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INSTITUTIONAL MISSION AND VISION  
  

Objectives 

 -notch professionals, entrepreneurs and 

leaders for different fields of engineering, technology and management.  

-R & D-Design-Consultancy cell in each department, gradually 

introduce doctoral and postdoctoral programs, encourage basic & applied research 

in areas of social relevance, and develop the institute as a center of excellence.  

the academia at national and transnational levels 

the academia at national and transnational levels.  

in 

local community service. 

 

students, faculty, parents and industry.  

  

Vision  

 Development of academically excellent, culturally vibrant, socially responsible and 

globally competent human resources.  

  

Mission  

 To keep pace with advancements in knowledge and make the students competitive and 

capable at the global level.  



 To create an environment for the students to acquire the right physical, intellectual, 

emotional and moral foundations and shine as torch bearers of tomorrow’s society.  

 To strive to attain ever-higher benchmarks of educational excellence. 

DEPARTMENT OF COMPUTER SCIENCE ENGINEERING AND ENGINEERING 

(DATA SCIENCE &ENGINEERING) 

 

Vision of The Department 

 

• To impart technical education in the field of data science of excellent quality with a high 

level of professional competence, social responsibility, and global awareness among the 

students 

 

 

Mission  

• To impart technical education that is up to date, relevant and makes students competitive 

and employable at global level 

• To provide technical education with a high sense of discipline, social relevance in an 

intellectually, ethically and socially challenging environment for better tomorrow 

• Educate to the global standards with a benchmark of excellence and to kindle the spirit of 

innovation.  

 

 

 

Program Outcomes(PO) 

 

   Engineering knowledge: Apply the knowledge of mathematics, science, engineering     

fundamentals, and an engineering specialization to the solution of complex engineering 

problems. 

 



 Problem analysis: Identify, formulate, review research literature, and analyze complex 

engineering problems reaching substantiated conclusions using first principles of 

mathematics, natural sciences, and engineering sciences. 

 Design/development of solutions: Design solutions for complex engineering problems 

and design system components or processes that meet the specified needs with 

appropriate consideration for the public health and safety, and the cultural, societal, and 

environmental 

considerations. 

 Conduct investigations of complex problems: Use research-based knowledge and 

research methods including design of experiments, analysis and interpretation of data, 

and synthesis of the information to provide valid conclusions. 

 

 Modern tool usage: Create, select, and apply appropriate techniques, resources, and 

modern engineering and IT tools including prediction and modeling to complex 

engineering activities with an understanding of the limitations. 

 

 

 The engineer and society: Apply reasoning informed by the contextual knowledge to 

assess societal, health, safety, legal and cultural issues and the consequent responsibilities 

relevant to the professional engineering practice. 

 

 Environment and sustainability: Understand the impact of the professional engineering 

solutions in societal and environmental contexts, and demonstrate the knowledge of, and 

need for sustainable development. 

 

 

 Ethics: Apply ethical principles and commit to professional ethics and responsibilities 

and norms of the engineering practice. 

 

 Individual and team work: Function effectively as an individual, and as a member or 

leader in diverse teams, and in multidisciplinary settings. 



 Communication: Communicate effectively on complex engineering activities with the 

engineering community and with society at large, such as, being able to comprehend and 

write effective reports and design documentation, make effective presentations, and give 

and receive clear instructions. 

 Project management and finance: Demonstrate knowledge and understanding of the 

engineering and management principles and apply these to one’s own work, as a member 

and leader in a team, to manage projects and in multidisciplinary environments. 

 Life-long learning: Recognize the need for, and have the preparation and ability to 

engage in independent and life-long learning in the broadest context of technological 

change. 

Program Specific Outcomes (PSOs) 

 

 PSO1: Develop relevant programming skills to become a successful data scientist  

 

 PSO2: Apply data science concepts and algorithms to solve real world problems of the 

society 

 

 PSO3: Apply data science techniques in the various domains like agriculture, education 

healthcare for better society 

Program Educational Objectives (PEOs): 

 

PEO1: Develop cutting-edge skills in data science and its related technologies, such as machine 

learning, predictive analytic, and data engineering. 

 

PEO2: Design and develop data-driven solutions to real-world problems in a business, research, 

or social environment. 

 

PEO3: Apply data engineering and data visualization techniques to discover, investigate, and 

interpret data. 

 

PEO4: Demonstrate ethical and responsible data practices in problem solving 



PEO5: Integrate fields within computer science, optimization, and statistics to develop better 

solutions 

 

 



V Semester 
 
 

AUTOMATA THEORY AND COMPILER DESIGN  
Course Code 21CS51 CIE Marks 50 

Teaching Hours/Week (L:T:P: S) 3:0:0:0 SEE Marks 50 

Total Hours of Pedagogy 40 Total Marks 100 

Credits 03 Exam Hours 03 

Course Learning Objectives 

 

CLO 1. Introduce the fundamental concepts of Automata Theory, Formal Languages and compiler 

design   

CLO 2. Principles Demonstrate Application of Automata Theory and Formal Languages in the field of 

compiler design 

CLO 3. Develop understanding of computation through Push Down Automata and Turing Machines 

CLO 4. Introduce activities carried out in different phases of Phases compiler 

CLO 5. Identify the undecidability problems. 

 

Teaching-Learning Process (General Instructions) 

  

These are sample Strategies, which teachers can use to accelerate the attainment of the various course 

outcomes.  

1. Lecturer method (L) needs not to be only a traditional lecture method, but alternative effective 

teaching methods could be adopted to attain the outcomes.  

2. Use of Video/Animation to explain functioning of various concepts. 

3. Encourage collaborative (Group Learning) Learning in the class. 

4. Ask at least three HOT (Higher order Thinking) questions in the class, which promotes critical 

thinking. 

5. Adopt Problem Based Learning (PBL), which fosters students’ Analytical skills, develop design 

thinking skills such as the ability to design, evaluate, generalize, and analyze information 

rather than simply recall it. 

6. Introduce Topics in manifold representations. 

7. Show the different ways to solve the same problem with different approaches and encourage 

the students to come up with their own creative ways to solve them. 

8. Discuss how every concept can be applied to the real world - and when that's possible, it helps 

improve the students' understanding.  

Module-1 

Introduction to Automata Theory: Central Concepts of Automata theory, Deterministic Finite 

Automata(DFA), Non- Deterministic Finite Automata(NFA) ,Epsilon- NFA, NFA to DFA Conversion, 

Minimization of DFA 

 

Introduction to Compiler Design: Language Processors, Phases of Compilers  

 

Textbook 1: Chapter1 – 1.5, Chapter2 – 2.2,2.3,2.5 Chapter4 –4.4 

Textbook 2: Chapter1 – 1.1 and 1.2 

Teaching-Learning Process Chalk and board, Active Learning, Problem based learning  

Module-2 

Regular Expressions and Languages: Regular Expressions, Finite Automata and  Regular 

Expressions, Proving  Languages Not to Be Regular 

 

Lexical Analysis Phase of compiler Design: Role of Lexical Analyzer, Input Buffering , Specification of 

Token, Recognition of Token. 

 



Textbook 1: Chapter3 – 3.1, 3.2, Chapter4- 4.1 

Textbook 2: Chapter3- 3.1 to 3.4 

Teaching-Learning Process Chalk and board, Active Learning, Demonstration 

Module-3 

Context Free Grammars: Definition and designing  CFGs, Derivations Using a  Grammar, Parse Trees, 

Ambiguity and Elimination of Ambiguity, Elimination of Left Recursion, Left Factoring. 

 

Syntax Analysis Phase of Compilers: part-1: Role of Parser ,  Top-Down Parsing 

 

Textbook 1: Chapter 5 – 5.1.1 to 5.1.6, 5.2 (5.2.1, 5.2.2), 5.4 

Textbook 2: Chapter 4 – 4.1, 4.2, 4.3 (4.3.2 to 4.3.4) ,4.4 

Teaching-Learning Process Chalk and board, Problem based learning, Demonstration 

Module-4 

Push Down Automata: Definition of the Pushdown Automata, The Languages of a PDA.  

 

Syntax Analysis Phase of Compilers: Part-2: Bottom-up Parsing, Introduction to LR Parsing: SLR, 

More Powerful LR parsers 

 

Textbook1: Chapter 6 – 6.1, 6.2 

Textbook2: Chapter 4 – 4.5, 4.6, 4.7 (Up to 4.7.4) 

Teaching-Learning Process Chalk & board, Problem based learning 

Module-5 

Introduction to Turing Machine: Problems that Computers Cannot Solve, The Turing machine, 

problems, Programming Techniques for Turing Machine, Extensions to the Basic Turing Machine 

 

Undecidability : A language That Is Not Recursively Enumerable, An Undecidable Problem That Is RE. 

 

Other Phases of Compilers: Syntax Directed Translation- Syntax-Directed Definitions, Evaluation 

Orders for SDD’s. Intermediate-Code Generation- Variants of Syntax Trees, Three-Address Code.  

 

Code Generation- Issues in the Design of a Code Generator 

 

Textbook1: Chapter 8 – 8.1, 8.2,8.3,8.4  Chapter 9 – 9.1,9.2 

Textbook2: Chapter 5 – 5.1, 5.2, Chapter 6- 6.1,6.2 Chapter 8- 8.1 

Teaching-Learning Process Chalk and board, MOOC 

Course Outcomes  

At the end of the course the student will be able to: 

CO 1. Acquire fundamental understanding of the core concepts in automata theory and Theory of 

Computation 

CO 2. Design and develop lexical analyzers, parsers and code generators 

CO 3. Design Grammars and Automata (recognizers) for different language classes and become   

knowledgeable about restricted models of Computation (Regular, Context Free) and their 

relative   powers. 

CO 4. Acquire fundamental understanding of the structure of a Compiler and Apply concepts 

automata theory and Theory of Computation to design Compilers  

CO 5. Design computations models for problems in Automata theory and adaptation of such model 

in the field of compilers 

 

Assessment Details (both CIE and SEE)  

The weightage of Continuous Internal Evaluation (CIE) is 50% and for Semester End Exam (SEE) is 50%. 

The minimum passing mark for the CIE is 40% of the maximum marks (20 marks). A student shall be 

deemed to have satisfied the academic requirements and earned the credits allotted to each subject/ 



course if the student secures not less than 35% (18 Marks out of 50) in the semester-end examination 

(SEE), and a minimum of 40% (40 marks out of 100) in the sum total of the CIE (Continuous Internal 

Evaluation) and SEE (Semester End Examination) taken together 

 

Continuous Internal Evaluation: 

Three Unit Tests each of 20 Marks (duration 01 hour) 

1. First test at the end of 5th week of the semester 

2. Second test at the end of the 10th week of the semester 

3. Third test at the end of the 15th week of the semester 

Two assignments each of 10 Marks 

1. First assignment at the end of 4th week of the semester 

2. Second assignment at the end of 9th week of the semester 

Group discussion/Seminar/quiz  any one of three suitably planned to attain the COs and POs  for 20 

Marks (duration 01 hours) 

1. At the end of the 13th week of the semester 

 

The sum of three tests, two assignments, and quiz/seminar/group discussion will be out of 100 marks 

and will be scaled down to 50 marks  

 (to have a less stressed CIE, the portion of the syllabus should not be common /repeated for any of the 

methods of the CIE.   Each method of CIE should have a different syllabus portion of the course).   

CIE methods /question paper has to be designed to attain the different levels of Bloom’s 

taxonomy as per the outcome defined for the course. 

Semester End Examination: 

Theory SEE will be conducted by University as per the scheduled timetable, with common question 

papers for the subject (duration 03 hours) 

1. The question paper will have ten questions. Each question is set for 20 marks   and Marks scored 

shall be proportionally reduced to 50 marks 

2. There will be 2 questions from each module. Each of the two questions under a module (with a 

maximum of 3 sub-questions), should have a mix of topics under that module. 

3. The students have to answer 5 full questions, selecting one full question from each module. 

Suggested Learning Resources: 

 

Textbooks  

1. John E Hopcroft, Rajeev Motwani, Jeffrey D. Ullman,“ Introduction to Automata Theory, 

Languages and Computation”, Third Edition, Pearson. 

2. Alfred V.Aho, Monica S.Lam,Ravi Sethi, Jeffrey D. Ullman, “ Compilers Principles, Techniques and 

Tools”, Second Edition,Perason. 

Reference: 

1. Elain Rich, “Automata,Computability and complexity”, 1st Edition, Pearson Education,2018. 

2. K.L.P  Mishra, N Chandrashekaran , 3rd Edition , ‘Theory of Computer Science”,PHI,2012. 

3. Peter Linz, “An introduction to Formal Languages and Automata “, 3rd Edition, Narosa 

Publishers,1998. 

4. K Muneeswaran, ”Compiler Design”, Oxford University Press 2013. 

Weblinks and Video Lectures (e-Resources): 

 

1. https://nptel.ac.in/courses/106/106/106106049/# 

2. https://nptel.ac.in/courses/106/104/106104123/ 

3. https://www.jflap.org/ 

 

Activity Based Learning (Suggested Activities in Class)/ Practical Based learning 

 



AUTOMATA THEORY AND COMPILER DESIGN 21CS51 

 

 

MODULE I: 

 
1. Introduction 

2. Why study the Theory of Computation? 

3. Strings 

4. Languages 

5. A Finite State Machines (FSM) 

5.1. Deterministic FSM 

5.2. Nondeterministic FSMs 

5.3. Simulators for FSMs 

5.4. Minimizing FSMs 

6. Finite State Transducers 

7. Bidirectional Transducers. 

1. Introduction 

The term "Automata" is derived from the Greek word "αὐτόµατα" which means "self-acting". 

An automaton (Automata in plural) is an abstract self-propelled computing device which 

follows a predetermined sequence of operations automatically. 

An automaton with a finite number of states is called a Finite Automaton (FA) or Finite State 

Machine (FSM). 

2. Why to study Theory of Computation? 

Theory of computation is mainly concerned with the study of how problems can be solved 

using algorithms. It is the study of mathematical properties both of problems and of algorithms 

for solving problems that depend on neither the details of today's technology nor the 

programming language. 

It is still useful in two key ways: 

 It provides a set of abstract structures that are useful for solving certain classes of 

problems. These abstract structures can he implemented on whatever 

hardware/software platform is available 

 It defines provable limits to what can be computed regardless of processor speed or 

memory size. An understanding of these limits helps us to focus our design effort in 

areas in which it can pay off, rather than on the computing equivalent of the search for 

a perpetual motion machine. 

The goal is to discover fundamental properties of the problems like: 

 Is there any computational solution to the problem? 1f not. is there a restricted but 

useful variation of the problem for which a solution does exist? 

 If a solution exists, can it be implemented using some fixed amount of memory? 

 If a solution exists. how efficient is it? More specifically. how do its time and space 

requirements grow as the size of the problem grows? 

 Are there groups of problems that are equivalent in the sense that if there is an efficient 



solution to one member of the group there is an efficient solution to all the others? 
 

Applications of theory of computation: 
 

 Development of Machine Languages: Enables both machine-machine and person- 

machine communication. Without them, none of today's applications of computing 

could exist. Example: Network communication protocols, HTML etc. 

 Development of modern programming languages: Both the design and the 

implementation of modern programming languages rely heavily on the theory of 

context-free languages. Context- free grammars are used to document the languages 

syntax and they form the basis for the parsing techniques that all compilers use. 

 Natural language processing: It is a field of computer science, artificial intelligence, 

and computational linguistics concerned with the interactions between computers and 

human (natural) languages. 

 Automated hardware systems: Systems as diverse as parity checkers, vending 

machines, communication protocols, and building security devices can be 

straightforwardly described as finite state machines, which is a part of theory of 

computation. 

 Video Games: Many interactive video games are use large nondeterministic finite state 

machines. 

 Security is perhaps the most important property of many computer systems. The 

undecidability results of computation show that there cannot exist a general-purpose 

method for automatically verifying arbitrary security properties of programs. 

 Artificial intelligence: Artificial intelligence programs solve problems in task domains 

ranging from medical diagnosis to factory scheduling. Various logical frameworks have 

been proposed for representing and reasoning with the knowledge that such programs 

exploit. 

 Graph Algorithms: Many natural structures, including ones as different as organic 

molecules and computer networks can be modeled as graphs. The theory of complexity 

tells us that, is there exist efficient algorithms for answering some important questions 

about graphs. Some questions are "hard", in the sense that no efficient algorithm for 

them is known nor is one likely to be developed. 

 

 

3. Strings 

Alphabet 

Definition: An alphabet is any finite set of symbols denoted by Σ (Sometimes also 

called as characters or symbols). 

Example: Σ = {a, b, c, d} is an alphabet set where ‗a‘, ‗b‘, ‗c‘, and ‗d‘ are symbols. 

 
 

String 

Definition: A string is a finite sequence of symbols taken from Σ. 
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Example: ‗cabcad‘ is a valid string on the alphabet set Σ = {a, b, c, d} 
 

3.1. Functions on Strings 

Length of a String 

Definition: It is the number of symbols present in a string. (Denoted by |.|). 

Examples: If s =‗cabcad‘, | s |= 6; Also |11001101| = 7 

If | s |= 0, it is called an empty string, denoted by ε. |ε| = 0 

Concatenation of strings: The concatenation of two strings s and t, written s||t or simply st, 

is the string formed by appending t to s. For example, if x = good and y = bye, then xy = 

goodbye. So |xy| = |x| + |y|. 

The empty string, e, is the identity for concatenation of strings. (xe = ex = x). 

Concatenation, as a function defined on strings is associative. (st)w = s (tw). 

String Replication 

For each string w and each natural number i, the string w
i
 is defined as: 

Example: a
3
 = aaa, (bye)

2
 = byebye, a0

b3 = bbb 

String Reversal: For each string w, the reverse of w, written as w
R
, is defined as: 

 



3.2. Relations on strings 

Substring: A string s is a substring of a string of t iff s occurs contiguously as part of t. 

For example: aaa is a substring of aaabbbaaa, aaaaaa is not a substring of aaabbbaaa 

 

Proper Substring: A string r is a proper substring of a string t, iff t is a substring of t and s ≠ 

t. Every string is a substring (although not a proper substring) of itself. The empty string. e. is a 

substring of every string. 

Prefix: A string s is a prefix of t, iff ∃x ∈ ∑∗(t = sx). A string s is a proper prefix of a string t 

iff s is a prefix of t and s≠t. Every string is a prefix (although not a proper prefix) of itself. The 

empty string ε, is a prefix of every string. For example. the prefixes of abba are: ε, a, ab, abb, 

abba. 

Suffix: A string s is a suffix of t, iff ∃x ∈ ∑∗(t = xs). A string s is a proper suffix of a string t 

iff s is a suffix of t and s≠t. Every string is a suffix (although not a proper suffix) of itself. The 

empty string ε, is a suffix of every string. For example. the prefixes of abba are: ε, a, ba, bba, 

abba. 

 

4. Languages 

A language is a (finite or infinite) set of strings over a finite alphabet ∑. When we are talking 

about more than one language, we will use the notation ∑L, to mean the alphabet from which 

the strings in the language L are formed. 

Let ∑ = {a, b}. ∑* = {ε, a, b, aa, ab , ba, bb, aaa, aab }. 

Some examples of languages over ∑ are: 

Φ, {ε}, {a, b}, {ε, a, aa, aaa, aaaa, aaaaa}, {ε, a, aa, aaa, aaaa, aaaaa, ........ } 

4.1. Techniques for Defining Languages 

There are many ways. Since languages are sets. we can define them using any of the set- 

defining techniques 

Ex-1: All a's Precede All b's, 
L = {w ϵ {a,b}*: an a's precede all b's in w}. The strings ε, a, aa, aabbb, and bb are in L . The 

strings aba, ba, and abc are not in L. 

Ex-2: Strings that end in ‘a’ 

L = {x : ∃yϵ {a, b}*, (x = ya)}. The strings a, aa, aaa, bbaa and ba are in L. The strings ε, bab, 

and bca are not in L. L consists of all strings that can be formed by taking some string in {a, b}* 

and concatenating a single a onto the end of it. 

Ex-3: Empty language 

L = { } = Φ, the language that contains no strings. Note: L = { ε } the language that contains 

a single string, ε. Note that L is different from Φ. 

Ex-4: Strings of all ‘a’ s containing zero or more ‘a’s 
Let L = { a

n
 : n ≥ 0}. L = (ε, a, aa, aaa, aaaa, aaaaa, ........ ) 
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4.4. Functions on Languages 

Since languages are sets. all of the standard set operations are well-defined on languages. 

Union, intersection, difference and complement are quite useful 

 

 

Ex-5: We define the following languages in terms of the prefix relation on strings: 

L1 = {wϵ{a, b}* : no prefix of w contains b}= { e , a, aa, aaa, aaaa, aaaaa, aaaaaa, } . 

L2 ={wϵ {a, b}*: no prefix of w starts with b}={w ϵ{a,b}*: the first character of w is a }U{ε}. 

L3= {wϵ {a, b}*; every prefix of w starts with b} =Φ. L3 is equal to Φ because ε is a prefix of 

every string. Since ε does not start with b, no strings meet L3 's requirement. 

 
Languages are sets. So, a computational definition of a language can be given in two ways; 

• a language generator, which enumerates (lists) the elements of the language, or 

• a language recognizer, which decides whether or not a candidate string is in the 

language and returns True if it is and False if it isn't. 

For example, the logical definition. L = {x: ∃y ϵ{a, b}* (x = ya)} can be turned into either a 

language generator (enumerator) or a language recognizer. 

In some cases, when considering an enumerator for a language, we may care about the order in 

which the elements of L are generated. If there exists n total order D of the elements of ∑L, then 

we can use D to define on L a total order called lexicographic order (written <L.): 

• Shorter strings precede longer ones: ∀x ( ∀y (( |x| < |y|)  (x < L y))) and 

• Of strings that are the same length sort them in dictionary order using D. 

Let L= {w ϵ {a, b}*; all a's precede all b's}. The lexicographic enumeration of Lis: 

ε, a. b. aa. ab. bb. aaa. aab. abb. bbb. aaaa, aaab. aabb. abbb. bbbb. aaaaa .... 

 

4.2. Cardinality of a Language 

 Cardinality refers to the number of strings in the language.

 The smallest language over any alphabet is ϕ, whose cardinality is 0.

 The largest language over any alphabet ∑ is ∑*. Suppose that ∑ = Φ, then ∑* = {ε} 

and |∑*| = l. In general, |∑*| is infinite.
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Concatenation 
Let L1 and L2 be two languages defined over some alphabet ∑. Then their concatenation. 
written L1L2 is: 

 
Example: Let: L1 = {cat, dog, mouse, bird}. L2 = { bone, food}. 

L1L2 = { catbone, catfood, dogbane, dogfood, mousebone, mousefood, birdbone, birdfood}. 

 
The language {ε} is the identity for concatenation of languages. So for all languages L, 

L{ε} = {ε}L = L. 

The language Φ is a zero for concatenation of languages. So, for all languages L, LΦ = ΦL = Φ. 

That Φ is a zero follows from the definition of the concatenation of two languages as the set 

consisting of all strings that can he formed by selecting some string ‗s‘ from the first language 

and some string ‗l’ from the second language and then concatenating them together. There are 

no ways to select a string from the empty set. 

 
Concatenation on languages is associative. So, for all languages L1L2 and L3: 

((L1L2)L3 = L1 (L2L3)). 

 

Reverse 
Let L be a language defined over some alphabet ∑. Then the reverse of L , written L

R
 is: 

L
R
 = {w ϵ ∑*: w = x

R
 for some x ϵ L}. 

In other words, L
R
 is the set of strings that can be formed by taking some string in L and 

reversing it 
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Kleene Star 

Definition: The Kleene star denoted by Σ
*
, is a unary operator on a set of symbols or strings, 

Σ, that gives the infinite set of all possible strings of all possible lengths over Σ including ε. 

Representation: Σ
*
 = Σ

0
 U Σ

1
 U Σ

2
 U……. where Σ

p
 is the set of all possible strings of length 

p. 

Example: If Σ = {a, b}, Σ
*
= {λ, a, b, aa, ab, ba, bb, ............. } 

 

Kleene Closure / Plus 

Definition: The set Σ
+
 is the infinite set of all possible strings of all possible lengths over Σ 

excluding ε. Σ
+
 = Σ* − {ε} Representation: 

Σ
+
 = Σ

1
 U Σ

2
 U Σ

3
 U……. 

Example: If Σ = {a, b} , Σ
+
 ={ a, b, aa, ab, ba, bb, .................. } 

Closure: A set S is closed under the operation @ if for every element x & y in S, x@y is also an 

element of S. 

4.5. A Language Hierarchy 

A Machine-Based Hierarchy of Language Classes 

are shown in the diagram. 

We have four language classes: 

1. Regular languages, which can be 

accepted by some finite state machine. 

2. Context-free languages, which can be 

accepted by some pushdown automaton. 

3. Decidable (or simply D) languages. 

which can decided by some Turing 

machine that always halts. 

4. Semi-decidable (or SD) languages, which can be semi-decided by some Turing 

machine that halts on all strings in the language. 

Each of these classes is a proper subset of the next class, as illustrated in the Figure. 

As we move outward in the language hierarchy, we have access to tools with greater and 

expressive power. We can define A
n
B

n
C

n
 as a decidable language but not as a context-free or 

a regular one. These matters because expressiveness generally comes at a price. The price may 

be: Computational efficiency, decidability and clarity. 

• Computational efficiency: Finite state machines run in time that is linear in the length 

of the input string. A general context-free parser based on the idea of a pushdown 

automaton requires time that grows as the cube of the length of the input string. A 
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Definition: Deterministic Finite State Machine (DFSM) is M: M = (K, , , s, A), where: 

K is a finite set of states 

 is an alphabet 

s  K is the initial state 

A  K is the set of accepting states, and 

 is the transition function from (K  ) to K 

 

Turing machine may require time that grows exponentially (or faster) with the length 

of the input string. 

• Decidability: There exist procedures to answer many useful questions about finite state 

machines. For example, does an FSM accept some particular string? Is an FSM 

minimal? Are two FSMs identical? A subset of those questions can be answered for 

pushdown automata. None of them can be answered for Turing machines. 

• Clarity: There exist tools that enable designers to draw and analyze finite state 

machines. Every regular language can also be described using the regular expression 

pattern language. Every context-free language, in addition to being recognizable by 

some pushdown automaton, can be described with a context-free grammar 

 

5. Finite State Machines (FSM) 

A finite state machines (or FSM) is a computational device whose input is a string and whose 

output is one of two values; Accept and Reject. FSMs are also sometimes called finite state 

automata or FSAs. 

5.1. Deterministic FSM 

 We begin by defining the class of FSMs whose behavior is deterministic.

 These machines, makes exactly one move at each step

 The move is determined by the current state and the next input character.

 

 

Configuration: A Configuration of a DFSM M is an element of K  *. Configuration 

captures the two things that make a difference to M‘s future behavior: i) its current state, the 

input that remains to be read. 

The Initial Configuration of a DFSM M, on input w, is (sM, w) , where sM is start state of M 

The transition function  defines the operation of a DFSM M one step at a time.  is set of all 

pairs of states in M & characters in . (Current State, Current Character)  New State 

Relation ‘yields’: Yields-in-one-step relates configuration, to configuration-1to configuration- 2 

iff M can move from canfiguration-1, to configuration-2 in one step. Let c be any element of 

 and let w be any element of *, then, 

(q1, cw) ├M (q2, w) iff ((q1, c), q2) 

|-M * is the reflexive, transitive closure of |-M 



AUTOMATA THEORY AND COMPUTABILITY 17CS54 

 

 

Complete vs Incomplete FSM 

Complete FSM: A transition is defined for every possible state and every possible character in 

the alphabet. Note: This can cause FSM to be larger than necessary, but ALWAYS processes 

the entire string 

Incomplete FSM: One which defines a transition for every possible state & every possible 

character in the alphabet which can lead to an accepting state Note: If no transition is defined, 

the string is Rejected 

Computation: A Computation by M is a finite sequence of configurations C0, C1, …, Cn for 

some n  0 such that: 

• C0 is an initial configuration, 

• Cn is of the form (q, ), for some state q  KM 

•  indicates empty string, entire string is processed & implies a complete DFSM 

• C0 |-M C1 |-M C2 |-M … |-M Cn. 

However, M Halts when the last character has to be processed or a next transition is not defined 

Acceptance / Rejection 

A DFSM M, Accepts a string w iff (s, w) |-M * (q, ), for some q  AM. 

A DFSM M, Rejects a string w iff (s, w) |-M* (q, ), for some q  AM. 

 

Regular languages 

A language is regular iff it is accepted by some DFSM. Some examples are listed below. 

• {w {a, b}* | every a is immediately followed by b }. 

• {w  {a, b}* | every a region in w is of even length} 

• binary strings with odd parity. 

 

Designing Deterministic Finite State Machines 

Given some language L. how should we go about designing a DFSM to accept L? In general. as 

in any design task. There is no magic bullet. But there are two related things that it is helpful to 

think about: 

• Imagine any DFSM M that accepts L. As a string w is being read by M, what properties 

of the part of w that has been seen so far are going to have any bearing on the ultimate 

answer that M needs to produce? Those are the properties that M needs to record. 

• If L is infinite but M has a finite number of states, strings must "cluster". In other words, 

multiple different strings will all drive M to the same state. Once they have done that, 

none of their differences matter anymore. If they've driven M to the same state, they 

share a fate. No matter what comes next, either all of them cause M to accept or all of 

them cause M to reject. 

The language accepted by M, denoted L(M), is the set of all strings accepted by M. 
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MODULE II: 
 

1. Regular Expression 

2. Equivalence of Re and NFA 

3. DFA 

4. Pumping lemma for regular languages 

5. Grammars 

6. Parse Trees 
 

1. Regular Expressions 
 
 

• A regular expression is used to specify a language, and it does so precisely. 

 
• Regular expressions are very intuitive. 

• Regular expressions are very useful in a variety of contexts. 

• Given a regular expression, an NFA-ε can be constructed from it automatically. 

• Thus, so can an NFA, a DFA, and a corresponding program, all automatically! 

Definition: 

• Let Σ be an alphabet. The regular expressions over Σ are: 
 

– Ø Represents the empty set { } 

– ε Represents the set {ε} 

– a Represents the set {a}, for any symbol a in Σ 

 

Let r and s be regular expressions that represent the sets R and S, respectively. 

– r+s Represents the set R U S (precedence 3) 

– rs Represents the set RS (precedence 2) 

– r
*
 Represents the set R* (highest precedence) 

– (r) Represents the set R (not an op, provides precedence) 

 

• If r is a regular expression, then L(r) is used to denote the corresponding language. 
 

• Examples: Let Σ = {0, 1} 
 

(0 + 1)* All strings of 0‘s and 1‘s 

0(0 + 1)* All strings of 0‘s and 1‘s, beginning with a 0 

(0 + 1)*1 All strings of 0‘s and 1‘s, ending with a 1 

(0 + 1)*0(0 + 1)*  All strings of 0‘s and 1‘s containing at least one 0 

(0 + 1)*0(0 + 1)*0(0 + 1)* All strings of 0‘s and 1‘s containing at least two 0‘s 

(0 + 1)*01*01*  All strings of 0‘s and 1‘s containing at least two 0‘s 

(1 + 01*0)* All strings of 0‘s and 1‘s containing an even number of 0‘s 
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1*(01*01*)* All strings of 0‘s and 1‘s containing an even number of 0‘s 

(1*01*0)*1* All strings of 0‘s and 1‘s containing an even number of 0‘s 

 

 

 

 

 
Identities: 

 

 

Øu = uØ = Ø Multiply by 0 

 
• u + Ø = u 

 

• u + u = u 
 

8. u* = (u*)* 
 

9. u(v+w) = uv+uw 

10. (u+v)w = uw+vw 
 

11. (uv)*u = u(vu)* 
 

12. (u+v)* = (u*+v)* 
 

= u*(u+v)* 
 

= (u+vu*)* 
 

= (u*v*)* 
 

= u*(vu*)* 
 

= (u*v)*u* 

 

 
2. Equivalence of Regular Expressions and NFA-ε 

• Note: Throughout the following, keep in mind that a string is accepted by an NFA-ε if 

there exists a path from the start state to a final state. 

• Lemma 1: Let r be a regular expression. Then there exists an NFA-ε M such that L(M) = 

L(r). Furthermore, M has exactly one final state with no transitions out of it. 

• Proof: (by induction on the number of operators, denoted by OP(r), in r). 
 

• Basis: OP(r) = 0 
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Then r is either Ø, ε, or a, for some symbol a in Σ 

 

• Inductive Hypothesis: Suppose there exists a k  0 such that for any regular expression r 

where 0  OP(r)  k, there exists an NFA-ε such that L(M) = L(r). Furthermore, suppose 

that M has exactly one final state. 

 
• Inductive Step: Let r be a regular expression with k + 1 operators (OP(r) = k + 1), where 

k + 1 >= 1. 

Case 1) r = r1 + r2 

Since OP(r) = k +1, it follows that 0<= OP(r1), OP(r2) <= k. By the inductive 

hypothesis there exist NFA-ε machines M1 and M2 such that L(M1) = L(r1) and 

L(M2) = L(r2). Furthermore, both M1 and M2 have exactly one final state. 

 

 

Case 2) r = r1r2 

Since OP(r) = k+1, it follows that 0<= OP(r1), OP(r2) <= k. By the inductive 

hypothesis there exist NFA-ε machines M1 and M2 such that L(M1) = L(r1) and 

L(M2) = L(r2). Furthermore, both M1 and M2 have exactly one final state. 

 

 
Case 3) r = r1* 

Since OP(r) = k+1, it follows that 0<= OP(r1) <= k. By the inductive hypothesis 

there exists an NFA-ε machine M1 such that L(M1) = L(r1). Furthermore, M1 has 

exactly one final state. 

• Example: 

Problem: Construct FA equivalent to RE, r = 0(0+1)* 

 

Solution: r = r1r2 
r1 = 0 

r2 = (0+1)* 

r2 = r3* 

r3 = 0+1 

r3 = r4 + r5 

r4 = 0 

r5 = 1 

 
 

Transition graph: 
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i,j 

 

3. Definitions Required to Convert a DFA to a Regular Expression 

 
• Let M = (Q, Σ, δ, q1, F) be a DFA with state set Q = {q1, q2, …, qn}, and define: 

Ri,j = { x | x is in Σ* and δ(qi,x) = qj} 
Ri,j is the set of all strings that define a path in M from qi to qj. 

 
• Lemma 2: Let M = (Q, Σ, δ, q1, F) be a DFA. Then there exists a regular expression r 

such that L(M) = L(r). 
if i=j.Case 1) No transitions from qi to qj and i != j r

0
i,j = Ø 

Case 2) At least one (m  1) transition from qi to qj and i != j 

r
0

i,j = a1 + a2 + a3 + … + am where δ(qi, ap) = qj, 

for all 1  p  m 

 
Case 3) No transitions from qi to qj and i = j 

r
0

i,j = ε 

Case 4) At least one (m  1) transition from qi to qj and i = j 
r
0

i,j = a1 + a2 + a3 + … + am + ε where δ(qi, ap) = qj 

for all 1  p  m 

 

• Inductive Hypothesis: 

Suppose that R
k-1

i,j can be represented by the regular expression r
k-1

i,j for all 
1  i,j  n, and some k1. 

 

• Inductive Step: 

Consider R
k
 = R

k-1
i,k (R

k-1
k,k)

*
R 

k-1
k,j U R

k-1
i,j . By the inductive hypothesis there 

exist regular expressions r
k-1

i,k , r
k-1

k,k , r
k-1

k,j , and r
k-1

i,j generating R
k-1

i,k , R
k-1

 k,k , 
R

k-1
k,j , and R

k-1
i,j , respectively. Thus, if we let 

 

rk 
i,j= rk-1k-1(rk,k

*   )k-1r k-1 +i,kr 
k,j i,j 

 

then r
k

i,j is a regular expression generating R
k

i,j ,i.e., L(r
k

i,j) = R
k

i,j. 

• Finally, if F = {qj1, qj2, …, qjr}, then 

rn
1,j1 + rn

1,j2 + … + rn
1,jr 

is a regular expression generating L(M).• 



AUTOMATA THEORY AND COMPUTABILITY 17CS54 

 

 

 

 

4. Pumping Lemma for Regular Languages 

 

• Pumping Lemma relates the size of string accepted with the number of states in a DFA 

 

• What is the largest string accepted by a DFA with n states? 

 

• Suppose there is no loop? 

Now, if there is a loop, what type of strings are accepted via the loop(s)? 

 

• Lemma: (the pumping lemma) 

 

Let M be a DFA with |Q| = n states. If there exists a string x in L(M), such that |x|  n, 
then there exists a way to write it as x = uvw, where u,v, and w are all in Σ* and: 

 

– 1 |uv|  n 

– |v|  1 

– such that, the strings uv
i
w are also in L(M), for all i  0 

 
• Let: 

– u = a1…as 

– v = as+1…at 

• Since 0  s<t  n and uv = a1…at it follows that: 

– 1  |v| and therefore 1  |uv| 

– |uv|  n and therefore 1  |uv|  n 
 

• In addition, let: 

– w = at+1…am 

 

• It follows that uv
i
w = a1…as(as+1…at)

i
at+1…am is in L(M), for all i  0. 

In other words, when processing the accepted string x, the loop was traversed once, but 

could have been traversed as many times as desired, and the resulting string would still 

be accepted. 
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4.1 Closure Properties of Regular Languages 
 

 

1. Closure Under Union 

If L and M are regular languages, so is L ⋃ M. 
Proof: Let L and M be the languages of regular expressions R and S, respectively. 

Then R+S is a regular expression whose language is L ⋃ M. 
 

2. Closure Under Concatenation and Kleene Closure 

RS is a regular expression whose language is LM. 

R* is a regular expression whose language is L*. 

 

3. Closure Under Intersection 

If L and M are regular languages, then so is L ⋂ M. 

Proof: Let A and B be DFA‘s whose languages are L and M, respectively. 
 

4. Closure Under Difference 

If L and M are regular languages, then so is L – M = strings in L but not M. 
Proof: Let A and B be DFA‘s whose languages are L and M, respectively. 

 

5. Closure Under Complementation 

The complement of language L (w.r.t. an alphabet Σ such that Σ* contains L) is Σ* – L. 

Since Σ* is surely regular, the complement of a regular language is always regular. 

 

6. Closure Under Homomorphism 

If L is a regular language, and h is a homomorphism on its alphabet, 
then h(L) = {h(w) | w is in L} is also a regular language. 

 
5. Grammar 

 

 Definition: A grammar G is defined as a 4-tuple, G = (V, T, S, P) 
Where, 

• V is a finite set of objects called variables, 

• T is a finite set of objects called terminal symbols, 

• S ∈ V is a special symbol called start variable, 

• P is a finite set of productions. 

Assume that V and T are non-empty and disjoint. 
 

 Example: 

Consider the grammar G = ({S}, {a, b}, S, P) with P given by 

S  aSb, S ε_. 

For instance, we have S ⇒ aSb ⇒ aaSbb ⇒ aabb. 

It is not hard to conjecture that L(G) = {a
n
b

n
 | n ≥ 0}. 
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5.1 Right, Left-Linear Grammar 

 

 Right-linear Grammar: A grammar G = (V, T, S, P) is said to be right-linear if all 

productions are of the form: 

A  xB, 

A  x, 

Where A, B ∈ V and x ∈ T*. 

 

o Example#1: 

S → abS | a is an example of a right-linear grammar. 

 

 Can you figure out what language it generates? 

 L = {w ∈ {a,b}* |w 

Contains alternating a's and b's , begins with an a, and ends with a b} 

⋃ {a} 

 L((ab)*a) 

 
 

 Left-linear Grammar: A grammar G = (V, T, S, P) is said to be left-linear if all 

productions are of the form: 

A  Bx, 
A  x, 

Where A, B ∈ V and x ∈ T*. 

o Example#2: 

 
S → Aab 

A → Aab | aB 

B → a 

is an example of a left-linear grammar. 
 

 Can you figure out what language it generates? 

 L = {w Î {a,b}* | w is aa followed by at least one set of 

alternating ab's} 

 

 L(aaab(ab)*) 

 
 

o Example#3: 

Consider the grammar 

S → A 

A → aB | λ 

B → Ab 

This grammar is NOT regular. 
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 No "mixing and matching" left- and right-recursive productions. 

5.2 Regular Grammar 

 

 A linear grammar is a grammar in which at most one variable can occur on the right side 

of any production without restriction on the position of this variable. 

 

 An example of linear grammar is G = ({S, S1, S2}, {a, b}, S, P) with 

S  S1ab, 

S1  S1ab | S2, 

S2  a. 

 

 A regular grammar is one that is either right-linear or left-liner. 

 

5.3 Testing Equivalence of Regular Languages 

 

 Let L and M be reg langs (each given in some form). 
 

To test if L = M 

 

1. Convert both L and M to DFA's. 

2. Imagine the DFA that is the union of the two DFA's (never mind there are two 
start states) 

3. If TF-algo says that the two start states are distinguishable, then L 6= M, 
otherwise, L = M. 

 
We can ―see" that both DFA accept L(ε+(0+1)*0). The result of the TF-algo is 

Therefore the two automata are equivalent. 

5.4 Regular Grammars and NFA's 

• It's not hard to show that regular grammars generate and nfa's accept the same class of 

languages: the regular languages! 

• It's a long proof, where we must show that 

o Any finite automaton has a corresponding left- or right-linear grammar, 

o And any regular grammar has a corresponding nfa. 

• Example: 

 

o We get a feel for this by example. 



AUTOMATA THEORY AND COMPUTABILITY 17CS54 

 

 

 

 

 
Let S → aA A → abS | bONTEXT FREE-GRAMMAR 

 

 Definition: Context-Free Grammar (CFG) has 4-tuple: G = (V, T, P, S) 
 

Where,  
V - A finite set of variables or non-terminals 

T - A finite set of terminals (V and T do not intersect) 
P - A finite set of productions, each of the form A –> α, 

Where A is in V and α is in (V U T)* 
Note: that α may be ε. 

S - A starting non-terminal (S is in V) 
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• Example#1 CFG: 

 

G = ({S}, {0, 1}, P, S) 

P: 

(1) S –> 0S1 or just simply S –> 0S1 | ε 

(2) S –> ε 

 
 

• Example Derivations: 

 
S => 0S1 (1) 
S => ε (2) 

 => 01 (2) 

S => 0S1 (1) 
 => 00S11 (1) 
 => 000S111 (1) 
 => 000111 (2) 

 

• Note that G ―generates‖ the language {0
k
1

k
 | k>=0} 

 

 
6. Derivation (or Parse) Tree 

 

• Definition: Let G = (V, T, P, S) be a CFG. A tree is a derivation (or parse) tree if: 

– Every vertex has a label from V U T U {ε} 

– The label of the root is S 

– If a vertex with label A has children with labels X1, X2,…, Xn, from left to right, 
then 

A –> X1, X2,…, Xn 

must be a production in P 

– If a vertex has label ε, then that vertex is a leaf and the only child of its‘ parent 
 

• More Generally, a derivation tree can be defined with any non-terminal as the root. 

 

 

Definition: A derivation is leftmost (rightmost) if at each step in the derivation a production is 

applied to the leftmost (rightmost) non-terminal in the sentential form. 

 
 

 The first derivation above is leftmost, second is rightmost and the third is neither. 
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MODULE III: 
 

 
 

1. Context Free Grammar 

2. Minimization of Context Free Grammar 

3. Chomsky Normal Form 

4. Pumping Lemma for Context-Free Languages 
 

5. Pushdown Automata (PDA) 

 

 

1. Ambiguity in Context Free Grammar 
 

• Definition: Let G be a CFG. Then G is said to be ambiguous if there exists an x in L(G) 
with >1 leftmost derivations. Equivalently, G is said to be ambiguous if there exists an x 
in L(G) with >1 parse trees, or >1 rightmost derivations. 

 

• Note: Given a CFL L, there may be more than one CFG G with L = L(G). Some 

ambiguous and some not. 

 

• Definition: Let L be a CFL. If every CFG G with L = L(G) is ambiguous, then L is 

inherently ambiguous. 

 
 

• Example: Consider the string aaab and the preceding grammar. 

 
• The string has two left-most derivations, and therefore has two distinct parse trees and is 

ambiguous . 

 

1.1 Eliminations of Useless Symbols 
 

• Definition: 

Let G = (V, T, S, P) be a context-free grammar. A variable A  V is said to be useful if 

and only if there is at least one w  L(G) such that 

 

S  xAy  w 

with x, y  (V  T)

. 

 

In words, a variable is useful if and only if it occurs in at least on derivation. A variable 

that is not useful is called useless. A production is useless if it involves any useless 

variable 

 

• For a grammar with productions 
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S  aSb |  | A 

A  aA 

 

A is useless variable and the production S  A plays no role since A cannot be eventually 

transformed into a terminal string; while A can appear in a sentential form derived from 

S, this sentential form can never lead to sentence! 

Hence, removing S  A (and A  aA) does not change the language, but does simplify 

the grammar. 

 

• For a grammar with productions 

S  A 

A  aA | 

B  bA 

 

B is useless so is the production B  bA! Observe that, even though a terminal string can 

be derived from B, there is no way to get to B from S, i.e. cannot achieve 

S  xBy. 

 

• Example: 

Eliminate useless symbols and productions from G = (V, T, S, P), where 

V = {S, A, B, C}, T = {a, b} and 

P consists of 

S  aS | A | C 

A  a 

B  aa 

C  aCb 

 

First, note that the variable C cannot lead to any terminal string, we can then remove C 

and its associated productions, we get G1 with V1 = {S, A, B}, T1 = {a} and P1 consisting 

of 

S  aS | A 

A  a 

B  aa 
 

Next, we identify variables that cannot be reached from the start variable. We can create 

a dependency graph for V1. For a context-free grammar, a dependency graph has its 

vertices labeled with variables with an edge between any two vertices I and J if there is a 

production of the form 

I  xJy 

 

 

 

 
 

Consequently, the variable B is shown to be useless and can be removed together with its 

associated production. 
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The resulting grammar G‘ = (V‘, T‘, S, P‘) is with V‘ = {S, A}, T‘ = {a} and P‘ consisting 

of 

S  aS | A 

A  a 

 
1.2 Eliminations of -Production 

 

• Definition : 

a) Any production of a context-free grammar of the form 

A  

is called a -production. 
 

b) Any variable A for which the derivation 

A  

is possible is called nullable. 
 

• If a grammar contains some -productions or nullable variables but does not generate the 

language that contains an empty string, the -productions can be removed! 

 

• Example: 
Consider the grammar, G with productions 

S  aS1b 

S1  aS1b | 

L(G) = {a
n
b

n
 | n  1} which is a -free language. The -production can be removed after 

adding new productions obtained by substituting  for S1 on the right hand side. 
 

We get an equivalent G‘ with productions 

S  aS1b | ab 

S1  aS1b | ab 
 

• Theorem: 

Let G be any context-free grammar with   L(G). There exists an equivalent grammar 

G‘ without -productions. 

 

Proof : 
Find the set VN of all nullable variables of G 
1. For all productions A  , put A in VN 

2. Repeat the following step until no further variables are added to VN: 
For all productions 

B  A1A2…An 

 

where A1, A2, …, An are in VN, put B in VN. 
 

With the resulting VN, P‘ can be constructed by looking at all productions in P of the 
form 

A  x1x2…xm, m  1 
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where each xi  V  T. 

 

 

For each such production of P, we put in P‘ the production plus all productions generated 

by replacing nullable variables with  in all possible combinations. However, if all xi are 

nullable, the resulting production A   is not put in P‘. 

 

• Example: 

 

For the grammar G with 

S  ABaC 

A  BC 

B  b |  

C  D |  

D  d 

the nullable variables are A, B, and C. 
 

The equivalent grammar G‘ without -productions has P’ containing 

S  ABaC | BaC | AaC | ABa | aC | Ba | Aa | a 

A  BC | C | B 

B  b 

C  D 

D  d 

 

1.3 Eliminations of MODULE-Production 
 

• Definition: 

Any production of a context-free grammar of the form 

A  B 

where A, B  V is called a MODULE-production. 

 

• Theorem: 

Let G = (V, T, S, P) be any context-free grammar without -productions. There exists a 

context-free grammar G‘ = (V‘, T‘, S, P‘) that does not have any MODULE-productions 

and that is equivalent to G. 

 

Proof: 

First of all, Any MODULE-production of the form A  A can be removed without any 

effect. We then need to consider productions of the form A  B where A and B are 

different variables. 
 

Straightforward replacement of B (with x1 = x2 = ) runs into a problem when we have 

A  B 

B  A 

We need to find for each A, all variables B such that 

A  B 
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This can be done via a dependency graph with an edge (I, J) whenever the grammar G 

has a MODULE-production I  J; A  B whenever there is a walk from A to B in the graph. 

 
The new grammar G‘ is generated by first putting in P‘ all non-MODULE-productions 

of P. Then, for all A and B with A  B, we add to P‘ 

A  y1 | y2 | … | yn 

 

where B  y1 | y2 | … | yn is the set of all rules in P‘ with B on the left. Not that the rules 
are taken from P‘, therefore, none of yi can be a single variable! Consequently, no 
MODULE- productions are created by this step. 

 

• Example: 

Consider a grammar G with 

S  Aa | B 

A  a | bc | B 

B  A | bb 

 

We have S  A, S  B, A  B and 

B  A. 
 

First, for the set of original non-MODULE-productions, we have 

S  Aa 

A  a | bc 

B  bb 

We then add the new rules 

S  a | bc | bb 

A  bb 

B  a | bc 

We finally obtain the equivalent grammar G‘ with P‘ consisting of 

S  Aa | a | bc | bb 

A  a | bc | bb 

B  bb | a | bc 

Notice that B and its associate production become useless. 

 
 

2 Minimization of Context Free Grammar 
 

• Theorem: 

Let L be a context-free language that does not contain . There exists a context-free 

grammar that generates L and that does not have any useless productions, -productions 

or MODULE-productions. 
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Proof: 

We need to remove the undesirable productions using the following sequence of steps. 

1. Remove -productions 

2. Remove MODULE-productions 
3. Remove useless productions 

 

 

3. Chomsky Normal Form 
 

 Definition: 

A context-free grammar is in Chomsky normal form if all productions are of the form 

A  BC 

or 

A  a 

where A, B, C  V, and a  T. 

 

Note: that the number of symbols on the right side of productions is strictly limited; not 

more than two symbols. 

 

 Example: 

The following grammar is in Chomsky normal form. 

S  AS | a 

A  SA | b 

 

On the other hand, the grammar below is not. 

S  AS | AAS 

A  SA | aa 
 

 Theorem: 

Any context-free grammar G = (V, T, S, P) with   L(G) has an equivalent grammar G‘ 

= (V‘, T‘, S, P‘) in Chomsky normal form. 

 

Proof: 

First we assume (based on previous Theorem) without loss of generality that G has no - 

productions and no MODULE-productions. Then, we show how to construct G‘ in two 

steps. 
 

Step 1:  
Construct a grammar G1 = (V1, T, S, P1) from G by considering all productions in 
P of the form 

A  x1x2…xn 

Where each xi is a symbol either in V or in T. 
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Note that if n = 1, x1 must be a terminal because there is no MODULE- 

productions in G. In this case, put the production into P1. 

 
If n  2, introduce new variables Ba for each a  T. Then, for each production of 
the form A  x1x2…xn, we shall remove all terminals from productions whose 
right side has length greater than one 

 
This is done by putting into P1 a production 

A  C1C2…Cn 

Where  
 

And 
Ci = xi if xi  V 

Ci = Ba if xi = a 
And, for every Ba, we also put into P1 a production 

Ba  a 

As a consequence of Theorem 6.1, it can be claimed that 
L(G1) = L(G) 

 

Step 2:  
The length of right side of productions is reduced by means of additional 

variables wherever necessary. First of all, all productions with a single terminal 

or two variables (n = 2) are put into P‘. Then, for any production with n  2, new 

variables D1, D2, … are introduced and the following productions are put into P‘. 

A  C1D1 

D1  C2D2 

… 
Dn-2  Cn-1Cn 

 

G‘ is clearly in Chomsky normal form. 

 

 Example: 

Convert to Chomsky normal form the following grammar G with productions. 

S  ABa 

A  aab 

B  Ac 
 

Solution: 

Step 1: 
New variables Ba, Bb, Bc are introduced and a new grammar G1 is obtained. 

S  ABBa 

A  BaBaBb 

B  ABc 

Ba  a 

Bb  b 

Bc  c 
 

Step 2: 
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Additional variables are introduced to reduce the length of the first two 

productions making them into the normal form, we finally obtain G‘. 
S  AD1 

D1  BBa 

A  BaD2 

D2  BaBb 

B  ABc 

Ba  a 
Bb  b 

Bc  c 
 

 

 

 

 
 Definition: 

Greibach normal form 

A context-free grammar is said to be in Greibach normal form if all productions have the 

form 

A  ax 

where a  T and x  V





Note that the restriction here is not on the number of symbols on the right side, but rather 

on the positions of the terminals and variables. 

 

 Example: 

The following grammar is not in Greibach normal form. 

S  AB 

A  aA | bB | b 

B  b 
 

It can, however, be converted to the following equivalent grammar in Greibach normal 

form. 

 

 

 

 Theorem: 

S  aAB | bBB | bB 

A  aA | bB | b 

B  b 

For every context-free grammar G with  L(G), there exists an equivalent grammar G‘ 

in Greibach normal form. 

 
 

Conversion 

 

 Convert from Chomsky to Greibach in two steps: 

1. From Chomsky to intermediate grammar 
a) Eliminate direct left recursion 

b) Use A  uBv rules transformations to improve references (explained later) 
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2. From intermediate grammar into Greibach 

1.a) Eliminate direct left recursion 

Step1: 

• Before 

A  Aa | b 

• After 

A  bZ | b 

Z  aZ | a 
 

• Remove the rule with direct left recursion, and create a new one with 

recursion on the right 

 

Step2: 

• Before 

A  Aa | Ab | b | c 

• After 

A  bZ | cZ | b | c 

Z  aZ | bZ | a | b 

• Remove the rules with direct left recursion, and create new ones with 

recursion on the right 

 

Step3: 

• Before 

A  AB | BA | a 

B  b | c 

• After 

A  BAZ | aZ | BA | a 

Z  BZ | B 

B  b | c 

 

Transform A  uBv rules 

• Before 

A  uBb 

B  w1 | w1 |…| wn 

• After 
Add A  uw1b | uw1b |…| uwnb 

Delete A  uBb 



AUTOMATA THEORY AND COMPUTABILITY 17CS54 

 

 

Background Information for the Pumping Lemma for Context-Free Languages 
 

• Definition: Let G = (V, T, P, S) be a CFL. If every production in P is of the form 

 
A –> BC 

or A –> a 
 

where A, B and C are all in V and a is in T, then G is in Chomsky Normal Form (CNF). 
 

• Example:  
S –> AB | BA | aSb 

A –> a 
B –> b 
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• Theorem: Let L be a CFL. Then L – {ε} is a CFL. 

 

• Theorem: Let L be a CFL not containing {ε}. Then there exists a CNF grammar G such 

that L = L(G). 

 

• Definition: Let T be a tree. Then the height of T, denoted h(T), is defined as follows: 

– If T consists of a single vertex then h(T) = 0 

– If T consists of a root r and subtrees T1, T2, … Tk, then h(T) = maxi{h(Ti)} + 1 
 

• Lemma: Let G be a CFG in CNF. In addition, let w be a string of terminals where 

A=>*w and w has a derivation tree T. If T has height h(T)1, then |w|  2
h(T)-1

. 

 

• Proof: By induction on h(T) (exercise). 

 

• Corollary: Let G be a CFG in CNF, and let w be a string in L(G). If |w|  2
k
, where k 

0, then any derivation tree for w using G has height at least k+1. 

 

• Proof: Follows from the lemma. 

 

 
 

4. Pumping Lemma for Context-Free Languages 
 

• Lemma: 

Let G = (V, T, P, S) be a CFG in CNF, and let n = 2
|V|

. If z is a string in L(G) and |z|  n, 

then there exist strings u, v, w, x and y in T* such that z=uvwxy and: 

– |vx|  1 (i.e., |v| + |x|  1) 

– |vwx|  n 

– uv
i
wx

i
y is in L(G), for all i  0 

 

• Proof: 

Since |z|  n = 2
k
, where k = |V|, it follows from the corollary that any derivation tree for 

z has height at least k+1. 

 

By definition such a tree contains a path of length at least k+1. 

Consider the longest such path in the tree: 
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Such a path has: 

– Length  k+1 (i.e., number of edges in the path is  k+1) 

– At least k+2 nodes 

– 1 terminal 

At least k+1 non-terminals 

 
 

• Since there are only k non-terminals in the grammar, and since k+1 appear on this long 

path, it follows that some non-terminal (and perhaps many) appears at least twice on this 

path. 

 

• Consider the first non-terminal that is repeated, when traversing the path from the leaf to 

the root. 

 
This path, and the non-terminal A will be used to break up the string z. 

 

 
• In addition, (2) also tells us: 

S =>* uAy (1)  

=>* uvAxy (2) 

=>* uv
2
Ax

2
y 

 
(2) 

=>* uv
2
wx

2
y  (3) 

 

• More generally: 

S =>* uv
i
wx

i
y for all i>=1 

 

• And also:  
S =>* uAy (1) 

=>* uwy (3) 
 

• Hence:  
S =>* uv

i
wx

i
y for all i>=0 
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• Consider the statement of the Pumping Lemma: 

 

– What is n? 

n = 2
k
, where k is the number of non-terminals in the grammar. 

 

– Why is |v| + |x|  1? 

 
Since the height of this subtree is  2, the first production is A->V1V2. Since no non- 
terminal derives the empty string (in CNF), either V1 or V2 must derive a non-empty 
v or x. More specifically, if w is generated by V1, then x contains at least one symbol, 
and if w is generated by V2, then v contains at least one symbol. 

 

– Why is |vwx|  n? 

Observations: 
• The repeated variable was the first repeated variable on the path from the 

bottom, and therefore (by the pigeon-hole principle) the path from the leaf 

to the second occurrence of the non-terminal has length at most k+1. 

• Since the path was the largest in the entire tree, this path is the longest in 

the subtree rooted at the second occurrence of the non-terminal. Therefore 

the subtree has height k+1. From the lemma, the yield of the subtree has 

length  2
k
=n. 

 

 
 

CFL Closure Properties 
 

• Theorem#1: 

The context-free languages are closed under concatenation, union, and Kleene closure. 

 

• Proof: 

Start with 2 CFL L(H1) and L(H2) generated by H1 = (N1,T1,R1,s1) and H2 = 

(N2,T2,R2,s2). 

Assume that the alphabets and rules are disjoint. 

 

Concatenation: 

Formed by L(H1)·L(H2) or a string in L(H1) followed by a string in L(H2) which can be 
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generated by L(H3) generated by H3 = (N3,T3,R3,s3). N3 = N1 ⋃ N2, T3 = T1 ⋃ T2, R3 

= R1 ⋃ R2 ⋃ {s3 -->s1s2} where s3 s1s2 is a new rule introduced. The new rule 
generates a string of L(H1) then a string of L(H2). Then L(H1) ·L(H2) is context-free. 

 

Union: 

Formed by L(H1) ⋃ L(H2) or a string in L(H1) or a string in L(H2). It is generated by 

L(H3) generated by H4 = (N4,T4,R4,s4) where N4 = N1 ⋃ N2, T4 = T1 ⋃ T2, and R4 = 

R1 ⋃ R2 ⋃ {s4-->s1, s4  s2}, the new rules added will create a string of L(H1) or 

L(H2). Then L(H1) ⋃ L(H2) is context-free. 
 

Kleene: 
Formed by L(H1)* is generated by the grammar L(H5) generated by H5 = (N1,T1,R5,s1) 

with R5 = R1 ⋃ {s1e, s1s1s1}. L(H5) includes e, every string in L(H1), and through 

i-1 applications of s1s1s1, every string in L(H1)i. Then L(H1)* is generated by H5 and 

is context-free. 

 

• Theorem#2: 

The set of context-free languages is not closed under complementation or intersection. 
 

• Proof: 

Intersections of two languages L1 L2 can be defined in terms of the Complement and 

Union operations as follows: 

L1 L2 - - L1 - L2) 
 

Therefore if CFL are closed under intersection then it is closed under compliment and if 

closed under compliment then it is closed under intersection. 

 
The proof is just showing two context-free languages that their intersection is not a 

context-free language. 

 

Choose L1 = {anbncm | m,n ated by grammar H1 = {N1,T1,R1,s1}, where 

N1 = {s, A, B} 
T1 = {a, b, c} 
R1 = {s AB, 

A aAb, 

A e, 

B Bc, 
B e}. 

 

Choose L2 = {ambncn | m,n H2 = {N2,T2,R2,s2}, where 

N1 = {s, A, B} 

T1 = {a, b, c} 

R2 = {s AB, 
A aA, 

A e, 
B bBc, 

B e}. 
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Thus L1 and L2 are both context-free. 
 

The intersection of the two languages is L3 = {anbncn | n 

already been proven earlier in this paper to be not context-free. Therefore CFL are not 
closed under intersections, which also means that it is not closed under complementation. 

 

 

5. Pushdown Automata (PDA) 
 

• Informally: 

– A PDA is an NFA-ε with a stack. 

–Transitions are modified to accommodate stack operations. 

 

• Questions: 

–What is a stack? 

–How does a stack help? 

 
• A DFA can ―remember‖ only a finite amount of information, whereas a PDA can ―remember‖ 
an infinite amount of (certain types of) information. 

 

• Example: 

{0
n
1

n
 | 0=<n} Is not regular. 

 
{0

n
1

n
 | 0nk, for some fixed k} Is regular, for any fixed k. 

 

 

• For k=3:  

L = {ε, 01, 0011, 000111} 
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• In a DFA, each state remembers a finite amount of information. 

• To get {0
n
1

n
 | 0n} with a DFA would require an infinite number of states using the preceding 

technique. 
 

• An infinite stack solves the problem for {0
n
1

n
 | 0n} as follows: 

–Read all 0‘s and place them on a stack 

–Read all 1‘s and match with the corresponding 0‘s on the stack 

• Only need two states to do this in a PDA 

• Similarly for {0
n
1

m
0

n+m
 | n,m0} 

 
Formal Definition of a PDA 

 

• A pushdown automaton (PDA) is a seven-tuple: 

M = (Q, Σ, Г, δ, q0, z0, F) 

Q A finite set of states 

Σ A finite input alphabet 

Г A finite stack alphabet 
q0 The initial/starting state, q0 is in Q 
z0 A starting stack symbol, is in Г 
F A set of final/accepting states, which is a subset of Q 
δ A transition function, where 

 
δ: Q x (Σ U {ε}) x Г  finite subsets of Q x Г* 

 

 

• Consider the various parts of δ: 

Q x (Σ U {ε}) x Г  finite subsets of Q x Г* 

 

–Q on the LHS means that at each step in a computation, a PDA must consider its‘ current state. 

–Г on the LHS means that at each step in a computation, a PDA must consider the symbol on 

top of its‘ stack. 

–Σ U {ε} on the LHS means that at each step in a computation, a PDA may or may not consider 

the current input symbol, i.e., it may have epsilon transitions. 

 

–―Finite subsets‖ on the RHS means that at each step in a computation, a PDA will have several 
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options. 

–Q on the RHS means that each option specifies a new state. 

–Г* on the RHS means that each option specifies zero or more stack symbols that will replace 

the top stack symbol. 

 

• Two types of PDA transitions #1: 

δ(q, a, z) = {(p1,γ1), (p2,γ2),…, (pm,γm)} 
 

–Current state is q 

–Current input symbol is a 

–Symbol currently on top of the stack z 

–Move to state pi from q 

–Replace z with γi on the stack (leftmost symbol on top) 

–Move the input head to the next input symbol 

 
• Two types of PDA transitions #2: 

δ(q, ε, z) = {(p1,γ1), (p2,γ2),…, (pm,γm)} 
 

–Current state is q 

–Current input symbol is not considered 

–Symbol currently on top of the stack z 

–Move to state pi from q 

–Replace z with γi on the stack (leftmost symbol on top) 

–No input symbol is read 

 

• Example: (balanced parentheses) 

M = ({q1}, {―(―, ―)‖}, {L, #}, δ, q1, #, Ø) 
 

δ: 
(1) δ(q1, (, #) = {(q1, L#)} 
(2) δ(q1, ), #) = Ø 
(3) δ(q1, (, L) = {(q1, LL)} 
(4) δ(q1, ), L) = {(q1, ε)} 
(5) δ(q1, ε, #) = {(q1, ε)} 
(6) δ(q1, ε, L) = Ø 

 

• Goal: (acceptance) 
–Terminate in a non-null state 

–Read the entire input string 
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–Terminate with an empty stack 

• Informally, a string is accepted if there exists a computation that uses up all the input and leaves 

the stack empty. 

 

• Example Computation: 
 

Current Input 
(()) 

Stack 
# 

Transition 

()) L# (1) - Could have applied rule 

)) LL# (3) (5), but it would have 

) L# (4) done no good 

ε # (4)  

ε - (5)  

 
• Example PDA #1: For the language {x | x = wcw

r
 and w in {0,1}*} 

M = ({q1, q2}, {0, 1, c}, {R, B, G}, δ, q1, R, Ø) 

δ: 
(1) δ(q1, 0, R) = {(q1, BR)} (9) δ(q1, 1, R) = {(q1, GR)} 

(2) δ(q1, 0, B) = {(q1, BB)} (10) δ(q1, 1, B) = {(q1, GB)} 

(3) δ(q1, 0, G) = {(q1, BG)} (11) δ(q1, 1, G) = {(q1, GG)} 

(4) δ(q1, c, R) = {(q2, R)} 
(5) δ(q1, c, B) = {(q2, B)} 

(6) δ(q1, c, G) = {(q2, G)} 

(7) δ(q2, 0, B) = {(q2, ε)} (12) δ(q2, 1, G) = {(q2, ε)} 

(8) δ(q2, ε, R) = {(q2, ε)} 

 

• Notes: 
–Only rule #8 is non-deterministic. 

–Rule #8 is used to pop the final stack symbol off at the end of a computation. 
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• Example Computation: 
 

(1) δ(q1, 0, R) = {(q1, BR)} (9) δ(q1, 1, R) = {(q1, GR)} 

(2) δ(q1, 0, B) = {(q1, BB)} (10) δ(q1, 1, B) = {(q1, GB)} 

(3) δ(q1, 0, G) = {(q1, BG)} (11) δ(q1, 1, G) = {(q1, GG)} 
(4) δ(q1, c, R) = {(q2, R)}   

(5) δ(q1, c, B) = {(q2, B)}   

(6) δ(q1, c, G) = {(q2, G)}   

(7) δ(q2, 0, B) = {(q2, ε)} (12) δ(q2, 1, G) = {(q2, ε)} 
(8) δ(q2, ε, R) = {(q2, ε)}   

 

 
State Input Stack Rule Applied Rules Applicable 
q1 01c10 R - (1) 
q1 1c10 BR (1) (10) 
q1 c10 GBR (10) (6) 
q2 10 GBR (6) (12) 
q2 0 BR (12) (7) 
q2 ε R (7) (8) 
q2 ε ε (8) - 

 

 

 
• Example Computation: 

(1) δ(q1, 0, R) = {(q1, BR)} (9) δ(q1, 1, R) = {(q1, GR)} 
(2) δ(q1, 0, B) = {(q1, BB)} (10) δ(q1, 1, B) = {(q1, GB)} 
(3) δ(q1, 0, G) = {(q1, BG)} (11) δ(q1, 1, G) = {(q1, GG)} 
(4) δ(q1, c, R) = {(q2, R)} 
(5) δ(q1, c, B) = {(q2, B)} 
(6) δ(q1, c, G) = {(q2, G)} 
(7) δ(q2, 0, B) = {(q2, ε)} (12) δ(q2, 1, G) = {(q2, ε)} 
(8) δ(q2, ε, R) = {(q2, ε)} 

 
State Input Stack Rule Applied 
q1 1c1 R  

q1 c1 GR (9) 
q2 1 GR (6) 
q2 ε R (12) 
q2 ε ε (8) 

 
 

• Definition: |—* is the reflexive and transitive closure of |—. 

–I |—* I for each instantaneous description I 

–If I |— J and J |—* K then I |—* K 
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• Intuitively, if I and J are instantaneous descriptions, then I |—* J means that J follows from I by 
zero or more transitions. 

 
• Definition: Let M = (Q, Σ, Г, δ, q0, z0, F) be a PDA. The language accepted by empty stack, 
denoted LE(M), is the set 

 

{w | (q0, w, z0) |—* (p, ε, ε) for some p in Q} 

 
• Definition: Let M = (Q, Σ, Г, δ, q0, z0, F) be a PDA. The language accepted by final state, 
denoted LF(M), is the set 

 

{w | (q0, w, z0) |—* (p, ε, γ) for some p in F and γ in Г*} 

 
• Definition: Let M = (Q, Σ, Г, δ, q0, z0, F) be a PDA. The language accepted by empty stack and 
final state, denoted L(M), is the set 

 

{w | (q0, w, z0) |—* (p, ε, ε) for some p in F} 
 

• Lemma 1: Let L = LE(M1) for some PDA M1. Then there exits a PDA M2 such that L =LF(M2). 

• Lemma 2: Let L = LF(M1) for some PDA M1. Then there exits a PDA M2 such that L =LE(M2). 

• Theorem: Let L be a language. Then there exits a PDA M1 such that L = LF(M1) if and only 
if there exists a PDA M2 such that L = LE(M2). 

 

• Corollary: The PDAs that accept by empty stack and the PDAs that accept by final state define 
the same class of languages. 

 
• Note: Similar lemmas and theorems could be stated for PDAs that accept by both final state and 
empty stack. 

 

 

 

Greibach Normal Form (GNF) 

 

• Definition: Let G = (V, T, P, S) be a CFL. If every production in P is of the form 
A –> aα 

 

Where A is in V, a is in T, and α is in V*, then G is said to be in Greibach Normal Form 

(GNF). 

 

• Example: 
S –> aAB | bB 

A –> aA | a 
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B –> bB | c 
 

• Theorem: Let L be a CFL. Then L – {ε} is a CFL. 

• Theorem: Let L be a CFL not containing {ε}. Then there exists a GNF grammar G such that L 
= L(G). 

 

 

• Lemma 1: Let L be a CFL. Then there exists a PDA M such that L = LE(M). 

• Proof: Assume without loss of generality that ε is not in L. The construction can be modified to 
include ε later. 

 

Let G = (V, T, P, S) be a CFG, and assume without loss of generality that G is in GNF. 
Construct M = (Q, Σ, Г, δ, q, z, Ø) where: 

 
Q = {q} 

Σ = T 

Г = V 

z = S 

 

δ: for all a in Σ and A in Г, δ(q, a, A) contains (q, γ) if A –> aγ is in P or rather: 

δ(q, a, A) = {(q, γ) | A –> aγ is in P and γ is in Г*}, for all a in Σ and A in Г 
 

• For a given string x in Σ* , M will attempt to simulate a leftmost derivation of x with G. 

• Example #1: Consider the following CFG in GNF. 

S  aS G is in GNF 
S  a L(G) = a+ 

 

Construct M as: 

Q = {q} 

Σ = T = {a} 
Г = V = {S} 

z = S 

 

δ(q, a, S) = {(q, S), (q, ε)} 
δ(q, ε, S) = Ø 

 

• Example #2: Consider the following CFG in GNF. 
 

(1) S –> aA 

(2) S –> aB 

(3) A –> aA G is in GNF 

(4) A –> aB L(G) = a+b+ 
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(5) B –> bB 

(6) B –> b 

 

Construct M as: 

Q = {q} 

Σ = T = {a, b} 

Г = V = {S, A, B} 

z = S 
 

(1) δ(q, a, S) = {(q, A), (q, B)} From productions #1 and 2, S->aA, S->aB 

(2) δ(q, a, A) = {(q, A), (q, B)} From productions #3 and 4, A->aA, A->aB 

(3) δ(q, a, B) = Ø 

(4) δ(q, b, S) = Ø 

(5) δ(q, b, A) = Ø 

(6) δ(q, b, B) = {(q, B), (q, ε)} From productions #5 and 6, B->bB, B->b 

(7) δ(q, ε, S) = Ø 

(8) δ(q, ε, A) = Ø 

(9) δ(q, ε, B) = Ø Recall δ: Q x (Σ U {ε}) x Г –> finite 

subsets of Q x Г* 

 

 

• For a string w in L(G) the PDA M will simulate a leftmost derivation of w. 
 

–If w is in L(G) then (q, w, z0) |—* (q, ε, ε) 
 

–If (q, w, z0) |—* (q, ε, ε) then w is in L(G) 
 

• Consider generating a string using G. Since G is in GNF, each sentential form in a leftmost 

derivation has form: 

 

• And each step in the derivation (i.e., each application of a production) adds a terminal and some 
non-terminals. 

A1 –> ti+1α 
 

=> t1t2…ti ti+1 αA1A2…Am 

 
• Each transition of the PDA simulates one derivation step. Thus, the i

th
 step of the PDAs‘ 

computation corresponds to the i
th

 step in a corresponding leftmost derivation. 

 

• After the i
th

 step of the computation of the PDA, t1t2…ti+1 are the symbols that have already 
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been read by the PDA and αA1A2…Amare the stack contents. 

 

 

• For each leftmost derivation of a string generated by the grammar, there is an equivalent 
accepting computation of that string by the PDA. 

 
• Each sentential form in the leftmost derivation corresponds to an instantaneous description in 
the PDA‘s corresponding computation. 

 

• For example, the PDA instantaneous description corresponding to the sentential form: 

=> t1t2…ti A1A2…Am 

 

would be: (q, ti+1ti+2…tn , A1A2…Am) 

 

 

 

• Example: Using the grammar from example #2: 
 

S => aA (1) 
=> aaA (3) 

=> aaaA (3) 

=> aaaaB (4) 

=> aaaabB (5) 

=> aaaabb (6) 

• The corresponding computation of the PDA: 
 

• (q, aaaabb, S) |— (q, aaabb, A) (1)/1 
 |— (q, aabb, A) (2)/1 
 |— (q, abb, A) (2)/1 
 |— (q, bb, B) (2)/2 
 |— (q, b, B) (6)/1 
 |— (q, ε, ε) (6)/2 

–String is read 

–Stack is emptied 

–Therefore the string is accepted by the PDA 

• Example #3: Consider the following CFG in GNF. 
 

(1) S –> aABC 

(2) A –> a G is in GNF 

(3) B –> b 

(4) C –> cAB 

(5) C –> cC 
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Construct M as: 

 

Q = {q} 

Σ = T = {a, b, c} 

Г = V = {S, A, B, C} 

z = S 

 

(1) δ(q, a, S) = {(q, ABC)} S->aABC (9) δ(q, c, S) = Ø 

(2) δ(q, a, A) = {(q, ε)} A->a (10) δ(q, c, A) = Ø 

(3) δ(q, a, B) = Ø  (11) δ(q, c, B) = Ø 

(4) δ(q, a, C) = Ø C->cAB|cC (12) δ(q, c, C) = {(q, 
AB), (q, C)) 

(5) δ(q, b, S) = Ø (13) δ(q, ε, S) = Ø 

(6)         δ(q, b, A) = Ø  (14) δ(q, ε, A) = Ø 

(7)         δ(q, b, B) = {(q, ε)} B->b (15) δ(q, ε, B) = Ø 

(8)         δ(q, b, C) = Ø  (16)    δ(q, ε, C) = Ø 

 

 

 

• Notes: 

–Recall that the grammar G was required to be in GNF before the construction could be applied. 

–As a result, it was assumed at the start that ε was not in the context-free language L. 

 

• Suppose ε is in L: 

1) First, let L‘ = L – {ε} 

 

Fact: If L is a CFL, then L‘ = L – {ε} is a CFL. 

 

By an earlier theorem, there is GNF grammar G such that L‘ = L(G). 

 

2) Construct a PDA M such that L‘ = LE(M) 

How do we modify M to accept ε? 

Add δ(q, ε, S) = {(q, ε)}? No! 

 

 

 
• Counter Example: 

 

Consider L = {ε, b, ab, aab, aaab, …} 

Then L‘ = {b, ab, aab, aaab, …} 
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• The GNF CFG for L’: 
 

(1) S –> aS 

(2) S –> b 

 
 

• The PDA M Accepting L’: 
 

Q = {q} 
Σ = T = {a, b} 

Г = V = {S} 

z = S 

 

δ(q, a, S) = {(q, S)} 
δ(q, b, S) = {(q, ε)} 

δ(q, ε, S) = Ø 

 

• If δ(q, ε, S) = {(q, ε)} is added then: 
 

L(M) = {ε, a, aa, aaa, …, b, ab, aab, aaab, …} 

 

 

3) Instead, add a new start state q‘ with transitions: 

 

δ(q‘, ε, S) = {(q‘, ε), (q, S)} 

 

• Lemma 1: Let L be a CFL. Then there exists a PDA M such that L = LE(M). 

• Lemma 2: Let M be a PDA. Then there exists a CFG grammar G such that LE(M) = L(G). 

• Theorem: Let L be a language. Then there exists a CFG G such that L = L(G) iff there exists a 
PDA M such that L = LE(M). 

 

• Corollary: The PDAs define the CFLs. 

 

 
Equivalence of CFG to PDAs 

 

 Example: Consider the grammar for arithmetic expressions we introduced earlier. 

It is reproduced below for convenience. G = ( {E, T, F}, {n, v, +, *, ( , )}, P, E), where 
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E = { 1: 

2: 

3: 

4: 

E 

 
T 

E 

T 

  

 


E  


 


 

 
T

+ T, 

T, 

F, 

F, 

5:  F      n, 

6: 

7: 

 
F 

F  


  
( 

  v, 

E ), 

} 

 
Suppose the input to our parser is the expression, n*(v+n*v). Since G is unambiguous 

this expression has only one leftmost derivation, p = 2345712463456. We describe the 

behavior of the PDA in general, and then step through its moves using this derivation to 

guide the computation. 

 PDA Simulator: 

o Step 1: Initialize the stack with the start symbol (E in this case). The start symbol 

will serve as the bottom of stack marker (Z0). 

o Step 2: Ignoring the input, check the top symbol of the stack. 

 Case (a) Top of stack is a nonterminal, ―X‖: non-deterministically decide 

which 

X-rule to use as the next step of the derivation. After selecting a rule, 

replace X in the stack with the rightpart of that rule. If the stack is non- 

empty, repeat step 2. Otherwise, halt (input may or may not be empty.) 

 Case(b) Top of stack is a terminal, ―a‖: Read the next input. If the input 

matches a, then pop the stack and repeat step 2. 

Otherwise, halt (without popping ―a‖ from the stack.) 

o This parsing algorithm by showing the sequence of configurations the parser 

would assume in an accepting computation for the input, n*(v+n*v). 

Assume ―q0‖ is the one and only state of this PDA. 

o p (leftmost derivation in G) = 2345712463456 

(q0, n*(v+n*v), E) 

2M (q0, n*(v+n*v), T) 

3M (q0, n*(v+n*v), T*F) 

4M (q0, n*(v+n*v), F*F) 
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5M (q0, n*(v+n*v), n*F) readM (q0, *(v+n*v), *F) 

readM (q0, (v+n*v), F) 

7M (q0, (v+n*v), (E) ) readM (q0, v+n*v), E) ) 

1M (q0, v+n*v),E+T) ) 

2M (q0, v+n*v), T+T) ) 

4M (q0, v+n*v), F+T) ) 

6M (q0, v+n*v), v+T) ) readM (q0, +n*v), +T) ) 

readM (q0, n*v), T) ) 
 

3M (q0, n*v), T*F) ) 

4M (q0, n*v), F*F) ) 

5M (q0, n*v), n*F) ) readM (q0, *v), *F) ) 

readM (q0, v), F) ) 

6M (q0, v), v) ) readM (q0, ), ) ) 

readM (q0, l, l ) accept! 

 

Deterministic PDAs and DCFLs 

 Definition: A Deterministic Pushdown Automaton (DPDA) is a 7-tuple, 

M = (Q, , , , q0, Z0, A), 

where 

Q = finite set of states, 

 = input alphabet, 

 = stack alphabet, 

q0  Q = the initial state, 

Z0  = bottom of stack marker (or initial stack symbol), and 

: Q  ( {L})    Q  * = the transition function (not necessarily total). 

Specifically, 

[1] if d(q, a, Z) is defined for some a  and Z , then d(q, L, Z) =  and 

d(q, a, Z)= 1. 
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[2] Conversely, if d(q, L, Z)  , for some Z, then d(q, a, Z)  , for all a , 

and d(q, L, Z)= 1. 

 NOTE: DPDAs can accept their input either by final state or by empty stack – just as for 

the non-deterministic model. We therefore define Dstk and Dste, respectively, as the 

corresponding families of Deterministic Context-free Languages accepted by a DPDA by 

empty stack and final state. 
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MODULE IV: 
 

1. Turing Machines 

2. The Halting Problem 

3. The Universal language 

4. A Church- Turing thesis 

5. Linear Bounded Automata. 

 

1. Turing Machines (TM) 
 

 Generalize the class of CFLs: 

 

• Recursively enumerable languages are also known as type 0 languages. 
• Context-sensitive languages are also known as type 1 languages. 
• Context-free languages are also known as type 2 languages. 
• Regular languages are also known as type 3 languages. 

• TMs model the computing capability of a general purpose computer, which informally can 
be described as: 
– Effective procedure 

• Finitely describable 

• Well defined, discrete, ―mechanical‖ steps 

• Always terminates 

– Computable function 

• A function computable by an effective procedure 

• TMs formalize the above notion. 

 
1.1 Deterministic Turing Machine (DTM) 

 
 

• Two-way, infinite tape, broken into cells, each containing one symbol. 
• Two-way, read/write tape head. 

• Finite control, i.e., a program, containing the position of the read head, current symbol being 
scanned, and the current state. 

• An input string is placed on the tape, padded to the left and right infinitely with blanks, 
read/write head is positioned at the left end of input string. 

• In one move, depending on the current state and the current symbol being scanned, the TM 1) 
changes state, 2) prints a symbol over the cell being scanned, and 3) moves its‘ tape head one 
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cell left or right. 

• Many modifications possible. 

 

 

1.2 Formal Definition of a DTM 

– A DTM is a seven-tuple: 

M = (Q, Σ, Γ, δ, q0, B, F) 

Q A finite set of states 

Γ A finite tape alphabet 

B A distinguished blank symbol, which is in Γ 

Σ A finite input alphabet, which is a subset of Γ– {B} 

q0 The initial/starting state, q0 is in Q 
F A set of final/accepting states, which is a subset of Q 
δ A next-move function, which is a mapping from 

Q x Γ –> Q x Γ x {L,R} 
 

Intuitively, δ(q,s) specifies the next state, symbol to be written and the direction of tape 

head movement by M after reading symbol s while in 

state q. 

 

• Example #1: {0
n
1

n
 | n >= 1} 

0 1 X Y B 
q0 (q1, X, R) - - (q3, Y, R) - 

q1 (q1, 0, R) (q2, Y, L) - (q1, Y, R) - 

q2 (q2, 0, L) - (q0, X, R) (q2, Y, L) - 

q3 - - - (q3, Y, R) (q4, B, R) 

q4 - - - - - 



AUTOMATA THEORY AND COMPUTABILITY 17CS54 

 

 

 

 

 

 

 

 

 

 

 

 

 

– Example #1: {0
n
1

n
 | n >= 1} 

0 1 X Y B 
q0 (q1, X, R) - - (q3, Y, R) - 
q1 (q1, 0, R) (q2, Y, L) - (q1, Y, R) - 
q2 (q2, 0, L) - (q0, X, R) (q2, Y, L) - 
q3 - - - (q3, Y, R) (q4, B, R) 
q4 - - - - - 

 

– The TM basically matches up 0‘s and 1‘s 

– q1 is the ―scan right‖ state 

– q2 is the ―scan left‖ state 

– q4 is the final state 

 

– Example #2: {w | w is in {0,1}* and w ends with a 0} 

0 

00 

10 

10110 

Not ε 
 

Q = {q0, q1, q2} 
Γ = {0, 1, B} 
Σ = {0, 1} 

F = {q2} 

0 1 B 
q0 (q0, 0, R) (q0, 1, R) (q1, B, L) 
q1 (q2, 0, R) - - 
q2 - - - 

 

– q0 is the ―scan right‖ state 

– q1 is the verify 0 state 
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– Definition: Let M = (Q, Σ, Г, δ, q0, B, F) be a TM, and let w be a string in Σ*. Then w is 

accepted by M iff 

 

q0w |—* α1pα2 

 

Where p is in F and α1 and α2 are in Г* 

 
– Definition: Let M = (Q, Σ, Г, δ, q0, B, F) be a TM. The language accepted by M, denoted 

L(M), is the set 

L={w | w is in Σ* and w is accepted by M} 

In contrast to FA and PDAs, if a TM simply passes through a final state then the string is accepted. 

• Given the above definition, no final state of an TM need have any exiting transitions. 

Henceforth, this is our assumption. 
• If x is not in L(M) then M may enter an infinite loop, or halt in a non-final state. 

• Some TMs halt on all inputs, while others may not. In either case the language 
defined by TM is still well defined. 

– Definition: Let L be a language. Then L is recursively enumerable if there exists a TM M 
such that L = L(M). 

 

– If L is r.e. then L = L(M) for some TM M, and 

• If x is in L then M halts in a final (accepting) state. 
• If x is not in L then M may halt in a non-final (non-accepting) state, or loop 
forever. 

 
 

– Definition: Let L be a language. Then L is recursive if there exists a TM M such that L = 
L(M) and M halts on all inputs. 

 

– If L is recursive then L = L(M) for some TM M, and 

• If x is in L then M halts in a final (accepting) state. 

• If x is not in L then M halts a non-final (non-accepting) state. 

 
– The set of all recursive languages is a subset of the set of all recursively enumerable 

languages 

 

– Terminology is easy to confuse: A TM is not recursive or recursively enumerable, 
rather a language is recursive or recursively enumerable. 

 
 

– Observation: Let L be an r.e. language. Then there is an infinite list M0, M1, … of TMs 
such that L = L(Mi). 

 
– Question: Let L be a recursive language, and M0, M1, … a list of all TMs such that L = 

L(Mi), and choose any i>=0. Does Mi always halt? 
 

Answer: Maybe, maybe not, but at least one in the list does. 
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– Question: Let L be a recursive enumerable language, and M0, M1, … a list of all TMs such 
that L = L(Mi), and choose any i>=0. Does Mi always halt? 

 

Answer: Maybe, maybe not. Depending on L, none might halt or some may halt. 

 
– If L is also recursive then L is recursively enumerable. 

 
Question: Let L be a recursive enumerable language that is not recursive (L is in r.e. – r), and 

M0, M1, … a list of all TMs such that L = L(Mi), and choose any i>=0. Does Mi always halt? 

Answer: No! If it did, then L would not be in r.e. – r, it would be recursive. 

 

• Let M be a TM. 

• Question: Is L(M) r.e.? 

Answer: Yes! By definition it is! 

 

• Question: Is L(M) recursive? 

Answer: Don‘t know, we don‘t have enough information. 

 

• Question: Is L(M) in r.e – r? 

Answer: Don‘t know, we don‘t have enough information. 

 

• Let M be a TM that halts on all inputs: 

• Question: Is L(M) recursively enumerable? 

Answer: Yes! By definition it is! 

 

• Question: Is L(M) recursive? 
Answer: Yes! By definition it is! 

 

• Question: Is L(M) in r.e – r? 

Answer: No! It can‘t be. Since M always halts, L(M) is recursive. 

 

• Let M be a TM. 

• As noted previously, L(M) is recursively enumerable, but may or may not be 

recursive. 

 

• Question: Suppose that L(M) is recursive. Does that mean that M always halts? 

Answer: Not necessarily. However, some TM M‘ must exist such that L(M‘) = L(M) 

and M‘ always halts. 

 

• Question: Suppose that L(M) is in r.e. – r. Does M always halt? 

Answer: No! If it did then L(M) would be recursive and therefore not in r.e. – r. 

 

• Let M be a TM, and suppose that M loops forever on some string x. 
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• Question: Is L(M) recursively enumerable? 

Answer: Yes! By definition it is. 

 

• Question: Is L(M) recursive? 
Answer: Don‘t know. Although M doesn‘t always halt, some other TM M‘ may exist 

such that L(M‘) = L(M) and M‘ always halts. 

• Question: Is L(M) in r.e. – r? 
Answer: Don‘t know. 

 

 

Closure Properties for Recursive and Recursively Enumerable Languages 
 

• TMs Model General Purpose Computers: 
• If a TM can do it, so can a GP computer 
• If a GP computer can do it, then so can a TM 

 

If you want to know if a TM can do X, then some equivalent question are: 

• Can a general purpose computer do X? 

• Can a C/C++/Java/etc. program be written to do X? 

 

For example, is a language L recursive? 

• Can a C/C++/Java/etc. program be written that always halts and accepts L? 

 

 

• TM Block Diagrams: 
• If L is a recursive language, then a TM M that accepts L and always halts can be 

pictorially represented by a ―chip‖ that has one input and two outputs. 

 

 
• If L is a recursively enumerable language, then a TM M that accepts L can be 

pictorially represented by a ―chip‖ that has one output. 

 

• Conceivably, M could be provided with an output for ―no,‖ but this output cannot be 
counted on. Consequently, we simply ignore it. 

 

– Theorem: The recursive languages are closed with respect to complementation, i.e., if L is 
a recursive language, then so is 

 

Proof: Let M be a TM such that L = L(M) and M always halts. Construct TM M‘ as 
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– Note That: 

– M‘ accepts iff M does not 

– M‘ always halts since M always halts 

From this it follows that the complement of L is recursive. • 

 

 

 

• Theorem: The recursive languages are closed with respect to union, i.e., if L1 and L2 are 
recursive languages, then so is 

 
Proof: Let M1 and M2 be TMs such that L1 = L(M1) and L2 = L(M2) and M1 and M2 always 
halts. Construct TM M‘ as follows: 

 

• Note That: 
• L(M‘) = L(M1) U L(M2) 

• L(M‘) is a subset of L(M1) U L(M2) 
• L(M1) U L(M2) is a subset of L(M‘) 

• M‘ always halts since M1 and M2 always halt 

It follows from this that L3 = L1 U L2 is recursive. 

 
 

• Theorem: The recursive enumerable languages are closed with respect to union, i.e., if L1 

and L2 are recursively enumerable languages, then so is L3 = L1 U L2 
 

Proof: Let M1 and M2 be TMs such that L1 = L(M1) and L2 = L(M2). Construct M‘ as 
follows: 
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• Note That: 

– L(M‘) = L(M1) U L(M2) 
• L(M‘) is a subset of L(M1) U L(M2) 
• L(M1) U L(M2) is a subset of L(M‘) 

– M‘ halts and accepts iff M1 or M2 halts and accepts 

 

It follows from this that is recursively enumerable. 

 

 

 
2. The Halting Problem – Background 

• Definition: A decision problem is a problem having a yes/no answer (that one presumably 

wants to solve with a computer). Typically, there is a list of parameters on which the 

problem is based. 

– Given a list of numbers, is that list sorted? 

– Given a number x, is x even? 

– Given a C program, does that C program contain any syntax errors? 

– Given a TM (or C program), does that TM contain an infinite loop? 

From a practical perspective, many decision problems do not seem all that interesting. 

However, from a theoretical perspective they are for the following two reasons: 

– Decision problems are more convenient/easier to work with when proving 
complexity results. 

– Non-decision counter-parts are typically at least as difficult to solve. 

 

• Notes: 

– The following terms and phrases are analogous: 

Algorithm - A halting TM program 
Decision Problem  - A language 

(un)Decidable - (non)Recursive 
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Statement of the Halting Problem 

• Practical Form: (P1) 
Input: Program P and input I. 

Question: Does P terminate on input I? 

 

• Theoretical Form: (P2) 

Input: Turing machine M with input alphabet Σ and string w in Σ*. 

Question: Does M halt on w? 

 

• A Related Problem We Will Consider First: (P3) 

Input: Turing machine M with input alphabet Σ and one final state, and string w in Σ*. 

Question: Is w in L(M)? 

 

• Analogy: 

Input: DFA M with input alphabet Σ and string w in Σ*. 

Question: Is w in L(M)? 

 

Is this problem decidable? Yes! 

 

• Over-All Approach: 

• We will show that a language Ld is not recursively enumerable 
• From this it will follow that is not recursive 
• Using this we will show that a language Lu is not recursive 
• From this it will follow that the halting problem is undecidable. 

 

 

3. The Universal Language 

• Define the language Lu as follows: 

Lu = {x | x is in {0, 1}* and x = <M,w> where M is a TM encoding and w is in L(M)} 

 
 

• Let x be in {0, 1}*. Then either: 

 

1. x doesn‘t have a TM prefix, in which case x is not in Lu 

 

2. x has a TM prefix, i.e., x = <M,w> and either: 

 

a) w is not in L(M), in which case x is not in Lu 

 

b) w is in L(M), in which case x is in Lu 
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• Compare P3 and Lu: 

(P3): 

Input: Turing machine M with input alphabet Σ and one final state, and string w in Σ*. 

 

• Notes: 
• Lu is P3 expressed as a language 
• Asking if Lu is recursive is the same as asking if P3 is decidable. 

• We will show that Lu is not recursive, and from this it will follow that P3 is un- 
decidable. 

• From this we can further show that the halting problem is un-decidable. 
• Note that Lu is recursive if M is a DFA. 

 
4. Church-Turing Thesis 

 

• There is an effective procedure for solving a problem if and only if there is a TM that 

halts for all inputs and solves the problem. 

 

• There are many other computing models, but all are equivalent to or subsumed by TMs. 

There is no more powerful machine (Technically cannot be proved). 

 
• DFAs and PDAs do not model all effective procedures or computable functions, but only 

a subset. 

 

• If something can be ―computed‖ it can be computed by a Turing machine. 
 

• Note that this is called a Thesis, not a theorem. 
 

• It can‘t be proved, because the term ―can be computed‖ is too vague. 
 

• But it is universally accepted as a true statement. 
 

• Given the Church-Turing Thesis: 
 

o What does this say about "computability"? 

o Are there things even a Turing machine can't do? 

o If there are, then there are things that simply can't be "computed." 

 Not with a Turing machine 
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 Not with your laptop 
 

 Not with a supercomputer 
 

o There ARE things that a Turing machine can't do!!! 

• The Church-Turing Thesis: 
 

o In other words, there is no problem for which we can describe an algorithm that 

can‘t be done by a Turing machine. 

 

 

The Universal Turing machine 

• If Tm‘s are so damned powerful, can‘t we build one that simulates the behavior of any 

Tm on any tape that it is given? 

• Yes. This machine is called the Universal Turing machine. 
 

• How would we build a Universal Turing machine? 
 

o We place an encoding of any Turing machine on the input tape of the Universal 

Tm. 
 

o The tape consists entirely of zeros and ones (and, of course, blanks) 

o Any Tm is represented by zeros and ones, using unary notation for elements and 

zeros as separators. 
 

• Every Tm instruction consists of four parts, each a represented as a series of 1's and 

separated by 0's. 

• Instructions are separated by 00. 
 

• We use unary notation to represent components of an instruction, with 
 

 0 = 1, 
 

 1 = 11, 
 

 2 = 111, 
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 3 = 1111, 
 

 n = 111...111 (n+1 1's). 
 

• We encode qn as n + 1 1's 

• We encode symbol an as n + 1 1's 

• We encode move left as 1, and move right as 11 

1111011101111101110100101101101101100 

q3, a2, q4, a2, L q0, a1, q1, a1, R 
 

• Any Turing machine can be encoded as a unique long string of zeros and ones, 

beginning with a 1. 

• Let Tn be the Turing machine whose encoding is the number n. 

 

 
5. Linear Bounded Automata 

• A Turing machine that has the length of its tape limited to the length of the input string is 

called a linear-bounded automaton (LBA). 

• A linear bounded automaton is a 7-tuple nondeterministic Turing machine M = (Q, S, G, 

d, q0,qaccept, qreject) except that: 

a. There are two extra tape symbols < and >, which are not elements of G. 
 

b. The TM begins in the configuration (q0<x>), with its tape head scanning the 

symbol < in cell 0. The > symbol is in the cell immediately to the right of the input 

string x. 

c. The TM cannot replace < or > with anything else, nor move the tape head left 

of < or right of >. 



AUTOMATA THEORY AND COMPUTABILITY 17CS54 

 

 

 

Context-Sensitivity 
 

• Context-sensitive production any production satisfying | |  | 

• Context-sensitive grammar any generative grammar G =  , 

production in  context-sensitive. 

• No empty productions. 

 

 
|. 

 

 such that every 

 

 
 

Context-Sensitive Language 

• Language L context-sensitive if there exists context-sensitive grammar G such that either 

L = L(G) or L = L(G)  { }. 

 

• Example: 

The language L = {a
n
b

n
c

n
 : n  1} is a C.S.L. the grammar is 

S  abc/ aAbc, 

Ab  bA, 

AC  Bbcc, 

bB  Bb, 

aB  aa/ aaA 
 

The derivation tree of a
3
b

3
c

3
 is looking to be as following 

S ⇒ aAbc 

⇒ abAc 
 

⇒ abBbcc 
 

⇒ aBbbcc ⇒ aaAbbcc 
 

⇒ aabAbcc 
 

⇒ aabbAcc ⇒ aabbBbccc 
 

⇒ aabBbbccc 
 

⇒ aaBbbbccc 
 

⇒ aaabbbccc 
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CSG = LBA 

• A language is accepted by an LBA iff it is generated by a CSG. 
 

• Just like equivalence between CFG and PDA 
 

• Given an x  CSG G, you can intuitively see that and LBA can start with S, and 

nondeterministically choose all derivations from S and see if they are equal to the input 

string x. Because CSL‘s are non-contracting, the LBA only needs to generate derivations 

of length  |x|. This is because if it generates a derivation longer than |x|, it will never be 

able to shrink to the size of |x|. 
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MODULE V 
 

1. Chomsky Hierarchy Languages 

2. Turing Reducibility 

3. The Class P 

 

 
1. Chomsky Hierarchy of Languages 

 A containment hierarchy (strictly nested sets) of classes of formal grammars 

 

 

The Hierarchy 
 

Class Grammars Languages Automaton 

Type-0 Unrestricted Recursively enumerable Turing machine 

(Turing-recognizable) 

 

none  Recursive Decider 

(Turing-decidable) 

Type-1 Context-sensitive Context-sensitive Linear-bounded 
 

Type-2 Context-free Context-free Pushdown 
 

Type-3 Regular Regular Finite 

 

 

 

 

 
Type 0 Unrestricted: 

 

Languages defined by Type-0 grammars are accepted by Turing machines . 
 

Rules are of the form: α → β, where α and β are arbitrary strings over a vocabulary V and 

α ≠ ε 
 

Type 1 Context-sensitive: 
 

Languages defined by Type-1 grammars are accepted by linear-bounded automata. 

Syntax of some natural languages (Germanic) 
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Rules are of the form: 
 

αAβ → αBβ 

S → ε 

where 
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Type 2 Context-free: 
 

Languages defined by Type-2 grammars are accepted by push-down automata. 

Natural language is almost entirely definable by type-2 tree structures 

Rules are of the form: 
 

A → α 
 

Where 
 

A ∈ N 
 

α ∈ (N ⋃ Σ)∗ 

 

 
Type 3 Regular: 

 

Languages defined by Type-3 grammars are accepted by finite state automata 

Most syntax of some informal spoken dialog 

Rules are of the form: 

A → ε 

A → α 

A → αB 

where 
 

A, B ∈ N and α ∈ Σ 
 

 

The Universal Turing Machine 

 If Tm‘s are so damned powerful, can‘t we build one that simulates the behavior of any 

Tm on any tape that it is given? 
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 Yes. This machine is called the Universal Turing machine. 
 

 How would we build a Universal Turing machine? 
 

 We place an encoding of any Turing machine on the input tape of the Universal 

Tm. 

 
 The tape consists entirely of zeros and ones (and, of course, blanks) 

 

 Any Tm is represented by zeros and ones, using unary notation for elements and 

zeros as separators. 

 Every Tm instruction consists of four parts, each a represented as a series of 1's and 

separated by 0's. 

 Instructions are separated by 00. 
 

 We use unary notation to represent components of an instruction, with 
 

 0 = 1, 
 

 1 = 11, 
 

 2 = 111, 
 

 3 = 1111, 
 

 n = 111...111 (n+1 1's). 
 

 We encode qn as n + 1 1's 

 We encode symbol an as n + 1 1's 

 We encode move left as 1, and move right as 11 
 

1111011101111101110100101101101101100 

q3, a2, q4, a2, L q0, a1, q1, a1, R 

 Any Turing machine can be encoded as a unique long string of zeros and ones, beginning 

with a 1. 

 Let Tn be the Turing machine whose encoding is the number n. 
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2. Turing Reducibility 
 

• A language A is Turing reducible to a language B, written A T B, if A is decidable 

relative to B 

• Below it is shown that ETM is Turing reducible to EQTM 

• Whenever A is mapping reducible to B, then A is Turing reducible to B 

– The function in the mapping reducibility could be replaced by an oracle 
 

• An oracle Turing machine with an oracle for EQTM can decide ETM 
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T
EQ-TM

 = ―On input <M> 

1. Create TM M1 such that L(M1) = 

M1 has a transition from start state to reject state for every element of 

1. Call the EQTM oracle on input <M,M2> 

2. If it accepts, accept; if it rejects, reject‖ 

• T
EQ-TM

 decides ETM 

• ETM is decidable relative to EQTM 

• Applications 

• If A T B and B is decidable, then A is decidable 

• If A T B and A is undecidable, then B is undecidable 

• If A T B and B is Turing-recognizable, then A is Turing-recognizable 

• If A T B and A is non-Turing-recognizable, then B is non-Turing-recognizable 

 

3. The class P 

A decision problem D is solvable in polynomial time or in the class P, if there exists an 

algorithm A such that 

• A Takes instances of D as inputs. 

• A always outputs the correct answer ―Yes‖ or ―No‖. 

• There exists a polynomial p such that the execution of A on inputs of size n always 

terminates in p(n) or fewer steps. 

• EXAMPLE: The Minimum Spanning Tree Problem is in the class P. 

The class P is often considered as synonymous with the class of computationally 

feasible problems, although in practice this is somewhat unrealistic. 

 

 
The class NP 

A decision problem is nondeterministically polynomial-time solvable or in the class NP if 

there exists an algorithm A such that 

• A takes as inputs potential witnesses for ―yes‖ answers to problem D. 

• A correctly distinguishes true witnesses from false witnesses. 
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• There exists a polynomial p such that for each potential witnesses of each instance of 

size n of D, the execution of the algorithm A takes at most p(n) steps. 

• Think of a non-deterministic computer as a computer that magically ―guesses‖ a 

solution, then has to verify that it is correct 

o If a solution exists, computer always guesses it 

o One way to imagine it: a parallel computer that can freely spawn an infinite 
number of processes 

 

 Have one processor work on each possible solution 
 

 All processors attempt to verify that their solution works 
 

 If a processor finds it has a working solution 
 

o So: NP = problems verifiable in polynomial time 

o Unknown whether P = NP (most suspect not) 

 

 
NP-Complete Problems 

• We will see that NP-Complete problems are the ―hardest‖ problems in NP: 

o If any one NP-Complete problem can be solved in polynomial time. 

o Then every NP-Complete problem can be solved in polynomial time. 

o And in fact every problem in NP can be solved in polynomial time (which would 

show P = NP) 

o Thus: solve hamiltonian-cycle in O(n
100

) time, you‘ve proved that P = NP. Retire 

rich & famous. 

• The crux of NP-Completeness is reducibility 

o Informally, a problem P can be reduced to another problem Q if any instance of P 

can be ―easily rephrased‖ as an instance of Q, the solution to which provides a 

solution to the instance of P 

 What do you suppose “easily” means? 
 

 This rephrasing is called transformation 
 

o Intuitively: If P reduces to Q, P is ―no harder to solve‖ than Q 

• An example: 

o P: Given a set of Booleans, is at least one TRUE? 

o Q: Given a set of integers, is their sum positive? 
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o Transformation: (x1, x2, …, xn) = (y1, y2, …, yn) where yi = 1 if xi = TRUE, yi = 0 
if xi = FALSE 

 

• Another example: 

o Solving linear equations is reducible to solving quadratic equations 

 How can we easily use a quadratic-equation solver to solve linear 

equations? 

• Given one NP-Complete problem, we can prove many interesting problems NP-Complete 

o Graph coloring (= register allocation) 

o Hamiltonian cycle 

o Hamiltonian path 

o Knapsack problem 

o Traveling salesman 

o Job scheduling with penalties, etc. 

NP Hard 

 Definition: Optimization problems whose decision versions are NP- complete are 

called NP-hard. 

 
 Theorem: If there exists a polynomial-time algorithm for finding the optimum in 

any NP-hard problem, then P = NP. 

Proof: Let E be an NP-hard optimization (let us say minimization) problem, and let A 

be a polynomial-time algorithm for solving it. Now an instance J of the corresponding 

decision problem D is of the form (I, c), where I is an instance of E, and c is a 

number. Then the answer to D for instance J can be obtained by running A on I and 

checking whether the cost of the optimal solution exceeds c. Thus there exists a 

polynomial-time algorithm for D, and NP-completeness of the latter implies P= NP. 


