Advanced Java -Module 1

Module 1-The collections and Framework

1. Explainbriefaboutcollectionframework.

e TheJavaCollectionsFrameworkstandardizesthewayinwhichgroupsof
objectsare handled by your programs.

e Theframeworkhadtobe high-performance.

e Theimplementationsforthefundamentalcollections(dynamicarrays,linked
lists, trees, and hash tables) are highly efficient.

e Theframeworkhadtoallowdifferenttypesofcollectionstoworkinasimilar manner
and with a high degree of interoperability.

e Extendingand/oradaptingacollection had tobeeasy.

e Mechanismswereaddedthatallowtheintegrationofstandardarraysintothe
Collections Framework.

e Algorithmsareanotherimportantpartofthecollection mechanism.

e Algorithmsoperateoncollectionsandaredefinedasstaticmethodswithinthe
Collections class.

e An iterator offers a general-purpose, standardized way of accessing the
elementswithinacollection,oneatatime. Thus,aniteratorprovidesameans of
enumerating the contents of a collection.

e Becauseeachcollectionimplementsiterator,theelementsofanycollection class
can be accessed through the methods defined by Iterator.

2. Whataretherecentchangestocollectionframework?

Recently,theCollectionsFrameworkunderwentafundamental changethat
significantlyincreased its power and streamlined its use. The changes were the addition of
generics, autoboxing/unboxing, and the for-each style for loop.

Generics

TheadditionofgenericscausedasignificantchangetotheCollectionsFramework because
the entire Collections Framework has been reengineered for it. All collections are now
generic, and many of the methods that operate on collections take generic type parameters
Generics add the one feature that collections had been missing: type safety.

Prior to generics, all collections stored Object references, which meant that any collection
couldstoreanytypeofobject. Thus,itwaspossibletoaccidentallystorein compatibletypes in a
collection.

Doingsocouldresultinrun-timetypemismatcherrors.Withgenerics, itispossibleto
explicitlystatethetypeofdatabeingstored, andrun-timetypemismatcherrorscanbe
avoided.

Autoboxing/unboxing

Autoboxingfacilitates theUseof Primitive Types.
Autoboxing/unboxingfacilitates thestoringofprimitive typesin collections.

Asyouwillsee,acollectioncanstoreonlyreferences,notprimitivevalues. Inthepast,if you wanted
to store a primitive value, such as an int, in a collection, you had to manually box it into its
typewrapper.

Advanced Java—Module 1

Whenthevaluewasretrieved,itneededtobemanuallyunboxed(byusinganexplicitcast) into its
proper primitive type.

Because of autoboxing/unboxing, Java can automatically perform the proper boxing and
unboxingneededwhenstoringorretrievingprimitivetypes. Thereisnoneedtomanually perform
these operations.

TheFor-Each StyleforLoop

collectioncan be cycled through byuseofthefor-eachstyleforloop.
Earlieritwasdonewithlteratableinterface.For eachloopiseasierthanthe earlier iterator.

3. ListtheCollection Interfaces?

e The Collections Framework defines several interfaces. This section provides
anoverviewofeachinterface.Collectionenablesyoutoworkwithgroupsof
objects; it is at the top of the collections hierarchy.

e Dequeextends Queueto handleadouble-ended queue.

e ListextendsCollectiontohandlesequences

e NavigableSetextendsSortedSettohandleretrievalofelementsbasedon
closest-match searches.

e QueueextendsCollectiontohandlespecialtypes oflistsinwhichelements are
removed only from the head.

e SetextendsCollectiontohandlesets,which mustcontainuniqueelements.

e SortedSetextendsSettohandlesorted sets.

4. Givethesyntaxofcollectioninterface.Explainthemethodspresentincollection
interface.

interfaceCollection<E>
Especifiesthetypeofobjectsthatthecollection
Collection extends the Iterable interface.
Iteratingthroughthelistcanebedonethroughthe iteratable interface.

Methodsincollectioninterface

add
booleanadd(Eobyj)
addsobj to theinvokingcollection.
Returnstrueifobj was added to thecollection.
Returnsfalseifobjisalreadyamemberofthecollectionand the
collection does not allow duplicates.
addAll

booleanadd All(Collection<?extendsE>c)
Addsallthe elementsofcto theinvokingcollection.
Returns trueif theoperation succeeded

(i.e.,theelementswereadded).Otherwise,returnsfalse.

AdvancedJava—Module 1

clear

voidclear()

Removesallelements fromtheinvokingcollection.

contains
booleancontains(Objectobj)
Returnstrueifobjisanelementoftheinvokingcollection.
Otherwise, returns false.

containsAll
booleancontainsAll(Collection<?>c)

Returnstrueiftheinvokingcollectioncontainsallelementsofc. Otherwise,
returns false.

equals
booleanequals(Objectobj)
Returnstrueiftheinvokingcollectionandobjareequal. Otherwise,
returns false.
hashCode
inthashCode()Returnsthe hash code for theinvoking collection.
iISEmpty
booleanisEmpty()
Returnstrueiftheinvokingcollectionisempty.
Otherwise, returns false.
iterator
Iterator<E>iterator() Returnsaniteratorfor theinvoking collection.
remove
booleanremove(Objectobj)
Removes one instance of obj from the invoking
collection.Returnstrueiftheelementwasremoved.Otherwise,returns

false.

removeAll
booleanremoveAll(Collection<?>c)

Removesallelements ofcfrom theinvokingcollection.

Advanced Java — Module 1

Returnstrueifthecollectionchanged(i.e.,elementswereremoved).
Otherwise, returns false.

retainAll
booleanretainAll(Collection<?>c)
Removesallelements fromtheinvokingcollectionexcept thosein c.

Returnstrueifthecollectionchanged(i.e.,elementswereremoved).
Otherwise, returns false.

intsize()Returnsthenumberofelementsheldintheinvoking collection.
toArray
Object[]JtoArray()

Returnsanarraythatcontainsalltheelementsstoredinthe invoking
collection.

Thearrayelementsarecopiesofthecollectionelements. The

arrayelements are copies of the collection elements.

Ifthesizeofarrayequalsthenumberofelements,thesearereturnedin array.
5. ExplainthemethodspresentinListinterface.

Listinterfaceextendscollectioninterface.Itincludesnewmethod.Whichare given
below.

voidadd(intindex,Eobj)
Insertsobjinto theinvokinglist attheindexpassedin index.
Anypreexistingelements at or beyond the pointof insertion areshiftedup.
booleanaddAll(intindex,Collection<?extends E>c)
Insertsallelements ofCinto theinvokinglist atthe indexpassed in

index. Anypreexistingelementsatorbeyondthepointofinsertionareshiftedup. Thus, no
elements are overwritten. Returns true if the invoking list changes and returns false
otherwise.

Eget(intindex)
Returnstheobjectstoredatthespecifiedindexwithintheinvokingcollection. int
indexOf(Object obj)

Advanced Java — Module 1

Returnstheindexofthefirstinstanceofobjintheinvokinglist.1fobjisnot an element of the
list, —1 is returned.

intlastindexOf(Objectobj)

Returnstheindexofthelastinstanceofobjintheinvokinglist.Ifobjisnot an element of the
list, —1 is returned.

Listlterator<E>listlterator()

Returnsaniteratorto the startof theinvokinglist.
Listlterator<E>listlterator(intindex)

Returnsaniteratortothe invokinglistthatbeginsatthespecifiedindex.
Eremove(intindex)

Removestheelementatpositionindex fromtheinvokinglistandreturnsthedeleted
element. The resultinglist is compacted. That is, the indexes of subsequent elements
are decremented by one.

Eset(int index, Eobj)
Assigns obj to thelocation specified byindexwithin the invoking list.
List<E>subL.ist(intstart,intend)

Returnsalistthatincludeselementsfromstarttoend —lintheinvokinglist. Elements in the
returned list are also referenced by the invoking object.

6. ExplainSetInterface andset method:

TheSetinterfacedefines aset.

ItextendsCollectionanddeclaresthebehaviourofacollectionthatdoesnotallow duplicate
elements.

Therefore,theadd()methodreturnsfalseifanattempt. Set is

a generic interface that has this declaration:

interfaceSet<E>

Here,Especifiesthetypeofobjectsthatthesetwillhold. The

SortedSet Interface
TheSortedSetinterfaceextendsSetanddeclaresthebehaviorofasetsortedin ascending order.

SortedSetisagenericinterfacethathasthisdeclaration:interfaceSortedSet<E>Here, E
specifies the type of objects that the set will hold.

InadditiontothosemethodsdefinedbySet,theSortedSetinterfacedeclaresthe methods.
Comparator<?superE>comparator()

Returnstheinvokingsortedset’s comparator.

Advanced Java — Module 1

Ifthenaturalorderingisusedforthisset,nullisreturned. E

first()

Returnsthefirst elementintheinvokingsorted set.
SortedSet<E>headSet(Eend)

ReturnsaSortedSetcontainingthoseelementslessthanendthatarecontainedinthe invoking
sorted set.

Elementsinthereturnedsortedsetarealsoreferencedbytheinvokingsortedset. E last()
Returnsthelastelementintheinvokingsortedset.
SortedSet<E> subSet(E start , E end)

ReturnsaSortedSetthatincludesthoseelementsbetweenstartandend—1.Elements in the
returned collection are also referenced by the invoking object.

SortedSet<E>tailSet(Estart)

ReturnsaSortedSetthatcontainsthoseelementsgreaterthanorequaltostartthatare contained
in the sorted set. Elements in the returned set are also referenced by the invoking
object.

SeveralmethodsthrowaNoSuchElementExceptionwhennoitemsarecontainedin the
invoking set.

AClassCastExceptionisthrownwhenanobjectisincompatiblewiththeelementsin a set.

ANullPointerExceptionisthrownifanattemptismadetouseanullobjectandnull is not
allowed in the set.

AnlllegalArgumentExceptionisthrownifaninvalidargumentisused.

7. NavigableSetInterfaceandmethod

The NavigableSet interfaceextends SortedSet and declares the behavior of a
collectionthatsupportstheretrievalofelementsbasedontheclosestmatchtoagivenvalue or values.

NavigableSetisagenericinterfacethathasthisdeclaration: interface
NavigableSet<E>
Here,Especifiesthetypeofobjectsthatthesetwillhold. NavigableSet
adds the following
Eceiling(E obj)
Searchesthesetforthesmallest element

Ifsuchan elementisfound,itisreturned. Otherwise,nullisreturned.
Iterator<E>descendinglterator()

AdvancedJavaandJ2EE—Module2

Returnsaniteratorthatmovesfromthegreatesttoleast.Inotherwords, itreturnsa reverse
iterator.

NavigableSet<E>descendingSet()

ReturnsaNavigableSetthatisthereverseoftheinvokingset. Theresultingsetis backed by
the invoking set.

Efloor(E obj)

Searchesthesetforthelargestelementesuchthate<=obj.Ifsuchanelementis found, it is
returned. Otherwise, null is returned.

NavigableSet<E>headSet(EupperBound,booleanincl)

ReturnsaNavigableSetthatincludesallelementsfromtheinvokingsetthatareless than
upperBound . If incl is true, then an element equal to upperBound is included. The
resulting set is backed by the invoking set.

Ehigher(Eobj)Searchesthesetforthelargestelementesuchthate>obj.Ifsuchan element is
found, it is returned. Otherwise, null is returned.

E lower(E obj)

Searchesthesetforthelargestelementesuchthate<obj.lfsuchanelementis found, it is
returned. Otherwise, null is returned.

EpollFirst()

Returnsthefirstelement,removingtheelementintheprocess.Becausethesetis sorted, this
is the element with the least value. null is returned if the set is empty.

E pollLast()

Returns the last element, removing the element in the process. Because the set is
sorted,thisistheelementwiththegreatestvalue.nullisreturnedifthesetisempty.

NavigableSet<E>subSet(ElowerBound,booleanlowlIncl,EupperBound, boolean
highincl)

ReturnsaNavigableSetthatincludesallelementsfromtheinvokingsetthatare
greater than lowerBound and less than upperBound .

If lowlIncl is true, then an element equal to lowerBound is included.
Ifhighlnclistrue,thenanelementequaltoupperBoundisincluded. The
resulting set is backed by the invoking set.
NavigableSet<E>tailSet(ElowerBound,booleanincl)

Returns a NavigableSet that includes all elements from the invoking set that are
greaterthanlowerBound. Ifinclistrue,thenanelementequaltolowerBoundis included.
The resulting set is backed by the invoking set

8. TheQueuelnterfaceand methods

AdvancedJavaandJ2EE—Module2

TheQueueinterface extends Collection and declares the behaviour of aqueue, which is
oftenafirst-in, first-outlist. However,therearetypesofqueuesinwhichtheorderingis ~ based
upon other criteria. Queue is a generic interface that has this declaration:

interfaceQueue<E>
E element()

Returnstheelementattheheadofthequeue. Theelementisnotremoved. It throws
NoSuchElementException if the queue is empty.

booleanoffer(Eobj)
Attemptstoaddobjtothequeue.Returnstrueifobjwasaddedandfalseotherwise. E peek()

Returnstheelementattheheadofthequeue. Itreturnsnullifthequeueisempty.The element
IS not removed.

E poll()

Returnstheelementattheheadofthequeue,removingtheelementintheprocess. It returns null
if the queue is empty.

Eremove()

Removestheelementattheheadofthequeue, returningtheelementintheprocess. It throws
NoSuchElementException if the queue is empty.

9. Dequeinterface

Itextends Queueand declaresthe behaviorofadouble-ended queue.

Double-endedqueuescanfunctionasstandard,first-in, first-outqueuesoras last-
in, first-out stacks.

Dequeisagenericinterfacethat hasthis declaration:
interfaceDeque<E>
voidaddFirst(Eobj)

Addsobjtotheheadofthedeque. ThrowsanlllegalStateExceptionifa
capacity-restricted deque is out of space.

voidaddLast(Eobj)

Addsobjtothetailofthedeque. ThrowsanlllegalStateExceptionifa
capacity-restricted deque is out of space.

Iterator<E>descendinglterator()

Returnsaniteratorthatmovesfromthetailtotheheadofthedeque. Inother words, it
returns a reverse iterator.

EgetFirst()

Returnsthefirstelementinthedeque. Theobjectisnotremovedfromthe deque. It
throws NoSuchElementException if the deque is empty.

AdvancedJavaandJ2EE—Module2

EgetLast()
Returnsthe lastelementin thedeque.

Theobjectisnotremovedfromthedeque. Itthrows NoSuchElementException if
the deque is empty.

booleanofferFirst(Eobj)

Attempts to add obj to the head of the deque. Returns true if obj was added
andfalseotherwise. Therefore,thismethodreturnsfalsewhenanattemptismadeto add obj
to a full, capacity-restricted deque.

booleanofferLast(Eobj)

Attemptstoaddobjtothetailofthedeque.Returnstrueifobjwasaddedand false
otherwise.

EpeekFirst()

Returnstheelementattheheadofthedeque. Itreturnsnullifthedequeis empty. The
object is not removed.

EpeekLast()

Returnstheelementatthetailofthedeque. Itreturnsnullifthedequeis empty. The
object is not removed.

EpollFirst()

Returnstheelementattheheadofthedeque,removingtheelementintheprocess. It returns
null if the deque is empty.

EpollLast()Returnstheelementatthetailofthedeque,removingtheelementinthe process. It
returns null if the deque is empty.

Epop()Returnstheelementattheheadofthedeque,removingitintheprocess. It throws
NoSuchElementException if the deque is empty.

voidpush(Eobj) Addsobjtotheheadofthedeque. Throwsan lllegalStateException if a
capacity-restricted deque is out of space.

EremoveFirst()Returnstheelementattheheadofthedeque,removingtheelement in the
process. It throws NoSuchElementException if the deque is empty.

booleanremoveFirstOccurrence(Objectobj)

Removesthefirstoccurrenceofobjfromthedeque.Returnstrueifsuccessfuland false if
the deque did not contain obj .

EremoveLast()

Returnstheelementatthetailofthedeque,removingtheelementintheprocess. It throws
NoSuchElementException if the deque is empty.

booleanremoveLastOccurrence(Objectobj)

Removesthelastoccurrenceofobjfromthedeque.Returnstrueifsuccessfuland false if
the deque did not contain

AdvancedJavaandJ2EE—Module2

10. TheCollectionClasses withexamplecode

AbstractCollection
Implementsmostofthe Collectioninterface.
AbstractList
ExtendsAbstractCollectionandimplementsmostoftheL istinterface.
Queue interface.
AbstractSequentialList
ExtendsAbstractListforusebyacollectionthatusessequentialratherthan random
access of its elements.
AbstractSet
ExtendsAbstractCollectionandimplements mostoftheSet interface.
EnumSet
ExtendsAbstractSet forusewith enum elements.
HashSet
ExtendsAbstractSetforusewith ahash table.
LinkedHashSet
ExtendsHashSettoallowinsertion-orderiterations.
PriorityQueue
ExtendsAbstractQueueto support apriority-based queue.
TreeSet Implements a set stored in a tree. Extends AbstractSet.
LinkedListimplementsalinkedlistbyextending AbstractSequentialL ist.
ArrayList Implements a dynamic array by extending AbstractL.ist.
ArrayDequelmplementsadynamicdouble-endedqueuebyextending AbstractCollection
and implementing the Deque interface.
ArrayL.ist

ArrayListclassextends AbstractListandimplements theL.ist interface
ArrayListisagenericclassthathasthisdeclaration:

class ArrayList<E>

ArrayListhasthe constructorsshownhere:

ArrayList()

constructor builds an empty array list
ArrayL.ist(Collection<?extendsE>c)

buildsanarraylistthat isinitializedwiththeelementsofthecollectionc.
ArrayL.ist(intcapacity)

buildsanarraylistthathasthespecifiedinitial capacity. Thecapacityisthe size of
the underlying array that is used to store the elements. The capacity grows
automatically as elements are added to an array list.

classArrayListDemo{

public static void main(String args[]) {
ArrayList<String>al=newArrayL.ist<String>();
System.out.printIn(“Initial size of al: " +
al.size());

AdvancedJavaandJ2EE—Module2

al.add("C");

al.add("A");

al.add("E");

al.add("B");

al.add("D");

al.add("F");

al.add(1,"A2");
System.out.printIn("Sizeofalafteradditions:"+ al.size());
System.out.printin("Contentsofal:"+al);
al.remove("F");

al.remove(2);
System.out.printin("Sizeofalafterdeletions:"+ al.size());

i

ConvertingArrayL isttoArray

classArrayListToArray{
public static void main(String args[]) {
ArrayList<Integer>al=newArrayList<Integer>();
al.add(1);
al.add(2);
al.add(3);
al.add(4);
System.out.printin("Contentsofal:"+al);
Integer ia[] = new Integer[al.size()];
ia=al.toArray(ia);
int sum = 0;
for(inti:ia) sum +=i;
System.out.printIn("Sumis:"+sum);
}

}

LinkedL ist
TheLinkedList classextends AbstractSequentialList andimplementstheList,Deque,and
Queueinterfaces.
Itprovidesalinked-listdatastructure. LinkedL istisagenericclassthat has
this declaration:
classLinkedList<E>

Here,Especifiesthetypeofobjectsthatthelistwillhold. LinkedListhasthetwo constructors
LinkedList()
LinkedList(Collection<? extendsE>c)
Thefirst constructor builds an emptylinked list.
Thesecondconstructorbuildsalinkedlist thatisinitializedwiththeelementsofthe collection c.
Examplecode:

import java.util.*;

classLinkedListDemo{

AdvancedJavaandJ2EE—Module2

public static void main(String args[]) {
LinkedList<String>ll=newLinkedList<String>();
Il.add("F");

Il.add("B");

Il.add("D");

Il.add("E");

Il.add("C");

Il.addLast("Z");

Il.addFirst("A");

Il.add(1,"A2");
System.out.printin("Originalcontentsofll:"+11);
Il.remove("F");

Il.remove(2);
System.out.printin("Contentsofllafterdeletion:"+ll);
Il.removeFirst();

Il.removeLast();
System.out.printin("llafterdeletingfirstandlast:"+Il);
String val = Il.get(2);

Il.set(2, val + " Changed");
System.out.printIn(*llafterchange:"+ll);

¥
k

HashSet
HashSetextendsAbstractSetandimplementstheSetinterface.ltcreatesacollection that
uses a hash table for storage.

JavaHashSetclassis usedtocreate acollectionthatusesahashtable for storage.
Itinheritsthe AbstractSetclassandimplementsSet interface.
Theimportantpointsabout JavaHashSetclass are:

o HashSetstorestheelements byusingamechanismcalledhashing.
o HashSetcontainsuniqueelementsonly.

HashSetisagenericclassthathasthisdeclaration: class
HashSet<E>
Here,Especifies thetypeof objectsthatthesetwill hold.

Constructor

HashSet()
HashSet(Collection<?extendsE>c)
HashSet(int capacity)

HashSet(intcapacity, floatfillRatio)
Example:

import java.util.*;

classHashSetDemo{

public static void main(String args[]) {
HashSet<String>hs=newHashSet<String>();

AdvancedJavaandJ2EE—Module2

hs.add("B");
hs.add("A");
hs.add("D");
hs.add("E");
hs.add("C");
hs.add("F");
System.out.printin(hs);

ky
¥

output
[D,AF,C,B, E]
LinkedHashSet

LinkedHashSetclassisaHashtableandLinkedlistimplementationoftheset interface. It
inherits HashSet class and implements Set interface.

TheimportantpointsaboutJava LinkedHashSetclassare:

o Contains uniqueelements onlylikeHashSet.
o Providesalloptionalsetoperations,andpermitsnull elements.
o Maintainsinsertionorder.

TheLinkedHashSetclassextendsHashSetandaddsnomembersofitsown. It is a
generic class that has this declaration:

classLinkedHashSet<E>
Here,Especifies thetypeof objectsthatthesetwill hold.

LinkedHashSetmaintainsalinkedlistoftheentriesintheset,intheorderinwhich they were
inserted.
Thisallowsinsertion-orderiterationovertheset.
Thatis,whencyclingthroughaLinkedHashSetusinganiterator,theelementswill be
returned in the order in which they were inserted.
Thisis also theorder inwhichtheyarecontainedinthestringreturned by
toString()whencalledonaLinkedHashSet object.
ToseetheeffectofLinkedHashSet,trysubstitutingLinkedHashSetforHashSetin the
preceding program. The output will be

[B,A, D,E, C, F]
whichistheorderin whichthe elementswere inserted.
TreeSet

TreeSetextendsAbstractSetandimplementstheNavigableSetinterface.

It creates a collection that uses a tree for storage. Objects are stored in sorted,
ascending order. Access and retrieval times are quite fast, which makes TreeSet an
excellentchoicewhenstoringlargeamountsofsortedinformationthatmustbefound
quickly.

TreeSetisagenericclassthathasthisdeclaration: class
TreeSet<E>
Here,Especifies thetypeof objectsthatthesetwill hold.

AdvancedJavaandJ2EE—Module2

TreeSethasthefollowingconstructors:
TreeSet()
TreeSet(Collection<? extends E>c)
TreeSet(Comparator<?superE>comp)
TreeSet(SortedSet<E>ss)

Example

import java.util.*;

classTreeSetDemo{

public static void main(String args[]) {
TreeSet<String>ts=newTreeSet<String>();
ts.add("C");

ts.add("A");

ts.add("B");

ts.add("E");

ts.add("F");

ts.add("D");

System.out.printin(ts);

¥
¥

Theoutput fromthis programis shown here:
[A,B,C, D’El F]

PriorityQueue
PriorityQueueextendsAbstractQueueandimplementstheQueueinterface. It
creates a queue that is prioritized based on the queue’s comparator.
PriorityQueueisagenericclassthathasthisdeclaration: class
PriorityQueue<E>
Here,Especifiesthetypeofobjectsstoredinthequeue.

PriorityQueues are dynamic, growing as necessary.
PriorityQueuedefinesthesixconstructorsshownhere:
PriorityQueue()

PriorityQueue(intcapacity)
PriorityQueue(intcapacity,Comparator<?superE>comp)
PriorityQueue(Collection<? extends E>c)
PriorityQueue(PriorityQueue<? extends E>c)
PriorityQueue(SortedSet<? extends E>c)

ArrayDeque
JavaSE6addedtheArrayDequeclass,whichextendsAbstractCollectionand implements
the Deque interface.
Itadds nomethods ofits own.
ArrayDequecreates adynamicarrayand hasno capacityrestrictions.
ArrayDequeisagenericclassthathasthisdeclaration: class
ArrayDeque<E>
Here,Especifiesthetypeofobjectsstoredinthecollection.
ArrayDeque defines the following constructors:
ArrayDeque()
ArrayDeque(int size)
ArrayDeque(Collection<?extendsE>c)

AdvancedJavaandJ2EE—Module2

Example:

import java.util.*;
classArrayDequeDemo{

public static void main(String args[]) {
ArrayDeque<String>adg=newArrayDeque<String>();
adg.push("A");

adg.push("B");

adg.push("D");

adq.push("E");

adg.push("F");
System.out.print("Poppingthestack:");
while(adqg.peek() '= null)
System.out.print(adg.pop() +");
System.out.printin();

ks

¥

Theoutput is shown here:
Poppingthe stack: F E DBA

AccessingacollectionViaanlterator:

Beforeyoucanaccessacollectionthroughaniterator,youmustobtainone.Eachof the
collection classes provides an iterator() method that returns an iterator to the start of the
collection.

Byusingthisiteratorobject, youcanaccesseachelementinthecollection.Element at a
time. In general, to use an iterator to cycle through the contents of a collection, follow these
steps:

1. Obtainaniteratortothestartofthecollectionbycallingthe collection’siterator()
method.

2. Setup aloop thatmakes acall tohasNext().Havetheloop iterateas longashasNext()
returnstrue.

3. Withintheloop, obtaineachelementbycallingnext().

4. ForcollectionsthatimplementL.ist,youcan alsoobtainaniteratorbycalling
listlterator().

5.Asexplained,alistiteratorgives youtheabilitytoaccessthecollectionineitherthe forward
or backward direction and lets you modify an element.

6. Otherwise,Listlteratoris usedjust likelterator.

import java.util.*;
classlteratorDemo{
publicstatic void main(Stringargs[]) {

ArrayList<String>al=newArrayL.ist<String>();
al.add("C");
al.add("A");
al.add("E");

AdvancedJavaandJ2EE—Module2

al.add("B");
al.add("D");
al.add("F");

System.out.print("Originalcontentsofal:");

Iterator<String>itr=al.iterator();
while(itr.hasNext()) {

String element = itr.next();
System.out.print(element+"");

¥
System.out.printin();

Listlterator<String>litr=al.listlterator();
while(litr.hasNext()) {
Stringelement=litr.next();

litr.set(element + "+");

}
System.out.print("Modifiedcontentsofal:"); itr
= al.iterator();

while(itr.hasNext()) {
Stringelement=itr.next();
System.out.print(element +"");

}

System.out.printin();
System.out.print("Modifiedlistbackwards:");
while(litr.hasPrevious()) {
Stringelement=litr.previous();
System.out.print(element +"*);

¥
System.out.printin();

}
Output:

Original contents ofal: CAEBDF
Modifiedcontentsofal: C+A+E+B+D+F+
Modifiedlistbackwards:F+D+B+E+A+C+

ForEachloopforiteratingthroughcollection: import
java.util.*;

classForEachDemo{

public static void main(String args[]) {
ArrayList<Integer>vals=newArrayL.ist<Integer>();
vals.add(1);

vals.add(2);

vals.add(3);

vals.add(4);

vals.add(5);
System.out.print("Originalcontentsofvals:"); for(int
v : vals)

AdvancedJavaandJ2EE—Module2

System.out.print(v+"");
System.out.printin();

int sum = 0;

for(intv:vals)

sum +=v;

System.out.printIn("Sum ofvalues:"+ sum);
}

}

Output:
Originalcontentsofvals:12345 Sum of

values: 15

StoringUserDefinedClassesin Collections:

collectionsarenot limitedto thestorageof built-in objects.

Thepowerofcollectionsisthattheycanstoreanytypeofobject, including
objects of classes that you create.
Userdefinedobjectsstoredin LinkedL.isttostoremailingaddresses:

import java.util.*;

class Address {

privateStringname;

privateStringstreet;

private String city;

private String state;

private String code;
Address(Stringn,Strings,Stringc,

String st, String cd) {

name = n;

street =s;

city =c;

state = st;

code=cd,;

}

publicStringtoString(){
returnname+"\n"+street+"\n"+ city +

" + state + " + code;

3

classMailList{

public static void main(String args[]) {
LinkedList<Address>ml=newL.inkedList<Address>();
ml.add(new Address("J.W. West", "11 Oak Ave",
"Urbana”, "IL", "61801"));
ml.add(newAddress("RalphBaker","1142MapleLane",
"Mahomet", "IL", "61853"));
ml.add(newAddress("TomCarlton","867EImSt",
"Champaign”, "IL", "61820"));

for(Address element : ml)
System.out.printin(element+"\n");

AdvancedJavaandJ2EE—Module2

System.out.printin();

¥
¥

Theoutput fromtheprogramis shown here:
J.W. West

110akAve

Urbana 1L61801

Ralph Baker

1142MapleLane

MahometlL61853

Tom Carlton

867 EIm St

ChampaignlL61820

RandomAccess Interface:

RandomAccessinterfacecontainsnomembers.

However,byimplementingthisinterface,acollectionsignalsthatitsupportsefficient random
access to its elements.

BycheckingfortheRandomAccessinterface,clientcodecandetermineatruntimewhether a
collection is suitable for certain types of random access operations—especially as they apply
to large collections.

RandomAccessis implemented byArrayList andbythe legacyVectorclass, amongothers.

Working With Maps:

Amapisan objectthat storesassociations betweenkeysandvalues, orkey/valuepairs.
Keysandvaluesareobjects.Keysmustbeunique,butthevaluesmaybeduplicated. Some
maps can accept a null key and null values, others cannot.

There is one key point about maps that is important to mention at the outset: they don’t
implementthelterableinterface. Thismeansthat youcannotcyclethroughamapusinga for-
each style for loop. Furthermore, you can’t obtain an iterator to a map.

However,as youwillsoonsee, youcanobtainacollection-viewofamap,whichdoesallow the use of
either the for loop or an iterator.

TheMap Interfaces
Becausethemapinterfacesdefinethecharacterandnatureofmaps,thisdiscussionofmaps begins with
them.

Thefollowinginterfacessupport maps:

TheMaplnterface

The Map interface maps unique keys to values. A key is an object that you use to retrieve a
valueatalaterdate.Givenakeyandavalue, youcanstorethevalueina Mapobject. After the value
is stored, you can retrieve it by using its key.

Map is generic:
interfaceMap<K,V>

AdvancedJavaandJ2EE—Module2

Here,Kspecifiesthetypeofkeys,and Vspecifiesthetypeofvalues. The
methods declared by Map.

Severalmethods
throwaClassCastExceptionwhen anobject is incompatiblewiththeelements inamap.

ANullPointerExceptionisthrownifanattemptismadetouseanullobjectandnullisnot allowed in
the map.

AnUnsupportedOperationExceptionisthrownwhenanattemptis made to
change an unmodifiable map.

AnlllegalArgumentExceptionisthrownifan
invalid argument is used.

Mapsrevolvearoundtwobasicoperations: get() andput(). Toputavalueintoamap, use put(),
specifying the key and the value.

Toobtainavalue,callget(),passingthekeyas an

argument. The value is returned.

maps are not, themselves, collections because they do not implement the Collection
interface.However, youcanobtainacollection-viewofamap.Todothis,youcanusethe entrySet(
) method. It returns a Set that contains the elements in the map.

Toobtainacollection-viewofthekeys, use
keySet().

Togetacollection-view of thevalues,usevalues().

Collection-viewsarethemeansbywhichmapsareintegratedintothelargerCollections Framework.

SortedMap
TheSortedMapinterfaceextendsMap. Itensuresthattheentriesaremaintainedin ascending
orderbasedonthe keys.

SortedMapisgenericandisdeclared asshownhere:
interface SortedMap<K, V>K

specifies the type of keys,
Vspecifiesthetypeofvalues.

Several methods throwa NoSuchElementException when no items arein theinvokingmap.
AClassCastException is thrown when an object is incompatiblewith theelements in amap.
ANullPointerExceptionisthrownifanattemptismadetouseanullobjectwhennullisnot allowed
in the map.

AnlllegalArgumentExceptionisthrownifaninvalidargumentisused.
Sorted maps allow very efficient manipulations of submaps

Toobtain asubmap, useheadMap(),tailMap(),orsubMap().

AdvancedJavaandJ2EE—Module2

Togetthefirstkeyintheset,callfirstKey(). To get
the last key, use lastKey().

NavigableMap Interface

TheNavigableMapinterfacewasadded byJavaSE 6.

ItextendsSortedMapanddeclaresthebehaviorofamapthatsupportstheretrievalof entries based
on the closest match to a given key or keys. NavigableMap is a generic interface that has
this declaration:

interfaceNavigableMap<K,V>

Here, Kspecifiesthetypeofthekeys, and Vspecifiesthetypeofthevaluesassociatedwith the
keys.

SeveralmethodsthrowaClassCastExceptionwhenanobjectisincompatiblewiththekeys in the
map.

ANullPointerExceptionisthrownifanattemptismadetouseanullobjectandnullkeys are not
allowed in the set.

Anlllegal ArgumentExceptionisthrownifaninvalidargumentisused. equal

to start.

Map.Entrylnterface
TheMap.Entryinterfaceenablesyoutoworkwithamapentry.RecallthattheentrySet()
methoddeclared bytheMapinterfacereturns aSetcontainingthemap entries.

EachofthesesetelementsisaMap.Entryobject.Map.Entryisgenericandisdeclaredlike this:
interfaceMap.Entry<K,V>Here,Kspecifiesthetypeofkeys,andVspecifiesthetypeof values.
the methods declared byMap.Entry.

MapClasses
Severalclassesprovideimplementationsofthemapinterfaces. Theclassesthatcan beused for

maps are summarized here:

HashMap:
TheHashMapclassextendsAbstractMapandimplementstheMapinterface. Itusesahash table to
store the map.

This allows the execution time of get() and put() to remain constant
evenforlargesets.HashMapisagenericclassthathasthisdeclaration:

classHashMap<K,V>

Here,Kspecifies thetypeof keys,andVspecifiesthe typeof values.

Thefollowingconstructorsare defined:

HashMap()

HashMap(Map<?extendsK,?extendsV>m)

HashMap(int capacity)

HashMap(intcapacity,float fillRatio)

The first form constructs a default hash map. The second form initializes the hash map by
usingtheelementsofm. Thethirdforminitializesthecapacityofthehash mapto capacity. The
fourth form initializes both the capacity and fill ratio of the hash map by using its arguments.

Themeaningofcapacityandfillratioisthesameasfor HashSet,describedearlier. The default
capacity is 16.

Thedefaultfill ratiois 0.75.
HashMapimplementsMapandextendsAbstractMap.ltdoesnotaddanymethodsof its own.
import

java.util.*;classHashM

apDemo{

publicstatic void main(Stringargs[]) {
HashMap<String,Double>hm=newHashMap<String,Double>();
hm.put("John Doe", new Double(3434.34));
hm.put("Tom Smith", new Double(123.22));
hm.put("Jane Baker", new Double(1378.00));
hm.put("Tod Hall", new Double(99.22));
hm.put("Ralph Smith", new Double(-19.08));
Set<Map.Entry<String,Double>>set=hm.entrySet();
for(Map.Entry<String, Double> me : set) {
System.out.print(me.getKey() + ": *);
System.out.printin(me.getValue());

}

System.out.printin();

double balance = hm.get("John Doe");
hm.put("John Doe", balance + 1000);
System.out.printin("JohnDoe'snewbalance:"+
hm.get("John Doe"));

¥
¥

Outputfromthisprogramisshownhere(thepreciseordermayvary): Ralph
Smith: -19.08

Tom Smith: 123.22

John Doe: 3434.34

TodHall:99.22

JaneBaker:1378.0

JohnDoe’snewbalance:4434.34

AdvancedJavaandJ2EE—Module2

Theprogram begins bycreatingahash mapand then adds themappingofnames to
balances.Next,thecontentsofthemaparedisplayedbyusingaset-view, obtainedbycalling entrySet(
). The keys and values are displayed by calling the getKey() and getValue() methods
thataredefinedbyMap.Entry.PaycloseattentiontohowthedepositismadeintoJohn Doe’s

account. Theput()methodautomaticallyreplacesanypreexistingvaluethatisassociated with the
specified key with the new value. Thus, after John Doe’s account is updated, the hash map

will still contain just one “John Doe” account.

TreeMap

TheTreeMapclassextendsAbstractMapandimplementstheNavigableMapinterface. It

creates maps stored in a tree structure.

ATreeMapprovidesanefficientmeansofstoringkey/valuepairsinsortedorderandallows rapid
retrieval. You should note that, unlike a hash map, a tree map guarantees that its elements
will be sorted in ascending key order.

TreeMapis agenericclassthat hasthisdeclaration:
classTreeMap<K,V>

Here,Kspecifiesthetypeofkeys,and Vspecifiesthetypeofvalues. The

following TreeMap constructors are defined:

TreeMap()

TreeMap(Comparator<? super K>comp)

TreeMap(Map<?extendsK,?extendsV>m)

TreeMap(SortedMap<K, ? extends V>sm)

The first form constructs an empty tree map that will be sorted by using the natural order of
itskeys. Thesecondformconstructsanemptytree-basedmapthatwillbesortedbyusingthe
Comparator comp. (Comparators are discussed later in this chapter.) The third form
initializes

a tree map with the entries from m, which will be sorted by using the natural order of the
keys. Thefourthforminitializesatreemapwiththeentriesfrom sm,whichwillbesortedin the same
order as sm.
TreeMaphasnomethodsbeyondthosespecifiedbytheNavigableMapinterfaceand the
AbstractMap class.

Thefollowingprogramreworkstheprecedingexamplesothatituses TreeMap: import
java.util.*;

classTreeMapDemo{

publicstatic void main(Stringargs[]) {

/[Createatreemap.

TreeMap<String,Double>tm=newTreeMap<String, Double>();

/[Put elements to the map.

tm.put("John Doe", new Double(3434.34));

tm.put("Tom Smith", new Double(123.22));

tm.put("JaneBaker",newDouble(1378.00));

tm.put("Tod Hall", new Double(99.22));

tm.put("RalphSmith",newDouble(-19.08));

AdvancedJavaandJ2EE—Module2

//Geta setoftheentries.
Set<Map.Entry<String, Double>>set=tm.entrySet();
// Display the elements.
for(Map.Entry<String,Double>me:set){
System.out.print(me.getKey() + ": *);
System.out.printin(me.getValue());

}

System.out.printin();

double balance = tm.get(*"John Doe");
tm.put("John Doe", balance + 1000);
System.out.printin("JohnDoe'snewbalance:"+
tm.get("John Doe™));

ks

Thefollowingis theoutput from thisprogram:
JaneBaker:1378.0

John Doe: 3434.34

RalphSmith:-19.08

ToddHall:99.22

Tom Smith: 123.22
JohnDoe’scurrentbalance: 4434.34
TreeMapsortsthekeys.

However,inthiscase,theyaresortedbyfirstname
instead of last name.

Youcanalterthisbehaviorbyspecifyingacomparatorwhenthemap is
created, as described shortly.

LinkedHashMap
LinkedHashMapextendsHashMap.

Itmaintainsalinked listoftheentries inthemap, in the

lorderinwhichtheywereinserted. Thisallowsinsertion-orderiterationoverthemap.That is, when
iterating through a collection-view of a LinkedHashMap, the elements will be returned in
the order in which they were inserted.

LinkedHashMapthatreturnsits elementsinthe orderinwhich theywere last accessed.

LinkedHashMapisagenericclassthathasthisdeclaration: class
LinkedHashMap<K, V>
Here,Kspecifiesthe typeofkeys, andVspecifies thetypeof values.

LinkedHashMapdefinesthefollowingconstructors:
LinkedHashMap()
LinkedHashMap(Map<?extendsK,?extends\V>m)
LinkedHashMap(int capacity)

AdvancedJavaandJ2EE—Module2

LinkedHashMap(int capacity, float fillRatio)
LinkedHashMap(intcapacity,floatfillRatio,booleanOrder) The
first form constructs a default LinkedHashMap.

Thesecondforminitializesthe LinkedHashMapwiththeelementsfrom m.Thethirdform
initializes the capacity. The fourth form initializes both capacityand fill ratio. The meaning
of capacity and fill ratio are the same as for HashMap. The default capactiy is 16. The
defaultratiois0.75.Thelastformallows youtospecifywhethertheelementswillbestored in the
linked list by insertion order, or by order of last access.

IdentityHashMap
IdentityHashMapextendsAbstractMapandimplementstheMapinterface.

Itissimilarto HashMap except that it usesreferenceequalitywhencomparingelements.
IdentityHashMapisagenericclassthathasthisdeclaration:

classldentityHashMap<K,V>

Here,Kspecifiesthetypeofkey,and Vspecifiesthetypeofvalue. TheAPldocumentation explicitly
states that IdentityHashMap is not for general use.

TheEnumMap Class
EnumMapextendsAbstractMapandimplementsMap.Itisspecificallyforusewithkeys of an
enum type. It is a generic class that has this declaration:

classEnumMap<K extendsEnum<K>,Vv>

Here, K specifies the type of key, and V specifies the type of value. Notice that K must
extendEnum<K>,whichenforcestherequirementthatthekeysmustbeofan enumtype.
EnumMap defines the following constructors:

EnumMap(Class<K>kType)
EnumMap(Map<K, ? extends V>m)
EnumMap(EnumMap<K,?extendsV>em)

ThefirstconstructorcreatesanemptyEnumMap oftypekType. Thesecondcreatesan EnumMap
map that contains the same entries as m. The third creates an EnumMap initialized with the
values in em.

Comparatorinterface

Comparatorisa generic interfacethathasthisdeclaration:

interfaceComparator<T>

Here, Tspecifies thetypeof objectsbeingcompared.
TheComparatorinterfacedefinestwomethods:compare()andequals(). Thecompare()
method,shownhere,comparestwoelementsfororder:

intcompare(Tobj1,Tobj2)

objlandobj2 arethe objects to becompared.

Thismethod returnszero if theobjects areequal.
Itreturnsapositivevalue if objl isgreaterthanobj2. Otherwise,anegative valueis returned.
ClassCastExceptionifthetypesoftheobjectsarenotcompatibleforcomparison. By

overriding compare(), you can alter the way that objects are ordered.

AdvancedJavaandJ2EE—Module2

Forexample,tosortinreverseorder, youcancreateacomparatorthatreversestheoutcome of a
comparison. The equals() method, shown here, tests whether an object equals the invoking
comparator:

booleanequals(Objectobj)

Here, obj is the object to be tested for equality. The method returns true if obj and the
invokingobjectareboth Comparatorobjectsandusethesameordering.Otherwise, it returns
false.

import java.util.*;
classMyCompimplementsComparator<String>{
public int compare(String a, String b) {
StringaStr,bStr;

asStr = a;

bStr =b;

return bStr.compareTo(aStr);

}

}

classCompDemo{

publicstatic void main(Stringargs[]) {
TreeSet<String>ts=newTreeSet<String>(newMyComp());
ts.add("C");

ts.add("A");

ts.add("B");

ts.add("E");

ts.add("F");

ts.add("D");

for(String element : ts)
System.out.print(element+"");
System.out.printin();

i

Output:
FEDCBA

TheCollectionAlgorithms:
CollectionsFrameworkdefinesseveralalgorithmsthatcanbeappliedtocollections and
maps.

algorithmsaredefinedasstaticmethodswithinthe Collectionsclass.
static<T> BooleanaddAll(Collection<?superT>c, T...elements)
Insertstheelementsspecified byelementsinto the
collectionspecified byc.Returnstrueiftheelementswereaddedandfalseotherwise.

static<T>Queue<T>asLifoQueue(Deque<T>c)
Returns a last-in, first-out view of c.
static<T>intbinarySearch(List<?extendsT>list, Tvalue,Comparator<?superT>c)
Searchesforvalueinlistorderedaccordingtoc. Returnsthepositionofvalue in list,
or a negative value if value is not found.

static<T>intbinarySearch(List<?extendsComparable<?superT>>list, Tvalue)

AdvancedJavaandJ2EE—Module2

Searchesforvalueinlist. Thelistmustbesorted.Returnsthepositionofvalue in list,
or a negative value if value is not found.

static<E>Collection<E>checkedCollection(Collection<E>c,Class<E>t)
Returnsarun-timetype-safeviewofacollection. Anattempttoinsertan incompatible
element will cause a ClassCastException.

static<E>List<E> checkedList(List<E>c,Class<E>t)
Returnsarun-timetype-safeviewofaL ist. Anattempttoinsertan incompatible
element will cause a ClassCastException.

static<K,V>Map<K,V>checkedMap(Map<K,V>c,Class<K>keyT,Class<V>valueT)
Returnsarun-time type-safeviewof aMap.
Anattempttoinsertanincompatibleelementwillcausea ClassCastException.

staticE>List<E> checkedSet(Set<E>c,Class<E>t)
Returnsarun-timetype-safeviewofaSet. An
attempttoinsertanincompatibleelementwillcauseaClassCastException.

staticintfrequency(Collection<?>c,Objectobj)
Countsthenumberofoccurrencesofobjincand returnstheresult. static int
indexOfSubList(List<?> list, List<?> subL.ist)
Searcheslistforthe firstoccurrenceofsubList.
Returnstheindexofthefirstmatch,or—1ifnomatchisfound. static int
lastIndexOfSubList(List<?> list, List<?> subL.ist)
SearcheslistforthelastoccurrenceofsubList.
Returnstheindex ofthelastmatch,or—1ifno
match is found.

import java.util.*;

classAlgorithmsDemo{

public static void main(String args[]) {
LinkedList<Integer>ll=newLinkedList<Integer>();
Il.add(-8);

Il.add(20);

[l.add(-20);

Il.add(8);
Comparator<Integer>r=Collections.reverseOrder();
Collections.sort(ll, r);
System.out.print("Listsortedinreverse:"); for(int
1))

System.out.print(i+ "");

System.out.printin();

Collections.shuffle(ll);
System.out.print("Listshuffled:");

for(inti: II)

System.out.print(i+™");

System.out.printin();
System.out.printIn(*Minimum:"+Collections.min(ll));

AdvancedJavaandJ2EE—Module2

System.out.printIn(*Maximum:"+ Collections.max(ll));

¥
ki

Output:

Listsortedinreverse:208 -8-20

Listshuffled:20-208-8

Minimum: -20

Maximum:20
Noticethatmin()andmax()operateonthelistafterithasbeenshuffled.Neitherrequires a sorted
list for its operation.

WhyGeneric Collections?
Asmentionedatthestartofthischapter,theentireCollectionsFrameworkwasrefittedfor generics
when JDK 5 was released.

Furthermore,theCollectionsFrameworkisarguablythesinglemostimportantuseof generics in
the Java API.

Thereasonforthisisthatgenerics addtypesafetytotheCollectionsFramework.Before moving on, it
is worth taking some time to examine in detail the significance of this improvement.

importjava.util.*;

class OldStyle {

publicstaticvoidmain(Stringargs[]){

ArrayList list = new ArrayList();

list.add(""one™);

list.add(""two");

list.add("'three™);

list.add(*"four™);

Iteratoritr=list.iterator();

while(itr.hasNext()) {

String str = (String) itr.next(); // explicit cast needed here.
System.out.printIn(str+"is"+str.length()+"charslong.");

¥
ks
¥

Priortogenerics,allcollectionsstoredreferencesoftypeObject. This
allowed any type of reference to be stored in the collection.

Theprecedingprogramusesthisfeaturetostore referencestoobjectsoftype Stringinlist,
butanytypeofreferencecouldhavebeenstored. Unfortunately,thefactthatapre-generics
collection stored Object references could easily lead to errors.

First,itrequiredthatyou,ratherthanthecompiler,ensurethatonlyobjectsof
thepropertypebestoredinaspecificcollection.Forexample,intheprecedingexample, list is
clearly intended to store Strings, but there is nothing that actually prevents another typeof
reference from being added to the collection.

AdvancedJavaandJ2EE—Module2

Forexample,thecompilerwillfindnothingwrongwiththislineofcode:
list.add(new Integer(100));

BecauseliststoresObjectreferences, itcanstoreareferenceto Integeraswellasitcan store a
reference to String.

However,if youintended listtoholdonlystrings,thentheprecedingstatementwouldcorrupt the
collection. Again, the compiler had no way to know that the preceding statement is invalid.

Thesecondproblemwithpre-genericscollectionsisthatwhenyouretrieveareference from
the collection, you must manually cast that reference into the proper type.
Thisiswhytheprecedingprogramcaststhereferencereturnedbynext()intoString.Prior
togenerics,collectionssimplystoredObjectreferences. Thus,thecastwasnecessarywhen
retrieving

objectsfromacollection.

Aside from the inconvenience of always having to cast a retrieved reference into its proper
type, this lack of type safety often led to a rather serious, but surprisingly easy-to-create,
error.BecauseObject canbecastintoanytypeofobject,itwaspossibleto castareference
obtainedfromacollectionintothewrongtype.Forexample,ifthefollowingstatementwere
addedtotheprecedingexample,itwouldstillcompilewithouterror,but generatearun-time
exception when executed:

Integeri=(Integer)itr.next();

« Ensuresthatonlyreferencestoobjectsofthepropertypecanactuallybestoredin a
collection. Thus, a collection will always contain references of a known type.

» Eliminatestheneedtocastareferenceretrievedfromacollection.Instead,areference
retrieved from a collection is automatically cast into the proper type. This prevents
run-timeerrorsduetoinvalidcastsand avoidsanentirecategoryoferrors.

Thel egacyClassesandlnterfaces

As explained at the start of this chapter, early versions of java.util did not include the
CollectionsFramework.Instead,itdefinedseveralclassesandaninterfacethatprovidedan ad hoc
method of storing objects.

Whencollectionswereadded(byJ2SE1.2),severaloftheoriginalclasseswerereengineered to
support the collection interfaces.

Thus,theyarefullycompatiblewiththeframework.Whilenoclasseshaveactuallybeen deprecated,
one has been rendered obsolete.

Of course, where a collection duplicates the functionalityof a legacyclass,you will usually
wanttousethecollectionfornewcode.Ingeneral,thelegacyclassesare supportedbecause there is
still code that uses them.

Oneotherpoint:noneofthecollectionclassesaresynchronized,butallthelegacyclasses are
synchronized.

AdvancedJavaandJ2EE—Module2

Thisdistinctionmaybeimportantinsomesituations.Ofcourse,youcan
easilysynchronizecollections,too, byusingoneofthealgorithmsprovidedbyCollections.

Thelegacyclassesdefinedbyjava.utilareshownhere: Dictionary
Hashtable
Properties
Stack
Vector
Thereis onelegacyinterface calledEnumeration.

ThefollowingsectionsexamineEnumerationandeachofthelegacyclasses,inturn. The
Enumeration Interface

TheEnumerationinterfacedefinesthemethodsbywhich youcan enumerate(obtainoneat a
time) the elements in a collection of objects. This legacyinterface has been superseded by
Iterator.

interfaceEnumeration<g>

whereE specifiesthe typeof elementbeing enumerated.

Vector

Vectorimplementsadynamicarray.Itissimilarto ArrayList,butwithtwodifferences: Vector is
synchronized, and it contains many legacy methods that are not part of the Collections.
Vectorisdeclaredlike this:

classVector<ge>

Here,Especifiesthetypeofelementthatwillbestored.

HerearetheVectorconstructors:
Vector()

Vector(intsize)

Vector(int size, int incr)
Vector(Collection<?extendsE>c)

e Thefirstformcreates adefaultvector, whichhasan initialsizeof 10.
e Thesecond form createsavectorwhoseinitial capacityis specified bysize.
e Thethirdformcreatesavectorwhoseinitialcapacityisspecifiedbysizeandwhose
increment is specified by incr.
Theincrementspecifiesthenumberofelementstoallocateeachtimethatavectorisresized upward.
Thefourthformcreatesavectorthatcontainsthe elementsofcollectionc.

Stack

StackisasubclassofVectorthatimplementsastandardlast-in,first-outstack.Stackonly defines
the default constructor, which creates an empty stack. With the release of JDK 5, Stack was
retrofitted for generics and is declared as shown here:

classStack<E>

AdvancedJavaandJ2EE—Module2

Here,Especifiesthe typeofelement storedinthestack.
Stack includes all themethods defined byVector.

Dictionary
Dictionaryisanabstractclassthatrepresentsakey/valuestoragerepositoryandoperates much like

Map.

Givenakeyandvalue,you canstorethe valueinaDictionaryobject. Once

thevalueisstored, youcanretrieveitbyusingits key.Thus,likeamap,adictionarycanbe thought of as
a list of key/value pairs.

Although not currentlydeprecated,Dictionary is
classifiedasobsolete,becauseitisfullysupersededbyMap.However,Dictionaryisstillin use and
thus is fully discussed here.

classDictionary<K, V>

Here,Kspecifiesthetypeofkeys,and Vspecifiesthetypeofvalues. Theabstractmethods defined by
Dictionary are listed in Table 17-17.

Hashtable

Hashtablewaspartoftheoriginaljava.utilandisaconcreteimplementationofa

Dictionary.

HashMap,Hashtablestoreskey/valuepairsina hashtable.However,neitherkeys
norvaluescanbenull. WhenusingaHashtable, youspecifyanobjectthatisusedasakey, and the
value that you want linked to that key. The key is then hashed, and the resulting hash code
is used as the index at which the value is stored within the table.

Hashtablewas madegenericbyJDK 5.

Itisdeclaredlikethis: classHashtable<K,V>

Hashtable()

Hashtable(intsize)

Hashtable(int size, float fillRatio)
Hashtable(Map<?extendsK,?extendsV>m)

Thefirstversion isthedefault constructor.

Thesecondversioncreatesahashtablethathas an
initial size specified by size.

The third version creates a hash table that has an initial size specified bysize and a fill ratio
specifiedbyfillRatio. Thisratiomustbebetween 0.0and1.0,anditdetermineshowfullthe hash
table can be before it is resized upward. Specifically, when the number of elements is
greater than the capacity of the hashtable multiplied by its fill ratio, the hash table is
expanded. If you do not specify a fill ratio,

then 0.75 is used.

Finally,thefourthversion createsahashtablethatisinitializedwith the
elementsin m.Thecapacityof thehash table is setto twicethe number of elements inm.
Thedefaultloadfactorof 0.75is used.

AdvancedJavaandJ2EE—Module2

Properties

Propertiesisasubclass ofHashtable. Itisusedtomaintainlistsofvaluesinwhichthe key is a
String and the value is also a String.

ThePropertiesclassisusedbymanyotherJavaclasses.Forexample, itisthetypeofobject returned by
System.getProperties() when obtaining environmental values.

Althoughthe Propertiesclass,itself,isnotgeneric,several ofitsmethodsare.
Propertiesdefinesthe followinginstance variable:

Propertiesdefaults;

Thisvariableholdsadefaultpropertylist associatedwith aProperties object.Properties
definestheseconstructors:

Properties()

Properties(PropertiespropDefault)

Advanced Java— Module 2

Module 2

Syllabus-StringHandling:

The String Constructors, String Length, Special String Operations, String Literals,
String Concatenation, String Concatenation with Other Data Types, String Conversion and
toString() Character Extraction, charAt(), getChars(), getBytes() toCharArray(), String
Comparison,equals()andequalsignoreCase(),regionMatches()startswWith()andendsWith(
),equals()Versus==,compareTo()SearchingStrings, ModifyingaString,substring(), concat(),
replace(), trim(), Data Conversion Using valueOf(), Changing the Case of Characters
Within a String, Additional String Methods, StringBuffer , StringBuffer Constructors,
length() and capacity(), ensureCapacity(), setLength(), charAt() and setCharAt(),
getChars(),append(), insert(), reverse(), delete() and deleteCharAt(), replace(),substring(
),Additional StringBuffer Methods, StringBuilder.

1. WhatarethedifferenttypesofStringConstructorsavailableinJava?
TheStringclasssupportsseveralconstructors.
a. TocreateanemptyString
thedefaultconstructor isused.
Ex:Strings =new String();
willcreate an instanceof Stringwithno charactersin it.

b. TocreateaStringinitializedbyanarrayofcharacters,usetheconstructor shown
here:
String(charchars[])
ex: charchars[]={"a,'b,'c'};
Strings=newsString(chars);
Thisconstructorinitializesswiththestring“abc”.
c. Tospecifyasubrangeofacharacterarrayasaninitializerusingthefollowing
constructor:
String(charchars[],intstartIndex,intnumChars)

Here,startindexspecifiestheindexatwhichthesubrangebegins,and numChars
specifies the number of characters to use. Here is an example:
charchars[]={"a','b','c’,'d",'e",'f'}; String s
= new String(chars, 2, 3);
Thisinitializesswiththecharacterscde.
d. ToconstructaStringobjectthatcontainsthesamecharactersequenceas
another String object using this constructor:
String(StringstrObj)
Here,strObj isaStringobject.

classMakeString

{publicstatic void main(Stringargs[])
{charc] ={Ja, 'v'ja’};

Strings1 =new String(c);

Advanced Java— Module 2

e.

Strings2=newsString(s1);
System.out.printIn(s1);
System.out.printIn(s2);

¥
¥

Theoutputfromthisprogramisas follows:
Java
Java

As youcansee,slands2containthesame string.

ToConstruct stringusing bytearray:
Even though Java’s char type uses 16 bits to represent the basic Unicode

characterset,thetypicalformatforstringsonthelnternetusesarraysof 8-bitbytes constructed
from the ASCII character set.

Because8-bitASClIstringsarecommon,theStringclassprovides constructors

that initialize a string when given a byte array.

Ex:String(byteasciiChars][])
String(byteasciiChars[],intstartIndex,intnumChars)

Thefollowingprogramillustratestheseconstructors:
class SubStringCons

{publicstatic void main(Stringargs[])
{

byte ascii[] ={65,66, 67,68,69,70 };
Strings1=newsString(ascii);
System.out.printin(sl);
Strings2=newsString(ascii,2,3);
System.out.printin(s2);

}

}

Thisprogramgeneratesthefollowingoutput:
ABCDEF
CDE

ToconstructaStringfromaStringBufferbyusingtheconstructorshown here:
Ex:String(StringBuffer strBufObj)

g. ConstructingstringusingUnicodecharactersetandisshownhere:

String(int codePoints[], int startindex, int numChars)

codePointsisan arraythatcontains Unicode codepoints.

h. ConstructingstringthatsupportsthenewStringBuilderclass. EX :

String(StringBuilder strBuildObyj)

Advanced Java— Module 2

Note:
Stringcanbeconstructedbyusingstringliterals.
String s1="Hello World”

Stringconcatenation canbedoneusing+operator. With otherdata typealso.

String Length
1. Thelengthofastringisthenumberofcharactersthatitcontains. Toobtain this
value, call the length() method,
2. Syntax:
intlength()
3. Example
charchars[] ={'a','b",'c'};Strings=new String(chars);
System.out.printIn(s.length());//3

toString()

1. EveryclassimplementstoString()becauseitisdefinedbyObject.
However, the default Implementation of toString() is sufficient.

2. Formostimportantclassesthatyoucreate,willwanttooverridetoString() and
provide your own string representations.

StringtoString()

3. To implement toString(), simply return a String object that contains the
human-readablestringthatappropriatelydescribesanobjectof yourclass.

4. ByoverridingtoString() forclasses that you create, you allow them to be
fullyintegratedintoJava’sprogrammingenvironment.Forexample,they can
be used in print() and printin() statements and in concatenation
expressions.

5. Thefollowingprogramdemonstratesthisbyoverriding
toString() for the Box class:

classBox

{
doublewidth;doubleheight;doubledepth;
Box(double w, double h, double d)
{width =w; height=h; depth=d; }

publicStringtoString()
{ return"Dimensions are"+width +"by"+depth +"by"+height +".";}

}

classtoStringDemo{

publicstatic void main(Stringargs[])
{

Boxb=newBox(10,12,14);

String s ="Box b: " + b;

Advanced Java— Module 2

System.out.printin(b);
System.out.printin(s);

¥
¥

Theoutput of this program is shown here:
Dimensions are 10.0by14.0by 12.0
Box b: Dimensionsare10.0 by14.0 by 12.0

CharacterExtraction
The String class provides a number of ways in which characters can be
extracted from a String object.String object can not be indexed as if they
were a character array, many of the String methods employ an index (or
offset)intothestringfortheiroperation.Likearrays,thestringindexesbegin at
zero.
A. charAt()
1. description:

ToextractasinglecharacterfromaString, youcanreferdirectlytoan
individual character via the charAt() method.
2. Syntax

charcharAt(intwhere)
Here,whereistheindexofthecharacterthat youwanttoobtain. charAt()
returns the character at the specified location.

3. example,
char ch;
ch ="abc".charAt(1);
assignsthevalue*“b”’toch.
B. getChars()
1. toextractmorethanonecharacteratatime, youcanusethegetChars()
method.
2. Syntax
voidgetChars(intsourceStart,intsourceEnd,chartarget[],int targetStart)

Here, sourceStart specifies the index of the beginning of the substring,
sourceEnd specifies an index that is one past the end of the desired The array
thatwillreceivethecharactersisspecifiedbytarget. Theindexwithintargetat which
the substring will be copied is passed in targetStart.

3. classgetCharsDemo{
publicstatic void main(Stringargs[])
{Strings="ThisisademoofthegetCharsmethod."; int
start = 10;
intend =14;
charbuf{]=newchar[end-start];
s.getChars(start, end, buf, 0);

Advanced Java— Module 2

System.out.printin(buf);

¥
¥

Hereis theoutputof thisprogram:

demo

C. getBytes()

1. ThismethodiscalledgetBytes(),anditusesthedefaultcharacter-to-byte
conversions provided by the platform.

Syntax:
byte[]getBytes()
Otherformsof getBytes()arealsoavailable.

2. getBytes() is most useful when you are exporting a String value into an
environmentthatdoesnotsupport16-bitUnicodecharacters.Forexample, most
Internet protocols and text file formats use 8-bit ASCII for all text
interchange.

D. toCharArray()

If youwanttoconvertallthecharactersinaStringobjectintoacharacter array, the
easiest way is to call toCharArray().

Itreturnsanarrayofcharactersfortheentirestring. It has
this general form:

char[]JtoCharArray()
2. String Comparison:

TheStringclassincludesseveralmethodsthatcomparestringsor
substrings within strings.
equals()

Tocomparetwostringsforequality,useequals(). It

has this general form:
booleanequals(Objectstr)
Here, str is the Stringobject beingcompared with the invoking Stringobject.
Itreturnstrueifthestringscontainthesamecharactersinthesameorder,and ~ false
otherwise. The comparison is case-sensitive.
A. equalslgnoreCase()

To perform a comparison that ignores case differences, call
equalslgnoreCase().Whenitcomparestwostrings, itconsidersA-Ztobethe same as
a-Z.

Ithasthisgeneralform:

booleanequalslgnoreCase(String str)

Here, str is the String object being compared with the invoking String object.
It,too,returnstrueifthestringscontainthesamecharactersinthesameorder, and
false otherwise.
//Demonstrateequals()andequalsignoreCase().

class equalsDemo {

publicstatic voidmain(Stringargs[]) {

Advanced Java— Module 2

String s1 = "Hello";

String s2 = "Hello";

Strings3="Good-bye";

String s4 = "HELLO";
System.out.printIn(s1+"equals"+s2+"->"+s1.equals(s2));
System.out.printIn(s1+"equals"+s3+"->"+s1.equals(s3));
System.out.println(s1+"equals"+s4+"->"+s1.equals(s4)); System.out.printin(s1
+ " equalsignoreCase " + s4 + " ->" + sl.equalslgnoreCase(s4)); } }

Theoutput fromtheprogramis shown here:
Hello equals Hello -> true
HelloequalsGood-bye->false

Hello equals HELLO -> false
HelloequalsignoreCaseHELLO->true

B. regionMatches()

1. TheregionMatches()methodcomparesaspecificregioninsideastringwith
another specific region in another string. There is an overloaded form that
allows you to ignore case in such comparisons.

2. Syntax:
booleanregionMatches(intstartindex,Stringstr2,intstr2Startindex,int
numcChars)

booleanregionMatches(booleanignoreCase,intstartindex,Stringstr2, int
str2StartIndex, int numChars)

3. Forbothversions,startindexspecifiestheindexatwhichthe
region begins within the invoking String object.
The String being compared is specified by str2. The index at which the
comparisonwillstartwithinstr2isspecifiedbystr2Startindex. Thelengthof the
substring being compared is passed in numChars.

4. Inthesecondversion,ifignoreCaseistrue,thecaseofthe
characters is ignored. Otherwise, case is significant.

C. startsWith()andendsWith()

1. ThestartsWith()methoddetermineswhetheragivenStringbeginswitha
specified string.

2. endsWith()determineswhethertheStringinguestionendswitha
specified string.

3. Syntax

booleanstartsWith(Stringstr)
boolean endsWith(String str)

Advanced Java— Module 2

Here,str isthe Stringbeingtested.
Ifthestringmatches,trueisreturned.
Otherwise, false is returned.
Forexample,
"Foobar".endsWith("bar")

"Foobar".startsWith(""Foo")
are both true.
4. AsecondformofstartsWith(),shownhere, letsyouspecifyastarting point:
booleanstartsWith(Stringstr,intstartindex)
Here,startindexspecifies theindexintotheinvokingstringatwhichpointthe search
will begin. For example,
"Foobar".startsWith("bar",3)
returns true.

D. equals()Versus==
Itisimportanttounderstandthattheequals()methodandthe==operator perform two
different operations.

theequals()methodcomparesthe charactersinsideaStringobject.
The==operatorcomparestwoobjectreferencestoseewhethertheyreferto the

same instance.

classEqualsNotEqualTo {

publicstaticvoidmain(Stringargs[]){ String

sl ="Hello";

Strings2 =new String(sl);
System.out.printin(s1+"equals"+s2+"->"+s1.equals(s2)); System.out.printin(sl

+"=="4+52+"->"+ (sl ==52)),

}

}

E. compareTo()

1. Sortingapplications, youneedtoknowwhichislessthan,equalto,or

greater than the next.
A stringis less than another if it comes before the otherin dictionary
order. A string is greater than another if it comes after the other in
dictionaryorder. TheStringmethodcompareTo()servesthispurpose.
3. Ithasthisgeneralform:
intcompareTo(String str)
Here,stristheStringbeingcomparedwiththeinvokingString.The result of
the comparison is returned and is interpreted,
4. Lessthanzerowheninvokingstringislessthanstr.
5. Greaterthan zerowhen invokingstringisgreaterthan str.
6. ZeroThetwostringsare equal.

N

Advanced Java— Module 2

/[AbubblesortforStrings.

class SortString

{staticStringarr[]={"Now", "is","the", "time","for", "all", "good","men",
"to","come”,"to","the","aid","of","their","country"};
public static void main(String args[])

{for(intj =0;j <arr.length; j++)

{for(inti =j +1;i <arr.length; i++)
{if(arr[i].compareTo(arr[j])<0)

{Stringt=arr[j];

arr[j] = arr[i];

arr[i] =t;

}

} System.out.printin(arr[j]);

}

}

}

Theoutput of this program is the list of words:

Nowaidallcomecountryforgoodismenofthethetheirtimetoto As you
can see

7. Ignore case differences when comparing two strings, use
compareTolgnoreCase(), Thismethodreturnsthesameresultsas
compareTo(), except that case differences are ignored.

5. SearchingString
A.indexOf()andlastlndexOf()
1. indexOf()Searchesforthefirstoccurrenceofacharacteror
substring.

2. lastindexOf()Searchesforthelastoccurrenceofacharacteror
substring.

3. Thesetwomethodsareoverloadedinseveraldifferent ways

4. returntheindexatwhichthecharacterorsubstringwasfound,or —1 on
failure.

5. Tosearchforthe firstoccurrenceof acharacter,intindexOf(int ch)
6. Tosearchforthelastoccurrence ofa character,
intlastindexOf(intch)Here,chisthe characterbeingsought

7. To search for the first or last occurrence of a substring, use int
indexOf(Stringstr)intlastindexOf(Stringstr)Here,strspecifies the
substring.

Advanced Java— Module 2

8. Youcanspecifyastartingpointforthesearchusingtheseforms: int
indexOf(int ch, int startindex)
intlastIndexOf(intch, intstartindex)

9. intindexOf(Stringstr,intstartindex)intlastindexOf(Stringstr,int
startIndex) Here, startindex specifies the index at which point the
search begins.

10. For indexOf(), the search runs from startindex to the end of the
string.ForlastIndexOf(),thesearchrunsfromstartindextozero. The
following example shows how to use the various index methods
to search inside of Strings:

//DemonstrateindexOf()andlastIndexOf().

class indexOfDemo {

publicstatic void main(Stringargs[])

{Strings="Nowisthetimeforall goodmen"+"tocometotheaid of their

country.";

System.out.printin(s);

System.out.printIn(*indexOf(t)="+s.indexOf('t");

System.out.printin("lastindexOf(t) =" + s.lastIndexOf('t"));

System.out.printIn(*indexOf(the) = " + s.indexOf("the™));

System.out.printin("lastindexOf(the) =" + s.lastindexOf(*'the™));

System.out.printIn("indexOf(t, 10) = " + s.indexOf('t', 10));

System.out.printIn("lastIndexOf(t,60)= "+s.lastIndexOf('t',60));

System.out.printin("indexOf(the, 10) =" + s.indexOf("the", 10));

System.out.printIn("lastindexOf(the,60)="+s.lastindexOf("the", 60));

}
}
Output

Nowisthetimeforallgoodmentocometotheaidoftheircountry. indexOf(t) =
7

lastIndexOf(t)=65

indexOf(the)=7

lastIndexOf(the)=55

indexOf(t,10)=11

lastIndexOf(t,60)=55

indexOf(the,10)=44

lastIndexOf(the,60)=55

6. Modifyinga String
String objects are immutable, whenever you want to modify a String,
youmusteithercopyitintoaStringBufferorStringBuilder,oruseone of the
following String methods, which will construct a new copy of the
string with your modifications complete.

Advanced Java— Module 2

A. Substring()

1. Youcanextractasubstringusingsubstring().Ithastwoforms.The first is
String substring(int startIndex)

2. Here, startindex specifies the index at which thesubstringwill begin.
Thisformreturnsacopyofthesubstringthatbeginsatstartindexand runs to
the end of the invoking string.

3. Thesecondformofsubstring()allows youtospecifyboththe
beginning and ending index of the substring:

Stringsubstring(int startindex, int endindex)
Here,startindexspecifiesthebeginningindex,andendIndexspecifies the
stopping point.

4. The string returned contains all the characters from the beginning
index, up to, but not including, the ending index. The following
programusessubstring()toreplaceallinstancesofonesubstringwith
another within a string:

/[Substringreplacement.

class StringReplace {

public static void main(String args[]) {
Stringorg="Thisisatest.Thisis,t00.";
String search = "is™;

Stringsub="was";

String result =",

int i;

do{

System.out.printin(org);

i = org.indexOf(search);
if(i'=-1){result=org.substring(0,i); result
= result + sub;
result=result+org.substring(i+search.length()); org
= result;

Hwhile(i!'=-1);

}

}

Theoutputfromthisprogramisshownhere: This
is a test. This is, too.

Thwas is a test. This is, too.

Thwas was a test. This is, too.

Thwas was a test. Thwas is, too.
Thwaswasatest. Thwaswas,to0.

B. concat()

Advanced Java— Module 2

1. concatenatetwostringsusingconcat()
String concat(String str)

2. Thismethodcreatesanewobjectthatcontainstheinvokingstring with
the contents of str appended to the end.
concat()performsthesamefunctionas+.
4. Stringsl ="one";
Strings2 =s1.concat("two");

C. replace()

1. Thereplace() methodhastwo forms.

2. Thefirstreplacesalloccurrencesofonecharacterinthe

invoking string with another character.
Syntax:

w

Stringreplace(charoriginal,char replacement)
Here,originalspecifiesthecharactertobereplacedbythecharacter specified
by replacement. The resulting string is returned.

Example
Strings="Hello".replace('I','w");
puts the string “Hewwo” into s.

Thesecondformofreplace()replacesonecharactersequencewith another. It
has this general form:
Stringreplace(CharSequenceoriginal,CharSequence replacement)

D. trim()
Thetrim()methodreturnsacopyoftheinvokingstringfromwhich any
leading and trailing whitespace has been removed.

Syntax:
Stringtrim()
Example:
String s = "Hello World

".trim(); This
putsthestring“HelloWorld”intos.
Thetrim()methodisquiteusefulwhenyou processusercommands.

/IUsingtrim()toprocesscommands. import

java.io.*;

classUseTrim
{publicstaticvoidmain(Stringargs[])throwslOException{
BufferedReader br = new BufferedReader(new
nputStreamReader(System.in));

Stringstr;

System.out.printIn("Enter'stop'toquit.");
System.out.printin("Enter State: ");

do { str =br.readLine();

Advanced Java— Module 2

str = str.trim();

if(str.equals("Illinois™))
System.out.printIn("Capital is Springfield.");else
if(str.equals("Missouri))
System.out.printin("Capital is Jefferson City.");
else if(str.equals("California™))
System.out.printin("Capital is Sacramento.");
else if(str.equals(*"Washington™))
System.out.printIn("Capital is Olympia."); // ... }
while(!str.equals(*'stop™));

}

}

5. DataConversion
1. ThevalueOf()methodconvertsdatafromitsinternalformatinto a
human-readable form.
2. ltis a static method that is overloaded within String for all of
Java’sbuilt-intypessothateachtypecanbeconvertedproperly into a
string.

3. valueOf()isalsooverloadedfortypeObject,soanobjectofany class
type you create can also be used as an argument

Syntax:
static String valueOf(double num)

static String valueOf(long num)
static String valueOf(Object ob)
staticStringvalueOf(charchars[])

4. valueOf()iscalledwhenastringrepresentationofsomeothertype of
data is needed. example, during concatenation operations.

5. Anyobjectthat youpasstovalueOf()willreturntheresultofa call to
the object’s toString() method.

6. ThereisaspecialversionofvalueOf()thatallows youtospecifya
subset of a char array.

Syntax:
staticStringvalueOf(charchars][],intstartindex,int numChars)

7. Here,charsisthearraythatholdsthecharacters,startindexisthe index
into the array of characters at which the desired substring begins,
and numChars specifies the length of the substring.

6. ChangingCaseofCharacters

Advanced Java— Module 2

A. toLowerCase()
convertsallthecharacters inastringfromuppercaseto lowercase.

=

2. ThismethodreturnaStringobjectthatcontainsthelowercase
equivalent of the invoking String.

3. Nonalphabeticalcharacters,suchas digits,are unaffected.

Syntax
StringtoLowerCase()

B. toUpperCase()

1. convertsallthecharactersinastringfromlowercaseto
uppercase.

2. ThismethodreturnaStringobjectthatcontainstheuppercase
equivalent of the invoking String.

3. Nonalphabeticalcharacters,suchasdigits,are unaffected.

Syntax
StringtoUpperCase()

classChangeCase{
publicstaticvoidmain(Stringargs[]){
String s ="This is a test.";
System.out.printin("Original: " + s);
String upper = s.toUpperCase();

String lower = s.toLowerCase();
System.out.printin("Uppercase:"+upper);
System.out.printIn("Lowercase:"+lower);

}

}
Output:

Original: This is a test.
Uppercase: THISISATEST.
Lowercase: this is a test.

StringBuffer

StringBufferisapeerclassofStringthatprovidesmuchofthefunctionalityofstrings. As you know,
String represents fixed-length, immutable character sequences.

StringBufferrepresents growableandwriteablecharacter sequences.

StringBuffermayhavecharactersandsubstringsinsertedinthemiddleorappendedtothe end.

Advanced Java— Module 2

StringBufferwillautomaticallygrowtomakeroomforsuchadditionsandoftenhasmore characters
pre allocated than are actually needed, to allow room for growth.

StringBufferConstructors

StringBufferdefinesthesefourconstructors:
StringBuffer()

StringBuffer(int size)

StringBuffer(String str)
StringBuffer(CharSequencechars)

a. Thedefaultconstructor(theonewithnoparameters)reservesroomforl6characters
without reallocation.

b. Thesecondversionacceptsanintegerargumentthatexplicitlysetsthesizeofthe buffer.

c. The third version accepts a String argument that sets the initial contents of the
StringBufferobjectandreservesroomforl6morecharacterswithoutreallocation.

d. StringBufferallocatesroomforl6additionalcharacterswhennospecificbuffer
length is requested, because reallocation is a costly process in terms of time.

A. length()andcapacity()

a. ThecurrentlengthofaStringBuffercanbefoundviathelength()method,whilethe total
allocated capacity can be found through the capacity() method.

Syntax
int length()
intcapacity()

b. Example:
classStringBufferDemo

{

publicstatic void main(Stringargsl])
{

StringBuffer sb = new StringBuffer("Hello");
System.out.printin("buffer = " + sh);
System.out.printin("length =" + sh.length());
System.out.printIn("capacity="+sh.capacity());

Advanced Java— Module 2

}

Output
buffer=Hello
length =5
capacity= 21

B. ensureCapacity()

a. If you want to pre allocate room for a certain number of characters after a

StringBufferhasbeenconstructed, youcanuseensureCapacity()tosetthesizeofthe buffer.

b. Thisisusefulifyouknowinadvancethat youwillbeappendingalargenumberof small
strings to a StringBuffer.

Syntax
voidensureCapacity(int capacity)

Here,capacityspecifiesthe sizeofthe buffer.

C. setLength()

a. TosetthelengthofthebufferwithinaStringBufferobject,
Syntax:
voidsetLength(intlen)
Here, lenspecifiesthelengthof thebuffer. Thisvaluemustbenonnegative.
Whenyouincreasethesizeofthebuffer,nullcharactersareaddedtotheendoftheexisting buffer.

If youcallsetLength()withavaluelessthanthecurrentvaluereturnedbylength(),thenthe characters
stored beyond the new length will be lost.

D. charAt()andsetCharAt()

a. The value of a single character can be obtained from a StringBuffer via the
charAt()method.Y oucansetthevalueofacharacterwithinaStringBufferusing
setCharAt().

b. Syntax

charcharAt(intwhere)

voidsetCharAt(intwhere,charch)

o

ForcharAt(),wherespecifiestheindexofthecharacterbeingobtained.
d. ForsetCharAt(),wherespecifiestheindexofthecharacterbeingset,andchspecifies the new
value of that character.

Advanced Java— Module 2

/[DemonstratecharAt()andsetCharAt().

class setCharAtDemo {

publicstatic void main(Stringargs[])

{ StringBuffer sb = new StringBuffer("Hello");
System.out.printin("buffer before =" + sh);
System.out.printIn(“charAt(1) before =" + sbh.charAt(1));
sh.setCharAt(1, 'i);

sh.setLength(2);

System.out.printin("bufferafter="+sb);
System.out.printin("charAt(1)after="+sb.charAt(1));} }
Output

bufferbefore=Hello

charAt(1) before = e

buffer after = Hi

charAt(1) after =i

E. getChars()

a. TocopyasubstringofaStringBufferintoanarray,usethe getChars()method. Syntax
Syntax
voidgetChars(intsourceStart,intsourceEnd,char target[],inttargetStart)

Here,sourceStartspecifiestheindexofthebeginningofthesubstring,andsourceEnd specifies an
index that is one past the end of the desired substring.

b. ThismeansthatthesubstringcontainsthecharactersfromsourceStartthrough
sourceEnd-1.

c. Thearraythat will receivethecharacters is specified bytarget.
Theindexwithin targetwhichthesubstringwillbecopiedis passed in targetStart.

d. Caremustbetakentoassurethatthetargetarrayislargeenoughtoholdthenumber of
characters in the specified substring.

F. append()

1. Theappend()methodconcatenatesthestringrepresentationofanyothertypeofdata to the

end of the invoking StringBuffer object. It has several overloaded versions. Here are
a few of its forms:

StringBufferappend(Stringstr)

Advanced Java— Module 2

StringBuffer append(int num)
StringBufferappend(Objectobj)

2. TheresultisappendedtothecurrentStringBufferobject.

Thebuffer itselfis returned byeach version ofappend().

4. Thisallowssubsequentcallstobechainedtogether,asshowninthefollowing
example:

w

classappendDemo {

publicstatic void main(Stringargs[])

{ Strings; int a = 42;
StringBuffersb=newStringBuffer(40);
s=sh.append("a=").append(a).append("!").toString();
System.out.printin(s);

}

}
Output

a=42!

G. insert()

1. Theinsert()method inserts one stringin toanother.

2. ltisoverloadedtoacceptvaluesofallthesimpletypes,plusStrings,Objects,and
CharSequences.

3. Likeappend(),itcallsString.valueOf()toobtainthestringrepresentationofthevalue it is
called with.

4. Thisstringisthen insertedinto theinvokingStringBuffer object.

5. Theseareafewofits forms:

StringBufferinsert(intindex,Stringstr)
StringBuffer insert(int index, char ch)
StringBufferinsert(intindex,Objectobj)

Here,indexspecifiestheindexatwhichpointthestringwillbeinsertedintothe invoking
StringBuffer object.

6. Thefollowingsampleprograminserts‘like”’between*I”and*“Java™:

classinsertDemo{publicstaticvoidmain(Stringargs[]){
StringBuffer sb = new StringBuffer("l Javal!");
sb.insert(2, "like ");

Advanced Java— Module 2

System.out.printIn(sb);

ky

}
7. Output

llikeJaval

H. reverse()
YoucanreversethecharacterswithinaStringBufferobjectusingreverse(),shownhere: StringBuffer
reverse()

Thismethodreturnsthereversedobjectonwhichitwascalled. The
following program demonstrates reverse()
classReverseDemo{

publicstatic void main(Stringargs[])
{StringBuffers=newStringBuffer("abcdef");
System.out.printin(s);

s.reverse();

System.out.printin(s);

k
k

Output
abcdef
fedcba
I.delete()and deleteCharAt()
YoucandeletecharacterswithinaStringBufferbyusingthemethodsdelete()and deleteCharAt().
Syntax:
StringBufferdelete(intstartindex,intendindex)
StringBuffer deleteCharAt(int loc)

Thedelete() method deletes asequenceof characters from theinvokingobject.

Advanced Java— Module 2

Here,startindexspecifiestheindexofthefirstcharactertoremove,andendindexspecifies an index
one past the last character to remove.

Thus,thesubstringdeletedrunsfromstartindextoendindex—1.TheresultingStringBuffer object is
returned.

ThedeleteCharAt()methoddeletesthecharacterattheindexspecifiedbyloc.Itreturnsthe resulting
StringBuffer object.

/[Demonstratedelete()anddeleteCharAt()

classdeleteDemo{ publicstatic voidmain(String args[])
{StringBuffersb=newStringBuffer("Thisisatest."); sb.delete(4,
Ik

System.out.printIn("Afterdelete:"+sb);

sb.deleteCharAt(0);
System.out.printin("AfterdeleteCharAt:"+sb);

¥

}
Output

After delete: This a
test. AfterdeleteCharAt:hisate

St.

J. replace()

a. YoucanreplaceonesetofcharacterswithanothersetinsideaStringBufferobjectby calling
replace().

b. Syntax

StringBufferreplace(intstartindex, intendindex, Stringstr)
Thesubstringbeing replaced isspecified bytheindexesstartindexand endindex.

c. Thus,thesubstringatstartindexthroughendindex—Llisreplaced. Thereplacementstring is
passed in str.

TheresultingStringBufferobjectisreturned.

class replaceDemo {

publicstatic void main(Stringargs[])
{StringBuffersb=newStringBuffer("Thisisatest."); sb.replace(5,
7, "was");

System.out.printIn("Afterreplace:"+sb);

Advanced Java— Module 2

ky

Advanced Java— Module 2

ks

Hereistheoutput:

Afterreplace: Thiswasa test.

K.substring()

1.

Ithasthefollowingtwoforms:
Syntax
Stringsubstring(int startIndex)

Stringsubstring(intstartindex,int endIndex)

Thefirstformreturnsthesubstringthatstartsatstartindexandrunstotheendofthe invoking
StringBuffer object.

3. Thesecondformreturnsthesubstringthatstartsatstartindexandrunsthroughendindex—1. These

methods work just like those defined for String that were described earlier.

DifferencebetweenStringBufferandStringBuilder.

1.

J2SESaddsanewstringclasstoJava’salreadypowerfulstringhandlingcapabilities. This
new class is called StringBuilder.
ItisidenticaltoStringBufferexceptforoneimportantdifference:itisnot

synchronized, which means that it is not thread-safe.
TheadvantageofStringBuilderisfasterperformance.However,incasesinwhichyou are
using multithreading, you must use StringBuffer rather than StringBuilder.

AdditionalMethodsinStringwhichwasincludedinJavab

1.

intcodePointAt(inti)

Returnsthe Unicodecodepoint at thelocation specified byi.

2.

intcodePointBefore(int i)

Returnsthe Unicodecodepoint atthelocationthat precedes thatspecifiedby i.
intcodePointCount(intstart,intend)
ReturnsthenumberofcodepointsintheportionoftheinvokingStringthatare between start
and end— 1.

booleancontains(CharSequencestr)

Returnstrueiftheinvokingobject containsthestringspecifiedbystr.Returnsfalse,
otherwise.

booleancontentEquals(CharSequencestr)
Returnstrueiftheinvokingstringcontainsthesamestringasstr.Otherwise,returns false.
booleancontentEquals(StringBufferstr)
Returnstrueiftheinvokingstringcontainsthesamestringasstr.Otherwise,returns false.
staticStringformat(Stringfmtstr,Object...args)

Advanced Java— Module 2

10.

11.

12.

13.

14.

15.

Returnsastring formattedas specified byfmtstr.
staticStringformat(Localeloc,Stringfmtstr,Object...args)

Returnsastring formattedas specified byfmtstr.
booleanmatches(string regExp)

ReturnstrueiftheinvokingstringmatchestheregularexpressionpassedinregExp.
Otherwise, returns false.
intoffsetByCodePoints(intstart,intnum)

Returnstheindex withtheinvokingstringthatisnumcodepointsbeyondthestarting index
specified by start.

StringreplaceFirst(StringregExp,StringnewStr)
Returnsastringinwhichthefirstsubstringthatmatchestheregularexpression specified by
regEXxp is replaced by newStr.

StringreplaceAll(StringregExp,StringnewStr)
Returnsastringinwhichallsubstringsthatmatchtheregularexpressionspecifiedby regExp
are replaced by newStr
String[]split(StringregExp)
Decomposestheinvokingstringintopartsandreturnsanarraythatcontainsthe result. Each
part is delimited by the regular expression passed in regEXxp.
String[]split(StringregExp,intmax)

Decomposes the invoking string into parts and returns an array that contains the
result. Each part is delimited bythe regular expression passed in regExp. The number
of pieces is specified by max. If max is negative, then the invoking string is fully
decomposed.Otherwise, ifmaxcontainsanonzerovalue,thelastentryinthereturned
arraycontains the remainder ofthe invokingstring. If max is zero, theinvokingstring is
fully decomposed.

CharSequencesubSequence(intstartindex,intstopIndex)

Returnsasubstringoftheinvokingstring,beginningatstartindexandstoppingat stoplndex .
This method is required bythe CharSequence interface, which is now implemented by
String.

AdditionalMethodsinStringBufferwhichwasincludedinJavas
StringBufferappendCodePoint(intch)

AppendsaUnicodecodepointtotheendoftheinvokingobject. Areferencetothe object is
returned.
intcodePointAt(inti)

Returnsthe Unicodecodepoint at thelocation specified by i.
intcodePointBefore(inti)

Returnsthe Unicodecodepoint atthelocationthat precedes thatspecifiedby i.
intcodePointCount(intstart,intend)
ReturnsthenumberofcodepointsintheportionoftheinvokingStringthatare between start
and end— 1.
intindexOf(Stringstr)
SearchestheinvokingStringBufferforthefirstoccurrenceofstr.Returnstheindexof the
match, or —1 if no match is found.
intindexOf(String str, intstartindex)
SearchestheinvokingStringBufferforthefirstoccurrenceofstr,beginningat startindex.
Returns the index of the match, or —1 if no match is found.

Advanced Java— Module 2

intlastindexOf(Stringstr)
SearchestheinvokingStringBufferforthelastoccurrenceofstr.Returnstheindexof the

match, or —1 if no match is found.

intlastindexOf(Stringstr,intstartindex)
SearchestheinvokingStringBufferforthelastoccurrenceofstr,beginningat startindex.
Returns the index of the match, or —1 if no match is found.

Servlet
Introdutiontoservlet

Servlet is small program that execute on the server side of a web connection. Just as
appletextendthefunctionalityofwebbrowsertheappletextendthefunctionalityofwebserver.

Inordertounderstandtheadvantagesofservlet,youmusthavebasicunderstandingof how web
browser communicates with the web server.

Considerarequestforstaticpage. AuserentersaURLintobrowser. Thebrowsergenerateshttp request
to a specific file. The file is returned by http response. Web server map this particular request
for this purpose. The http header in the response indicates the content. Source of web page as
MIME type of text/html.

1. WhataretheAdvantageofServiletOver*Traditional" CGI?

Javaservletismore efficient, easierto use,
morepowerful,moreportable,andcheaperthantraditional CGlandthanmanyalternative CGlI-
liketechnologies.(Moreimportantly,servletdevelopers get paid more than Perl programmers

-).

» Efficient. With traditional CGl, a new process is started for each HTTP request. If the
CGI program does a relatively fast operation, the overhead of starting the process can
dominatetheexecutiontime.Withservlets,theJavaVirtualMachinestaysup,andeach request
is handled by a lightweight Java thread, not a heavyweight operating system process.
Similarly, in traditional CGl, if there are N simultaneous request to the same CGI
program, then the code for the CGI program is loaded into memory N times. With
servlets, however, there are N threads but only a single copy of the servlet class.

» Convenient. Hey, you already know Java. Why learn Perl too? Besides the convenience
of being able to use a familiar language, servlets have an extensive infrastructure for
automaticallyparsinganddecodingHTMLformdata,readingandsettingHTTPheaders,
handling cookies, tracking sessions, and many other such utilities.

» Powerful. Java servlets let you easily do several things that are difficult or impossible
withregularCGl.Foronething,servletscantalkdirectlytotheWebserver(regularCGl
programs can't). This simplifies operations that need to look up images and other data
stored in standard places. Servlets can also share data among each other, making useful

things like database connection pools easy to implement. They can also maintain

informationfromrequesttorequest,simplifyingthingslikesessiontrackingandcaching of
previous computations.

» Portable.ServletsarewritteninJavaandfollowawell-standardized AP1.Consequently,
servlets written for, say I-Planet Enterprise Server can run virtually unchanged on
Apache, Microsoft IIS, or Web Star. Servlets are supported directly or via a plug in on
almost every major Web server.

* Inexpensive. There are a number of free or very inexpensive Web servers available that
aregoodforpersonal“useorlow-volumeWebsites.However,withthemajorexception of
Apache, which is free, most commercial-quality Web servers are relatively expensive.
Nevertheless, once you have a Web server, no matter the cost of that server, adding
servletsupportto it(if itdoesn'tcome preconfigured to supportservlets) is generally free or

cheap.
2. Whatisservlet?Whatarethephasesofservletlifecycle?Givean example.
Servlets are small programs that execute on the server side of a web connection. Just as
appletextendthefunctionalityofwebbrowsertheappletextendthefunctionalityofwebserver.
Servletclassis loaded.
Servletclassisloadedwhenfirstrequesttoweb container.
servletinstanceis created:
Webcontainercreatestheinstanceofservletclassonlyonce.
initmethodis invoked:
Itclasstheinitmethodwhenitloadstheinstance. Itisusedtointialiseservlet.
Syntaxofinitmethodis
publicvoidinit(ServletConfigconfig)throwsServletException
Servicemethodis invoked:

Webcontainercallsservicemethodeachtimewhenrequestfortheservletis received.
Ifservlet is not initialized it calls init then it calls the service method.Syntax of service method is
as follows

publicvoidservice(Servletrequest,ServletResponseresponse)throwsServletException,
IOException

Destroymethodisinvoked.

Thewebcontainercallsthedestroymethodbeforeitremovestheservletfrom service. It
gives servlet an opportunity to clean up memory, resources etc. Servlet destroy method has
following syntax.

publicvoid destroy().

Ready

Therearethreestatesofservletnew,ready,end. Itisinnewstatewhenservletis created.
Theservletinstanceiscreatedwhenitisinnewstate. Afterinvokingtheinit()methodservlet comes to
ready state. In ready state servlet invokes destroy method it comes to end state.

3. Explainaboutdeploymentdescriptor

Deploymentdescriptorisafilelocatedinthe WEB-INFdirectorythatcontrolsthe
behavior of a java servlet and java server pages. The file is called the web.xml file and contains
the header, DOCTYPE, and web app element. The web app element should contain a servlet
element with three elements. These are servlet name, servlet class, and init-param.

Theservletnameelementscontainthenameusedtoaccessthejavaservlet. Theservlet class is
the name of the java servlet class. init-param is the name of an initialization parameter that is
used when request is made to the java servlet.

Examplefile:

<?xmlversion="1.0"encoding-“ISO-8859=1"7>.....XMLheader

<IDOCTYPEweb-appPUBLIC*“~//SunMicrosystems,Inc.??DTDWeb
Application2.2//EN> ..doctype

<web-app>

<servlet>

<servlet-name>MyJavaservlet</servlet-name>

<servlet-class>myPackage.MyJavaservletClass</servlet-class>

<init-param><param-name>parameter1</param-name>

<param-value>735</param-value>

</init-param>

</servlet>

</web-app>

4. Howtoread datafromclientin servilet?

A client uses either the GET or POST method to pass information
toajavaservlet.Dependingonthemethodusedbytheclienteither
doGet() or doPost() method is called in servlet.

Data sent by a client is read into java servlet by calling
getParameter() method of HttpservletRequest() object that
instantiatedintheargumentlistofdoGet()methodanddoPost()
method.

getParameter() requires one argument, which is the name of
parameterthatcontainsthedatasentbytheclient.getParameter()
returns the String object.

String object contains the value assigned by the client. An empty
string object is returned when it does not assign a value to the
parameter.Alsoanullisretunedwhenparameterisnotreturnedin the
client.

getParameterValues()usedtoreturnthearrayofstring objects.

Example code

Htmlcodethatcallsa servlet:

<FORMACTION=""/servlet/myservlets.js2”>
EnterEmailAddress:<INPUTTYPE="TEXT”’NAME="email’>
<INPUTTYPE="SUBMIT”>
</FORM>

import java.io.*;
importjavax.servlet.*;
import javax.servlet.http.*;
publicclassjs2extendsHttpserviet{
publicvoiddoGet(HttpservletRequsetrequest,HttpservletResponseresponse)
throws servletException , IOException {
/[Stringemail,
//Email=request.getParameter(“‘email”);
Respose.setContent Type(“text/html”);
PrinterWriterpw=response.getWriter();
pw.println(“<HTML>\n" +
“HEAD><TITLE>JavaServlet</TITLE></HEAD>\n"+
“<BODY>\n"+
//“<p>MY EmailAddress:”+email+”</p>\n"+
<h1>MyFirstServlet
“</BODY>\n” +
</HTML>");
}

}
5. HowtoreadHTTPRequest Headers?

A request from client contains two components these are implicit data,
suchasemailaddressexplicitdataatHT TPrequestheader.Servletcanreadthese request
headers to process the data component of the request.

ExampleofHTTPheader:
Accept:image.jpg,image.gif,*/*

Accept- Encoding: Zip

Cookie: CustNum-12345
Host:www.mywebsite.com
Referer:http://www.mywebsite.com/index.html

TheusesofHTTP header:

Accept:ldentifiesthemailextension

Accept-Charset:ldentifiesthecharactersetthatcanbeusedbybrowser. Cookie

returns the cookies to server.

Host:containshostportal.

Referrer:ContainstheURLofthewebpagethatiscurrentlydisplayedin the
browser.

AjavaservletcanreadanHTTPrequestheaderbycallingthegetHeader()
method of the HttpservletRequest object. getHeader() requires one argument
which is the name of the http request header.

getHeader()

http://www.mywebsite.com/
http://www.mywebsite.com/index.html

HowtosenddatatoclientandwritingtheHT TPResponse Header?

Ajavaservletrespondstoaclient’srequestbyreadingclientdataandHTTP request

headers, and then processing information based on the natureof the request.

For example, a client request for information about merchandise in an online
productcatalogrequiresthejavaservlettosearchtheproductdatabasetoretrieveproduct
information and then format the product information into a web page, which is returned
to client.

Therearetwowaysinwhichjavaservletrepliestoclientrequest. Thesearesent
bysendinginformationtotheresponsestreamandsendinginformationinhttpresponse
header. The http response header is similar to the http request header.

ExplicitdataaresentbycreatinganinstanceofthePrintWriterobjectandthen using
println() method to transmit the information to the client.

Implcitdataexample:HTTP/1.12000K
Content-Type:text/plain

My Response

JavaservletcanwritetotheHT TPresponseheaderbycallingsetStatus()method requires
one argument which is an integer that represent the status code.

Response.setStatus(100);

ExplainaboutCookiesin servlet.

Cookiesaretextfilesstoredontheclientcomputerandtheyarekeptforvarious information
tracking purpose. Java Servlets transparently supports HTTP cookies.

Therearethreestepsinvolvedinidentifyingreturningusers:

- Serverscriptsendsasetofcookiestothebrowser.Forexamplename,age,or identification
number etc.

- Browserstoresthisinformationonlocalmachineforfutureuse.

- When next time browser sends any request to web server then it sends those cookies
information to the server and server uses that information to identify the user.

SettingCookieswithServlet:

Settingcookieswithservletinvolvesthreesteps:

(1) Creating aCookieobject: YoucalltheCookieconstructor withacookienameand acookie value,
both of which are strings.

Cookiecookie=newCookie("key","value");

(2) Settingthemaximumage: YouusesetMaxAgetospecifyhowlong(inseconds)thecookie should
be valid. Following would set up a cookie for 24 hours.

cookie.setMaxAge(60*60*24);

(3) Sending the Cookie into the HTTP response headers:You use response.addCookie toadd
cookies in the HTTP response header as follows:

response.addCookie(cookie);

Writing

Cookieimport

java.io.*;

importjavax.servlet.*;

import javax.servlet.http.*;

public class HelloForm extends HttpServlet {
publicvoiddoGet(HttpServiletRequestrequest,

HttpServletResponse response)

throwsServletException,IOException

CookiemyCookie=newCookie("userid",123);
myCookie.setMaxAge(60*60);
response.addCookie(myCookie);
response.setContentType("text/htmlI™);PrintWriter
out = response.getWriter();
out.printIn("<htmi>\n"+
"<head><title>"+MyCookie+"</title></head>\n"+

“<nody>\n”" +

“<h1>+ My Cookie +”<h1>\n" +

“<p>Cookie Written+</p>\n"+

“</body></HTML>");

ReadingCookieswith Servlet:

To read cookies, you need to create an array of javax.servlet.http.Cookie objects by
calling the getCookies() method of HttpServletRequest. Then cycle through the array, and use
getName() and getValue() methods to access each cookie and associated value.

Example:Letusreadcookieswhichwehavesetinpreviousexample:

importjava.io.*;importjavax.servlet.*;importjavax.servlet.http.*;
public class ReadCookies extends HttpServlet {
publicvoiddoGet(HttpServletRequestrequest,HttpServietResponseresponse) throws

ServletException, IOException

Cookie cookie;
Cookie[]cookies;

cookies = request.getCookies();

response.setContentType("text/html™);

PrintWriter out = response.getWriter();

Stringtitle="ReadingCookiesExample";

out.printin("<html>\n" +
"<head><title>"+title+"</title></head>\n"); if(

cookies = null){
out.printIn("<h2>FoundCookiesNameandValue</h2>"); for

(int i = 0; i < cookies.length; i++){
cookie=cookies[i];
out.print("Name:"+cookie.getName()+",");

out.print(*Value: " + cookie.getValue()+"
");

Yelse{ out.printin("<h2>Nocookiesfounds</h2>");
} outprintin("</body>"); out.printin("</htmI>");
s

8. ExplainSessionTracking:

1. A session is created each time a client requests service from a java servlet. The
java. The java servlet processes the request and response accordingly, after which
thesessionisterminated. Manytimesthesameclientfollowswithanotherrequest to the
same client follows with another request to the same java servlet, java servlet
requires information regarding the previous session to process request.

2. However,HTTPisstatelessprotocol, meaningthatthereisnotholdoverfrom the
previous sessions.

3. Java servlet is capable of tracking sessions by using Httpsession API.It
determinesiftherequestisacontinuationfromanexistingsessionornew
session.

4. Ajava servlet callsa getSession()method ofHttpservletRequset object, which
returnsasessionobjectifitisanewsession. ThegetSession()methodrequires one
argument which is Boolean true. Returns session object.

Syntax:

HttpSessionsl=request.getSession(true);

JSP program

Ajspisjavaserverpageisserversideprogramthatissimilarindesignandfunctionality to a java
servlet.

AJSPiscalledbyaclienttoprovidewebservices,thenatureofwhichdependsonclient
application.

AjspissimplertocreatethanajavaservletbecauseajspiswritteninHT MLratherthan with the
java programming language. . There are three methods that are automatically called when jsp is
requested and when jsp terminates normally. These are the jsplnit() method , the jspDestroy()m
ethod and service() method.

Ajsplnit()isidenticaltiinit()methodofjavaservlet.ltiscalledwhenfirsttimejspis
called.

A jspDestroy()is identical to destroy() method of servlet. The destroy() method is
automaticallycalledwhenjsperminatesnormally.ltisnotcalledwhenjspterminatesabruptly. It is used
for placing clean up codes.

1. ExplainJSPtags(repeatedquestion)

AjsptagconsistsofacombinationofHTMLtagsandJSPtags.JSPtagsdefine java code
that is to be executed before the output of jsp program is sent to the browser.

Ajsptagbeginwitha<%,whichisfollowedbyjavacode,andwndswith%>, There ia an
XML version of jsp tag <jap:Tagld></jsp:Tagld>

AjsptagsareembeddedintotheHTMLcomponentofajspprogramandare processed
by Jsp virtual engine such as Tomcat.

Javacodeassociatedwithjsptagareexecutedandsenttobrowser. There
are five types of jsp tags :

Commenttag: Acommenttagopenswith<%--andclosewith--%>andisfollwedbya comment
that usually describes the functionality of statements that follow a comment tag.

Declaration statement tags: A declartion statement tag opens with <%!And is
followedbydeclarationstatementsthatdefinethevariables,object,andmethodsthatareavilabe to
other component of jsp program.

Directivetags: Adirectivetagopenswith<% @andcommandsthejspvirtualengineto perform
a specific task, such as importing java package required by objects and methods used in a
declaration statement. The directive tag closes with %> . There are commonly used in
directivesimport,include,andtaglib. Theimporttagisusedtoimportjavapackagesintothejsp program.
Include is used for importing file. Taglib is used for including file.

Example:

<% @pageimport="importjava.sql.*”; %>
<%@includefile="keogh\books.htm]”%>
<Y%(@tagliburl="myTags.tld”;%>

Expression tags: An expression tag opens with <%= and is used for an expression
statementwhoseresultpagereplacestheexpressiontagwhenthejspvirtualengineresolvesJSP tags.
An expression tag closes with %>

Scriptlettag: Asciptlettagopenswith<%andcontainscommonlyusedjavacontrol statements
and loops. And Scriptlet tag closes with %>

2. HowvariablesandobjctsdeclaredinJSPprogram?

YoucandeclarejavavariablesandobjectsthatareusedinaJSPprogramby using the
same codin technique used to declare them in java.JSP declaration statements must
appear as jsp tag

Ex:

<html>

<head>
<title>JspProgramming</title>

<.head>

<body>
<%!Intage=29;%><p>Yourageis:<%=age%></p>

</body>

</htmI>

3. Howmethodaredeclaredandusedinjsp programs?
Methodsaredefinedsamewayasitisdefinedinjspprogram,exceptthese are
placed in JSP tag.methods are declared in JSP decalration tag. The jspcalls
method in side the expression tag.

Example:
<html>
<head>
<title>Jsp programming</title>
</head>
<body>
<%lintadd(intnl,intn2)
{
int c;
c=atb;

returnc;

%>
<p>Additionoftwonumbers:<%=add(45,46)%></p>

</body></html>

4. ExplainthecontrolstatementsofJSPwithexampleprogram:

1. OneofthemostpowerfulfeaturesavilableinJSPistheabilitytochangethe flow of
the program to truly create dynamic content for a web based on conditions
received from the browser.

2. Theraretwocontrolstatementsusedtochangetheflowofprogramare“if and
“switch” statement , both of which are also used to direct the flow of a java
program.

Ex:
<html>
<head>
<title>JSPProgramming</title>
</head>
<body>
<%!intgrade=26;%>
</body>
<%if(grade>69){%>
<p>YouPassed!</p>
<%} else{ %>
<p>BetterLuckNextTime</p>
<% } %>
</body>
</html>
5. LoopingStatementofJSP
Jsploopsarenearlyidenticaltoloopsthatyouuseinyourjavaprogram except
you can repeat the html tags
Therearethreekindofjsploopthatarecommonlyusedinjspprogram. Ex:for
loop , while loop , do while .
LoopplaysanimportantroleinJSPdatabaseprogram. Thefollowing program
is example for “FOR LOOP”.

<htmli><head><title>ForLoopExample</title></head>

<body>

<%

for(inti=0;i<10;i++){

%>

<p>HelloWorld</p>

<%}%></body>

</html>

6. ExplainRequsetStringgeneratedbybrowser.howtoreadarequeststringin jsp?

1.

Abrowsergeneraterequststringwheneverthesubmitbuttonisselected. The user

requests the string consists of URL and the query the string.

Example of request string:

http://www.jimkeogh.com/jsp/?fname="Bob”&Iname="Smith”

Yourjspprogramneedstoparsethequerystringtoextractthevaluesoffields that are

to be processed by your program. You can parse the query string by using the

methods of the request object.

getParameter(Name)methodusedtoparseavalueofaspecificfieldthatare to be

processed by your program

codetoprocesstherequsetstring

<%! String FirstName =requst.getParameter(fname);
StringLastName=requst.getParameter(Iname);%>

Copyingfrommultivaluedfieldsuchasselectionlistfieldcanbetricky

multivalued fields are handled by using getParameterValues()

Otherthanrequsetstringurlhasprotocols,portno,thehostname

WritetheJSPprogramtocreateandreadcookiecalled“EMPID”and that

has value “AN2536".

CookieissmallpieceofinformationcreatedbaJSPprogramthatisstored on the

clien’s hard dik by the browser. Cookie isare used to store various kind of
information, such as user preference. The cookies are created by using Cookie
class.

Createcookie:

<html>

<head>

<title>creating cookie</title>

</head>

<body>
<%!StringMyCookieName="EMPID”;

http://www.jimkeogh.com/jsp/?fname

String UserValue="AN2536";
%>

</body>
</html>
ReadingCookie:

<html>
<head>

<title>readingcookie</title>

</head>

<body>
<%StringmyCookieName="EMPID”;

String myCookieValue;
StringCName,CValue; int

found=0;

Cookie[] cookies=request.getCoookies();for(

int i=0;i<cookies.length;i++) {
CName= cookies[i].getName();

CValue =cookies[i].getValue();
If(myCookieName.equals(CName)){
found=1;

myCookieValue=Cvalue;}}
If(found==1){ %>

<p>CookieName =<%=CName%></p>
<p>CookieValue=<%=CValue%></p>
<%}%></body></htmI>

8. Explainstepstoconfiguretomcat.

JspprogramprogramsareexecutedbyaJSPvirtualmachinethat run
on a webserver.
WecandownloadandinstallJSPvirtualmachine.
InstallationSteps
ConnecttoJakarta.apache.org.
Select down load
SelectBinariestodisplaythebinaryDownloadPage.
Createa folderfrom therootdirectory calledtomcat.
Download latest release.
UnzipJakarta-tomcat.zip.
Theextractionprocesscreatesthefollowingfolderinthe

tomcat directory: bin, conf, doc, lib, src, and webapps

Modify the batch file , which is located in the \tomcat\bin

folder.ChangetheJAVA HOMEvariableisassignedthepathewhere JDK
is installed on your computer.

Opendoswindowandtype\tomcat\bin\tomcattostart

Tomcat.

Openyourbrowser.Enterhttp://localhost:8080.

TomcathomepageisdisplayedonthescreenverifyingthatTomcatis
running.

9. Explainhowsessionobjectsare created.

AJSPdatabasesystemiaabletoshareinformationamongJSPprograms within
a session by using a session object. Each time a session is created , a unique IDis assigned to the
session and stored as acookie.

AuniquelDenablesJSPprogramtotrackmultiplesessionsession
simultaneouslywhilemaintainingdataintegrityofeachsession. ThesessionlDisusedto prevent
the intermingling of each session.

CreatesessionObject:
<htmlI><head><title>JspSession</title></head>
<body>
<%!String AtName="Product”;

String AtValue ="1234";
Session.setAttributes(AtName, AtValue);
%></body></html>

Insessionobjectwecanstoreinformationaboutpurchasesassessionattributes can be
retrived and modified each time the jsp program runs. setAttributes() used for creating
attributes.

ReadSessionObject:

getAttributeNames() methosreturnsnamesofalltheattribbutesasEnumeration, the
attributes are processsed.

<htmlI><head><title>JspSession</title></head>

<body><%!
Enumaration purchases=session.getAttributeNames();
String AtName=(String) attributeNames.nextElement();
StringAtValu=(String)session.getAttribute(AtName);%>
<p>AttirbuteName<%=AtName%></p>
<p>AttributeValue<%=Atvalue%></p>
<%}%>%></body></htmI>

Il InternalQuestions

10.

11.

12.

13.

14.
15.

16.

17.
18.
19.
20.

WhataredifferenttypesofJSPtagsdescribetheJSPtagswithexample.(Dec2011)
DefineJSP.Explaintwotypesofcontrolstatementswithexample.(Dec 2012)
WritetheJSPprogramtocreateandreadcookiecalled“EMPIDandthathasvalue
“AN2536”(Dec 2012)
WhatisRMI?BrieflyexplainworkingofRMIinjava.(Dec2012)
DepartmenthassetthegradeforthesubjectJavaas follows:

Above90:A, 80- 89:B,70-79 :C
Below70=fail. ShamentershismarksforthesubjectJavaintheinterfaceprovided. Write a JSP
program to accept the mark and display the grade.(Jun 2011)

BrieflyexplaintheRMlinJava(June2011)
DiscussdifferenttypesofJSPtags(Jun2011)

WriteaprogramusingRMIsuchasclientandserverprograminwhichclientsendshello message
to server and replies to client (June 2012)

DevelopsimplejavaservletthathandleHT TPRequestandResponse(June 2012)
Explainjavax.servletpackages(June2012)
WhatisdifferencebetweenJSPandServlet?(june2012)
WhataretheadvantagesofJSPprogram?(jun 2010)
Whatareservlets?Brieflyexplaintheapplicationofservletsinwebprogramming(dec 2010)

Explainthelifecycleofaservlet.(dec2010)
Writeajavaservletwhichreadstwoparametersfromthewebpage,sayvaluelandvalue
2,whicharetypeintegerandfindsthesumofthetwovalueandreturnbacktheresultas a
webpage.(dec 2010)

Providejavasyntaxforthefollowing:(dec 2010)

i) HandlingHT TPrequestsand responses

ii) Using cookies

iii) Session tracking

ListoutdifferencebetweenCGlandservlet.
Whatiscookielistoutmethodsdefinedbycookie.Writeaservletprogramtoread cookie.
Writeajspprogramtoaddcookiename*“Userld”’and value”JB007”
Describeindetailhowtomcatwebserverisconfiguredindevelopofservletlife cycle.

	Module 1-The collections and Framework
	1. Explainbriefaboutcollectionframework.
	2. Whataretherecentchangestocollectionframework?
	Generics
	Autoboxing/unboxing
	TheFor-Each StyleforLoop
	3. ListtheCollection Interfaces?
	4. Givethesyntaxofcollectioninterface.Explainthemethodspresentincollection interface.
	add
	clear
	contains
	containsAll
	equals
	hashCode
	isEmpty
	iterator
	remove
	removeAll
	retainAll
	size
	toArray
	5. ExplainthemethodspresentinListinterface.
	voidadd(intindex,Eobj)
	booleanaddAll(intindex,Collection<?extends E>c)
	Eget(intindex)
	intlastIndexOf(Objectobj)
	ListIterator<E>listIterator()
	ListIterator<E>listIterator(intindex)
	Eremove(intindex)
	Eset(int index, Eobj)
	List<E>subList(intstart,intend)
	6. ExplainSetInterface andset method:
	7. NavigableSetInterfaceandmethod
	Eceiling(E obj)
	NavigableSet<E>descendingSet()
	Efloor(E obj)
	NavigableSet<E>headSet(EupperBound,booleanincl)
	E lower(E obj)
	EpollFirst()
	E pollLast()
	NavigableSet<E>subSet(ElowerBound,booleanlowIncl,EupperBound, boolean highIncl)
	NavigableSet<E>tailSet(ElowerBound,booleanincl)
	8. TheQueueInterfaceand methods
	9. Dequeinterface
	voidaddFirst(Eobj)
	voidaddLast(Eobj)
	10. TheCollectionClasses withexamplecode
	ArrayList
	ConvertingArrayListtoArray
	LinkedList
	HashSet
	Constructor
	Example:
	output
	TreeSet
	Example
	PriorityQueue
	ArrayDeque
	AccessingacollectionViaanIterator:
	listIterator().
	StoringUserDefinedClassesin Collections:
	RandomAccess Interface:
	Working With Maps:

	Module 2
	1. WhatarethedifferenttypesofStringConstructorsavailableinJava?
	String Length
	toString()
	CharacterExtraction
	A. charAt()
	charcharAt(intwhere)
	B. getChars()
	voidgetChars(intsourceStart,intsourceEnd,chartarget[],int targetStart)
	C. getBytes()
	D. toCharArray()

	2. String Comparison:
	equals()
	A. equalsIgnoreCase()
	B. regionMatches()
	booleanregionMatches(intstartIndex,Stringstr2,intstr2StartIndex,int numChars)
	C. startsWith()andendsWith()
	D. equals()Versus==
	E. compareTo()

	5. SearchingString
	Output

	6. Modifyinga String
	A. Substring()

	B. concat()
	C. replace()

	D. trim()
	5. DataConversion
	6. ChangingCaseofCharacters
	A. toLowerCase()
	B. toUpperCase()
	StringBufferConstructors

	A. length()andcapacity()
	B. ensureCapacity()
	C. setLength()
	D. charAt()andsetCharAt()
	E. getChars()
	Syntax

	F. append()
	StringBufferappend(Stringstr)

	G. insert()
	H. reverse()
	I.delete()and deleteCharAt()

	K.substring()
	DifferencebetweenStringBufferandStringBuilder.
	AdditionalMethodsinStringwhichwasincludedinJava5
	1. intcodePointAt(inti)
	2. intcodePointBefore(int i)
	3. intcodePointCount(intstart,intend)
	4. booleancontains(CharSequencestr)
	5. booleancontentEquals(CharSequencestr)
	6. booleancontentEquals(StringBufferstr)
	7. staticStringformat(Stringfmtstr,Object...args)
	8. staticStringformat(Localeloc,Stringfmtstr,Object...args)
	9. booleanmatches(string regExp)
	10. intoffsetByCodePoints(intstart,intnum)
	11. StringreplaceFirst(StringregExp,StringnewStr)
	12. StringreplaceAll(StringregExp,StringnewStr)
	13. String[]split(StringregExp)
	14. String[]split(StringregExp,intmax)
	15. CharSequencesubSequence(intstartIndex,intstopIndex)

	AdditionalMethodsinStringBufferwhichwasincludedinJava5
	StringBufferappendCodePoint(intch)
	intcodePointAt(inti)
	intcodePointBefore(inti)
	intcodePointCount(intstart,intend)
	intindexOf(Stringstr)
	intindexOf(String str, intstartIndex)
	intlastIndexOf(Stringstr)
	intlastIndexOf(Stringstr,intstartIndex)
	Introdutiontoservlet
	2. Whatisservlet?Whatarethephasesofservletlifecycle?Givean example.
	Servletclassis loaded.
	servletinstanceis created:
	initmethodis invoked:
	Servicemethodis invoked:
	3. Explainaboutdeploymentdescriptor
	4. Howtoread datafromclientin servlet?
	Example code
	5. HowtoreadHTTPRequest Headers?
	ExampleofHTTPheader:
	TheusesofHTTP header:
	6. HowtosenddatatoclientandwritingtheHTTPResponse Header?
	7. ExplainaboutCookiesin servlet.
	SettingCookieswithServlet:
	ReadingCookieswith Servlet:
	Example:Letusreadcookieswhichwehavesetinpreviousexample:
	8. ExplainSessionTracking:
	JSP program
	1. ExplainJSPtags(repeatedquestion)
	2. HowvariablesandobjctsdeclaredinJSPprogram?
	3. Howmethodaredeclaredandusedinjsp programs?
	int c; c=a+b; returnc;
	5. LoopingStatementofJSP
	<html><head><title>ForLoopExample</title></head>
	7. WritetheJSPprogramtocreateandreadcookiecalled“EMPID”and that has value “AN2536”.
	Createcookie:
	ReadingCookie:
	8. Explainstepstoconfiguretomcat.
	9. Explainhowsessionobjectsare created.
	CreatesessionObject:
	ReadSessionObject:
	IIIInternalQuestions

