A I MNA | S

2 College of Engincerimgs

Departmmyent of Computer Scienoe K& Enginmnceering (IData- Sciemnceae)

Course Name ANALYSIS AND DESIGN OF ALGORITHM

Contact Hours 50 Mrs. MADHU NAGARAJ
Assistant Professor

T — 50 Dept of CSE-Data Science
ATMECE, Mysuru

SEE Marks 50

CLO 1. To learn the methods for analyzing algorithms and evaluating
Course Learning Objectives their performance.

CLO 2. To demonstrate the efficiency of algorithms using asymptotic
notations.

CLO 3. To solve problems using various algorithm design methods,
including brute force, greedy, divide and conquer, decrease and

conquer, transform and conquer, dynamic programming, backtracking,
and branch and bound.

CLO 4. To learn the concepts of P and NP complexity classes.

CO 1: Apply asymptotic notational method to analyze the performance
of the algorithms in terms of time complexity.

CO 2: Demonstrate divide & conquer approaches and decrease &

conquer approaches to solve computational problems.

CO 3: Make use of transform & conquer and dynamic programming
design approaches to solve the given real world or complex
computational problems.

CO 4 : Apply greedy and input enhancement methods to solve graph
& string based computational problems.

CO 5: Analyse various classes (P,NP and NP Complete) of problems

CO 6 : lllustrate backtracking, branch & bound and approximation
methods.

Licotorcvmeory N 75
College of Engineering g i

Anany Levitin, 3rd Edition (Indian), 2017, Pearson.

Computer Algorithms/C++, Ellis Horowitz, SatrajSahni and

Ref Book : it i iti
SIEIENEE BOOKS Rajasekaran, 2nd Edition, 2014, Universities Press.

Introduction to the Design and Analysis of Algorithms, By

Introduction to Algorithms, Thomas H. Cormen, Charles E.
Leiserson, Ronal L. Rivest, Clifford Stein, 3rd Edition, PHI.

Design and Analysis of Algorithms, S. Sridhar, Oxford
(Higher Education)

AT M E

| College of Engineering

Question Paper Pattern The question paper will have ten questions.

Each full Question consisting of 20 marks.

There will be 2 full questions (with a maximum of four sub
questions) from each module.

Each full question will have sub questions covering all the topics
under a module.

The students will have to answer 5 full questions, selecting one
full question from each module.

AT M E

College of Engineering

INTRODUCTION
Module 1- Chapt 1

Mrs. Madhu Nagaraj
Assistant Professor

Dept of CSE-Data Science
ATMECE

by a‘zp_e of &,

College of Engineering g = @ | AJA
What is an algorithm?
An algorithm 1s a sequence of unambiguous 1nstructions for solving a problem,

1.e., for obtaining a required output for any legitimate mput in a finite
amount of time.

A
Src 1o v

Problem

Algotithm

AT M E

College of Engineering

* In addition, all algorithms must satisfy the following criteria:
— Input: Zero or more quantities are externally supplied.
— Output: At least one quantity 1s produced.
— Definiteness: Each instruction 1s clear and unambiguous.
— Finiteness: algorithm terminates after a finite number of steps.
— Correctness
— Effectiveness

ne College of Engineering
Euclid’s Algorithm

Problem: Find gcd(m,n), the greatest common divisor of two nonnegative, not both zero
integersmandn

Examples: gcd(60,24) =12, gcd(60,0) = 60, gcd(0,0)="7

Euclid’s algorithm is based on repeated application of equality
gcd(m,n) = gcd(n, m mod n)

m mod n is the reminder of the division m &n.

until the second number becomes 0, which makes the problem

trivial.
Example: gcd(60,24) = gcd(24,12) = gcd(12,0) = 12

AT M E s 7 @ FlS
College of Engineering B Yo uins (A &

y_ , gret/aNy
77 4 g

Two descriptions of Euclid’s algorithm

Stepl Ifn=0, return mand stop; otherwise go to Step 2
Step2 Divide m by n and assign the value of the remainderto r
Step3 Assign the value of n to m and the value of r to n.

Goto Step 1.

whilen#0do
r < mmodn
m&<n
n&r
returnm

Liesarenymoercy NN (D,
Other methods for computing gcd(m n)

Consecutive integer checking algorithm

Stepl Assignthe value of min{m,n}tot

Step2 Dividembyt. If the remainderis 0, go to Step 3;
otherwise, go to Step 4
Step3 Dividenbyt. If the remainderis O, return t and stop;

otherwise, go to Step 4

Step4 Decreasetby 1 andgotoStep2

supamvagpey [
nc| College of Engineering e YKAS
Other methods for gcd(m, n)[cont |
Middle-school procedure

Step 1 Find the prime factorization of m
Step 2 Find the prime factorization of n

Step 3 Find all the common prime factors

Step 4 Compute the product of all the common prime factors and return it
as gcd(m,n)

o
o\\zﬁ-" ok &,

%‘
3
uE

AT M E

Collef of Engineering

amental steps in solvi

Understand the problem |

w

Decide on:
computational means,
axact vs. approximate solving
algorithm design technigue

w

Design an algorithjn |

h i

Prowse correctness |

Analyze the algorithm |

w

| Code the algornithm |

_ _ e o
A I M E SR 2, % k- 5
: < NBA V = E
ne College of Engineering 20 (AJA | IEEER ' P53
: ax £y Emcmans | M.

Fundamental steps in solving problems

(i) Understanding the Problem

* This is the first step in designing of algorithm.

» Read the problem’s description carefully to understand the problem statement completely.
 Ask questions for clarifying the doubts about the problem.

* [dentify the problem types and use existing algorithm to find solution.

* Input (instance) to the problem and range of the input get fixed.

(ii) Decision making

The Decision making is done on the following:

a) Ascertaining the Capabilities of the Computational Device - In random-access machine
(RAM), instructions are executed one after another (The central assumption is that one
operation at a time).

Accordingly, algorithms designed to be executed on such machines are called sequential
algorithms. Operations executed concurrently, i.e., in parallel are called parallel algorithms.

AT M E

College of Engineering

b)Choosing between Exact and Approximate Problem Solving:

—The next principal decision is to choose between solving the problem exactly or solving it
approximately.

— An algorithm used to solve the problem exactly and produce correct result is called an exact
algorithm.

—If the problem is so complex and not able to get exact solution, then we have to choose an
algorithm called an approximation algorithm to produces an approximate answer.

E.g., extracting square roots, solving nonlinear equations, and evaluating definite integrals.

¢) Algorithm Design Techniques

» An algorithm design technique (or “strategy” or “paradigm™) is a general approach to solving
problems algorithmically that is applicable to a variety of problems from different areas of
computing.

AT M E

College of Engineering

develop program. Hence the choice of proper data structure is required before designing the
algorithm.

» Implementation of algorithm is possible only with the help of Algorithms and Data Structures
 Algorithmic strategy / technique / paradigm are a general approach by which many problems
can be solved algorithmically.

E.g., Brute Force, Divide and Conquer, Dynamic Programming, Greedy Technique and soon.

(iii) Methods of Specifying an Algorithm

There are three ways to specify an algorithm. They are:
a. Natural language
b. Pseudocode
c. Flowchart

AT M E

College of Engineering

But many times specification of algorithm by using natural language is not clear and thereby we
get brief specification.

Example: An algorithm to perform addition of two numbers.

Step 1: Read the first number, say a.

Step 2: Read the first number, say b.

Step 3: Add the above two numbers and store the result in c.

Step 4: Display the result from c.

b) Pseudocode: ¢ Pseudocode is a mixture of a natural language and programming language
constructs. Pseudocode is usually more precise than natural language.

» For Assignment operation left arrow “«—”, for comments two slashes ““//”,if condition, for,
while loops are used.

mpswievaey [
College of Engineering <

ALGORITHM Sum(a,b) //Problem Description: This algorlthm performs addltlon of two nos.
//Input: Two integers a and b

//Output: Addition of two integers

c—atb

returnc

c)Flowchart Flowchart is a graphical representation of an algorithm.
It is a method of expressing an algorithm by a collection of connected geometric shapes
containing descriptions of the algorithm’s steps.

Licoaor oy N
College of Engineering

SYnbols Examole:Additionofaandb

C Start)

Transition / Assignment

/ / Processing / Input read / ! /

Input and Output
c=a+b
Condition / Decision / .
< > DRisplaythevalueofe /
!

l Flow connectivity (-)
op

College of Engineering 5

(iv) Proving an Algorithm’s Correctness
* Once an algorithm has been specified then its correctness must be proved.

» An algorithm must yield a required result for every legitimate input in a finite amount of time.
« A common technique for proving correctness is to use mathematical induction because an
algorithm’s iterations provide a natural sequence of steps needed for such proofs.

» For Example, the correctness of Euclid’s algorithm for computing the greatest common
divisor stems from the correctness of the equality gcd(m, n) = gcd(n, m mod n).

(v) Analyzing an Algorithm

* For an algorithm the most important is efficiency. In fact, there are two kinds of algorithm
efficiency. They are:

 Time efficiency, indicating how fast the algorithm runs, and

* Space efficiency, indicating how much extra memory it uses.

* The efficiency of an algorithm is determined by measuring both time efficiency and space
efficiency.

College of Engineering

(vi) Coding an Algorithm
« The coding / implementation of an algorithm is done by a suitable programming
language like C, C++,JAVA.

* Implementing an algorithm correctly i1s necessary..

« Standard tricks like computing a loop’s invariant (an expression that does not
change its value) outside the loop, collecting common subexpressions, replacing
expensive operations by cheap ones, selection of programming language and so on
should be known to the programmer.

* [t 1s very essential to write an optimized code (efficient code) to reduce the burden
of compiler.

AT M E

atme| College of Engineering

FUNDAMENTALS OF THE ANALYSIS OF
ALGORITHM EFFICIENCY
Module 1- Chapt 2

Mrs. Madhu Nagaraj
Assistant Professor

Dept of CSE-Data Science
ATMECE

College of Engineering <

150 9001:2008

The efficiency of an algorithm can be in terms of time and space. The algorithm efficiency can
be analyzed by the following ways.

a. Analysis Framework.

b. Asymptotic Notations and its properties.

c. Mathematical analysis for Recursive algorithms.

d. Mathematical analysis for Non-recursive algorithms.

a. Analysis Framework: There are two kinds of efficiencies to analyze the efficiency of any
algorithm. They are:

* Time efficiency-indicating how fast the algorithm runs
* Space efficiency-indicating how much extra memory it uses.

The algonthm analysis framework consists of the following:

1.
1.

1i1.
1v.

Measuring an Input’s Size
Units for Measuring Running Time

Orders of Growth
Worst-Case, Best-Case, and Average-Case Efficiencies

1. Measuring an Input Size

it is a function of some parameter n indicating the algorithm’s input size. For example, it will be the
size of the list for problems of sorting, searching.

For the problem of evaluating a polynomial of degree n, the size of the parameter will be the
polynomial’s degree or the number of its coefficients, which is larger by 1 than its degree.

In computing the product of two n X n matrices, the choice of a parameter indicating an input size does
matter.

In spell-checking algorithm. If the algorithm examines individual characters of its input, then the size is
measured by the number of characters.

In measuring input size for algorithms solving problems such as checking primality of a positive
integer n. the input is just one number.

(ii) Units for Measuring Running Time
Some standard unit of time measurement such as a second, or millisecond, and so on can be used to
measure the running time of a program after implementing the algorithm.

Drawbacks

Dependence on the speed of a particular computer.

Dependence on the quality of a program implementing the algorithm.
The compiler used in generating the machine code.

The difficulty of clocking the actual running time of the program.

So, we need metric to measure an algorithm’s efficiency that does not depend on these extraneous
factors.

One possible approach is to count the number of times each of the algorithm’s operations is executed.
This approach is excessively difficult.

The most important operation (+, -, *, /) of the algorithm, called the basic operation. Computing the
number of times the basic operation is executed is easy. The total running time is determined by basic
operations count.

AT M E

College of Engineering

(iii) Orders of Growth

* A difference in running times on small inputs is not what really distinguishes efficient
algorithms from inefficient ones.

* For example, the greatest common divisor of two small numbers, it is not immediately clear
how much more efficient Euclid’s algorithm is compared to the other algorithms. The
difference in algorithm efficiencies becomes clear for larger numbers only.

» For large values of n, it is the function’s order of growth that counts just like the Table
below which contains values of a few functions particularly important for analysis of
algorithms.

College of Engineering ' 7 r“k‘;m“ 1

n Vn log:n n n log:n n* n 2 n!

1 1] 1 0 1 1 2

2 1.4 1 2 2 4 4 4

4 2 2 4 8 16 64 16 24
8 2.8 3 8 2.4+10" 64 5.110° | 2.6°10° | 4.0-10*
10 3.2 33| 10 3.3¢10" 10 10° 10° 3.6+10°
16 i 4 16 6.4¢10' | 2.6010° | 4.1410° | 6.5.10* | 2.1.10"
10° 10 6.6 | 10° | 6.6:10° 10 10° 1.3:10° | 9.3.10"
10° 31 10 10° 1.0+10" 10° 10’

10* 10° 13 10 1.3+10° 10° 10" Very big

10° [3.2210°| 17 10 1.7+10°| 10" 10" computation

10° 10° 20 10° 2.010° 10" I

(iv) Worst-Case, Best-Case, and Average-Case Efficiencies

Consider Sequential Search algorithm some search key K ALGORITHM

SequentialSearch(A[0..n - 1], K)

//Searches for a given value in a given array by sequential search

//Input: An array A[0..n - 1] and a search key K

//Output: The index of the first element in A that matches K or -1 if there are no matching elements
10

while 1 <n and A[i] # K do
1<—1+1

if 1 <nreturn 1

else return -1

Clearly, the running time of this algorithm can be quite different for the same list size n.

In the worst case, there i1s no matching of elements or the first matching element can found at last on the
list.

In the best case, there is matchini of elements at first on the list.

Worst-case efficiency
» The worst-case efficiency of an algorithm is its efficiency for the worst case input of size n.
* The algorithm runs the longest among all possible inputs of that size.

* For the input of size n, the running time is Cworst(n) =n.

Best case efficiency

* The best-case efficiency of an algorithm is its efficiency for the best case input of size n.

* The algorithm runs the fastest among all possible inputs of that size n.

* In sequential search, If we search a first element in list of size n. (i.e. first element equal to a
search key), then the running time is Cbest(n) = 1

Average case efficiency

The Average case efficiency lies between best case and worst case.

To analyze the algorithm’s average case efficiency, we must make some assumptions about possible
inputs of size n.

AL E I
College of Engineering

Aysmptotic Growth

The rate at which the function grows.
“Growth rate” means the complexity of the function and the amout of time it takes to
compute.

Classification of Growth

Growing with same rate

Growing with slower rate

Growing with faster rate

_ 3

Asymptotic Notations and Basic Efficiency Classes
Asymptotic notation is a notation, which is used mailnly used to represent the time complexities of the
algorithms. The efficiency analysis framework concentrates on the order of growth of an algorithm
To compare and rank such orders of growth, computer scientists use three notations, they are:
O -Bigohnotation - aymptotic Less Than” (Slower rate)
Q- Big omega notation - “greater than” (faster rate)
* O - Big theta notation - “Eqality” (same)
Let t(n) and g(n) be any nonnegative functions defined on the set of natural numbers.
The algorithm’s running time t(n) usually indicated by its basic operation count C(n), and g(n): eg functions.

o | - 2] I
neoon), 10n 453 O(n), ;n[n —1)e D{uz}.
n’ & O (n?). 0.00001a° =4 o(n?). n*+ntlée O (n?).
1 2 = 5
where g(n) = n?. n e), Sn(n — 1) € Q(n"), but 100n + 5 & (n°).

i) O - Big oh notation
A function t(n) is said to be in O(g(n)), denoted t (n) € O(g(n)), if t (n) is bounded above by some constant

multiple of g(n) for all large n, 1.e., if there exist some positive constant ¢ and some nonnegative integer n,
such that:

t (n) <cg(n) for all n > n,
Where t(n) and g(n) are nonnegative functions defined on the set of natural numbers.
O = Asymptotic upper bound = Useful for worst case analysis.

F

doesn't | _—
matter !

ng e

FIG 2.1 Bii-oh notation: tln' S O| iln“

Example 2: Prove the assertions 100n + 5 € 0(n).
Proof: 100n + 5 < 100n + n (for all n = 5)
=101n

<101’ (" n<nd)

Since, the definition gives us a lot of freedom in choosing specific values for constants ¢ and n,. We have
c¢=101 and n,=5

Example 3: Prove the assertions 100n + 5 € 0(n).
Proof: 100n+5<100n+ 5n (foralln=1)

= 105n
e, 100rn+5<105n
L&, t(n) = cg(n)

.100n + 5 € 0(n) with ¢=105 and ny=1

Liesaor oy I 4
College of Engineering <

(ii) Q - Big omega notation
A function t(n) 1s said to be in (g(n)), denoted t(n) € Q(g(n)), if t(n) is bounded below by
some positive constant multiple of g(n) for all large n, 1.e., if there exist some positive
constant ¢ and some nonnegative integer n, such that

t (n) > cg(n) for all n > n,,.
Where t(n) and g(n) are nonnegative functions defined on the set of natural numbers.
Q = Asymptotic lower bound = Useful for best case analysis = Loose bound

Fs

i)
egln)

doesn't |
matter

Prove the assertions n3+10n2+4n+2 € Q (n32).
Proof: n3+10n2+4n+2 > n2

(for alln>0)

i.e., by definition t(n) > cg(n), where c=1 and n,=0

= .y
College of Engineering <

(iii) ® - Big theta notation
A function t(n) is said to be in ®(g(n)), denoted t(n) € O(g(n)), if t(n) is bounded both above and below
by some positive constant multiples of g(n) for all large n, i.e., if there exist some positive constants cl
and c2 and some nonnegative integer n, such that

c2g(n) <t (n) <clg(n) for all n >n0.
Where t(n) and g(n) are nonnegative functions defined on the set of natural numbers.
O = Asymptotic tight bound = Useful for average case analvsis

Fs
)

ngl:f‘.']

doesn't |
matter

Big-theta notation: t (n) € O®(g(n)).

ST NL.E I Y
College of Engineering q

For example. let us prove that %n (n — 1) € ©(n?). First, we prove the right
inequality (the upper bound):

.—n{n —)= 1n2 — ln < 1:12 forall n = 0.
2 2 2 2

Second, we prove the left inequality (the lower bound):

1 1

S Py £ 2
znn) zn

n°—_n> ln — 13‘?1.*?. (foralln > 2) = 11?2.
2 2 2 4

i

:
2

Hence, we can select ¢, = % Cj= %, and np = 2.

College of Engineering - UKAS i;b =

g el
p
Accrepmen®” Src 1o W
IS0 56

MATHEMATICAL ANALYSIS FOR RECURSIVE ALGRITHMS

General Plan for Analyzing the Time Efficiency of Recursive Algorithms

1. Decide on a parameter (or parameters) indicating an input’s size.

2. Identify the algorithm’s basic operation.

3. Check whether the number of times the basic operation is executed can vary on
different inputs of the same size;

if 1t can, the worst-case, average-case, and best-case efficiencies must be investigated
separately.

4. Set up a recurrence relation, with an appropriate initial condition, for the number of
times the basic operation is executed.

5. Solve the recurrence or, at least, ascertain the order of growth of its solution.

| AL ME I
College of Engineering

EXAMPLE 1: Compute the factorial function F(n) =n! for an arbltrary nonnegatlve 1nteger n.
Sincen!=1e....*(n—1)*n=(n—1)! *n, forn>1 and 0!= 1 by definition, we can compute
F(n) = F(n — 1) * n with the following recursive algorithm.

ALGORITHM F(n)

//Computes n! recursively
//Input: A nonnegative integer n
//Output: The value of n!

if n =0 return 1

else return F(n — 1) *n

| oot oo N %)
College of Engineering T
Tower of Hanoi Problem

In this problem, we have n disks of different sizes and three pegs.

Initially, all the disks are on the first peg in order of size, the largest on the
bottom and the smallest on top.

The goal 1s to move all the disks to the third peg, using the second one
as an auxiliary if necessary.

We can move only one disk at a time, and i1t is forbidden to place a larger
disk on top of a smaller one.

ATME

College of Engineering

— —

Recurrence for number of moves:

Algorithm : TOH (n, S, T, D)

/1 Solving Tower of Hanoi Problems
// Input : Number of discs n

/] Output : The sequence of movements.
{

ifn>0

{
T0H (n-1, S, D, T);
move disk from § to D
0 (n-1, 7, 8, D)

A I M E D]y-':‘,.‘:: . ‘:fw\m‘ o, .\ s W 4 e or g,
i i _ f“’i“/ f::% = 4 | i.] J
College of Engineering = L (AJA N 3 %

Solving recurrence for number of moves -

M(n) = 2M(n-1) + 1, M(0) =0
2[2M(n-2)+1]+1

2°M(n-2) +2 +1

22 [2M(n-3) +1]+2 +1

23 M(n-3) + 2242 +1

2" M(n-n) + 2"t +2"2 + 2242 +1

Standard formula used is G.P sequence
al(r — 1)
r— 1

(1_|_2_|_22_+_-,,2n.—2_}_2n—l) e

Here a=1 and r=2 => 0O(2")
e

e«a\eﬂﬂ‘d ey =
%irjﬁ}*’v # 5 Lo“'w' &,
L RO o
%) 5
© b S B
L 2y
;k UKA
REGISTRARS

aime| College of Engineerin

Tree of calls for the Tower of Hahoi

| icoilor ey I (30 (-
College of Engineering 3 N

- L W
MATHEMATICAL ANALYSIS FOR NON-RECURSIVE ALGORITHMS

4 5 m

""c oV

General Plan for Analyzing the Time Efficiency of Nonrecursive Algorithms

1. Decide on a parameter (or parameters) indicating an input’s size.

2. Identify the algorithm’s basic operation (in the innermost loop).

3. Check whether the number of times the basic operation is executed depends only on
the size of an input. If it also depends on some additional property, the worst-case,
average-case, and, if necessary, best-case efficiencies have to be investigated
separately.

4. Set up a sum expressing the number of times the algorithm’s basic operation is
executed.

5. Using standard formulas and rules of sum manipulation either find a closed form
formula for the count or at the least, establish its order of growth.

ATME

College of Engineering

EXAMPLE 1: Consider the problem of finding the value of the largest elementm a hst of n
numbers.

Assume that the list is implemented as an array for simplicity.
ALGORITHM MaxElement(A[0..n — 1])

//Determines the value of the largest element in a given array
//Input: An array A[0..n — 1] of real numbers

//Output: The value of the largest element in A

maxval «—A[0]

fori<—1ton—1do

if A[i]>maxval

maxval«—A[i]

return maxval

College of Engineering S

Example 1: Maximum element =

ALGORITHM MaxElement(A[0..n — 1])

//Determines the value of the largest element in a given array
/[Input: An array A[0..n — 1] of real numbers
//Output: The value of the largest element in A
maxval < A[0]
fori < 1ton—1do

if Ali] > maxval

maxval < Ali]

return maxval

A LM E I
College of Engineering ®

Analysis
1. Input parameter : 3. c‘m}=El.
2. Basic operation: Comparison h
Ali] > max [

AL M.E el
College of Engineering 2

ALGORITHM UniqueElements(A[0..n — 1])

//Determines whether all the elements in a given array are distinct
/Mnput: An array A[0..n — 1]
//Output: Returns “true” if all the elements in A are distinct
and “false” otherwise
fori <~ Oton —2do

for j —i+1ton—1do

if A[i]= A[/] return false

return true

Analysis

1. Input parameteris inputsize n

2. Basic operation: Comparison Al[i] == Al[j]

n—2 n—| =)
3. Cuorst(n) = ZZI—ZI_I—“—I-F }+J Zi—i—f}
=l j=1+1 i=0 1=l

_Zin—i]—Zr—:n—i]ZE_w

=(n-1)" - S _EHH =8l _#=0h 7 ln3 € 0(n?).
2 2 2

4. Wealso could have computed the sum Y™ (n — 1 — i) faster as follows:

n—2

Zm—l—r"b=|:fi'—i'b+(ff—21~‘~"-+t=
1=l]

(n—1)n
17

FF

. €0(m)

Licsaorcivmeory I (75
College of Engineering 7

BRUTE FORCE APPROACHES
Module 1- Chapt 3

Mrs. Madhu Nagaraj
Assistant Professor

Dept of CSE-Data Science
ATMECE

College of Engineering <

BRUTE FORCE
Brute force is a straightforward approach to solving a problem, usually directly based on
the problem statement and definitions of the concepts involved.

Selection Sort, Bubble Sort, Sequential Search, String Matching, Depth-First Search and
Breadth-First Search can be solved by Brute Force.

Examples:

1. Computingan:a*a*a* ... *a(ntimes)

2. Computing n! : The n! can be computed as n*(n-1)* ... *3*2*]
3. Multiplication of two matrices : C=AB

4. Searching a key from list of elements (Sequential search)

AT M E

College of Engineering

Advantages:

1. Brute force is applicable to a very wide variety of problems.

2. It is very useful for solving small size instances of a problem, even though it 1s inefficient.
3. The brute-force approach yields reasonable algorithms of at least some practical value
with no limitation on instance size for sorting, searching, and string matching.

Selection Sort

ALGORITHM SelectionSort(A[0..n — 1])

//Sorts a given array by selection sort

//Input: An array A[0..n — 1] of orderable elements
//Output: Array A[0..n — 1] sorted in nondecreasing order
fori<—0ton—2do

min «— 1

forj«—i+1ton—1do

if A[j [<A[min] min « j

swai AH and A‘min‘

AL LE I |
College of Engineering 3

The analysis of selection sort is straightforward. The input size is given by the number of
elements n;

the basic operation is the key comparison A[j |[<A[min].

The number of times it is executed depends only on the array size and is given by the following
sum:

¥
ep®!

n—2 n-1 n—2 n—2
Cm=)_ Y 1=) lna—D—G+Dh1]=) (n—-1-i).

i=0 j—i+1 i=0 i=0

selection sort is a O(n?) algorithm for best case. however, that the number of key swaps is only
O(n).

Worst case case is also O(n?)

Licsaor oy I (%
College of Engineering <

Bubble Sort

ALGORITHM BubbleSort(A[0..n — 1])

//Sorts a given array by bubble sort

//Input: An array A[0..n — 1] of orderable elements
//Output: Array A[0..n — 1] sorted in nondecreasing order
fori<—0ton—2do

fory«—~0ton—2—-1do

if A[j + 1]<A[j] swap A[j] and A[j + 1]

The number of key comparisons for the bubble-sort version given above is the same for all arrays of
size n; it is obtained by a sum that is almost identical to the sum for selection sort:

n—2 n—2—i n—2
Cmy=) > 1=)[(n—2-i)—0+1]
i=0 j=0 i=0
n—2
- Z(n 1-i)= i _21}"1 e O(n?).
i=l

College of Engineering

Advantages of Bubble Sort

* Easily understandable.

* Does not necessitates any extra memory.

e The code can be written easily for this algorithm.

* Minimal space requirement than that of other sorting algorithms.

Disadvantages of Bubble Sort

* It does not work well when we have large unsorted lists, and i1t necessitates more
resources that end up taking so much of time.

e It is only meant for academic purposes, not for practical implementations.

* It involves the n2 order of steps to sort an algorithm.

Licsaoreivnenry I §
College of Engineering <

Sequential Serach

ALGORITHM SequentialSearch2(A[0..n], K)

/Implements sequential search with a search key as a sentinel
//Input: An array A of n elements and a search key K
//Output: The index of the first element in A[0..n — 1] whose value is
// equal to K or —1 if no such element is found

A[n]«—K

10

while A[i] =K do

1<—1+1

if 1 <nreturn 1

else return —1

he| College of Engineering

Algorithm for Linear Search:
The algorithm for linear search can be broken down into the following steps:

1.

N

Start: Begin at the first element of the collection of elements.

Compare: Compare the current element with the desired element.

Found: If the current element is equal to the desired element, return true or
index to the current element.

Move: Otherwise, move to the next element in the collection.

Repeat: Repeat steps 2-4 until we have reached the end of collection.

Not found: If the end of the collection is reached without finding the desired
element, return that the desired element 1s not in the array.

College of Engineering

Advantages of Linear Search:

* Linear search can be used irrespective of whether the array is sorted or not. It can
be used on arrays of any data type.

* Does not require any additional memory.

* [t 1s a well-suited algorithm for small datasets.

Disadvantages of Linear Search:

* Linear search has a time complexity of O(N)(Worst Case), which in turn makes it
slow for large datasets.

* Not suitable for large arrays.

When to use Linear Search?

* When we are dealing with a small dataset.

* When you are searching for a dataset stored in contiguous memory.

College of Engineering

Brute-Force String Matching

pattern: a string of m characters to search for
text: a (longer) string of n characters to search in
problem: find first substring in text that matches pattern

Brute-force: Scan text LR, compare chars, looking for pattern,
Step 1 Align pattern at beginning of text
Step 2 Moving from left to right, compare each character of pattern to the corresponding
character in text until
- all characters are found to match (successful search);
- or a mismatch is detected
Step 3 While pattern is not found and the text is not yet exhausted, realign pattern one position
to the right and
repeat Step 2

A LM E I
College of Engineering <

Brute-Force String Matching

ALGORITHM BruteForceStringMatch(T [0..n — 1], P[0..m — 1])
//ITmplements brute-force string matching

//Input: An array T [0..n — 1] of n characters representing a text and
// an array P[0..m — 1] of m characters representing a pattern
//Output: The index of the first character in the text that starts a
// matching substring or —1 if the search is unsuccessful
fori«-0ton—mdo

0

while j<mand P[j |[=T[i+]] do

je—j+1

if j = m return 1

return —1

The Time Complexity of the Brute Force Algorithm is O(MXN), where M denotes the length of the
text and N denotes the length of the pattern.

