

Department of Computer Science Engineering – (Data Science)

COURSE MODULE FOR THE SESSION 2025-26(ODD SEMESTER)

Course Syllabi with CO's

Academic Year: 2023 - 2024

Department: Computer Science & Engineering - Data Science

Course Code	Course Title	Core/Elective	Prerequisite	Contact Hours			Total Hrs/ Sessions
				L	T	P	
BCS303	Operating Systems	Core	Fundamentals of computer hardware and software	3	-	2	40T + 20P

Objectives:

- To Demonstrate the need for OS and different types of OS
- To discuss suitable techniques for management of different resources
- To demonstrate different APIs/Commands related to processor, memory, storage and file system management.

Topics Covered as per Syllabus

Module -1

Introduction to operating systems, System structures: What operating systems do; Computer System organization; Computer System architecture; Operating System structure; Operating System operations; Process management; Memory management; Storage management; Protection and Security; Distributed system; Special-purpose systems; Computing environments.

Operating System Services: User - Operating System interface; System calls; Types of system calls; System programs; Operating system design and implementation; Operating System structure; Virtual machines; Operating System debugging, Operating System generation; System boot.

Module -2

Process Management: Process concept; Process scheduling; Operations on processes; Inter process communication Multi-threaded Programming: Overview; Multithreading models; Thread Libraries; Threading issues. Process Scheduling: Basic concepts; Scheduling Criteria; Scheduling Algorithms; Thread scheduling; Multiple-processor scheduling,

Module -3

Process Synchronization: Synchronization: The critical section problem; Peterson's solution; Synchronization hardware; Semaphores; Classical problems of synchronization; Deadlocks: System model; Deadlock characterization; Methods for handling deadlocks; Deadlock prevention; Deadlock avoidance; Deadlock detection and recovery from deadlock.

Module -4

Memory Management: Memory management strategies: Background; Swapping; Contiguous memory allocation; Paging; Structure of page table; Segmentation. Virtual Memory Management: Background; Demand paging; Copy-on-write; Page replacement; Allocation of frames; Thrashing.

Module - 5

File System, Implementation of File System: File system: File concept; Access methods; Directory and Disk structure; File system mounting; File sharing; Implementing File system: File system structure; File system implementation; Directory implementation; Allocation methods; Free space management. Secondary Storage Structure, Protection: Mass storage structures; Disk structure; Disk attachment; Disk scheduling; Disk management; Protection: Goals of protection, Principles of protection, Domain of protection, Access matrix.

TextBooks:	
1. Abraham Silberschatz, Peter Baer Galvin, Greg Gagne, Operating System Principles 9 th Edition, Wiley-India, 2009	
Reference Books	
1. Ann McHoes Ida M Flynn, Understanding Operating System, Cengage Learning, 6 th Edition	
2. D.M Dhamdhere, Operating Systems: A Concept Based Approach 3rd Ed, McGraw-Hill, 2013.	
3. P.C.P. Bhatt, An Introduction to Operating Systems: Concepts and Practice 4th Edition, PHI (EEE), 2014.	
4. William Stallings Operating Systems: Internals and Design Principles, 6 th Edition, Pearson.	
List of URL's	
1. http://nptel.ac.in/courses/106106144	
2. https://en.wikipedia.org/wiki/Operating_system	
3. https://www.tutorialspoint.com/operating_system	
Course outcomes: The students should be able to:	
<ul style="list-style-type: none"> Course outcomes (Course Skill Set): At the end of the course, the student will be able to: CO 1. Explain the structure and functionality of operating system CO 2. Apply appropriate CPU scheduling algorithms for the given problem. CO 3. Analyse the various techniques for process synchronization and deadlock handling. CO 4. Apply the various techniques for memory management CO 5. Explain file and secondary storage management strategies. CO 6. Describe the need for information protection mechanisms 	
Internal Assessment Marks: 40 (3 Session Tests are conducted during the semester and Marks allotted based on average of all performances).	

PRACTICAL COMPONENT OF IPCC(May cover all / major modules) Sl.N O Experiments

- 1 Develop a C program to implement the Process system calls (fork(), exec(), wait(), create process, terminate process)
- 2 Simulate the following CPU scheduling algorithms to find turnaround time and waiting time
 - a) FCFS
 - b) SJF
 - c) Round Robin
 - d) Priority.
- 3 Develop a C program to simulate producer-consumer problem using semaphores.
- 4 Develop a C program which demonstrates interprocess communication between a reader process and a writer process. Use mkfifo, open, read, write and close APIs in your program.
- 5 Develop a C program to simulate Bankers Algorithm for DeadLock Avoidance.
- 6 Develop a C program to simulate the following contiguous memory allocation Techniques: a) Worst fit
b) Best fit c) First fit.
- 7 Develop a C program to simulate page replacement algorithms: a) FIFO b) LRU
- 8 Simulate following File Organization Techniques a) Single level directory b) Two level directory
- 9 Develop a C program to simulate the Linked file allocation strategies.
- 10 Develop a C program to simulate SCAN disk scheduling algorithm.

The Correlation of Course Outcomes (CO's) and Program Outcomes (PO's)

Subject Code	BCS303			Title: Operating Systems									
	PO 1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	Total
CO-1	3	2	2	-	-	-	-	-	-	-	-	-	7
CO-2	3	2	2	-	-	-	-	-	-	-	-	-	7
CO-3	3	2	2	-	-	-	-	-	-	-	-	-	7
CO-4	3	2	2	-	-	-	-	-	-	-	-	-	7
CO-5	3	2	2	-	-	-	-	-	-	-	-	-	7
CO-6	3	2	2	-	-	-	-	-	-	-	-	-	7
Total	18	12	12	-	-	-	-	-	-	-	-	-	42

The Correlation of Program Specific Outcome's (PSO's) and Course Outcome (CO's)

Subject Code	21CS44	Title: Operating Systems	
List of Course Outcome's	PSO1	PSO2	Total
CO-1	-	-	-
CO-2	-	-	-
CO-3	-	-	-
CO-4	-	-	-
CO-5	-	-	-
CO-6	-	-	-
Total	-	-	-

Note: 3 = Strong Contribution 2 = Average Contribution 1= Weak Contribution - = No Contribution

