
4

MODULE - 1

Introduction

 The term "Automata" is derived from the Greek word "αὐτόµατα" which means "self-acting". An
automaton (Automata in plural) is an abstract self-propelled computing device which follows a
predetermined sequence of operations automatically.

 An automaton with a finite number of states is called a Finite Automaton (FA) or Finite State Machine
(FSM).

Why to study Theory of Computation?
 Theory of computation is mainly concerned with the study of how problems can be solved using

algorithms.

 It is the study of mathematical properties both of problems and of algorithms for solving problems that
depend on neither the details of today's technology nor the programming language.

Why to study Theory of Computation?

 It is still useful in two key ways:

 It provides a set of abstract structures that are useful for solving
certain classes of problems. These abstract structures can be
implemented on whatever hardware/software platform is available

 It defines provable limits to what can be computed regardless of
processor speed or memory size. An understanding of these limits
helps us to focus our design effort in areas in which it can pay off,
rather than on the computing equivalent of the search for a
perpetual motion machine.

The goal is to discover fundamental properties of the problems like:

 Is there any computational solution to the problem? 1f not. is
there a restricted but useful variation of the problem for
which a solution does exist?

 If a solution exists, can it be implemented using some fixed
amount of memory?

 If a solution exists. how efficient is it? More specifically. how
do its time and space requirements grow as the size of the
problem grows?

 Are there groups of problems that are equivalent in the sense
that if there is an efficient solution to one member of the
group there is an efficient solution to all the others?

Applications of theory of computation:

 Development of Machine Languages: Enables both machine-machine and person-
machine communication. Without them, none of today's applications of computing could
exist. Example: Network communication protocols, HTML etc.

 Development of modern programming languages: Both the design and the
implementation of modern programming languages rely heavily on the theory of context-
free languages. Context- free grammars are used to document the languages syntax and
they form the basis for the parsing techniques that all compilers use.

 Natural language processing: It is a field of computer science, artificial intelligence, and
computational linguistics concerned with the interactions between computers and human
(natural) languages.

 Automated hardware systems: Systems as diverse as parity checkers, vending machines,
communication protocols, and building security devices can be straightforwardly
described as finite state machines, which is a part of theory of computation.

Applications of theory of computation:

 Video Games: Many interactive video games are use large nondeterministic finite state
machines.

 Security is perhaps the most important property of many computer systems. The
undecidability results of computation show that there cannot exist a general-purpose
method for automatically verifying arbitrary security properties of programs.

 Artificial intelligence: Artificial intelligence programs solve problems in task domains
ranging from medical diagnosis to factory scheduling. Various logical frameworks have
been proposed for representing and reasoning with the knowledge that such programs
exploit.

 Graph Algorithms: Many natural structures, including ones as different as organic
molecules and computer networks can be modeled as graphs. The theory of complexity
tells us that, is there exist efficient algorithms for answering some important questions
about graphs. Some questions are "hard", in the sense that no efficient algorithm for them
is known nor is one likely to be developed.

Alphabets & Strings

 An alphabet Σ is a finite set of symbols
 Σ1 = {a, b, . . ., z}
 Σ2 = {0, 1}

 A string is a finite sequence of symbols from an alphabet
fire, truck are both strings over {a, . . ., z}

 length of a string is the number of symbols in the string
 |fire| = 4, |truck| = 5

 The empty string  is a string of 0 characters |  | = 0
◦ is the concatenation operator w1 = fire, w2 = truck
w1 ◦ w2 = firetruck
w2 ◦ w1 = truckfire
w2 ◦ w2 = trucktruck

 Often drop the ◦: w1w2 = firetruck
 For any string w, w = w

Concatenation & Reversal

 We can concatenate a string with itself:

 w1 = w

 w2 = ww

 w3 = www

 By definition, w0 = 

 Can reverse a string: wR

 truckR = kcurt

Relations on strings

 Substring: A string s is a substring of a string of t iff s occurs contiguously as part of t.

 For example: aaa is a substring of aaabbbaaa, aaaaaa is not a substring of aaabbbaaa

 Proper Substring: A string s is a proper substring of a string t, iff s is a substring of t and s ≠t.
Every string is a substring (although not a proper substring) of itself. The empty string  is a
substring of every string

 Prefix: A string s is a prefix of t, iff ∃x ∈ ∑∗(t = sx).

 A string s is a proper prefix of a string t iff s is a prefix of t and s≠t.

 Every string is a prefix (although not a proper prefix) of itself.

 The empty string ε, is a prefix of every string.

 For example. the prefixes of abba are: ε, a, ab, abb, abba.

Functions on Strings

 The length of a string s, which we will write as |s|, is the number of symbols in s.
For example: || = 0

 |1001101| = 7
 |fire| = 4, |truck| = 5

 For any symbol c and string s, we define the function #c(s) to be the number of
times that the symbol c occurs in s. So, for example, #a(abbaaa) = 4.

 The concatenation of two strings s and t, written s  t or simply st, is the string
formed by appending t to s.

For example, if x = good and y = bye, then xy = goodbye.

 So |xy| = |x| + |y|.

 The empty string, , is the identity for concatenation of strings.
 So x (x  =  x = x).

 Concatenation, as a function defined on strings, is associative.
 So s, t, w ((st)w = s(tw)).

String Replication and Reversal

 Next we define string replication. For each string w and each
natural number i, the string wi is defined as:
 w0 = 

 wi+1 = wi w

For example: a3 = aaa
(bye)2 = byebye

a0b3 = bbb
String reversal: For each string w, the reverse of w, which we

will write wR , is defined as:
 if |w| = 0 then wR = w = 

 if |w| ≥ 1 then ∃a   (∃u  * (w = ua)). (i.e., the last
character of w is a.) Then define wR = a uR .

Relations on strings

 Suffix: A string s is a suffix of t, iff ∃x ∈ ∑∗(t = xs).

 A string s is a proper suffix of a string t iff s is a suffix of t and s≠t.

 Every string is a suffix (although not a proper suffix) of itself.

 The empty string ε, is a suffix of every string.

 For example. the suffix of abba are: ε, a, ba, bba, abba.

Languages

 A language is a (finite or infinite) set of strings over a finite alphabet . When we are talking
about more than one language, we will use the notation L to mean the alphabet from which
the strings in the language L are formed.

Defining Languages Given an Alphabet

 Let  = {a, b}.  * = {, a, b, aa, ab, ba, bb, aaa, aab, …}.

 Some examples of languages over  are: ф, {}, {a, b}, {, a, aa, aaa, aaaa, aaaaa}, {, b, bb, bbb, bbbb,
bbbbb, …}

Techniques for Defining Languages

 We will use a variety of techniques for defining the languages that we wish to consider. Since
languages are sets, we can define them using any of the set-defining techniques.

Languages

Example: All a’s Precede All b’s

 Let L = {x  {a, b}* : all a’s precede all b’s in w}. The strings , a, aa, aabbb, and bb are in L.

Example: Strings That End in a

 Let L = {x : ∃ y  {a, b}* (x = ya)}.

The strings a, aa, aaa, bbaa, and ba are in L.

The strings , bab, and bca are not in L.

L consists of all strings that can be formed by taking some string in {a, b}* and concatenating a
single a onto the end of it.

The Empty Language

 Let L = {} = ф. L is the language that contains no strings.

Languages

 The Empty Language is Different From the Empty String

 Let L = {}, the language that contains a single string, .

 Note that L is different from ф.

Functions on Languages

 Since languages are sets, all of the standard set operations are well-defined on languages. In
particular, we will find union, intersection, difference, and complement to be useful.

Set Functions Applied to Languages

 Let:  = {a, b}.

 L1 = {strings with an even number of a’s}.

 L2 = {strings with no b’s} = {, a, aa, aaa, aaaa, aaaaa, aaaaaa, …}.

 L1 ∪ L2 = {all strings of just a’s plus strings that contain b’s and an even number of a’s}.

 L1 ∩ L2 = {, aa, aaaa, aaaaaa, aaaaaaaa…}.

 L2 – L1 = {a, aaa, aaaaa, aaaaaaa, …}.

 ¬(L2 – L1) = {strings with at least one b} ∪ {strings with an even number of a’s}

Functions on Languages

 Because languages are sets of strings, it makes sense to define operations on them in terms of
the operations that we have already defined on strings. Three useful ones to consider are
concatenation, Kleene star, and reverse.

Let L1 and L2 be two languages defined over some alphabet . Then their concatenation,
written L1L2 is:

L1L2 = {w  * : ∃s  L1 (∃t  L2 (w = st))}.

Concatenation of Languages

Let L1 = {cat, dog, mouse, bird}.

L2 = {bone, food}.

L1L2 = {catbone, catfood, dogbone, dogfood, mousebone, mousefood, birdbone, birdfood}

Functions on Languages

 The language {} is the identity for concatenation of languages. So, for all languages L,

L{} = {}L = L.

 The language ф is a zero for concatenation of languages. So, for all languages L,

L ф = ф L = ф.

 Concatenation, as a function defined on languages, is associative. So, for all languages L1, L2, ,
and L3 :

((L1L2) L3 = L1(L2L3)).

Functions on Languages

 Let L be a language defined over some alphabet . Then the Kleene star of L, written L* is:

L* = {} ∪ {w  * : ∃k ≥ 1 (∃w1, w2, … wk  L (w = w1 w2 … wk))}.

 In other words, L* is the set of strings that can be formed by concatenating together zero or
more strings from L.

Example Kleene Star

 Let L = {dog, cat, fish}. Then:

 L* = {, dog, cat, fish, dogdog, dogcat, …, fishdog, …, fishcatfish, fishdogfishcat, …}.

Functions on Languages

 Since languages are sets, all of the standard set operations are well-defined on languages. In
particular, we will find union, intersection, difference, and complement to be useful.
Complement will be defined with * as the universe unless we explicitly state otherwise.

 Set Functions Applied to Languages

 Let:  = {a, b}.

 L1 = {strings with an even number of a’s}.

 L2 = {strings with no b’s} = {, a, aa, aaa, aaaa, aaaaa, aaaaaa, …}.

 L1 ∪ L2 = {all strings of just a’s plus strings that contain b’s and an even number of a’s}.

 L1 ∩ L2 = {, aa, aaaa, aaaaaa, aaaaaaaa…}.

 L2 – L1 = {a, aaa, aaaaa, aaaaaaa, …}.

 ¬(L2 – L1) = {strings with at least one b} ∪ {strings with an even number of a’s}

Functions on Languages

 Because languages are sets of strings, it makes sense to define operations on them in terms of
the operations that we have already defined on strings. Three useful ones to consider are
concatenation, Kleene star, and reverse.

 Let L1 and L2 be two languages defined over some alphabet . Then their concatenation,
written L1L2 is:

L1L2 = {w  * : ∃s  L1 (∃t  L2 (w = st))}.

Concatenation of Languages

Let L1 = {cat, dog, mouse, bird}.

L2 = {bone, food}.

 L1L2 = {catbone, catfood, dogbone, dogfood, mousebone, mousefood, birdbone, birdfood}

Functions on Languages

 The language {} is the identity for concatenation of languages.

So, for all languages L, L{} = {}L = L.

 The language ф is a zero for concatenation of languages. So, for all languages L,

L ф = ф L = ф.

That ф is a zero follows from the definition of the concatenation of two languages as the set
consisting of all strings that can be formed by selecting some string s from the first language and
some string t from the second language and then concatenating them together. There are no ways
to select a string from the empty set.

 Concatenation, as a function defined on languages, is associative. So, for all languages L1, L2,
and L3:

((L1L2)L3 = L1(L2L3)).

Functions on Languages

 Let L be a language defined over some alphabet . Then the Kleene star of L, written L* is:

L* = {} ∪ {w  * : ∃k ≥ 1 (∃w1, w2, … wk  L (w = w1 w2 … wk))}.

 In other words, L* is the set of strings that can be formed by concatenating together zero or
more strings from L.

Example: Kleene Star

 Let L = {dog, cat, fish}. Then:

 L* = {, dog, cat, fish, dogdog, dogcat, …, fishdog, …, fishcatfish, fishdogfishcat, …}.

Concatenation & Reversal

 We define string reversal. For each string w, the reverse
of w, which we will write wR , is defined as:

if |w| = 0 then wR = w = 

if |w| ≥ 1 then ∃a   (∃u  * (w = ua)).

(i.e., the last character of w is a.)

Then define wR = a uR .

 Theorem 1. Concatenation and Reverse of Strings

Theorem 2.1: If w and x are strings, then (w x)R = xR wR .

For example, (name tag)R = (tag)R (name)R = gateman.

Proof: The proof is by induction on |x|:

Base case: |x| = 0. Then x = , and (wx)R = (w )R = (w)R = wR = R wR = xR wR .

Prove: n ≥ 0 (((|x| = n) → ((w x)R = xR wR)) → ((|x| = n + 1) → ((w x)R = xR wR))).

Consider any string x, where |x| = n + 1. Then x = u a for some character a and |u| = n. So:

(w x)R = (w (u a))R rewrite x as ua

= ((w u) a)R associativity of concatenation

= a (w u)R definition of reversal

= a (uR wR) induction hypothesis

= (a uR) wR associativity of concatenation

= (ua)R wR definition of reversal

= xR wR rewrite ua as x

Functions on Languages

 Let L be a language defined over some alphabet .

Then the reverse of L, written LR is: LR = {w   * : w = xR for some x  L}.

In other words, LR is the set of strings that can be formed by taking some string in L and
reversing it.

Theorem 2.4 Concatenation and Reverse of Languages

Theorem: If L1 and L2 are languages, then (L1 L2)
R = L2

R L1
R

Proof: If x and y are strings,

then x ( y ((xy)R = yR xR)) Theorem 2.1

(L1 L2)
R = {(xy)R : x  L1 and y  L2} Definition of concatenation of languages

= {yR xR : x  L1 and y  L2} Lines 1 and 2

= L2
R L1

R Definition of concatenation of languages

A Language Hierarchy

 Defining the Task: Language Recognition

 Assume that we are given:

 the definition of a language L.

 a string w.

 Then we must answer the question: “Is w in L?” This question is an instance of a more general
class that we will call decision problems.

 A decision problem is simply a problem that requires a yes or no answer.

A Machine-Based Hierarchy of Language Classes

1. The Regular Languages

 The first model we will consider is the finite state machine or FSM. Figure shows a simple FSM
that accepts strings of a’s and b’s, where all a’s come before all b’s.

 We will call the class of languages that can be accepted by some FSM regular.

A Machine-Based Hierarchy of Language Classes

2. The Context-Free Languages

 There are useful simple languages that are not regular.

 Consider, for example, Bal, the language of balanced parentheses. Bal contains strings like (()) and
()(); it does not contain strings like ()))(.

 Because it’s hard to read strings of parentheses, let’s consider instead the related language AnBn =
{anbn : n ≥ 0}.

 But languages like Bal and AnBn are important. For example, almost every programming language and
query language allows parentheses, so any front end for such a language must be able to check to see
that the parentheses are balanced. Can we augment the FSM in a simple way and thus be able to solve
this problem? The answer is yes.

 Suppose that we add one thing, a single stack. We will call any machine that consists of an FSM, plus a
single stack, a pushdown automaton or PDA

A Machine-Based Hierarchy of Language Classes

 We can easily build a PDA M to accept AnBn. The idea is that, each time it sees an a, M will push
it onto the stack. Then, each time it sees a b, it will pop an a from the stack.

A Machine-Based Hierarchy of Language Classes

3. The Decidable and Semi-decidable Languages

 But there are useful straightforward languages that are not context-free. Consider, for example, the
language of English sentences in which some word occurs more than once.

 Let AnBnCn = {anbncn: n ≥ 0}, i.e., the language composed of all strings of a’s, b’s, and c’s such that all
the a’s come first, followed by all the b’s, then all the c’s, and the number of a’s equals the number of
b’s equals the number of c’s.

 But it is easy to write a program to accept AnBnCn. So, if we want a class of machines that can capture
everything we can write programs to compute, we need a model that is stronger than the PDA.

 To meet this need, we will introduce a third kind of machine. We will get rid of the stack and replace
it with an infinite tape. The tape will have a single read/write head. Only the tape square under the
read/write head can be accessed (for reading or for writing). The read/write head can be moved one
square in either direction on each move. The resulting machine is called a Turing machine.

A Machine-Based Hierarchy of Language Classes

 We will also change the way that input is given to the machine. Instead of streaming it, one
character at a time, the way we did for FSMs and PDAs, we will simply write the input string
onto the tape and then start the machine with the read/write head just to the left of the first
input character.

 The arrow under the tape indicates the location of the read/write head.

The Computational Hierarchy and Why It Is Important

Finite State Machine

 A finite state machine (sometimes called a finite state automaton) is a computation model
that can be implemented with hardware or software and can be used to simulate sequential
logic and some computer programs. Finite state automata generate regular languages. Finite
state machines can be used to model problems in many fields including mathematics, artificial
intelligence, games, and linguistics.

 Example: turnstile

https://brilliant.org/wiki/logic-gates/
https://brilliant.org/wiki/regular-languages/

Finite State Machine

 There are two types of finite state machines (FSMs):

 Deterministic finite state machines, often called deterministic finite automata, and

 Non-deterministic finite state machines, often called non-deterministic finite automata.

Deterministic Finite State Machine

 A deterministic finite automaton (DFA) is described by a five-element tuple: (Q,Σ,δ,q0,F)

 Q = a finite set of states

 Σ = a finite, nonempty input alphabet

 δ = a series of transition functions

 q0 = the starting state

 F = the set of accepting states

 There must be exactly one transition function for every input symbol in Σ from each state.

 DFAs can be represented by diagrams of this form:

https://brilliant.org/wiki/tuple/

Deterministic Finite State Machine

 Example : A Simple Language of a’s and b’s

 Let L = {w  {a, b}* : every a is immediately followed by a b}. L can be accepted by the DFSM M =
({q0, q1, q2},

 {a, b}, δ, q0, {q0}), where:

δ = { ((q0, a), q1),

((q0, b), q0),

((q1, a), q2),

((q1, b), q0),

((q2, a), q2),

((q2, b), q2)) }.

 The tuple notation that we have just used for δ is quite hard to read. We will generally find it
useful to draw δ as a transition diagram instead. When we do that, we will use two
conventions:
 The start state will be indicated with an unlabeled arrow pointing into it.

 The accepting states will be indicated with double circles.

Set of States Q

0q 1q 2q 3q 4qa b b a

5q

a a bb

ba,
 543210 ,,,,, qqqqqqQ 

ba,

Example

Input Alphabet 

0q 1q 2q 3q 4qa b b a

5q

a a bb

ba, ba,

ba,

Example

Initial State 0q

1q 2q 3q 4qa b b a

5q

a a bb

ba,

ba,

0q

Example

Set of Accepting States QF 

0q 1q 2q 3qa b b a

5q

a a bb

ba, 4qF 

ba,

4q

Example

Transition Function QQ :

q q x

qxq ),(

Describes the result of a transition from state with symbolq x

2q 3q 4qa b b a

5q

a a bb

ba,

ba,

0q 1q

  10 , qaq 
Example:

  50 , qbq 

1q 2q 3q 4qa b b a

5q

a a bb

ba,

ba,

0q

0q 1q 2q 3q 4qa b b a

5q

a a bb

ba,

ba,

  32 , qbq 

 a b

0q

1q

2q

3q

4q

5q

1q 5q

5q 2q

5q 3q

4q 5q

0q 1q 2q 3q 4qa b b a

5q

a a bb

ba,

ba,5q5q
5q5q

Transition Table for
st

at
es

symbols


Extended Transition Function

QQ  ** :

qwq ),(*

Describes the resulting state after scanning string from statew q

  20
* , qabq 

3q 4qa b b a

5q

a a bb

ba,

ba,

0q 1q 2q

Example:

  50
* , qabbbaaq 

1q 2q 3q 4qa b b a

5q

a a bb

ba,

ba,

0q

  41
* , qbbaq 

0q 1q 2q 3q 4qa b b a

5q

a a bb

ba,

ba,

Special case:

  qq  ,*

for any state q

0q

More DFA Examples

ba,

},{ ba

*)(ML

0q

ba,

}{)(ML

Empty language All strings

0q

ba,

},{ ba

0q
ba,

}{)(ML

Language of the empty string

 ML = { all strings with prefix }ab

a b

ba,

0q 1q 2q

accept

ba,3q

ab

},{ ba

 ML = { all binary strings containing
substring }001

 0 00 001

1

0

1

10

0
1,0

 ML = { all binary strings without
substring }001

 0 00 001

1

0

1

10

0 1,0

  *,:)(bawawaML 

a

b

ba,

a

b

b
a

0q 2q 3q

4q

Deterministic Finite State Machine

 Example : Even Length Regions of a’s

 Let L = {w  {a, b}* : every a region in w is of even length}. L can be accepted by the DFSM M:

 If M sees a b in state q1, then there has been an a region whose length is odd. So, no matter what
happens next, M must reject. So it goes to the dead state d.

Deterministic Finite State Machine

 Example : Checking for Odd Parity

 Let L = {w{0, 1}* : w has odd parity}. A binary string has odd parity iff the number of 1’s in it is
odd. So L can be accepted by the DFSM M:

Deterministic Finite State Machine

 Theorem 5.1 DFSMs Halt

 Theorem: Every DFSM M, on input w, halts after |w| steps.

 Proof: On input w, M executes some computation C0 |-M C1 |-M C2 |-M … |-M Cn, where

C0 is an initial configuration and

Cn is of the form (q, ), for some state q  KM.

Cn is either an accepting or a rejecting configuration, so M will halt when it reaches Cn.

Each step in the computation consumes one character of w. So n = |w|.

Thus M will halt after |w| steps.

