()

Returnstheelementattheheadofthedeque. Itreturnsnullifthedequeis empty. The

object is not removed.

EpeekLast()

Returnstheelementatthetailofthedeque. Itreturnsnullifthedequeis empty. The

object is not removed.

EpollFirst()

Returnstheelementattheheadofthedeque,removingtheelementintheprocess. It returns

null if the deque is empty.

EpollLast()Returnstheelementatthetailofthedeque,removingtheelementinthe process. It

returns null if the deque is empty.

Epop()Returnstheelementattheheadofthedeque,removingitintheprocess.It throws

NoSuchElementException if the deque is empty.

voidpush(Eobj)Addsobjtotheheadofthedeque.Throwsan IllegalStateException if a

capacity-restricted deque is out of space.

EremoveFirst()Returnstheelementattheheadofthedeque,removingtheelement in the

process. It throws NoSuchElementException if the deque is empty.

booleanremoveFirstOccurrence(Objectobj)

Removesthefirstoccurrenceofobjfromthedeque.Returnstrueifsuccessfuland false if

the deque did not contain obj .

EremoveLast()

Returnstheelementatthetailofthedeque,removingtheelementintheprocess.It throws

NoSuchElementException if the deque is empty.

booleanremoveLastOccurrence(Objectobj)

Removesthelastoccurrenceofobjfromthedeque.Returnstrueifsuccessfuland false if

the deque did not contain

AdvancedJavaandJ2EE–Module2

10. TheCollectionClasses withexamplecode

AbstractCollection

Implementsmostofthe Collectioninterface.

AbstractList

ExtendsAbstractCollectionandimplementsmostoftheListinterface.

Queue interface.

AbstractSequentialList

ExtendsAbstractListforusebyacollectionthatusessequentialratherthan random

access of its elements.

AbstractSet

ExtendsAbstractCollectionandimplements mostoftheSet interface.

EnumSet

ExtendsAbstractSet forusewith enum elements.

HashSet

ExtendsAbstractSetforusewith ahash table.

LinkedHashSet

ExtendsHashSettoallowinsertion-orderiterations.

PriorityQueue

ExtendsAbstractQueueto support apriority-based queue.
TreeSet Implements a set stored in a tree. Extends AbstractSet.

LinkedListImplementsalinkedlistbyextendingAbstractSequentialList.

ArrayList Implements a dynamic array by extending AbstractList.

ArrayDequeImplementsadynamicdouble-endedqueuebyextending AbstractCollection

and implementing the Deque interface.

ArrayList

ArrayListclassextends AbstractListandimplements theList interface

ArrayListisagenericclassthathasthisdeclaration:

class ArrayList<E>

ArrayListhasthe constructorsshownhere:

ArrayList()

constructor builds an empty array list

ArrayList(Collection<?extendsE>c)

buildsanarraylistthat isinitializedwiththeelementsofthecollectionc.

ArrayList(intcapacity)

buildsanarraylistthathasthespecifiedinitial capacity.Thecapacityisthe size of

the underlying array that is used to store the elements. The capacity grows

automatically as elements are added to an array list.

classArrayListDemo{

public static void main(String args[]) {

ArrayList<String>al=newArrayList<String>();

System.out.println("Initial size of al: " +

al.size());

AdvancedJavaandJ2EE–Module2

al.add("C");

al.add("A");

al.add("E");

al.add("B");

al.add("D");

al.add("F");

al.add(1,"A2");

System.out.println("Sizeofalafteradditions:"+ al.size());

System.out.println("Contentsofal:"+al);

al.remove("F");

al.remove(2);

System.out.println("Sizeofalafterdeletions:"+ al.size());

}}

ConvertingArrayListtoArray

classArrayListToArray{

public static void main(String args[]) {

ArrayList<Integer>al=newArrayList<Integer>();

al.add(1);

al.add(2);

al.add(3);

al.add(4);

System.out.println("Contentsofal:"+al);

Integer ia[] = new Integer[al.size()];

ia=al.toArray(ia);

int sum = 0;

for(int i : ia) sum += i;

System.out.println("Sumis:"+sum);

}

}

LinkedList

TheLinkedList classextends AbstractSequentialList andimplementstheList,Deque,and
Queueinterfaces.

Itprovidesalinked-listdatastructure.LinkedListisagenericclassthat has

this declaration:

classLinkedList<E>

Here,Especifiesthetypeofobjectsthatthelistwillhold. LinkedListhasthetwo constructors

LinkedList()

LinkedList(Collection<? extendsE>c)

Thefirst constructor builds an emptylinked list.

Thesecondconstructorbuildsalinkedlist thatisinitializedwiththeelementsofthe collection c.

Examplecode:

import java.util.*;

classLinkedListDemo{

AdvancedJavaandJ2EE–Module2

public static void main(String args[]) {

LinkedList<String>ll=newLinkedList<String>();

ll.add("F");

ll.add("B");

ll.add("D");

ll.add("E");

ll.add("C");

ll.addLast("Z");

ll.addFirst("A");

ll.add(1,"A2");

System.out.println("Originalcontentsofll:"+ll);

ll.remove("F");

ll.remove(2);

System.out.println("Contentsofllafterdeletion:"+ll);

ll.removeFirst();

ll.removeLast();

System.out.println("llafterdeletingfirstandlast:"+ll);

String val = ll.get(2);

ll.set(2, val + " Changed");

System.out.println("llafterchange:"+ll);

}

}

HashSet

HashSetextendsAbstractSetandimplementstheSetinterface.Itcreatesacollection that

uses a hash table for storage.

JavaHashSetclassis usedtocreate acollectionthatusesahashtable for storage.

ItinheritstheAbstractSetclassandimplementsSet interface.

Theimportantpointsabout JavaHashSetclass are:

o HashSetstorestheelements byusingamechanismcalledhashing.

o HashSetcontainsuniqueelementsonly.

HashSetisagenericclassthathasthisdeclaration: class

HashSet<E>

Here,Especifies thetypeof objectsthatthesetwill hold.

Constructor

HashSet()
HashSet(Collection<?extendsE>c)

HashSet(int capacity)

HashSet(intcapacity,floatfillRatio)

Example:

import java.util.*;

classHashSetDemo{

public static void main(String args[]) {

HashSet<String>hs=newHashSet<String>();

AdvancedJavaandJ2EE–Module2

hs.add("B");

hs.add("A");

hs.add("D");

hs.add("E");

hs.add("C");

hs.add("F");

System.out.println(hs);

}

}

output

[D,A,F,C,B, E]
LinkedHashSet

LinkedHashSetclassisaHashtableandLinkedlistimplementationoftheset interface. It

inherits HashSet class and implements Set interface.

TheimportantpointsaboutJava LinkedHashSetclassare:

o Contains uniqueelements onlylikeHashSet.

o Providesalloptionalsetoperations,andpermitsnull elements.

o Maintainsinsertionorder.

TheLinkedHashSetclassextendsHashSetandaddsnomembersofitsown. It is a

generic class that has this declaration:

classLinkedHashSet<E>

Here,Especifies thetypeof objectsthatthesetwill hold.

LinkedHashSetmaintainsalinkedlistoftheentriesintheset,intheorderinwhich they were

inserted.

Thisallowsinsertion-orderiterationovertheset.

Thatis,whencyclingthroughaLinkedHashSetusinganiterator,theelementswill be

returned in the order in which they were inserted.

Thisis also theorder inwhichtheyarecontainedinthestringreturned by

toString()whencalledonaLinkedHashSet object.

ToseetheeffectofLinkedHashSet,trysubstitutingLinkedHashSetforHashSetin the

preceding program. The output will be

[B,A, D,E, C, F]

whichistheorderin whichthe elementswere inserted.

TreeSet

TreeSetextendsAbstractSetandimplementstheNavigableSetinterface.
It creates a collection that uses a tree for storage. Objects are stored in sorted,

ascending order. Access and retrieval times are quite fast, which makes TreeSet an

excellentchoicewhenstoringlargeamountsofsortedinformationthatmustbefound

quickly.

TreeSetisagenericclassthathasthisdeclaration: class

TreeSet<E>

Here,Especifies thetypeof objectsthatthesetwill hold.

AdvancedJavaandJ2EE–Module2

TreeSethasthefollowingconstructors:

TreeSet()

TreeSet(Collection<? extends E>c)

TreeSet(Comparator<?superE>comp)

TreeSet(SortedSet<E>ss)

Example

import java.util.*;

classTreeSetDemo{

public static void main(String args[]) {

TreeSet<String>ts=newTreeSet<String>();

ts.add("C");

ts.add("A");

ts.add("B");

ts.add("E");

ts.add("F");

ts.add("D");

System.out.println(ts);

}

}

Theoutput fromthis programis shown here:

[A,B,C, D,E, F]

PriorityQueue

PriorityQueueextendsAbstractQueueandimplementstheQueueinterface. It

creates a queue that is prioritized based on the queue’s comparator.

PriorityQueueisagenericclassthathasthisdeclaration: class

PriorityQueue<E>

Here,Especifiesthetypeofobjectsstoredinthequeue.

PriorityQueues are dynamic, growing as necessary.

PriorityQueuedefinesthesixconstructorsshownhere:

PriorityQueue()

PriorityQueue(intcapacity)

PriorityQueue(intcapacity,Comparator<?superE>comp)

PriorityQueue(Collection<? extends E>c)

PriorityQueue(PriorityQueue<? extends E>c)

PriorityQueue(SortedSet<? extends E>c)

ArrayDeque

JavaSE6addedtheArrayDequeclass,whichextendsAbstractCollectionand implements

the Deque interface.

Itadds nomethods ofits own.

ArrayDequecreates adynamicarrayand hasno capacityrestrictions.

ArrayDequeisagenericclassthathasthisdeclaration: class

ArrayDeque<E>

Here,Especifiesthetypeofobjectsstoredinthecollection.

ArrayDeque defines the following constructors:

ArrayDeque()

ArrayDeque(int size)

ArrayDeque(Collection<?extendsE>c)

AdvancedJavaandJ2EE–Module2

Example:

import java.util.*;

classArrayDequeDemo{

public static void main(String args[]) {

ArrayDeque<String>adq=newArrayDeque<String>();

adq.push("A");

adq.push("B");

adq.push("D");

adq.push("E");

adq.push("F");

System.out.print("Poppingthestack:");

while(adq.peek() != null)

System.out.print(adq.pop() + "");

System.out.println();

}

}

Theoutput is shown here:

Poppingthe stack: F E DBA

AccessingacollectionViaanIterator:

Beforeyoucanaccessacollectionthroughaniterator,youmustobtainone.Eachof the

collection classes provides an iterator() method that returns an iterator to the start of the

collection.

Byusingthisiteratorobject, youcanaccesseachelementinthecollection.Element at a

time. In general, to use an iterator to cycle through the contents of a collection, follow these

steps:

1. Obtainaniteratortothestartofthecollectionbycallingthe collection’siterator()

method.

2. Setup aloop thatmakes acall tohasNext().Havetheloop iterateas longashasNext()

returnstrue.

3. Withintheloop, obtaineachelementbycallingnext().

4. ForcollectionsthatimplementList,youcan alsoobtainaniteratorbycalling

listIterator().

5. Asexplained,alistiteratorgives youtheabilitytoaccessthecollectionineitherthe forward

or backward direction and lets you modify an element.

6. Otherwise,ListIteratoris usedjust likeIterator.

import java.util.*;

classIteratorDemo{

publicstatic void main(Stringargs[]) {

ArrayList<String>al=newArrayList<String>();

al.add("C");

al.add("A");

al.add("E");

AdvancedJavaandJ2EE–Module2

al.add("B");

al.add("D");

al.add("F");

System.out.print("Originalcontentsofal:");

Iterator<String>itr=al.iterator();

while(itr.hasNext()) {

String element = itr.next();

System.out.print(element+"");

}

System.out.println();

ListIterator<String>litr=al.listIterator();

while(litr.hasNext()) {

Stringelement=litr.next();

litr.set(element + "+");

}

System.out.print("Modifiedcontentsofal:"); itr

= al.iterator();

while(itr.hasNext()) {

Stringelement=itr.next();

System.out.print(element +"");

}

System.out.println();

System.out.print("Modifiedlistbackwards:");

while(litr.hasPrevious()) {

Stringelement=litr.previous();

System.out.print(element +"");

}

System.out.println();

}

}

Output:

Original contents of al: C A E B D F

Modifiedcontentsofal:C+A+E+B+D+F+

Modifiedlistbackwards:F+D+B+E+A+C+

ForEachloopforiteratingthroughcollection: import

java.util.*;

classForEachDemo{

public static void main(String args[]) {

ArrayList<Integer>vals=newArrayList<Integer>();

vals.add(1);

vals.add(2);

vals.add(3);

vals.add(4);

vals.add(5);

System.out.print("Originalcontentsofvals:"); for(int

v : vals)

AdvancedJavaandJ2EE–Module2

System.out.print(v+"");

System.out.println();

int sum = 0;

for(intv:vals)

sum += v;

System.out.println("Sum ofvalues:"+ sum);

}

}

Output:

Originalcontentsofvals:12345 Sum of

values: 15

StoringUserDefinedClassesin Collections:

collectionsarenot limitedto thestorageof built-in objects.

Thepowerofcollectionsisthattheycanstoreanytypeofobject, including

objects of classes that you create.

Userdefinedobjectsstoredin LinkedListtostoremailingaddresses:

import java.util.*;

class Address {

privateStringname;

privateStringstreet;

private String city;

private String state;

private String code;

Address(Stringn,Strings,Stringc,

String st, String cd) {

name = n;

street = s;

city = c;

state = st;

code=cd;

}

publicStringtoString(){

returnname+"\n"+street+"\n"+ city +

"" + state + "" + code;

}}

classMailList{

public static void main(String args[]) {

LinkedList<Address>ml=newLinkedList<Address>();

ml.add(new Address("J.W. West", "11 Oak Ave",

"Urbana", "IL", "61801"));

ml.add(newAddress("RalphBaker","1142MapleLane",

"Mahomet", "IL", "61853"));

ml.add(newAddress("TomCarlton","867ElmSt",

"Champaign", "IL", "61820"));

for(Address element : ml)

System.out.println(element+"\n");

AdvancedJavaandJ2EE–Module2

System.out.println();

}

}

Theoutput fromtheprogramis shown here:

J.W. West

11OakAve

Urbana IL61801

Ralph Baker

1142MapleLane

MahometIL61853

Tom Carlton

867 Elm St

ChampaignIL61820

RandomAccess Interface:

RandomAccessinterfacecontainsnomembers.

However,byimplementingthisinterface,acollectionsignalsthatitsupportsefficient random

access to its elements.

BycheckingfortheRandomAccessinterface,clientcodecandetermineatruntimewhether a

collection is suitable for certain types of random access operations—especially as they apply

to large collections.

RandomAccessis implemented byArrayList andbythe legacyVectorclass, amongothers.

Working With Maps:

Amapisan objectthat storesassociations betweenkeysandvalues, orkey/valuepairs.

Keysandvaluesareobjects.Keysmustbeunique,butthevaluesmaybeduplicated. Some

maps can accept a null key and null values, others cannot.

There is one key point about maps that is important to mention at the outset: they don’t

implementtheIterableinterface.Thismeansthat youcannotcyclethroughamapusinga for-

each style for loop. Furthermore, you can’t obtain an iterator to a map.

However,as youwillsoonsee, youcanobtainacollection-viewofamap,whichdoesallow the use of

either the for loop or an iterator.

TheMap Interfaces

Becausethemapinterfacesdefinethecharacterandnatureofmaps,thisdiscussionofmaps begins with

them.

Thefollowinginterfacessupport maps:

TheMapInterface

The Map interface maps unique keys to values. A key is an object that you use to retrieve a

valueatalaterdate.Givenakeyandavalue, youcanstorethevalueina Mapobject.After the value

is stored, you can retrieve it by using its key.

Map is generic:

interfaceMap<K,V>

AdvancedJavaandJ2EE–Module2

Here,Kspecifiesthetypeofkeys,and Vspecifiesthetypeofvalues. The

methods declared by Map.

Severalmethods

throwaClassCastExceptionwhen anobject is incompatiblewiththeelements inamap.

ANullPointerExceptionisthrownifanattemptismadetouseanullobjectandnullisnot allowed in

the map.

AnUnsupportedOperationExceptionisthrownwhenanattemptis made to

change an unmodifiable map.

AnIllegalArgumentExceptionisthrownifan

invalid argument is used.

Mapsrevolvearoundtwobasicoperations: get() andput().Toputavalueintoamap, use put(),

specifying the key and the value.

Toobtainavalue,callget(),passingthekeyas an

argument. The value is returned.

maps are not, themselves, collections because they do not implement the Collection

interface.However, youcanobtainacollection-viewofamap.Todothis,youcanusethe entrySet(

) method. It returns a Set that contains the elements in the map.

Toobtainacollection-viewofthekeys, use

keySet().

Togetacollection-view of thevalues,usevalues().

Collection-viewsarethemeansbywhichmapsareintegratedintothelargerCollections Framework.

SortedMap

TheSortedMapinterfaceextendsMap.Itensuresthattheentriesaremaintainedin ascending

orderbasedonthe keys.

SortedMapisgenericandisdeclared asshownhere:

interface SortedMap<K, V>K

specifies the type of keys,

Vspecifiesthetypeofvalues.

Several methods throwa NoSuchElementException when no items arein theinvokingmap.

AClassCastException is thrown when an object is incompatiblewith theelements in amap.

ANullPointerExceptionisthrownifanattemptismadetouseanullobjectwhennullisnot allowed

in the map.

AnIllegalArgumentExceptionisthrownifaninvalidargumentisused.

Sorted maps allow very efficient manipulations of submaps

Toobtain asubmap, useheadMap(),tailMap(),orsubMap().

AdvancedJavaandJ2EE–Module2

Togetthefirstkeyintheset,callfirstKey(). To get

the last key, use lastKey().

NavigableMap Interface

TheNavigableMapinterfacewasadded byJavaSE 6.

ItextendsSortedMapanddeclaresthebehaviorofamapthatsupportstheretrievalof entries based

on the closest match to a given key or keys. NavigableMap is a generic interface that has

this declaration:

interfaceNavigableMap<K,V>

Here, Kspecifiesthetypeofthekeys, and Vspecifiesthetypeofthevaluesassociatedwith the

keys.

SeveralmethodsthrowaClassCastExceptionwhenanobjectisincompatiblewiththekeys in the

map.

ANullPointerExceptionisthrownifanattemptismadetouseanullobjectandnullkeys are not

allowed in the set.

AnIllegalArgumentExceptionisthrownifaninvalidargumentisused. equal

to start.

Map.EntryInterface

TheMap.Entryinterfaceenablesyoutoworkwithamapentry.RecallthattheentrySet()

methoddeclared bytheMapinterfacereturns aSetcontainingthemap entries.

EachofthesesetelementsisaMap.Entryobject.Map.Entryisgenericandisdeclaredlike this:

interfaceMap.Entry<K,V>Here,Kspecifiesthetypeofkeys,andVspecifiesthetypeof values.

the methods declared byMap.Entry.

MapClasses

Severalclassesprovideimplementationsofthemapinterfaces.Theclassesthatcan beused for

maps are summarized here:

HashMap:

TheHashMapclassextendsAbstractMapandimplementstheMapinterface. Itusesahash table to

store the map.

This allows the execution time of get() and put() to remain constant

evenforlargesets.HashMapisagenericclassthathasthisdeclaration:

classHashMap<K,V>

Here,Kspecifies thetypeof keys,andVspecifiesthe typeof values.

Thefollowingconstructorsare defined:

HashMap()

HashMap(Map<?extendsK,?extendsV>m)

HashMap(int capacity)

HashMap(intcapacity,float fillRatio)

The first form constructs a default hash map. The second form initializes the hash map by

usingtheelementsofm. Thethirdforminitializesthecapacityofthehash mapto capacity. The

fourth form initializes both the capacity and fill ratio of the hash map by using its arguments.

Themeaningofcapacityandfillratioisthesameasfor HashSet,describedearlier.The default

capacity is 16.

Thedefaultfill ratiois 0.75.

HashMapimplementsMapandextendsAbstractMap.Itdoesnotaddanymethodsof its own.

import

java.util.*;classHashM

apDemo{

publicstatic void main(Stringargs[]) {

HashMap<String,Double>hm=newHashMap<String,Double>();

hm.put("John Doe", new Double(3434.34));

hm.put("Tom Smith", new Double(123.22));

hm.put("Jane Baker", new Double(1378.00));

hm.put("Tod Hall", new Double(99.22));

hm.put("Ralph Smith", new Double(-19.08));

Set<Map.Entry<String,Double>>set=hm.entrySet();

for(Map.Entry<String, Double> me : set) {

System.out.print(me.getKey() + ": ");

System.out.println(me.getValue());

}

System.out.println();

double balance = hm.get("John Doe");

hm.put("John Doe", balance + 1000);

System.out.println("JohnDoe'snewbalance:"+

hm.get("John Doe"));

}

}

Outputfromthisprogramisshownhere(thepreciseordermayvary): Ralph

Smith: -19.08

Tom Smith: 123.22

John Doe: 3434.34

TodHall:99.22

JaneBaker:1378.0

JohnDoe’snewbalance:4434.34

AdvancedJavaandJ2EE–Module2

Theprogram begins bycreatingahash mapand then adds themappingofnames to

balances.Next,thecontentsofthemaparedisplayedbyusingaset-view, obtainedbycalling entrySet(

). The keys and values are displayed by calling the getKey() and getValue() methods

thataredefinedbyMap.Entry.PaycloseattentiontohowthedepositismadeintoJohn Doe’s

account.Theput()methodautomaticallyreplacesanypreexistingvaluethatisassociated with the

specified key with the new value. Thus, after John Doe’s account is updated, the hash map

will still contain just one “John Doe” account.

TreeMap

TheTreeMapclassextendsAbstractMapandimplementstheNavigableMapinterface. It

creates maps stored in a tree structure.

ATreeMapprovidesanefficientmeansofstoringkey/valuepairsinsortedorderandallows rapid

retrieval. You should note that, unlike a hash map, a tree map guarantees that its elements

will be sorted in ascending key order.

TreeMapis agenericclassthat hasthisdeclaration:

classTreeMap<K,V>

Here,Kspecifiesthetypeofkeys,and Vspecifiesthetypeofvalues. The

following TreeMap constructors are defined:

TreeMap()

TreeMap(Comparator<? super K>comp)

TreeMap(Map<?extendsK,?extendsV>m)

TreeMap(SortedMap<K, ? extends V>sm)

The first form constructs an empty tree map that will be sorted by using the natural order of

itskeys.Thesecondformconstructsanemptytree-basedmapthatwillbesortedbyusingthe

Comparator comp. (Comparators are discussed later in this chapter.) The third form

initializes

a tree map with the entries from m, which will be sorted by using the natural order of the

keys.Thefourthforminitializesatreemapwiththeentriesfrom sm,whichwillbesortedin the same

order as sm.

TreeMaphasnomethodsbeyondthosespecifiedbytheNavigableMapinterfaceand the

AbstractMap class.

Thefollowingprogramreworkstheprecedingexamplesothatituses TreeMap: import

java.util.*;

classTreeMapDemo{

publicstatic void main(Stringargs[]) {

//Createatreemap.

TreeMap<String,Double>tm=newTreeMap<String,Double>();

//Put elements to the map.

tm.put("John Doe", new Double(3434.34));

tm.put("Tom Smith", new Double(123.22));

tm.put("JaneBaker",newDouble(1378.00));

tm.put("Tod Hall", new Double(99.22));

tm.put("RalphSmith",newDouble(-19.08));

AdvancedJavaandJ2EE–Module2

//Geta setoftheentries.

Set<Map.Entry<String, Double>>set=tm.entrySet();

// Display the elements.

for(Map.Entry<String,Double>me:set){

System.out.print(me.getKey() + ": ");

System.out.println(me.getValue());

}

System.out.println();

double balance = tm.get("John Doe");

tm.put("John Doe", balance + 1000);

System.out.println("JohnDoe'snewbalance:"+

tm.get("John Doe"));

}

}

Thefollowingis theoutput from thisprogram:

JaneBaker:1378.0

John Doe: 3434.34

RalphSmith:-19.08

ToddHall:99.22

Tom Smith: 123.22

JohnDoe’scurrentbalance: 4434.34

TreeMapsortsthekeys.

However,inthiscase,theyaresortedbyfirstname

instead of last name.

Youcanalterthisbehaviorbyspecifyingacomparatorwhenthemap is

created, as described shortly.

LinkedHashMap

LinkedHashMapextendsHashMap.

Itmaintainsalinked listoftheentries inthemap, in the

1orderinwhichtheywereinserted.Thisallowsinsertion-orderiterationoverthemap.That is, when

iterating through a collection-view of a LinkedHashMap, the elements will be returned in

the order in which they were inserted.

LinkedHashMapthatreturnsits elementsinthe orderinwhich theywere last accessed.

LinkedHashMapisagenericclassthathasthisdeclaration: class

LinkedHashMap<K, V>

Here,Kspecifiesthe typeofkeys, andVspecifies thetypeof values.

LinkedHashMapdefinesthefollowingconstructors:

LinkedHashMap()

LinkedHashMap(Map<?extendsK,?extendsV>m)

LinkedHashMap(int capacity)

AdvancedJavaandJ2EE–Module2

LinkedHashMap(int capacity, float fillRatio)

LinkedHashMap(intcapacity,floatfillRatio,booleanOrder) The

first form constructs a default LinkedHashMap.

Thesecondforminitializesthe LinkedHashMapwiththeelementsfrom m.Thethirdform

initializes the capacity. The fourth form initializes both capacityand fill ratio. The meaning

of capacity and fill ratio are the same as for HashMap. The default capactiy is 16. The

defaultratiois0.75.Thelastformallows youtospecifywhethertheelementswillbestored in the

linked list by insertion order, or by order of last access.

IdentityHashMap

IdentityHashMapextendsAbstractMapandimplementstheMapinterface.

Itissimilarto HashMap except that it usesreferenceequalitywhencomparingelements.

IdentityHashMapisagenericclassthathasthisdeclaration:

classIdentityHashMap<K,V>

Here,Kspecifiesthetypeofkey,and Vspecifiesthetypeofvalue.TheAPIdocumentation explicitly

states that IdentityHashMap is not for general use.

TheEnumMap Class

EnumMapextendsAbstractMapandimplementsMap.Itisspecificallyforusewithkeys of an

enum type. It is a generic class that has this declaration:

classEnumMap<K extendsEnum<K>,V>

Here, K specifies the type of key, and V specifies the type of value. Notice that K must

extendEnum<K>,whichenforcestherequirementthatthekeysmustbeofan enumtype.

EnumMap defines the following constructors:

EnumMap(Class<K>kType)

EnumMap(Map<K, ? extends V>m)

EnumMap(EnumMap<K,?extendsV>em)

ThefirstconstructorcreatesanemptyEnumMap oftypekType.Thesecondcreatesan EnumMap

map that contains the same entries as m. The third creates an EnumMap initialized with the

values in em.

Comparatorinterface

Comparatorisa generic interfacethathasthisdeclaration:

interfaceComparator<T>

Here,Tspecifies thetypeof objectsbeingcompared.

TheComparatorinterfacedefinestwomethods:compare()andequals().Thecompare()

method,shownhere,comparestwoelementsfororder:

intcompare(Tobj1,Tobj2)

obj1andobj2 arethe objects to becompared.

Thismethod returnszero if theobjects areequal.

Itreturnsapositivevalue if obj1 isgreaterthanobj2. Otherwise,anegative valueis returned.

ClassCastExceptionifthetypesoftheobjectsarenotcompatibleforcomparison. By

overriding compare(), you can alter the way that objects are ordered.

AdvancedJavaandJ2EE–Module2

Forexample,tosortinreverseorder, youcancreateacomparatorthatreversestheoutcome of a

comparison. The equals() method, shown here, tests whether an object equals the invoking

comparator:

booleanequals(Objectobj)

Here, obj is the object to be tested for equality. The method returns true if obj and the

invokingobjectareboth Comparatorobjectsandusethesameordering.Otherwise,it returns

false.

import java.util.*;

classMyCompimplementsComparator<String>{

public int compare(String a, String b) {

StringaStr,bStr;

aStr = a;

bStr =b;

return bStr.compareTo(aStr);

}

}

classCompDemo{

publicstatic void main(Stringargs[]) {
TreeSet<String>ts=newTreeSet<String>(newMyComp());

ts.add("C");

ts.add("A");

ts.add("B");

ts.add("E");

ts.add("F");

ts.add("D");

for(String element : ts)

System.out.print(element+"");

System.out.println();

}}

Output:

FE DC B A

TheCollectionAlgorithms:

CollectionsFrameworkdefinesseveralalgorithmsthatcanbeappliedtocollections and

maps.

algorithmsaredefinedasstaticmethodswithinthe Collectionsclass.

static<T> BooleanaddAll(Collection<?superT>c, T...elements)

Insertstheelementsspecified byelementsinto the

collectionspecified byc.Returnstrueiftheelementswereaddedandfalseotherwise.

static<T>Queue<T>asLifoQueue(Deque<T>c)

Returns a last-in, first-out view of c.

static<T>intbinarySearch(List<?extendsT>list,Tvalue,Comparator<?superT>c)

Searchesforvalueinlistorderedaccordingtoc. Returnsthepositionofvalue in list,

or a negative value if value is not found.

static<T>intbinarySearch(List<?extendsComparable<?superT>>list,Tvalue)

AdvancedJavaandJ2EE–Module2

Searchesforvalueinlist.Thelistmustbesorted.Returnsthepositionofvalue in list,

or a negative value if value is not found.

static<E>Collection<E>checkedCollection(Collection<E>c,Class<E>t)

Returnsarun-timetype-safeviewofacollection. Anattempttoinsertan incompatible

element will cause a ClassCastException.

static<E>List<E> checkedList(List<E>c,Class<E>t)

Returnsarun-timetype-safeviewofaList.Anattempttoinsertan incompatible

element will cause a ClassCastException.

static<K,V>Map<K,V>checkedMap(Map<K,V>c,Class<K>keyT,Class<V>valueT)

Returnsarun-time type-safeviewof aMap.

Anattempttoinsertanincompatibleelementwillcausea ClassCastException.

static<E>List<E> checkedSet(Set<E>c,Class<E>t)

Returnsarun-timetype-safeviewofaSet. An

attempttoinsertanincompatibleelementwillcauseaClassCastException.

staticintfrequency(Collection<?>c,Objectobj)

Countsthenumberofoccurrencesofobjincand returnstheresult. static int

indexOfSubList(List<?> list, List<?> subList)

Searcheslistforthe firstoccurrenceofsubList.

Returnstheindexofthefirstmatch,or–1ifnomatchisfound. static int

lastIndexOfSubList(List<?> list, List<?> subList)

SearcheslistforthelastoccurrenceofsubList.

Returnstheindex ofthelastmatch,or–1ifno

match is found.

import java.util.*;

classAlgorithmsDemo{

public static void main(String args[]) {

LinkedList<Integer>ll=newLinkedList<Integer>();

ll.add(-8);

ll.add(20);

ll.add(-20);

ll.add(8);

Comparator<Integer>r=Collections.reverseOrder();

Collections.sort(ll, r);

System.out.print("Listsortedinreverse:"); for(int

i : ll)

System.out.print(i+ "");

System.out.println();

Collections.shuffle(ll);

System.out.print("Listshuffled:");

for(int i : ll)

System.out.print(i+"");

System.out.println();

System.out.println("Minimum:"+Collections.min(ll));

AdvancedJavaandJ2EE–Module2

System.out.println("Maximum:"+ Collections.max(ll));

}

}

Output:

Listsortedinreverse:208 -8-20

Listshuffled:20-208-8

Minimum: -20

Maximum:20

Noticethatmin()andmax()operateonthelistafterithasbeenshuffled.Neitherrequires a sorted

list for its operation.

WhyGeneric Collections?

Asmentionedatthestartofthischapter,theentireCollectionsFrameworkwasrefittedfor generics

when JDK 5 was released.

Furthermore,theCollectionsFrameworkisarguablythesinglemostimportantuseof generics in

the Java API.

Thereasonforthisisthatgenerics addtypesafetytotheCollectionsFramework.Before moving on, it

is worth taking some time to examine in detail the significance of this improvement.

importjava.util.*;

class OldStyle {

publicstaticvoidmain(Stringargs[]){

ArrayList list = new ArrayList();

list.add("one");

list.add("two");

list.add("three");

list.add("four");

Iteratoritr=list.iterator();

while(itr.hasNext()) {

String str = (String) itr.next(); // explicit cast needed here.

System.out.println(str+"is"+str.length()+"charslong.");

}

}

}

Priortogenerics,allcollectionsstoredreferencesoftypeObject. This

allowed any type of reference to be stored in the collection.

Theprecedingprogramusesthisfeaturetostore referencestoobjectsoftype Stringinlist,

butanytypeofreferencecouldhavebeenstored. Unfortunately,thefactthatapre-generics

collection stored Object references could easily lead to errors.

First,itrequiredthatyou,ratherthanthecompiler,ensurethatonlyobjectsof

thepropertypebestoredinaspecificcollection.Forexample,intheprecedingexample, list is

clearly intended to store Strings, but there is nothing that actually prevents another typeof

reference from being added to the collection.

AdvancedJavaandJ2EE–Module2

Forexample,thecompilerwillfindnothingwrongwiththislineofcode:

list.add(new Integer(100));

BecauseliststoresObjectreferences,itcanstoreareferencetoIntegeraswellasitcan store a

reference to String.

However,if youintended listtoholdonlystrings,thentheprecedingstatementwouldcorrupt the

collection. Again, the compiler had no way to know that the preceding statement is invalid.

Thesecondproblemwithpre-genericscollectionsisthatwhenyouretrieveareference from

the collection, you must manually cast that reference into the proper type.

Thisiswhytheprecedingprogramcaststhereferencereturnedbynext()intoString.Prior

togenerics,collectionssimplystoredObjectreferences.Thus,thecastwasnecessarywhen

retrieving

objectsfromacollection.

Aside from the inconvenience of always having to cast a retrieved reference into its proper

type, this lack of type safety often led to a rather serious, but surprisingly easy-to-create,

error.BecauseObject canbecastintoanytypeofobject,itwaspossibleto castareference

obtainedfromacollectionintothewrongtype.Forexample,ifthefollowingstatementwere

addedtotheprecedingexample,itwouldstillcompilewithouterror,but generatearun-time

exception when executed:

Integeri=(Integer)itr.next();

• Ensuresthatonlyreferencestoobjectsofthepropertypecanactuallybestoredin a

collection. Thus, a collection will always contain references of a known type.

• Eliminatestheneedtocastareferenceretrievedfromacollection.Instead,areference

retrieved from a collection is automatically cast into the proper type. This prevents

run-timeerrorsduetoinvalidcastsand avoidsanentirecategoryoferrors.

TheLegacyClassesandInterfaces
As explained at the start of this chapter, early versions of java.util did not include the

CollectionsFramework.Instead,itdefinedseveralclassesandaninterfacethatprovidedan ad hoc

method of storing objects.

Whencollectionswereadded(byJ2SE1.2),severaloftheoriginalclasseswerereengineered to

support the collection interfaces.

Thus,theyarefullycompatiblewiththeframework.Whilenoclasseshaveactuallybeen deprecated,

one has been rendered obsolete.

Of course, where a collection duplicates the functionalityof a legacyclass,you will usually

wanttousethecollectionfornewcode.Ingeneral,thelegacyclassesare supportedbecause there is

still code that uses them.

Oneotherpoint:noneofthecollectionclassesaresynchronized,butallthelegacyclasses are

synchronized.

AdvancedJavaandJ2EE–Module2

Thisdistinctionmaybeimportantinsomesituations.Ofcourse,youcan

easilysynchronizecollections,too, byusingoneofthealgorithmsprovidedbyCollections.

Thelegacyclassesdefinedbyjava.utilareshownhere: Dictionary

Hashtable

Properties

Stack

Vector

Thereis onelegacyinterface calledEnumeration.

ThefollowingsectionsexamineEnumerationandeachofthelegacyclasses,inturn. The

Enumeration Interface

TheEnumerationinterfacedefinesthemethodsbywhich youcan enumerate(obtainoneat a

time) the elements in a collection of objects. This legacyinterface has been superseded by

Iterator.

interfaceEnumeration<E>

whereE specifiesthe typeof elementbeing enumerated.

Vector
Vectorimplementsadynamicarray.Itissimilarto ArrayList,butwithtwodifferences: Vector is

synchronized, and it contains many legacy methods that are not part of the Collections.

Vectorisdeclaredlike this:

classVector<E>

Here,Especifiesthetypeofelementthatwillbestored.

HerearetheVectorconstructors:

Vector()

Vector(intsize)

Vector(int size, int incr)

Vector(Collection<?extendsE>c)

 Thefirstformcreates adefaultvector, whichhasan initialsizeof 10.

 Thesecond form createsavectorwhoseinitial capacityis specified bysize.

 Thethirdformcreatesavectorwhoseinitialcapacityisspecifiedbysizeandwhose

increment is specified by incr.

Theincrementspecifiesthenumberofelementstoallocateeachtimethatavectorisresized upward.

Thefourthformcreatesavectorthatcontainsthe elementsofcollectionc.

Stack
StackisasubclassofVectorthatimplementsastandardlast-in,first-outstack.Stackonly defines

the default constructor, which creates an empty stack. With the release of JDK 5, Stack was

retrofitted for generics and is declared as shown here:

classStack<E>

AdvancedJavaandJ2EE–Module2

Here,Especifiesthe typeofelement storedinthestack.

Stack includes all themethods defined byVector.

Dictionary
Dictionaryisanabstractclassthatrepresentsakey/valuestoragerepositoryandoperates much like

Map.

Givenakeyandvalue,you canstorethe valueinaDictionaryobject. Once

thevalueisstored, youcanretrieveitbyusingits key.Thus,likeamap,adictionarycanbe thought of as

a list of key/value pairs.

Although not currentlydeprecated,Dictionary is

classifiedasobsolete,becauseitisfullysupersededbyMap.However,Dictionaryisstillin use and

thus is fully discussed here.

classDictionary<K, V>

Here,Kspecifiesthetypeofkeys,and Vspecifiesthetypeofvalues.Theabstractmethods defined by

Dictionary are listed in Table 17-17.

Hashtable
Hashtablewaspartoftheoriginaljava.utilandisaconcreteimplementationofa

Dictionary.

HashMap,Hashtablestoreskey/valuepairsina hashtable.However,neitherkeys

norvaluescanbenull.WhenusingaHashtable, youspecifyanobjectthatisusedasakey, and the

value that you want linked to that key. The key is then hashed, and the resulting hash code

is used as the index at which the value is stored within the table.

Hashtablewas madegenericbyJDK 5.

Itisdeclaredlikethis: classHashtable<K,V>

Hashtable()

Hashtable(intsize)

Hashtable(int size, float fillRatio)

Hashtable(Map<?extendsK,?extendsV>m)

Thefirstversion isthedefault constructor.

Thesecondversioncreatesahashtablethathas an

initial size specified by size.

The third version creates a hash table that has an initial size specified bysize and a fill ratio

specifiedbyfillRatio.Thisratiomustbebetween 0.0and1.0,anditdetermineshowfullthe hash

table can be before it is resized upward. Specifically, when the number of elements is

greater than the capacity of the hashtable multiplied by its fill ratio, the hash table is

expanded. If you do not specify a fill ratio,

then 0.75 is used.

Finally,thefourthversion createsahashtablethatisinitializedwith the

elementsin m.Thecapacityof thehash table is setto twicethe number of elements inm.

Thedefaultloadfactorof 0.75is used.

AdvancedJavaandJ2EE–Module2

Properties

Propertiesisasubclass ofHashtable. Itisusedtomaintainlistsofvaluesinwhichthe key is a

String and the value is also a String.

ThePropertiesclassisusedbymanyotherJavaclasses.Forexample,itisthetypeofobject returned by

System.getProperties() when obtaining environmental values.

Althoughthe Propertiesclass,itself,isnotgeneric,several ofitsmethodsare.

Propertiesdefinesthe followinginstance variable:

Propertiesdefaults;

Thisvariableholdsadefaultpropertylist associatedwith aProperties object.Properties

definestheseconstructors:

Properties()

Properties(PropertiespropDefault)

Advanced Java– Module 2

Syllabus-StringHandling:

Module 2

The String Constructors, String Length, Special String Operations, String Literals,

String Concatenation, String Concatenation with Other Data Types, String Conversion and

toString() Character Extraction, charAt(), getChars(), getBytes() toCharArray(), String

Comparison,equals()andequalsIgnoreCase(),regionMatches()startsWith()andendsWith(

),equals()Versus==,compareTo()SearchingStrings,ModifyingaString,substring(), concat(),

replace(), trim(), Data Conversion Using valueOf(), Changing the Case of Characters

Within a String, Additional String Methods, StringBuffer , StringBuffer Constructors,

length() and capacity(), ensureCapacity(), setLength(), charAt() and setCharAt(),

getChars(),append(), insert(), reverse(), delete() and deleteCharAt(), replace(),substring(

),Additional StringBuffer Methods, StringBuilder.

1. WhatarethedifferenttypesofStringConstructorsavailableinJava?

TheStringclasssupportsseveralconstructors.

a. TocreateanemptyString

thedefaultconstructor isused.

Ex:Strings =new String();

willcreate an instanceof Stringwithno charactersin it.

b. TocreateaStringinitializedbyanarrayofcharacters,usetheconstructor shown

here:

String(charchars[])

ex: char chars[] = { 'a', 'b', 'c' };

Strings=newString(chars);

Thisconstructorinitializesswiththestring“abc”.

c. Tospecifyasubrangeofacharacterarrayasaninitializerusingthefollowing

constructor:

String(charchars[],intstartIndex,intnumChars)

Here,startIndexspecifiestheindexatwhichthesubrangebegins,and numChars

specifies the number of characters to use. Here is an example:

charchars[]={'a','b','c','d','e','f'}; String s

= new String(chars, 2, 3);

Thisinitializesswiththecharacterscde.

d. ToconstructaStringobjectthatcontainsthesamecharactersequenceas

another String object using this constructor:

String(StringstrObj)

Here,strObj isaStringobject.

classMakeString

{publicstatic void main(Stringargs[])

{charc[] ={'J','a', 'v','a'};

Strings1 =new String(c);

Advanced Java– Module 2

Strings2=newString(s1);

System.out.println(s1);

System.out.println(s2);

}

}

Theoutputfromthisprogramisas follows:

Java

Java

As youcansee,s1ands2containthesame string.

e. ToConstruct stringusing bytearray:

Even though Java’s char type uses 16 bits to represent the basic Unicode

characterset,thetypicalformatforstringsontheInternetusesarraysof 8-bitbytes constructed

from the ASCII character set.

Because8-bitASCIIstringsarecommon,theStringclassprovides constructors

that initialize a string when given a byte array.

Ex:String(byteasciiChars[])

String(byteasciiChars[],intstartIndex,intnumChars)

Thefollowingprogramillustratestheseconstructors:

class SubStringCons

{publicstatic void main(Stringargs[])

{

byte ascii[] ={65,66, 67,68,69,70 };

Strings1=newString(ascii);

System.out.println(s1);

Strings2=newString(ascii,2,3);

System.out.println(s2);

}

}

Thisprogramgeneratesthefollowingoutput:

ABCDEF

CDE

f. ToconstructaStringfromaStringBufferbyusingtheconstructorshown here:

Ex:String(StringBuffer strBufObj)

g. ConstructingstringusingUnicodecharactersetandisshownhere:

String(int codePoints[], int startIndex, int numChars)

codePointsisan arraythatcontains Unicode codepoints.

h. ConstructingstringthatsupportsthenewStringBuilderclass. Ex :

String(StringBuilder strBuildObj)

Advanced Java– Module 2

Note:

Stringcanbeconstructedbyusingstringliterals.

String s1=”Hello World”

Stringconcatenation canbedoneusing+operator. With otherdata typealso.

String Length
1. Thelengthofastringisthenumberofcharactersthatitcontains.Toobtain this

value, call the length() method,

2. Syntax:

intlength()

3. Example

charchars[] ={'a','b','c'};Strings=new String(chars);

System.out.println(s.length());//3

toString()
1. EveryclassimplementstoString()becauseitisdefinedbyObject.

However, the default Implementation of toString() is sufficient.

2. Formostimportantclassesthatyoucreate,willwanttooverridetoString() and

provide your own string representations.

StringtoString()

3. To implement toString(), simply return a String object that contains the

human-readablestringthatappropriatelydescribesanobjectof yourclass.

4. ByoverridingtoString() forclasses that you create, you allow them to be

fullyintegratedintoJava’sprogrammingenvironment.Forexample,they can

be used in print() and println() statements and in concatenation

expressions.

5. Thefollowingprogramdemonstratesthisbyoverriding

toString() for the Box class:

classBox

{

doublewidth;doubleheight;doubledepth;

Box(double w, double h, double d)

{width =w; height=h; depth=d; }

publicStringtoString()

{ return"Dimensions are"+width +"by"+depth +"by"+height +".";}

}

classtoStringDemo{

publicstatic void main(Stringargs[])

{

Boxb=newBox(10,12,14);

String s = "Box b: " + b;

Advanced Java– Module 2

System.out.println(b);

System.out.println(s);

}

}

Theoutput of this program is shown here:

Dimensions are 10.0by14.0by 12.0

Box b: Dimensionsare10.0 by14.0 by 12.0

CharacterExtraction
The String class provides a number of ways in which characters can be

extracted from a String object.String object can not be indexed as if they

were a character array, many of the String methods employ an index (or

offset)intothestringfortheiroperation.Likearrays,thestringindexesbegin at

zero.

A. charAt()

1. description:

ToextractasinglecharacterfromaString, youcanreferdirectlytoan

individual character via the charAt() method.

2. Syntax

charcharAt(intwhere)

Here,whereistheindexofthecharacterthat youwanttoobtain. charAt()

returns the character at the specified location.

3. example,

char ch;

ch = "abc".charAt(1);

assignsthevalue“b”toch.

B. getChars()

1. toextractmorethanonecharacteratatime, youcanusethegetChars()

method.

2. Syntax

voidgetChars(intsourceStart,intsourceEnd,chartarget[],int targetStart)

Here, sourceStart specifies the index of the beginning of the substring,

sourceEnd specifies an index that is one past the end of the desired The array

thatwillreceivethecharactersisspecifiedbytarget.Theindexwithintargetat which

the substring will be copied is passed in targetStart.

3. classgetCharsDemo{

publicstatic void main(Stringargs[])

{Strings="ThisisademoofthegetCharsmethod."; int

start = 10;

intend =14;

charbuf[]=newchar[end-start];

s.getChars(start, end, buf, 0);

Advanced Java– Module 2

System.out.println(buf);

}

}

Hereis theoutputof thisprogram:

demo

C. getBytes()

1. ThismethodiscalledgetBytes(),anditusesthedefaultcharacter-to-byte

conversions provided by the platform.

Syntax:

byte[]getBytes()

Otherformsof getBytes()arealsoavailable.

2. getBytes() is most useful when you are exporting a String value into an

environmentthatdoesnotsupport16-bitUnicodecharacters.Forexample, most

Internet protocols and text file formats use 8-bit ASCII for all text

interchange.

D. toCharArray()

If youwanttoconvertallthecharactersinaStringobjectintoacharacter array, the

easiest way is to call toCharArray().

Itreturnsanarrayofcharactersfortheentirestring. It has

this general form:

char[]toCharArray()

2. String Comparison:

TheStringclassincludesseveralmethodsthatcomparestringsor

substrings within strings.

equals()

Tocomparetwostringsforequality,useequals(). It

has this general form:

booleanequals(Objectstr)

Here, str is the Stringobject beingcompared with the invoking Stringobject.

Itreturnstrueifthestringscontainthesamecharactersinthesameorder,and false

otherwise. The comparison is case-sensitive.

A. equalsIgnoreCase()

To perform a comparison that ignores case differences, call

equalsIgnoreCase().Whenitcomparestwostrings,itconsidersA-Ztobethe same as

a-z.

Ithasthisgeneralform:

booleanequalsIgnoreCase(String str)

Here, str is the String object being compared with the invoking String object.

It,too,returnstrueifthestringscontainthesamecharactersinthesameorder, and

false otherwise.

//Demonstrateequals()andequalsIgnoreCase().

class equalsDemo {

publicstatic voidmain(Stringargs[]) {

Advanced Java– Module 2

String s1 = "Hello";

String s2 = "Hello";

Strings3="Good-bye";

String s4 = "HELLO";

System.out.println(s1+"equals"+s2+"->"+s1.equals(s2));

System.out.println(s1+"equals"+s3+"->"+s1.equals(s3));

System.out.println(s1+"equals"+s4+"->"+s1.equals(s4)); System.out.println(s1

+ " equalsIgnoreCase " + s4 + " ->" + s1.equalsIgnoreCase(s4)); } }

Theoutput fromtheprogramis shown here:

Hello equals Hello -> true

HelloequalsGood-bye->false

Hello equals HELLO -> false

HelloequalsIgnoreCaseHELLO->true

B. regionMatches()

1. TheregionMatches()methodcomparesaspecificregioninsideastringwith

another specific region in another string. There is an overloaded form that

allows you to ignore case in such comparisons.

2. Syntax:

booleanregionMatches(intstartIndex,Stringstr2,intstr2StartIndex,int

numChars)

booleanregionMatches(booleanignoreCase,intstartIndex,Stringstr2, int

str2StartIndex, int numChars)

3. Forbothversions,startIndexspecifiestheindexatwhichthe

region begins within the invoking String object.

The String being compared is specified by str2. The index at which the

comparisonwillstartwithinstr2isspecifiedbystr2StartIndex.Thelengthof the

substring being compared is passed in numChars.

4. Inthesecondversion,ifignoreCaseistrue,thecaseofthe

characters is ignored. Otherwise, case is significant.

C. startsWith()andendsWith()

1. ThestartsWith()methoddetermineswhetheragivenStringbeginswitha

specified string.

2. endsWith()determineswhethertheStringinquestionendswitha

specified string.

3. Syntax

booleanstartsWith(Stringstr)

boolean endsWith(String str)

Advanced Java– Module 2

Here,str isthe Stringbeingtested.

Ifthestringmatches,trueisreturned.

Otherwise, false is returned.

Forexample,

"Foobar".endsWith("bar")

"Foobar".startsWith("Foo")

are both true.

4. AsecondformofstartsWith(),shownhere,letsyouspecifyastarting point:

booleanstartsWith(Stringstr,intstartIndex)

Here,startIndexspecifies theindexintotheinvokingstringatwhichpointthe search

will begin. For example,

"Foobar".startsWith("bar",3)

returns true.

D. equals()Versus==

Itisimportanttounderstandthattheequals()methodandthe==operator perform two

different operations.

theequals()methodcomparesthe charactersinsideaStringobject.

The==operatorcomparestwoobjectreferencestoseewhethertheyreferto the

same instance.

classEqualsNotEqualTo {

publicstaticvoidmain(Stringargs[]){ String

s1 = "Hello";

Strings2 =new String(s1);

System.out.println(s1+"equals"+s2+"->"+s1.equals(s2)); System.out.println(s1

+ " == " + s2 + " ->" + (s1 == s2));

}

}

E. compareTo()

1. Sortingapplications, youneedtoknowwhichislessthan,equalto,or

greater than the next.

2. A stringis less than another if it comes before the otherin dictionary

order. A string is greater than another if it comes after the other in

dictionaryorder.TheStringmethodcompareTo()servesthispurpose.

3. Ithasthisgeneralform:

intcompareTo(String str)

Here,stristheStringbeingcomparedwiththeinvokingString.The result of

the comparison is returned and is interpreted,

4. Lessthanzerowheninvokingstringislessthanstr.

5. Greaterthan zerowhen invokingstringisgreaterthan str.

6. ZeroThetwostringsare equal.

Advanced Java– Module 2

//AbubblesortforStrings.

class SortString

{staticStringarr[]={"Now", "is","the", "time","for", "all", "good","men",

"to","come","to","the","aid","of","their","country"};

public static void main(String args[])

{for(intj =0;j <arr.length; j++)

{for(inti =j +1;i <arr.length; i++)

{if(arr[i].compareTo(arr[j])<0)

{Stringt=arr[j];

arr[j] = arr[i];

arr[i] = t;

}

} System.out.println(arr[j]);

}

}

}

Theoutput of this program is the list of words:

Nowaidallcomecountryforgoodismenofthethetheirtimetoto As you

can see

7. Ignore case differences when comparing two strings, use

compareToIgnoreCase(),Thismethodreturnsthesameresultsas

compareTo(), except that case differences are ignored.

5. SearchingString

A.indexOf()andlastIndexOf()
1. indexOf()Searchesforthefirstoccurrenceofacharacteror

substring.

2. lastIndexOf()Searchesforthelastoccurrenceofacharacteror

substring.

3. Thesetwomethodsareoverloadedinseveraldifferent ways

4. returntheindexatwhichthecharacterorsubstringwasfound,or –1 on

failure.

5. Tosearchforthe firstoccurrenceof acharacter,intindexOf(int ch)

6. Tosearchforthelastoccurrence ofa character,

intlastIndexOf(intch)Here,chisthe characterbeingsought

7. To search for the first or last occurrence of a substring, use int

indexOf(Stringstr)intlastIndexOf(Stringstr)Here,strspecifies the

substring.

Advanced Java– Module 2

8. Youcanspecifyastartingpointforthesearchusingtheseforms: int

indexOf(int ch, int startIndex)

intlastIndexOf(intch,intstartIndex)

9. intindexOf(Stringstr,intstartIndex)intlastIndexOf(Stringstr,int

startIndex) Here, startIndex specifies the index at which point the

search begins.

10. For indexOf(), the search runs from startIndex to the end of the

string.ForlastIndexOf(),thesearchrunsfromstartIndextozero. The

following example shows how to use the various index methods

to search inside of Strings:

//DemonstrateindexOf()andlastIndexOf().

class indexOfDemo {

publicstatic void main(Stringargs[])

{Strings="Nowisthetimeforall goodmen"+"tocometotheaid of their

country.";

System.out.println(s);

System.out.println("indexOf(t)="+s.indexOf('t'));

System.out.println("lastIndexOf(t) = " + s.lastIndexOf('t'));

System.out.println("indexOf(the) = " + s.indexOf("the"));

System.out.println("lastIndexOf(the) = " + s.lastIndexOf("the"));

System.out.println("indexOf(t, 10) = " + s.indexOf('t', 10));

System.out.println("lastIndexOf(t,60)= "+s.lastIndexOf('t',60));

System.out.println("indexOf(the, 10) = " + s.indexOf("the", 10));

System.out.println("lastIndexOf(the,60)="+s.lastIndexOf("the", 60));

}

}

Output

Nowisthetimeforallgoodmentocometotheaidoftheircountry. indexOf(t) =

7

lastIndexOf(t)=65

indexOf(the)=7

lastIndexOf(the)=55

indexOf(t,10)=11

lastIndexOf(t,60)=55

indexOf(the,10)=44

lastIndexOf(the,60)=55

6. Modifyinga String
String objects are immutable, whenever you want to modify a String,

youmusteithercopyitintoaStringBufferorStringBuilder,oruseone of the

following String methods, which will construct a new copy of the

string with your modifications complete.

Advanced Java– Module 2

A. Substring()

1. Youcanextractasubstringusingsubstring().Ithastwoforms.The first is

String substring(int startIndex)

2. Here, startIndex specifies the index at which thesubstringwill begin.

ThisformreturnsacopyofthesubstringthatbeginsatstartIndexand runs to

the end of the invoking string.

3. Thesecondformofsubstring()allows youtospecifyboththe

beginning and ending index of the substring:

Stringsubstring(int startIndex, int endIndex)

Here,startIndexspecifiesthebeginningindex,andendIndexspecifies the

stopping point.

4. The string returned contains all the characters from the beginning

index, up to, but not including, the ending index. The following

programusessubstring()toreplaceallinstancesofonesubstringwith

another within a string:

//Substringreplacement.

class StringReplace {

public static void main(String args[]) {

Stringorg="Thisisatest.Thisis,too.";

String search = "is";

Stringsub="was";

String result = "";

int i;

do{

System.out.println(org);

i = org.indexOf(search);

if(i!=-1){result=org.substring(0,i); result

= result + sub;

result=result+org.substring(i+search.length()); org

= result;

}}while(i!=-1);

}

}

Theoutputfromthisprogramisshownhere: This

is a test. This is, too.

Thwas is a test. This is, too.

Thwas was a test. This is, too.

Thwas was a test. Thwas is, too.

Thwaswasatest.Thwaswas,too.

B. concat()

Advanced Java– Module 2

1. concatenatetwostringsusingconcat()

String concat(String str)

2. Thismethodcreatesanewobjectthatcontainstheinvokingstring with

the contents of str appended to the end.

3. concat()performsthesamefunctionas+.

4. Strings1 ="one";

Strings2 =s1.concat("two");

C. replace()
1. Thereplace() methodhastwo forms.

2. Thefirstreplacesalloccurrencesofonecharacterinthe

invoking string with another character.

Syntax:

Stringreplace(charoriginal,char replacement)

Here,originalspecifiesthecharactertobereplacedbythecharacter specified

by replacement. The resulting string is returned.

Example

Strings="Hello".replace('l','w');

puts the string “Hewwo” into s.

Thesecondformofreplace()replacesonecharactersequencewith another. It

has this general form:

Stringreplace(CharSequenceoriginal,CharSequence replacement)

D. trim()
Thetrim()methodreturnsacopyoftheinvokingstringfromwhich any

leading and trailing whitespace has been removed.

Syntax:

Stringtrim()

Example:

String s = "Hello World

 ".trim();This

putsthestring“HelloWorld”intos.

Thetrim()methodisquiteusefulwhenyou processusercommands.

//Usingtrim()toprocesscommands. import

java.io.*;

classUseTrim

{publicstaticvoidmain(Stringargs[])throwsIOException{

BufferedReader br = new BufferedReader(new

nputStreamReader(System.in));

Stringstr;

System.out.println("Enter'stop'toquit.");

System.out.println("Enter State: ");

do { str =br.readLine();

Advanced Java– Module 2

str = str.trim();

if(str.equals("Illinois"))

System.out.println("Capital is Springfield.");else

if(str.equals("Missouri"))

System.out.println("Capital is Jefferson City.");

else if(str.equals("California"))

System.out.println("Capital is Sacramento.");

else if(str.equals("Washington"))

System.out.println("Capital is Olympia."); // ... }

while(!str.equals("stop"));

}

}

5. DataConversion
1. ThevalueOf()methodconvertsdatafromitsinternalformatinto a

human-readable form.

2. It is a static method that is overloaded within String for all of

Java’sbuilt-intypessothateachtypecanbeconvertedproperly into a

string.

3. valueOf()isalsooverloadedfortypeObject,soanobjectofany class

type you create can also be used as an argument

Syntax:

static String valueOf(double num)

static String valueOf(long num)

static String valueOf(Object ob)

staticStringvalueOf(charchars[])

4. valueOf()iscalledwhenastringrepresentationofsomeothertype of

data is needed. example, during concatenation operations.

5. Anyobjectthat youpasstovalueOf()willreturntheresultofa call to

the object’s toString() method.

6. ThereisaspecialversionofvalueOf()thatallows youtospecifya

subset of a char array.

Syntax:

staticStringvalueOf(charchars[],intstartIndex,int numChars)

7. Here,charsisthearraythatholdsthecharacters,startIndexisthe index

into the array of characters at which the desired substring begins,

and numChars specifies the length of the substring.

6. ChangingCaseofCharacters

Advanced Java– Module 2

A. toLowerCase()

1. convertsallthecharacters inastringfromuppercaseto lowercase.

2. ThismethodreturnaStringobjectthatcontainsthelowercase

equivalent of the invoking String.

3. Nonalphabeticalcharacters,suchas digits,are unaffected.

Syntax

StringtoLowerCase()

B. toUpperCase()

1. convertsallthecharactersinastringfromlowercaseto

uppercase.

2. ThismethodreturnaStringobjectthatcontainstheuppercase

equivalent of the invoking String.

3. Nonalphabeticalcharacters,suchasdigits,are unaffected.

Syntax

StringtoUpperCase()

classChangeCase{

publicstaticvoidmain(Stringargs[]){

String s = "This is a test.";

System.out.println("Original: " + s);

String upper = s.toUpperCase();

String lower = s.toLowerCase();

System.out.println("Uppercase:"+upper);

System.out.println("Lowercase:"+lower);

}

}

Output:

Original: This is a test.

Uppercase:THISISATEST.

Lowercase: this is a test.

StringBuffer

StringBufferisapeerclassofStringthatprovidesmuchofthefunctionalityofstrings.As you know,

String represents fixed-length, immutable character sequences.

StringBufferrepresents growableandwriteablecharacter sequences.

StringBuffermayhavecharactersandsubstringsinsertedinthemiddleorappendedtothe end.

Advanced Java– Module 2

StringBufferwillautomaticallygrowtomakeroomforsuchadditionsandoftenhasmore characters

pre allocated than are actually needed, to allow room for growth.

StringBufferConstructors

StringBufferdefinesthesefourconstructors:

StringBuffer()

StringBuffer(int size)

StringBuffer(String str)

StringBuffer(CharSequencechars)

a. Thedefaultconstructor(theonewithnoparameters)reservesroomfor16characters

without reallocation.

b. Thesecondversionacceptsanintegerargumentthatexplicitlysetsthesizeofthe buffer.

c. The third version accepts a String argument that sets the initial contents of the

StringBufferobjectandreservesroomfor16morecharacterswithoutreallocation.

d. StringBufferallocatesroomfor16additionalcharacterswhennospecificbuffer

length is requested, because reallocation is a costly process in terms of time.

A. length()andcapacity()

a. ThecurrentlengthofaStringBuffercanbefoundviathelength()method,whilethe total

allocated capacity can be found through the capacity() method.

Syntax

int length()

intcapacity()

b. Example:

classStringBufferDemo

{

publicstatic void main(Stringargs[])

{

StringBuffer sb = new StringBuffer("Hello");

System.out.println("buffer = " + sb);

System.out.println("length = " + sb.length());

System.out.println("capacity="+sb.capacity());

}

Advanced Java– Module 2

}

Output

buffer=Hello

length = 5

capacity= 21

B. ensureCapacity()
a. If you want to pre allocate room for a certain number of characters after a

StringBufferhasbeenconstructed, youcanuseensureCapacity()tosetthesizeofthe buffer.

b. Thisisusefulifyouknowinadvancethat youwillbeappendingalargenumberof small

strings to a StringBuffer.

Syntax

voidensureCapacity(int capacity)

Here,capacityspecifiesthe sizeofthe buffer.

C. setLength()
a. TosetthelengthofthebufferwithinaStringBufferobject,

Syntax:

voidsetLength(intlen)

Here,lenspecifiesthelengthof thebuffer. Thisvaluemustbenonnegative.

Whenyouincreasethesizeofthebuffer,nullcharactersareaddedtotheendoftheexisting buffer.

If youcallsetLength()withavaluelessthanthecurrentvaluereturnedbylength(),thenthe characters

stored beyond the new length will be lost.

D. charAt()andsetCharAt()
a. The value of a single character can be obtained from a StringBuffer via the

charAt()method.YoucansetthevalueofacharacterwithinaStringBufferusing

setCharAt().

b. Syntax

charcharAt(intwhere)

voidsetCharAt(intwhere,charch)

c. ForcharAt(),wherespecifiestheindexofthecharacterbeingobtained.

d. ForsetCharAt(),wherespecifiestheindexofthecharacterbeingset,andchspecifies the new

value of that character.

Advanced Java– Module 2

//DemonstratecharAt()andsetCharAt().

class setCharAtDemo {

publicstatic void main(Stringargs[])

{ StringBuffer sb = new StringBuffer("Hello");

System.out.println("buffer before = " + sb);

System.out.println("charAt(1) before = " + sb.charAt(1));

sb.setCharAt(1, 'i');

sb.setLength(2);

System.out.println("bufferafter="+sb);

System.out.println("charAt(1)after="+sb.charAt(1));} }

Output

bufferbefore=Hello

charAt(1) before = e

buffer after = Hi

charAt(1) after = i

E. getChars()
a. TocopyasubstringofaStringBufferintoanarray,usethe getChars()method. Syntax

Syntax

voidgetChars(intsourceStart,intsourceEnd,char target[],inttargetStart)

Here,sourceStartspecifiestheindexofthebeginningofthesubstring,andsourceEnd specifies an

index that is one past the end of the desired substring.

b. ThismeansthatthesubstringcontainsthecharactersfromsourceStartthrough

sourceEnd–1.

c. Thearraythat will receivethecharacters is specified bytarget.

Theindexwithin targetwhichthesubstringwillbecopiedis passed in targetStart.

d. Caremustbetakentoassurethatthetargetarrayislargeenoughtoholdthenumber of

characters in the specified substring.

F. append()
1. Theappend()methodconcatenatesthestringrepresentationofanyothertypeofdata to the

end of the invoking StringBuffer object. It has several overloaded versions. Here are

a few of its forms:

StringBufferappend(Stringstr)

Advanced Java– Module 2

StringBuffer append(int num)

StringBufferappend(Objectobj)

2. TheresultisappendedtothecurrentStringBufferobject.

3. Thebuffer itselfis returned byeach version ofappend().

4. Thisallowssubsequentcallstobechainedtogether,asshowninthefollowing

example:

classappendDemo {

publicstatic void main(Stringargs[])

{ Strings; int a = 42;

StringBuffersb=newStringBuffer(40);

s=sb.append("a=").append(a).append("!").toString();

System.out.println(s);

}

}

Output

a=42!

G. insert()
1. Theinsert()method inserts one stringin toanother.

2. Itisoverloadedtoacceptvaluesofallthesimpletypes,plusStrings,Objects,and

CharSequences.

3. Likeappend(),itcallsString.valueOf()toobtainthestringrepresentationofthevalue it is

called with.

4. Thisstringisthen insertedinto theinvokingStringBuffer object.

5. Theseareafewofits forms:

StringBufferinsert(intindex,Stringstr)

StringBuffer insert(int index, char ch)

StringBufferinsert(intindex,Objectobj)

Here,indexspecifiestheindexatwhichpointthestringwillbeinsertedintothe invoking

StringBuffer object.

6. Thefollowingsampleprograminserts“like”between“I”and“Java”:

classinsertDemo{publicstaticvoidmain(Stringargs[]){

StringBuffer sb = new StringBuffer("I Java!");

sb.insert(2, "like ");

Advanced Java– Module 2

System.out.println(sb);

}

}

7. Output

IlikeJava!

H. reverse()

YoucanreversethecharacterswithinaStringBufferobjectusingreverse(),shownhere: StringBuffer

reverse()

Thismethodreturnsthereversedobjectonwhichitwascalled. The

following program demonstrates reverse()

classReverseDemo{

publicstatic void main(Stringargs[])

{StringBuffers=newStringBuffer("abcdef");

System.out.println(s);

s.reverse();

System.out.println(s);

}

}

Output

abcdef

fedcba

I.delete()and deleteCharAt()

YoucandeletecharacterswithinaStringBufferbyusingthemethodsdelete()and deleteCharAt().

Syntax:

StringBufferdelete(intstartIndex,intendIndex)

StringBuffer deleteCharAt(int loc)

Thedelete() method deletes asequenceof characters from theinvokingobject.

Advanced Java– Module 2

Here,startIndexspecifiestheindexofthefirstcharactertoremove,andendIndexspecifies an index

one past the last character to remove.

Thus,thesubstringdeletedrunsfromstartIndextoendIndex–1.TheresultingStringBuffer object is

returned.

ThedeleteCharAt()methoddeletesthecharacterattheindexspecifiedbyloc.Itreturnsthe resulting

StringBuffer object.

//Demonstratedelete()anddeleteCharAt()

classdeleteDemo{ publicstatic voidmain(String args[])

{StringBuffersb=newStringBuffer("Thisisatest."); sb.delete(4,

7);

System.out.println("Afterdelete:"+sb);

sb.deleteCharAt(0);

System.out.println("AfterdeleteCharAt:"+sb);

}

}

Output

After delete: This a

test.AfterdeleteCharAt:hisate

st.

J. replace()
a. YoucanreplaceonesetofcharacterswithanothersetinsideaStringBufferobjectby calling

replace().

b. Syntax

StringBufferreplace(intstartIndex,intendIndex,Stringstr)

Thesubstringbeing replaced isspecified bytheindexesstartIndexand endIndex.

c. Thus,thesubstringatstartIndexthroughendIndex–1isreplaced.Thereplacementstring is

passed in str.

TheresultingStringBufferobjectisreturned.

class replaceDemo {

publicstatic void main(Stringargs[])

{StringBuffersb=newStringBuffer("Thisisatest."); sb.replace(5,

7, "was");

System.out.println("Afterreplace:"+sb);

Advanced Java– Module 2

}

Advanced Java– Module 2

}

Hereistheoutput:

Afterreplace:Thiswasa test.

K.substring()
1. Ithasthefollowingtwoforms:

Syntax

Stringsubstring(int startIndex)

Stringsubstring(intstartIndex,int endIndex)

2. ThefirstformreturnsthesubstringthatstartsatstartIndexandrunstotheendofthe invoking

StringBuffer object.

3. ThesecondformreturnsthesubstringthatstartsatstartIndexandrunsthroughendIndex–1. These

methods work just like those defined for String that were described earlier.

DifferencebetweenStringBufferandStringBuilder.

1. J2SE5addsanewstringclasstoJava’salreadypowerfulstringhandlingcapabilities. This

new class is called StringBuilder.

2. ItisidenticaltoStringBufferexceptforoneimportantdifference:itisnot

synchronized, which means that it is not thread-safe.

3. TheadvantageofStringBuilderisfasterperformance.However,incasesinwhichyou are

using multithreading, you must use StringBuffer rather than StringBuilder.

AdditionalMethodsinStringwhichwasincludedinJava5

1. intcodePointAt(inti)

Returnsthe Unicodecodepoint at thelocation specified byi.

2. intcodePointBefore(int i)

Returnsthe Unicodecodepoint atthelocationthat precedes thatspecifiedby i.

3. intcodePointCount(intstart,intend)

ReturnsthenumberofcodepointsintheportionoftheinvokingStringthatare between start

and end– 1.

4. booleancontains(CharSequencestr)

Returnstrueiftheinvokingobject containsthestringspecifiedbystr.Returnsfalse,

otherwise.

5. booleancontentEquals(CharSequencestr)

Returnstrueiftheinvokingstringcontainsthesamestringasstr.Otherwise,returns false.

6. booleancontentEquals(StringBufferstr)

Returnstrueiftheinvokingstringcontainsthesamestringasstr.Otherwise,returns false.

7. staticStringformat(Stringfmtstr,Object...args)

Advanced Java– Module 2

Returnsastring formattedas specified byfmtstr.

8. staticStringformat(Localeloc,Stringfmtstr,Object...args)

Returnsastring formattedas specified byfmtstr.

9. booleanmatches(string regExp)

ReturnstrueiftheinvokingstringmatchestheregularexpressionpassedinregExp.

Otherwise, returns false.

10. intoffsetByCodePoints(intstart,intnum)

Returnstheindex withtheinvokingstringthatisnumcodepointsbeyondthestarting index

specified by start.

11. StringreplaceFirst(StringregExp,StringnewStr)

Returnsastringinwhichthefirstsubstringthatmatchestheregularexpression specified by

regExp is replaced by newStr.

12. StringreplaceAll(StringregExp,StringnewStr)

Returnsastringinwhichallsubstringsthatmatchtheregularexpressionspecifiedby regExp

are replaced by newStr

13. String[]split(StringregExp)

Decomposestheinvokingstringintopartsandreturnsanarraythatcontainsthe result. Each

part is delimited by the regular expression passed in regExp.

14. String[]split(StringregExp,intmax)

Decomposes the invoking string into parts and returns an array that contains the

result. Each part is delimited bythe regular expression passed in regExp. The number

of pieces is specified by max. If max is negative, then the invoking string is fully

decomposed.Otherwise,ifmaxcontainsanonzerovalue,thelastentryinthereturned

arraycontains the remainder ofthe invokingstring. If max is zero, theinvokingstring is

fully decomposed.

15. CharSequencesubSequence(intstartIndex,intstopIndex)

Returnsasubstringoftheinvokingstring,beginningatstartIndexandstoppingat stopIndex .

This method is required bythe CharSequence interface, which is now implemented by

String.

AdditionalMethodsinStringBufferwhichwasincludedinJava5

StringBufferappendCodePoint(intch)

AppendsaUnicodecodepointtotheendoftheinvokingobject.Areferencetothe object is

returned.

intcodePointAt(inti)

Returnsthe Unicodecodepoint at thelocation specified by i.

intcodePointBefore(inti)

Returnsthe Unicodecodepoint atthelocationthat precedes thatspecifiedby i.

intcodePointCount(intstart,intend)

ReturnsthenumberofcodepointsintheportionoftheinvokingStringthatare between start

and end– 1.

intindexOf(Stringstr)

SearchestheinvokingStringBufferforthefirstoccurrenceofstr.Returnstheindexof the

match, or –1 if no match is found.

intindexOf(String str, intstartIndex)

SearchestheinvokingStringBufferforthefirstoccurrenceofstr,beginningat startIndex.

Returns the index of the match, or –1 if no match is found.

Advanced Java– Module 2

intlastIndexOf(Stringstr)

SearchestheinvokingStringBufferforthelastoccurrenceofstr.Returnstheindexof the

match, or –1 if no match is found.

intlastIndexOf(Stringstr,intstartIndex)

SearchestheinvokingStringBufferforthelastoccurrenceofstr,beginningat startIndex.

Returns the index of the match, or –1 if no match is found.

Servlet

Introdutiontoservlet

Servlet is small program that execute on the server side of a web connection. Just as

appletextendthefunctionalityofwebbrowsertheappletextendthefunctionalityofwebserver.

Inordertounderstandtheadvantagesofservlet,youmusthavebasicunderstandingof how web

browser communicates with the web server.

Considerarequestforstaticpage.AuserentersaURLintobrowser.Thebrowsergenerateshttp request

to a specific file. The file is returned by http response. Web server map this particular request

for this purpose. The http header in the response indicates the content. Source of web page as

MIME type of text/html.

1. WhataretheAdvantageofServletOver"Traditional"CGI?

Javaservletismore efficient, easierto use,

morepowerful,moreportable,andcheaperthantraditionalCGIandthanmanyalternativeCGI-

liketechnologies.(Moreimportantly,servletdevelopers get paid more than Perl programmers

:-).

• Efficient. With traditional CGI, a new process is started for each HTTP request. If the

CGI program does a relatively fast operation, the overhead of starting the process can

dominatetheexecutiontime.Withservlets,theJavaVirtualMachinestaysup,andeach request

is handled by a lightweight Java thread, not a heavyweight operating system process.

Similarly, in traditional CGI, if there are N simultaneous request to the same CGI

program, then the code for the CGI program is loaded into memory N times. With

servlets, however, there are N threads but only a single copy of the servlet class.

• Convenient. Hey, you already know Java. Why learn Perl too? Besides the convenience

of being able to use a familiar language, servlets have an extensive infrastructure for

automaticallyparsinganddecodingHTMLformdata,readingandsettingHTTPheaders,

handling cookies, tracking sessions, and many other such utilities.

• Powerful. Java servlets let you easily do several things that are difficult or impossible

withregularCGI.Foronething,servletscantalkdirectlytotheWebserver(regularCGI

programs can't). This simplifies operations that need to look up images and other data

stored in standard places. Servlets can also share data among each other, making useful

things like database connection pools easy to implement. They can also maintain

informationfromrequesttorequest,simplifyingthingslikesessiontrackingandcaching of

previous computations.

• Portable.ServletsarewritteninJavaandfollowawell-standardizedAPI.Consequently,

servlets written for, say I-Planet Enterprise Server can run virtually unchanged on

Apache, Microsoft IIS, or Web Star. Servlets are supported directly or via a plug in on

almost every major Web server.

• Inexpensive. There are a number of free or very inexpensive Web servers available that

aregoodfor"personal"useorlow-volumeWebsites.However,withthemajorexception of

Apache, which is free, most commercial-quality Web servers are relatively expensive.

Nevertheless, once you have a Web server, no matter the cost of that server, adding

servletsupportto it(if itdoesn'tcome preconfigured to supportservlets) is generally free or

cheap.

2. Whatisservlet?Whatarethephasesofservletlifecycle?Givean example.

Servlets are small programs that execute on the server side of a web connection. Just as

appletextendthefunctionalityofwebbrowsertheappletextendthefunctionalityofwebserver.

Servletclassis loaded.

Servletclassisloadedwhenfirstrequesttoweb container.

servletinstanceis created:

Webcontainercreatestheinstanceofservletclassonlyonce.

initmethodis invoked:

Itclasstheinitmethodwhenitloadstheinstance.Itisusedtointialiseservlet.

Syntaxofinitmethodis

publicvoidinit(ServletConfigconfig)throwsServletException

Servicemethodis invoked:

Webcontainercallsservicemethodeachtimewhenrequestfortheservletis received.

Ifservlet is not initialized it calls init then it calls the service method.Syntax of service method is

as follows

publicvoidservice(Servletrequest,ServletResponseresponse)throwsServletException,

IOException

Destroymethodisinvoked.

Thewebcontainercallsthedestroymethodbeforeitremovestheservletfrom service. It

gives servlet an opportunity to clean up memory, resources etc. Servlet destroy method has

following syntax.

publicvoid destroy().

Ready

Therearethreestatesofservletnew,ready,end.Itisinnewstatewhenservletis created.

Theservletinstanceiscreatedwhenitisinnewstate.Afterinvokingtheinit()methodservlet comes to

ready state. In ready state servlet invokes destroy method it comes to end state.

3. Explainaboutdeploymentdescriptor

DeploymentdescriptorisafilelocatedintheWEB-INFdirectorythatcontrolsthe

behavior of a java servlet and java server pages. The file is called the web.xml file and contains

the header, DOCTYPE, and web app element. The web app element should contain a servlet

element with three elements. These are servlet name, servlet class, and init-param.

Theservletnameelementscontainthenameusedtoaccessthejavaservlet.Theservlet class is

the name of the java servlet class. init-param is the name of an initialization parameter that is

used when request is made to the java servlet.

Examplefile:

<?xmlversion=”1.0”encoding-“ISO-8859=1”?>…..XMLheader

<!DOCTYPEweb-appPUBLIC“~//SunMicrosystems,Inc.??DTDWeb

Application2.2//EN”> ..doctype

<web-app>

<servlet>

<servlet-name>MyJavaservlet</servlet-name>

<servlet-class>myPackage.MyJavaservletClass</servlet-class>

<init-param><param-name>parameter1</param-name>

<param-value>735</param-value>

</init-param>

</servlet>

</web-app>

4. Howtoread datafromclientin servlet?

• A client uses either the GET or POST method to pass information

toajavaservlet.Dependingonthemethodusedbytheclienteither

doGet() or doPost() method is called in servlet.

• Data sent by a client is read into java servlet by calling

getParameter() method of HttpservletRequest() object that

instantiatedintheargumentlistofdoGet()methodanddoPost()

method.

• getParameter() requires one argument, which is the name of

parameterthatcontainsthedatasentbytheclient.getParameter()

returns the String object.

• String object contains the value assigned by the client. An empty

string object is returned when it does not assign a value to the

parameter.Alsoanullisretunedwhenparameterisnotreturnedin the

client.

• getParameterValues()usedtoreturnthearrayofstring objects.

Example code

Htmlcodethatcallsa servlet:

<FORMACTION=”/servlet/myservlets.js2”>

EnterEmailAddress:<INPUTTYPE=”TEXT”NAME=”email”>

<INPUTTYPE=”SUBMIT”>

</FORM>

import java.io.*;

importjavax.servlet.*;

import javax.servlet.http.*;

publicclassjs2extendsHttpservlet{

publicvoiddoGet(HttpservletRequsetrequest,HttpservletResponseresponse)

throws servletException , IOException {

//Stringemail;

//Email=request.getParameter(“email”);

Respose.setContentType(“text/html”);

PrinterWriterpw=response.getWriter();

pw.println(“<HTML>\n” +

“HEAD><TITLE>JavaServlet</TITLE></HEAD>\n”+

“<BODY>\n”+

//“<p>MYEmailAddress:”+email+”</p>\n”+

<h1>MyFirstServlet

“</BODY>\n” +

</HTML>”);

}

}

5. HowtoreadHTTPRequest Headers?

A request from client contains two components these are implicit data,

suchasemailaddressexplicitdataatHTTPrequestheader.Servletcanreadthese request

headers to process the data component of the request.

ExampleofHTTPheader:

Accept:image.jpg,image.gif,*/*

Accept- Encoding: Zip

Cookie: CustNum-12345

Host:www.mywebsite.com

Referer:http://www.mywebsite.com/index.html

TheusesofHTTP header:

Accept:Identifiesthemailextension

Accept-Charset:Identifiesthecharactersetthatcanbeusedbybrowser. Cookie

returns the cookies to server.

Host:containshostportal.

Referrer:ContainstheURLofthewebpagethatiscurrentlydisplayedin the

browser.

AjavaservletcanreadanHTTPrequestheaderbycallingthegetHeader()

method of the HttpservletRequest object. getHeader() requires one argument

which is the name of the http request header.

getHeader()

http://www.mywebsite.com/
http://www.mywebsite.com/index.html

6. HowtosenddatatoclientandwritingtheHTTPResponse Header?

Ajavaservletrespondstoaclient’srequestbyreadingclientdataandHTTP request

headers, and then processing information based on the natureof the request.

For example, a client request for information about merchandise in an online

productcatalogrequiresthejavaservlettosearchtheproductdatabasetoretrieveproduct

information and then format the product information into a web page, which is returned

to client.

Therearetwowaysinwhichjavaservletrepliestoclientrequest.Thesearesent

bysendinginformationtotheresponsestreamandsendinginformationinhttpresponse

header. The http response header is similar to the http request header.

ExplicitdataaresentbycreatinganinstanceofthePrintWriterobjectandthen using

println() method to transmit the information to the client.

Implcitdataexample:HTTP/1.1200OK

Content-Type:text/plain

My Response

JavaservletcanwritetotheHTTPresponseheaderbycallingsetStatus()method requires

one argument which is an integer that represent the status code.

Response.setStatus(100);

7. ExplainaboutCookiesin servlet.

Cookiesaretextfilesstoredontheclientcomputerandtheyarekeptforvarious information

tracking purpose. Java Servlets transparently supports HTTP cookies.

Therearethreestepsinvolvedinidentifyingreturningusers:

• Serverscriptsendsasetofcookiestothebrowser.Forexamplename,age,or identification

number etc.

• Browserstoresthisinformationonlocalmachineforfutureuse.

• When next time browser sends any request to web server then it sends those cookies

information to the server and server uses that information to identify the user.

SettingCookieswithServlet:

Settingcookieswithservletinvolvesthreesteps:

(1) Creating aCookieobject: YoucalltheCookieconstructor withacookienameand acookie value,

both of which are strings.

Cookiecookie=newCookie("key","value");

(2) Settingthemaximumage: YouusesetMaxAgetospecifyhowlong(inseconds)thecookie should

be valid. Following would set up a cookie for 24 hours.

cookie.setMaxAge(60*60*24);

(3) Sending the Cookie into the HTTP response headers:You use response.addCookie toadd

cookies in the HTTP response header as follows:

response.addCookie(cookie);

Writing

Cookieimport

java.io.*;

importjavax.servlet.*;

import javax.servlet.http.*;

public class HelloForm extends HttpServlet {

publicvoiddoGet(HttpServletRequestrequest,

HttpServletResponse response)

throwsServletException,IOException

{

CookiemyCookie=newCookie("userid",123);

myCookie.setMaxAge(60*60);

response.addCookie(myCookie);

response.setContentType("text/html");PrintWriter

out = response.getWriter();

out.println("<html>\n"+

"<head><title>"+MyCookie+"</title></head>\n"+

“<nody>\n” +

“<h1>+ My Cookie +”<h1>\n” +

“<p>CookieWritten+</p>\n”+

“</body></HTML>”);

}

}

ReadingCookieswith Servlet:

To read cookies, you need to create an array of javax.servlet.http.Cookie objects by

calling the getCookies() method of HttpServletRequest. Then cycle through the array, and use

getName() and getValue() methods to access each cookie and associated value.

Example:Letusreadcookieswhichwehavesetinpreviousexample:

importjava.io.*;importjavax.servlet.*;importjavax.servlet.http.*;

public class ReadCookies extends HttpServlet {

publicvoiddoGet(HttpServletRequestrequest,HttpServletResponseresponse) throws

ServletException, IOException

{

Cookie cookie;

Cookie[]cookies;

cookies = request.getCookies();

response.setContentType("text/html");

PrintWriter out = response.getWriter();

Stringtitle="ReadingCookiesExample";

out.println("<html>\n" +

"<head><title>"+title+"</title></head>\n"); if(

cookies != null){

out.println("<h2>FoundCookiesNameandValue</h2>"); for

(int i = 0; i < cookies.length; i++){

cookie=cookies[i];

out.print("Name:"+cookie.getName()+",");

out.print("Value: " + cookie.getValue()+"
");

}

}else{ out.println("<h2>Nocookiesfounds</h2>");

} out.println("</body>"); out.println("</html>");

}}

8. ExplainSessionTracking:

1. A session is created each time a client requests service from a java servlet. The

java. The java servlet processes the request and response accordingly, after which

thesessionisterminated.Manytimesthesameclientfollowswithanotherrequest to the

same client follows with another request to the same java servlet, java servlet

requires information regarding the previous session to process request.

2. However,HTTPisstatelessprotocol,meaningthatthereisnotholdoverfrom the

previous sessions.

3. Java servlet is capable of tracking sessions by using Httpsession API.It

determinesiftherequestisacontinuationfromanexistingsessionornew

session.

4. Ajava servlet callsa getSession()method ofHttpservletRequset object, which

returnsasessionobjectifitisanewsession.ThegetSession()methodrequires one

argument which is Boolean true. Returns session object.

Syntax:

HttpSessions1=request.getSession(true);

JSP program

Ajspisjavaserverpageisserversideprogramthatissimilarindesignandfunctionality to a java

servlet.

AJSPiscalledbyaclienttoprovidewebservices,thenatureofwhichdependsonclient

application.

AjspissimplertocreatethanajavaservletbecauseajspiswritteninHTMLratherthan with the

java programming language. . There are three methods that are automatically called when jsp is

requested and when jsp terminates normally. These are the jspInit() method , the jspDestroy()m

ethod and service() method.

AjspInit()isidenticaltiinit()methodofjavaservlet.Itiscalledwhenfirsttimejspis

called.

A jspDestroy()is identical to destroy() method of servlet. The destroy() method is

automaticallycalledwhenjsperminatesnormally.Itisnotcalledwhenjspterminatesabruptly.It is used

for placing clean up codes.

1. ExplainJSPtags(repeatedquestion)

AjsptagconsistsofacombinationofHTMLtagsandJSPtags.JSPtagsdefine java code

that is to be executed before the output of jsp program is sent to the browser.

Ajsptagbeginwitha<%,whichisfollowedbyjavacode,andwndswith%>, There ia an

XML version of jsp tag <jap:TagId></jsp:TagId>

AjsptagsareembeddedintotheHTMLcomponentofajspprogramandare processed

by Jsp virtual engine such as Tomcat.

Javacodeassociatedwithjsptagareexecutedandsenttobrowser. There

are five types of jsp tags :

Commenttag:Acommenttagopenswith<%--andclosewith--%>andisfollwedbya comment

that usually describes the functionality of statements that follow a comment tag.

Declaration statement tags:A declartion statement tag opens with <%!And is

followedbydeclarationstatementsthatdefinethevariables,object,andmethodsthatareavilabe to

other component of jsp program.

Directivetags:Adirectivetagopenswith<%@andcommandsthejspvirtualengineto perform

a specific task, such as importing java package required by objects and methods used in a

declaration statement. The directive tag closes with %> . There are commonly used in

directivesimport,include,andtaglib.Theimporttagisusedtoimportjavapackagesintothejsp program.

Include is used for importing file. Taglib is used for including file.

Example:

<%@pageimport=”importjava.sql.*”; %>

<%@includefile=”keogh\books.html”%>

<%@tagliburl=”myTags.tld”;%>

Expression tags:An expression tag opens with <%= and is used for an expression

statementwhoseresultpagereplacestheexpressiontagwhenthejspvirtualengineresolvesJSP tags.

An expression tag closes with %>

Scriptlettag:Asciptlettagopenswith<%andcontainscommonlyusedjavacontrol statements

and loops. And Scriptlet tag closes with %>

2. HowvariablesandobjctsdeclaredinJSPprogram?

YoucandeclarejavavariablesandobjectsthatareusedinaJSPprogramby using the

same codin technique used to declare them in java.JSP declaration statements must

appear as jsp tag

Ex:

<html>

<head>

<title>JspProgramming</title>

<.head>

<body>

<%!Intage=29;%><p>Yourageis:<%=age%></p>

</body>

</html>

3. Howmethodaredeclaredandusedinjsp programs?

Methodsaredefinedsamewayasitisdefinedinjspprogram,exceptthese are

placed in JSP tag.methods are declared in JSP decalration tag. The jspcalls

method in side the expression tag.

Example:

<html>

<head>

<title>Jsp programming</title>

</head>

<body>

<%!intadd(intn1,intn2)

{

int c;

c=a+b;

returnc;

}

%>

<p>Additionoftwonumbers:<%=add(45,46)%></p>

</body></html>

4. ExplainthecontrolstatementsofJSPwithexampleprogram:

1. OneofthemostpowerfulfeaturesavilableinJSPistheabilitytochangethe flow of

the program to truly create dynamic content for a web based on conditions

received from the browser.

2. Theraretwocontrolstatementsusedtochangetheflowofprogramare“if“ and

“switch” statement , both of which are also used to direct the flow of a java

program.

Ex:

<html>

<head>

<title>JSPProgramming</title>

</head>

<body>

<%!intgrade=26;%>

</body>

<%if(grade>69){%>

<p>YouPassed!</p>

<%} else{ %>

<p>BetterLuckNextTime</p>

<% } %>

</body>

</html>

5. LoopingStatementofJSP

Jsploopsarenearlyidenticaltoloopsthatyouuseinyourjavaprogram except

you can repeat the html tags

Therearethreekindofjsploopthatarecommonlyusedinjspprogram. Ex:for

loop , while loop , do while .

LoopplaysanimportantroleinJSPdatabaseprogram.Thefollowing program

is example for “FOR LOOP”.

<html><head><title>ForLoopExample</title></head>

<body>

<%

for(inti=0;i<10;i++){

%>

<p>HelloWorld</p>

<%}%></body>

</html>

6. ExplainRequsetStringgeneratedbybrowser.howtoreadarequeststringin jsp?

1. Abrowsergeneraterequststringwheneverthesubmitbuttonisselected.The user

requests the string consists of URL and the query the string.

Example of request string:

http://www.jimkeogh.com/jsp/?fname=”Bob”&lname=”Smith”

2. Yourjspprogramneedstoparsethequerystringtoextractthevaluesoffields that are

to be processed by your program. You can parse the query string by using the

methods of the request object.

3. getParameter(Name)methodusedtoparseavalueofaspecificfieldthatare to be

processed by your program

4. codetoprocesstherequsetstring

<%! String FirstName =requst.getParameter(fname);

StringLastName=requst.getParameter(lname);%>

5. Copyingfrommultivaluedfieldsuchasselectionlistfieldcanbetricky

multivalued fields are handled by using getParameterValues()

6. Otherthanrequsetstringurlhasprotocols,portno,thehostname

7. WritetheJSPprogramtocreateandreadcookiecalled“EMPID”and that

has value “AN2536”.

CookieissmallpieceofinformationcreatedbaJSPprogramthatisstored on the

clien’s hard dik by the browser. Cookie isare used to store various kind of

information, such as user preference. The cookies are created by using Cookie

class.

Createcookie:

<html>

<head>

<title>creating cookie</title>

</head>

<body>

<%!StringMyCookieName=”EMPID”;

http://www.jimkeogh.com/jsp/?fname

String UserValue=”AN2536”;

%>

</body>

</html>

ReadingCookie:

<html>

<head>

<title>readingcookie</title>

</head>

<body>

<%StringmyCookieName=”EMPID”;

String myCookieValue;

StringCName,CValue; int

found=0;

Cookie[] cookies=request.getCoookies();for(

int i=0;i<cookies.length;i++) {

CName= cookies[i].getName();

CValue =cookies[i].getValue();

If(myCookieName.equals(CName)){

found=1;

myCookieValue=Cvalue;}}

If(found== 1){ %>

<p>CookieName =<%=CName%></p>

<p>CookieValue=<%=CValue%></p>

<%}%></body></html>

8. Explainstepstoconfiguretomcat.

i. JspprogramprogramsareexecutedbyaJSPvirtualmachinethat run

on a webserver.

ii. WecandownloadandinstallJSPvirtualmachine.

iii. InstallationSteps

ConnecttoJakarta.apache.org.

Select down load

SelectBinariestodisplaythebinaryDownloadPage.

Createa folderfrom therootdirectory calledtomcat.

Download latest release.

UnzipJakarta-tomcat.zip.

Theextractionprocesscreatesthefollowingfolderinthe

tomcat directory: bin, conf, doc, lib, src, and webapps

Modify the batch file , which is located in the \tomcat\bin

folder.ChangetheJAVA_HOMEvariableisassignedthepathewhere JDK

is installed on your computer.

Opendoswindowandtype\tomcat\bin\tomcattostart

Tomcat.

Openyourbrowser.Enterhttp://localhost:8080.

TomcathomepageisdisplayedonthescreenverifyingthatTomcatis

running.

9. Explainhowsessionobjectsare created.

AJSPdatabasesystemiaabletoshareinformationamongJSPprograms within

a session by using a session object. Each time a session is created , a unique IDis assigned to the

session and stored as acookie.

AuniqueIDenablesJSPprogramtotrackmultiplesessionsession

simultaneouslywhilemaintainingdataintegrityofeachsession.ThesessionIDisusedto prevent

the intermingling of each session.

CreatesessionObject:

<html><head><title>JspSession</title></head>

<body>

<%!StringAtName=”Product”;

String AtValue =”1234”;

Session.setAttributes(AtName,AtValue);

%></body></html>

Insessionobjectwecanstoreinformationaboutpurchasesassessionattributes can be

retrived and modified each time the jsp program runs. setAttributes() used for creating

attributes.

ReadSessionObject:

getAttributeNames()methosreturnsnamesofalltheattribbutesasEnumeration, the

attributes are processsed.

<html><head><title>JspSession</title></head>

<body><%!

Enumaration purchases=session.getAttributeNames();

String AtName=(String) attributeNames.nextElement();

StringAtValu=(String)session.getAttribute(AtName);%>

<p>AttirbuteName<%=AtName%></p>

<p>AttributeValue<%=Atvalue%></p>

<%}%>%></body></html>

IIIInternalQuestions

1. WhataredifferenttypesofJSPtagsdescribetheJSPtagswithexample.(Dec2011)

2. DefineJSP.Explaintwotypesofcontrolstatementswithexample.(Dec 2012)

3. WritetheJSPprogramtocreateandreadcookiecalled“EMPID”andthathasvalue

“AN2536”(Dec 2012)

4. WhatisRMI?BrieflyexplainworkingofRMIinjava.(Dec2012)

5. DepartmenthassetthegradeforthesubjectJavaas follows:

Above90:A, 80- 89:B,70-79 :C

Below70=fail.ShamentershismarksforthesubjectJavaintheinterfaceprovided. Write a JSP

program to accept the mark and display the grade.(Jun 2011)

6. BrieflyexplaintheRMIinJava(June2011)

7. DiscussdifferenttypesofJSPtags(Jun2011)

8. WriteaprogramusingRMIsuchasclientandserverprograminwhichclientsendshello message

to server and replies to client (June 2012)

9. DevelopsimplejavaservletthathandleHTTPRequestandResponse(June 2012)

10. Explainjavax.servletpackages(June2012)

11. WhatisdifferencebetweenJSPandServlet?(june2012)

12. WhataretheadvantagesofJSPprogram?(jun 2010)

13. Whatareservlets?Brieflyexplaintheapplicationofservletsinwebprogramming(dec 2010)

14. Explainthelifecycleofaservlet.(dec2010)

15. Writeajavaservletwhichreadstwoparametersfromthewebpage,sayvalue1andvalue

2,whicharetypeintegerandfindsthesumofthetwovalueandreturnbacktheresultas a

webpage.(dec 2010)

16. Providejavasyntaxforthefollowing:(dec 2010)

i) HandlingHTTPrequestsand responses

ii) Using cookies

iii) Session tracking

17. ListoutdifferencebetweenCGIandservlet.

18. Whatiscookielistoutmethodsdefinedbycookie.Writeaservletprogramtoread cookie.

19. Writeajspprogramtoaddcookiename“UserId”and value”JB007”

20. Describeindetailhowtomcatwebserverisconfiguredindevelopofservletlife cycle.

	Module 1-The collections and Framework
	1. Explainbriefaboutcollectionframework.
	2. Whataretherecentchangestocollectionframework?
	Generics
	Autoboxing/unboxing
	TheFor-Each StyleforLoop
	3. ListtheCollection Interfaces?
	4. Givethesyntaxofcollectioninterface.Explainthemethodspresentincollection interface.
	add
	clear
	contains
	containsAll
	equals
	hashCode
	isEmpty
	iterator
	remove
	removeAll
	retainAll
	size
	toArray
	5. ExplainthemethodspresentinListinterface.
	voidadd(intindex,Eobj)
	booleanaddAll(intindex,Collection<?extends E>c)
	Eget(intindex)
	intlastIndexOf(Objectobj)
	ListIterator<E>listIterator()
	ListIterator<E>listIterator(intindex)
	Eremove(intindex)
	Eset(int index, Eobj)
	List<E>subList(intstart,intend)
	6. ExplainSetInterface andset method:
	7. NavigableSetInterfaceandmethod
	Eceiling(E obj)
	NavigableSet<E>descendingSet()
	Efloor(E obj)
	NavigableSet<E>headSet(EupperBound,booleanincl)
	E lower(E obj)
	EpollFirst()
	E pollLast()
	NavigableSet<E>subSet(ElowerBound,booleanlowIncl,EupperBound, boolean highIncl)
	NavigableSet<E>tailSet(ElowerBound,booleanincl)
	8. TheQueueInterfaceand methods
	9. Dequeinterface
	voidaddFirst(Eobj)
	voidaddLast(Eobj)
	10. TheCollectionClasses withexamplecode
	ArrayList
	ConvertingArrayListtoArray
	LinkedList
	HashSet
	Constructor
	Example:
	output
	TreeSet
	Example
	PriorityQueue
	ArrayDeque
	AccessingacollectionViaanIterator:
	listIterator().
	StoringUserDefinedClassesin Collections:
	RandomAccess Interface:
	Working With Maps:

	Module 2
	1. WhatarethedifferenttypesofStringConstructorsavailableinJava?
	String Length
	toString()
	CharacterExtraction
	A. charAt()
	charcharAt(intwhere)
	B. getChars()
	voidgetChars(intsourceStart,intsourceEnd,chartarget[],int targetStart)
	C. getBytes()
	D. toCharArray()

	2. String Comparison:
	equals()
	A. equalsIgnoreCase()
	B. regionMatches()
	booleanregionMatches(intstartIndex,Stringstr2,intstr2StartIndex,int numChars)
	C. startsWith()andendsWith()
	D. equals()Versus==
	E. compareTo()

	5. SearchingString
	Output

	6. Modifyinga String
	A. Substring()

	B. concat()
	C. replace()

	D. trim()
	5. DataConversion
	6. ChangingCaseofCharacters
	A. toLowerCase()
	B. toUpperCase()
	StringBufferConstructors

	A. length()andcapacity()
	B. ensureCapacity()
	C. setLength()
	D. charAt()andsetCharAt()
	E. getChars()
	Syntax

	F. append()
	StringBufferappend(Stringstr)

	G. insert()
	H. reverse()
	I.delete()and deleteCharAt()

	K.substring()
	DifferencebetweenStringBufferandStringBuilder.
	AdditionalMethodsinStringwhichwasincludedinJava5
	1. intcodePointAt(inti)
	2. intcodePointBefore(int i)
	3. intcodePointCount(intstart,intend)
	4. booleancontains(CharSequencestr)
	5. booleancontentEquals(CharSequencestr)
	6. booleancontentEquals(StringBufferstr)
	7. staticStringformat(Stringfmtstr,Object...args)
	8. staticStringformat(Localeloc,Stringfmtstr,Object...args)
	9. booleanmatches(string regExp)
	10. intoffsetByCodePoints(intstart,intnum)
	11. StringreplaceFirst(StringregExp,StringnewStr)
	12. StringreplaceAll(StringregExp,StringnewStr)
	13. String[]split(StringregExp)
	14. String[]split(StringregExp,intmax)
	15. CharSequencesubSequence(intstartIndex,intstopIndex)

	AdditionalMethodsinStringBufferwhichwasincludedinJava5
	StringBufferappendCodePoint(intch)
	intcodePointAt(inti)
	intcodePointBefore(inti)
	intcodePointCount(intstart,intend)
	intindexOf(Stringstr)
	intindexOf(String str, intstartIndex)
	intlastIndexOf(Stringstr)
	intlastIndexOf(Stringstr,intstartIndex)
	Introdutiontoservlet
	2. Whatisservlet?Whatarethephasesofservletlifecycle?Givean example.
	Servletclassis loaded.
	servletinstanceis created:
	initmethodis invoked:
	Servicemethodis invoked:
	3. Explainaboutdeploymentdescriptor
	4. Howtoread datafromclientin servlet?
	Example code
	5. HowtoreadHTTPRequest Headers?
	ExampleofHTTPheader:
	TheusesofHTTP header:
	6. HowtosenddatatoclientandwritingtheHTTPResponse Header?
	7. ExplainaboutCookiesin servlet.
	SettingCookieswithServlet:
	ReadingCookieswith Servlet:
	Example:Letusreadcookieswhichwehavesetinpreviousexample:
	8. ExplainSessionTracking:
	JSP program
	1. ExplainJSPtags(repeatedquestion)
	2. HowvariablesandobjctsdeclaredinJSPprogram?
	3. Howmethodaredeclaredandusedinjsp programs?
	int c; c=a+b; returnc;
	5. LoopingStatementofJSP
	<html><head><title>ForLoopExample</title></head>
	7. WritetheJSPprogramtocreateandreadcookiecalled“EMPID”and that has value “AN2536”.
	Createcookie:
	ReadingCookie:
	8. Explainstepstoconfiguretomcat.
	9. Explainhowsessionobjectsare created.
	CreatesessionObject:
	ReadSessionObject:
	IIIInternalQuestions

