

COURSE MODULE FOR THE SESSION 2025-26(ODD SEMESTER)
Course Syllabi with CO's

Academic Year: 2025 - 2026						
Department: Computer Science & Engineering - Data Science						
Course Code	Course Title	Core/Elective	Prerequisite	Contact Hours		Total Hrs/ Sessions
				L	T	
BCS703	Cryptography & Network Security	Core	Knowledge of Data Communication and Number theory	4	0	0

Objectives:

- Understand the basics of Cryptography concepts, Security and its principle
- To analyse different Cryptographic Algorithms
- To illustrate public and private key cryptography
- To understand the key distribution scenario and certification
- To understand approaches and techniques to build protection mechanisms in order to secure computer networks

Topics Covered as per Syllabus

Module-1	10 hours
A model for Network Security, Classical encryption techniques: Symmetric cipher model, Substitution ciphers-Caesar Cipher, Monoalphabetic Cipher, Playfair Cipher, Hill Cipher, Polyalphabetic Ciphers, One time pad, Steganography. Block Ciphers and Data Encryption Standards: Traditional Block Cipher structures, data Encryption Standard (DES), A DES Example, The strength of DES, Block cipher design principles.	
Module-2	10 hours
Pseudorandom number Generators: Linear Congruential Generators, Blum Blum Shub Generator. Public key cryptography and RSA: Principles of public key cryptosystems-Public key cryptosystems, Applications for public key cryptosystems, Requirements for public key cryptography, Public key Cryptanalysis, The RSA algorithm: Description of the Algorithm, Computational aspects, The Security of RSA. Diffie-Hellman key exchange: The Algorithm, Key exchange Protocols, Man-in-the-middle Attack, Elliptic Curve Cryptography: Analog of Diffie-Hellman key Exchange, Elliptic Curve Encryption/Decryption, Security of Elliptic Curve Cryptography.	
Module-3	10 hours
Applications of Cryptographic Hash functions, Two simple Hash functions, Key management and distribution: Symmetric key distribution using symmetric encryption, Symmetric key distribution using asymmetric encryption, Distribution of public keys, X.509 Certificates, Public Key Infrastructures	
Module-4	10 hours
User Authentication: Remote user authentication principles, Kerberos, Remote user authentication using asymmetric encryption. Web security consideration, Transport layer security. Email Threats and comprehensive email security, S/MIME, Pretty Good Privacy.	

Module-5	10 hours
Domain keys Identified Mail. IP Security: IP Security overview, IP Security Policy, Encapsulating Security Payload, Combining security associations, Internet key exchange	
TextBooks:	William stallings, “Cryptography and Network Security”, Pearson Publication, Seventh Edition.
Reference Books:	<ol style="list-style-type: none">1. Keith M Martin, “Everyday Cryptography”, Oxford University Press2. V.K Pachghare, “Cryptography and Network Security”, PHI, 2nd Edition
Course outcomes:	The students should be able to: CO1: Explain the basic concepts of Cryptography and Security aspects CO2: Apply different Cryptographic Algorithms for different applications CO3: Analyze different methods for authentication and access control. CO4: Describe key management, key distribution and Certificates. CO5: Explain about Electronic mail and IP Security.
Continuous Internal Evaluation:	For the Assignment component of the CIE, there are 25 marks and for the Internal Assessment Test component, there are 25 marks.

The Correlation of Course Outcomes (CO's) and Program Outcomes (PO's)

The Correlation of Program Specific Outcome's (PSO's) and Course Outcome (CO's)

Subject Code: BCS703		Title: CRYPTOGRAPHY & NETWORK SECURITY		
List of Course Outcome's	PSO1	PSO2	PSO3	Total
CO-1	-	-	-	
CO-2	-	2	-	2
CO-3	-	2	-	2
CO-4	-	-	-	
CO-5	-	-	-	
Total	-	4	-	4

Note: 3 = Strong Contribution 2 = Average Contribution 1= Weak Contribution - = No Contribution