

Department of Computer Science & Engineering

Course Syllabi with CO's

Department of Computer Science & Engineering

3. List all the salesman and indicate those who have and don't have customers in their cities (Use UNION operation.)

4. Create a view that finds the salesman who has the customer with the highest order of a day.

5. Demonstrate the DELETE operation by removing salesman with id 1000. All his orders must also be deleted.

3. Consider the schema for Movie Database:

ACTOR(Act_id, Act_Name, Act_Gender)
 DIRECTOR(Dir_id, Dir_Name, Dir_Phone)
 MOVIES(Mov_id, Mov_Title, Mov_Year, Mov_Lang, Dir_id)
 MOVIE_CAST(Act_id, Mov_id, Role)
 RATING(Mov_id, Rev_Stars)

Write SQL queries to

1. List the titles of all movies directed by 'Hitchcock'.
2. Find the movie names where one or more actors acted in two or more movies.
3. List all actors who acted in a movie before 2000 and also in a movie after 2015 (use JOIN operation).
4. Find the title of movies and number of stars for each movie that has at least one rating and find the highest number of stars that movie received. Sort the result by movie title.
5. Update rating of all movies directed by 'Steven Spielberg' to 5.

4. Consider the schema for College Database:

STUDENT(USN, SName, Address, Phone, Gender)
 SEMSEC(SSID, Sem, Sec)
 CLASS(USN, SSID)
 COURSE(Subcode, Title, Sem, Credits)
 IAMARKS(USN, Subcode, SSID, Test1, Test2, Test3, FinalIA)

Write SQL queries to

1. List all the student details studying in fourth semester 'C' section.
2. Compute the total number of male and female students in each semester and in each section.
3. Create a view of Test1 marks of student USN '1BI15CS101' in all Courses.
4. Calculate the FinalIA (average of best two test marks) and update the corresponding table for all students.
5. Categorize students based on the following criterion:
 If FinalIA = 17 to 20 then CAT = 'Outstanding'
 If FinalIA = 12 to 16 then CAT = 'Average'
 If FinalIA < 12 then CAT = 'Weak'

Give these details only for 8th semester A, B, and C section students.

5. Consider the schema for Company Database:

EMPLOYEE(SSN, Name, Address, Sex, Salary, SuperSSN, DNo)
 DEPARTMENT(DNo, DName, MgrSSN, MgrStartDate)
 DLOCATION(DNo, DLoc)
 PROJECT(PNo, PName, PLocation, DNo)
 WORKS_ON(SSN, PNo, Hours)

Write SQL queries to

1. Make a list of all project numbers for projects that involve an employee whose last name is 'Scott', either as a worker or as a manager of the department that controls the project.

Department of Computer Science & Engineering

well as the maximum salary, the minimum salary, and the average salary in this department

4. Retrieve the name of each employee who works on all the projects controlled by department number 5 (use NOT EXISTS operator).
5. For each department that has more than five employees, retrieve the department number and the number of its employees who are making more than Rs. 6,00,000.

PART B: Mini Project

- For any problem selected
- Make sure that the application should have five or more tables
- Indicative areas include; health care

List of Text Books

1. Fundamentals of Database Systems, Ramez Elmasri and Shamkant B. Navathe, 7th Edition, 2017, Pearson.
2. Database management systems, Ramakrishnan, and Gehrke, 3rd Edition, 2014, McGraw Hill

List of Reference Books

1. Silberschatz Korth and Sudharshan, Database System Concepts, 6th Edition, Mc-GrawHill, 2013.
2. Coronel, Morris, and Rob, Database Principles Fundamentals of Design, Implementation and Management, Cengage Learning 2012.

List of URLs, Text Books, Notes, Multimedia Content, etc

1. <https://www.smartdraw.com/entity-relationship-diagram/>
2. https://en.wikipedia.org/wiki/Database_normalization
3. www.databasteknik.se/webbkursen/relalg-lecture
4. [https://technet.microsoft.com/en-us/library/bb264565\(v=sql.90\).aspx](https://technet.microsoft.com/en-us/library/bb264565(v=sql.90).aspx)
5. http://pages.cs.wisc.edu/~dbbook/openAccess/thirdEdition/.../Ch16_Overview_Xacts.pdf
6. www.databasejournal.com/features/mysql/generating-reports-on-mysql-data.html

Course Outcomes	After studying this course, students will be able to
	<ol style="list-style-type: none"> 1. Create, Update and query on the database. 2. Demonstrate the working of different concepts of DBMS 3. Implement, analyze and evaluate the project developed for an application.

Internal Assessment Marks: 40 (one Internal Test is conducted at the end of the semester and LCR marks).

The Correlation of Course Outcomes (CO's) and Program Outcomes (PO's)

Subject Code:	TITLE: Database Laboratory with Mini Project												Total
List of Course Outcomes	Program Outcomes												Total
	PO-1	PO-2	PO-3	PO-4	PO-5	PO-6	PO-7	PO-8	PO-9	PO-10	PO-11	PO-12	
CO-1	1	-	-	-	-	-	-	-	-	-	-	-	1
CO-2	1	-	-	-	-	-	-	-	-	-	-	-	1
CO-3	-	-	-	-	-	-	-	-	-	-	1	-	1
Total	2	-	-	-	-	-	-	-	-	-	1	-	3

Note: 3 = Strong Contribution 2 = Average Contribution 1 = Weak Contribution 0 = No Contribution

Department of Computer Science & Engineering

The Correlation of Course Outcome's (CO's) and Program Specific Outcomes (PSO's)

Subject Code:	18CSL58	TITLE: Database Laboratory with Mini Project		
List of Course Outcomes	Program Outcomes			Total
	PSO-1	PSO-2	PSO-3	
CO-1	-	-	-	0
CO-2	-	-	-	0
CO-3	-	-	-	0
CO-4	-	-	-	0
Total	0	0	0	0

Note: 3 = Strong Contribution 2 = Average Contribution 1 = Weak Contribution 0 = No Contribution