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CLO 1. To learn the methods for analyzing algorithms and evaluating 
their performance.

CLO 2. To demonstrate the efficiency of algorithms using asymptotic 
notations.

Course Learning Objectives

CLO 3. To solve problems using various algorithm design methods, 
including brute force, greedy, divide and conquer, decrease and 
conquer, transform and conquer, dynamic programming, backtracking, 
and branch and bound.

CLO 4. To learn the concepts of P and NP complexity classes.



CO 1: Apply asymptotic notational method to analyze the performance 
of the algorithms in terms of time complexity.

CO 3:  Make use of transform & conquer and dynamic programming 
design approaches to solve the given real world or complex 
computational problems.

Course Outcomes

CO 4 : Apply greedy and input enhancement methods to solve graph 
& string based computational problems.

CO 5 : Analyse various classes (P,NP and NP Complete) of problems

CO 2:  Demonstrate divide & conquer approaches and decrease & 
conquer approaches to solve computational problems.

CO 6 :  Illustrate backtracking, branch & bound and approximation 
methods.



Introduction to the Design and Analysis of Algorithms, By 
Anany Levitin, 3rd Edition (Indian), 2017, Pearson.

Text Book

Computer Algorithms/C++, Ellis Horowitz, SatrajSahni and 
Rajasekaran, 2nd Edition, 2014, Universities Press.Reference Books

Introduction to Algorithms, Thomas H. Cormen, Charles E. 
Leiserson, Ronal L. Rivest, Clifford Stein, 3rd Edition, PHI.

Design and Analysis of Algorithms, S. Sridhar, Oxford 
(Higher Education)



The question paper will have ten questions.

Each full Question consisting of 20 marks.

Question Paper Pattern

There will be 2 full questions (with a maximum of  four sub 
questions) from each module.

Each full question will have sub questions covering all the topics 
under a module.

The students will have to answer 5 full questions, selecting one 
full question from each module.
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What is an algorithm?

“Computer”

An algorithm is a sequence of unambiguous instructions  for solving a problem, 
i.e., for obtaining a required  output for any legitimate input in a finite 
amount of  time.

 Problem

Algorithm

Input Output
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 • In addition, all algorithms must satisfy the following criteria:
– Input: Zero or more quantities are externally supplied.
– Output: At least one quantity is produced.
– Definiteness: Each instruction is clear and unambiguous.
– Finiteness: algorithm terminates after a finite number of steps.
– Correctness
– Effectiveness



Euclid’s Algorithm
Problem: Find gcd(m,n), the greatest common divisor of two nonnegative, not both zero 
integers m and n

Examples: gcd(60,24) = 12, gcd(60,0) = 60, gcd(0,0) = ?

Euclid’s algorithm is based on repeated application of equality
gcd(m,n) = gcd(n, m mod n) 

 m mod n is the reminder of the division m &n.
until the second number becomes 0, which makes the problem
trivial.

Example: gcd(60,24) = gcd(24,12) = gcd(12,0) = 12



Two descriptions of Euclid’s algorithm

11

Step 1 If n = 0, return m and stop; otherwise go to Step 2
Step 2 Divide m by n and assign the value of the remainder to r
Step 3 Assign the value of n to m and the value of r to n.

Go to  Step 1.

while n ≠ 0 do
r ← m mod n
m← n  
n ← r
return m



Other methods for computing  gcd(m,n)
Consecutive integer checking algorithm

Step 1 Assign the value of min{m,n} to t
Step 2 Divide m by t. If the remainder is 0, go to Step 3;

otherwise, go to Step 4
Step 3 Divide n by t. If the remainder is 0, return t and stop;

otherwise, go to Step 4
Step 4 Decrease t by 1 and go to Step 2



Other methods for gcd(m,n)[cont.]
Middle-school procedure
Step 1 Find the prime factorization of m
Step 2 Find the prime factorization of n
Step 3 Find all the common prime factors
Step 4 Compute the product of all the common prime factors  and return it 

as gcd(m,n)



Fundamental steps in solving problems



Fundamental steps in solving problems
(i) Understanding the Problem 
• This is the first step in designing of algorithm. 
• Read the problem’s description carefully to understand the problem statement completely. 
• Ask questions for clarifying the doubts about the problem. 
• Identify the problem types and use existing algorithm to find solution.
 • Input (instance) to the problem and range of the input get fixed. 

(ii) Decision making 
The Decision making is done on the following: 
a) Ascertaining the Capabilities of the Computational Device - In random-access machine 
(RAM), instructions are executed one after another (The central assumption is that one 
operation at a time).  
Accordingly, algorithms designed to be executed on such machines are called sequential 
algorithms. Operations executed concurrently, i.e., in parallel are called parallel algorithms.



b)Choosing between Exact and Approximate Problem Solving: 
→The next principal decision is to choose between solving the problem exactly or solving it 
approximately. 
→An algorithm used to solve the problem exactly and produce correct result is called an exact 
algorithm. 
→If the problem is so complex and not able to get exact solution, then we have to choose an 
algorithm called an approximation algorithm to produces an approximate answer. 
E.g., extracting square roots, solving nonlinear equations, and evaluating definite integrals. 

c) Algorithm Design Techniques
• An algorithm design technique (or “strategy” or “paradigm”) is a general approach to solving 
problems algorithmically that is applicable to a variety of problems from different areas of 
computing.  



• Though Algorithms and Data Structures are independent, but they are combined together to 
develop program. Hence the choice of proper data structure is required before designing the 
algorithm. 
• Implementation of algorithm is possible only with the help of Algorithms and Data Structures 
• Algorithmic strategy / technique / paradigm are a general approach by which many problems 
can be solved algorithmically. 
E.g., Brute Force, Divide and Conquer, Dynamic Programming, Greedy Technique and soon. 

(iii) Methods of Specifying an Algorithm 
There are three ways to specify an algorithm.  They are: 

a. Natural language 
b. Pseudocode 
c. Flowchart 



a. Natural Language- It is very simple and easy to specify an algorithm using natural language. 
But many times specification of algorithm by using natural language is not clear and thereby we 
get brief specification. 
Example: An algorithm to perform addition of two numbers. 
Step 1: Read the first number, say a. 
Step 2: Read the first number, say b. 
Step 3: Add the above two numbers and store the result in c. 
Step 4: Display the result from c. 

b) Pseudocode: • Pseudocode is a mixture of a natural language and programming language 
constructs. Pseudocode is usually more precise than natural language. 
• For Assignment operation left arrow “←”, for comments two slashes “//”,if condition, for, 
while loops are used.  



ALGORITHM Sum(a,b) //Problem Description: This algorithm performs addition of two nos. 
//Input: Two integers a and b 
//Output: Addition of two integers 
c←a+b 
returnc

c)Flowchart • Flowchart is a graphical representation of an algorithm.
 It is a method of expressing an algorithm by a collection of connected geometric shapes 
containing descriptions of the algorithm’s steps. 





(iv) Proving an Algorithm’s Correctness  
• Once an algorithm has been specified then its correctness must be proved.
 • An algorithm must yield a required result for every legitimate input in a finite amount of time. 
• A common technique for proving correctness is to use mathematical induction because an 
algorithm’s iterations provide a natural sequence of steps needed for such proofs. 
• For Example, the correctness of Euclid’s algorithm for computing the greatest common 
divisor stems from the correctness of the equality gcd(m, n) = gcd(n, m mod n).

(v) Analyzing an Algorithm 
• For an algorithm the most important is efficiency. In fact, there are two kinds of algorithm 
efficiency.  They are: 
• Time efficiency, indicating how fast the algorithm runs, and 
• Space efficiency, indicating how much extra memory it uses. 
• The efficiency of an algorithm is determined by measuring both time efficiency and space 
efficiency.



(vi) Coding an Algorithm 
• The coding / implementation of an algorithm is done by a suitable programming 
language like C, C++,JAVA.
 •  Implementing an algorithm correctly is necessary.. 
• Standard tricks like computing a loop’s invariant (an expression that does not 
change its value) outside the loop, collecting common subexpressions, replacing 
expensive operations by cheap ones, selection of programming language and so on 
should be known to the programmer.
 • It is very essential to write an optimized code (efficient code) to reduce the burden 
of compiler. 
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The efficiency of an algorithm can be in terms of time and space. The algorithm efficiency can 
be analyzed by the following ways.

a. Analysis Framework. 
b. Asymptotic Notations and its properties. 
c. Mathematical analysis for Recursive algorithms. 
d. Mathematical analysis for Non-recursive algorithms. 

a. Analysis Framework:  There are two kinds of efficiencies to analyze the efficiency of any 
algorithm. They are:   

• Time efficiency-indicating how fast the algorithm runs  
• Space efficiency-indicating how much extra memory it uses. 



The algorithm analysis framework consists of the following:  
i. Measuring an Input’s Size  
ii. Units for Measuring Running Time  
iii. Orders of Growth  
iv. Worst-Case, Best-Case, and Average-Case Efficiencies 

i. Measuring an Input Size
• it is a function of some parameter n indicating the algorithm’s input size. For example, it will be the 

size of the list for problems of sorting, searching. 
•  For the problem of evaluating a polynomial of degree n, the size of the parameter will be the 

polynomial’s degree or the number of its coefficients, which is larger by 1 than its degree. 
•  In computing the product of two n × n matrices, the choice of a parameter indicating an input size does 

matter.  
• In spell-checking algorithm. If the algorithm examines individual characters of its input, then the size is 

measured by the number of characters.  
• In measuring input size for algorithms solving problems such as checking primality of a positive 

integer n. the input is just one number. 



(ii) Units for Measuring Running Time 
Some standard unit of time measurement such as a second, or millisecond, and so on can be used to 
measure the running time of a program after implementing the algorithm. 

Drawbacks  
• Dependence on the speed of a particular computer.  
• Dependence on the quality of a program implementing the algorithm.   
• The compiler used in generating the machine code.  
• The difficulty of clocking the actual running time of the program.

• So, we need metric to measure an algorithm’s efficiency that does not depend on these extraneous 
factors. 

• One possible approach is to count the number of times each of the algorithm’s operations is executed. 
This approach is excessively difficult. 

• The most important operation (+, -, *, /) of the algorithm, called the basic operation. Computing the 
number of times the basic operation is executed is easy. The total running time is determined by basic 
operations count.  



 (iii) Orders of Growth  
• A difference in running times on small inputs is not what really distinguishes efficient 

algorithms from inefficient ones.   
• For example, the greatest common divisor of two small numbers, it is not immediately clear 

how much more efficient Euclid’s algorithm is compared to the other algorithms. The 
difference in algorithm efficiencies becomes clear for larger numbers only.  

• For large values of n, it is the function’s order of growth that counts just like the Table  
below which contains values of a few functions particularly important for analysis of 
algorithms. 





(iv) Worst-Case, Best-Case, and Average-Case Efficiencies 
Consider Sequential Search algorithm some search key K ALGORITHM 
SequentialSearch(A[0..n - 1], K)
 //Searches for a given value in a given array by sequential search 
//Input: An array A[0..n - 1] and a search key K
 //Output: The index of the first element in A that matches K or -1 if there are no matching elements 
i ←0 
while i < n and A[i] ≠ K do
 i ←i + 1
 if i < n return i
 else return -1 

Clearly, the running time of this algorithm can be quite different for the same list size n.  

 In the worst case, there is no matching of elements or the first matching element can found at last on the 
list.
In the best case, there is matching of elements at first on the list.   



Worst-case efficiency  
• The worst-case efficiency of an algorithm is its efficiency for the worst case input of size n.  
• The algorithm runs the longest among all possible inputs of that size.  
•  For the input of size n,  the running time is  Cworst(n) = n. 

Best case efficiency  
• The best-case efficiency of an algorithm is its efficiency for the best case input of size n.  
• The algorithm runs the fastest among all possible inputs of that size n.  
•  In sequential search, If we search a first element in list of size n. (i.e.  first element equal to a 

search key),  then the running time is  Cbest(n) = 1

Average case efficiency  
The Average case efficiency lies between best case and worst case.  
To analyze the algorithm’s average case efficiency, we must make some assumptions about possible 
inputs of size n.  



Aysmptotic Growth
The rate at which the function grows.
“Growth rate” means the complexity of  the function and the amout of time it takes to 
compute. 

Classification of Growth

• Growing with same rate

• Growing with slower rate

• Growing with faster rate
• .



Asymptotic Notations and Basic Efficiency Classes
Asymptotic notation is a notation, which is used mailnly used to represent the time complexities of the 
algorithms. The efficiency analysis framework concentrates on the order of growth of an algorithm
To compare and rank such orders of growth, computer scientists use three notations, they are:  

• O - Big oh notation - aymptotic Less Than” (Slower rate)
•  Ω - Big omega notation - “greater than” (faster rate)
•  Θ - Big theta notation  -  “Eqality” (same)

Let t(n) and g(n) be any nonnegative functions defined on the set of natural numbers. 
The algorithm’s running time t(n) usually indicated by its basic operation count C(n), and g(n): eg functions.

where g(n) = n2.



i) O - Big oh notation
A function t(n) is said to be in O(g(n)), denoted t (n) ∈ O(g(n)), if t (n) is bounded above by some constant 
multiple of g(n) for all large n, i.e., if there exist some positive constant c and some nonnegative integer n0 
such that: 

t (n) ≤ cg(n) for all n ≥ n0
Where t(n) and g(n) are nonnegative functions defined on the set of natural numbers. 
O = Asymptotic upper bound = Useful for worst case analysis.

FIG 2.1 Big-oh notation: t (n) ∈ O(g(n)).



Since, the definition gives us a lot of freedom in choosing specific values for constants c and n0. We have 
c=101 and n0=5
 



(ii) Ω - Big omega notation 
A function t(n) is said to be in Ω(g(n)), denoted t(n) ∈ Ω(g(n)), if t(n) is bounded below by 
some positive constant multiple of g(n) for all large n, i.e., if there exist some positive 
constant c and some nonnegative integer n0 such that 

t (n) ≥ cg(n) for all n ≥ n0. 
Where t(n) and g(n) are nonnegative functions defined on the set of natural numbers. 
Ω = Asymptotic lower bound = Useful for best case analysis = Loose bound 



Prove the assertions n3+10n2+4n+2 ∈ Ω (n2).
 Proof: n3+10n2+4n+2 ≥ n2

(for all n ≥ 0) 
i.e., by definition t(n) ≥ cg(n), where c=1 and n0=0



(iii) Θ - Big theta notation 
A function t(n) is said to be in Θ(g(n)), denoted t(n) ∈ Θ(g(n)), if t(n) is bounded both above and below 
by some positive constant multiples of g(n) for all large n, i.e., if there exist some positive constants c1 
and c2 and some nonnegative integer n0 such that 

c2g(n) ≤ t (n) ≤ c1g(n) for all n ≥ n0. 
Where t(n) and g(n) are nonnegative functions defined on the set of natural numbers. 
Θ = Asymptotic tight bound = Useful for average case analysis

Big-theta notation: t (n) ∈ Θ(g(n)).





MATHEMATICAL ANALYSIS FOR RECURSIVE ALGORITHMS

General Plan for Analyzing the Time Efficiency of Recursive Algorithms 
1. Decide on a parameter (or parameters) indicating an input’s size.
2. Identify the algorithm’s basic operation. 
3. Check whether the number of times the basic operation is executed can vary on 
different inputs of the same size; 
if it can, the worst-case, average-case, and best-case efficiencies must be investigated 
separately. 
4. Set up a recurrence relation, with an appropriate initial condition, for the number of 
times the basic operation is executed. 
5. Solve the recurrence or, at least, ascertain the order of growth of its solution.



EXAMPLE 1: Compute the factorial function F(n) = n! for an arbitrary nonnegative integer n. 
Since n!= 1•. . . . • (n − 1) • n = (n − 1)! • n, for n ≥ 1 and 0!= 1 by definition, we can compute 
F(n) = F(n − 1) • n with the following recursive algorithm.  

ALGORITHM F(n) 
//Computes n! recursively 
//Input: A nonnegative integer n 
//Output: The value of n! 
if n = 0 return 1 
else return F(n − 1) * n 



Tower of Hanoi Problem
• In this problem, we have n disks of different sizes and  three pegs.
• Initially, all the disks are on the first peg in order of  size, the largest on the 

bottom and the smallest on  top.
• The goal is to move all the disks to the third peg,  using the second one 

as an auxiliary if necessary.
• We can move only one disk at a time, and it is  forbidden to place a larger 

disk on top of a smaller  one.



Example 2: The Tower of Hanoi  Puzzle
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Recurrence for number of moves:





Solving recurrence for number of  moves
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Tree of calls for the Tower of Hanoi  Puzzle
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MATHEMATICAL ANALYSIS FOR NON-RECURSIVE ALGORITHMS 

General Plan for Analyzing the Time Efficiency of Nonrecursive Algorithms 
1. Decide on a parameter (or parameters) indicating an input’s size.
2. Identify the algorithm’s basic operation (in the innermost loop). 
3. Check whether the number of times the basic operation is executed depends only on 
the size of an input. If it also depends on some additional property, the worst-case, 
average-case, and, if necessary, best-case efficiencies have to be investigated 
separately. 
4. Set up a sum expressing the number of times the algorithm’s basic operation is 
executed.
5. Using standard formulas and rules of sum manipulation either find a closed form 
formula for the count or at the least, establish its order of growth. 



EXAMPLE 1: Consider the problem of finding the value of the largest element in a list of n 
numbers. 
Assume that the list is implemented as an array for simplicity. 
ALGORITHM MaxElement(A[0..n − 1])
//Determines the value of the largest element in a given array 
//Input: An array A[0..n − 1] of real numbers
//Output: The value of the largest element in A 
maxval ←A[0]
for i ←1 to n − 1 do
if A[i]>maxval 
maxval←A[i]
return maxval



Example 1: Maximum element



Analysis
1. Input parameter : 3.

2. Basic operation:  Comparison
A[i] > max

4.



Example 2: Element uniqueness  problem



Analysis

A[i] == A[j]
1. Input parameter is input size n
2. Basic operation: Comparison

3.

4.

Є O(n2)
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BRUTE FORCE 
Brute force is a straightforward approach to solving a problem, usually directly based on 
the problem statement and definitions of the concepts involved.

Selection Sort, Bubble Sort, Sequential Search, String Matching, Depth-First Search and 
Breadth-First Search can be solved by Brute Force. 

Examples: 
1. Computing an : a * a * a * … * a ( n times)
2. Computing n! : The n! can be computed as n*(n-1)* … *3*2*1
3. Multiplication of two matrices : C=AB 
4. Searching a key from list of elements (Sequential search) 



Advantages: 
1. Brute force is applicable to a very wide variety of problems. 
2. It is very useful for solving small size instances of a problem, even though it is inefficient. 
3. The brute-force approach yields reasonable algorithms of at least some practical value 
with no limitation on instance size for sorting, searching, and string matching. 

Selection Sort
ALGORITHM SelectionSort(A[0..n − 1])
//Sorts a given array by selection sort 
//Input: An array A[0..n − 1] of orderable elements
//Output: Array A[0..n − 1] sorted in nondecreasing order
for i ← 0 to n − 2 do
min ← i
for j ← i + 1 to n − 1 do
if A[j ]<A[min] min ← j
swap A[i] and A[min]



The analysis of selection sort is straightforward. The input size is given by the number of 
elements n; 
the basic operation is the key comparison A[j ]<A[min].
The number of times it is executed depends only on the array size and is given by the following 
sum:

selection sort is a O(n2) algorithm for best case. however, that the number of key swaps is only 
O(n).

Worst case case is also O(n2)



Bubble Sort
ALGORITHM BubbleSort(A[0..n − 1])
//Sorts a given array by bubble sort 
//Input: An array A[0..n − 1] of orderable elements
//Output: Array A[0..n − 1] sorted in nondecreasing order
for i ← 0 to n − 2 do
for j ← 0 to n − 2 − i do
if A[j + 1]<A[j ] swap A[j ] and A[j + 1]

The number of key comparisons for the bubble-sort version given above is the same for all arrays of 
size n; it is obtained by a sum that is almost identical to the sum for selection sort:



Advantages of Bubble Sort
• Easily understandable.
• Does not necessitates any extra memory.
• The code can be written easily for this algorithm.
• Minimal space requirement than that of other sorting algorithms.

Disadvantages of Bubble Sort
• It does not work well when we have large unsorted lists, and it necessitates more 

resources that end up taking so much of time.
• It is only meant for academic purposes, not for practical implementations.
• It involves the n2 order of steps to sort an algorithm.



Sequential Serach
ALGORITHM SequentialSearch2(A[0..n], K)
//Implements sequential search with a search key as a sentinel
//Input: An array A of n elements and a search key K
//Output: The index of the first element in A[0..n − 1] whose value is
// equal to K or −1 if no such element is found
A[n]←K
i ←0
while A[i] = K do
i ←i + 1
if i < n return i
else return −1



Algorithm for Linear Search:
The algorithm for linear search can be broken down into the following steps:

1. Start: Begin at the first element of the collection of elements.
2. Compare: Compare the current element with the desired element.
3. Found: If the current element is equal to the desired element, return true or 

index to the current element.
4. Move: Otherwise, move to the next element in the collection.
5. Repeat: Repeat steps 2-4 until we have reached the end of collection.
6. Not found: If the end of the collection is reached without finding the desired 

element, return that the desired element is not in the array.



Advantages of Linear Search:
• Linear search can be used irrespective of whether the array is sorted or not. It can 

be used on arrays of any data type.
• Does not require any additional memory.
• It is a well-suited algorithm for small datasets.
Disadvantages of Linear Search:
• Linear search has a time complexity of O(N)(Worst Case), which in turn makes it 

slow for large datasets.
• Not suitable for large arrays.
When to use Linear Search?
• When we are dealing with a small dataset.
• When you are searching for a dataset stored in contiguous memory.



Brute-Force String Matching

pattern: a string of m characters to search for
text: a (longer) string of n characters to search in
problem: find first  substring in text that matches pattern

Brute-force: Scan text LR, compare chars, looking for pattern, 
Step 1  Align pattern at beginning of text
Step 2  Moving from left to right, compare each character of pattern to the corresponding 

character in text until
 - all characters are found to match (successful search);
 - or a mismatch is detected

Step 3  While pattern is not found and the text is not yet exhausted, realign pattern one position 
to the right and
       repeat Step 2



Brute-Force String Matching
ALGORITHM BruteForceStringMatch(T [0..n − 1], P[0..m − 1])
//Implements brute-force string matching
//Input: An array T [0..n − 1] of n characters representing a text and
// an array P[0..m − 1] of m characters representing a pattern
//Output: The index of the first character in the text that starts a
// matching substring or −1 if the search is unsuccessful
for i ←0 to n − m do
j ←0
while j <m and P[j ]= T [i + j ] do
j ←j + 1
if j = m return i
return −1

The Time Complexity of the Brute Force Algorithm is O(MXN), where M denotes the length of the 
text and N denotes the length of the pattern.


