

Department of Computer Science & Engineering (Data- Science)

COURSE MODULE OF THE SUBJECT TAUGHT FOR THE SESSION 2024-25
(EVEN SEM)

Course Syllabus with CO's

Topics Covered as per Syllabus

1. Setting Up and Basic Commands
Initialize a new Git repository in a directory. Create a new file and add it to the staging area and commit the changes with an appropriate commit message.
2. Creating and Managing Branches
Create a new branch named "feature-branch." Switch to the "master" branch. Merge the "feature-branch" into "master."
3. Creating and Managing Branches
Write the commands to stash your changes, switch branches, and then apply the stashed changes.
4. Collaboration and Remote Repositories
Clone a remote Git repository to your local machine.
5. Collaboration and Remote Repositories
Fetch the latest changes from a remote repository and rebase your local branch onto the updated remote branch.
6. Collaboration and Remote Repositories
Write the command to merge "feature-branch" into "master" while providing a custom commit message for the merge.
7. Git Tags and Releases
Write the command to create a lightweight Git tag named "v1.0" for a commit in your local repository.

Department of Computer Science & Engineering (Data- Science)

8. Advanced Git Operations

Write the command to cherry-pick a range of commits from "source-branch" to the current branch.

9. Analysing and Changing Git History

Given a commit ID, how would you use Git to view the details of that specific commit, including the author, date, and commit message?

10. Analysing and Changing Git History

Write the command to list all commits made by the author "JohnDoe" between "2023-01-01" and "2023-12-31".

11. Analysing and Changing Git History

Write the command to display the last five commits in the repository's history.

12. Analysing and Changing Git History

Write the command to undo the changes introduced by the commit with the ID "abc123".

Laboratory Outcome	After studying this course, students will be able to CO1: Use the basics commands related to git repository CO2: Create and manage the branches CO3: Apply commands related to Collaboration and Remote Repositories CO4: Use the commands related to Git Tags, Releases and advanced git operations CO5: Analyse and change the git history
---------------------------	--

Conduct of Practical Examination:

CIE marks for the practical course are 50 Marks.

The split-up of CIE marks for record/ journal and test are in the ratio 60:40.

- Each experiment is to be evaluated for conduction with an observation sheet and record write-up. Rubrics for the evaluation of the journal/write-up for hardware/software experiments are designed by the faculty who is handling the laboratory session and are made known to students at the beginning of the practical session.
- Record should contain all the specified experiments in the syllabus and each experiment write-up will be evaluated for 10 marks.
- Total marks scored by the students are scaled down to 30 marks (60% of maximum marks).
- Weightage to be given for neatness and submission of record/write-up on time.
- Department shall conduct a test of 100 marks after the completion of all the experiments listed in the syllabus.
- In a test, test write-up, conduction of experiment, acceptable result, and procedural knowledge will carry a weightage of 60% and the rest 40% for viva-voce.
- The suitable rubrics can be designed to evaluate each student's performance and learning ability.
- The marks scored shall be scaled down to 20 marks (40% of the maximum marks).

The Sum of scaled-down marks scored in the report write-up/journal and marks of a test is the total CIE marks scored by the student.

Department of Computer Science & Engineering (Data- Science)

The Correlation of Course Outcomes (CO's) and Program Outcomes (PO's)

Subject Code:	BCS358C		Title:Project Management with GIT						Faculty Name: Mrs. Neethi M V			
List of Course Outcomes	Program Outcomes											
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO-1	3	2	1	2	-	-	-	-	-	-	-	2
CO-2	3	2	1	2	-	-	-	-	-	-	-	2
CO-3	3	2	1	2	-	-	-	-	-	-	-	2
CO-4	3	2	1	2	-	-	-	-	-	-	-	2
CO-5	3	2	1	2								2
Total	15	10	5	10	-	-	-	-	-	-	-	10

Note: 3 = Strong Contribution 2 = Average Contribution 1 = Weak Contribution - = No Contribution

The Correlation of Course Outcomes (CO's) and Program Specific Outcomes (PSO's)

Subject Code:	21AIL66		TITLE:Machine Learning Lab		Faculty Name: Mrs. Neethi M V	
List of Course Outcomes	Program Specific Outcomes				Total	
	PSO1		PSO2			
CO-1	3		-			3
CO-2	3		-			3
CO-3	3		-			3
CO-4	3		-			3
CO-5	3		-			3