ATME COLLEGE OF ENGINEERING

13" KM Stone, Bannur Road, Mysore - 560028

BJATME

atme College of Engineering

DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING
(DATA SCIENCE)

(ACADEMIC YEAR 2025-26)
LABORATORY MANUAL

SUBJECT: GENERATIVE Al

SUB CODE: BAIL657C
SEMESTER: VI-2022 CBCS Scheme

Prepared by Approved by

Mrs. Madhu Nagaraj Dr. Anitha D B
Faculty In-charge HOD, CSE- DS

GEN AI LABORATORY BAIL657

INSTITUTIONAL VISION AND MISSION

Objectives

e To provide quality education and groom top-notch professionals, entrepreneurs and leaders

for different fields of engineering, technology and management.

To open a Training-R & D-Design-Consultancy cell in each department, gradually introduce
doctoral and postdoctoral programs, encourage basic & applied research in areas of social

relevance, and develop the institute as a center of excellence.

To develop academic, professional and financial alliances with the industry as well asthe

academia at national and transnational levels

To develop academic, professional and financial alliances with the industry as well asthe

academia at national and transnational levels.

To cultivate strong community relationships and involve the students and the staff in local

community service.

To constantly enhance the value of the educational inputs with the participation of students,

faculty, parents and industry.
Vision

e Development of academically excellent, culturally vibrant, socially responsible and globally

competent human resources.

Mission
e To keep pace with advancements in knowledge and make the students competitive and

capable at the global level.

e To create an environment for the students to acquire the right physical, intellectual,

emotional and moral foundations and shine as torch bearers of tomorrow’s society.

e To strive to attain ever-higher benchmarks of educational excellence.

DEPT OF CSE-DATA SCIENCE, ATMECE Page 2

GEN AI LABORATORY BAIL657

DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING (DATA SCIENCE)

Vision of the Department

* To impart technical education in the field of data science of excellent quality with a high
level of professional competence, social responsibility, and global awareness among the

students

Mission
» To impart technical education that is up to date, relevant and makes students competitive
and employable at global level
* To provide technical education with a high sense of discipline, social relevance in an
intellectually, ethically and socially challenging environment for better tomorrow
» Educate to the global standards with a benchmark of excellence and to kindle the spirit of

innovation.

Program Outcomes(PO)

e Engineering knowledge: Apply the knowledge of mathematics, science, engineering
fundamentals, and an engineering specialization to the solution of complex engineering

problems.

e Problem analysis: Identify, formulate, review research literature, and analyze complex
engineering problems reaching substantiated conclusions using first principles of

mathematics, natural sciences, and engineering sciences.

e Design/development of solutions: Design solutions for complex engineering problems
and design system components or processes that meet the specified needs with appropriate
consideration for the public health and safety, and the cultural, societal, and environmental

considerations.

DEPT OF CSE-DATA SCIENCE, ATMECE Page 3

GEN AI LABORATORY BAIL657

e Conduct investigations of complex problems: Use research-based knowledge and
research methods including design of experiments, analysis and interpretation of data, and

synthesis of the information to provide valid conclusions.

e Modern tool usage: Create, select, and apply appropriate techniques, resources, and
modern engineering and IT tools including prediction and modeling to complex

engineering activities with an understanding of the limitations.

e The engineer and society: Apply reasoning informed by the contextual knowledge to
assess societal, health, safety, legal and cultural issues and the consequent responsibilities
relevant to the professional engineering practice

¢ Environment and sustainability: Understand the impact of the professional engineering
solutions in societal and environmental contexts, and demonstrate the knowledge of, and

need for sustainable development.

e Ethics: Apply ethical principles and commit to professional ethics and responsibilities and

norms of the engineering practice.

¢ Individual and team work: Function effectively as an individual, and as a member or

leader in diverse teams, and in multidisciplinary settings.

e Communication: Communicate effectively on complex engineering activities with the
engineering community and with society at large, such as, being able to comprehend and
write effective reports and design documentation, make effective presentations, and give

and receive clear instructions.

¢ Project management and finance: Demonstrate knowledge and understanding of the
engineering and management principles and apply these to one’s own work, as a member
and leader in a team, to manage projects and in multidisciplinary environments.

e Life-long learning: Recognize the need for, and have the preparation and ability to engage

in independent and life-long learning in the broadest context of technological change.

DEPT OF CSE-DATA SCIENCE, ATMECE Page 4

GEN AI LABORATORY BAIL657

Program Specific OQutcomes (PSOs)
PSOL1: Develop relevant programming skills to become a successful data scientist

o PSO2: Apply data science concepts and algorithms to solve real world problems of the
society

o PSO3: Apply data science techniques in the various domains like agriculture, education
healthcare for better society

Program Educational Objectives (PEOs):

PEOL1: Develop cutting-edge skills in data science and its related technologies, such as machine

learning, predictive analytic, and data engineering.

PEO2: Design and develop data-driven solutions to real-world problems in a business, research,

or social environment.

PEO3: Apply data engineering and data visualization techniques to discover, investigate, and

interpret data.
PEO4: Demonstrate ethical and responsible data practices in problem solving

PEOS: Integrate fields within computer science, optimization, and statistics to develop better
solutions

DEPT OF CSE-DATA SCIENCE, ATMECE Page 5

GEN AI LABORATORY BAIL657C

SL. Particulars
No
Program 1:

1 | Explore pre-trained word vectors. Explore word relationships using vector
arithmetic. Perform arithmetic operations and analyze results.
Program 2:

5 | Use dimensionality reduction (e.g., PCA or t-SNE) to visualize word embeddings
for Q 1. Select 10 words from a specific domain (e.g., sports, technology) and
visualize their embeddings. Analyze clusters and relationships. Generate
contextually rich outputs using embeddings. Write a program to generate 5
semantically similar words
for a given input.

Program 3:

3 Train a custom Word2Vec model on a small dataset. Train embeddings on a
domain-specific corpus (e.g., legal, medical) and analyze how embeddings capture
domain-specific semantics.

Program 4:
Use word embeddings to improve prompts for Generative Al model. Retrieve similaf
words using word embeddings. Use the similar words to enrich a GenAl prompt. Usd

4 the Al model to generate responses for the original and enriched prompts. Compare thd
outputs in terms of detail
Program 5:

Use word embeddings to create meaningful sentences for creative tasks. Retrievg
similar words for a seed word. Create a sentence or story using these words as &
starting point. Write a program that: Takes a seed word. Generates similar words

5 Constructs a short paragraph using these words.

Program 6:

6 Use a pre-trained Hugging Face model to analyze sentiment in text. Assume a real-

world application, Load the sentiment analysis pipeline.

Analyze the sentiment by giving sentences to input.

Program 7:

Summarize long texts using a pre-trained summarization model using Hugging

7 face model. Load the summarization pipeline. Take a passage as input and obtair]
the summarized text.

DEPT OF CSE-DATA SCIENCE, ATMECE Page 6

GEN AI LABORATORY BAIL657C

Program 8:

Install langchain, cohere (for key), langchain-community. Get the api key(By logging
3 into Cohere and obtaining the cohere key). Load a text document from your googld

drive . Create a prompt template to display

the output in a particular manner.

Program 9:

Take the Institution name as input. Use Pydantic to define the schema for the desired

output and create a custom output parser. Invoke the Chain and Fetch Results. Extract

the below Institution related details from Wikipedia: The founder of the Institution
9 When it was founded. The current branches in the institution. How many

employees are working init. A brief 4-line summary of the institution.

Program 10:

Build a chatbot for the Indian Penal Code. We'll start by downloading the official

Indian Penal Code document, and then we'll create a chatbot that can interact with it

Users will be able to ask questions about the Indian Penal Code and have 4
10 conversation with it.

DEPT OF CSE-DATA SCIENCE, ATMECE Page 7

GEN AI LABORATORY BAIL657C

Syllabus
Generative Al Semester 6
Course Code BAIL657C CIE Marks 50
Teaching Hours/Week (L:T:P: S) 0:0:1:0 SEE Marks 50
Credits 01 Exam Hours 100
Examination type (SEE) Practical

Course objectives:

Understand the principles and concepts behind generative Al models

Explain the knowledge gained to implement generative models using Prompt
design frameworks.

Apply various Generative Al applications for increasing productivity.

Develop Large Language Model-based Apps.

SLNO

Experiments

Explore pre-trained word vectors. Explore word relationships using vector arithmetic. Perform
arithmetic operations and analyze results.

Use dimensionality reduction (e.g., PCA or t-SNE) to visualize word embeddings for Q 1. Select
10 words from a specific domain (e.g., sports, technology) and visualize their embeddings. Analyze
clusters and relationships. Generate contextually rich outputs using embeddings. Write a program to
generate 5

semantically similar words for a given input.

Train a custom Word2Vec model on a small dataset. Train embeddings on a domain-specific corpus
(e.g., legal, medical) and analyze how embeddings capture domain-specific semantics.

Use word embeddings to improve prompts for Generative Al model. Retrieve similar words using
word embeddings. Use the similar words to enrich a GenAl prompt. Use the Al model to generate
responses

for the original and enriched prompts. Compare the outputs in terms of detail and relevance.

Use word embeddings to create meaningful sentences for creative tasks. Retrieve similar words
for a seed word. Create a sentence or story using these words as a starting point. Write a program that:
Takes a seed word. Generates similar words. Constructs a short paragraph using these words.

Use a pre-trained Hugging Face model to analyze sentiment in text. Assume a real-world
application, Load the sentiment analysis pipeline. Analyze the sentiment by giving sentences to

input.

DEPT OF CSE-DATA SCIENCE, ATMECE Page 8

GEN AI LABORATORY BAIL657C

7.| Summarize long texts using a pre-trained summarization model using Hugging face model.
Load the summarization pipeline. Take a passage as input and obtain the summarized text.

8. | Install langchain, cohere (for key), langchain-community. Get the api key(By logging into Cohere
and obtaining the cohere key). Load a text document from your google drive . Create a prompt
template to display the output in a particular manner.

9.| Take the Institution name as input. Use Pydantic to define the schema for the desired output and
create a custom output parser. Invoke the Chain and Fetch Results. Extract the below Institution
related details from Wikipedia: The founder of the Institution. When it was founded. The current
branches in the

institution . How many employees are working in it. A brief 4-line summary of the institution.

10 | Build a chatbot for the Indian Penal Code. We'll start by downloading the official Indian Penal Code
document, and then we'll create a chatbot that can interact with it. Users will be able to ask
questions about the Indian Penal Code and have a conversation with it.

Course outcomes (Course Skill Set):

At the end of the course the student will be able to:

a. Develop the ability to explore and analyze word embeddings, perform vector arithmetic to
investigate word relationships, visualize embeddings using dimensionality reduction techniques

b. Apply prompt engineering skills to real-world scenarios, such as information retrieval, text generation.

c. Utilize pre-trained Hugging Face models for real-world applications, including sentiment analysis
and text summarization.

Apply different architectures used in large language models, such as transformers, and understand their
advantages and limitations.

IAssessment Details (both CIE and SEE)

The weightage of Continuous Internal Evaluation (CIE) is 50% and for Semester End Exam (SEE) is 50%. The
minimum passing mark for the CIE is 40% of the maximum marks (20 marks out of 50) and for the SEE
minimum passing mark is 35% of the maximum marks (18 out of 50 marks). A student shall be deemed to have
satisfied the academic requirements and earned the credits allotted to each subject/ course if the student
secures a minimum of 40% (40 marks out of 100) in the sum total of the CIE (Continuous Internal Evaluation)

and SEE (Semester End Examination) taken together

DEPT OF CSE-DATA SCIENCE, ATMECE Page9

GEN AI LABORATORY BAIL657C

Continuous Internal Evaluation (CIE):

CIE marks for the practical course are 50 Marks.

The split-up of CIE marks for record/ journal and test are in the ratio 60:40.

1. Each experiment is to be evaluated for conduction with an observation sheet and record write-up.
Rubrics for the evaluation of the journal/write-up for hardware/software experiments are designed by
the faculty who is handling the laboratory session and are made known to students at the beginning of
the practical session.

2. Record should contain all the specified experiments in the syllabus and each experiment write-up will
be evaluated for 10 marks
Total marks scored by the students are scaled down to 30 marks (60% of maximum marks).

4. Weightage to be given for neatness and submission of record/write-up on time.

5. Department shall conduct a test of 100 marks after the completion of all the experiments listed in the
syllabus.

6. In a test, test write-up, conduction of experiment, acceptable result, and procedural knowledge
will carry a weightage of 60% and the rest 40% for viva-voce.

7. Thesuitable rubrics can be designed to evaluate each student’s performance and learning ability.

8. The marks scored shall be scaled down to 20 marks (40% of the maximum marks).

The Sum of scaled-down marks scored in the report write-up/journal and marks of a test is the total CIE marks

scored by the student.

Semester End Evaluation (SEE):

SEE marks for the practical course are 50 Marks.
SEE shall be conducted jointly by the two examiners of the same institute, examiners are appointed by the Head
of the Institute.

The examination schedule and names of examiners are informed to the university before the conduction of
the examination. These practical examinations are to be conducted between the schedule mentioned in the

academic calendar of the University.

All laboratory experiments are to be included for practical examination.

(Rubrics) Breakup of marks and the instructions printed on the cover page of the answer script to be
strictly adhered to by the examiners. OR based on the course requirement evaluation rubrics shall be decided

jointly by examiners.

Students can pick one question (experiment) from the questions lot prepared by the examiners jointly.

DEPT OF CSE-DATA SCIENCE, ATMECE Page 10

GEN AI LABORATORY BAIL657C

® Evaluation of test write-up/ conduction procedure and result/viva will be conducted jointly by examiners.

General rubrics suggested for SEE are mentioned here, writeup-20%, Conduction procedure and result in -

60%, Viva-voce 20% of maximum marks. SEE for practical shall be evaluated for 100 marks and scored

marks shall be scaled down to 50 marks (however, based on course type, rubrics shall be decided by the

examiners)

Change of experiment is allowed only once and 15% of Marks allotted to the procedure part are to be made

Z€ro.

The minimum duration of SEE is 02 hours

Suggested Learning Resources:

Books:

1.

Modern Generative Al with ChatGPT and OpenAl Models: Leverage the Capabilities of OpenAl's
LLM for Productivity and Innovation with GPT3 and GPT4, by Valentina Alto, Packt Publishing Ltd,
2023.

Generative Al for Cloud Solutions: Architect modern AI LLMs in secure, scalable, and ethical cloud
environments, by Paul Singh, Anurag Karuparti ,Packt Publishing Ltd, 2024.

Web links and Video Lectures (e-Resources):

https://www.w3schools.com/gen_ai/index.php

https://youtu.be/eTPiL3DF27U

https://youtu.be/je6AlVeGOV0

https://youtu.be/RLVgsA8ns6k

https://youtu.be/0SAKM7wiC-A

https://youtu.be/28 9xMyrdjg

https://youtu.be/8iuiz-c-EBw

https://youtu.be/70Q8VtEKcgE

https://youtu.be/seXpOVWWZV0

DEPT OF CSE-DATA SCIENCE, ATMECE Page 11

http://www.w3schools.com/gen_ai/index.php
https://youtu.be/eTPiL3DF27U
https://youtu.be/je6AlVeGOV0
https://youtu.be/RLVqsA8ns6k
https://youtu.be/0SAKM7wiC-A
https://youtu.be/28_9xMyrdjg
https://youtu.be/8iuiz-c-EBw
https://youtu.be/7oQ8VtEKcgE

GEN AI LABORATORY BAIL657C

About Gen Al

Generative Al leverages deep learning techniques such as neural networks and transformers to create
new data instances that resemble training data. This field has seen rapid advancements with the rise
of generative adversarial networks (GANSs) and diffusion models. With the explosion of large-scale
models such as OpenAl’s GPT series and Google’s Bard, Al is reshaping industries by enabling
automated creativity and innovation.

Benefits of the Course

1.

Comprehensive Hands-on Learning — The course provides hands-on experience with
generative models, allowing students to work on real-world datasets and build custom
Al models.

Industry-Relevant Skills Development — Students gain expertise in AI model fine-
tuning, embedding techniques, and practical applications, making them industry-ready.

Enhancing Creativity and Problem Solving — The ability to generate human-like
content fosters new approaches to solving challenges in media, business automation,
and personalized recommendations.

Expanding Career Opportunities — As Al adoption grows, demand for experts in Al
model training, ethical Al development, and prompt engineering increases across
domains.

Encouraging AI-Driven Innovation — Generative Al allows businesses to explore new
ideas faster, optimize processes, and build Al-powered creative solutions.

Applications of Generative Al

Advanced Chatbots and Conversational AI — Virtual assistants can respond more
naturally and offer human-like interaction.

Al in Finance — Generative Al models are being used for fraud detection, algorithmic
trading, and financial forecasting.

Code Generation and Software Development — Tools like GitHub Copilot assist
developers by suggesting relevant code snippets and debugging solutions.

Al in Marketing and Advertising — Personalized ad generation, automated social
media content creation, and customer sentiment analysis.

Advantages of Learning Generative Al

1.

Ethical AI Considerations — Understanding bias in Al models and the implications of
Al-generated content ensures responsible development and deployment.

Cutting-Edge Research Opportunities — Generative Al plays a role in
groundbreaking research across computational creativity and Al ethics.

Al-powered Automation and Efficiency Gains — Al-generated content speeds up
workflows in content creation, graphic design, and personalized communication.

DEPT OF CSE-DATA SCIENCE, ATMECE Page 12

GEN AI LABORATORY BAIL657C

Course Content Overview
The course delves deeper into:
e Fine-tuning Pre-trained Models: Optimizing LLMs for domain-specific tasks.

o Exploring Transformer Architectures: Understanding self-attention mechanisms and
how they contribute to generative capabilities.

o Deploying AI Models in Production: Building scalable Al applications for real-world
use cases.

e Developing Responsible AI: Addressing bias, fairness, and explainability in generative
Al systems.

DEPT OF CSE-DATA SCIENCE, ATMECE Page 13

GEN AI LABORATORY BAIL657C

Lab Programs

Program 1:
Explore pre-trained word vectors. Explore word relationships using vector arithmetic.
Perform arithmetic operations and analyze results.

Theory:

Word Embeddings in NLP

Word Embeddings are numeric representations of words in a lower-dimensional space,
capturing semantic and syntactic information. They play a vital role in Natural Language
Processing (NLP) tasks.

What is Word Embedding in NLP?

Word Embedding is an approach for representing words and documents. Word Embedding

or Word Vector is a numeric vector input that represents a word in a lower-dimensional space.
It allows words with similar meanings to have a similar representation.

Word Embeddings are a method of extracting features out of text so that we can input those
features into a machine learning model to work with text data.

Need for Word Embedding?

To reduce dimensionality

To use a word to predict the words around it.
Inter-word semantics must be captured.

How are Word Embeddings used?

They are used as input to machine learning models.

Take the words —-> Give their numeric representation —-> Use in training or inference.

To represent or visualize any underlying patterns of usage in the corpus that was used to train
them.

Challenges in building word embedding from scratch

Training word embeddings from scratch is possible but it is quite challenging due to large
trainable parameters and sparsity of training data. These models need to be trained on a large
number of datasets with rich vocabulary and as there are large number of parameters, it makes
the training slower. So, it’s quite challenging to train a word embedding model on an
individual level.

Pre Trained Word Embeddings

There’s a solution to the above problem, i.e., using pre-trained word embeddings. Pre-trained
word embeddings are trained on large datasets and capture the syntactic as well as semantic
meaning of the words. This technique is known as transfer learning in which you take a model
which is trained on large datasets and use that model on your own similar tasks.

There are two broad classifications of pre trained word embeddings — word-level and
character-level. We’ll be looking into two types of word-level embeddings i.e. Word2Vec and
GloVe and how they can be used to generate embeddings.

DEPT OF CSE-DATA SCIENCE, ATMECE Page 14

GEN AI LABORATORY BAIL657C

Word2Vec

Word2Vec is one of the most popular pre trained word embedding’s developed by Google. It
is trained on Good news dataset which is an extensive dataset. As the name suggests, it
represents each word with a collection of integers known as a vector. The vectors are
calculated such that they show the semantic relation between words.

A popular example of how semantic relation is made is the king queen example:

King - Man + Woman ~ Queen

Word2vec is a feed-forward neural network which consists of two main models — Continuous
Bag-of-Words (CBOW) and Skip-gram model. The continuous bag of words model learns
the target word from the adjacent words whereas in the skip-gram model, the model learns
the adjacent words from the target word. They are completely opposite of each other.

Firstly, the size of context window is defined. Context window is a sliding window which
runs through the whole text one word at a time. It basically refers to the number of words
appearing on the right and left side of the focus word. eg. if size of the context window is set
to 2, then it will include 2 words on the right as well as left of the focus word.

Focus word is our target word for which we want to create the embedding / vector
representation

Suppose we have a sentence — “He poured himself a cup of coffee”. The target word here is
“himself”.

Continuous Bag-Of-Words —

input = [“He”, “poured”, “a”, “cup”]

output = [“himself”]

Skip-gram model —

input = [“himself”]

b3

output = [“He”, “poured”, “a”, “cup”]

GloVe

Given by Stanford, GloVe stands for Global Vectors for Word Representation. It is a popular
word embedding model which works on the basic idea of deriving the relationship between
words using statistics. It is a count based model that employs co-occurrence matrix. A co
occurrence matrix tells how often two words are occurring globally. Each value is a count of
a pair of words occurring together.

Glove basically deals with the spaces where the distance between words is linked to to their
semantic similarity.

GloVe calculates the co-occurrence probabilities for each word pair. It divides the co
occurrence counts by the total number of co-occurrences for each word:

F(w_{i}, w_{j}, w_{k}) =\frac {P_{ik}} {P_{jk}}

For example, the co-occurrence probability of “cat” and “mouse” is calculated as: Co

occurrence Probability(“cat”, “mouse”) = Count(“cat” and “mouse”) / Total Co
occurrences(“cat”™)

In this case:

Count("cat" and "mouse") = 1

Total Co-occurrences("cat") = 2 (with "chases" and "mouse"
So, Co-occurrence Probability("cat", "mouse")=1/2=0.5

DEPT OF CSE-DATA SCIENCE, ATMECE Page 15

GEN AI LABORATORY BAIL657C

Conclusion

In conclusion, word embedding techniques such as TF-IDF, Word2Vec, and GloVe play a
crucial role in natural language processing by representing words in a lower-dimensional
space, capturing semantic and syntactic information.

Facts

pip install genism

Defaulting to user installation because normal site-packages is not writeable

Requirement already satisfied: gensim in c:\programdata\anaconda3\lib\site-packages (4.3.0)
Requirement already satisfied: numpy>=1.18.5 in c:\users\anitha d
b\appdata\roaming\python\python311\site-packages (from gensim) (1.24.4)

Requirement already satisfied: scipy>=1.7.0 in c:\users\anitha d
b\appdata\roaming\python\python311\site-packages (from gensim) (1.10.1)

Requirement already satisfied: smart-open>=1.8.1 in c:\programdata\anaconda3\lib\site-packages (from
gensim) (5.2.1)

Requirement already satisfied: FuzzyTM>=0.4.0 in c:\users\anitha d
b\appdata\roaming\python\python311\site-packages (from gensim) (2.0.9)

Requirement already satisfied: pandas in c:\users\anitha d b\appdata\roaming\python\python311\site-
packages (from FuzzyTM>=0.4.0->gensim) (1.5.3)

Requirement already satisfied: pyfume in c:\users\anitha d b\appdata\roaming\python\python311\site-
packages (from FuzzyTM>=0.4.0->gensim) (0.3.4)

Requirement already satisfied: python-dateutil>=2.8.1 in c:\programdata\anaconda3\lib\site-packages
(from pandas->FuzzyTM>=0.4.0->gensim) (2.8.2)

Requirement already satisfied: pytz>=2020.1 in c:\programdata\anaconda3\lib\site-packages (from
pandas->FuzzyTM>=0.4.0->gensim) (2023.3.post1)

Requirement already satisfied: simpful==2.12.0 in c:\users\anitha d
b\appdata\roaming\python\python311\site-packages (from pyfume->FuzzyTM>=0.4.0->gensim) (2.12.0)
Requirement already satisfied: fst-pso==1.8.1 in c:\users\anitha d
b\appdata\roaming\python\python311\site-packages (from pyfume->FuzzyTM>=0.4.0->gensim) (1.8.1)
Requirement already satisfied: miniful in c:\users\anitha d b\appdata\roaming\python\python311\site-
packages (from fst-pso==1.8.1->pyfume->FuzzyTM>=0.4.0->gensim) (0.0.6)

Requirement already satisfied: six>=1.5 in c:\users\anitha d b\appdata\roaming\python\python311\site-
packages (from python-dateutil>=2.8.1->pandas->FuzzyTM>=0.4.0->gensim) (1.17.0)

Gensim: A Python library for NLP and word embeddings.
50d, 100d, 6B: Dimensions of GloVe vectors and the size of the training corpus.

GloVe embeddings are converted to Word2Vec format for compatibility with libraries like Gensim,
which require the Word2Vec format for efficient vector operations and model functionality.

from gensim.scripts.glove2word2vec import glove2word2vec

from gensim.models import KeyedVectors

Paths to the GloVe file and output Word2Vec file
glove_input_file = ""glove.6B/glove.6B.100d.txt" # Path to GloVe file
word2vec_output_file = "glove.6B/glove.6B.100d.word2vec.txt" # Output file in Word2Vec format

DEPT OF CSE-DATA SCIENCE, ATMECE Page 16

GEN AI LABORATORY BAIL657C

Convert GloVe format to Word2Vec format
glove2word2vec(glove_input_file, word2vec_output file)
#glove2word2vec("glove.6B.100d.txt", "glove.6B.100d.word2vec.txt')

Load the converted Word2Vec model
model = KeyedVectors.load_word2vec_format(word2vec_output_file, binary=False)

Test the loaded model
print(model.most_similar(''king'))
Output:
C:\Users\ANITHA D B\AppData\Local\Temp\ipykernel 7604\71331760.py:9: DeprecationWarning: Call to
deprecated "glove2word2vec’ (KeyedVectors.load word2vec format(.., binary=False, no_header=True)
loads GLoVE text vectors.).

glove2word2vec(glove input file, word2vec output_file)
[('prince', 0.7682328820228577), ('queen’, 0.7507690787315369), ('son', 0.7020888328552246), ('brother’,
0.6985775232315063), ('monarch’, 0.6977890729904175), ('throne', 0.6919989585876465), ('kingdom',
0.6811409592628479), (‘father', 0.6802029013633728), (‘emperor’, 0.6712858080863953), ('ii',
0.6676074266433716)]

Explore Word Relationships

Example 1: Find Similar Words

similar_to_mysore = model.similar by vector(model['mysore'], topn=5)

print(f'""Words similar to 'mysore': {similar_to_mysore}")

ouput:

Words similar to 'mysore': [('mysore', 1.0), (‘travancore', 0.6994104385375977), (‘cochin’,
0.6752076148986816), ('hyderabad', 0.6592637896537781), (jaipur', 0.6591896414756775)]

Example 2: Gender Analogy (actor - man + woman = queen)

Perform vector arithmetic
result_vector_1 = model['actor'] - model['man'] + model['woman']

Find the most similar word

result 1 =model.similar_by vector(result vector 1, topn=1)
print(f'"'actor - man + woman' = {result_1}")

output:

'actor - man + woman' = [(‘actress', 0.9160683155059814)]

Example 3: Country-City Relationship (India - Delhi + Bangalore)

Perform vector arithmetic
result_vector_2 = model['india'| - model['delhi'] + model['washington']

Find the most similar word

result 2 = model.similar_by vector(result vector 2, topn=3)

print(f'''India - Delhi + Washington' = {result_2}'")

Output:

'India - Delhi + Washington' = [('states', 0.8375228643417358), (‘united', 0.8281229734420776),
(‘washington', 0.8155243396759033)]

DEPT OF CSE-DATA SCIENCE, ATMECE Page 17

GEN AI LABORATORY BAIL657C

Perform Arithmetic Operations

Example 1: Scaling Vectors

scaled_vector = model['hotel'] * 2 # Scales the 'king' vector by a factor of 2
result 2 = model.similar_by vector(scaled_vector, topn=3)

result_2

Output:

[('hotel', 1.0),

('hotels', 0.7933705449104309),
(‘restaurant', 0.7762866020202637)]

Example 2: Normalizing Vectors

import numpy as np

normalized_vector = model['fish'] / np.linalg.norm(model|['fish'])
result 2 = model.similar_by_vector(normalized_vector, topn=3)
Output:

average vector = (model['king'] + model['woman'] + model['man']) / 3
result 2 = model.similar by vector(average vector, topn=3)
result 2

Output:

[('man', 0.9197071194648743),

(‘'woman', 0.8637868165969849),

(‘father', 0.8270207047462463)]

Model Comparision
Paths to the GloVe file and output Word2Vec file
glove input_file = "glove.6B/glove.6B.50d.txt" # Path to GloVe file

word2vec_output_file = "glove.6B/glove.6B.50d.word2vec.txt" # Output file in Word2Vec format

Convert GloVe format to Word2Vec format
glove2word2vec(glove input_file, word2vec_output file)

Load the converted Word2Vec model
model_50d = KeyedVectors.load_word2vec_format(word2vec_output _file, binary=False)

output:

C:\Users\ANITHA D B\AppData\Local\Temp\ipykernel 7604\1425925041.py:6: DeprecationWarning: Call
to deprecated "glove2word2vec' (KeyedVectors.load word2vec format(.., binary=False, no_header=True)

loads GLoVE text vectors.).
glove2word2vec(glove input file, word2vec output file)

Similarity: Measures how close two vectors are in direction using cosine similarity. A value closer to 1

indicates high similarity, while 0 means orthogonal and -1 means opposite directions.

Distance: Measures how far two vectors are from each other in space (e.g., Euclidean distance). A smaller

distance indicates the vectors are more similar in magnitude and direction.

DEPT OF CSE-DATA SCIENCE, ATMECE Page 18

GEN AI LABORATORY BAIL657C

Calculate similarity between two words

word1 = "hospital"
word2 = "doctor"

Similarity in 50d
similarity_50d = model_50d.similarity(word1, word2)

Similarity in 100d
similarity_100d = model _100d.similarity(word1, word2)

Results

print(f"'Similarity (50d) between '{word1}' and '{word2}': {similarity 50d:.4f}")
print(f''Similarity (100d) between '{word1}' and '{word2}': {similarity 100d:.4f}")
Output:

Similarity (50d) between 'hospital' and 'doctor': 0.6724

Similarity (100d) between 'hospital' and 'doctor': 0.6901

Calculate distance between two words

Calculate distance between two words

distance_50d = model_50d.distance(word1, word2)
distance_100d = model_100d.distance(word1, word2)

Results
print(f''Distance (50d) between '{word1}' and '{word2}': {distance_50d:.4f}")
print(f'' Distance (100d) between '{word1}' and '{word2}': {distance 100d:.4f}")

Output:
Distance (50d) between 'hospital' and 'doctor': 0.3276
Distance (100d) between 'hospital' and 'doctor': 0.3099

#iHt ** Analysis of Results**

1. **'actor - man + woman' = actress (0.916)**
- The result confirms that the model has captured gender analogies, where subtracting "man" and adding
"woman" to "actor" produces the semantically related word "actress."

2. **'India - Delhi + Washington' = ['states', 0.838], ['united', 0.828], ['washington', 0.816]**
- The arithmetic operation shows that "India - Delhi + Washington" produces words like "states" and
"united," suggesting a shift from a city to broader political entities, such as countries or states.

3. **Scaling Vectors ('hotel' * 2) = [('hotel', 1.0), (‘hotels', 0.793), (‘restaurant', 0.776)]**
- The scaled vector results in "hotel" being the most similar to itself, and its plural form "hotels" is the
second most similar, followed by related terms like "restaurant."

4. **Normalizing Vectors ('fish") = [('fish’, 1.0), ('shrimp', 0.779), (‘'salmon’, 0.761)]**
- Normalizing the vector for "fish" leads to very similar words like "shrimB" and "salmoni" which are

DEPT OF CSE-DATA SCIENCE, ATMECE Page 19

GEN AI LABORATORY BAIL657C
semantically related types of fish.

5. **Averaging Vectors (‘king' + 'woman' + 'man') / 3 = [("'man’, 0.920), ('woman', 0.864), (‘father’,
0.827)]**

- Averaging the vectors of "king," "woman," and "man" results in "man" and "woman" being the most
similar words, indicating that the averaged vector represents a central concept of human relationships.

6. **Similarity and Distance Calculation for 'hospital' and 'doctor':**
- **Similarity**: 0.6724 (50d) vs. 0.6901 (100d)
- The similarity between "hospital" and "doctor" is higher in the 100d model, indicating that the higher-
dimensional model captures the relationship between these words more accurately.
- #*Distance™*: 0.3276 (50d) vs. 0.3099 (100d)
- The distance between "hospital" and "doctor" is smaller in the 100d model, confirming that the 100d
model finds them closer in the vector space, aligning with the similarity results.

**Conclusion™*

- Higher-dimensional models (100d) generally provide more accurate and nuanced word relationships,
both in terms of **similarity** and **distance**.

- Arithmetic operations like scaling, averaging, and vector shifts (analogies) allow deeper exploration of
word meanings and relationships, and these can vary slightly with model dimensions.

- — 1
DEPT OF CSE-DATA SCIENCE, ATMECE Page 20

GEN AI LABORATORY BAIL657C

Program 2.

Use dimensionality reduction (e.g., PCA or t-SNE) to visualize word embeddings for Q 1.

Select 10 words from a specific domain (e.g., sports, technology) and visualize their embeddings.
Analyze clusters and relationships. Generate contextually rich outputs using embeddings. Write
a program to generate 5 semantically similar words for a given input.

Theory:

To visualize word embedding’s, t-SNE (t-distributed Stochastic Neighbour Embedding) is generally
preferred over PCA (Principal Component Analysis) because t-SNE is better at capturing complex,
non-linear relationships between words, while PCA focuses on preserving global variance and linear
patterns, which can be less effective for visualizing the semantic similarities between words in an
embedding space.

1. Word Embedding’s

Word embedding’s are dense vector representations of words in a continuous vector space.
They capture semantic relationships between words, such as similarity, analogy, and context.
Popular pre-trained word embedding models include:

Word2Vec: Trained on large text corpora using a neural network.

GloVe: Global Vectors for Word Representation, based on matrix factorization.

FastText: Extends Word2Vec by representing words as n-grams of characters.

2. Dimensionality Reduction

Word embedding’s are high-dimensional (e.g., 300 dimensions). To visualize them, we reduce
their dimensionality to 2D or 3D using:

PCA (Principal Component Analysis): A linear technique that projects data onto orthogonal
axes.

t-SNE (t-Distributed Stochastic Neighbour Embedding): A non-linear technique that preserves
local relationships between points.

3. Semantic Similarity

Semantic similarity measures how closely related two words are in meaning. For example:
Similar Words: "king" and "queen" are semantically similar.

Analogies: "king - man + woman = queen" demonstrates relationships between words.

Both PCA (Principal Component Analysis) and t-SNE (t-Distributed Stochastic Neighbour
Embedding) are dimensionality reduction techniques used to visualize high-dimensional data
(e.g., word embedding) in 2D or 3D. Below, I explain the parameters of their function calls
in Python's scikit-learn library, along with their default values.

Key points to remember:

t-SNE for local structure:

t-SNE excels at preserving local similarities between data points, meaning nearby words in the
embedding space will also appear close together in the visualization, making it ideal for
understanding semantic relationships between words.

PCA for global variance:

PCA prioritizes capturing the most variance in the data, which can be less useful for
visualizing the nuanced relationships between words in an embedding space.

What is t-SNE ?

- — 1
DEPT OF CSE-DATA SCIENCE, ATMECE Page 21

GEN AI LABORATORY BAIL657C

t-SNE (t-distributed Stochastic Neighbour Embedding) is an unsupervised non-linear
dimensionality reduction technique for data exploration and visualizing high-dimensional
data. Non-linear dimensionality reduction means that the algorithm allows us to separate data
that cannot be separated by a straight line.

t-SNE gives you a feel and intuition on how data is arranged in higher dimensions. It is often
used to visualize complex datasets into two and three dimensions, allowing us to understand
more about underlying patterns and relationships in the data.

t-SNE vs PCA

Both t-SNE and PCA are dimensional reduction techniques with different mechanisms that
work best with different types of data.

PCA (Principal Component Analysis) is a linear technique that works best with data that has
a linear structure. It seeks to identify the underlying principal components in the data by
projecting onto lower dimensions, minimizing variance, and preserving large pairwise
distances. Read our Principal Component Analysis (PCA) tutorial to understand the inner
workings of the algorithms with R examples.

But, t-SNE is a nonlinear technique that focuses on preserving the pairwise similarities
between data points in a lower-dimensional space. t-SNE is concerned with preserving small
pairwise distances whereas, PCA focuses on maintaining large pairwise distances to maximize
variance.

In summary, PCA preserves the variance in the data. In contrast, t-SNE preserves the
relationships between data points in a lower-dimensional space, making it quite a good
algorithm for visualizing complex high-dimensional data.

import numpy as np

import matplotlib.pyplot as plt

from sklearn.decomposition import PCA
from sklearn.manifold import TSNE
from gensim.models import KeyedVectors

Load pre-trained GloVe embeddings (100d model)
model 100d =
KeyedVectors.load_word2vec_format("glove.6B/glove.6B.100d.word2vec.txt", binary=False)

Select 10 words from a specific domain (sports) # Included other words to show how
embeddings are different

words = ['football', 'soccer', 'basketball', 'tennis’','engineer','information', 'baseball’,
'coach’, 'goal’, 'player’, 'referee', 'team’|
word_vectors = np.array([model_100d[word] for word in words])

Dimensionality reduction using PCA

Using PCA to reduce to 2D for visualization
pca = PCA(n_components=2)

pca_result = pca.fit_transform(word_vectors)

Plotting the words in 2D space
plt.figure(figsize=(10, 8))
for i, word in enumerate(words):
plt.scatter(pca_result[i, 0], pca_result[i, 1])
plt.text(pca_result[i, 0] + 0.02, pca_result|[i, 1], word, fontsize=12)
plt.title(""PCA Visualization of Sports-related Word Embeddings (100d)")

DEPT OF CSE-DATA SCIENCE, ATMECE Page 22

GEN AI LABORATORY BAIL657C

plt.xlabel("PCA Dimension 1'")
plt.ylabel("PCA Dimension 2'")
plt.show()

5 Semantically Similar Words Generator Function

def get_similar_words(word, model, topn=5):
similar_words = model.similar_by_ word(word, topn=topn)
return similar_words

Example: Get 5 words similar to "football"

similar_words_football = get_similar_words('football', model_100d, topn=5)
print(f""Words similar to 'football': {similar_words_football}")

PCA Visualization of Sports-related Word Embeddings (100d)

3 T i
dennis | |
ghformation
5
baseball gEngineqr
l -
ghasketball
~ gSoccer
c
[=]
2 oA
c
£ gootball
] sblayer
<
g JLeam
_1 -
gcoach
_2 -
geferee
_3 e
goal
T T T T . : I
-2 =1 0 1 2 3 a

PCA Dimension 1

- — 1
DEPT OF CSE-DATA SCIENCE, ATMECE Page 23

GEN AI LABORATORY BAIL657C

Output:
Words similar to 'football': [('soccer’, 0.8732221722602844), (‘'basketball’, 0.8555637001991272), ('league’,
0.815336287021637), ('rugby', 0.8007532954216003), (‘hockey', 0.7833694815635681)]

Select the words you want to print embeddings for
words_to_print = ['football', 'soccer']

Print their embeddings
for word in words_to_print:

if word in model_100d:

print(f"'Vector embedding for '{word}':\n{model_100d[word]}\n")

else:
print(f"Word '{word}' not found in the embeddings model.")
Output:
Vector embedding for 'football":
Vector embedding for 'football":
[0.43865 0.10537 0.45972 -1.0724 -1.2471 0.76351
0.47528 0.083857 -0.9127 -0.27328 -0.018591 -1.184
0.22748 0.16847 -0.52158 0.11339 1.3757 0.11892
-0.37683 0.51149 -0.8833 0.96259 0.18143 -0.407
0.036181 -0.74432 -0.0027401 -0.70068 0.53103 0.45114
-0.72884 1.0631 -0.28008 -0.63848 0.15645 -0.46927
-1.0071 1.033 -1.4354 -0.27485 0.048984 0.13951
0.43072 -0.78791 0.41097 0.58509 1.0155 -0.1839
0.27487 -0.90866 -0.30441 -0.17396 0.020941 0.62813
0.10978 -2.3885 -0.56364 -0.27193 0.98728 0.70608
-0.512 0.52636 -0.78503 -0.68714 0.38121 0.097582
-0.20237 0.43208 -0.30527 0.57925 0.62619 -0.47415
0.33834 -0.28421 -0.097465 0.19597 0.54849 0.59918
-0.41576 0.1021 0.6766 0.0042009 -0.12354 -0.76613
-0.27436 -0.68248 -1.0789 -0.16708 0.81671 0.026999
-0.38707 0.40448 -1.0995 0.64718 -0.12802 -0.26084
-0.96701 0.88078 1.012 -0.022223]

Vector embedding for 'soccer":

[8.3777e-01 5.1890e-01 6.4015e-01 -6.2606e-01 -9.7474e-01 1.0127e+00
6.2729e-02 4.4316e-01 -8.3299¢-01 7.9888e-02 -1.1815e-02 -1.1265e+00
1.2554e-01 -3.4206e-01 -5.1422e-01 3.8526e-01 1.0032e+00 -1.5172¢-03
-2.2684e-01 3.5658e-01 -6.2449¢-01 8.7271e-01 3.6670e-01 4.6462e-01
-1.0046e-01 -4.4798e-01 -2.1813e-01 -5.6423e-01 5.6665¢-01 5.1601e-01

- — 1
DEPT OF CSE-DATA SCIENCE, ATMECE Page 24

GEN AI LABORATORY BAIL657C

-5.6511e-01 7.1919e-01 -6.5347e-01 -9.5952e-02 5.6028e-01 -4.9956¢e-01
-7.4757e-01 6.8516e-01 -1.4518e+00 -1.1207e-01 1.0241e-01 3.0537¢-02
1.1326e-02 -8.6873e-01 6.3622e-01 4.9539e-01 3.0538e-01 7.7133e-02
7.4048e-02 -7.1163e-01 -1.9159¢-01 -3.4168e-01 -4.7185e-01 5.6794e-01
3.7454e-01 -1.9207e+00 -8.6040e-01 5.7058e-01 1.0700e+00 9.2101e-01
-6.4825e-01 5.3516e-01 -1.5556e-01 -9.0021e-01 -1.7459e-01 3.3146e-02
-5.7512e-01 2.9963e-01 -4.0008e-01 -1.0765e-01 4.1384e-01 -7.2178e-01
1.1442e-01 -2.1291e-01 5.4949e-02 1.3213e-01 7.8766e-01 8.9291e-02
-6.6689¢-01 3.3998e-01 9.7163e-01 -8.4871e-02 1.7542¢-01 -4.6039¢-01
-8.5885e-02 -7.5960e-01 -1.5071e+00 2.1545e-01 2.1209e-01 -4.4837e-01
-2.5882e-01 3.3814e-01 -4.7979e-01 2.1059e-01 2.3621e-01 -3.6699¢-01
-8.1440e-01 5.4515e-01 9.7946e-01 2.3367e-01]

- — 1
DEPT OF CSE-DATA SCIENCE, ATMECE Page 25

GEN AI LABORATORY BAIL657C

Program 3:

Train a custom Word2Vec model on a small dataset. Train embeddings on a domain
specific corpus (e.g., legal, medical) and analyze how embeddings capture domain-specific
semantics.

Theory:
This program builds a domain-specific Word2Vec model for a medical corpus, visualizes the
learned word embeddings using t-SNE, and retrieves similar words using the trained model.
1. Word Embeddings & Word2Vec

Word Embeddings are numerical vector representations of words that capture their
meanings and relationships.

Word2Vec is a popular neural network-based algorithm that learns word embeddings
from a corpus.

There are two architectures for Word2Vec:
0o CBOW (Continuous Bag of Words): Predicts a word based on surrounding
context words.
o Skip-Gram: Predicts surrounding context words given a central word.
In this program, we use the Word2Vec model to train embeddings on a medical corpus,
capturing the domain-specific relationships between words.
2. Pre-processing the Corpus

Tokenization: Splitting sentences into words.

Lowercasing: Normalizing text to avoid duplication due to case differences
3. Training the Word2Vec Model

Hyperparameters used in training:
vector_size=100: Each word is represented by a 100-dimensional vector.
window=5: Words within a 5-word context window influence each other.
min_count=1: Even words occurring once are included in training.
workers=4: Uses 4 CPU threads for parallel processing.
epochs=50: The training iterates over the dataset 50 times for better learning.

4. Extracting Word Embeddings for Visualization
Embeddings: After training, every word has a 100-dimensional vector representation.
Dimensionality Reduction: We apply t-SNE (t-distributed Stochastic Neighbor
Embedding) to reduce 100 dimensions to 2D for visualization.

5. Visualizing Word Embeddings using t-SNE

Why use t-SNE?

Helps visualize high-dimensional data in 2D space.

Maintains the relative closeness of similar words.

Scatter Plot

Words that are semantically related will cluster together.

Example: "vaccine" and "infection" may appear close to each other.

6. Finding Semantically Similar Words
Uses the trained Word2Vec model to retrieve top-N most similar words.
Cosine Similarity is used to find similarity between word vectors:

DEPT OF CSE-DATA SCIENCE, ATMECE Page 26

GEN AI LABORATORY

BAIL657C

Important Steps

1.Tokenization: Converts sentences into lists of lowercase tokens for processing.

2.Word2Vec Training:
vector_size: Sets the embedding dimension to 50.
window: Uses a context window of 3 words.

sg: Skip-gram (sg=1) is used, which works better for smaller datasets.

epochs: The number of training iterations.

3.Visualization: PCA reduces the high-dimensional word vectors to 2D for visualization, helping to

understand semantic relationships.

4.Semantic Analysis: The most similar method identifies words that are semantically similar based

on embeddings.

Important Steps
1. **Tokenization**: Converts sentences into lists of lowercase tokens for processing.

2.

**Word2Vec Training™*:
‘vector_size': Sets the embedding dimension to 50.
‘window: Uses a context window of 3 words.

‘sg’: Skip-gram (sg=1) is used, which works better for smaller datasets.

‘epochs’: The number of training iterations.

3. **Visualization**: PCA reduces the high-dimensional word vectors to 2D for visualization, helping to
understand semantic relationships.
4. **Semantic Analysis**: The "'most_similar’ method identifies words that are semantically similar based

on

embeddings.

Example: Legal Corpus

from gensim.models import Word2Vec
from gensim.utils import simple_preprocess
from sklearn.decomposition import PCA
import matplotlib.pyplot as plt

legal _corpus = |

]

"The court ruled in favor of the plaintiff.",

"The defendant was found guilty of negligence.",

"A breach of contract case was filed.",

"The agreement between parties must be honored.",
"The lawyer presented compelling evidence.",

"Legal documents must be drafted carefully.",

"The jury deliberated for several hours.",

" A settlement was reached between the parties.",

"The plaintiff claimed damages for losses incurred.",
"The contract outlined the obligations of both parties."

Example legal corpus
legal _corpus = |

"The court ruled in favor of the plaintiff.",

"The defendant was found guilty of negligence.",
"A breach of contract case was filed.",

"The agreement between parties must be honored.",
"The lawyer presented compelling evidence.",

"Legal documents must be drafted carefullz."i

DEPT OF CSE-DATA SCIENCE, ATMECE

Page 27

GEN AI LABORATORY BAIL657C

"The jury deliberated for several hours.",

"A settlement was reached between the parties.",

"The plaintiff claimed damages for losses incurred.",
"The contract outlined the obligations of both parties."

|

Preprocess the corpus
tokenized_corpus = [simple_preprocess(sentence) for sentence in legal corpus]

Train the Word2Vec model

legal word2vec = Word2Vec(
sentences=tokenized corpus,
vector_size=50, # Embedding dimension
window=3, # Context window size
min_count=1, # Minimum word frequency
sg=1, # SKkip-gram model
epochs=100 # Training epochs

)

Save the model for later use

legal word2vec.save(''legal_word2vec.model")

Train the Word2Vec model

legal word2vec = Word2Vec(
sentences=tokenized corpus,
vector_size=50, # Embedding dimension
window=3, # Context window size
min_count=1, # Minimum word frequency
sg=1, # SKkip-gram model
epochs=100 # Training epochs

)

Save the model for later use
legal word2vec.save(''legal_word2vec.model")

Train the Word2Vec model

legal_word2vec = Word2Vec(
sentences=tokenized_corpus,
vector_size=50, # Embedding dimension
window=3, # Context window size
min_count=1, # Minimum word frequency
sg=1, # Skip-gram model
epochs=100 # Training epochs

)

Save the model for later use
legal word2vec.save(''legal_word2vec.model")

Analyze embeddings: Display vector for a specific word
word = "lawyer"
if word in legal_word2vec.wv:
print(f'" Vector embedding for '{word}':\n{legal word2vec.wv[word]}\n")
else:
print(f"Word '{word}' not found in the Word2Vec model.")

DEPT OF CSE-DATA SCIENCE, ATMECE Page 28

GEN AI LABORATORY BAIL657C

Output:

Vector embedding for 'lawyer':

[0.00373483 0.01353383 0.00585796 -0.01324683 0.01500349 -0.01261986
0.01892563 0.00698961 -0.0087639 -0.01023367 -0.00875896 -0.01318524
0.01972703 -0.00463062 0.01525868 -0.01837575 0.0055629 -0.00126356
0.01417167 -0.01969541 0.01564029 -0.00948072 -0.0107858 -0.01128642
-0.00610619 -0.00604345 -0.00693252 -0.01396556 0.00086967 -0.00136903
-0.00358557 0.00685404 -0.01432065 -0.00657563 0.00952303 0.01720192
-0.01858611 0.01418636 0.01038651 -0.00818817 0.01832661 -0.01858529
0.01404059 0.01154918 0.00326395 -0.01036671 -0.00841038 -0.00736812
0.00374052 0.00413726]

Visualize embeddings using PCA

words_to_visualize = ["court", "plaintiff", "defendant", ""agreement", "lawyer", "evidence',
"contract", "settlement", "jury", ""damages"|

word_vectors = [legal word2vec.wv[word] for word in words_to_visualize]

word_vectors

Output:

[array([-0.01018794, -0.0037532 , -0.01479373, 0.00535417, 0.00549183,
-0.00194653, -0.00904275, -0.00120178, 0.01239534, 0.005502 ,
-0.01752885, -0.00888894, 0.00678894, 0.00598825, -0.01972261,

0.01158325, -0.01438892, -0.01200779, 0.00463451, -0.01056976,
0.00906795, 0.01991566, -0.00384839, 0.01845003, 0.00452612,
0.02153785, 0.0106156 ,-0.0164802 , -0.0075984 , 0.01259563,
0.01069134, 0.01610584, 0.01608272, 0.01619358, -0.02157517,
0.00898223, -0.00762749, 0.00642556, 0.01106042, 0.00757853,
0.01795846, 0.00227335, -0.00347768, 0.01356644, -0.00962057,
0.00016249, 0.01841913,-0.01246461, 0.00897428, -0.01424266],

dtype=float32),
array([-0.01382369, 0.0011437 , -0.01449836, -0.00296123, 0.00624782,
0.00982854, 0.00482432, 0.00674102, -0.01035763, 0.0125059,
-0.01251031, 0.00691753, -0.01420641, 0.00583739, -0.01051113,
-0.00608784, -0.00284186, 0.01448168, 0.00904517, -0.01370935,
0.00321437,-0.01510567, 0.01918532, 0.01829434, -0.00426899,
0.00343321, 0.00058916, 0.01309333,-0.0183534, 0.00069488,
0.0132396, 0.0028656, 0.00451153, -0.01875341, 0.01468391,
-0.01201477, -0.00313035, 0.00620906, -0.0025351, 0.00151398,
0.0066815 , -0.01435055, -0.02045849, 0.01987134, 0.01433266,
-0.01331776, 0.00661788, -0.00128313, 0.01081608, -0.01213262],
dtype=float32),
array([-0.01735372, 0.00324048, -0.00153466, -0.01745638, -0.01992291,
-0.00444436, 0.01032289, 0.00879421, -0.01455397, -0.01536747,
-0.01001598, -0.00653257, -0.0128883 , -0.01829896, -0.0059358 ,
-0.01495283, -0.00974466, -0.00899372, -0.00697665, -0.00573702,
-0.01700949, 0.0003172, 0.01874463, 0.01480774, -0.01384414,
-0.00612229, 0.00565069, -0.01732042, 0.00195022, 0.01274919,
0.01080692, -0.01920946, -0.00795812, -0.01638088, -0.00148547,
0.01870203, 0.01399906, 0.00958245, 0.00941055, -0.00658938,
0.02153141, -0.01520018, -0.01545056, -0.00327682, 0.00024155,
-0.00606883, -0.00135896, 0.01406399, 0.00023136, -0.00163963],
dtype=float32),
array([0.00544287, 0.01555425, -0.00307019, 0.01717134, 0.00693973,
-0.0170452 , -0.00679161, -0.00333116, 0.00903156, -0.00295565,

20,00578579.0.01436892_0.02001157.-0.00213262.-0.01079166,

DEPT OF CSE-DATA SCIENCE, ATMECE Page 29

GEN AI LABORATORY BAIL657C

-0.007799 , -0.00751752, -0.01736892, 0.00095211, -0.01050753,
0.00615652, 0.01262798, -0.00638232, -0.01966911, 0.00394809,
-0.01237557, 0.0045896 , -0.00610946, 0.01346509, 0.00106505,
0.00631289, -0.00667795, -0.00218376, 0.01535427, 0.00144457,
-0.0117866 , -0.01405202, 0.00186158, 0.0125593, 0.0105592,
-0.01650265, 0.01693893, 0.0074757, 0.0163192, 0.02056517,
-0.01457632, -0.01834234, 0.01092377, 0.01994778, 0.00864314],
dtype=float32),
array([0.00373483, 0.01353383, 0.00585796, -0.01324683, 0.01500349,
-0.01261986, 0.01892563, 0.00698961, -0.0087639 , -0.01023367,
-0.00875896, -0.01318524, 0.01972703, -0.00463062, 0.01525868,
-0.01837575, 0.0055629 , -0.00126356, 0.01417167, -0.01969541,
0.01564029, -0.00948072, -0.0107858 , -0.01128642, -0.00610619,
-0.00604345, -0.00693252, -0.01396556, 0.00086967, -0.00136903,
-0.00358557, 0.00685404, -0.01432065, -0.00657563, 0.00952303,
0.01720192, -0.01858611, 0.01418636, 0.01038651, -0.00818817,
0.01832661, -0.01858529, 0.01404059, 0.01154918, 0.00326395,
-0.01036671, -0.00841038, -0.00736812, 0.00374052, 0.00413726],
dtype=float32),
array([0.00550566, 0.00103798, -0.00515228, 0.01945088, 0.00499871,
0.00736707,-0.0011947 , 0.00298867, 0.01247635, -0.00248031,
0.00660107, -0.00238972, 0.01178223, 0.00798718, 0.00505932,
-0.00936528, -0.00755702, 0.00989482, -0.01304692, -0.00193519,
-0.00039899, 0.0078729 , -0.01549838, 0.01741308, -0.0023178 ,
-0.00983727, 0.00754468, -0.0027872 , -0.01603217, -0.00921708,
-0.00134961, -0.01871502, 0.002125 , 0.00480915, -0.00744796,
0.00537565, 0.00629158, 0.01973929, 0.0024904, 0.00340102,
0.00710946, -0.00441335, -0.01761757, 0.01698 ,-0.0031966 ,
-0.0194808 , -0.01307702, -0.00849545, 0.00867249, 0.01145031],
dtype=float32),
array([0.00298495, -0.00700375, -0.01431873, -0.01400242, -0.01991 ,
-0.01428693, -0.00105788, -0.00551727, -0.0153189 , -0.0100668 ,
0.00858984, -0.01069687, 0.01958971, 0.00508815, -0.01531299,
0.02237322, 0.01962719, 0.01488377,-0.01710452, 0.00707861,
0.01021231, 0.01304598, 0.01277774, 0.00337116, -0.00486931,
0.01909359, 0.01800028, 0.01032766, -0.00758116, -0.00048564,
0.00164387, -0.0189941 , -0.01410591, -0.00047871, -0.00010738,
-0.01102702, -0.0061726 , -0.01550268, 0.0161471 , -0.00069464,
-0.00545253, 0.01093123, 0.01718066, -0.00617879, 0.0186232,
0.01143978, 0.01163601, -0.00062903, 0.01886317,-0.0114121],
dtype=float32),
array([-0.00976338, -0.00780081, 0.019559 , 0.01830878, -0.00654693,
0.01011876, 0.01784409, -0.00301464, 0.01761319, 0.01262996,
0.00393919, -0.00980376, -0.00886089, -0.00519702, 0.01557352,
-0.01077065, -0.00356288, 0.02101176, 0.00479641, 0.01005143,
-0.01529913, 0.00012613, 0.01357427,-0.01018804, 0.01573833,
0.02000298, -0.00148577, -0.00239202, -0.00189635, -0.01172749,
-0.01742925, -0.00479667, -0.00404787, 0.00869905, -0.01522061,
0.01094797, -0.01160657, -0.0163735 , 0.01649981, 0.01770434,
-0.00497504, 0.00637913,-0.01261914, -0.0161758 , -0.00964475,
0.01381735, 0.01255536, 0.01808335, 0.01568656, 0.01504712],
dtype=float32),
array([0.01492715, 0.01934095, 0.01774599, -0.00747902, 0.01891196,
-0.0020531, 0.01053821, 0.00635226, -0.00197045, 0.00632444,
-0.01059867, -0.01259004, -0.01428318, 0.00465197, 0.01267453,
~0.0028981, 0.00384051, 0.00779968, 0.01519439,-0.04727828,

DEPT OF CSE-DATA SCIENCE, ATMECE Page 30

GEN AI LABORATORY BAIL657C

0.00548228, -0.01392599, 0.00899558, 0.01923842, 0.01556924,
0.01372755, 0.01566461, 0.01412691, 0.01313736, 0.01728814,
-0.01028677, 0.01760968, 0.01114872, -0.00440745, 0.01607866,
0.01023387, 0.02058647, 0.00533376, 0.01917837, 0.00176341,
0.01960336, 0.0070012, 0.01266869, -0.00624314, 0.01447076,
0.01456392, -0.00432669, -0.00459186, 0.00780778, -0.01304201],
dtype=float32),
array([0.0158812, 0.0174168 , 0.00195527,-0.01554414, 0.01595952,
-0.00898288, 0.0134456, 0.01096715, 0.01782416, -0.02043355,
0.01853634, -0.02043897, -0.01187125, -0.01672532, -0.01152777,
0.01697107, 0.02129747, -0.00410723, 0.0053023 ,-0.01103053,
0.017639 , 0.01337754, 0.0028419 ,-0.00731513, -0.01343816,
0.01128781, 0.00173393, -0.00338352, 0.01469343, -0.00834176,
-0.01866035, -0.00566033, 0.00234445, -0.0135692 , -0.0126051 ,
-0.01704373, 0.02071049, 0.0147259 ,-0.00145971, 0.01323994,
0.01840546, -0.0020906 , 0.0126531, 0.0093615, 0.01196339,
0.01458218, -0.00961088, -0.00608193, 0.00305689, 0.01033708],
dtype=float32)]

Dimensionality reduction

pca = PCA(n_components=2)

reduced_vectors = pca.fit_transform(word_vectors)
reduced_vectors

Output:

array([[0.02688162, -0.00792018],
[0.00493226, -0.04934309],
[-0.00377306, -0.04936944],
[0.02256997, 0.03808062],
[-0.0355795 , -0.01066101],
[0.02682294, -0.01050709],
[0.01486912, 0.0443972],
[0.04605154, 0.01166099],
[-0.0482769 , -0.0079725],
[-0.05449799, 0.0416345 17)

Plot embeddings

plt.figure(figsize=(10, 8))

for i, word in enumerate(words_to_visualize):
plt.scatter(reduced_vectors|i, 0], reduced_vectors|i, 1])
plt.text(reduced_vectors[i, 0] + 0.002, reduced_vectors]i, 1], word, fontsize=12)

plt.title(" PCA Visualization of Legal Word Embeddings")

plt.xlabel("PCA Dimension 1'")

plt.ylabel("PCA Dimension 2'")

plt.show()

- — 1
DEPT OF CSE-DATA SCIENCE, ATMECE Page 31

GEN AI LABORATORY BAIL657C

Output:
PCA Visualization of Legal Word Embeddings
o blaintifidefendant
0.04
0.02 1
o e evidence e lawyer)
8 e court jury
Z
E
& 0.00 7
S
o
@ settlement
—0.02 A
@ agreement
—0.04 1 o damages
» contract
~0.04 —0.02 0.00 0.02 0.04

PCA Dimension 1

- — 1
DEPT OF CSE-DATA SCIENCE, ATMECE Page 32

GEN AI LABORATORY BAIL657C

Find similar words
similar_words = legal word2vec.wv.most_similar("lawyer", topn=5)

print(f'""Words similar to 'lawyer': {similar_words}")

Output:
Words similar to 'lawyer": [(‘carefully’, 0.29186686873435974), (‘claimed', 0.27888569235801697), (‘jury’,
0.21892617642879486), ('damages', 0.1961500644683838), ('negligence', 0.1820133775472641)]

Example: Legal and Medical / Healthcare Corpus
from gensim.models import Word2Vec

from gensim.utils import simple_preprocess
from sklearn.decomposition import PCA
import matplotlib.pyplot as plt

Enhanced legal and medical corpus
enhanced corpus = [
Legal domain
"The court ordered the immediate release of the detained individual due to lack of evidence.",
"A new amendment was introduced to ensure the protection of intellectual property rights.",
"The defendant pleaded not guilty, citing an alibi supported by credible witnesses.",
"The plaintiff accused the company of violating environmental regulations.",
"A settlement agreement was reached through arbitration, avoiding a lengthy trial.",
"The legal team presented a compelling argument to overturn the previous judgment.",
"Contractual obligations must be fulfilled unless waived by mutual consent.",
"The jury found the accused guilty of fraud and embezzlement.",
"The appeal was dismissed as the evidence presented was deemed inadmissible.",
"The attorney emphasized the importance of adhering to constitutional rights.",

Medical domain

"The patient was admitted to the emergency department with severe chest pain.",

"The surgeon successfully performed a minimally invasive procedure to remove the tumor.",
"Clinical trials showed significant improvement in patients treated with the experimental drug.",
"Regular screening is essential for early detection of chronic illnesses such as diabetes.",

"The doctor recommended physical therapy to improve mobility after surgery.",

"The hospital implemented stringent protocols to prevent the spread of infectious diseases.",
"The nurse monitored the patient's vital signs hourly to ensure stability.",

"Vaccination campaigns have drastically reduced the prevalence of polio worldwide.",

"The radiologist identified a small abnormality in the CT scan requiring further investigation.",
"Proper nutrition and exercise are vital components of a healthy lifestyle."

]

Preprocess the corpus
tokenized_corpus = [simple_preprocess(sentence) for sentence in enhanced_corpus|

tokenized_corpus

Output;
[['the’,

'court',

'ordered’,

'the’,

'immediate’,

'release’,
1

DEPT OF CSE-DATA SCIENCE, ATMECE Page 33

GEN AI LABORATORY BAIL657C

'of',
'the’,
'detained’,
'individual’,
'due’,
'tO',
'lack’,
'of',
'evidence'],
['new’,
'amendment’,
was',
'introduced',
'tO',
'ensure’,
'the’,
'protection’,
'of',
'intellectual’,
"property’,
'rights'],
['the',
'defendant’,
'pleaded’,
'not’,
'guilty’,
'citing',
'an',
'alibi’,
'supported’,
'by’,
'credible’,
'witnesses'],
['the',
'plaintiff’,
'accused’,
'the’,
'company’,
'of',
'violating',
'environmental’,
'regulations'],
['settlement’,
'agreement’,
'was',
'reached’,
'through',
'arbitration’,
'avoiding',
'lengthy",
'trial'],
1
DEPT OF CSE-DATA SCIENCE, ATMECE Page 34

GEN AI LABORATORY BAIL657C

['the',
"legal’,
'team’,
'presented’,
'‘compelling’,
'argument’,
'to',
'overturn',
'the’,
'previous’,
judgment'],
['contractual',
'obligations',
'must’,
'be',
'fulfilled',
'unless',
'waived',
'by’,
'mutual’,
'consent'],
['the',
Jury',
'found',
'the’,
'accused’,
'guilty’,
'of',
'fraud',
'and',
'embezzlement'],
['the',
'appeal’,
'was',
'dismissed',
'as',
'the’,
'evidence',
'presented’,
'was',
'deemed’,
'inadmissible'],
['the’,
'attorney’,
'emphasized',
'the’,
'importance’,
'of',
'adhering’,
'tO',
'constitutional’,

- — 1
DEPT OF CSE-DATA SCIENCE, ATMECE Page 35

GEN AI LABORATORY BAIL657C

'rights'],
['the’,
'patient’,
was',
'admitted’,

'the’,
'emergency’,
'department’,
'with',
'severe',
'chest',
'pain'],
['the',
'surgeon’,
'successfully’,
'‘performed’,
'minimally’,
'invasive',
'procedure’,
'to',
'remove',
'the’,
'tumor'],
['clinical',
'trials’,
'showed',
'significant’,
'improvement’,
'iIl',
'patients',
'treated’,
'with',
'the’,
'experimental’,
'dru gv] ,
['regular’,
'screening’,
'1s',
'essential',
'for',
‘early’,
'detection’,
'of',
'chronic',
'illnesses',
'such’,
'as’ ,
'diabetes'],
['the',
'doctor’,

DEPT OF CSE-DATA SCIENCE, ATMECE Page 36

GEN AI LABORATORY BAIL657C

'recommended’,
'physical’,
'therapy’,
'to',
'improve’',
'mobility’,
'after’,
'surgery'],
['the’,
'hospital’,
'implemented’,
'stringent’,
'protocols',
't O',
'prevent’,
'the’,
'spread’,
'of',
'infectious’,
'diseases'],
['the’,
'nurse’,
'monitored',
'the’,
'patient’,
'vital',
'signs’,
'hourly’,
'to',
'ensure’,
'stability'],
['vaccination',
'campaigns',
'have',
'drastically’,
'reduced’,
'the’,
'prevalence’,
'of',
'polio’,
'worldwide'],
['the’,
'radiologist',
'identified',
'small',
'abnormality’,
'in',
'the’,
'ct',
'scan’,
'requiring’,
I

DEPT OF CSE-DATA SCIENCE, ATMECE Page 37

GEN AI LABORATORY BAIL657C

'further’,
'investigation'],
['proper’,
'nutrition',
'and',
'exercise’,
'are’,

'vital',
'components',
'of’,

'healthy’',
"lifestyle']]

Train Word2Vec
domain_word2vec = Word2Vec(
sentences=tokenized_corpus,
vector_size=100, # Higher embedding dimension for better representation
window=5, # Wider context window
min_count=1, # Include all words
sg=1, # SKkip-gram model
epochs=150 # More training iterations

)

Save the model
domain_word2vec.save("enhanced domain_word2vec.model")

Analyze embeddings: Get vectors for specific words
words_to_analyze = " court", "plaintiff", "doctor", "patient", "guilty", "surgery"|
for word in words_to_analyze:
if word in domain_word2vec.wv:
print(f''Vector embedding for '{word}':\n{domain_word2vec.wv[word|}\n")
else:
print(f"Word '{word}' not found in the Word2Vec model.")

output;

Vector embedding for 'court":
[-0.00520213 0.05436571 0.0196009 0.00766893 0.04851889 -0.22194375
0.15068555 0.2671535 -0.16717364 -0.04062838 -0.054865 -0.17729442
-0.06285486 0.16066416 0.00799252 0.00430546 -0.04130681 -0.11852198
-0.11586928 -0.32001996 0.07377547 0.00634967 0.01555517 -0.04018658
-0.05180506 -0.06574838 0.01809591 -0.04998898 -0.05094941 0.00987862
0.17092119-0.03111312 0.12419216 -0.07877786 -0.07952873 0.22328345
0.12608306 -0.0951244 -0.07667849 -0.1501351 0.04725789 -0.15457962
-0.06896634 0.13114625 0.11142956 0.03642106 -0.06946036 -0.02198208
0.01422113 0.05933676 0.09983439 -0.12603386 0.07056595 0.02597529
-0.02668819 0.0757888 -0.00033602 0.05289464 -0.16172495 0.12800941
0.07429419 0.10103885 0.08504409 -0.01794797 -0.06241613 0.14987893
0.15474467 0.18398537 -0.17408288 0.13962157 -0.11823418 0.09919562
0.07957372 -0.05181967 0.15559544 0.0681076 -0.0985308 0.02557893
-0.11090399 -0.02128516 -0.01085772 0.11211726 -0.14611867 0.20995773
-0.10311343 0.06910679 0.14604773 0.10655196 0.10023539 -0.02284993

- — 1
DEPT OF CSE-DATA SCIENCE, ATMECE Page 38

GEN AI LABORATORY BAIL657C

0.14183174 0.13799591 0.00409749 0.11127966 0.21348046 0.03055387
0.11364785 -0.1445034 0.11242675 -0.04190433]

Vector embedding for "plaintiff':

[-0.03223411 0.06478627 0.00088969 -0.00806353 0.05694845 -0.21240263
0.13640128 0.26523107 -0.13281158 -0.04770363 -0.02368818 -0.1402928
-0.03685566 0.12257947 0.00039671 0.00741028 -0.01043882 -0.11464308
-0.09540985 -0.3000543 0.0647751 0.00074026 0.00411286 -0.05273201
-0.02684729 -0.04762366 0.02497391 -0.04300669 -0.04396778 -0.00184753
0.14383827 -0.04924785 0.08860843 -0.08550214 -0.06152922 0.24551614
0.10724474 -0.13455397 -0.05984696 -0.15700217 0.02755019 -0.14089336
-0.07535081 0.0659988 0.11539416 0.020872 -0.05348673 -0.02727061
0.01346072 0.03318129 0.09382757 -0.10529419 0.0414049 0.07656677
-0.01830849 0.07164428 0.01196256 0.05545417 -0.13542365 0.1291954
0.08052401 0.06550701 0.09594982 -0.03788032 -0.07346537 0.16846505
0.13681169 0.14530386 -0.15170906 0.14640196 -0.09068518 0.0789521
0.05557212 -0.02400086 0.11684093 0.06631403 -0.11164055 0.01440321
-0.10535935 -0.00458972 -0.02664629 0.1090111 -0.12968238 0.18052402
-0.09392222 0.08443088 0.12474449 0.09482376 0.11001488 -0.01367659
0.12273199 0.1101999 0.02236929 0.09491293 0.19617565 0.01282949
0.11568122-0.1593218 0.10664962 -0.04113806]

Vector embedding for 'doctor':
[-3.76006439¢-02 8.11468363e-02 -1.18198330e-02 1.22082625¢-02
5.35595044¢-03 -2.21441105¢-01 1.31108329¢-01 3.10447901e-01
-2.11071640e-01 7.52886664¢-03 -6.67306557¢-02 -1.76628768e-01
-4.83631082¢-02 1.88437983e-01 -2.80619003e-02 3.20329741e-02
-2.19840016¢-02 -1.36392176¢-01 -1.02166705¢-01 -3.58890593¢-01
4.39012572e-02 4.81801666e-03 1.11632412¢-02 -6.98464885¢-02
-4.50425185¢e-02 -4.01994735¢-02 -6.03534980e-04 -7.15099052¢-02
-7.36634061e-02 2.14629583e-02 2.10165456¢-01 -6.25279024¢-02
1.19931854e-01 -1.26935437¢-01 -8.21741298¢-02 2.74210095¢-01
9.49538499¢-02 -1.17289513e-01 -9.49264839¢-02 -1.75545543¢-01
3.37264240e-02 -2.08480164¢-01 -8.98559391e-02 1.35834515¢-01
1.21459514e-01 5.26671447¢-02 -7.85357356¢-02 -1.38883330e-02
3.44770006e-03 5.95685691e-02 1.30519092¢-01 -1.28386602¢-01
9.01534930e-02 7.31256530e-02 -1.94634255¢-02 1.17376871e-01
1.67697188e-04 4.33479100e-02 -1.57258630e-01 1.38467610e-01
8.46170783e-02 7.77027458e-02 8.34437460e-02 -2.43678018¢-02
-8.29226896¢-02 1.89361051e-01 1.67503580e-01 2.07188442¢-01
-1.92358971e-01 1.90954044¢-01 -8.66395757e-02 8.63512680e-02
8.16990361¢-02 -2.30716318e-02 1.48350254¢-01 9.33871120e-02
-1.03444301e-01 3.32759172e-02 -1.03499167e-01 2.95007881¢-02
-4.18480560e-02 1.48850128e-01 -1.25358477e-01 2.33333096¢-01
-1.20942295¢-01 1.06142171e-01 1.28692985e-01 1.23203449¢-01
1.00113675e-01 -1.41250789¢-02 1.63177848¢-01 1.50014937¢-01
-1.95683893¢-02 1.19940504e-01 2.54336447¢-01 2.12510210e-02
1.35626718e-01 -1.89367294e-01 1.02768317¢-01 -7.30541497¢-02]

Vector embedding for 'patient':

[0.00135616 0.06625096 0.02714886 -0.03324671 0.05406597 -0.2076351
0.14450136 0.27830392 -0.1474757 -0.05214735 -0.02860676 -0.218962
-0.05803476 0.11022121 -0.03196976 0.0245685 0.0070367 -0.12605277
-0.11396559 -0.3183468 0.07659787 0.01132763 0.00593386 -0.04407553
-0.05708291 -0.05022431 0.03657781 -0.05108569 -0.0220301 0.00680075

0.14817646 -0.03874053 0.13069744 -0.11300313 -0.10196024 0.2306353
-

DEPT OF CSE-DATA SCIENCE, ATMECE Page 39

GEN AI LABORATORY BAIL657C

0.13352849 -0.12474146 -0.07811124 -0.14196448 0.03165774 -0.15317255
-0.04029788 0.10843351 0.11978162 0.03644174 -0.07184896 -0.00125591
0.01996329 0.04686815 0.12031849 -0.13361286 0.07784432 0.03898075
-0.05535794 0.07788541 0.02375661 0.06319185-0.13593689 0.13807625
0.04011758 0.07736681 0.10920981 -0.01097703 -0.08413535 0.1694132

0.1142689 0.17812304 -0.16391632 0.13841556 -0.08013699 0.09719803
0.07872047 -0.04311903 0.14359443 0.06323478 -0.05998136 0.03068179
-0.10644887 0.00854869 -0.04508544 0.13762434 -0.12336963 0.1855616

-0.11391655 0.09752344 0.1405091 0.12214459 0.11253129 -0.01929942
0.13898279 0.15566415 0.01292162 0.08838749 0.19901091 0.03416261
0.12509196 -0.13636002 0.11566975 -0.02010318]

Vector embedding for 'guilty":

[-0.01413389 0.06656995 -0.00734866 -0.03095385 0.06509437 -0.2517697
0.14954449 0.29895368 -0.15728544 -0.07182206 -0.06310162 -0.20050046
-0.08547995 0.15693647 -0.0186175 0.01778842 -0.05446635 -0.12549472
-0.11124176 -0.31952748 0.03580405 0.01365704 0.03395955 -0.03605738
-0.06030127 -0.04814158 0.03859452 -0.09555041 -0.05513439 0.0372526

0.19865839 -0.07835107 0.10888778 -0.11142128 -0.10577497 0.29005775
0.11180676 -0.13126965 -0.07538164 -0.1596524 0.06402622 -0.17310387
-0.09087672 0.04137763 0.09426072 0.02597058 -0.06627226 -0.02641308
0.03379544 0.0561525 0.13159601 -0.16362782 0.08867155 0.10736878

-0.04391972 0.10295371 0.04891674 0.00565069 -0.163432 0.08589575

0.1108232 0.05997586 0.11241774 -0.04420831 -0.06642649 0.15975468
0.1490166 0.12801382-0.21193038 0.1502985 -0.10489336 0.09517636

0.0673286 -0.03900745 0.15302955 0.0800889 -0.13577344 0.05731111

-0.12092727 0.00424497 -0.00455176 0.11054221 -0.15298396 0.20722686
-0.15278348 0.03610937 0.10936919 0.14354476 0.09363212 -0.00813364
0.1714467 0.15730394 -0.02156785 0.11239511 0.24912179 0.03659537

0.0892475 -0.202413 0.11249497 -0.05155509]

Vector embedding for 'surgery':
[-3.12990844¢-02 6.58327192¢-02 2.85430159¢-03 1.10345073¢-02
-7.04743201¢-03 -2.36223593e-01 1.33402810e-01 3.03116202¢-01
-2.05681935¢-01 6.48758421e-03 -8.28733593e-02 -1.69779241e-01
-5.81854694¢-02 1.80510432¢-01 -4.00698669¢-02 3.47116366¢-02
-1.62971541¢-02 -1.29537463¢-01 -9.92213637¢-02 -3.68670791e-01
4.55319285¢-02 8.06765445¢e-03 -1.78291200e-04 -6.00495152¢-02
-5.73267005¢-02 -4.28762138e-02 -3.84912407¢-03 -6.40033185¢-02
-7.08072856¢-02 4.36537573e-03 2.26468816e-01 -4.98397388¢-02
1.30335823e-01 -1.16139121e-01 -8.42535719¢-02 2.86336660e-01
1.00505255e-01 -1.20256521e-01 -9.17292535e-02 -1.76113561e-01
2.96843071e-02 -2.00398415¢e-01 -9.28441510e-02 1.45912632¢-01
1.11865871e-01 5.49624115e-02 -6.89490139¢-02 -1.83873083¢-02
-1.00601949¢-02 6.59109801e-02 1.25353217¢-01 -1.26397550e-01
9.62558836e-02 5.71697466¢-02 -2.06405111e-02 1.16529934¢-01
-8.17977940e-04 2.92389747¢-02 -1.62125885¢e-01 1.34710684¢-01
6.75722361e-02 8.40188041e-02 8.42126012¢-02 -1.94504112¢-02
-1.00880139¢-01 1.89215228e-01 1.60290688e-01 2.12331533¢-01
-2.03707144¢-01 2.01542258e-01 -9.25249755¢e-02 9.14819315¢-02
8.59961137e-02 -2.71495730e-02 1.61703631e-01 9.22792554¢-02
-1.11497119¢-01 5.09562343¢-02 -1.00743666e-01 3.40460427¢-02
-5.15895225¢-02 1.68939248e-01 -1.28210068e-01 2.49226272¢-01
-1.33621320e-01 1.16187118e-01 1.42963469¢-01 1.47219375¢-01

DEPT OF CSE-DATA SCIENCE, ATMECE Page 40

GEN AI LABORATORY BAIL657C

1.09663606e-01 5.80039807¢-03 1.60661057e-01 1.45263568e-01
-1.83158442¢-02 1.16535008e-01 2.47885883e-01 1.26237087e-02
1.36337191e-01 -1.75651938e-01 1.01963326e-01 -7.20273107e-02]

Visualization using PCA

selected_words = ["court", "plaintiff", "defendant", "guilty", "jury",
"patient", "doctor", "hospital", "surgery", ""emergency"]

word_vectors = [domain_word2vec.wv[word] for word in selected_words|

word_vectors

Output:

[array([-0.00520213, 0.05436571, 0.0196009 , 0.00766893, 0.04851889,
-0.22194375, 0.15068555, 0.2671535,-0.16717364, -0.04062838,
-0.054865 ,-0.17729442, -0.06285486, 0.16066416, 0.00799252,
0.00430546, -0.04130681, -0.11852198, -0.11586928, -0.32001996,
0.07377547, 0.00634967, 0.01555517,-0.04018658, -0.05180506,
-0.06574838, 0.01809591, -0.04998898, -0.05094941, 0.00987862,
0.17092119,-0.03111312, 0.12419216, -0.07877786, -0.07952873,
0.22328345, 0.12608306, -0.0951244 , -0.07667849, -0.1501351 ,

0.04725789, -0.15457962, -0.06896634, 0.13114625, 0.11142956,
0.03642106, -0.06946036, -0.02198208, 0.01422113, 0.05933676,
0.09983439, -0.12603386, 0.07056595, 0.02597529, -0.02668819,
0.0757888 , -0.00033602, 0.05289464, -0.16172495, 0.12800941,
0.07429419, 0.10103885, 0.08504409, -0.01794797, -0.06241613,
0.14987893, 0.15474467, 0.18398537, -0.17408288, 0.13962157,
-0.11823418, 0.09919562, 0.07957372, -0.05181967, 0.15559544,
0.0681076 , -0.0985308 , 0.02557893, -0.11090399, -0.02128516,
-0.01085772, 0.11211726,-0.14611867, 0.20995773, -0.10311343,
0.06910679, 0.14604773, 0.10655196, 0.10023539, -0.02284993,
0.14183174, 0.13799591, 0.00409749, 0.11127966, 0.21348046,
0.03055387, 0.11364785, -0.1445034 , 0.11242675, -0.04190433],
dtype=float32),

array([-0.03223411, 0.06478627, 0.00088969, -0.00806353, 0.05694845,
-0.21240263, 0.13640128, 0.26523107,-0.13281158, -0.04770363,
-0.02368818, -0.1402928 , -0.03685566, 0.12257947, 0.00039671,

0.00741028, -0.01043882, -0.11464308, -0.09540985, -0.3000543 ,
0.0647751, 0.00074026, 0.00411286, -0.05273201, -0.02684729,
-0.04762366, 0.02497391, -0.04300669, -0.04396778, -0.00184753,
0.14383827, -0.04924785, 0.08860843, -0.08550214, -0.06152922,
0.24551614, 0.10724474, -0.13455397, -0.05984696, -0.15700217,
0.02755019, -0.14089336, -0.07535081, 0.0659988, 0.11539416,
0.020872 , -0.05348673, -0.02727061, 0.01346072, 0.03318129,
0.09382757, -0.10529419, 0.0414049, 0.07656677, -0.01830849,
0.07164428, 0.01196256, 0.05545417, -0.13542365, 0.1291954 ,
0.08052401, 0.06550701, 0.09594982, -0.03788032, -0.07346537,
0.16846505, 0.13681169, 0.14530386, -0.15170906, 0.14640196,
-0.09068518, 0.0789521, 0.05557212, -0.02400086, 0.11684093,
0.06631403, -0.11164055, 0.01440321, -0.10535935, -0.00458972,
-0.02664629, 0.1090111 ,-0.12968238, 0.18052402, -0.09392222,
0.08443088, 0.12474449, 0.09482376, 0.11001488, -0.01367659,
0.12273199, 0.1101999, 0.02236929, 0.09491293, 0.19617565,
0.01282949, 0.11568122, -0.1593218 , 0.10664962, -0.04113806],
dtype=float32),
array([0.00656709, 0.07256435, -0.0084228 , -0.02586134, 0.07641555,
-0.2732658, 0.1540303, 0.32865882, -0.17496191, -0.06661771,

-0.06085587, -0.22411431, -0.08474998, 0.18789086, -0.02127556,
-

DEPT OF CSE-DATA SCIENCE, ATMECE Page 41

GEN AI LABORATORY BAIL657C

0.03096173, -0.05577651, -0.12937057, -0.11135948, -0.36175218,
0.04432205, 0.00878906, 0.02296932, -0.05328603, -0.07712711,
-0.06075291, 0.04381331, -0.10575836, -0.06409874, 0.04152325,
0.21431115, -0.08531993, 0.14578514, -0.11424538, -0.11725931,
0.29418284, 0.10676998, -0.15401532, -0.09160217, -0.16645099,
0.06118093, -0.19756706, -0.08612581, 0.06556768, 0.1085471 ,
0.04415575, -0.06776308, -0.04802901, 0.04284215, 0.0638606 ,
0.13356939, -0.17036071, 0.08767819, 0.10464148, -0.03167466,
0.11624619, 0.03233933, 0.01407737, -0.15678538, 0.10963659,
0.11469187, 0.07420997, 0.09665452, -0.03110271, -0.07621247,
0.17188032, 0.18252161, 0.14339091, -0.22514871, 0.18041831,
-0.12061799, 0.07872933, 0.06301736, -0.04593184, 0.16801536,
0.08114434, -0.13756713, 0.06104114, -0.13863237, 0.01738747,
-0.01658883, 0.13528904, -0.1735411, 0.24808215, -0.17541201,
0.04516907, 0.11772847, 0.14438275, 0.12152614, -0.00914207,
0.16980448, 0.15530077, -0.0296784 , 0.13635741, 0.24644977,
0.03516944, 0.11169897, -0.21215999, 0.10724142, -0.03329436],
dtype=float32),
array([-0.01413389, 0.06656995, -0.00734866, -0.03095385, 0.06509437,
-0.2517697, 0.14954449, 0.29895368, -0.15728544, -0.07182206,
-0.06310162, -0.20050046, -0.08547995, 0.15693647, -0.0186175 ,
0.01778842, -0.05446635, -0.12549472, -0.11124176, -0.31952748,
0.03580405, 0.01365704, 0.03395955, -0.03605738, -0.06030127,
-0.04814158, 0.03859452, -0.09555041, -0.05513439, 0.0372526,
0.19865839, -0.07835107, 0.10888778, -0.11142128, -0.10577497,
0.29005775, 0.11180676, -0.13126965, -0.07538164, -0.1596524 ,
0.06402622, -0.17310387, -0.09087672, 0.04137763, 0.09426072,
0.02597058, -0.06627226, -0.02641308, 0.03379544, 0.0561525,
0.13159601, -0.16362782, 0.08867155, 0.10736878, -0.04391972,
0.10295371, 0.04891674, 0.00565069, -0.163432 , 0.08589575,
0.1108232, 0.05997586, 0.11241774, -0.04420831, -0.06642649,
0.15975468, 0.1490166, 0.12801382, -0.21193038, 0.1502985 ,
-0.10489336, 0.09517636, 0.0673286, -0.03900745, 0.15302955,
0.0800889 , -0.13577344, 0.05731111, -0.12092727, 0.00424497,
-0.00455176, 0.11054221, -0.15298396, 0.20722686, -0.15278348,
0.03610937, 0.10936919, 0.14354476, 0.09363212, -0.00813364,
0.1714467, 0.15730394, -0.02156785, 0.11239511, 0.24912179,
0.03659537, 0.0892475 ,-0.202413 , 0.11249497, -0.05155509],
dtype=float32),
array([-0.00793692, 0.04061861, -0.01272589, -0.0216382, 0.05832693,
-0.20959468, 0.1335544, 0.23678838, -0.1236183 , -0.03556946,
-0.02290245, -0.1449683 , -0.06467045, 0.1215817 , -0.01873406,
0.01126286, -0.01548086, -0.10774158, -0.09506714, -0.26566857,
0.04896098, -0.00084279, 0.01825006, -0.05337542, -0.03144738,
-0.05701503, 0.03505556, -0.05904163, -0.04336127, -0.00061382,
0.16488056, -0.05326047, 0.09773479, -0.07977082, -0.06476859,
0.22621374, 0.09030687, -0.11633091, -0.06397521, -0.13930038,
0.04200654, -0.13733749, -0.06120953, 0.06062739, 0.0891199,
0.02058195, -0.06635275, -0.00753717, 0.01779128, 0.05422449,
0.10981765, -0.1124575, 0.06291748, 0.08702539, -0.03922568,
0.08803029, 0.03010272, 0.03673965, -0.13025954, 0.10378475,
0.07686505, 0.06131725, 0.09677017, -0.02306653, -0.05867948,
0.14983074, 0.11522046, 0.13194208, -0.16845842, 0.130707 ,
-0.09688476, 0.0888531, 0.05799359, -0.03768088, 0.1355294 ,
0.04766061, -0.1006932 , 0.02873053, -0.10280664, -0.01355723,

-0.0322897, 0.125441 ,-0.13379173, 0.1888993 , -0.1090064 ,
-

DEPT OF CSE-DATA SCIENCE, ATMECE Page 42

GEN AI LABORATORY BAIL657C

0.05351871, 0.11118538, 0.09934786, 0.08427987, -0.01916844,
0.11553331, 0.12629525, -0.00194136, 0.09477089, 0.19319633,
0.01517526, 0.08618706, -0.15499583, 0.09854038, -0.04697568],
dtype=float32),
array([0.00135616, 0.06625096, 0.02714886, -0.03324671, 0.05406597,
-0.2076351, 0.14450136, 0.27830392, -0.1474757 , -0.05214735,
-0.02860676, -0.218962 , -0.05803476, 0.11022121, -0.03196976,
0.0245685, 0.0070367 , -0.12605277, -0.11396559, -0.3183468 ,
0.07659787, 0.01132763, 0.00593386, -0.04407553, -0.05708291,
-0.05022431, 0.03657781, -0.05108569, -0.0220301 , 0.00680075,
0.14817646, -0.03874053, 0.13069744, -0.11300313, -0.10196024,
0.2306353, 0.13352849, -0.12474146, -0.07811124, -0.14196448,
0.03165774, -0.15317255, -0.04029788, 0.10843351, 0.11978162,
0.03644174, -0.07184896, -0.00125591, 0.01996329, 0.04686815,
0.12031849, -0.13361286, 0.07784432, 0.03898075, -0.05535794,
0.07788541, 0.02375661, 0.06319185, -0.13593689, 0.13807625,
0.04011758, 0.07736681, 0.10920981, -0.01097703, -0.08413535,
0.1694132, 0.1142689, 0.17812304, -0.16391632, 0.13841556,
-0.08013699, 0.09719803, 0.07872047, -0.04311903, 0.14359443,
0.06323478, -0.05998136, 0.03068179, -0.10644887, 0.00854869,
-0.04508544, 0.13762434,-0.12336963, 0.1855616, -0.11391655,
0.09752344, 0.1405091, 0.12214459, 0.11253129, -0.01929942,
0.13898279, 0.15566415, 0.01292162, 0.08838749, 0.19901091,
0.03416261, 0.12509196, -0.13636002, 0.11566975, -0.02010318],
dtype=float32),
array([-3.76006439¢-02, 8.11468363e-02, -1.18198330e-02, 1.22082625¢-02,
5.35595044e-03, -2.21441105e-01, 1.31108329¢-01, 3.10447901e-01,
-2.11071640e-01, 7.52886664¢-03, -6.67306557¢e-02, -1.76628768e-01,
-4.83631082e-02, 1.88437983e-01, -2.80619003e-02, 3.20329741e-02,
-2.19840016e-02, -1.36392176e-01, -1.02166705e-01, -3.58890593¢-01,
4.39012572e-02, 4.81801666e-03, 1.11632412e-02, -6.98464885¢e-02,
-4.50425185e-02, -4.01994735e-02, -6.03534980e-04, -7.15099052¢-02,
-7.36634061e-02, 2.14629583e-02, 2.10165456e-01, -6.25279024e-02,
1.19931854e-01, -1.26935437e-01, -8.21741298e-02, 2.74210095¢-01,
9.49538499¢-02, -1.17289513e-01, -9.49264839¢-02, -1.75545543e-01,
3.37264240e-02, -2.08480164¢-01, -8.98559391e-02, 1.35834515¢e-01,
1.21459514e-01, 5.26671447¢-02, -7.85357356e-02, -1.38883330e-02,
3.44770006e-03, 5.95685691e-02, 1.30519092e-01, -1.28386602¢-01,
9.01534930e-02, 7.31256530e-02, -1.94634255e-02, 1.17376871e-01,
1.67697188e-04, 4.33479100e-02, -1.57258630e-01, 1.38467610e-01,
8.46170783e-02, 7.77027458e-02, 8.34437460e-02, -2.43678018e-02,
-8.29226896e-02, 1.89361051e-01, 1.67503580e-01, 2.07188442¢-01,
-1.92358971e-01, 1.90954044¢-01, -8.66395757e-02, 8.63512680e-02,
8.16990361e-02, -2.30716318e-02, 1.48350254e-01, 9.33871120e-02,
-1.03444301e-01, 3.32759172e-02, -1.03499167¢-01, 2.95007881e-02,
-4.18480560e-02, 1.48850128e-01, -1.25358477e-01, 2.33333096e-01,
-1.20942295e-01, 1.06142171e-01, 1.28692985e-01, 1.23203449¢-01,
1.00113675e-01, -1.41250789¢-02, 1.63177848e-01, 1.50014937¢-01,
-1.95683893e-02, 1.19940504e-01, 2.54336447¢-01, 2.12510210e-02,
1.35626718e-01, -1.89367294¢-01, 1.02768317e-01, -7.30541497¢-02],
dtype=float32),
array([-0.02265889, 0.05778723, -0.01179005, -0.00284239, 0.04882376,
-0.23377152, 0.13176689, 0.3085964 , -0.16563822, -0.00594464,
-0.06069683, -0.16251391, -0.04316762, 0.19339406, -0.00984798,
0.00349556, -0.03423214, -0.15440044, -0.15881209, -0.36713216,

0.0536154 , -0.02835809, -0.01769544, -0.04901092, -0.05845137,
-

DEPT OF CSE-DATA SCIENCE, ATMECE Page 43

GEN AI LABORATORY BAIL657C

-0.06207271, 0.01982044, -0.07527879, -0.0646024 , 0.04246312,
0.17291646, -0.03934861, 0.15174052,-0.11018316, -0.1073219 ,
0.25728288, 0.10440008, -0.15727909, -0.0763182 , -0.1741864 ,
0.02225032, -0.2151592 , -0.09898599, 0.08515406, 0.14156315,
0.04146844, -0.080073 , -0.02897993, 0.03221606, 0.05149914,
0.13052906, -0.13760065, 0.0776631, 0.07678478, -0.00785946,
0.10275181, -0.01308092, 0.06987558, -0.16492371, 0.15031946,
0.07514932, 0.06996216, 0.08479748, 0.00843247, -0.08604642,
0.19633524, 0.18013164, 0.14563482, -0.19318359, 0.18252854,
-0.10180707, 0.07443867, 0.04677813,-0.07124216, 0.16272344,
0.05405647,-0.0953992 , 0.04183496, -0.10839124, -0.01641163,
-0.00933946, 0.11554954,-0.13658553, 0.22137882, -0.13358647,
0.06070266, 0.13194123, 0.11046906, 0.12901476, -0.01263191,
0.16108233, 0.17001428, 0.02732584, 0.10106397, 0.21696223,
0.00993073, 0.13067529, -0.19392748, 0.11318995, -0.02350748],
dtype=float32),
array([-3.12990844¢-02, 6.58327192¢-02, 2.85430159¢-03, 1.10345073¢-02,
-7.04743201e-03, -2.36223593e-01, 1.33402810e-01, 3.03116202¢-01,
-2.05681935¢-01, 6.48758421e-03, -8.28733593e-02, -1.69779241¢-01,
-5.81854694¢-02, 1.80510432¢-01, -4.00698669¢-02, 3.47116366¢-02,
-1.62971541e-02, -1.29537463e-01, -9.92213637e-02, -3.68670791e-01,
4.55319285¢-02, 8.06765445¢-03, -1.78291200e-04, -6.00495152¢-02,
-5.73267005e-02, -4.28762138e-02, -3.84912407¢e-03, -6.40033185¢-02,
-7.08072856e-02, 4.36537573e-03, 2.26468816e-01, -4.98397388e-02,
1.30335823e-01, -1.16139121e-01, -8.42535719¢-02, 2.86336660e-01,
1.00505255¢-01, -1.20256521e-01, -9.17292535¢-02, -1.76113561e-01,
2.96843071e-02, -2.00398415e-01, -9.28441510e-02, 1.45912632¢-01,
1.11865871e-01, 5.49624115e-02, -6.89490139¢-02, -1.83873083¢-02,
-1.00601949¢-02, 6.59109801e-02, 1.25353217e-01, -1.26397550e-01,
9.62558836e-02, 5.71697466e-02, -2.06405111e-02, 1.16529934e-01,
-8.17977940e-04, 2.92389747e-02, -1.62125885¢e-01, 1.34710684¢-01,
6.75722361e-02, 8.40188041e-02, 8.42126012¢-02, -1.94504112¢-02,
-1.00880139¢-01, 1.89215228e-01, 1.60290688e-01, 2.12331533¢-01,
-2.03707144e-01, 2.01542258e-01, -9.25249755e-02, 9.14819315¢-02,
8.59961137¢-02, -2.71495730e-02, 1.61703631e-01, 9.22792554¢-02,
-1.11497119¢-01, 5.09562343¢-02, -1.00743666¢-01, 3.40460427e-02,
-5.15895225e-02, 1.68939248e-01, -1.28210068e-01, 2.49226272¢-01,
-1.33621320e-01, 1.16187118e-01, 1.42963469¢-01, 1.47219375e-01,
1.09663606e-01, 5.80039807¢-03, 1.60661057¢-01, 1.45263568e-01,
-1.83158442¢-02, 1.16535008e-01, 2.47885883e-01, 1.26237087e-02,
1.36337191e-01, -1.75651938e-01, 1.01963326e-01, -7.20273107e-02],
dtype=float32),
array([-0.01135001, 0.05962004, 0.03272124,-0.01768819, 0.04998965,
-0.20870571, 0.14685056, 0.2836007 , -0.18323691, -0.03109219,
-0.03263121, -0.22973996, -0.04514541, 0.15115191, -0.02573079,
0.00774679, -0.00233633, -0.1304845 , -0.14386515, -0.31636477,
0.06311441, 0.00088838, -0.02058102, -0.03525062, -0.05741948,
-0.08361816, 0.04948161, -0.06476792, -0.02724299, 0.00202177,
0.18204965, -0.03211843, 0.15414716, -0.11622933, -0.12767726,
0.25150353, 0.13327569, -0.16982682, -0.09414072, -0.16327456,
0.01518478, -0.16644533, -0.0390787 , 0.10758833, 0.1320721,
0.01700985, -0.06482255, -0.01300713, 0.01951688, 0.04992113,
0.12908201, -0.15448081, 0.05776305, 0.0506245 , -0.04097727,
0.08827188, 0.02562736, 0.04502805, -0.13268901, 0.15970598,
0.0415643 , 0.10894849, 0.1138011 ,-0.03124123, -0.09126465,

0.17592564, 0.11290699, 0.18183088, -0.17974737, 0.15896654,
-

DEPT OF CSE-DATA SCIENCE, ATMECE Page 44

GEN AI LABORATORY BAIL657C

-0.07602367, 0.10534283, 0.06435065, -0.05782789, 0.17650633,
0.06925058, -0.07527371, 0.04818593, -0.11926682, -0.00753901,
-0.03426384, 0.13999003, -0.1504484 , 0.19165526, -0.14357014,
0.09853069, 0.1328372, 0.13577645, 0.12897931, -0.0323601 ,
0.11762244, 0.17293827, -0.00854158, 0.07778574, 0.22550419,
0.03845395, 0.1585336,-0.14676552, 0.14424598, -0.03719835],
dtype=float32)]

pca = PCA(n_components=2)
reduced_vectors = pca.fit_transform(word_vectors)

reduced_vectors

Output:

array([[0.06908131, 0.0287464],
[0.14953919, -0.01964696],
[-0.16693931, -0.13033459],
[-0.0674262 , -0.16882876],
[0.1574409 , -0.07644414],
[0.11961383, 0.04956438],
[-0.1142199, 0.10011148],
[-0.06259862, 0.0240761],
[-0.12848931, 0.12535115],
[0.04399811, 0.06740492]

- — 1
DEPT OF CSE-DATA SCIENCE, ATMECE Page 45

GEN AI LABORATORY BAIL657C

plt.figure(figsize=(12, 8))

for i, word in enumerate(selected_words):

plt.scatter(reduced_vectors|i, 0], reduced_vectors|i, 1])
plt.text(reduced_vectors[i, 0] + 0.002, reduced_vectors]i, 1], word, fontsize=12)
plt.title("PCA Visualization of Legal and Medical Word Embeddings")
plt.xlabel("PCA Dimension 1'")

plt.ylabel("PCA Dimension 2'")

plt.show()
Output:
PCA Visualization of Legal and Medical Word Embeddings
surgery
0.10 4 s doctor
semergency
0.05 - epatient
ghospital RPN
™~
= 0.00 A
=
W . i
g gPlaintiff
o
<
& —0.05 -
siury
—0.10 1
gdefendant
-0.15 1
eQuilty
—0{15 —0510 —0505 o.loo 0.65 o.llo 0.|15

PCA Dimension 1

- — 1
DEPT OF CSE-DATA SCIENCE, ATMECE Page 46

GEN AI LABORATORY BAIL657C

Program 4
Use word embeddings to improve prompts for Generative Al model. Retrieve similar words
using word embeddings. Use the similar words to enrich a GenAl prompt. Use the Al model to
generate responses for the original and enriched prompts. Compare the outputs in terms of detail

Theory:

This program demonstrates how word embeddings can be used to improve Generative Al responses
by replacing specific words in a prompt with their most semantically similar words. The enriched
prompt is then compared with the original prompt in terms of

response detail and relevance.

The program utilizes three main concepts:

1.1 Word Embeddings (GloVe)

Word embeddings convert words into vector representations such that similar words have
closer vector distances in the embedding space.

The model glove-wiki-gigaword-100 provides 100-dimensional word vectors pre-trained
on Wikipedia and Gigaword data.

1.2 Generative Al Model (GPT-2)

GPT-2 (a Transformer-based model) is a Generative Al model capable of autocompleting
text.

It predicts the next word in a sequence based on context.

The model is pre-trained on large internet-based datasets.

It generates text using context from the input prompt.

1.3 Prompt Enrichment with Word2Vec

The program replaces a user-defined keyword with its most semantically similar word
(found using word embeddings).

This helps enhance the prompt and produce a more detailed and meaningful Al-generated
response.

Steps Involved in Execution

Step 1: Import Necessary Libraries

pip install transformers —U

Output:

Defaulting to user installation because normal site-packages is not writeable

Requirement already satisfied: transformers in c:\users\anitha d b\appdata\roaming\python\python311\site-
packages (4.48.3)

Requirement already satisfied: filelock in c:\users\anitha d b\appdata\roaming\python\python311\site-
packages (from transformers) (3.17.0)

Requirement already satisfied: huggingface-hub<1.0,>=0.24.0 in c:\users\anitha d
b\appdata\roaming\python\python311\site-packages (from transformers) (0.27.1)

Requirement already satisfied: numpy>=1.17 in c:\users\anitha d b\appdata\roaming\python\python311\site-
packages (from transformers) (1.24.4)

DEPT OF CSE-DATA SCIENCE, ATMECE Page 47

GEN AI LABORATORY BAIL657C

b\appdata\roaming\python\python311\site-packages (from transformers) (24.2)

Requirement already satisfied: pyyaml>=5.1 in c:\users\anitha d b\appdata\roaming\python\python311\site-
packages (from transformers) (6.0.2)

Requirement already satisfied: regex!=2019.12.17 in c:\users\anitha d
b\appdata\roaming\python\python311\site-packages (from transformers) (2024.11.6)

Requirement already satisfied: requests in c:\users\anitha d b\appdata\roaming\python\python311\site-
packages (from transformers) (2.32.3)

Requirement already satisfied: tokenizers<0.22,>=0.21 in c:\users\anitha d
b\appdata\roaming\python\python311\site-packages (from transformers) (0.21.0)

Requirement already satisfied: safetensors>=0.4.1 in c:\users\anitha d
b\appdata\roaming\python\python311\site-packages (from transformers) (0.5.2)

Requirement already satisfied: tqdm>=4.27 in c:\users\anitha d b\appdata\roaming\python\python311\site-
packages (from transformers) (4.67.1)

Requirement already satisfied: fsspec>=2023.5.0 in c:\users\anitha d
b\appdata\roaming\python\python311\site-packages (from huggingface-hub<1.0,>=0.24.0->transformers)
(2024.12.0)

Requirement already satisfied: typing-extensions>=3.7.4.3 in c:\users\anitha d
b\appdata\roaming\python\python311\site-packages (from huggingface-hub<1.0,>=0.24.0->transformers)
(4.12.2)

Requirement already satisfied: colorama in c:\users\anitha d b\appdata\roaming\python\python311\site-
packages (from tqdm>=4.27->transformers) (0.4.6)

Requirement already satisfied: charset-normalizer<4,>=2 in c:\users\anitha d
b\appdata\roaming\python\python311\site-packages (from requests->transformers) (3.4.1)

Requirement already satisfied: idna<4,>=2.5 in c:\users\anitha d b\appdata\roaming\python\python311\site-
packages (from requests->transformers) (3.10)

Requirement already satisfied: urllib3<3,>=1.21.1 in c:\users\anitha d
b\appdata\roaming\python\python311\site-packages (from requests->transformers) (2.3.0)

Requirement already satisfied: certifi>=2017.4.17 in c:\users\anitha d
b\appdata\roaming\python\python311\site-packages (from requests->transformers) (2024.12.14)

Note: you may need to restart the kernel to use updated packages.

from gensim.scripts.glove2word2vec import glove2word2vec
from gensim.models import KeyedVectors

Paths to the GloVe file and output Word2Vec file
glove input_file = "glove.6B/glove.6B.100d.txt" # Path to GloVe file
word2vec_output_file = "glove.6B/glove.6B.100d.word2vec.txt" # Output file in Word2Vec format

Convert GloVe format to Word2Vec format
glove2word2vec(glove input_file, word2vec_output file)

Load the converted Word2Vec model
model = KeyedVectors.load_word2vec_format(word2vec_output_file, binary=False)

Test the loaded model
print(model.most_similar(''king'))

DEPT OF CSE-DATA SCIENCE, ATMECE Page 48

GEN AI LABORATORY BAIL657C

output:
C:\Users\ANITHA D B\AppData\Local\Temp\ipykernel 13104\2083156905.py:9: DeprecationWarning:
Call to deprecated "glove2word2vec' (KeyedVectors.load word2vec format(.., binary=False,
no_header=True) loads GLoVE text vectors.).

glove2word2vec(glove input file, word2vec output_file)
[('prince’, 0.7682328820228577), ('queen’, 0.7507690787315369), ('son', 0.7020888328552246), ('brother’,
0.6985775232315063), ('monarch’, 0.6977890729904175), (‘throne', 0.6919989585876465), ('kingdom',
0.6811409592628479), (‘father', 0.6802029013633728), (‘emperor’, 0.6712858080863953), ('ii',
0.6676074266433716)]

Define the original medical prompt
original_prompt = "Explain the importance of vaccinations in healthcare."

Define key terms extracted from the original prompt
key terms = ["vaccinations", "healthcare"]

Initialize an empty list to store similar terms
similar_terms = []

Loop through each key term to find similar words
for term in key terms:

Check if the key term exists in the vocabulary of the 'model' (word embedding model)
Assuming 'model.key to index'is a way to check for term existence in the model's vocabulary
if term in model.key to_index:

If the term exists, find the top 3 most similar words using 'model.most_similar(term, topn=3)'
and extend the 'similar_terms' list with these words.
Assuming 'model.most_similar' returns a list of tuples, where each tuple is (word, similarity score)

We are extracting only the 'word' part using a set comprehension for potential deduplication.
similar_terms.extend({word for word, _ in model.most_similar(term, topn=3)})

Enrich the original prompt with the retrieved similar terms
if similar_terms:
If similar terms were found, create an enriched prompt by appending
"Consider aspects like: " followed by a comma-separated string of similar terms.
enriched_prompt = " {original_prompt} Consider aspects like: {', '.join(similar_terms)}."
else:
If no similar terms were found, the enriched prompt is the same as the original prompt.
enriched prompt = original prompt

Output the original and enriched prompts
print("'Original Prompt:", original_prompt)
print(""Enriched Prompt:", enriched_prompt)

b

DEPT OF CSE-DATA SCIENCE, ATMECE Page 49

GEN AI LABORATORY BAIL657C

Original Prompt: Explain the importance of vaccinations in healthcare.
Enriched Prompt: Explain the importance of vaccinations in healthcare. Consider aspects like: vaccination,
inoculations, immunizations, care, health, services.

import getpass

import os

GOOGLE_API_KEY= os.environ["GOOGLE_API_KEY"] = getpass.getpass("'Enter your Google Al
API key: ")

Enter your Google AI API key: «-------

from langchain_google genai import ChatGoogleGenerativeAl

Ilm = ChatGoogleGenerative AI(
model=""'gemini-2.0-flash-exp",
temperature=0,
api_key=GOOGLE_API KEY,
max_tokens=256,
timeout=None,
max_retries=2,

other params...

Ilm.invoke("Hi")

Output: AIMessage(content="Hi there! How can I help you today?', additional kwargs={},
response_metadata={'prompt_feedback': {'block reason': 0, 'safety ratings'": []}, 'finish_reason': 'STOP',
'safety ratings': []}, id="run-feOc40aa-6482-42{f-97{2-6e2a8d6ce594-0', usage metadata={'input tokens": 1,
'output_tokens': 11, 'total tokens': 12, 'input token details": {'cache read": 0}})

print(llm.invoke(original_prompt).content)

Output
Vaccinations are a cornerstone of modern healthcare and play a vital role in protecting individuals and
communities from infectious diseases. Their importance can be summarized in several key areas:

- — 1
DEPT OF CSE-DATA SCIENCE, ATMECE Page 50

GEN AI LABORATORY BAIL657C

], Disease Prevention and Eradication:

* **Individual Protection:** Vaccines work by exposing the body to a weakened or inactive form of a
disease-causing agent (virus or bacteria). This triggers the immune system to produce antibodies, which
provide protection against future infections. If the individual is later exposed to the real disease, their
immune system is primed to fight it off quickly and effectively, often preventing illness or significantly
reducing its severity.

* *#*Herd Immunity:** When a large percentage of a population is vaccinated, it creates "herd immunity."
This means that even those who cannot be vaccinated (e.g., infants too young, individuals with certain
medical conditions) are protected because the disease has difficulty spreading. Herd immunity is crucial for
protecting vulnerable populations.

* **Disease Eradication/Elimination:** Vaccination campaigns have successfully eradicated diseases like
smallpox and have significantly reduced the incidence of others, such as polio and measles. Continued
vaccination efforts are essential to maintain these achievements and prevent the resurgence of these diseases.

*#2. Reduced Morbidity and Mortality:**

- — 1
DEPT OF CSE-DATA SCIENCE, ATMECE Page 51

GEN AI LABORATORY BAIL657C

Program 5

Use word embeddings to create meaningful sentences for creative tasks. Retrieve similar words
for a seed word. Create a sentence or story using these words as a starting point. Write a
program that: Takes a seed word. Generates similar words. Constructs a short paragraph using
these words.

Theory:
How It Works:
1. Loads Pre-trained Word Embeddings: Uses the glove-wiki-gigaword-100 model.
2. Retrieves Similar Words: Finds the top 5 similar words for a given seed word.
3. Generates Sentences: Uses sentence templates to create meaningful lines.
4. Constructs a Paragraph: Combines multiple generated sentences into a short
creative paragraph.
Try entering different seed words like "adventure", "mystery", or "ocean" and see how
the story changes!
Introduction
Word embeddings are a powerful representation of words in a continuous vector space,
allowing them to capture semantic relationships between words. This program leverages
pre-trained word embeddings to generate creative sentences and construct a paragraph
from a given seed word.
What the Program Does?
1. Takes a Seed Word — A user provides a single word (e.g., "adventure").
2. Retrieves Similar Words — Finds top N words that are semantically related.
3. Constructs Sentences — Uses these words to form meaningful sentences.
4. Creates a Short Paragraph — Combines the generated sentences into a creative
story.
Key Concepts Used
1. Word Embeddings
Word embeddings transform words into vector representations that capture semantic
similarity. This allows words with similar meanings to be close to each other in the vector
space.
2. Pre-trained Word Embeddings

The program uses GloVe (Global Vectors for Word Representation), specifically the
"glove-wiki-gigaword-100" model, which has been trained on a massive dataset and
provides 100-dimensional word vectors.
3. Finding Similar Words
To retrieve similar words, we use:
word_vectors.most_similar(seed word, topn=5)

s fds ¢ | g w

DEPT OF CSE-DATA SCIENCE, ATMECE Page 52

GEN AI LABORATORY BAIL657C

4. Constructing Meaningful Sentences

The program uses sentence templates to insert the retrieved words into coherent
sentences.

Example sentence structure:

"The [word] led to an unexpected twist in the story."

If the word is "adventure", the sentence becomes:

"The adventure led to an unexpected twist in the story."

5 Generating a Paragraph

Once multiple sentences are generated, they are combined logically to form a short
paragraph.

Example Output:

The journey led to an unexpected twist in the story. The exploration revealed hidden
secrets of

This program demonstrates how word embeddings can be used for creative text
generation by leveraging semantic relationships between words. It automates the process
of brainstorming ideas, making it useful for: Storytelling

B Creative Writing

B Idea Generation for Writers

!pip install sentence_transformers

Defaulting to user installation because normal site-packages is not writeable
Requirement already satisfied: sentence transformers in c:\users\anitha d
b\appdata\roaming\python\python311\site-packages (3.4.0)
Requirement already satisfied: transformers<5.0.0,>=4.41.0 in c:\users\anitha d
b\appdata\roaming\python\python311\site-packages (from sentence transformers) (4.48.3)
Requirement already satisfied: tqdm in c:\users\anitha d b\appdata\roaming\python\python311\site-packages
(from sentence transformers) (4.67.1)
Requirement already satisfied: torch>=1.11.0 in c:\users\anitha d b\appdata\roaming\python\python311\site-
packages (from sentence transformers) (2.5.1)
Requirement already satisfied: scikit-learn in c:\users\anitha d b\appdata\roaming\python\python311\site-
packages (from sentence transformers) (1.6.1)
Requirement already satisfied: scipy in c:\users\anitha d b\appdata\roaming\python\python311\site-packages
(from sentence transformers) (1.10.1)
Requirement already satisfied: huggingface-hub>=0.20.0 in c:\users\anitha d
b\appdata\roaming\python\python311\site-packages (from sentence transformers) (0.27.1)
Requirement already satisfied: Pillow in c:\users\anitha d b\appdata\roaming\python\python311\site-
packages (from sentence transformers) (11.1.0)
Requirement already satisfied: filelock in c:\users\anitha d b\appdata\roaming\python\python311\site-
packages (from huggingface-hub>=0.20.0->sentence transformers) (3.17.0)
Requirement already satisfied: fsspec>=2023.5.0 in c:\users\anitha d
b\appdata\roaming\python\python311\site-packages (from huggingface-hub>=0.20.0-
>sentence_transformers) (2024.12.0)

- e peckioinos 200 i ¢ g

DEPT OF CSE-DATA SCIENCE, ATMECE Page 53

GEN AI LABORATORY BAIL657C

b\appdata\roaming\python\python311\site-packages (from huggingface-hub>=0.20.0-

>sentence _transformers) (24.2)

Requirement already satisfied: pyyaml>=5.1 in c:\users\anitha d b\appdata\roaming\python\python311\site-
packages (from huggingface-hub>=0.20.0->sentence_transformers) (6.0.2)

Requirement already satisfied: requests in c:\users\anitha d b\appdata\roaming\python\python311\site-
packages (from huggingface-hub>=0.20.0->sentence transformers) (2.32.3)

Requirement already satisfied: typing-extensions>=3.7.4.3 in c:\users\anitha d
b\appdata\roaming\python\python311\site-packages (from huggingface-hub>=0.20.0-
>sentence_transformers) (4.12.2)

Requirement already satisfied: networkx in c:\users\anitha d b\appdata\roaming\python\python311\site-
packages (from torch>=1.11.0->sentence_transformers) (3.4.2)

Requirement already satisfied: jinja2 in c:\users\anitha d b\appdata\roaming\python\python311\site-packages
(from torch>=1.11.0->sentence_transformers) (3.1.5)

Requirement already satisfied: sympy==1.13.1 in c:\users\anitha d
b\appdata\roaming\python\python311\site-packages (from torch>=1.11.0->sentence_transformers) (1.13.1)
Requirement already satisfied: mpmath<1.4,>=1.1.0 in c:\users\anitha d
b\appdata\roaming\python\python311\site-packages (from sympy==1.13.1->torch>=1.11.0-

>sentence _transformers) (1.3.0)

Requirement already satisfied: colorama in c:\users\anitha d b\appdata\roaming\python\python311\site-
packages (from tqdm->sentence transformers) (0.4.6)

Requirement already satisfied: numpy>=1.17 in c:\users\anitha d b\appdata\roaming\python\python311\site-
packages (from transformers<5.0.0,>=4.41.0->sentence transformers) (1.24.4)

Requirement already satisfied: regex!=2019.12.17 in c:\users\anitha d
b\appdata\roaming\python\python311\site-packages (from transformers<5.0.0,>=4.41.0-
>sentence_transformers) (2024.11.6)

Requirement already satisfied: tokenizers<0.22,>=0.21 in c:\users\anitha d
b\appdata\roaming\python\python311\site-packages (from transformers<5.0.0,>=4.41.0-
>sentence_transformers) (0.21.0)

Requirement already satisfied: safetensors>=0.4.1 in c:\users\anitha d
b\appdata\roaming\python\python311\site-packages (from transformers<5.0.0,>=4.41.0-
>sentence_transformers) (0.5.2)

Requirement already satisfied: joblib>=1.2.0 in c:\users\anitha d b\appdata\roaming\python\python311\site-
packages (from scikit-learn->sentence transformers) (1.4.2)

Requirement already satisfied: threadpoolctI>=3.1.0 in c:\users\anitha d
b\appdata\roaming\python\python311\site-packages (from scikit-learn->sentence transformers) (3.5.0)
Requirement already satisfied: MarkupSafe>=2.0 in c:\users\anitha d
b\appdata\roaming\python\python311\site-packages (from jinja2->torch>=1.11.0->sentence transformers)
(3.0.2)

Requirement already satisfied: charset-normalizer<4,>=2 in c:\users\anitha d
b\appdata\roaming\python\python311\site-packages (from requests->huggingface-hub>=0.20.0-
>sentence_transformers) (3.4.1)

Requirement already satisfied: idna<4,>=2.5 in c:\users\anitha d b\appdata\roaming\python\python311\site-
packages (from requests->huggingface-hub>=0.20.0->sentence transformers) (3.10)

Requirement already satisfied: urllib3<3,>=1.21.1 in c:\users\anitha d
b\appdata\roaming\python\python311\site-packages (from requests->huggingface-hub>=0.20.0-
>sentence_transformers) (2.3.0)

Requirement already satisfied: certifi>=2017.4.17 in c:\users\anitha d
b\appdata\roaming\python\python311\site-packages (from requests->huggingface-hub>=0.20.0-

>sentence transformers) (2024.12.14)

!pip install langchain-huggingface

DEPT OF CSE-DATA SCIENCE, ATMECE Page 54

GEN AI LABORATORY BAIL657C

Defaulting to user installation because normal site-packages is not writeable

Requirement already satisfied: langchain-huggingface in c:\users\anitha d
b\appdata\roaming\python\python311\site-packages (0.1.2)

Requirement already satisfied: huggingface-hub>=0.23.0 in c:\users\anitha d
b\appdata\roaming\python\python311\site-packages (from langchain-huggingface) (0.27.1)

Requirement already satisfied: langchain-core<0.4.0,>=0.3.15 in c:\users\anitha d
b\appdata\roaming\python\python311\site-packages (from langchain-huggingface) (0.3.32)

Requirement already satisfied: sentence-transformers>=2.6.0 in c:\users\anitha d
b\appdata\roaming\python\python311\site-packages (from langchain-huggingface) (3.4.0)

Requirement already satisfied: tokenizers>=0.19.1 in c:\users\anitha d
b\appdata\roaming\python\python311\site-packages (from langchain-huggingface) (0.21.0)

Requirement already satisfied: transformers>=4.39.0 in c:\users\anitha d
b\appdata\roaming\python\python311\site-packages (from langchain-huggingface) (4.48.3)

Requirement already satisfied: filelock in c:\users\anitha d b\appdata\roaming\python\python311\site-
packages (from huggingface-hub>=0.23.0->langchain-huggingface) (3.17.0)

Requirement already satisfied: fsspec>=2023.5.0 in c:\users\anitha d
b\appdata\roaming\python\python311\site-packages (from huggingface-hub>=0.23.0->langchain-
huggingface) (2024.12.0)

Requirement already satisfied: packaging>=20.9 in c:\users\anitha d
b\appdata\roaming\python\python311\site-packages (from huggingface-hub>=0.23.0->langchain-
huggingface) (24.2)

Requirement already satisfied: pyyaml>=5.1 in c:\users\anitha d b\appdata\roaming\python\python311\site-
packages (from huggingface-hub>=0.23.0->langchain-huggingface) (6.0.2)

Requirement already satisfied: requests in c:\users\anitha d b\appdata\roaming\python\python311\site-
packages (from huggingface-hub>=0.23.0->langchain-huggingface) (2.32.3)

Requirement already satisfied: tqdm>=4.42.1 in c:\users\anitha d b\appdata\roaming\python\python311\site-
packages (from huggingface-hub>=0.23.0->langchain-huggingface) (4.67.1)

Requirement already satisfied: typing-extensions>=3.7.4.3 in c:\users\anitha d
b\appdata\roaming\python\python311\site-packages (from huggingface-hub>=0.23.0->langchain-
huggingface) (4.12.2)

Requirement already satisfied: jsonpatch<2.0,>=1.33 in c:\users\anitha d
b\appdata\roaming\python\python311\site-packages (from langchain-core<0.4.0,>=0.3.15->langchain-
huggingface) (1.33)

Requirement already satisfied: langsmith<0.4,>=0.1.125 in c:\users\anitha d
b\appdata\roaming\python\python311\site-packages (from langchain-core<0.4.0,>=0.3.15->langchain-
huggingface) (0.3.2)

Requirement already satisfied: pydantic<3.0.0,>=2.5.2 in c:\users\anitha d
b\appdata\roaming\python\python311\site-packages (from langchain-core<0.4.0,>=0.3.15->langchain-
huggingface) (2.10.6)

Requirement already satisfied: tenacity!=8.4.0,<10.0.0,>=8.1.0 in c:\users\anitha d
b\appdata\roaming\python\python311\site-packages (from langchain-core<0.4.0,>=0.3.15->langchain-
huggingface) (9.0.0)

Requirement already satisfied: torch>=1.11.0 in c:\users\anitha d b\appdata\roaming\python\python311\site-
packages (from sentence-transformers>=2.6.0->langchain-huggingface) (2.5.1)

Requirement already satisfied: scikit-learn in c:\users\anitha d b\appdata\roaming\python\python311\site-
packages (from sentence-transformers>=2.6.0->langchain-huggingface) (1.6.1)

Requirement already satisfied: scipy in c:\users\anitha d b\appdata\roaming\python\python311\site-packages
(from sentence-transformers>=2.6.0->langchain-huggingface) (1.10.1)

Requirement already satisfied: Pillow in c:\users\anitha d b\appdata\roaming\python\python311\site-
packages (from sentence-transformers>=2.6.0->langchain-huggingface) (11.1.0)

DEPT OF CSE-DATA SCIENCE, ATMECE Page 55

GEN AI LABORATORY BAIL657C

Requirement already satisfied: numpy>=1.17 in c:\users\anitha d b\appdata\roaming\python\python311\site-
packages (from transformers>=4.39.0->langchain-huggingface) (1.24.4)

Requirement already satisfied: regex!=2019.12.17 in c:\users\anitha d
b\appdata\roaming\python\python311\site-packages (from transformers>=4.39.0->langchain-huggingface)
(2024.11.6)

Requirement already satisfied: safetensors>=0.4.1 in c:\users\anitha d
b\appdata\roaming\python\python311\site-packages (from transformers>=4.39.0->langchain-huggingface)
(0.5.2)

Requirement already satisfied: jsonpointer>=1.9 in c:\users\anitha d
b\appdata\roaming\python\python311\site-packages (from jsonpatch<2.0,>=1.33->langchain-
core<0.4.0,>=0.3.15->langchain-huggingtace) (3.0.0)

Requirement already satisfied: httpx<1,>=0.23.0 in c:\users\anitha d
b\appdata\roaming\python\python311\site-packages (from langsmith<0.4,>=0.1.125->langchain-
core<0.4.0,>=0.3.15->langchain-huggingface) (0.28.1)

Requirement already satisfied: orjson<4.0.0,>=3.9.14 in c:\users\anitha d
b\appdata\roaming\python\python311\site-packages (from langsmith<0.4,>=0.1.125->langchain-
core<0.4.0,>=0.3.15->langchain-huggingface) (3.10.15)

Requirement already satisfied: requests-toolbelt<2.0.0,>=1.0.0 in c:\users\anitha d
b\appdata\roaming\python\python311\site-packages (from langsmith<0.4,>=0.1.125->langchain-
core<0.4.0,>=0.3.15->langchain-huggingface) (1.0.0)

Requirement already satisfied: zstandard<0.24.0,>=0.23.0 in c:\users\anitha d
b\appdata\roaming\python\python311\site-packages (from langsmith<0.4,>=0.1.125->langchain-
core<0.4.0,>=0.3.15->langchain-huggingface) (0.23.0)

Requirement already satisfied: annotated-types>=0.6.0 in c:\users\anitha d
b\appdata\roaming\python\python311\site-packages (from pydantic<3.0.0,>=2.5.2->langchain-
core<0.4.0,>=0.3.15->langchain-huggingface) (0.7.0)

Requirement already satisfied: pydantic-core==2.27.2 in c:\users\anitha d
b\appdata\roaming\python\python311\site-packages (from pydantic<3.0.0,>=2.5.2->langchain-
core<0.4.0,>=0.3.15->langchain-huggingface) (2.27.2)

Requirement already satisfied: charset-normalizer<4,>=2 in c:\users\anitha d
b\appdata\roaming\python\python311\site-packages (from requests->huggingface-hub>=0.23.0->langchain-
huggingface) (3.4.1)

Requirement already satisfied: idna<4,>=2.5 in c:\users\anitha d b\appdata\roaming\python\python311\site-
packages (from requests->huggingface-hub>=0.23.0->langchain-huggingface) (3.10)

Requirement already satisfied: urllib3<3,>=1.21.1 in c:\users\anitha d
b\appdata\roaming\python\python311\site-packages (from requests->huggingface-hub>=0.23.0->langchain-
huggingface) (2.3.0)

Requirement already satisfied: certifi>=2017.4.17 in c:\users\anitha d
b\appdata\roaming\python\python311\site-packages (from requests->huggingface-hub>=0.23.0->langchain-
huggingface) (2024.12.14)

Requirement already satisfied: networkx in c:\users\anitha d b\appdata\roaming\python\python311\site-
packages (from torch>=1.11.0->sentence-transformers>=2.6.0->langchain-huggingface) (3.4.2)
Requirement already satisfied: jinja2 in c:\users\anitha d b\appdata\roaming\python\python311\site-packages
(from torch>=1.11.0->sentence-transformers>=2.6.0->langchain-huggingface) (3.1.5)

Requirement already satisfied: sympy==1.13.1 in c:\users\anitha d
b\appdata\roaming\python\python311\site-packages (from torch>=1.11.0->sentence-transformers>=2.6.0-
>langchain-huggingface) (1.13.1)

Requirement already satisfied: mpmath<1.4,>=1.1.0 in c:\users\anitha d
b\appdata\roaming\python\python311\site-packages (from sympy==1.13.1->torch>=1.11.0->sentence-
transformers>=2.6.0->langchain-huggingface) (1.3.0)

Requirement already satisfied: colorama in c:\users\anitha d b\appdata\roaming\python\python311\site-

DEPT OF CSE-DATA SCIENCE, ATMECE Page 56

GEN AI LABORATORY BAIL657C

packages (from tqdm>=4.42.1->huggingface-hub>=0.23.0->langchain-huggingface) (0.4.6)

Requirement already satisfied: joblib>=1.2.0 in c:\users\anitha d b\appdata\roaming\python\python311\site-
packages (from scikit-learn->sentence-transformers>=2.6.0->langchain-huggingface) (1.4.2)

Requirement already satisfied: threadpoolctI>=3.1.0 in c:\users\anitha d
b\appdata\roaming\python\python311\site-packages (from scikit-learn->sentence-transformers>=2.6.0-
>langchain-huggingface) (3.5.0)

Requirement already satisfied: anyio in c:\users\anitha d b\appdata\roaming\python\python311\site-packages
(from httpx<1,>=0.23.0->langsmith<0.4,>=0.1.125->langchain-core<0.4.0,>=0.3.15->langchain-
huggingface) (4.8.0)

Requirement already satisfied: httpcore==1.* in c:\users\anitha d b\appdata\roaming\python\python311\site-
packages (from httpx<1,>=0.23.0->langsmith<0.4,>=0.1.125->langchain-core<0.4.0,>=0.3.15->langchain-
huggingface) (1.0.7)

Requirement already satisfied: h11<0.15,>=0.13 in c:\users\anitha d
b\appdata\roaming\python\python311\site-packages (from httpcore==1.*->httpx<1,>=0.23.0-
>langsmith<0.4,>=0.1.125->langchain-core<0.4.0,>=0.3.15->langchain-huggingface) (0.14.0)
Requirement already satisfied: MarkupSafe>=2.0 in c:\users\anitha d
b\appdata\roaming\python\python311\site-packages (from jinja2->torch>=1.11.0->sentence-
transformers>=2.6.0->langchain-huggingface) (3.0.2)

Requirement already satisfied: sniffio>=1.1 in c:\users\anitha d b\appdata\roaming\python\python311\site-
packages (from anyio->httpx<1,>=0.23.0->langsmith<0.4,>=0.1.125->langchain-core<0.4.0,>=0.3.15-
>langchain-huggingface) (1.3.1)

!pip install tf-keras —user

Requirement already satisfied: tf-keras in c:\users\anitha d b\appdata\roaming\python\python311\site-
packages (2.18.0)

Requirement already satisfied: tensorflow<2.19,>=2.18 in c:\users\anitha d
b\appdata\roaming\python\python311\site-packages (from tf-keras) (2.18.0)
Requirement already satisfied: tensorflow-intel==2.18.0 in c:\users\anitha d
b\appdata\roaming\python\python311\site-packages (from tensorflow<2.19,>=2.18->tf-keras) (2.18.0)
Requirement already satisfied: absl-py>=1.0.0 in c:\users\anitha d
b\appdata\roaming\python\python311\site-packages (from tensorflow-intel==2.18.0-
>tensorflow<2.19,>=2.18->tf-keras) (2.1.0)

Requirement already satisfied: astunparse>=1.6.0 in c:\users\anitha d
b\appdata\roaming\python\python311\site-packages (from tensorflow-intel==2.18.0-
>tensorflow<2.19,>=2.18->tf-keras) (1.6.3)

Requirement already satisfied: flatbuffers>=24.3.25 in c:\users\anitha d
b\appdata\roaming\python\python311\site-packages (from tensorflow-intel==2.18.0-
>tensorflow<2.19,>=2.18->tf-keras) (25.1.24)

Requirement already satisfied: gast!=0.5.0,!=0.5.1,!=0.5.2,>=0.2.1 in c:\users\anitha d
b\appdata\roaming\python\python311\site-packages (from tensorflow-intel==2.18.0-
>tensorflow<2.19,>=2.18->tf-keras) (0.6.0)

Requirement already satisfied: google-pasta>=0.1.1 in c:\users\anitha d
b\appdata\roaming\python\python311\site-packages (from tensorflow-intel==2.18.0-
>tensorflow<2.19,>=2.18->tf-keras) (0.2.0)

Requirement already satisfied: libclang>=13.0.0 in c:\users\anitha d
b\appdata\roaming\python\python311\site-packages (from tensorflow-intel==2.18.0-
>tensorflow<2.19,>=2.18->tf-keras) (18.1.1)

Requirement already satisfied: opt-einsum>=2.3.2 in c:\users\anitha d
b\appdata\roaming\python\python311\site-packages (from tensorflow-intel==2.18.0-

DEPT OF CSE-DATA SCIENCE, ATMECE Page 57

GEN AI LABORATORY BAIL657C

>tensorflow<2.19,>=2.18->tf-keras) (3.4.0)

Requirement already satisfied: packaging in c:\users\anitha d b\appdata\roaming\python\python311\site-

packages (from tensorflow-intel==2.18.0->tensorflow<2.19,>=2.18->tf-keras) (24.2)

Requirement already satisfied:

protobuf!=4.21.0,=4.21.1,!=4.21.2,!1=4.21.3,!1=4.21.4,'=4.21.5,<6.0.0dev,>=3.20.3 in c:\users\anitha d

b\appdata\roaming\python\python311\site-packages (from tensorflow-intel==2.18.0-

>tensorflow<2.19,>=2.18->tf-keras) (5.29.3)

Requirement already satisfied: requests<3,>=2.21.0 in c:\users\anitha d

b\appdata\roaming\python\python311\site-packages (from tensorflow-intel==2.18.0-

>tensorflow<2.19,>=2.18->tf-keras) (2.32.3)

Requirement already satisfied: setuptools in c:\programdata\anaconda3\lib\site-packages (from tensorflow-

intel==2.18.0->tensorflow<2.19,>=2.18->tf-keras) (68.2.2)

Requirement already satisfied: six>=1.12.0 in c:\users\anitha d b\appdata\roaming\python\python311\site-

packages (from tensorflow-intel==2.18.0->tensorflow<2.19,>=2.18->tf-keras) (1.17.0)

Requirement already satisfied: termcolor>=1.1.0 in c:\users\anitha d

b\appdata\roaming\python\python311\site-packages (from tensorflow-intel==2.18.0-

>tensorflow<2.19,>=2.18->tf-keras) (2.5.0)

Requirement already satisfied: typing-extensions>=3.6.6 in c:\users\anitha d

b\appdata\roaming\python\python311\site-packages (from tensorflow-intel==2.18.0-

>tensorflow<2.19,>=2.18->tf-keras) (4.12.2)

Requirement already satisfied: wrapt>=1.11.0 in c:\users\anitha d b\appdata\roaming\python\python311\site-

packages (from tensorflow-intel==2.18.0->tensorflow<2.19,>=2.18->tf-keras) (1.17.2)

Requirement already satisfied: grpcio<2.0,>=1.24.3 in c:\users\anitha d

b\appdata\roaming\python\python311\site-packages (from tensorflow-intel==2.18.0-

>tensorflow<2.19,>=2.18->tf-keras) (1.70.0)

Requirement already satisfied: tensorboard<2.19,>=2.18 in c:\users\anitha d

b\appdata\roaming\python\python311\site-packages (from tensorflow-intel==2.18.0-

>tensorflow<2.19,>=2.18->tf-keras) (2.18.0)

Requirement already satisfied: keras>=3.5.0 in c:\users\anitha d b\appdata\roaming\python\python311\site-

packages (from tensorflow-intel==2.18.0->tensorflow<2.19,>=2.18->tf-keras) (3.8.0)

Collecting numpy<2.1.0,>=1.26.0 (from tensorflow-intel==2.18.0->tensorflow<2.19,>=2.18->tf-keras)
Downloading numpy-2.0.2-cp311-cp311-win_amd64.whl.metadata (59 kB)

Requirement already satisfied: h5py>=3.11.0 in c:\users\anitha d b\appdata\roaming\python\python311\site-

packages (from tensorflow-intel==2.18.0->tensorflow<2.19,>=2.18->tf-keras) (3.12.1)

Requirement already satisfied: ml-dtypes<0.5.0,>=0.4.0 in c:\users\anitha d

b\appdata\roaming\python\python311\site-packages (from tensorflow-intel==2.18.0-

>tensorflow<2.19,>=2.18->tf-keras) (0.4.1)

Requirement already satisfied: tensorflow-io-gcs-filesystem>=0.23.1 in c:\users\anitha d

b\appdata\roaming\python\python311\site-packages (from tensorflow-intel==2.18.0-

>tensorflow<2.19,>=2.18->tf-keras) (0.31.0)

Requirement already satisfied: wheel<1.0,>=0.23.0 in c:\users\anitha d

b\appdata\roaming\python\python311\site-packages (from astunparse>=1.6.0->tensorflow-intel==2.18.0-

>tensorflow<2.19,>=2.18->tf-keras) (0.45.1)

Requirement already satisfied: rich in c:\users\anitha d b\appdata\roaming\python\python311\site-packages

(from keras>=3.5.0->tensorflow-intel==2.18.0->tensorflow<2.19,>=2.18->tf-keras) (13.9.4)

Requirement already satisfied: namex in c:\users\anitha d b\appdata\roaming\python\python311\site-

packages (from keras>=3.5.0->tensorflow-intel==2.18.0->tensorflow<2.19,>=2.18->tf-keras) (0.0.8)

Requirement already satisfied: optree in c:\users\anitha d b\appdata\roaming\python\python311\site-

packages (from keras>=3.5.0->tensorflow-intel==2.18.0->tensorflow<2.19,>=2.18->tf-keras) (0.14.0)

Requirement already satisfied: charset-normalizer<4,>=2 in c:\users\anitha d

b\appdata\roaming\python\python311\site-packages (from requests<3,>=2.21.0->tensorflow-intel==2.18.0-

DEPT OF CSE-DATA SCIENCE, ATMECE Page 58

GEN AI LABORATORY BAIL657C

>tensorflow<2.19,>=2.18->tf-keras) (3.4.1)

Requirement already satisfied: idna<4,>=2.5 in c:\users\anitha d b\appdata\roaming\python\python311\site-
packages (from requests<3,>=2.21.0->tensorflow-intel==2.18.0->tensorflow<2.19,>=2.18->tf-keras) (3.10)
Requirement already satisfied: urllib3<3,>=1.21.1 in c:\users\anitha d
b\appdata\roaming\python\python311\site-packages (from requests<3,>=2.21.0->tensorflow-intel==2.18.0-
>tensorflow<2.19,>=2.18->tf-keras) (2.3.0)

Requirement already satisfied: certifi>=2017.4.17 in c:\users\anitha d
b\appdata\roaming\python\python311\site-packages (from requests<3,>=2.21.0->tensorflow-intel==2.18.0-
>tensorflow<2.19,>=2.18->tf-keras) (2024.12.14)

Requirement already satisfied: markdown>=2.6.8 in c:\users\anitha d
b\appdata\roaming\python\python311\site-packages (from tensorboard<2.19,>=2.18->tensorflow-
intel==2.18.0->tensorflow<2.19,>=2.18->tf-keras) (3.7)

Requirement already satisfied: tensorboard-data-server<0.8.0,>=0.7.0 in c:\users\anitha d
b\appdata\roaming\python\python311\site-packages (from tensorboard<2.19,>=2.18->tensorflow-
intel==2.18.0->tensorflow<2.19,>=2.18->tf-keras) (0.7.2)

Requirement already satisfied: werkzeug>=1.0.1 in c:\users\anitha d
b\appdata\roaming\python\python311\site-packages (from tensorboard<2.19,>=2.18->tensorflow-
intel==2.18.0->tensorflow<2.19,>=2.18->tf-keras) (3.1.3)

Requirement already satisfied: MarkupSafe>=2.1.1 in c:\users\anitha d
b\appdata\roaming\python\python311\site-packages (from werkzeug>=1.0.1->tensorboard<2.19,>=2.18-
>tensorflow-intel==2.18.0->tensorflow<2.19,>=2.18->tf-keras) (3.0.2)

Requirement already satisfied: markdown-it-py>=2.2.0 in c:\users\anitha d
b\appdata\roaming\python\python311\site-packages (from rich->keras>=3.5.0->tensorflow-intel==2.18.0-
>tensorflow<2.19,>=2.18->tf-keras) (3.0.0)

Requirement already satisfied: pygments<3.0.0,>=2.13.0 in c:\users\anitha d
b\appdata\roaming\python\python311\site-packages (from rich->keras>=3.5.0->tensorflow-intel==2.18.0-
>tensorflow<2.19,>=2.18->tf-keras) (2.19.1)

Requirement already satisfied: mdurl~=0.1 in c:\users\anitha d b\appdata\roaming\python\python311\site-
packages (from markdown-it-py>=2.2.0->rich->keras>=3.5.0->tensorflow-intel==2.18.0-
>tensorflow<2.19,>=2.18->tf-keras) (0.1.2)

Downloading numpy-2.0.2-cp311-cp311-win_amd64.whl (15.9 MB)

0.0/15.9 MB ? eta -:--:--

0.3/15.9 MB ? eta -:--:--

- 0.5/15.9 MB 2.1 MB/s eta 0:00:08

-- 1.0/15.9 MB 2.2 MB/s eta 0:00:07

-—- 1.6/15.9 MB 2.2 MB/s eta 0:00:07

-—-- 1.8/15.9 MB 2.0 MB/s eta 0:00:07

2.4/15.9 MB 2.0 MB/s eta 0:00:07

2.6/15.9 MB 2.0 MB/s eta 0:00:07

3.1/15.9 MB 2.0 MB/s eta 0:00:07

3.7/15.9 MB 2.0 MB/s eta 0:00:07

4.2/15.9 MB 2.0 MB/s eta 0:00:06

4.5/15.9 MB 2.0 MB/s eta 0:00:06

5.0/15.9 MB 2.0 MB/s eta 0:00:06

5.0/15.9 MB 2.0 MB/s eta 0:00:06

5.5/15.9 MB 1.9 MB/s eta 0:00:06

5.5/15.9 MB 1.9 MB/s eta 0:00:06

5.5/15.9 MB 1.9 MB/s eta 0:00:06

6.0/15.9 MB 1.7 MB/s eta 0:00:06

6.3/15.9 MB 1.7 MB/s eta 0:00:06

6.6/15.9 MB 1.6 MB/s eta 0:00:06

DEPT OF CSE-DATA SCIENCE, ATMECE Page 59

GEN AI LABORATORY BAIL657C

6.8/15.9 MB 1.6 MB/s eta 0:00:06
7.1/15.9 MB 1.6 MB/s eta 0:00:06
7.1/15.9 MB 1.6 MB/s eta 0:00:06
7.3/15.9 MB 1.5 MB/s eta 0:00:06
7.6/15.9 MB 1.5 MB/s eta 0:00:06
8.1/15.9 MB 1.5 MB/s eta 0:00:06
8.1/15.9 MB 1.5 MB/s eta 0:00:06
8.1/15.9 MB 1.5 MB/s eta 0:00:06
8.4/15.9 MB 1.4 MB/s eta 0:00:06
8.7/15.9 MB 1.4 MB/s eta 0:00:06
8.9/15.9 MB 1.4 MB/s eta 0:00:06
9.2/15.9 MB 1.4 MB/s eta 0:00:05
9.4/15.9 MB 1.4 MB/s eta 0:00:05
9.7/15.9 MB 1.4 MB/s eta 0:00:05
9.7/15.9 MB 1.4 MB/s eta 0:00:05
10.0/15.9 MB 1.3 MB/s eta 0:00:05
10.2/15.9 MB 1.3 MB/s eta 0:00:05
10.7/15.9 MB 1.3 MB/s eta 0:00:04
11.0/15.9 MB 1.4 MB/s eta 0:00:04
11.3/15.9 MB 1.3 MB/s eta 0:00:04
11.5/15.9 MB 1.3 MB/s eta 0:00:04
11.8/15.9 MB 1.4 MB/s eta 0:00:04
12.1/15.9 MB 1.3 MB/s eta 0:00:03
12.3/15.9 MB 1.3 MB/s eta 0:00:03
12.6/15.9 MB 1.3 MB/s eta 0:00:03
13.1/15.9 MB 1.3 MB/s eta 0:00:03
13.4/15.9 MB 1.4 MB/s eta 0:00:02
13.9/15.9 MB 1.4 MB/s eta 0:00:02
13.9/15.9 MB 1.4 MB/s eta 0:00:02
--- 14.4/15.9 MB 1.4 MB/s eta 0:00:02
--- 14.7/15.9 MB 1.4 MB/s eta 0:00:01
--14.9/15.9 MB 1.4 MB/s eta 0:00:01
- 15.5/15.9 MB 1.4 MB/s eta 0:00:01
15.7/15.9 MB 1.4 MB/s eta 0:00:01
15.9/15.9 MB 1.4 MB/s eta 0:00:00
Installing collected packages: numpy

Attempting uninstall: numpy

Found existing installation: numpy 1.24.4
Uninstalling numpy-1.24.4:
Successfully uninstalled numpy-1.24.4

Successfully installed numpy-2.0.2

WARNING: The scripts f2py.exe and numpy-config.exe are installed in 'C:\Users\ANITHA D
B\AppData\Roaming\Python\Python311\Scripts' which is not on PATH.

Consider adding this directory to PATH or, if you prefer to suppress this warning, use --no-warn-script-
location.

WARNING: Failed to remove contents in a temporary directory 'C:\Users\ANITHA D
B\AppData\Roaming\Python\Python311\site-packages\~-mpy".

You can safely remove it manually.
ERROR: pip's dependency resolver does not currently take into account all the packages that are installed.
This behaviour is the source of the following dependency conflicts.
langchain 0.3.16 requires numpy<2,>=1.22.4; python_version < "3.12", but you have numpy 2.0.2 which is

DEPT OF CSE-DATA SCIENCE, ATMECE Page 60

GEN AI LABORATORY BAIL657C

incompatible.

langchain-community 0.3.16 requires numpy<2,>=1.22.4; python_version < "3.12", but you have numpy
2.0.2 which is incompatible.

pyfume 0.3.4 requires numpy==1.24.4, but you have numpy 2.0.2 which is incompatible.

scipy 1.10.1 requires numpy<1.27.0,>=1.19.5, but you have numpy 2.0.2 which is incompatible.
astropy 5.3.4 requires numpy<2,>=1.21, but you have numpy 2.0.2 which is incompatible.
contourpy 1.2.0 requires numpy<2.0,>=1.20, but you have numpy 2.0.2 which is incompatible.
matplotlib 3.8.0 requires numpy<2,>=1.21, but you have numpy 2.0.2 which is incompatible.
numba 0.59.0 requires numpy<1.27,>=1.22, but you have numpy 2.0.2 which is incompatible.
pywavelets 1.5.0 requires numpy<2.0,>=1.22.4, but you have numpy 2.0.2 which is incompatible.
streamlit 1.30.0 requires numpy<2,>=1.19.3, but you have numpy 2.0.2 which is incompatible.
streamlit 1.30.0 requires packaging<24,>=16.8, but you have packaging 24.2 which is incompatible.
streamlit 1.30.0 requires pillow<11,>=7.1.0, but you have pillow 11.1.0 which is incompatible.
streamlit 1.30.0 requires protobuf<5,>=3.20, but you have protobuf 5.29.3 which is incompatible.
streamlit 1.30.0 requires tenacity<9,>=8.1.0, but you have tenacity 9.0.0 which is incompatible.

!pip install numpy==1.24.4 —user

Collecting numpy==1.24.4 WARNING: The script f2py.exe is installed in 'C:\Users\ANITHA D
B\AppData\Roaming\Python\Python311\Scripts' which is not on PATH.

Consider adding this directory to PATH or, if you prefer to suppress this warning, use --no-warn-script-
location.
ERROR: pip's dependency resolver does not currently take into account all the packages that are installed.
This behaviour is the source of the following dependency conflicts.
tensorflow-intel 2.18.0 requires numpy<2.1.0,>=1.26.0, but you have numpy 1.24.4 which is incompatible.
streamlit 1.30.0 requires packaging<24,>=16.8, but you have packaging 24.2 which is incompatible.
streamlit 1.30.0 requires pillow<11,>=7.1.0, but you have pillow 11.1.0 which is incompatible.
streamlit 1.30.0 requires protobuf<5,>=3.20, but you have protobuf 5.29.3 which is incompatible.
streamlit 1.30.0 requires tenacity<9,>=8.1.0, but you have tenacity 9.0.0 which is incompatible.

Using cached numpy-1.24.4-cp311-cp311-win_amd64.whl.metadata (5.6 kB)
Using cached numpy-1.24.4-cp311-cp311-win_amd64.whl (14.8 MB)
Installing collected packages: numpy

Attempting uninstall: numpy

Found existing installation: numpy 2.0.2
Uninstalling numpy-2.0.2:
Successfully uninstalled numpy-2.0.2
Successfully installed numpy-1.24.4

from sentence_transformers import SentenceTransformer, util

Load a pretrained SentenceTransformer model
model = SentenceTransformer('all-MiniLM-L6-v2')

Define an expanded finance-related corpus

corpus = |
"The stock market saw significant gains today, driven by strong earnings reports.",
"Investing in diversified portfolios helps mitigate risk and maximize returns.",
"The Federal Reserve's decision to raise interest rates could impact market liquidity.",
"Cryptocurrency has become an increasingly popular asset class among investors.",
"Financial analysts predict that the global economy will face challenges in the coming years.",

DEPT OF CSE-DATA SCIENCE, ATMECE Page 61

GEN AI LABORATORY BAIL657C

"Bonds are considered a safer investment option compared to stocks.",

"Banks are adopting blockchain technology to improve the efficiency of financial transactions.",
"The economic impact of the pandemic has been severe, but recovery is underway.",

"Inflation rates have been rising steadily, leading to higher costs for consumers.",

"Corporate governance and transparency are crucial for investor confidence.",

"The real estate market is experiencing a boom as demand outstrips supply in many areas.",
"Investors should be aware of market volatility and adjust their strategies accordingly.",
"Diversification is a key principle in reducing risk in investment portfolios.",

"Hedge funds use complex strategies to generate high returns, often with higher risks.",

"Stock buybacks are often seen as a sign of confidence by corporate executives."

]

Encode the corpus into embeddings
corpus_embeddings = model.encode(corpus, convert to_tensor=True)
corpus_embeddings

WARNING:tensorflow:From C:\Users\ANITHA D B\AppData\Roaming\Python\Python311\site-
packages\tf keras\src\losses.py:2976: The name tf.losses.sparse softmax_cross_entropy is deprecated.
Please use tf.compat.v1.losses.sparse_softmax cross_entropy instead.

modules.json: 0%| | 0.00/349 [00:00<?, ?B/s]

C:\Users\ANITHA D B\AppData\Roaming\Python\Python311\site-
packages\huggingface hub\file download.py:140: UserWarning: “huggingface hub" cache-system uses
symlinks by default to efficiently store duplicated files but your machine does not support them in
C:\Users\ANITHA D B\.cache\huggingface\hub\models--sentence-transformers--all-MiniLM-L6-v2.
Caching files will still work but in a degraded version that might require more space on your disk. This
warning can be disabled by setting the 'HF HUB DISABLE SYMLINKS WARNING' environment
variable. For more details, see https://huggingface.co/docs/huggingface hub/how-to-cache#limitations.
To support symlinks on Windows, you either need to activate Developer Mode or to run Python as an
administrator. In order to activate developer mode, see this article: https://docs.microsoft.com/en-
us/windows/apps/get-started/enable-your-device-for-development

warnings.warn(message)

modules.json: 0%| | 0.00/349 [00:00<?, ?B/s]

C:\Users\ANITHA D B\AppData\Roaming\Python\Python311\site-
packages\huggingface hub\file download.py:140: UserWarning: "huggingface hub’ cache-system uses
symlinks by default to efficiently store duplicated files but your machine does not support them in
C:\Users\ANITHA D B\.cache\huggingface\hub\models--sentence-transformers--all-MiniLM-L6-v2.
Caching files will still work but in a degraded version that might require more space on your disk. This
warning can be disabled by setting the 'HF HUB DISABLE SYMLINKS WARNING' environment
variable. For more details, see https://huggingface.co/docs/huggingface hub/how-to-cache#limitations.
To support symlinks on Windows, you either need to activate Developer Mode or to run Python as an
administrator. In order to activate developer mode, see this article: https://docs.microsoft.com/en-
us/windows/apps/get-started/enable-your-device-for-development

warnings.warn(message)

DEPT OF CSE-DATA SCIENCE, ATMECE Page 62

GEN AI LABORATORY BAIL657C

Function to generate a story using contextual embeddings
def generate_paragraph(seed_word, corpus, corpus_embeddings, model, top_n=5):

Encode the seed word as a sentence
seed_sentence = f"'Tell me more about {seed_word} in finance."
seed_embedding = model.encode(seed_sentence, convert_to_tensor=True)

Find the most similar sentences in the corpus to the seed sentence

similarities = util.pytorch_cos_sim(seed_embedding, corpus_embeddings)[0]
top_results = similarities.topk(top_n)

print('top_results:',top_results)

Construct a more coherent story using the most similar sentences
story = f""The topic of '{seed_word}' is crucial in the finance industry. "

for idx in top_results.indices:
similar_sentence = corpus|idx]
story += "' {similar_sentence} "

story += f"These concepts highlight the importance of {seed_word} in understanding financial
markets and investment strategies."

return story
Example usage
seed_word = "bonds"
story = generate_paragraph(seed_word, corpus, corpus_embeddings, model, top_n=5)
print(story)

top_results: torch.return_types.topk(

values=tensor([0.6597, 0.4536, 0.4218, 0.4031, 0.3689]),

indices=tensor([5, 3, 2, 13, 1]))

The topic of 'bonds' is crucial in the finance industry. Bonds are considered a safer investment option
compared to stocks. Cryptocurrency has become an increasingly popular asset class among investors. The
Federal Reserve's decision to raise interest rates could impact market liquidity. Hedge funds use complex
strategies to generate high returns, often with higher risks. Investing in diversified portfolios helps mitigate
risk and maximize returns. These concepts highlight the importance of bonds in understanding financial
markets and investment strategies.

#!pip install langchain-huggingface

DEPT OF CSE-DATA SCIENCE, ATMECE Page 63

GEN AI LABORATORY BAIL657C

Program 6
Use a pre-trained Hugging Face model to analyze sentiment in text. Assume a real-world
application, Load the sentiment analysis pipeline. Analyze the sentiment by giving sentences to
input.

Theory:
This program analyzes sentiment in text using a pre-trained Hugging Face model. It is
particularly useful in real-world applications such as customer feedback analysis, social
media monitoring, and product review evaluation.

Key Concepts Involved
1 Sentiment Analysis
Sentiment analysis is a Natural Language Processing (NLP) technique used to determine
the emotional tone of a given text. It classifies text as positive, negative, or neutral.
Example:

"This product is amazing!" — Positive </

"I'm very disappointed with the service." — Negative X

"It was an average experience." — Neutral

Transformers and Pre-trained Models

This program leverages Transformers, a powerful deep-learning-based NLP framework
by Hugging Face. Specifically, it uses a pre-trained model for sentiment analysis, which
means:

No need for manual training.

Leverages large-scale datasets used in training.

Fast and efficient inference.
3 Pipeline in Hugging Face
The pipeline("sentiment-analysis") function loads a pre-trained model and applies it
directly to text input. The underlying model is typically DistilBERT, BERT, or RoBERTa,
which are transformer-based architectures designed for NLP tasks.

Consider a customer feedback analysis system where user reviews are processed to determine sentiment.
This could be useful for businesses to track customer satisfaction.
Following are the review statements:

"The product quality is amazing! I'm very satisfied.",

"I had a terrible experience with customer service.",

"The delivery was quick, but the packaging was damaged.",
"Absolutely love this! Best purchase I've made.",

"Not worth the money, very disappointed."

Approach 1: Using Transformers Pipeline
#%pip install --upgrade --quiet huggingface hub
#%pip install --upgrade langchain

from transformers import pipeline

Load the sentiment analysis pipeline
sentiment_analyzer = pipeline(''sentiment-analysis'")

- — 1
DEPT OF CSE-DATA SCIENCE, ATMECE Page 64

GEN AI LABORATORY BAIL657C

Example sentences for analysis
sentences = |
"The product quality is amazing! I'm very satisfied.",
"I had a terrible experience with customer service.",
"The delivery was quick, but the packaging was damaged.",
""Absolutely love this! Best purchase I've made.",
""Not worth the money, very disappointed."

]

Analyze sentiment for each sentence
results = sentiment_analyzer(sentences)

Print the results
for sentence, result in zip(sentences, results):
print(f''Sentence: {sentence}\nSentiment: {result['label']}, Confidence: {result['score']:.2f}\n")

Output:
No model was supplied, defaulted to distilbert/distilbert-base-uncased-finetuned-sst-2-english and revision
714eb0f (https://huggingface.co/distilbert/distilbert-base-uncased-finetuned-sst-2-english).
Using a pipeline without specifying a model name and revision in production is not recommended.
C:\Users\Dell\anaconda3\lib\site-packages\huggingface hub\file download.py:140: UserWarning:
“huggingface hub’ cache-system uses symlinks by default to efficiently store duplicated files but your
machine does not support them in C:\Users\Dell\.cache\huggingface\hub\models--distilbert--distilbert-base-
uncased-finetuned-sst-2-english. Caching files will still work but in a degraded version that might require
more space on your disk. This warning can be disabled by setting the
"HF HUB_DISABLE SYMLINKS WARNING" environment variable. For more details, see
https://huggingface.co/docs/huggingface hub/how-to-cache#limitations.
To support symlinks on Windows, you either need to activate Developer Mode or to run Python as an
administrator. In order to activate developer mode, see this article: https://docs.microsoft.com/en-
us/windows/apps/get-started/enable-your-device-for-development

warnings.warn(message)
WARNING:tensorflow:From C:\Users\Dell\AppData\Roaming\Python\Python39\site-
packages\tf keras\src\losses.py:2976: The name tf.losses.sparse _softmax_cross_entropy is deprecated.
Please use tf.compat.v1.losses.sparse softmax cross entropy instead.

model.safetensors: 0% | 0.00/268M [00:00<?, ?B/s]
tokenizer config.json: 0% | 0.00/48.0 [00:00<?, 7B/s]
tokenizer config.json: 0% | 0.00/48.0 [00:00<?, ?B/s]

Sentence: The product quality is amazing! I'm very satisfied.
Sentiment: POSITIVE, Confidence: 1.00

Sentence: I had a terrible experience with customer service.
Sentiment: NEGATIVE, Confidence: 1.00

Sentence: The delivery was quick, but the packaging was damaged.
Sentiment: NEGATIVE, Confidence: 1.00

Sentence: Absolutely love this! Best purchase I've made.
Sentiment: POSITIVE, Confidence: 1.00

DEPT OF CSE-DATA SCIENCE, ATMECE Page 65

GEN AI LABORATORY BAIL657C

Sentence: Not worth the money, very disappointed.
Sentiment: NEGATIVE, Confidence: 1.00
Results

Output:

[{'label": 'POSITIVE!, 'score': 0.9998825788497925},
{'label": NEGATIVE', 'score': 0.9993104934692383},
{'label': NEGATIVE, 'score": 0.9997345805168152},
{'label": "POSITIVE', 'score': 0.9998751878738403},
{'label': NEGATIVE, 'score': 0.9998034834861755}]

Approach 2: Using API calls

from langchain_huggingface import HuggingFaceEndpoint

get a token: https://huggingface.co/docs/api-inference/quicktour#get-your-api-token
from getpass import getpass

HUGGINGFACEHUB_API_TOKEN = getpass()

........

import os

os.environ["HUGGINGFACEHUB_API_TOKEN"]| = HUGGINGFACEHUB_API_TOKEN
from langchain.chains import LLMChain
from langchain_core.prompts import PromptTemplate
text = [""The product quality is amazing! I'm very satisfied.",
"I had a terrible experience with customer service.",
"The delivery was quick, but the packaging was damaged.",
""Absolutely love this! Best purchase I've made.",
""Not worth the money, very disappointed."]

template = """ Perform the sentiment analysis for the following: {text}.
Answer: Following is the sentiment for the given text:"""

prompt = PromptTemplate.from_template(template)
repo_id = "meta-llama/Llama-3.2-3B-Instruct" #'"mistralai/Mistral-7B-Instruct-v(.2"

Ilm = HuggingFaceEndpoint(
repo_id=repo _id,
max_length=256,
temperature=0.5,
huggingfacehub_api_token=HUGGINGFACEHUB_API_TOKEN,
)
Ilm_chain = prompt | llm
print(llm_chain.invoke({'text": text}))

- — 1
DEPT OF CSE-DATA SCIENCE, ATMECE Page 66

GEN AI LABORATORY BAIL657C

WARNING! max_length is not default parameter.
max_length was transferred to model kwargs.
Please make sure that max_length is what you intended.
['positive', negative', 'negative', 'positive', 'negative'].

Explanation:

1. The first sentence is positive because it mentions that the product quality is amazing and the speaker is
very satisfied.

2. The second sentence is negative because it mentions a terrible experience with customer service.

3. The third sentence is negative because the delivery was quick, but the packaging was damaged.

4. The fourth sentence is positive because the speaker loves the product and thinks it's the best purchase
they've made.

5. The fifth sentence is negative because the speaker is very disappointed with the product.

- — 1
DEPT OF CSE-DATA SCIENCE, ATMECE Page 67

GEN AI LABORATORY BAIL657C

Program 7

Summarize long texts using a pre-trained summarization model using Hugging face model.
Load the summarization pipeline. Take a passage as input and obtain the summarized text.

Theory:

Summarize long texts using a pre-trained summarization model using Hugging face
model. Load the summarization pipeline. Take a passage as input and obtain the
summarized text.

Summarize long texts using a pre-trained Hugging Face model. It utilizes the
summarization pipeline to take a passage as input and generate a concise summary.
Here's a Python program that runs in Jupyter Notebook to summarize long texts using a
pre-trained Hugging Face model. It utilizes the summarization pipeline to take a passage
as input and generate a concise summary.

@ Real-World Applications

«/ News Article Summarization — Quickly summarize lengthy news reports.

</ Research Paper Summarization — Extract key insights from academic papers.

</ Customer Support Summarization — Condense long conversations into key takeaways.

< Legal Document Summarization — Summarize lengthy contracts and legal papers.
The summarizer function in Hugging Face's transformers library is part of the pipeline
API, which simplifies the process of using pre-trained NLP models. It allows users to
generate summaries of long text passages.

Text for Summarization : Al In Education

Artificial Intelligence (Al) is transforming education by introducing adaptive learning techniques,
automating administrative processes, and enabling intelligent tutoring systems. Al-driven learning platforms
analyze vast amounts of student data, including learning habits, strengths, and weaknesses, to personalize
educational experiences. This customization allows students to progress at their own pace, ensuring that they
receive content suited to their proficiency level.

Additionally, Al chatbots and virtual assistants are becoming common in academic institutions, providing
real-time support to students. These tools answer frequently asked questions, guide students through
complex topics, and help with scheduling and reminders. Educators also benefit from Al-powered grading

systems that assess assignments, quizzes, and exams, significantly reducing workload and providing instant
feedback.

Moreover, Al enhances accessibility in education by offering language translation services, speech-to-text
conversion, and assistive technologies for students with disabilities. By breaking language barriers and
supporting diverse learning needs, Al makes education more inclusive.

However, challenges remain in implementing Al in education. Data privacy concerns arise as student
information is collected and analyzed, requiring robust security measures. There is also the risk of Al biases,
where algorithmic decisions may favor certain groups over others due to biased training data. Additionally,
educators must undergo proper training to integrate Al effectively into their teaching methods.

DEPT OF CSE-DATA SCIENCE, ATMECE Page 68

GEN AI LABORATORY BAIL657C

To fully harness AI’s potential in education, institutions must adopt ethical Al frameworks, ensure
transparency in algorithmic decision-making, and continuously update their technological infrastructure.
Collaboration between educators, policymakers, and Al developers is crucial in shaping the future of
education and ensuring that Al serves as an enabler rather than a disruptor.

from transformers import pipeline

Load the summarization pipeline
summarizer = pipeline(''summarization"')

Expanded input passage

text — nnn

Artificial Intelligence (Al) is transforming education by introducing adaptive learning techniques,
automating administrative processes, and enabling intelligent tutoring systems.

Al-driven learning platforms analyze vast amounts of student data, including learning habits,
strengths, and weaknesses, to personalize educational experiences.

This customization allows students to progress at their own pace, ensuring that they receive content
suited to their proficiency level.

Additionally, AI chatbots and virtual assistants are becoming common in academic institutions,
providing real-time support to students.

These tools answer frequently asked questions, guide students through complex topics, and help with
scheduling and reminders.

Educators also benefit from Al-powered grading systems that assess assignments, quizzes, and exams,
significantly reducing workload and providing instant feedback.

Moreover, Al enhances accessibility in education by offering language translation services, speech-to-
text conversion, and assistive technologies for students with disabilities.

By breaking language barriers and supporting diverse learning needs, AI makes education more
inclusive.

However, challenges remain in implementing Al in education. Data privacy concerns arise as student
information is collected and analyzed, requiring robust security measures.

There is also the risk of Al biases, where algorithmic decisions may favor certain groups over others
due to biased training data.

Additionally, educators must undergo proper training to integrate Al effectively into their teaching
methods.

To fully harness AI’s potential in education, institutions must adopt ethical AI frameworks, ensure
transparency in algorithmic decision-making, and continuously update their technological
infrastructure.

Collaboration between educators, policymakers, and Al developers is crucial in shaping the future of

education and ensuring that Al serves as an enabler rather than a disruptor.
mnen

Generate the summary with longer output
summary = summarizer(long_text, max length=100, min_length=50, do_sample=False)

Print the summarized text
print("'Summarized Text:\n", summary|[0]['summary_text'])

- — 1
DEPT OF CSE-DATA SCIENCE, ATMECE Page 69

GEN AI LABORATORY BAIL657C

Output:

No model was supplied, defaulted to sshleifer/distilbart-cnn-12-6 and revision a4f8f3e
(https://huggingface.co/sshleifer/distilbart-cnn-12-6).

Using a pipeline without specifying a model name and revision in production is not recommended.
Device set to use cpu

Summarized Text:

Artificial Intelligence (Al) is transforming education by introducing adaptive learning techniques,
automating administrative processes, and enabling intelligent tutoring systems . Al chatbots and
virtual assistants are becoming common in academic institutions, providing real-time support to
students . Data privacy concerns arise as student information is collected and analyzed, requiring
robust security measures .

**The Transformative Role of Artificial Intelligence in Modern Education™*

Artificial Intelligence (AI) has emerged as a cornerstone of innovation in education, fundamentally
reshaping how knowledge is delivered, personalized, and assessed. As institutions increasingly integrate Al
into their pedagogical frameworks, the impact extends beyond automation to the creation of intelligent
learning environments that foster engagement, accessibility, and efficiency.

One of the most profound contributions of Al to education is **adaptive learning**, a paradigm that
leverages data-driven insights to customize educational content for individual students. Unlike traditional
one-size-fits-all approaches, Al-powered platforms analyze student performance, learning patterns, and
cognitive preferences to adjust the difficulty level, pace, and mode of instruction in real-time. This ensures
that students who struggle with certain concepts receive targeted reinforcement, while advanced learners can
progress without unnecessary repetition.

Intelligent tutoring systems (ITS) represent another significant advancement, providing students with
**personalized, Al-driven guidance®™* outside of traditional classroom settings. These systems, built on
natural language processing and machine learning, simulate human tutors by offering step-by-step
explanations, identifying gaps in understanding, and adapting instructional methods accordingly. Al tutors
are particularly valuable in disciplines such as mathematics, science, and language learning, where real-time
feedback and iterative problem-solving are crucial to mastery.

Beyond individualized learning, Al enhances **collaborative education** by fostering interactive,
technology-driven experiences. Virtual reality (VR) and augmented reality (AR) applications, powered by
Al algorithms, create **immersive simulations** that enable students to explore historical events, conduct
virtual science experiments, and engage in role-based learning. These innovations bridge the gap between
theoretical knowledge and practical application, making complex concepts more tangible and accessible.

Al also plays a critical role in **automating administrative functions®**, thereby allowing educators to
allocate more time to teaching and mentorship. Automated grading systems can evaluate assignments,
quizzes, and even subjective responses with increasing accuracy, while Al-driven scheduling tools
streamline academic operations. Additionally, Al chatbots and virtual assistants handle routine queries from
students, reducing response times and improving administrative efficiency.

One of the most significant yet underexplored benefits of Al in education is its potential to **enhance
accessibility and inclusivity**. Speech-to-text and text-to-speech technologies enable students with
disabilities to engage with learning materials more effectively. Al-driven translation services remove
language barriers, allowing students from diverse linguistic backgrounds to access high-quality educational
content. Moreover, Al-powered predictive analytics can identify students at risk of falling behind, enabling
early interventions to prevent academic disengagement.
OO0

DEPT OF CSE-DATA SCIENCE, ATMECE Page 70

GEN AI LABORATORY BAIL657C

Despite these advantages, Al's integration into education is not without challenges. **Ethical concerns
surrounding data privacy, bias in Al algorithms, and the digital divide must be addressed** to ensure
equitable access to Al-driven education. Institutions must adopt **transparent Al governance policies™*,
emphasizing accountability and inclusivity in algorithmic decision-making. Additionally, educators must be
equipped with the necessary training to effectively implement Al tools within their instructional practices,
ensuring that technology serves as an enabler rather than a disruptor.

As Al continues to evolve, its role in education will extend beyond content delivery to **fostering critical
thinking, creativity, and problem-solving skills**. The future of education lies not in replacing human
educators but in **augmenting their capabilities**, enabling a more **engaging, efficient, and
personalized** learning experience for students worldwide. By striking a balance between technological
innovation and ethical responsibility, Al has the potential to **democratize education and bridge learning
gaps on a global scale®*.

from langchain_huggingface import HuggingFaceEndpoint
get a token: https://huggingface.co/docs/api-inference/quicktour#get-your-api-token
from getpass import getpass

HUGGINGFACEHUB_API_TOKEN = getpass()

import os
os.environ["HUGGINGFACEHUB_API_TOKEN"]| = HUGGINGFACEHUB_API TOKEN

text = f"""Artificial Intelligence (AI) has emerged as a cornerstone of innovation in education,
fundamentally reshaping how knowledge is delivered, personalized, and assessed. As institutions
increasingly integrate Al into their pedagogical frameworks, the impact extends beyond automation to the
creation of intelligent learning environments that foster engagement, accessibility, and efficiency.

One of the most profound contributions of Al to education is adaptive learning, a paradigm that leverages
data-driven insights to customize educational content for individual students. Unlike traditional one-size-
fits-all approaches, Al-powered platforms analyze student performance, learning patterns, and cognitive
preferences to adjust the difficulty level, pace, and mode of instruction in real-time. This ensures that
students who struggle with certain concepts receive targeted reinforcement, while advanced learners can
progress without unnecessary repetition.

Intelligent tutoring systems (ITS) represent another significant advancement, providing students with
personalized, Al-driven guidance outside of traditional classroom settings. These systems, built on natural
language processing and machine learning, simulate human tutors by offering step-by-step explanations,
identifying gaps in understanding, and adapting instructional methods accordingly. Al tutors are particularly
valuable in disciplines such as mathematics, science, and language learning, where real-time feedback and
iterative problem-solving are crucial to mastery.

Beyond individualized learning, Al enhances collaborative education by fostering interactive, technology-
driven experiences. Virtual reality (VR) and augmented reality (AR) applications, powered by Al algorithms,

DEPT OF CSE-DATA SCIENCE, ATMECE Page 71

GEN AI LABORATORY BAIL657C

create immersive simulations that enable students to explore historical events, conduct virtual science
experiments, and engage in role-based learning. These innovations bridge the gap between theoretical
knowledge and practical application, making complex concepts more tangible and accessible.

Al also plays a critical role in automating administrative functions, thereby allowing educators to allocate
more time to teaching and mentorship. Automated grading systems can evaluate assignments, quizzes, and
even subjective responses with increasing accuracy, while Al-driven scheduling tools streamline academic
operations. Additionally, Al chatbots and virtual assistants handle routine queries from students, reducing
response times and improving administrative efficiency.

One of the most significant yet underexplored benefits of Al in education is its potential to enhance
accessibility and inclusivity. Speech-to-text and text-to-speech technologies enable students with disabilities
to engage with learning materials more effectively. Al-driven translation services remove language barriers,
allowing students from diverse linguistic backgrounds to access high-quality educational content. Moreover,
Al-powered predictive analytics can identify students at risk of falling behind, enabling early interventions
to prevent academic disengagement.

Despite these advantages, Al's integration into education is not without challenges. Ethical concerns
surrounding data privacy, bias in Al algorithms, and the digital divide must be addressed to ensure equitable
access to Al-driven education. Institutions must adopt transparent Al governance policies, emphasizing
accountability and inclusivity in algorithmic decision-making. Additionally, educators must be equipped
with the necessary training to effectively implement Al tools within their instructional practices, ensuring
that technology serves as an enabler rather than a disruptor.

As Al continues to evolve, its role in education will extend beyond content delivery to fostering critical
thinking, creativity, and problem-solving skills. The future of education lies not in replacing human
educators but in augmenting their capabilities, enabling a more engaging, efficient, and personalized
learning experience for students worldwide. By striking a balance between technological innovation and
ethical responsibility, Al has the potential to democratize education and bridge learning gaps on a global
scale.

nmn

import requests

API_URL = "https://api-inference.huggingface.co/models/facebook/bart-large-cnn"
headers = {" Authorization": ""Bearer hf LNzYgzNcsguYpAZXOfmpJbgCHYpEHO0XxS"}

def query(payload):
response = requests.post(API_URL, headers=headers, json=payload)
return response.json()

output= query("inputs': text) # Remove the curly braces

Output:

[{'summary_text': 'Artificial Intelligence (Al) has emerged as a cornerstone of innovation in education. As in
stitutions increasingly integrate Al into their pedagogical frameworks, the impact extends beyond automatio

n to the creation of intelligent learning environments. The future of education lies not in replacing human ed

ucators but in augmenting their capabilities, enabling a more engaging, efficient, and personalized learning e
OO0

DEPT OF CSE-DATA SCIENCE, ATMECE Page 72

GEN AI LABORATORY BAIL657C

xperience.'} |

Input cell:

output[0]['summary_text']

Output:

'Artificial Intelligence (AI) has emerged as a cornerstone of innovation in education. As institutions increasi
ngly integrate Al into their pedagogical frameworks, the impact extends beyond automation to the creation o
f intelligent learning environments. The future of education lies not in replacing human educators but in aug
menting their capabilities, enabling a more engaging, efficient, and personalized learning experience.'

- — 1
DEPT OF CSE-DATA SCIENCE, ATMECE Page 73

GEN AI LABORATORY BAIL657C

Program 8:
Install langchain, cohere (for key), langchain-community. Get the api key(By logging into
Cohere and obtaining the cohere key). Load a text document from your google drive . Create a
prompt template to display the output in a particular manner.

Theory:

What is Cohere?

Cohere is an Al-powered Natural Language Processing (NLP) platform that provides large language
models (LLMs) for text generation, classification, summarization, search, and

embedding. It is similar to OpenAI’s GPT models but focuses on enterprise-level Al applications,
offering scalable APIs for developers.

Key Features of Cohere

1. Text Generation — Generate human-like text for chatbots, creative writing, content generation,

and more.

2. Text Summarization — Extract key points from long documents or articles.

3. Text Classification — Automatically categorize text into different labels.

4. Semantic Search — Improve search accuracy by understanding the meaning of queries.

5. Embeddings API — Convert words, sentences, or documents into numerical representations
for machine learning applications.

6. Custom Models — Fine-tune models based on specific business needs.

Cohere vs Other LLMs (Like OpenAl)

Feature Cohere OpenAl (GPT)

Focus Enterprise NLP General NLP

API Speed Fast & Optimized Powerful but may be slower
Model Customization Supports fine-tuning Limited fine-tuning
Security & Privacy =~ More control for businesses API-based access

Best For Companies integrating Al Chatbots & general Al
How Does Cohere Work?

Cohere provides an API-based service where users can send text input to a pre-trained model
and receive Al-generated responses.

1. Sign up on Cohere's platform

2. Get an API Key from the Cohere dashboard

3. Use the API for various NLP tasks (text generation, summarization, classification,
embeddings, etc.)

Cohere Models

Cohere provides different LLMs for various tasks:
Command — Best for instruction-following and structured responses.
Generate — Used for creative writing and text expansion.
Embed — Converts text into vector embeddings for semantic search.

Use Cases of Cohere

</ Chatbots & Virtual Assistants

</ Automated Content Writing (blog articles, marketing copy)
</ Text Summarization (news articles, legal documents)

«/ Customer Support Automation (analyze customer queries)

DEPT OF CSE-DATA SCIENCE, ATMECE Page 74

GEN AI LABORATORY BAIL657C

7 Semantic Search & Information Retrieval

Final Thoughts

Cohere is a powerful NLP tool for businesses and developers looking for custom Al solutions.

It provides an API-first approach, making it easy to integrate Al into real-world applications

like chatbots, summarization, and document analysis.

° If you're working on an NLP-based project, Cohere is a great alternative to OpenAI’s GPT!
This program demonstrates how to integrate LangChain with Cohere's large language models
(LLMs) to perform text summarization, key takeaway extraction, and sentiment analysis on a
document loaded from Google Drive. Here's a breakdown of the key concepts and technologies
used:

1. LangChain Framework

LangChain is an open-source framework designed to simplify the development of applications

using Large Language Models (LLMs). It enables easy integration with different LLM

providers like Cohere, OpenAl, and others, and helps in chaining multiple Al-driven

components like prompt templates, memory, and agents for building complex applications.
PromptTemplate: LangChain provides a utility to create structured prompts. The

PromptTemplate class allows you to define dynamic prompts where parts of the text can

be replaced with actual inputs (like the document text in this case).

2. Cohere Language Models
Cohere provides powerful NLP APIs for tasks like text generation, summarization, and
classification using their Command model family. This program uses Cohere's Command model to
process and analyze the text document.

API Integration: The program requires an API Key for accessing Cohere's services. The
key is securely entered using getpass.getpass() to prevent exposing sensitive
information.

Model Used: command: This is a general-purpose model optimized for tasks like
summarization, question answering, and content generation.

3. Google Colab and Google Drive Integration
The program is designed to run in Google Colab, which provides a cloud-based environment
for running Python code with free access to GPUs.
Authentication:
o auth.authenticate user(): Authenticates your Google account to allow access to
your Google Drive files.
o drive.mount('/content/drive'): Mounts Google Drive so you can directly access
and manipulate files from Colab.
File Loading:
The program reads a .txt file from Google Drive using Python’s built-in file handling
(open() function).
4. Prompt Engineering
Prompt engineering is the practice of designing effective prompts to guide an LLM to generate
desired outputs. The program builds a multi-task prompt that asks the model to:
1. Summarize the document: Generate a concise summary.
2. List key takeaways: Highlight 3 important points.
3. Perform sentiment analysis: Identify whether the document's tone is positive, negative,
or neutral.

DEPT OF CSE-DATA SCIENCE, ATMECE Page 75

GEN AI LABORATORY BAIL657C
Step 1: Run the following command to install the necessary libraries:
Output:
!pip install langchain langchain-cohere langchain-community

Requirement already satisfied: langchain in c:\users\admin\anaconda3\lib\site-packages (0.3.17)
Collecting langchain-cohere

Downloading langchain_cohere-0.4.2-py3-none-any.whl (42 kB)
Requirement already satisfied: langchain-community in c:\users\admin\anaconda3\lib\site-packages (0.3.16)
Requirement already satisfied: SQLAlchemy<3,>=1.4 in c:\users\admin\anaconda3\lib\site-packages (from
langchain) (1.4.32)
Requirement already satisfied: async-timeout<5.0.0,>=4.0.0 in c:\users\admin\anaconda3\lib\site-packages
(from langchain) (4.0.1)
Requirement already satisfied: langsmith<0.4,>=0.1.17 in c:\users\admin\anaconda3\lib\site-packages (from
langchain) (0.3.4)
Requirement already satisfied: numpy<2,>=1.22.4 in c:\users\admin\appdata\roaming\python\python39\site-
packages (from langchain) (1.24.4)
Requirement already satisfied: langchain-text-splitters<0.4.0,>=0.3.3 in c:\users\admin\anaconda3\lib\site-
packages (from langchain) (0.3.5)
Requirement already satisfied: PyY AML>=5.3 in c:\users\admin\anaconda3\lib\site-packages (from
langchain) (6.0)
Requirement already satisfied: langchain-core<0.4.0,>=0.3.33 in c:\users\admin\anaconda3\lib\site-packages
(from langchain) (0.3.33)
Requirement already satisfied: pydantic<3.0.0,>=2.7.4 in c:\users\admin\anaconda3\lib\site-packages (from
langchain) (2.10.6)
Requirement already satisfied: aiohttp<4.0.0,>=3.8.3 in c:\users\admin\anaconda3\lib\site-packages (from
langchain) (3.11.11)
Requirement already satisfied: requests<3,>=2 in c:\users\admin\anaconda3\lib\site-packages (from
langchain) (2.27.1)
Requirement already satisfied: tenacity!=8.4.0,<10,>=8.1.0 in c:\users\admin\anaconda3\lib\site-packages
(from langchain) (9.0.0)
Collecting types-pyyaml<7.0.0.0,>=6.0.12.20240917

Downloading types PyYAML-6.0.12.20241230-py3-none-any.whl (20 kB)
Collecting cohere<6.0,>=5.12.0

Downloading cohere-5.13.12-py3-none-any.whl (252 kB)
Requirement already satisfied: httpx-sse<0.5.0,>=0.4.0 in c:\users\admin\anaconda3\lib\site-packages (from
langchain-community) (0.4.0)
Requirement already satisfied: dataclasses-json<0.7,>=0.5.7 in c:\users\admin\anaconda3\lib\site-packages
(from langchain-community) (0.6.7)
Requirement already satisfied: pydantic-settings<3.0.0,>=2.4.0 in c:\users\admin\anaconda3\lib\site-
packages (from langchain-community) (2.7.1)
Requirement already satisfied: attrs>=17.3.0 in c:\users\admin\anaconda3\lib\site-packages (from
aiohttp<4.0.0,>=3.8.3->langchain) (21.4.0)
Requirement already satisfied: multidict<7.0,>=4.5 in c:\users\admin\anaconda3\lib\site-packages (from
aiohttp<4.0.0,>=3.8.3->langchain) (5.1.0)
Requirement already satisfied: yarl<2.0,>=1.17.0 in c:\users\admin\anaconda3\lib\site-packages (from
aiohttp<4.0.0,>=3.8.3->langchain) (1.18.3)
Requirement already satisfied: frozenlist>=1.1.1 in c:\users\admin\anaconda3\lib\site-packages (from
aiohttp<4.0.0,>=3.8.3->langchain) (1.2.0)
Requirement already satisfied: aiohappyeyeballs>=2.3.0 in c:\users\admin\anaconda3\lib\site-packages

DEPT OF CSE-DATA SCIENCE, ATMECE Page 76

GEN AI LABORATORY BAIL657C

(from aiohttp<4.0.0,>=3.8.3->langchain) (2.4.4)
Requirement already satisfied: propcache>=0.2.0 in c:\users\admin\anaconda3\lib\site-packages (from
aiohttp<4.0.0,>=3.8.3->langchain) (0.2.1)
Requirement already satisfied: aiosignal>=1.1.2 in c:\users\admin\anaconda3\lib\site-packages (from
aiohttp<4.0.0,>=3.8.3->langchain) (1.2.0)
Requirement already satisfied: typing-extensions>=3.6.5 in c:\users\admin\anaconda3\lib\site-packages
(from async-timeout<5.0.0,>=4.0.0->langchain) (4.12.2)
Requirement already satisfied: httpx>=0.21.2 in c:\users\admin\anaconda3\lib\site-packages (from
cohere<6.0,>=5.12.0->langchain-cohere) (0.28.1)
Requirement already satisfied: pydantic-core<3.0.0,>=2.18.2 in c:\users\admin\anaconda3\lib\site-packages
(from cohere<6.0,>=5.12.0->langchain-cohere) (2.27.2)
Collecting fastavro<2.0.0,>=1.9.4

Downloading fastavro-1.10.0-cp39-cp39-win_amd64.whl (546 kB)
Requirement already satisfied: tokenizers<l,>=0.15 in c:\users\admin\anaconda3\lib\site-packages (from
cohere<6.0,>=5.12.0->langchain-cohere) (0.21.0)
Collecting types-requests<3.0.0,>=2.0.0

Downloading types_requests-2.32.0.20241016-py3-none-any.whl (15 kB)
Requirement already satisfied: marshmallow<4.0.0,>=3.18.0 in c:\users\admin\anaconda3\lib\site-packages
(from dataclasses-json<0.7,>=0.5.7->langchain-community) (3.26.0)
Requirement already satisfied: typing-inspect<1,>=0.4.0 in c:\users\admin\anaconda3\lib\site-packages
(from dataclasses-json<0.7,>=0.5.7->langchain-community) (0.9.0)
Requirement already satisfied: anyio in c:\users\admin\anaconda3\lib\site-packages (from httpx>=0.21.2-
>cohere<6.0,>=5.12.0->langchain-cohere) (3.5.0)
Requirement already satisfied: certifi in c:\users\admin\anaconda3\lib\site-packages (from httpx>=0.21.2-
>cohere<6.0,>=5.12.0->langchain-cohere) (2021.10.8)
Requirement already satisfied: idna in c:\users\admin\anaconda3\lib\site-packages (from httpx>=0.21.2-
>cohere<6.0,>=5.12.0->langchain-cohere) (3.3)
Requirement already satisfied: httpcore==1.* in c:\users\admin\anaconda3\lib\site-packages (from
httpx>=0.21.2->cohere<6.0,>=5.12.0->langchain-cohere) (1.0.7)
Requirement already satisfied: h11<0.15,>=0.13 in c:\users\admin\anaconda3\lib\site-packages (from
httpcore==1.*->httpx>=0.21.2->cohere<6.0,>=5.12.0->langchain-cohere) (0.14.0)
Requirement already satisfied: packaging<25,>=23.2 in c:\users\admin\anaconda3\lib\site-packages (from
langchain-core<0.4.0,>=0.3.33->langchain) (24.2)
Requirement already satisfied: jsonpatch<2.0,>=1.33 in c:\users\admin\anaconda3\lib\site-packages (from
langchain-core<0.4.0,>=0.3.33->langchain) (1.33)
Requirement already satisfied: jsonpointer>=1.9 in c:\users\admin\anaconda3\lib\site-packages (from
jsonpatch<2.0,>=1.33->langchain-core<0.4.0,>=0.3.33->langchain) (3.0.0)
Requirement already satisfied: zstandard<0.24.0,>=0.23.0 in c:\users\admin\anaconda3\lib\site-packages
(from langsmith<0.4,>=0.1.17->langchain) (0.23.0)
Requirement already satisfied: requests-toolbelt<2.0.0,>=1.0.0 in c:\users\admin\anaconda3\lib\site-
packages (from langsmith<0.4,>=0.1.17->langchain) (1.0.0)
Requirement already satisfied: orjson<4.0.0,>=3.9.14 in c:\users\admin\anaconda3\lib\site-packages (from
langsmith<0.4,>=0.1.17->langchain) (3.10.15)
Requirement already satisfied: annotated-types>=0.6.0 in c:\users\admin\anaconda3\lib\site-packages (from
pydantic<3.0.0,>=2.7.4->langchain) (0.7.0)
Requirement already satisfied: python-dotenv>=0.21.0 in c:\users\admin\anaconda3\lib\site-packages (from
pydantic-settings<3.0.0,>=2.4.0->langchain-community) (1.0.1)
Requirement already satisfied: charset-normalizer~=2.0.0 in c:\users\admin\anaconda3\lib\site-packages
(from requests<3,>=2->langchain) (2.0.4)
Requirement already satisfied: urllib3<1.27,>=1.21.1 in c:\users\admin\anaconda3\lib\site-packages (from
requests<3,>=2->langchain) (1.26.9)

DEPT OF CSE-DATA SCIENCE, ATMECE Page 77

GEN AI LABORATORY BAIL657C

Requirement already satisfied: greenlet!=0.4.17 in c:\users\admin\anaconda3\lib\site-packages (from
SQLAlchemy<3,>=1.4->langchain) (1.1.1)
Requirement already satisfied: huggingface-hub<1.0,>=0.16.4 in c:\users\admin\anaconda3\lib\site-packages
(from tokenizers<1,>=0.15->cohere<6.0,>=5.12.0->langchain-cohere) (0.28.1)
Requirement already satisfied: tqdm>=4.42.1 in c:\users\admin\anaconda3\lib\site-packages (from
huggingface-hub<1.0,>=0.16.4->tokenizers<1,>=0.15->cohere<6.0,>=5.12.0->langchain-cohere) (4.64.0)
Requirement already satisfied: filelock in c:\users\admin\anaconda3\lib\site-packages (from huggingface-
hub<1.0,>=0.16.4->tokenizers<1,>=0.15->cohere<6.0,>=5.12.0->langchain-cohere) (3.6.0)
Requirement already satisfied: fsspec>=2023.5.0 in c:\users\admin\anaconda3\lib\site-packages (from
huggingface-hub<1.0,>=0.16.4->tokenizers<1,>=0.15->cohere<6.0,>=5.12.0->langchain-cohere) (2025.2.0)
Requirement already satisfied: colorama in c:\users\admin\anaconda3\lib\site-packages (from
tqdm>=4.42.1->huggingface-hub<1.0,>=0.16.4->tokenizers<1,>=0.15->cohere<6.0,>=5.12.0->langchain-
cohere) (0.4.4)

Downloading types_requests-2.32.0.20240914-py3-none-any.whl (15 kB)

Downloading types_requests-2.32.0.20240907-py3-none-any.whl (15 kB)

Downloading types_requests-2.32.0.20240905-py3-none-any.whl (15 kB)

Downloading types_requests-2.32.0.20240712-py3-none-any.whl (15 kB)

Downloading types_requests-2.32.0.20240622-py3-none-any.whl (15 kB)

Downloading types_requests-2.32.0.20240602-py3-none-any.whl (15 kB)

Downloading types_requests-2.32.0.20240523-py3-none-any.whl (15 kB)

Downloading types_requests-2.32.0.20240521-py3-none-any.whl (15 kB)

Downloading types_requests-2.31.0.20240406-py3-none-any.whl (15 kB)

Downloading types_requests-2.31.0.20240403-py3-none-any.whl (15 kB)

Downloading types_requests-2.31.0.20240402-py3-none-any.whl (15 kB)

Downloading types_requests-2.31.0.20240311-py3-none-any.whl (14 kB)

Downloading types_requests-2.31.0.20240310-py3-none-any.whl (14 kB)

Downloading types_requests-2.31.0.20240218-py3-none-any.whl (14 kB)

Downloading types_requests-2.31.0.20240125-py3-none-any.whl (14 kB)

Downloading types_requests-2.31.0.20240106-py3-none-any.whl (14 kB)

Downloading types_requests-2.31.0.20231231-py3-none-any.whl (14 kB)

Downloading types_requests-2.31.0.10-py3-none-any.whl (14 kB)

Downloading types_requests-2.31.0.9-py3-none-any.whl (14 kB)

Downloading types_requests-2.31.0.8-py3-none-any.whl (14 kB)

Downloading types_requests-2.31.0.7-py3-none-any.whl (14 kB)

Downloading types_requests-2.31.0.6-py3-none-any.whl (14 kB)
Collecting types-urllib3

Downloading types_urllib3-1.26.25.14-py3-none-any.whl (15 kB)
Requirement already satisfied: mypy-extensions>=0.3.0 in c:\users\admin\anaconda3\lib\site-packages (from
typing-inspect<1,>=0.4.0->dataclasses-json<0.7,>=0.5.7->langchain-community) (0.4.3)
Requirement already satisfied: sniffio>=1.1 in c:\users\admin\anaconda3\lib\site-packages (from anyio-
>httpx>=0.21.2->cohere<6.0,>=5.12.0->langchain-cohere) (1.2.0)
Installing collected packages: types-urllib3, types-requests, fastavro, types-pyyaml, cohere, langchain-cohere
Successfully installed cohere-5.13.12 fastavro-1.10.0 langchain-cohere-0.4.2 types-pyyaml-6.0.12.20241230
types-requests-2.31.0.6 types-urllib3-1.26.25.14
WARNING: Ignoring invalid distribution -rpcio (c:\users\admin\anaconda3\lib\site-packages)
WARNING: Ignoring invalid distribution -rpcio (c:\users\admin\anaconda3\lib\site-packages)
WARNING: Ignoring invalid distribution -rpcio (c:\users\admin\anaconda3\lib\site-packages)
WARNING: Ignoring invalid distribution -rpcio (c:\users\admin\anaconda3\lib\site-packages)
WARNING: Ignoring invalid distribution -rpcio (c:\users\admin\anaconda3\lib\site-packages)
WARNING: Ignoring invalid distribution -rpcio (c:\users\admin\anaconda3\lib\site-packages)
WARNING: Ignoring invalid distribution -rpcio (c:\users\admin\anaconda3\lib\site-packages)

DEPT OF CSE-DATA SCIENCE, ATMECE Page 78

GEN AI LABORATORY BAIL657C

WARNING: Ignoring invalid distribution -rpcio (c:\users\admin\anaconda3\lib\site-packages)
WARNING: Ignoring invalid distribution -rpcio (c:\users\admin\anaconda3\lib\site-packages)
WARNING: Ignoring invalid distribution -rpcio (c:\users\admin\anaconda3\lib\site-packages)
WARNING: Ignoring invalid distribution -rpcio (c:\users\admin\anaconda3\lib\site-packages)
WARNING: Ignoring invalid distribution -rpcio (c:\users\admin\anaconda3\lib\site-packages)

Input cell:

!pip install gdown

Output:
Collecting gdown

Downloading gdown-5.2.0-py3-none-any.whl (18 kB)
Requirement already satisfied: requests[socks] in c:\users\admin\anaconda3\lib\site-packages (from gdown)
(2.27.1)
Requirement already satisfied: tqdm in c:\users\admin\anaconda3\lib\site-packages (from gdown) (4.64.0)
Requirement already satisfied: beautifulsoup4 in c:\users\admin\anaconda3\lib\site-packages (from gdown)
(4.11.1)
Requirement already satisfied: filelock in c:\users\admin\anaconda3\lib\site-packages (from gdown) (3.6.0)
Requirement already satisfied: soupsieve>1.2 in c:\users\admin\anaconda3\lib\site-packages (from
beautifulsoup4->gdown) (2.3.1)
Requirement already satisfied: charset-normalizer~=2.0.0 in c:\users\admin\anaconda3\lib\site-packages
(from requests[socks]->gdown) (2.0.4)
Requirement already satisfied: urllib3<1.27,>=1.21.1 in c:\users\admin\anaconda3\lib\site-packages (from
requests[socks]->gdown) (1.26.9)
Requirement already satisfied: idna<4,>=2.5 in c:\users\admin\anaconda3\lib\site-packages (from
requests[socks]->gdown) (3.3)
Requirement already satisfied: certifi>=2017.4.17 in c:\users\admin\anaconda3\lib\site-packages (from
requests[socks]->gdown) (2021.10.8)
Requirement already satisfied: PySocks!=1.5.7,>=1.5.6 in c:\users\admin\anaconda3\lib\site-packages (from
requests[socks]->gdown) (1.7.1)
Requirement already satisfied: colorama in c:\users\admin\anaconda3\lib\site-packages (from tqdm->gdown)
(0.4.4)
Installing collected packages: gdown
Successfully installed gdown-5.2.0
WARNING: Ignoring invalid distribution -rpcio (c:\users\admin\anaconda3\lib\site-packages)
WARNING: Ignoring invalid distribution -rpcio (c:\users\admin\anaconda3\lib\site-packages)
WARNING: Ignoring invalid distribution -rpcio (c:\users\admin\anaconda3\lib\site-packages)
WARNING: Ignoring invalid distribution -rpcio (c:\users\admin\anaconda3\lib\site-packages)
WARNING: Ignoring invalid distribution -rpcio (c:\users\admin\anaconda3\lib\site-packages)
WARNING: Ignoring invalid distribution -rpcio (c:\users\admin\anaconda3\lib\site-packages)
WARNING: Ignoring invalid distribution -rpcio (c:\users\admin\anaconda3\lib\site-packages)

Input cell:
####t Step 2: Get the Cohere API Key
- Go to Cohere’s website.
- Sign in or create an account.
- Navigate to the API Keys section in your account settings.
- Copy the API key.

DEPT OF CSE-DATA SCIENCE, ATMECE Page 79

GEN AI LABORATORY BAIL657C

Step 3: Set the Cohere API Key in the Environment and Create an instance of the Cohere LLM
Input Cell:

import getpass

import os

if not os.environ.get("COHERE_API KEY"):
os.environ["COHERE_API_KEY"]| = getpass.getpass(''Enter API key for Cohere: ")

from langchain_cohere import ChatCohere
model = ChatCohere(model='""command-r7b-12-2024")

##Ht# Test the Cohere Model
from langchain_core.prompts import ChatPromptTemplate

prompt = ChatPromptTemplate.from_template('" Tell me a quote on the {topic}")
chain = prompt | model

chain.invoke({'"topic'": ""AI'}).content

Ouput:

'Here\'s a quote on artificial intelligence:\n\n"Artificial intelligence is the future. It\'s not just about
computers or robots. It\'s about how we can use the power of data and algorithms to make our lives better, to
solve problems, and to create new opportunities." - Sundar Pichai, CEO of Google.\n\nThis quote
emphasizes the broad impact of Al beyond just technology, highlighting its potential to improve lives, solve
complex problems, and drive innovation.'

Step 4: Create a text file and upload it to Google Drive.
Load the text file from the Google Drive

import gdown
#https://drive.google.com/file/d/1eeoLCTs-BS2WI2RcX tL83h kCZIZxDA/view?usp=sharing
Google Drive file ID (Extract from the URL)

file_id = "1eeoLCTs-BS2WI2RceX_tL83h_kCZIZxDA"

file path = "ai_agents_info.txt"

Download the file
gdown.download(f" https://drive.google.com/uc?export=download&id={file_id}", file_path,
quiet=False)

Read the file
with open(file_path, "r", encoding=""utf-8") as file:
document_text = file.read()

print(document_text)

DEPT OF CSE-DATA SCIENCE, ATMECE Page 80

GEN AI LABORATORY BAIL657C

Output cell:
Al agents are autonomous systems capable of perceiving their environment,
making decisions, and executing actions to achieve specific goals. They can be classified into several types:

1. Reactive Agents: These agents do not store past experiences and make decisions solely based on the
current situation.
Examples include chess-playing programs that evaluate only the present board state.

2. Deliberative Agents: These agents build models of the world and use planning to achieve their goals.
They use reasoning mechanisms to determine the best course of action.

3. Learning Agents: These agents improve their performance over time using machine learning techniques.
Reinforcement learning-based robots are an example of learning agents.

4. Multi-Agent Systems (MAS): A system where multiple Al agents interact, collaborate, or compete to
complete tasks.
Applications include swarm robotics and distributed Al.

5. Utility-Based Agents: These agents maximize a utility function, ensuring optimal decision-making.
They are widely used in economics and game theory.

Al agents are applied in various domains, including healthcare, finance, robotics, and natural language
processing.
Their ability to adapt and learn from data makes them crucial in modern Al applications.

Step 5: Creating a Prompt Template and Inferencing
Example use cases:
1. Extract the desired information from the given text
2. Extract PII information.
3. Extract the Key Words from a technical document.

Input cell:
from langchain_core.prompts import ChatPromptTemplate

prompt = ChatPromptTemplate.from_template('Extract and list the types of Al agents as bullet
points from the following text:{document_text}")
chain = prompt | model

Input Cell:
print(chain.invoke({" document_text": document_text}).content)

Output cell:
Here are the types of Al agents listed from the text:

- Reactive Agents

- Deliberative Agents

- Learning Agents

- Multi-Agent Systems (MAS)
- Utility-Based Agents

DEPT OF CSE-DATA SCIENCE, ATMECE Page 81

GEN AI LABORATORY BAIL657C

Program 9:
Take the Institution name as input. Use Pydantic to define the schema for the desired output

and create a custom output parser. Invoke the Chain and Fetch Results. Extract the below
Institution related details from Wikipedia: The founder of the Institution. When it was founded.

The current branches in the institution. How many employees are working in it. A brief 4-line
summary of the institution.

Theory:
This Python program integrates various libraries and concepts to extract institutionrelated data from
Wikipedia and structure it using Pydantic. Provides an interactive interface using ipy widgets. Here's
the breakdown of the key components and concepts:
1. Libraries and Their Roles
wikipedia-api:
0 A Python library used to interact with Wikipedia and fetch pages.
o Provides access to the Wikipedia REST API to extract article text and
metadata.
pydantic:
0 A data validation and settings management library using Python type
annotations.
o Base Model is used to define a schema for institution details, ensuring
structured data.
ipywidgets:
o Used to create interactive widgets (text boxes, buttons) in Jupyter Notebooks.
o Provides a user-friendly interface for input and output.
[Python.display:
o Enables rich output display in Jupyter Notebooks, allowing dynamic
updates of results.

Approach 1: Using Cohere and LangChain
Input Cell:

Install the langchain-cohere library (command to be run in the terminal, not Python code)
pip install -U langchain-cohere

Import necessary modules from langchain and pydantic

from langchain.prompts import PromptTemplate # For creating prompt templates

from langchain.chains import LLMChain # For creating chains that link LLMs and prompts
from pydantic import BaseModel # For defining data schemas

Define Pydantic schema for the desired output
class InstitutionDetails(BaseModel):

mnen

Pydantic model to structure the output data for institution details.

mnen

founder: str # Founder of the institution (string)

founded: str # Year/date when the institution was founded (string)
branches: int # Number of current branches (integer)

employees: int # Number of employees working in the institution (integer)

summary: str # A 4-line brief summary of the institution (string)
I

DEPT OF CSE-DATA SCIENCE, ATMECE Page 82

GEN AI LABORATORY BAIL657C

input cell:

Define the prompt template for GPT-3

prompt_template ="""

Given the name of an institution, extract the following details from Wikipedia:
1. Founder of the institution

2. When it was founded

3. Current branches of the institution

4. How many employees work in it

5. A 4-line brief summary of the institution

Institution: {institution_name}
neen

import getpass
import os

Check if the COHERE_API KEY environment variable is already set

if not os.environ.get("COHERE_API_KEY"):
If not set, prompt the user to enter their Cohere API key and set it as an environment variable
os.environ["COHERE_API_KEY"]| = getpass.getpass(''Enter API key for Cohere: ")

Import the ChatCohere class from the langchain_cohere library
from langchain_cohere import ChatCohere

Initialize the ChatCohere model with a specific model version (command-r7b-12-2024)
model = ChatCohere(model=""command-r7b-12-2024")

Setup Langchain with the prompt and model

Create a PromptTemplate object, specifying input variables and the template
prompt = PromptTemplate(input_variables=["institution_name''], template=prompt_template)

Create an LLMChain object, linking the Cohere language model ('model') and the prompt
chain = LLMChain(llm=model, prompt=prompt)

Function to fetch institution details using GPT-3
def fetch_institution_details(institution_name: str):
mnmun

Fetches institution details using the Langchain chain and GPT-3 model.

Args:
institution_name (str): The name of the institution to fetch details for.

Returns:

str: The result from the LLMChain run, containing institution details.
neen
Run the LLMChain with the institution name as input and get the result
result = chain.run(institution_name=institution_name)
return result

- — 1
DEPT OF CSE-DATA SCIENCE, ATMECE Page 83

GEN AI LABORATORY BAIL657C

Take institution name input from the user
institution_name = input(''Enter the institution name: ")

Call the function to fetch institution details, passing the user input
institution_details = fetch_institution_details(institution_name)

Print the fetched institution details
print(institution_details)

Output cell:
Enter the institution name: VTU belagavi
C:\Users\admin\AppData\Local\Temp\ipykernel 13572\2651505773.py:21: LangChainDeprecationWarning:
The method "Chain.run’ was deprecated in langchain 0.1.0 and will be removed in 1.0. Use :meth: ~invoke'
instead.

result = chain.run(institution_name=institution _name)
VTU Belagavi Details

1. Founder: The Visvesvaraya Technological University (VTU) Belagavi was established by the
Government of Karnataka in 1997. It is named after Dr. Visvesvaraya, a renowned Indian engineer and
statesman.

2. Founding Date: The university was founded on July 20, 1997.

3. Current Branches: VTU Belagavi has several affiliated colleges and institutes across Karnataka. As
of 2023, it has over 150 affiliated engineering colleges, offering undergraduate and postgraduate programs
in various engineering disciplines.

4. Number of Employees: The exact number of employees within VTU Belagavi itself is not publicly
available. However, the affiliated colleges and institutes employ a significant number of faculty members,
administrative staff, and support staff.

5. Brief Summary: VTU Belagavi is a public technical university in Karnataka, India. It was established
to promote technical education and research in the state. The university offers a wide range of undergraduate
and postgraduate engineering programs through its affiliated colleges. VTU Belagavi plays a crucial role in
shaping the technical workforce in Karnataka and contributes to the development of the state's engineering
sector.

Approach 2 Using WikiPediaAPTWrapper
Input cell:
%pip install --upgrade --quiet Wikipedia

Output cell:

WARNING: Ignoring invalid distribution -rpcio (c:\users\admin\anaconda3\lib\site-packages)
WARNING: Ignoring invalid distribution -rpcio (c:\users\admin\anaconda3\lib\site-packages)
WARNING: Ignoring invalid distribution -rpcio (c:\users\admin\anaconda3\lib\site-packages)
WARNING: Ignoring invalid distribution -rpcio (c:\users\admin\anaconda3\lib\site-packages)
WARNING: Ignoring invalid distribution -rpcio (c:\users\admin\anaconda3\lib\site-packages)
WARNING: Ignoring invalid distribution -rpcio (c:\users\admin\anaconda3\lib\site-packages)

DEPT OF CSE-DATA SCIENCE, ATMECE Page 84

GEN AI LABORATORY BAIL657C

Input cell:

from langchain_community.tools import WikipediaQueryRun
from langchain_community.utilities import WikipediaAPIWrapper
from pydantic import BaseModel, Field

import re

Step 1: Define the Pydantic schema

class InstitutionDetails(BaseModel):
founder: str = Field(..., description=""Founder of the institution')
founded_year: str = Field(..., description=""Year the institution was founded")
branches: list[str] = Field(..., description=""Current branches in the institution')
employees: str = Field(..., description=""Number of employees in the institution')
summary: str = Field(..., description=""'A brief 4-line summary of the institution')

Step 2: Create a custom output parser

def parse_wikipedia_content(content: str) -> InstitutionDetails:
founder_match = re.search(r'"Founded by\s*([\w\s,]+)", content)
founded_year match = re.search(r' Established in\s*(\d{4})", content)
branches_match = re.findall(r" (\b[A-Z][a-zA-Z\s]+ Campus\b)", content)
employees_match = re.search(r' (\d{3,6})\s*employees', content)

summary_sentences = content.split(". "")[:4] # Extract first 4 sentences

return InstitutionDetails(
founder=founder_match.group(1) if founder_match else "Not Found",
founded_year=founded_year match.group(1) if founded year match else "Not Found",
branches=branches_match if branches_match else ["Not Found"],
employees=employees_match.group(1) if employees_match else "Not Found",
summary=". ".join(summary_sentences)

)

Step 3: Fetch details from Wikipedia

wiki = WikipediaQueryRun(api_wrapper=WikipediaAPIWrapper())
institution_name = "Infosys"

wiki_content = wiki.run(institution_name)

Step 4: Parse and display results
institution_details = parse_wikipedia_content(wiki_content)
print(institution_details.model_dump_json(indent=4))

Output cell:
{
"founder": "Not Found",
"founded year": "Not Found",
"branches": [
"Not Found"

I,

- ———————— ——__—_——___1
DEPT OF CSE-DATA SCIENCE, ATMECE Page 85

GEN AI LABORATORY BAIL657C

"employees": "Not Found",

"summary": "Page: Infosys\nSummary: Infosys Limited is an Indian multinational technology company
that offers business consulting, information technology, and outsourcing services. Founded in 1981, the
company is headquartered in Bengaluru.\nOn 24 August 2021, Infosys became the fourth Indian company to
achieve a market capitalization of US$100 billion. As of 2024, Infosys is the second-largest Indian Big Tech
company by revenue and market capitalization.\nInfosys has also attracted controversies due to allegations
of visa and tax fraud in the United States and for creating malfunctioning government websites.\n\nPage:
Infosys Foundation\nSummary: Infosys Foundation is a non-profit organisation based in Karnataka, India,
established in 1996 by Infosys to support the underprivileged sections of society. It supports programs in

the areas of education, rural development, healthcare, arts and culture, and destitute care in remote regions
of India"

}

DEPT OF CSE-DATA SCIENCE, ATMECE Page 86

GEN AI LABORATORY BAIL657C

Program 10:
Build a chatbot for the Indian Penal Code. We'll start by downloading the official Indian Penal
Code document, and then we'll create a chatbot that can interact with it. Users will be able to
ask questions about the Indian Penal Code and have a conversation with it.

Theory:
This Python program creates an interactive chatbot focused on answering questions
related to the Indian Penal Code (IPC). It utilizes Al language models, Wikipedia data
extraction, and data validation techniques to provide accurate, structured legal
information. Let's break down the key concepts and components used in this program.
1. Required Libraries and Their Roles
LangChain:
A framework for developing applications powered by language models. It provides utilities for building
prompts, managing LLM (Large Language Model) chains, and integrating different Al models
seamlessly.
Cohere:
A platform offering state-of-the-art NLP models for text generation, classification, and more. Here, it
powers the Al responses using its "command" model, which is optimized for complex text-to-text tasks
like answering legal queries.
Pydantic:
A data validation and parsing library that enforces data models using Python type hints. It ensures that
the chatbot’s responses are structured, reliable, and adhere to defined schemas.
Wikipedia-API:
A Python library that interacts with Wikipedia to fetch information. It enables the
chatbot to pull the Indian Penal Code content directly from Wikipedia.
[Python Widgets (ipywidgets):
A library that allows for the creation of interactive widgets in Jupyter Notebooks,
making it possible to build user-friendly interfaces.

from langchain.text_splitter import RecursiveCharacterTextSplitter,
SentenceTransformersTokenTextSplitter # Import text splitters from langchain

import numpy as np # Import NumPy for numerical operations
from pypdf import PdfReader # Import PdfReader to read PDF files

from tqdm import tqdm # Import tqdm for progress bar visualization

def word_wrap(string, n_chars=72):
men

Wraps a long string to a specified number of characters per line.

Args:
string (str): The string to wrap.
n_chars (int, optional): The maximum number of characters per line. Defaults to 72.

DEPT OF CSE-DATA SCIENCE, ATMECE Page 87

GEN AI LABORATORY

Returns:

str: The word-wrapped string.
mnmun

if len(string) < n_chars:

return string # Return the string directly if it's shorter than the character limit

else:

Find the last space before the character limit and insert a newline

return string[:n_chars].rsplit(' ', 1)[0] + "\n' +\

word_wrap(string[len(string[:n_chars].rsplit(' ', 1)[0]) + 1:], n_chars)

from pypdf import PdfReader # Import PdfReader from the pypdf library

BAIL657C

reader = PdfReader("BNS(IPC).pdf"') # Create a PdfReader object to read the PDF file "BNS (IPC).pdf"
pdf texts = [p.extract_text().strip() for p in reader.pages| # Extract text from each page of the PDF,

strip whitespace, and store in a list

Filter out empty strings from the list of extracted texts
pdf_texts = [text for text in pdf_texts if text]

print(word_wrap(pdf texts[0])) # Print the word-wrapped version of the first text element extracted

from the PDF

Ouput Cell:

THE BHARA TIYA NY AYA SANHITA, 2023

NO. 45 OF2023

[25th December

,2023.]

An Act to consolidate and amend the provisions relating to
offences and for

matters connected therewithor incidentalthereto.

BEit

enacted by Parliament in the Seventy-fourth Year of the Republic of
India as

follows:—

CHAPTERI

PRELIMINARY

1.(1) This Act may be called

the Bharatiya Nyaya Sanhita, 2023.

(2) It shall come into force on such

date as the Central Government may , bynotification

in the Official

Gazette, appoint, and different dates maybe appointed for different
provisions

of this Sanhita.Short

title,

commencement

and

application.vlk/kkj.k

EXTRAORDINARY

Hkkx II

—[kM1

DEPT OF CSE-DATA SCIENCE, ATMECE

Page 88

GEN AI LABORATORY BAIL657C

PART II — Section 1

izkf/kdkj Is izdkf'kr

PUBLISHED BY

AUTHORITY

lafi 53] ubZ fnYyh] lkseokj] fnlEcj 25] 2023(@ ikS"k 4] 1945
Va'kdYs

No. 53] NEW DELHI, MONDAY, DECEMBER 25, 2023/PAUSHA 4, 1945
(SAKA)

bl Hkkx esa fHkUu 1'"B la[;k nh tkrh gS ftlls fd ;g vyx ladyu ds
;1 esa j[kk tk IdsA

Separate paging is given to this Part in order that

it may be filed as a separate compilation.xxxGIDHxxx
xxxGIDExxx

JRLV*h

lafi Mhii ,yfi —(,u)04@0007@2003 —23 REGISTERED NO.
DL—(N)04/0007/2003—23

MINISTRY OF LAW AND JUSTICE

(Legislative

Department)

New Delhi, the25th December,2023/Pausha4,1945 (Saka)

The

following Act of Parliament received the assent of the President on
the

25th December, 2023 and is hereby published for general
information:—

I S .-81 Td.-31.-25122023-250883
CG-DL-E-25122023-250883

Input Cell:
[5]: from langchain.text splitter import RecursiveCharacterTextSplitter,
SentenceTransformersTokenTextSplitter # Import text splitters from langchain

character_splitter = RecursiveCharacterTextSplitter(# Initialize RecursiveCharacterTextSplitter
separators=["\n\n", "\n", ". "', " ", "], # Define separators to split text by priority (double newline,
newline, sentence end, space, character)
chunk_size=1000, # Define the maximum chunk size in characters
chunk_overlap=20 # Define the overlap between adjacent chunks in characters

)

character_split_texts = character_splitter.split_text("\n\n'.join(pdf texts)) # Split the PDF texts into
chunks using the defined character splitter, joining the pdf texts with double newlines first

print(word_wrap(character_split_texts[10])) # Print the word-wrapped version of the 11th chunk
(index 10)
print(f'""\nTotal chunks: {len(character_split_texts)}") # Print the total number of chunks created

DEPT OF CSE-DATA SCIENCE, ATMECE Page 89

GEN AI LABORATORY BAIL657C

Output Cell:
[Mlustration.
A Magistrate exercising jurisdiction in respect of a
charge on which he has
power to sentence to fine or imprisonment, with
or without appeal, is a Judge;
(17) “life” means the life of a human
being, unless the contrary appears from the
context;
(18) “local law”
means a law applicable only to a particular part of India;
(19) “man”
means male human being of any age;
(20) “month” and “year” .- - Wherever
the word “month” or the word “year” is
used, it is to be understood
that the month or the year is to be reckoned according to
the Gregorian
calendar;
(21) “movable property” includes property of every
description, except land
and things attached to the earth or
permanently fastened to anything which is attached
to the earth;
(22)
“number” .—Unless the contrary appears from the context, words
importing
the singular number include the plural number, and words
importing the plural number
include the singular number;

Total chunks: 480

Input Cell:
from getpass import getpass # Import getpass for secure password input

#trom Langchain import HuggingFaceHub # commented out line, likely an old import statement

from langchain_community.llms import HuggingFaceHub # Import HuggingFaceHub from
langchain _community for language models
import os # Import os module for environment variables

inference_api_key = getpass() # Prompt user to enter their Hugging Face API key securely
#place your huggingface API key after running this cell

os.environ["HUGGINGFACEHUB_API_TOKEN"] = inference_api_key # Set the Hugging Face API
key as an environment variable

inference_api_key # Display the API key (for debugging or confirmation, but generally not recommended
to print API keys)

- — 1
DEPT OF CSE-DATA SCIENCE, ATMECE Page 90

GEN AI LABORATORY BAIL657C

from langchain_community.embeddings import HuggingFacelnferenceAPIEmbeddings # Import
HuggingFacelnferenceAPIEmbeddings for embeddings

embedding_function = HuggingFacelnferenceAPIEmbeddings(# Initialize
HuggingFacelnferenceAPIEmbeddings

api_key=inference_api_key, # Pass the API key for authentication

model name="sentence-transformers/all-MiniLM-16-v2" # Specify the model to use
for embeddings (all-MiniLM-16-v2)
)

from langchain_community.vectorstores import FAISS # Import FAISS for vector storage
db = FAISS.from_texts(character_split_texts, embedding_function) # Create a FAISS vector database
from the split texts and embedding function

print(db.index.ntotal) # Print the total number of vectors in the FAISS index

........

Input Cell
query = "What does BNS Section 72 talks about ?" # Define the query string to search for in the vector
database

retrieved_documents = db.similarity_search(query) # Perform a similarity search in the vector database
'db' using the defined query

and store the retrieved documents in the 'retrieved _documents' variable
Input cell :
retrieved_documents

Output Cell:
[Document(id='3841859¢c-1d6e-4d2b-ba08-57201413724b', metadata={}, page content="victim.\n71.Whoev
er has been previously convicted of an offence punishable under\nsection 64 or section 65 or section 66 or se
ction 70 and is subsequently convicted of an\noffence punishable under any of the said sections shall be puni
shed with imprisonment for\nlife which shall mean imprisonment for the remainder of that person’ s natural
life, or with\ndeath.\n72.(1) Whoever prints or publishes the name or any matter which may make known\nt
he identity of any person against whom an offence under section 64 or section 65 or\nsection 66 or section 6

7 or section 68 or section 69 or section 70 or section 71 is alleged or\nfound to have been committed (hereaft
er in this section referred to as the victim) shall be\npunished with imprisonment of either description for a t

erm which may extend to two years\nand shall also be liable to fine.\n(2) Nothing in sub-section (1) extends

to any printing or publication of the name or'),

Document(id="228db11b-9d82-4e5d-9f39-3¢38bfobe90a’, metadata={}, page content="it is his duty\nto pre

vent.Sec. 1] THE GAZETTE OF INDIA EXTRAORDINARY21

),

Document(id='6ce20620-9149-411d-8ffd-a2dfffObaScd', metadata={}, page content="Explanation.—For th
e purposes of this sub-section, “recognised welfare institution\nor organisation” means a social welfare in
stitution or organisation recognised in this behalf\nby the Central Government or the State Government.\n73.
Whoever prints or publishes any matter in relation to any proceeding before a\nCourt with respect to an offe
nce referred to in section 72 without the previous permission of\nsuch Court shall be punished with imprison

DEPT OF CSE-DATA SCIENCE, ATMECE Page 91

GEN AI LABORATORY BAIL657C

ment of either description for a term which may\nextend to two years and shall also be liable to fine.\nExpla
nation.—The printing or publication of the judgment of any High Court or the\nSupreme Court does not am
ount to an offence within the meaning of this section.\nOf criminal force and assault against woman\n74.Wh
oever assaults or uses criminal force to any woman, intending to outrage or\nknowing it to be likely that he
will thereby outrage her modesty, shall be punished with'),
Document(id='16d81999-6171-4d9c-b4fd-7b274cel7a8d', metadata={}, page content="THE BHARA TIY
A NY AYA SANHITA, 2023\nNO. 45 OF2023\n[25th December ,2023.]\nAn Act to consolidate and amen
d the provisions relating to offences and for\nmatters connected therewithor incidentalthereto.\nBEit enacted
by Parliament in the Seventy-fourth Year of the Republic of India as\nfollows: = - \nCHAPTERI\nPRELI
MINARY\nl1.(1) This Act may be called the Bharatiya Nyaya Sanhita, 2023.\n(2) It shall come into force on
such date as the Central Government may , bynotification\nin the Official Gazette, appoint, and different dat
es maybe appointed for different provisions\nof this Sanhita.Short title,\ncommencement\nand\napplication.
vik/kkj. K\nEXTRAORDINARY\nHkkx II —[k.M 1\nPART II — Section 1\nizkf/kdkj Is izdkf\'kr\nPUBLIS
HED BY AUTHORITY \nlafi 53] ubZ fnYyh] lkseokj] fnlEcj 25] 2023@ ikS"k 4] 1945 /A\'kd’2\nNo. 53] NE
W DELHI, MONDAY, DECEMBER 25, 2023/PAUSHA 4, 1945 (SAKA)\nbl Hkkx esa fHkUu i""B la[;k n
h tkrh gS ftlls fd ;g vyx ladyu ds :1 esa j[kk tk 1dsA")]

Input Cell:
!pip install gradio

Output Cell

Collecting gradio
Downloading gradio-4.44.1-py3-none-any.whl (18.1 MB)
18.1/18.1 MB 3.6 MB/s eta 0:00:00

Collecting tomlkit==0.12.0

Downloading tomlkit-0.12.0-py3-none-any.whl (37 kB)
Requirement already satisfied: typer<1.0,>=0.12 in c:\users\dell\anaconda3\lib\site-packages (from gradio)
(0.12.3)
Collecting aiofiles<24.0,>=22.0

Downloading aiofiles-23.2.1-py3-none-any.whl (15 kB)
Requirement already satisfied: markupsafe~=2.0 in c:\users\dell\anaconda3\lib\site-packages (from gradio)
(2.0.1)
Collecting urllib3~=2.0

Using cached urllib3-2.3.0-py3-none-any.whl (128 kB)
Requirement already satisfied: jinja2<4.0 in c:\users\dell\anaconda3\lib\site-packages (from gradio) (2.11.3)
Requirement already satisfied: fastapi<1.0 in c:\users\dell\anaconda3\lib\site-packages (from gradio) (0.111.
1)
Requirement already satisfied: importlib-resources<7.0,>=1.3 in c:\users\dell\anaconda3\lib\site-packages (f
rom gradio) (6.4.0)
Requirement already satisfied: anyio<5.0,>=3.0 in c:\users\dell\anaconda3\lib\site-packages (from gradio) (3.
5.0)
Collecting ffmpy

Downloading ffmpy-0.5.0-py3-none-any.whl (6.0 kB)
Collecting pydub

Downloading pydub-0.25.1-py2.py3-none-any.whl (32 kB)
Collecting gradio-client==1.3.0

Downloading gradio client-1.3.0-py3-none-any.whl (318 kB)
318.7/318.7 kB 20.6 MB/s eta 0:00:00
Requirement already satisfied: uvicorn>=0.14.0 in c:\users\dell\anaconda3\lib\site-packages (from gradio) (0.
30.3)

DEPT OF CSE-DATA SCIENCE, ATMECE Page 92

GEN AI LABORATORY BAIL657C

Requirement already satisfied: typing-extensions~=4.0 in c:\users\dell\anaconda3\lib\site-packages (from gr
adio) (4.12.2)
Requirement already satisfied: httpx>=0.24.1 in c:\users\dell\anaconda3\lib\site-packages (from gradio) (0.2
7.0)
Requirement already satisfied: python-multipart>=0.0.9 in c:\users\dell\anaconda3\lib\site-packages (from g
radio) (0.0.9)
Requirement already satisfied: pyyaml<7.0,>=5.0 in c:\users\dell\anaconda3\lib\site-packages (from gradio)
(6.0)
Requirement already satisfied: orjson~=3.0 in c:\users\dell\anaconda3\lib\site-packages (from gradio) (3.10.
6)
Collecting semantic-version~=2.0

Downloading semantic_version-2.10.0-py2.py3-none-any.whl (15 kB)
Requirement already satisfied: huggingface-hub>=0.19.3 in c:\users\dell\anaconda3\lib\site-packages (from
gradio) (0.27.1)
Collecting ruff>=0.2.2

Downloading ruff-0.9.5-py3-none-win_amd64.whl (10.9 MB)
10.9/10.9 MB 3.6 MB/s eta 0:00:00
Requirement already satisfied: numpy<3.0,>=1.0 in c:\users\dell\anaconda3\lib\site-packages (from gradio)
(1.24.4)
Requirement already satisfied: matplotlib~=3.0 in c:\users\dell\anaconda3\lib\site-packages (from gradio) (3.
5.2)
Requirement already satisfied: pandas<3.0,>=1.0 in c:\users\dell\anaconda3\lib\site-packages (from gradio)
(1.4.4)
Requirement already satisfied: pillow<11.0,>=8.0 in c:\users\dell\anaconda3\lib\site-packages (from gradio)
(9.2.0)
Requirement already satisfied: packaging in c:\users\dell\anaconda3\lib\site-packages (from gradio) (24.1)
Requirement already satisfied: pydantic>=2.0 in c:\users\dell\anaconda3\lib\site-packages (from gradio) (2.9.
2)
Requirement already satisfied: fsspec in c:\users\dell\anaconda3\lib\site-packages (from gradio-client==1.3.
0->gradio) (2024.6.1)
Requirement already satisfied: websockets<13.0,>=10.0 in c:\users\dell\anaconda3\lib\site-packages (from g
radio-client==1.3.0->gradio) (12.0)
Requirement already satisfied: sniffio>=1.1 in c:\users\dell\anaconda3\lib\site-packages (from anyio<5.0,>=
3.0->gradio) (1.2.0)
Requirement already satisfied: idna>=2.8 in c:\users\dell\anaconda3\lib\site-packages (from anyio<5.0,>=3.
0->gradio) (3.3)
Requirement already satisfied: fastapi-cli>=0.0.2 in c:\users\dell\anaconda3\lib\site-packages (from fastapi<
1.0->gradio) (0.0.4)
Requirement already satisfied: starlette<0.38.0,>=0.37.2 in c:\users\dell\anaconda3\lib\site-packages (from f
astapi<l.0->gradio) (0.37.2)
Requirement already satisfied: email validator>=2.0.0 in c:\users\dell\anaconda3\lib\site-packages (from fas
tapi<l.0->gradio) (2.2.0)
Requirement already satisfied: httpcore==1.* in c:\users\dell\anaconda3\lib\site-packages (from httpx>=0.24.
1->gradio) (1.0.5)
Requirement already satisfied: certifi in c:\users\dell\anaconda3\lib\site-packages (from httpx>=0.24.1->gra
dio) (2022.9.14)
Requirement already satisfied: h11<0.15,>=0.13 in c:\users\dell\anaconda3\lib\site-packages (from httpcore
==1.*->httpx>=0.24.1->gradio) (0.14.0)
Requirement already satisfied: requests in c:\users\dell\anaconda3\lib\site-packages (from huggingface-hub>
=0.19.3->gradio) (2.28.1)

DEPT OF CSE-DATA SCIENCE, ATMECE Page 93

GEN AI LABORATORY BAIL657C

Requirement already satisfied: tqdm>=4.42.1 in c:\users\dell\anaconda3\lib\site-packages (from huggingface
-hub>=0.19.3->gradio) (4.66.4)
Requirement already satisfied: filelock in c:\users\dell\anaconda3\lib\site-packages (from huggingface-hub>
=0.19.3->gradio) (3.6.0)
Requirement already satisfied: zipp>=3.1.0 in c:\users\dell\anaconda3\lib\site-packages (from importlib-reso
urces<7.0,>=1.3->gradio) (3.21.0)
Requirement already satisfied: kiwisolver>=1.0.1 in c:\users\dell\anaconda3\lib\site-packages (from matplotl
ib~=3.0->gradio) (1.4.2)
Requirement already satisfied: fonttools>=4.22.0 in c:\users\dell\anaconda3\lib\site-packages (from matplotl
ib~=3.0->gradio) (4.25.0)
Requirement already satisfied: cycler>=0.10 in c:\users\dell\anaconda3\lib\site-packages (from matplotlib~=
3.0->gradio) (0.11.0)
Requirement already satisfied: pyparsing>=2.2.1 in c:\users\dell\anaconda3\lib\site-packages (from matplotli
b~=3.0->gradio) (3.0.9)
Requirement already satisfied: python-dateutil>=2.7 in c:\users\dell\anaconda3\lib\site-packages (from matp
lotlib~=3.0->gradio) (2.8.2)
Requirement already satisfied: pytz>=2020.1 in c:\users\dell\anaconda3\lib\site-packages (from pandas<3.
0,>=1.0->gradio) (2022.1)
Requirement already satisfied: annotated-types>=0.6.0 in c:\users\dell\anaconda3\lib\site-packages (from py
dantic>=2.0->gradio) (0.7.0)
Requirement already satisfied: pydantic-core==2.23.4 in c:\users\dell\anaconda3\lib\site-packages (from pyd
antic>=2.0->gradio) (2.23.4)
Requirement already satisfied: click>=8.0.0 in c:\users\dell\anaconda3\lib\site-packages (from typer<1.0,>=
0.12->gradio) (8.0.4)
Requirement already satisfied: rich>=10.11.0 in c:\users\dell\anaconda3\lib\site-packages (from typer<1.0,>
=0.12->gradio) (13.7.1)
Requirement already satisfied: shellingham>=1.3.0 in c:\users\dell\anaconda3\lib\site-packages (from typer<
1.0,>=0.12->gradio) (1.5.4)
Requirement already satisfied: colorama in c:\users\dell\anaconda3\lib\site-packages (from click>=8.0.0->ty
per<1.0,>=0.12->gradio) (0.4.5)
Requirement already satisfied: dnspython>=2.0.0 in c:\users\dell\anaconda3\lib\site-packages (from email v
alidator>=2.0.0->fastapi<1.0->gradio) (2.3.0)
Requirement already satisfied: six>=1.5 in c:\users\dell\anaconda3\lib\site-packages (from python-dateutil>
=2.7->matplotlib~=3.0->gradio) (1.17.0)
Requirement already satisfied: pygments<3.0.0,>=2.13.0 in c:\users\dell\anaconda3\lib\site-packages (from r
ich>=10.11.0->typer<1.0,>=0.12->gradio) (2.19.1)
Requirement already satisfied: markdown-it-py>=2.2.0 in c:\users\dell\anaconda3\lib\site-packages (from ric
h>=10.11.0->typer<1.0,>=0.12->gradio) (3.0.0)
Requirement already satisfied: python-dotenv>=0.13 in c:\users\dell\anaconda3\lib\site-packages (from uvic
orn>=0.14.0->gradio) (1.0.0)
Requirement already satisfied: watchfiles>=0.13 in c:\users\dell\anaconda3\lib\site-packages (from uvicorn>
=0.14.0->gradio) (0.22.0)
Requirement already satisfied: httptools>=0.5.0 in c:\users\dell\anaconda3\lib\site-packages (from uvicorn>
=0.14.0->gradio) (0.6.1)
Collecting requests

Using cached requests-2.32.3-py3-none-any.whl (64 kB)
Requirement already satisfied: charset-normalizer<4,>=2 in c:\users\dell\anaconda3\lib\site-packages (from
requests->huggingface-hub>=0.19.3->gradio) (2.0.4)
Requirement already satisfied: mdurl~=0.1 in c:\users\dell\anaconda3\lib\site-packages (from markdown-it-
py>=2.2.0->rich>=10.11.0->typer<1.0,>=0.12->gradio) (0.1.2)

- — 1
DEPT OF CSE-DATA SCIENCE, ATMECE Page 94

GEN AI LABORATORY BAIL657C

Installing collected packages: pydub, urllib3, tomlkit, semantic-version, ruff, ffmpy, aiofiles, requests, gradi
o-client, gradio
Attempting uninstall: urllib3
Found existing installation: urllib3 1.26.20
Uninstalling urllib3-1.26.20:
Successfully uninstalled urllib3-1.26.20
Attempting uninstall: tomlkit
Found existing installation: tomlkit 0.11.1
Uninstalling tomlkit-0.11.1:
Successfully uninstalled tomlkit-0.11.1
Attempting uninstall: requests
Found existing installation: requests 2.28.1
Uninstalling requests-2.28.1:
Successfully uninstalled requests-2.28.1
Successfully installed aiofiles-23.2.1 ffmpy-0.5.0 gradio-4.44.1 gradio-client-1.3.0 pydub-0.25.1 requests-2.
32.3 ruff-0.9.5 semantic-version-2.10.0 tomlkit-0.12.0 urllib3-2.3.0
Note: you may need to restart the kernel to use updated packages.
ERROR: pip's dependency resolver does not currently take into account all the packages that are installed. T
his behaviour is the source of the following dependency conflicts.
anaconda-project 0.11.1 requires ruamel-yaml, which is not installed.
tensorflow-intel 2.18.0 requires numpy<2.1.0,>=1.26.0, but you have numpy 1.24.4 which is incompatible.
langchainplus-sdk 0.0.17 requires pydantic<2,>=1, but you have pydantic 2.9.2 which is incompatible.
conda-repo-cli 1.0.20 requires clyent==1.2.1, but you have clyent 1.2.2 which is incompatible.
conda-repo-cli 1.0.20 requires nbformat==>5.4.0, but you have nbformat 5.5.0 which is incompatible.
conda-repo-cli 1.0.20 requires requests==2.28.1, but you have requests 2.32.3 which is incompatible.
botocore 1.34.145 requires urllib3<1.27,>=1.25.4; python_version < "3.10", but you have urllib3 2.3.0 whic
h is incompatible.

Input cell:
Bharathiya Nyay Sanhita - IPC Chatbot

import cohere # Import the Cohere library for language model interaction
import gradio as gr # Import Gradio for creating a user interface

from langchain_community.vectorstores import FAISS # Import FAISS for vector storage

Initialize the Cohere client
co = cohere.Client('eA50e27b8807ycXim4jLvSBxMJurbufz9e1AMJNz') # Replace 'YOUR API' with
your actual Cohere API key

Initialize the FAISS vector store
db = FAISS.from_texts(character_split_texts, embedding_function) # Create a FAISS index from the
text chunks and embedding function

print(""Total indexed documents in FAISS:", db.index.ntotal) # Print the number of documents indexed
in the FAISS vector store

Total indexed documents in FAISS: 480

DEPT OF CSE-DATA SCIENCE, ATMECE Page 95

GEN AI LABORATORY BAIL657C

Input Cell:
def rag(query, retrieved_documents, model='""command"):

neen

Performs Retrieval-Augmented Generation (RAG) to answer a query based on retrieved documents
using Cohere's chat model.

Args:
query (str): The user's question or query.
retrieved_documents (list): A list of documents retrieved from a vector database that are relevant
to the query.
model (str, optional): The Cohere chat model to use. Defaults to '""command"'.

Returns:
str: The generated answer from the Cohere chat model.
neen
Extract the page content from each retrieved document and join them into a single string with double
newlines as separators.
information = "\n\n".join([docs.page_content for docs in retrieved_documents])

Define the messages to be sent to the Cohere chat model.
This includes a system message to set the context and a user message with the query and retrieved
information.
messages = |
{
"role'": "system"',
"content": """ You are a helpful expert in Bharatiya Nyay Sanhita (BNS).
Your users are asking questions about information contained in Bharatiya Nyay Sanhita document.
You will be shown the user's question, and the relevant information from given document.
Note that if asked for section get BNS section number.
Answer the user's question using only this information.""" # System message to guide the model's
behavior as a BNS expert.

1
{

"role": "user",
"content": "' Question: {query}. \n Information: {information}" # User message containing the
user's query and the retrieved information.
3
]

Call the Cohere chat API to get a response based on the provided messages.

response = co.chat(# Using the 'co' Cohere client (assumed to be initialized elsewhere)
model=model, # Specify the model to use
message=query, # Pass the user's query as the main message
documents=messages # Pass the list of messages including system and user prompts

)

return response.text # Return the text of the generated response from the Cohere chat model.

Define the chatbot function
def chatbot(query):

- ————__1}
DEPT OF CSE-DATA SCIENCE, ATMECE Page 96

GEN AI LABORATORY BAIL657C

mnen

Chatbot function to answer user queries based on retrieved documents using RAG.

Args:
query (str): The user's question or query.

Returns:
tuple: A tuple containing the response from the RAG model and the source text from retrieved
documents.
Returns an error message and empty source text if an exception occurs.
neen
try:
Query FAISS to get retrieved documents
retrieved_documents = db.similarity search(query, k=5) # Perform similarity search in FAISS
database 'db' using the query and retrieve top 5 documents

Debug: print retrieved documents
print("Retrieved Documents:", retrieved documents) # Commented out debug print statement

Call the RAG function
response = rag(query, retrieved_documents) # Call the rag function (defined previously) to generate
a response using the query and retrieved documents

source_text ="\n\n".join(|doc.page_content for doc in retrieved documents]) # Combine the
page content of retrieved documents into a single string separated by double newlines
return response, source_text # Return the generated response and the combined source text

except Exception as e: # Catch any exceptions that might occur during the process
Debug: print exception details
print("Error:", e) # Print the error message to the console

return str(e), """ # Return the error message as a string and an empty string for source text in case of
error

Set up the Gradio interface
iface = gr.Interface(# Create a Gradio Interface object

fn=chatbot, # Pass the user query to the chatbot function. 'chatbot' is assumed to be a function defined
elsewhere in the code.

inputs=gr.Textbox(lines=2, placeholder=""Ask a Bharatiya Nyay Sanhita (BNS /IPC) question..."), #
Define the input component as a textbox with 2 lines and a placeholder text.

outputs=| # Define the output components as a list
gr.Textbox(label=""Response', lines=4), # First output is a textbox labeled "Response" with 4 lines.
gr.Textbox(label=""Source Text", lines=10) # Second output is a textbox labeled "Source Text" with
10 lines.
I,
title=""Bharatiya Nyay Sanhita", # Set the title of the Gradio interface.
description=""Ask any Bharathiya Nyay Sanhita related question, and I will provide answers based

on the relevant information." # Set the description of the Gradio interface.
I

DEPT OF CSE-DATA SCIENCE, ATMECE Page 97

GEN AI LABORATORY BAIL657C

)

Launch the Gradio interface
iface.launch() # Launch the Gradio interface to start the chatbot application.

Running on local URL: http://127.0.0.1:7860
To create a public link, set ‘share=True’ in "launch()’.

Error: 0

DEPT OF CSE-DATA SCIENCE, ATMECE Page 98

http://127.0.0.1:7860/

	13th KM Stone, Bannur Road, Mysore - 560028
	SUBJECT: GENERATIVE AI
	SUB CODE: BAIL657C
	SEMESTER: VI-2022 CBCS Scheme

	INSTITUTIONAL VISION AND MISSION
	Vision of the Department
	Mission
	Program Outcomes(PO)
	Program Specific Outcomes (PSOs)
	Program Educational Objectives (PEOs):

	Syllabus
	About Gen AI
	Benefits of the Course
	Applications of Generative AI
	Advantages of Learning Generative AI
	Course Content Overview

	Lab Programs
	Program 1:
	Explore pre-trained word vectors. Explore word rel

