ATME COLLEGE OF ENGINEERING

13" KM Stone, Bannur Road, Mysore - 560 028

AT M E

¢ 1 College of Engineering

DEPARTMENT OF COMPUTER SCIENCE ENGINEERING
(DATA SCIENCE)

(ACADEMIC YEAR 2023-24)
LESSON NOTES

SUBJECT: AUTOMATA THEORY AND COMPILER DESIGN
SUB CODE: 21CS51
SEMESTER: V- 2021 CBCS Scheme




INSTITUTIONAL MISSION AND VISION

Objectives

[1 To provide quality education and groom top-notch professionals, entrepreneurs and

leaders for different fields of engineering, technology and management.

[1 To open a Training-R & D-Design-Consultancy cell in each department, gradually
introduce doctoral and postdoctoral programs, encourage basic & applied research

in areas of social relevance, and develop the institute as a center of excellence.

] To develop academic, professional and financial alliances with the industry as well as

the academia at national and transnational levels

[1 To develop academic, professional and financial alliances with the industry as well as

the academia at national and transnational levels.

[1 To cultivate strong community relationships and involve the students and the staff in

local community service.

[ To constantly enhance the value of the educational inputs with the participation of

students, faculty, parents and industry.

Vision

(1 Development of academically excellent, culturally vibrant, socially responsible and

globally competent human resources.

Mission

e To keep pace with advancements in knowledge and make the students competitive and

capable at the global level.




e To create an environment for the students to acquire the right physical, intellectual,
emotional and moral foundations and shine as torch bearers of tomorrow’s society.

e To strive to attain ever-higher benchmarks of educational excellence.

DEPARTMENT OF COMPUTER SCIENCE ENGINEERING AND ENGINEERING

(DATA SCIENCE &ENGINEERING)

Vision of The Department

» To impart technical education in the field of data science of excellent quality with a high

level of professional competence, social responsibility, and global awareness among the
students

Mission
» To impart technical education that is up to date, relevant and makes students competitive
and employable at global level
» To provide technical education with a high sense of discipline, social relevance in an
intellectually, ethically and socially challenging environment for better tomorrow
* Educate to the global standards with a benchmark of excellence and to kindle the spirit of
innovation.

Program Outcomes(PO)

e Engineering knowledge: Apply the knowledge of mathematics, science, engineering
fundamentals, and an engineering specialization to the solution of complex engineering
problems.




Problem analysis: Identify, formulate, review research literature, and analyze complex
engineering problems reaching substantiated conclusions using first principles of
mathematics, natural sciences, and engineering sciences.

Design/development of solutions: Design solutions for complex engineering problems
and design system components or processes that meet the specified needs with
appropriate consideration for the public health and safety, and the cultural, societal, and
environmental

considerations.

Conduct investigations of complex problems: Use research-based knowledge and
research methods including design of experiments, analysis and interpretation of data,

and synthesis of the information to provide valid conclusions.

Modern tool usage: Create, select, and apply appropriate techniques, resources, and
modern engineering and IT tools including prediction and modeling to complex

engineering activities with an understanding of the limitations.

The engineer and society: Apply reasoning informed by the contextual knowledge to
assess societal, health, safety, legal and cultural issues and the consequent responsibilities
relevant to the professional engineering practice.

Environment and sustainability: Understand the impact of the professional engineering
solutions in societal and environmental contexts, and demonstrate the knowledge of, and

need for sustainable development.

Ethics: Apply ethical principles and commit to professional ethics and responsibilities

and norms of the engineering practice.

Individual and team work: Function effectively as an individual, and as a member or

leader in diverse teams, and in multidisciplinary settings.




e Communication: Communicate effectively on complex engineering activities with the
engineering community and with society at large, such as, being able to comprehend and
write effective reports and design documentation, make effective presentations, and give
and receive clear instructions.

e Project management and finance: Demonstrate knowledge and understanding of the
engineering and management principles and apply these to one’s own work, as a member
and leader in a team, to manage projects and in multidisciplinary environments.

e Life-long learning: Recognize the need for, and have the preparation and ability to
engage in independent and life-long learning in the broadest context of technological

change.

Program Specific Outcomes (PSOs)

e PSO1: Develop relevant programming skills to become a successful data scientist

o PSO2: Apply data science concepts and algorithms to solve real world problems of the

society

o PSO3: Apply data science techniques in the various domains like agriculture, education

healthcare for better society

Program Educational Objectives (PEOSs):

PEOL: Develop cutting-edge skills in data science and its related technologies, such as machine
learning, predictive analytic, and data engineering.

PEO?2: Design and develop data-driven solutions to real-world problems in a business, research,
or social environment.

PEO3: Apply data engineering and data visualization techniques to discover, investigate, and
interpret data.

PEOA4: Demonstrate ethical and responsible data practices in problem solving




PEOS: Integrate fields within computer science, optimization, and statistics to develop better
solutions




V Semester

AUTOMATA THEORY AND COMPILER DESIGN

Course Code 21CS51 CIE Marks 50
Teaching Hours/Week (L:T:P: S) 3:0:0:0 SEE Marks 50
Total Hours of Pedagogy 40 Total Marks 100
Credits 03 Exam Hours 03

Course Learning Objectives

CLO 1. Introduce the fundamental concepts of Automata Theory, Formal Languages and compiler
design

CLO 2. Principles Demonstrate Application of Automata Theory and Formal Languages in the field of
compiler design

CLO 3. Develop understanding of computation through Push Down Automata and Turing Machines

CLO 4. Introduce activities carried out in different phases of Phases compiler

CLO 5. Identify the undecidability problems.

Teaching-Learning Process (General Instructions)

These are sample Strategies, which teachers can use to accelerate the attainment of the various course

outcomes.

1. Lecturer method (L) needs not to be only a traditional lecture method, but alternative effective
teaching methods could be adopted to attain the outcomes.
2. Use of Video/Animation to explain functioning of various concepts.

Encourage collaborative (Group Learning) Learning in the class.

4. Ask atleast three HOT (Higher order Thinking) questions in the class, which promotes critical
thinking.

5. Adopt Problem Based Learning (PBL), which fosters students’ Analytical skills, develop design
thinking skills such as the ability to design, evaluate, generalize, and analyze information
rather than simply recall it.

6. Introduce Topics in manifold representations.

w

7. Show the different ways to solve the same problem with different approaches and encourage
the students to come up with their own creative ways to solve them.

8. Discuss how every concept can be applied to the real world - and when that's possible, it helps
improve the students' understanding.

Module-1

Introduction to Automata Theory: Central Concepts of Automata theory, Deterministic Finite
Automata(DFA), Non- Deterministic Finite Automata(NFA) ,Epsilon- NFA, NFA to DFA Conversion,
Minimization of DFA

Introduction to Compiler Design: Language Processors, Phases of Compilers

Textbook 1: Chapter1 - 1.5, Chapter2 - 2.2,2.3,2.5 Chapter4 -4.4
Textbook 2: Chapterl - 1.1 and 1.2

Teaching-Learning Process Chalk and board, Active Learning, Problem based learning

Module-2

Regular Expressions and Languages: Regular Expressions, Finite Automata and Regular
Expressions, Proving Languages Not to Be Regular

Lexical Analysis Phase of compiler Design: Role of Lexical Analyzer, Input Buffering , Specification of
Token, Recognition of Token.




Textbook 1: Chapter3 - 3.1, 3.2, Chapter4- 4.1
Textbook 2: Chapter3- 3.1 to 3.4

Teaching-Learning Process Chalk and board, Active Learning, Demonstration

Module-3

Context Free Grammars: Definition and designing CFGs, Derivations Using a Grammar, Parse Trees,
Ambiguity and Elimination of Ambiguity, Elimination of Left Recursion, Left Factoring.

Syntax Analysis Phase of Compilers: part-1: Role of Parser, Top-Down Parsing

Textbook 1: Chapter 5 - 5.1.1 to 5.1.6, 5.2 (5.2.1, 5.2.2), 5.4
Textbook 2: Chapter 4 - 4.1, 4.2, 4.3 (4.3.2 to 4.3.4) ,4.4

Teaching-Learning Process ‘ Chalk and board, Problem based learning, Demonstration

Module-4

Push Down Automata: Definition of the Pushdown Automata, The Languages of a PDA.

Syntax Analysis Phase of Compilers: Part-2: Bottom-up Parsing, Introduction to LR Parsing: SLR,
More Powerful LR parsers

Textbook1: Chapter 6 - 6.1, 6.2
Textbook2: Chapter 4 - 4.5, 4.6, 4.7 (Up to 4.7.4)

Teaching-Learning Process ‘ Chalk & board, Problem based learning

Module-5

Introduction to Turing Machine: Problems that Computers Cannot Solve, The Turing machine,
problems, Programming Techniques for Turing Machine, Extensions to the Basic Turing Machine

Undecidability : A language That Is Not Recursively Enumerable, An Undecidable Problem That Is RE.

Other Phases of Compilers: Syntax Directed Translation- Syntax-Directed Definitions, Evaluation
Orders for SDD’s. Intermediate-Code Generation- Variants of Syntax Trees, Three-Address Code.

Code Generation- Issues in the Design of a Code Generator

Textbook1: Chapter 8 - 8.1, 8.2,8.3,8.4 Chapter 9 -9.1,9.2
Textbook2: Chapter 5 - 5.1, 5.2, Chapter 6- 6.1,6.2 Chapter 8- 8.1

Teaching-Learning Process Chalk and board, MOOC

Course Outcomes

At the end of the course the student will be able to:

CO 1. Acquire fundamental understanding of the core concepts in automata theory and Theory of
Computation

CO 2. Design and develop lexical analyzers, parsers and code generators

CO 3. Design Grammars and Automata (recognizers) for different language classes and become
knowledgeable about restricted models of Computation (Regular, Context Free) and their
relative powers.

CO 4. Acquire fundamental understanding of the structure of a Compiler and Apply concepts
automata theory and Theory of Computation to design Compilers

CO 5. Design computations models for problems in Automata theory and adaptation of such model
in the field of compilers

Assessment Details (both CIE and SEE)

The weightage of Continuous Internal Evaluation (CIE) is 50% and for Semester End Exam (SEE) is 50%.
The minimum passing mark for the CIE is 40% of the maximum marks (20 marks). A student shall be
deemed to have satisfied the academic requirements and earned the credits allotted to each subject/




course if the student secures not less than 35% (18 Marks out of 50) in the semester-end examination
(SEE), and a minimum of 40% (40 marks out of 100) in the sum total of the CIE (Continuous Internal
Evaluation) and SEE (Semester End Examination) taken together

Continuous Internal Evaluation:
Three Unit Tests each of 20 Marks (duration 01 hour)

1. First test at the end of 5t week of the semester

2. Second test at the end of the 10t week of the semester

3. Third test at the end of the 15t week of the semester
Two assignments each of 10 Marks

1. First assignment at the end of 4th week of the semester

2. Second assignment at the end of 9th week of the semester
Group discussion/Seminar/quiz any one of three suitably planned to attain the COs and POs for 20
Marks (duration 01 hours)

1. Atthe end of the 13th week of the semester

The sum of three tests, two assignments, and quiz/seminar/group discussion will be out of 100 marks
and will be scaled down to 50 marks
(to have a less stressed CIE, the portion of the syllabus should not be common /repeated for any of the
methods of the CIE. Each method of CIE should have a different syllabus portion of the course).
CIE methods /question paper has to be designed to attain the different levels of Bloom'’s
taxonomy as per the outcome defined for the course.
Semester End Examination:
Theory SEE will be conducted by University as per the scheduled timetable, with common question
papers for the subject (duration 03 hours)
1. The question paper will have ten questions. Each question is set for 20 marks and Marks scored
shall be proportionally reduced to 50 marks
2. There will be 2 questions from each module. Each of the two questions under a module (with a
maximum of 3 sub-questions), should have a mix of topics under that module.
3. The students have to answer 5 full questions, selecting one full question from each module

Suggested Learning Resources:

Textbooks
1. John E Hopcroft, Rajeev Motwani, Jeffrey D. Ullman, Introduction to Automata Theory,
Languages and Computation”, Third Edition, Pearson.
2. Alfred V.Aho, Monica S.Lam,Ravi Sethi, Jeffrey D. Ullman, “ Compilers Principles, Techniques and
Tools”, Second Edition,Perason.
Reference:
1. Elain Rich, “Automata,Computability and complexity”, 1st Edition, Pearson Education,2018.
2. KL.P Mishra, N Chandrashekaran, 3rd Edition, ‘Theory of Computer Science”,PHI,2012.
3. Peter Linz, “An introduction to Formal Languages and Automata “, 3rd Edition, Narosa
Publishers,1998.
4. K Muneeswaran, "Compiler Design”, Oxford University Press 2013.

Weblinks and Video Lectures (e-Resources):

1. https://nptel.ac.in/courses/106/106/106106049/#
2. https://nptel.ac.in/courses/106/104/106104123/
3. https://www.jflap.org/

Activity Based Learning (Suggested Activities in Class)/ Practical Based learning




MODULE I:

Introduction

Why study the Theory of Computation?
Strings

Languages

A Finite State Machines (FSM)
5.1. Deterministic FSM

5.2. Nondeterministic FSMs
5.3. Simulators for FSMs

5.4. Minimizing FSMs

6. Finite State Transducers

7. Bidirectional Transducers.

o s~ wpd e

1. Introduction

The term "Automata" is derived from the Greek word "avtopata" which means "self-acting".
An automaton (Automata in plural) is an abstract self-propelled computing device which
follows a predetermined sequence of operations automatically.

An automaton with a finite number of states is called a Finite Automaton (FA) or Finite State
Machine (FSM).

2. Why to study Theory of Computation?

Theory of computation is mainly concerned with the study of how problems can be solved
using algorithms. It is the study of mathematical properties both of problems and of algorithms
for solving problems that depend on neither the details of today's technology nor the
programming language.

It is still useful in two key ways:

e It provides a set of abstract structures that are useful for solving certain classes of
problems. These abstract structures can he implemented on whatever
hardware/software platform is available

e It defines provable limits to what can be computed regardless of processor speed or
memory size. An understanding of these limits helps us to focus our design effort in
areas in which it can pay off, rather than on the computing equivalent of the search for
a perpetual motion machine.

The goal is to discover fundamental properties of the problems like:

e Isthere any computational solution to the problem? 1f not. is there a restricted but
useful variation of the problem for which a solution does exist?

e [fasolution exists, can it be implemented using some fixed amount of memory?

e Ifasolution exists. how efficient is it? More specifically. how do its time and space
requirements grow as the size of the problem grows?

e Are there groups of problems that are equivalent in the sense that if there is an efficient



solution to one member of the group there is an efficient solution to all the others?

Applications of theory of computation:

Development of Machine Languages: Enables both machine-machine and person-
machine communication. Without them, none of today's applications of computing
could exist. Example: Network communication protocols, HTML etc.

Development of modern programming languages: Both the design and the
implementation of modern programming languages rely heavily on the theory of
context-free languages. Context- free grammars are used to document the languages
syntax and they form the basis for the parsing techniques that all compilers use.
Natural language processing: It is a field of computer science, artificial intelligence,
and computational linguistics concerned with the interactions between computers and
human (natural) languages.

Automated hardware systems: Systems as diverse as parity checkers, vending
machines, communication protocols, and building security devices can be
straightforwardly described as finite state machines, which is a part of theory of
computation.

Video Games: Many interactive video games are use large nondeterministic finite state
machines.

Security is perhaps the most important property of many computer systems. The
undecidability results of computation show that there cannot exist a general-purpose
method for automatically verifying arbitrary security properties of programs.

Artificial intelligence: Artificial intelligence programs solve problems in task domains
ranging from medical diagnosis to factory scheduling. Various logical frameworks have
been proposed for representing and reasoning with the knowledge that such programs
exploit.

Graph Algorithms: Many natural structures, including ones as different as organic
molecules and computer networks can be modeled as graphs. The theory of complexity
tells us that, is there exist efficient algorithms for answering some important questions
about graphs. Some questions are "hard", in the sense that no efficient algorithm for
them is known nor is one likely to be developed.

3. Strings

Alphabet

Definition: An alphabet is any finite set of symbols denoted by ~ (Sometimes also
called as characters or symbols).

Example: £ = {a, b, c, d} is an alphabet set where ‘a’, ‘b’, ‘c’, and ‘d’ are symbols.

String

Definition: A string is a finite sequence of symbols taken from X.



Example: ‘cabcad’ is a valid string on the alphabet set ~ = {a, b, c, d}

Alphabet name Alphabet symbols | Example strings
The lower case {a, b, ¢, .., z} |g, aabbcg, aaaaa
English alphabet
The binary alphabet {o, 1} €, 0,001100,11
A star alphabet {Xx,9, %, %, = %} | g, OO0, OxxwkvY
A music alphabet {or o & & &) ), @} Bids.ons)
3.1. Functions on Strings

Length of a String

Definition: It is the number of symbols present in a string. (Denoted by |.|).

Examples: If s =‘cabcad’, | s |= 6; Also |11001101| =7

If| s |= 0, it is called an empty string, denoted by . |g| =0

Concatenation of strings: The concatenation of two strings s and t, written s||t or simply st,
is the string formed by appending t to s. For example, if x = good and y = bye, then xy =
goodbye. So [xy| = [x| + |y|.

The empty string, e, is the identity for concatenation of strings. (xe = ex = x).
Concatenation, as a function defined on strings is associative. (st)w = s (tw).

String Replication

For each string w and each natural number i, the string w'is defined as: w’=¢
Example: a° = aaa, (bye)? = byebye, a’b?= bbb wtt = wiw

String Reversal: For each string w, the reverse of w, written as w¥, is defined as:

Theorem: If w and x are strings, then (wx)R = xRwR,
For example, (nametag)® = (tag)®(name)® = gateman.

Proof: The proof is by induction on |x|:
Base case: | x| = 0. Then x = &,and (wx)R = (we)R = (w)R = ew® = R w® = xRwr,
Prove:vn = 0 (x| = n) = ((wx)® = xRwR)) = ((Ixl = n + 1) = ((wo)f = xRw?))).

Consider any string x, where |x|=n +1. Then x = ua for some character a and

|u| = n. So:
(wx)"‘ = (w(ua))R rewrile x as ua
= ((ww)a)®  associativity of concatenation
= a(wu)R definition of reversal
= a(iRw®) induction hypothesis
= (a®)wr associativily of concatenation
= (ua)®w® definition of reversal

= yRyR rewrite wa as x




3.2. Relations on strings

Substring: A string s is a substring of a string of t iff s occurs contiguously as part of t.
For example: aaa is a substring of aaabbbaaa, aaaaaa is not a substring of aaabbbaaa

Proper Substring: A string r is a proper substring of a string t, iff t is a substring of t and s #
t. Every string is a substring (although not a proper substring) of itself. The empty string. e. is a
substring of every string.

Prefix: A string s is a prefix of t, iff 3x € Y*(t = sx). Astring s is a proper prefix of a string t
iff s is a prefix of t and s#t. Every string is a prefix (although not a proper prefix) of itself. The

empty string €, is a prefix of every string. For example. the prefixes of abba are: €, a, ab, abb,
abba.

Suffix: A string s is a suffix of t, iff 3x € Y*(t = xs). Astring s is a proper suffix of a string t
iff s is a suffix of t and s#t. Every string is a suffix (although not a proper suffix) of itself. The

empty string ¢, is a suffix of every string. For example. the prefixes of abba are: €, a, ba, bba,
abba.

4. Languages

A language is a (finite or infinite) set of strings over a finite alphabet ) . When we are talking
about more than one language, we will use the notation Y 1, to mean the alphabet from which
the strings in the language L are formed.

Let> ={a, b}. X*={¢, a,b, aa, ab, ba, bb, aaa, aab }.
Some examples of languages over ) are:

D, {c}, {a, b}, {¢, a, aa, aaa, aaaa, aaaaa}, {e, a, aa, aaa, aaaa, aaaaa, ........ }

4.1. Techniques for Defining Languages

There are many ways. Since languages are sets. we can define them using any of the set-
defining techniques

Ex-1: All a's Precede All b's,

L = {w € {a,b}*: an a's precede all b's in w}. The strings ¢, a, aa, aabbb, and bb are in L . The
strings aba, ba, and abc are not in L.

Ex-2: Strings thatend in ‘a’
L = {x : 3ye {a, b}*, (x = ya)}. The strings a, aa, aaa, bbaa and ba are in L. The strings ¢, bab,
and bca are not in L. L consists of all strings that can be formed by taking some string in {a, b}*
and concatenating a single a onto the end of it.

Ex-3: Empty language
L ={ } = @, the language that contains no strings. Note: L = { ¢ } the language that contains
a single string, . Note that L is different from ®.

Ex-4: Strings of all ‘a’ s containing zero or more ‘a’s
LetL={a":n>0}. L=(g a, aa, aaa, aaaa, aaaaa,........ )



Ex-5: We define the following languages in terms of the prefix relation on strings:

L1 = {we{a, b}* : no prefix of w contains b}={ e, a, aa, aaa, aaaa, aaaaa, aaaaaa, } .
L2 ={we {a, b}*: no prefix of w starts with b}={w e{a,b}*: the first character of w is a }U{&}.
L3= {we {a, b}*; every prefix of w starts with b} =®. L3 is equal to @ because ¢ is a prefix of
every string. Since ¢ does not start with b, no strings meet L3 's requirement.

Languages are sets. So, a computational definition of a language can be given in two ways;
« alanguage generator, which enumerates (lists) the elements of the language, or
« alanguage recognizer, which decides whether or not a candidate string is in the
language and returns True if it is and False if it isn't.
For example, the logical definition. L = {x: 3y €{a, b}* (x = ya)} can be turned into either a
language generator (enumerator) or a language recognizer.

In some cases, when considering an enumerator for a language, we may care about the order in
which the elements of L are generated. If there exists n total order D of the elements of >, then
we can use D to define on L atotal order called lexicographic order (written <..):

« Shorter strings precede longer ones: vx ( vy (( [X| < |y]) @ (x < Y)))and

* Of strings that are the same length sort them in dictionary order using D.

Let L={w € {a, b}*; all a's precede all b's}. The lexicographic enumeration of Lis:

g, a. b. aa. ab. bb. aaa. aab. abb. bbb. aaaa, aaab. aabb. abbb. bbbb. aaaaa ....

4.2. Cardinality of a Language

e Cardinality refers to the number of strings in the language.
e The smallest language over any alphabet is ¢, whose cardinality is O.

o The largest language over any alphabet ) is Y *. Suppose that ) = @, then Y * = {&}
and [>*| = I. In general, [ *| is infinite.

Theorem: If Z # @ then ¥ is countably infinite,

Proof: The clements of £* can be lexicographically enumerated by a straightfor-
ward procedure that:

* Enumerates all strings of length 0. then length 1. then length 2. and so forth,

* Within the strings of a given length, enumerates them in dictionary order.

This enumeration is infinite since there is no longest string in £*. By Theorem A.1,
since there exists an infinite enumeration of Z*, it is countably infinite.

4.4. Functions on Languages

Since languages are sets. all of the standard set operations are well-defined on languages.
Union, intersection, difference and complement are quite useful



Let: Z = {a,b}.
L, = {strings with an even number of a’s}.
L, = {strings withno b's} = {g, a, aa, aaa, aaaa, aaaaa, aaaaaa, ... }.

LU L; = {all strings of just a's plus strings that contain b’s and an even
number of a’s}.

L\NL; = {¢, aa, aaaa, aaaaaa, aaaaaaaa, ... }.

L, - L, = {a.aaa.aaaaa, aaaaaaa, ...},

=(L; = L)) = {strings with at least one b } U {strings with an even number
of a's}.

Concatenation

Let L1 and Lz be two languages defined over some alphabet Y. Then their concatenation.
written LiL> is:

LiL; = {weZX*:3seL,(Jel,(w = s1))}.
Example: Let: L1 = {cat, dog, mouse, bird}. Lo = { bone, food}.
LiL> = { catbone, catfood, dogbane, dogfood, mousebone, mousefood, birdbone, birdfood}.

The language {&} is the identity for concatenation of languages. So for all languages L,

L{e} ={e}L = L.
The language @ is a zero for concatenation of languages. So, for all languages L, L® = @®L = ®.
That @ is a zero follows from the definition of the concatenation of two languages as the set
consisting of all strings that can he formed by selecting some string ‘s’ from the first language
and some string ‘1’ from the second language and then concatenating them together. There are
no ways to select a string from the empty set.

Concatenation on languages is associative. So, for all languages LiL> and Ls:
((L1L2)Ls = L1 (L2L3)).

Reverse
Let L be a language defined over some alphabet Y. Then the reverse of L , written L® is:
LR = {w e Y *: w = x" for some x € L}.
In other words, L* is the set of strings that can be formed by taking some string in L and
reversing it

Theorem: If L, and L, are languages, then (L,L,)* = L,®L®,
Proof: If x and y are strings, then Vx (¥y ((xy)® = yRx®)) Theorem 2.1

(LiLy)* = {(xy)R:xeL,and ye L,} Definition of concatenation
of languages
= {y*xh:xel, and ye L,}) Lines 1 and 2
= LR R Definition of concatenation

of languages




Kleene Star

Definition: The Kleene star denoted by X", is a unary operator on a set of symbols or strings,
¥, that gives the infinite set of all possible strings of all possible lengths over X including «.

Representation: £ =2’ Us'U Z?U....... where =P is the set of all possible strings of length
p.
Example: If= = {a, b}, == {A, a, b, aa, ab, ba, bb, ............. }

Let L = {dog, cat, fish}. Then:
L* = {&.dog, cat, fish, dogdog, dogcat,...,
fishdog,..., fishcatfish, fishdogfishcat.... .

Kleene Closure / Plus

Definition: The set £ is the infinite set of all possible strings of all possible lengths over X
excluding e. " = 2* — {¢} Representation:

vr=3'Uz?UU.......
Example: IfZ = {a, b}, =" ={ a, b, aa, ab, ba, bb,.................. }

Closure: A set S is closed under the operation @ if for every element X & y in S, x@y is also an
element of S.

4.5. A Language Hierarchy

A Machine-Based Hierarchy of Language Classes
are shown in the diagram.

We have four language classes:

1. Regular languages, which can be
accepted by some finite state machine.
2. Context-free languages, which can be
accepted by some pushdown automaton.
3. Decidable (or simply D) languages.
which can decided by some Turing
machine that always halts.
4. Semi-decidable (or SD) languages, which can be semi-decided by some Turing
machine that halts on all strings in the language.

Each of these classes is a proper subset of the next class, as illustrated in the Figure.
As we move outward in the language hierarchy, we have access to tools with greater and
expressive power. We can define A"B"C" as a decidable language but not as a context-free or
a regular one. These matters because expressiveness generally comes at a price. The price may
be: Computational efficiency, decidability and clarity.

« Computational efficiency: Finite state machines run in time that is linear in the length
of the input string. A general context-free parser based on the idea of a pushdown
automaton requires time that grows as the cube of the length of the input string. A



Turing machine may require time that grows exponentially (or faster) with the length
of the input string.

» Decidability: There exist procedures to answer many useful questions about finite state
machines. For example, does an FSM accept some particular string? Is an FSM
minimal? Are two FSMs identical? A subset of those questions can be answered for
pushdown automata. None of them can be answered for Turing machines.

« Clarity: There exist tools that enable designers to draw and analyze finite state
machines. Every regular language can also be described using the regular expression
pattern language. Every context-free language, in addition to being recognizable by
some pushdown automaton, can be described with a context-free grammar

5.Finite State Machines (FSM)

A finite state machines (or FSM) is a computational device whose input is a string and whose
output is one of two values; Accept and Reject. FSMs are also sometimes called finite state
automata or FSAs.

5.1. Deterministic FSM

e We begin by defining the class of FSMs whose behavior is deterministic.
e These machines, makes exactly one move at each step
e The move is determined by the current state and the next input character.

Definition: Deterministic Finite State Machine (DFSM) is M: M = (K, X, §, s, A), where:
K is a finite set of states
¥ is an alphabet
s € K is the initial state
A c K is the set of accepting states, and
d is the transition function from (K x X) to K

Configuration: A Configuration of a DFSM M is an element of K x £*. Configuration
captures the two things that make a difference to M’s future behavior: 1) its current state, the
input that remains to be read.

The Initial Configuration of a DFSM M, on input w, is (Sm, W) , where sw is start state of M

The transition function & defines the operation of a DFSM M one step at a time. 3 is set of all
pairs of states in M & characters in Z. (Current State, Current Character) © New State

Relation ‘yields’: Yields-in-one-step relates configuration, to configuration-1to configuration- 2
iff M can move from canfiguration-1, to configuration-2 in one step. Let ¢ be any element of
¥ and let w be any element of £*, then,
(e, cw) Fwm (g2, W) iff ((q, €), g2) €3
|-m* is the reflexive, transitive closure of |-m



Complete vs Incomplete FSM

Complete FSM: A transition is defined for every possible state and every possible character in
the alphabet. Note: This can cause FSM to be larger than necessary, but ALWAY'S processes
the entire string

Incomplete FSM: One which defines a transition for every possible state & every possible
character in the alphabet which can lead to an accepting state Note: If no transition is defined,
the string is Rejected

Computation: A Computation by M is a finite sequence of configurations Co, Cy, ..., C for
some n > 0 such that:
« Cois an initial configuration,
« Cyisofthe form (q, €), for some state g € Km
+ ¢ indicates empty string, entire string is processed & implies a complete DFSM
e Col-mMCi|-MC2|Mm...|-mChn.

However, M Halts when the last character has to be processed or a next transition is not defined

Acceptance / Rejection
A DFSM M, Accepts a string w iff (s, w) |-m * (q, €), for some q € Awm.
A DFSM M, Rejects a string w iff (s, w) |-w* (q, €), for some q ¢ Awm.

The language accepted by M, denoted L(M), is the set of all strings accepted by M.

Reqular languages

A language is regular iff it is accepted by some DFSM. Some examples are listed below.

« {w e{a, b}* | everya is immediately followed by b }.
« {w e {a, b}* | every a region in w is of even length}
 binary strings with odd parity.

Designing Deterministic Finite State Machines

Given some language L. how should we go about designing a DFSM to accept L? In general. as
in any design task. There is no magic bullet. But there are two related things that it is helpful to
think about:

« Imagine any DFSM M that accepts L. As a string w is being read by M, what properties
of the part of w that has been seen so far are going to have any bearing on the ultimate
answer that M needs to produce? Those are the properties that M needs to record.

« If Lisinfinite but M has a finite number of states, strings must "cluster”. In other words,
multiple different strings will all drive M to the same state. Once they have done that,
none of their differences matter anymore. If they've driven M to the same state, they
share a fate. No matter what comes next, either all of them cause M to accept or all of
them cause M to reject.



MODULE 11:

1. Regular Expression

2. Equivalence of Re and NFA

3. DFA

4. Pumping lemma for regular languages

5. Grammars

6. Parse Trees

1. Reqular Expressions

« Aregular expression is used to specify a language, and it does so precisely.

» Regular expressions are very intuitive.

« Regular expressions are very useful in a variety of contexts.

« Given aregular expression, an NFA-¢ can be constructed from it automatically.
« Thus, so can an NFA, a DFA, and a corresponding program, all automatically!
Definition:

Let X be an alphabet. The regular expressions over X are:

%) Represents the empty set { }
€ Represents the set {&}
a Represents the set {a}, for any symbol ain £

Let r and s be regular expressions that represent the sets R and S, respectively.

r+s Represents the set RU S (precedence 3)

rs Represents the set RS (precedence 2)

r Represents the set R* (highest precedence)

(9] Represents the set R (not an op, provides precedence)

If r is a regular expression, then L(r) is used to denote the corresponding language.

Examples: Let £ = {0, 1}

(0+1)* All strings of 0’s and 1°s

00+ 1)* All strings of 0’s and 1°s, beginning with a0
0+1)*1 All strings of 0°s and 1°s, ending witha 1

(0 +1)*0(0 + 1)* All strings of 0’s and 1’s containing at least one 0
(0 +1)*0(0 + 1)*0(0 + 1)*  Allstrings of 0’s and 1’s containing at least two 0’s
(0 +1)*01*01* All strings of 0’s and 1°s containing at least two 0’s

(1 +01*0)* All strings of 0’s and 1°s containing an even number of 0’s



1*(01*01*)* All strings of 0’s and 1’s containing an even number of 0’s

(1*01*0)*1* All strings of 0’s and 1’s containing an even number of 0’s
Identities:
Gu=uld=0 Multiply by 0
c u+@=u
. u+u=u
8. u* = (u*)*
9. u(v+w) = uv+uw
10. (u+v)w = uw+vw
11. (uv)*u = u(vu)*
12. (U+v)* = (u*+v)*
= u*(utv)*
= (u+vu*)*
= (u*v*)*
= u*(vu*)*
= (u*v)*u*
2. Equivalence of Regular Expressions and NFA-g

Note: Throughout the following, keep in mind that a string is accepted by an NFA-¢ if
there exists a path from the start state to a final state.

Lemma 1: Let r be a regular expression. Then there exists an NFA-g¢ M such that L(M) =
L(r). Furthermore, M has exactly one final state with no transitions out of it.

Proof: (by induction on the number of operators, denoted by OP(r), in ).

Basis: OP(r) =0



Thenr is either @, €, or a, for some symbola in X

Inductive Hypothesis: Suppose there exists a k > 0 such that for any regular expression r
where 0 < OP(r) <k, there exists an NFA-¢ such that L(M) = L(r). Furthermore, suppose
that M has exactly one final state.

Inductive Step: Let r be a regular expression with k + 1 operators (OP(r) = k + 1), where
k+1>=1.
Casel)r=ri+rnr

Since OP(r) = k +1, it follows that 0<= OP(r1), OP(r.) <= k. By the inductive
hypothesis there exist NFA-& machines M1 and Mz such that L(M1) = L(r1) and
L(Mz2) = L(r2). Furthermore, both M1 and M2 have exactly one final state.

Case2)r=rir

Since OP(r) = k+1, it follows that 0<= OP(r1), OP(r;) <= k. By the inductive
hypothesis there exist NFA-¢ machines Mz and M such that L(M1) = L(r1) and

L(Mz2) = L(r2). Furthermore, both M1 and M2 have exactly one final state.
Construct M as:

Since OP(r) = k+1, it follows that 0<= OP(r1) <= k. By the inductive hypothesis
there exists an NFA-¢ machine Mj such that L(M31) = L(r1). Furthermore, M1 has
exactly one final state.

Case3) r=r*

Example:

Problem: Construct FA equivalent to RE, r = 0(0+1)*

Solution: r=rlr2

ri=0

r2 = (0+1)*
r2 =r3*
r3=0+1
r3=r4+r5
r4=0
=1

Transition graph:



[

Definitions Required to Convert a DFA to a Reqular Expression

« LetM=(Q,Z,3,q1 F)be a DFA with state set Q = {qi, 02, ..., On}, and define:
Rij={ x| xisinZ* and &(qi,X) = i}
Ri,j is the set of all strings that define a path in M from g; to g;.

« Lemma?2: Let M =(Q, X, 6, q1, F) be a DFA. Then there exists a regular expression r
such that L(M) = L(r).
if i=j.Case 1) No transitions from g to gjand i = j =0
Case 2) At least one (m > 1) transition fromgitogjand i I=j

rij=ai+as+as+...+am where 5(qi, ap) = G,
forall1<p<m

Case 3) 0I\Io transitions from gito gjand i =
rrj=¢

Case 4) At least one (m > 1) transition from gito gjand i = j
rijcar+taz+as+...+am+e where 8(qi, ap) = qj
forall1<p<m

* Inductive Hypothesis:
Suppose that R*%;; can be represented by the regular expression r?;; for all
1<i,j<n, and some k>1.

« Inductive Step:
Consider R%= R*%x (R“%)'R “%; U R“Y; . By the inductive hypothesis there
exist regular expressions r“Yix, ek, r;, and % generating R %k, R*? x|

R“%;, and R*Y; , respectively. Thus, if we let
rk ij= rk_lk_l(rk,k* }—k:!.J]r k_lj{’kri,j
then r*;; is a regular expression generating R¥;; ,i.e., L(r;;) = R";.
« Finally, if F = {q;1, g2, ..., Qjr}, then

r”l,jl + I’nl,jz + ...t I’nl,jr
is a regular expression generating L(M).«



4. Pumping Lemma for Reqular Languages

« Pumping Lemma relates the size of string accepted with the number of states in a DFA
* What is the largest string accepted by a DFA with n states?

« Suppose there is no loop?
Now, if there is a loop, what type of strings are accepted via the loop(s)?

« Lemma: (the pumping lemma)

Let M be a DFA with |Q| = n states. If there exists a string x in L(M), such that |x| > n,
then there exists a way to write it as X = uvw, where u,v, and w are all in £* and:

— 1< |uv|<n
[v|>1 _
— such that, the strings uv'w are also in L(M), forall i >0

o Let:
— U=a4a...as
— V= 0Qs+1...4t

« Since 0 <s<t<nanduv = a...at it follows that:
— 1< |v|and therefore 1 <|uv|
— |uv| < nand therefore 1 <|uv|<n

« Inaddition, let:
— W =at+1...9m

« It follows that uv'w = ay...as(as+...ar) aw1...amis in L(M), for all i >0.

In other words, when processing the accepted string x, the loop was traversed once, but
could have been traversed as many times as desired, and the resulting string would still
be accepted.



4.1 Closure Properties of Reqular Languages

1. Closure Under Union

[1f L and M are regular languages, so is L U M.

MProof: Let L and M be the languages of regular expressions R and S, respectively.
MThen R+S is a regular expression whose language is L U M.

2. Closure Under Concatenation and Kleene Closure
M RS is a regular expression whose language is LM.
I R* is a regular expression whose language is L*.

3. Closure Under Intersection

1f L and M are regular languages, then so is L N M.
MProof: Let A and B be DFA’s whose languages are L and M, respectively.

4. Closure Under Difference
MIf L and M are regular languages, then so is L — M = strings in L but not M.
rProof: Let A and B be DFA’s whose languages are L and M, respectively.

5. Closure Under Complementation
MThe complement of language L (w.r.t. an alphabet X such that £* contains L) is Z* — L.
r1Since * is surely regular, the complement of a regular language is always regular.

6. Closure Under Homomorphism
JIf L is aregular language, and h is a homomorphism on its alphabet,
then h(L) = {h(w) | wis in L} is also a regular language.

5. Grammar

e Definition: A grammar G is defined as a 4-tuple, G=(V, T, S, P)
Where,
e Visa finite set of objects called variables,
o Tisa finite set of objects called terminal symbols,
e S e Visaspecial symbol called start variable,
e Pis afinite set of productions.
Assume that V and T are non-empty and disjoint.

e Example:
Consider the grammar G = ({S}, {a, b}, S, P) with P given by
S - aSh, S 2 .
For instance, we have S = aSh = aaSbb = aabb.
It is not hard to conjecture that L(G) ={a"0"| n>0}.



Right. Left-Linear Grammar

Right-linear Grammar: A grammar G = (V, T, S, P) is said to be right-linear if all
productions are of the form:

A - xB,

A > X,

Where A, BeVand x € T*,

Example#1:

S — abS | ais an example of a right-linear grammar.

= Can you figure out what language it generates?
= L={we{ab}*|w
Contains alternating a's and b's , begins with an a, and ends with a b}

v {a}
= L((ab)*a)

Left-linear Grammar: A grammar G = (V, T, S, P) is said to be left-linear if all
productions are of the form:
A = Bx,
A X,
Where A,BeVand x € T*,
o Example#2:

S — Aab

A — Aab|aB

B—a

is an example of a left-linear grammar.

= Can you figure out what language it generates?
= L={wl{ab}*|wisaa followed by at least one set of
alternating ab's}

= L(aaab(ab)*)

o Example#3:

Consider the grammar

S— A

A—aB|A

B — Ab

This grammar is NOT regular.



= No "mixing and matching" left- and right-recursive productions.
5.2 Reqular Grammar

e A linear grammar is a grammar in which at most one variable can occur on the right side
of any production without restriction on the position of this variable.

e Anexample of linear grammar is G = ({S, S1, S2}, {a, b}, S, P) with
S = Slab,
S1-> Slab|S2,
S22 a.

e Aregular grammar is one that is either right-linear or left-liner.

5.3 Testing Equivalence of Reqular Languages
e LetL and M be reg langs (each given in some form).
TotestifL=M

1. Convert both L and M to DFA's.

2. Imagine the DFA that is the union of the two DFA's (never mind there are two
start states)

3. If TF-algo says that the two start states are distinguishable, then L 6= M,
otherwise, L = M.

We can “see" that both DFA accept L(s+(0+1)*0). The result of the TF-algo is

Therefore the two automata are equivalent.

5.4 Regular Grammars and NFA's

* It's not hard to show that regular grammars generate and nfa's accept the same class of
languages: the regular languages!
* It'salong proof, where we must show that
o Any finite automaton has a corresponding left- or right-linear grammar,
o And any regular grammar has a corresponding nfa.
*  Example:

o We get a feel for this by example.



LetS—aA A — abS|bONTEXT FREE-GRAMMAR

e Definition: Context-Free Grammar (CFG) has 4-tuple: G = (V, T, P, S)

Where,
- A finite set of variables or non-terminals

A finite set of terminals (V and T do not intersect)
- A finite set of productions, each of the form A —> a,
Where Aisin Vand ais in (V U T)*
Note: that a may be .
S - A starting non-terminal (S is in V)

T HL



« Example#l CFG:
G=({S} {01}, P,9)
P:
(1) S—>0S1 or just simply S—>0S1 | ¢
2 S—>¢

« Example Derivations:

s  =>0s1 (1)
S  =c¢ ()
=>01 ()
s  =>0s1 (1)
=> 00511 (1)
=> 000S111 (1)
=> 000111 ()

«  Note that G “generates” the language {01%|k>=0}

6. Derivation (or Parse) Tree

« Definition: Let G=(V, T, P, S) be a CFG. A tree is a derivation (or parse) tree if:
— Every vertex has a label fromV U T U {g}
— The label of the root is S

— Ifavertex with label A has children with labels X1, Xa,..., Xx, from left to right,
then

A —> X1, X2,..., Xn
must be a production in P
— Ifavertex has label ¢, then that vertex is a leaf and the only child of its” parent

« More Generally, a derivation tree can be defined with any non-terminal as the root.

Definition: A derivation is leftmost (rightmost) if at each step in the derivation a production is
applied to the leftmost (rightmost) non-terminal in the sentential  form.

e The first derivation above is leftmost, second is rightmost and the third is neither.



=

w

&

L

MODULE I11:

Context Free Grammar

Minimization of Context Free Grammar
Chomsky Normal Form

Pumping Lemma for Context-Free Languages

Pushdown Automata (PDA)

Ambiguity in Context Free Grammar

Definition: Let G be a CFG. Then G is said to be ambiguous if there exists an x in L(G)
with >1 leftmost derivations. Equivalently, G is said to be ambiguous if there exists an x
in L(G) with >1 parse trees, or >1 rightmost derivations.

Note: Given a CFL L, there may be more than one CFG G with L = L(G). Some
ambiguous and some not.

Definition: Let L be a CFL. If every CFG G with L = L(G) is ambiguous, then L is
inherently ambiguous.

Example: Consider the string aaab and the preceding grammar.

The string has two left-most derivations, and therefore has two distinct parse trees and is
ambiguous .

1.1 Eliminations of Useless Symbols

Definition:
Let G = (V, T, S, P) be a context-free grammar. A variable A € V is said to be useful if
and only if there is at least one w € L(G) such that

S="xAy ="w

withx,y e (VU T)".
In words, a variable is useful if and only if it occurs in at least on derivation. A variable
that is not useful is called useless. A production is useless if it involves any useless
variable

For a grammar with productions



S—>aSh|A|A
A — aA

A is useless variable and the production S — A plays no role since A cannot be eventually
transformed into a terminal string; while A can appear in a sentential form derived from
S, this sentential form can never lead to sentence!

Hence, removing S — A (and A — aA) does not change the language, but does simplify
the grammar.

For a grammar with productions
S—>A
A—aA|A
B — bA

B is useless so is the production B — bA! Observe that, even though a terminal string can
be derived from B, there is no way to get to B from S, i.e. cannot achieve

S =" xBy.

Example:
Eliminate useless symbols and productions from G = (V, T, S, P), where
V={S AB,C} T={a b}and
P consists of
S—>aS|A|C
A—>a
B —> aa
C—aCb

First, note that the variable C cannot lead to any terminal string, we can then remove C
and its associated productions, we get Giwith V1 = {S, A, B}, T:= {a} and P1 consisting
of

S—aS|A

A—>a

B —» aa

Next, we identify variables that cannot be reached from the start variable. We can create
a dependency graph for Vi. For a context-free grammar, a dependency graph has its
vertices labeled with variables with an edge between any two vertices | and J if there is a
production of the form

| — xJy

Consequently, the variable B is shown to be useless and can be removed together with its
associated production.



The resulting grammar G* = (V°, T°, S, P’) iswith V’ = {S, A}, T’ = {a} and P’ consisting
of

S—aS|A

A—>a

1.2 Eliminations of A-Production

+ Definition :
a) Any production of a context-free grammar of the form
A—>A
is called a A-production.

b) Any variable A for which the derivation
A=A
is possible is called nullable.

« Ifa grammar contains some A-productions or nullable variables but does not generate the
language that contains an empty string, the A-productions can be removed!

«  Example:
Consider the grammar, G with productions
S — aSib
S1 — aSib | A

L(G) ={a"0"| n > 1} which is a A-free language. The A-production can be removed after
adding new productions obtained by substituting A for S1 on the right hand side.

We get an equivalent G’ with productions
S—aSib|ab
S1—aSib | ab

* Theorem:
Let G be any context-free grammar with A ¢ L(G). There exists an equivalent grammar
G’ without A-productions.

Proof :
Find the set Vy of all nullable variables of G

1. Forall productions A — A, put A in Vn

2. Repeat the following step until no further variables are added to Vn:
For all productions
B —> AlA2.. . Aq

where Ay, Az, ..., Anarein Vy, put B in Vn.
With the resulting Vn, P’ can be constructed by looking at all productions in P of the

form
A > X1X2.. Xm,m>1



whereeachx; e VU T.

For each such production of P, we put in P’ the production plus all productions generated
by replacing nullable variables with A in all possible combinations. However, if all x;are
nullable, the resulting production A — A is not put in P’.

Example:

For the grammar G with
S — ABaC
A — BC
B—o>Db|A
Co>D|r
D—d
the nullable variables are A, B, and C.

The equivalent grammar G’ without A-productions has P’ containing
S — ABaC |BaC |AaC |ABa|aC |Ba|Aa]a

A—>BC|C|B

B—>b

C—>D

D—>d

1.3 Eliminations of MODUL E-Production

Definition:

Any production of a context-free grammar of the form
A—B

where A, B € Vis called a MODULE-production.

Theorem:

Let G = (V, T, S, P) be any context-free grammar without A-productions. There exists a
context-free grammar G’ = (V’, T°, S, P’) that does not have any MODULE-productions
and that is equivalent to G.

Proof:

First of all, Any MODULE-production of the form A — A can be removed without any
effect. We then need to consider productions of the form A — B where A and B are
different variables.

Straightforward replacement of B (with x1 = X2 = A) runs into a problem when we have
A—B
Bo>A

We need to find for each A, all variables B such that
A="B



This can be done via a dependency graph with an edge (I, J) whenever the grammar G
has a MODULE-production I — J; A =* B whenever there is a walk from A to B in the graph.

The new grammar G’ is generated by first putting in P’ all non-MODULE-productions
of P. Then, for all A and B with A =*B, we add to P’
A—vyilyz|...|¥n

where B — y1|y2| ... | ynis the set of all rules in P’ with B on the left. Not that the rules
are taken from P’, therefore, none of y; can be a single variable! Consequently, no
MODULE- productions are created by this step.

Example:

Consider a grammar G with
S—Aa|B
A—a|bc|B
B—>A|bb

We have S =*A, S=*B, A=*B and
B=*A.

First, for the set of original non-MODULE-productions, we have
S— Aa
A—a|bc
B — bb
We then add the new rules
S—albc|bb
A —bb
B—albc
We finally obtain the equivalent grammar G’ with P’ consisting of
S—Aala|bc|bb
A —a]|bc|bb
B—bb|a]|bc
Notice that B and its associate production become useless.

Minimization of Context Free Grammar

Theorem:

Let L be a context-free language that does not contain L. There exists a context-free
grammar that generates L and that does not have any useless productions, A-productions
or MODULE-productions.



Proof:

We need to remove the undesirable productions using the following sequence of steps.
1. Remove A-productions
2. Remove MODULE-productions
3. Remove useless productions

3. Chomsky Normal Form

Definition:

A context-free grammar is in Chomsky normal form if all productions are of the form
A —>BC

or
A—>a

where A,B,C e V,anda e T.

Note: that the number of symbols on the right side of productions is strictly limited; not
more than two symbols.

Example:
The following grammar is in Chomsky normal form.
S—>AS|a
A—SA|b
On the other hand, the grammar below is not.
S —> AS | AAS
A — SA |aa

Theorem:
Any context-free grammar G = (V, T, S, P) with A ¢ L(G) has an equivalent grammar G’
=(V’, T°, S, P’) in Chomsky normal form.

Proof:

First we assume (based on previous Theorem) without loss of generality that G has no A-
productions and no MODULE-productions. Then, we show how to construct G’ in two
steps.

Step 1:
Construct a grammar G1 = (Vi, T, S, P1) from G by considering all productions in

P of the form
A — X1X2...Xn
Where each x; is a symbol either inVorinT.



Note that if n = 1, x; must be a terminal because there is no MODULE-
productions in G. In this case, put the production into P.

If n > 2, introduce new variables Bafor each a € T. Then, for each production of
the form A — XiX2...Xn, we shall remove all terminals from productions whose
right side has length greater than one

This is done by putting into Py a production
A — CiCs...Cy

Where
Ci=xifxieV

And

Ci=Baifxi=a

And, for every Ba, we also put into P a production
Ba—a

As a consequence of Theorem 6.1, it can be claimed that
L(G1) = L(G)

Step 2:
The length of right side of productions is reduced by means of additional

variables wherever necessary. First of all, all productions with a single terminal
or two variables (n = 2) are put into P’. Then, for any production with n > 2, new
variables D1, Do, ... are introduced and the following productions are put into P’.
A — CiDs
D1 — CoD2

Dn2— CnaCh
G’ is clearly in Chomsky normal form.

e Example:
Convert to Chomsky normal form the following grammar G with productions.
S — ABa
A — aab
B > Ac

Solution:

Step 1:

New variables Ba, By, B¢ are introduced and a new grammar G is obtained.
S — ABBa
Ao BaBaBb
B — AB;
Ba— a
Bb— b
Bc—>cC

Step 2:



Additional variables are introduced to reduce the length of the first two
productions making them into the normal form, we finally obtain G’.

S—> AD;

D:— BBa

Ao BaDz

D2 — BaBp

B — ABc

Ba —a

Bo—>b

Bc—>cC

Greibach normal form

Definition:
A context-free grammar is said to be in Greibach normal form if all productions have the
form
A — ax
wherea e Tand x € V*

Note that the restriction here is not on the number of symbols on the right side, but rather
on the positions of the terminals and variables.

Example:

The following grammar is not in Greibach normal form.
S—AB
A—aA|bB|b
B—>b

It can, however, be converted to the following equivalent grammar in Greibach normal
form.

S— aAB | bBB | bB

A—aA|bB|b

B->b

Theorem:
For every context-free grammar G with A¢ L(G), there exists an equivalent grammar G’
in Greibach normal form.

Conversion

Convert from Chomsky to Greibach in two steps:
1. From Chomsky to intermediate grammar
a) Eliminate direct left recursion
b) Use A — uBuv rules transformations to improve references (explained later)



2. From intermediate grammar into Greibach

1l.a)  Eliminate direct left recursion

Stepl:

» Before
A—Aal|b

o After
A—DbZ|b
Z—>aZla

» Remove the rule with direct left recursion, and create a new one with
recursion on the right

Step2:

» Before
A—>Aa|Ab|b|c

o After

A—>bZ|cZ|b]|c
Z—aZ|bZ|alb

» Remove the rules with direct left recursion, and create new ones with
recursion on the right

Step3:

» Before
A—>AB|BA|a
B—bjc

o After

A—>BAZ|aZ|BA|a
Z—>BZ|B
B—->bj|c

Transform A — uBv rules

» Before
A — uBb
B—wi|wil...] Wn
o After

Add A — uwib | uwib |...| uwnb
Delete A — uBb



Backaround Information for the Pumping Lemma for Context-Free Languages
« Definition: Let G =(V, T, P, S) be a CFL. If every production in P is of the form

A —BC
or A—a

where A, Band Careall inVVandaisinT, then G is in Chomsky Normal Form (CNF).

« Example:
S—AB|BA|aSb
A—a
B—b



Theorem: Let L be a CFL. Then L — {¢} isa CFL.

Theorem: Let L be a CFL not containing {€}. Then there exists a CNF grammar G such
that L = L(G).

Definition: Let T be a tree. Then the height of T, denoted h(T), is defined as follows:
— If T consists of a single vertex then h(T) =0
— If T consists of a root r and subtrees T1, Ta, ... Tk, then h(T) = max;{h(Ti)} +1

Lemma: Let G be a CFG in CNF. In addition, let w be a string of terminals where
A=>*w and w has a derivation tree T. If T has height h(T)>1, then |w| < 2™,

Proof: By induction on h(T) (exercise).

Corollary: Let G be a CFG in CNF, and let w be a string in L(G). If |w| > 2, where k >
0, then any derivation tree for w using G has height at least k+1.

Proof: Follows from the lemma.

. Pumping L emma for Context-Free L anguages

Lemma:
Let G = (V, T, P, S) be a CFG in CNF, and let n = 2Vl If z is a string in L(G) and |z| > n,
then there exist strings u, v, w, x and y in T* such that z=uvwxy and:

— |vx|>1 (e, v+ X =1)

— |vwx|<n

— w'wx'yisin L(G), forall i>0

Proof:
Since |z| = n = 2, where k = V|, it follows from the corollary that any derivation tree for
z has height at least k+1.

By definition such a tree contains a path of length at least k+1.

Consider the longest such path in the tree:



AUTOMATA THEORY AND COMPUTABILITY 17CS54

vield of Tisz

Such a path has:
— Length > k+1 (i.e., number of edges in the path is > k+1)
— At least k+2 nodes
— 1terminal

At least k+1 non-terminals

« Since there are only k non-terminals in the grammar, and since k+1 appear on this long
path, it follows that some non-terminal (and perhaps many) appears at least twice on this
path.

« Consider the first non-terminal that is repeated, when traversing the path from the leaf to
the root.

This path, and the non-terminal A will be used to break up the string z.

« Inaddition, (2) also tells us:

S =>* uAy 1)
=>* uvAXy (@)
=>* uV?AX%y (2)
=>* UV WXy (3)

« More generally:

S =>* uv'wxly for all i>=1
« And also:
S =>* uAy (1)
=>* uwy 3)
* Hence:

S =>* uviwx'y for all i>=0



« Consider the statement of the Pumping Lemma:

— What isn?
n= 2", where k is the number of non-terminals in the grammar.

—Why is |v| + [x] > 1?

Since the height of this subtree is > 2, the first production is A->V1V2. Since no non-
terminal derives the empty string (in CNF), either V1 or V2 must derive a non-empty
v or X. More specifically, if w is generated by V1, then x contains at least one symbol,
and if w is generated by V2, then v contains at least one symbol.

—  Why is Jvwx| £ n?
Observations:

« The repeated variable was the first repeated variable on the path from the
bottom, and therefore (by the pigeon-hole principle) the path from the leaf
to the second occurrence of the non-terminal has length at most k+1.

« Since the path was the largest in the entire tree, this path is the longest in
the subtree rooted at the second occurrence of the non-terminal. Therefore
the subtree has height <k+1. From the lemma, the yield of the subtree has
length < 2=n.

A

CFL Closure Properties

«  Theorem#1l:
The context-free languages are closed under concatenation, union, and Kleene closure.

*  Proof:
Start with 2 CFL L(H1) and L(H2) generated by H1 = (N1,T1,R1,s1) and H2 =
(N2,T2,R2,52).
Assume that the alphabets and rules are disjoint.

Concatenation:
Formed by L(H1)-L(H2) or a string in L(H1) followed by a string in L(H2) which can be




generated by L(H3) generated by H3 = (N3,T3,R3,s3). N3=N1 UN2, T3=T1 U T2, R3
=R1 U R2 U {s3 -->s1s2} where s3 ->s1s2 is a new rule introduced. The new rule
generates a string of L(H1) then a string of L(H2). Then L(H1) -L(H2) is context-free.

Union:

Formed by L(H1) U L(H2) or a string in L(H1) or a string in L(H2). It is generated by
L(H3) generated by H4 = (N4,T4,R4,54) where NA =N1 U N2, T4=T1U T2,and R4 =
R1 U R2 U {s4-->s1, s4 - s2}, the new rules added will create a string of L(H1) or
L(H2). Then L(H1) U L(H2) is context-free.

Kleene:

Formed by L(H1)* is generated by the grammar L(H5) generated by H5 = (N1,T1,R5,s1)
withR5 =R1 U {sl->e, s1->s1s1}. L(H5) includes e, every string in L(H1), and through
i-1 applications of s1->s1sl, every string in L(H1)i. Then L(H1)* is generated by H5 and
is context-free.

Theorem#2:
The set of context-free languages is not closed under complementation or intersection.

Proof:

Intersections of two languages L1712 can be defined in terms of the Complement and
Union operations as follows:

L1 MrL2 = m#* - (r* - L1) Co(o* - L2)

Therefore if CFL are closed under intersection then it is closed under compliment and if
closed under compliment then it is closed under intersection.

The proof is just showing two context-free languages that their intersection is not a
context-free language.

Choose L1 = {anbncm | m,n (1110} is generated by grammar H1 = {N1,T1,R1,s1}, where
N1={s, A B}
T1={a, b, c}
R1 = {sIAB,
A aAb,
Ae,
B Bc,
Be}.

Choose L2 = {ambncn | m,n H2 = {N2,T2,R2,s2}, where

N1={s, A B}

T1={a, b, c}

R2 = {s AB,

A aA,

A g

B bBc,

Be}.



Thus L1 and L2 are both context-free.

The intersection of the two languages is L3 = {anbncn | n

already been proven earlier in this paper to be not context-free. Therefore CFL are not
closed under intersections, which also means that it is not closed under complementation.

5. Pushdown Automata (PDA)

* Informally:
— A PDA is an NFA-¢ with a stack.
—Transitions are modified to accommodate stack operations.

* Questions:
—What is a stack?
—How does a stack help?

* A DFA can “remember” only a finite amount of information, whereas a PDA can “remember”
an infinite amount of (certain types of) information.

* Example:

{0"1" | 0=<n} Is not regular.

{0"1"| 0<n<k, for some fixed k} Is regular, for any fixed k.
*For k=3:

L = {e, 01, 0011, 000111}



*|n a DFA, each state remembers a finite amount of information.

*To get {0"1"| 0<n} with a DFA would require an infinite number of states using the preceding
technique.

* An infinite stack solves the problem for {0"1"| 0<n} as follows:
—Read all 0’s and place them on a stack
—Read all 1’s and match with the corresponding 0’s on the stack

* Only need two states to do this in a PDA

* Similarly for {0"1M0"™ |n,m>0}

Eormal Definition of a PDA

* A pushdown automaton (PDA) is a seven-tuple:
M=(Q,ZX,T,3, qo, o, F)

Q A finite set of states

)y A finite input alphabet

r A finite stack alphabet

do The initial/starting state, qo is in Q

20 A starting stack symbol, isinT’

F A set of final/accepting states, which is a subset of Q
d A transition function, where

3: Qx (2 U {&})xT - finite subsets of Q x I'*

* Consider the various parts of &:

QX (2 U {&}) xT -> finite subsets of Q x I'*

—Q on the LHS means that at each step in a computation, a PDA must consider its’ current state.

—I" on the LHS means that at each step in a computation, a PDA must consider the symbol on
top of its” stack.

—X2 U {g} onthe LHS means that at each step in a computation, a PDA may or may not consider
the current input symbol, i.e., it may have epsilon transitions.

—“Finite subsets” on the RHS means that at each step in a computation, a PDA will have several



options.
—Q on the RHS means that each option specifies a new state.

—I™* on the RHS means that each option specifies zero or more stack symbols that will replace
the top stack symbol.

* Two types of PDA transitions #1:
8(qa a, Z) = {(pl,Yl), (pZ,YZ),- i (pm,'Ym)}

—Current state is g
—Current input symbol is a

—Symbol currently on top of the stack z
—Move to state pi from q

—Replace z with vy; on the stack (leftmost symbol on top)
—Move the input head to the next input symbol

* Two types of PDA transitions #2:
S(qv €, Z) = {(pl,Yl), (pZ,YZ),- ce (pm,Ym)}

—Current state is ¢
—Current input symbol is not considered

—Symbol currently on top of the stack z
—Move to state pi from g

—Replace z with vy; on the stack (leftmost symbol on top)
—No input symbol is read

*Example: (balanced parentheses)

M= ({ai}, {5 973 {L, #}, 8, a1, #, D)

o:
1) 6(qy, ( #) = {(ax, L)}
2 6(qu, ), #) =0
3) 6(qu, (; L) ={(qs, LL)}
(4) 6(qu, ), L) ={(qu, &)}
(%) 0(qu, & #) = {(qu, &)}
(6) 6(q1, & L) =0

* Goal: (acceptance)
—Terminate in a non-null state
—Read the entire input string



—Terminate with an empty stack
* Informally, a string is accepted if there exists a computation that uses up all the input and leaves

the stack empty.

* Example Computation:

Current Input Stack Transition

(0) #

0) L# @ - Could have applied rule
) LL# (3) (5), but it would have

) L# 4) done no good

€ # 4)

€ - )

*Example PDA #1: For the language {x | x = wcw"and w in {0,1}*}
M = ({q17 qZ}, {07 17 C}’ {R’ Bv G}l 6: qla Ra Q)

o:
(1) d(q1, 0, R) = {(q1, BR)} 9) d(qs, 1, R) = {(q1, GR)}
(2)  d(qu 0, B) ={(a1, BB)} (10)  d(qu, 1, B) = {(a1, GB)}
(3)  6(qu 0, G) ={(q1, BG)} (11)  &(qu 1, G) ={(qs, GG)}

(4)  8(qu ¢, R)={(q, R)}

(5)  8(qu ¢, B)={(q2 B)}

(6)  8(qu ¢, G) ={(q, G)}

(7)  8(q2, 0, B) = {(q2, &)} (12)  3(q2 1, G) ={(q2, &)}
8)  8(qz & R)={(q #)}

* Notes:
—Only rule #8 is non-deterministic.
—Rule #8 is used to pop the final stack symbol off at the end of a computation.



* Example Computation:

(1)  8(qs 0, R)={(qs, BR)} (9)  &(qu 1, R) ={(qi, GR)}
(2)  8(qu 0, B) ={(a1, BB)} (10)  &(qs, 1, B) ={(qz, GB)}
(3)  3(q1 0, G) ={(a1, BG)} (11)  &(qu, 1, G) = {(q1, GG)}

(4)  8(qu ¢, R) ={(q2, R)}

(5)  d(qa, ¢, B)={(q2, B)}

(6)  d(qi, ¢, G) ={(q2,G)}

(7)  3(q2, 0, B) ={(q2 €)} (12) (g2, 1, G) ={(q2, &)}
(8)  8(q2 & R) ={(02, &)}

State Input Stack Rule Applied Rules Applicable
ot 01c10 R - (1)

01 1c10 BR @ (10)

g1 cl0 GBR (10) (6)

02 10 GBR (6) (12)

02 0 BR (12) @)

02 g R (7) (8)

g2 € € (8) -

* Example Computation:

(1) 8(qu 0, R) ={(au, BR)} (9)  8(qu 1, R)={(a, GR)}
(2)  8(qu 0,B)={(qu, BB)} (10)  8(qu, 1, B) = {(qu, GB)}
(3)  8(qu 0, G) ={(qs, BG)} (11)  8(qu 1, G) ={(q:, GG)}

(4)  8(qu ¢, R)={(q2, R)}
(5)  8(qu ¢, B)={(q2 B)}
(6)  8(qu ¢ G)={(g2 G)}

(7)  8(qz2 0, B)={(d2, )} (12)  6(q2 1, G) ={(92 ¢)}
(8) (g2 & R)={(g2 e)}

State Input Stack Rule Applied

01 1cl R

0 cl GR (9)

92 1 GR (6)

W) g R (12)

02 € € (8)

* Definition: |—* is the reflexive and transitive closure of |—.
—I |—* 1 for each instantaneous description |
—Ifl|—Jand J|—* Kthen | |—* K



*Intuitively, if I and J are instantaneous descriptions, then | |—* J means that J follows from | by
zero or more transitions.

« Definition: Let M = (Q, X, T', 3, qo, Zo, F) be a PDA. The language accepted by empty stack,
denoted Le(M), is the set

{w | (o, W, z0) |—* (p, &, €) for some p in Q}

o Definition: Let M = (Q, X, T', 8, qo, Zo, F) be a PDA. The language accepted by final state,
denoted Lr(M), is the set

{w | (o, W, Z0) —* (p, &, y) for some p in Fand y in T'*}

* Definition: Let M = (Q, %, I', 8, qo, 2o, F) be a PDA. The language accepted by empty stack and
final state, denoted L(M), is the set

{w | (9o, W, z0) —* (p, &, €) for some p in F}
sLemma 1: Let L = Lg(My) for some PDA M. Then there exits a PDA M such that L =Lr(M).
eLemma 2: Let L = Lr(M31) for some PDA Mi. Then there exits a PDA M such that L =Lg(M>).

* Theorem: Let L be a language. Then there exits a PDA M such that L = L¢(M) if and only
if there exists a PDA My such that L = Lg(M>).

*Corollary: The PDAs that accept by empty stack and the PDAs that accept by final state define
the same class of languages.

*Note: Similar lemmas and theorems could be stated for PDAs that accept by both final state and
empty stack.

Greibach Normal Form (GNF)

* Definition: Let G = (V, T, P, S) be a CFL. If every production in P is of the form
A — aa

Where Aisin V,aisin T, and a is in V*, then G is said to be in Greibach Normal Form
(GNF).

* Example:
S—aAB|bB
A —aA | a



B —-hbB | C
*Theorem: Let L be a CFL. Then L — {&} isa CFL.

*Theorem: Let L be a CFL not containing {&}. Then there exists a GNF grammar G such that L
= L(G).

eLemma 1: Let L be a CFL. Then there exists a PDA M such that L = Le(M).

*Proof: Assume without loss of generality that € is not in L. The construction can be modified to
include ¢ later.

Let G=(V, T,P,S)be a CFG, and assume without loss of generality that G is in GNF.
Construct M = (Q, %, T, 9, q, z, D) where:

o: forallainXand AinT, d(q, a, A) contains (q, y) if A —ay is in P or rather:
3(q,a,A)={(0,y) |A—ayisinPandyisinI'*}, forallainZand AinT

*For a given string x in 2* , M will attempt to simulate a leftmost derivation of x with G.

* Example #1: Consider the following CFG in GNF.

S—>aS G isin GNF
S—>a L(G) =a+
Construct M as:

Q={q}

>=T={a}

r=v={S}

z=S

(g, &, S) ={(a, S), (9, &)}
3(q,e,8)=0

«Example #2: Consider the following CFG in GNF.

(1) S—>aA
(2 S—>aB
(3) A —>aA G isin GNF

(4) A—>aB L(G) = atbh+



(5) B—>DbB
(6) B—>b

Construct M as:
Q={q}
>=T={a, b}
Ir=v={S,A B}
z=S

(1)d(q, &, S) ={(qg, A), (q, B)} From productions #1 and 2, S->aA, S->aB

(2)d(q, a, A) ={(g, A), (q, B)} From productions #3 and 4, A->aA, A->aB

(3) 3(q,a,B)=0

(4) 3(q, b, S)=0

(5) d(q,b,A)=0@

(6)3(q, b, B) ={(q, B), (g, €)} From productions #5 and 6, B->bB, B->b

) 6(q,¢,S) =9

(8) (q,e,A) =0

9) 3(q, &, B)=0 Recall 5: Q x (Z U {&}) x I — finite
subsets of Q x I'*

*For a string w in L(G) the PDA M will simulate a leftmost derivation of w.
—Ifw is in L(G) then (g, w, zo) |—* (q, &, €)
—If (q, w, zo) > (q, &, €) then w is in L(G)

«Consider generating a string using G. Since G is in GNF, each sentential form in a leftmost
derivation has form:

« And each step in the derivation (i.e., each application of a production) adds a terminal and some
non-terminals.
A1 —> tina
=> t1to.. titi+1 0A1A2.. . Am

«Each transition of the PDA simulates one derivation step. Thus, the i"" step of the PDAs’
computation corresponds to the i" step in a corresponding leftmost derivation.

« After the i" step of the computation of the PDA, tito...ti+1 are the symbols that have already



been read by the PDA and aA1Az...Amare the stack contents.

*For each leftmost derivation of a string generated by the grammar, there is an equivalent
accepting computation of that string by the PDA.

* Each sentential form in the leftmost derivation corresponds to an instantaneous description in
the PDA’s corresponding computation.

*For example, the PDA instantaneous description corresponding to the sentential form:
=> tito. . ti A1A2.. . Anm

would be: (9, tistiv2...th, A1A2...Am)

* Example: Using the grammar from example #2:

S=>aA 1)
=>aaA (3)
=>aaaA (3)
=> aaaaB 4)
=> aaaabB (5)
=> aaaabb (6)

* The corresponding computation of the PDA:

*(qg, aaaabb, S) |— (q, aaabb, A) (11
|— (q, aabb, A) (2)/1
|— (q, abb, A) (2)/1
[— (a. bb, B) (212
[—(a. b, B) (6)/1
|_ (q1 & 8) (6)/2

—String is read

—Stack is emptied

—Therefore the string is accepted by the PDA
«Example #3: Consider the following CFG in GNF.

(1) S —>aABC

(2 A—>a G isin GNF
3) B—>b

4) C—>CcAB

(5) C—>cC



Construct M as:

Q=A{a}
>=T={a,b,c}
r=v={s A B,C}
Z=S
1) d(q, a, S) ={(q, ABC)} S->aABC 9) d(q,c,S)=0@
(2) 6(q, a, A) ={(a, &)} A->a (10) 3(q,c,A)=0
3) d(q,a,B)=0@ (11) &(q,c,B)=0@
4) 3(q,a,C)=0@ C->cAB|cC (12) d(q.c,C)={(q,
AB), (g, C))

(5) d(q, b, S) =0 (13) 8(q,&,S)=0
(6) d(q,b,A) =0 (14) 6(q, &, A) = @
(7) (g, b, B) = {(a, ©)} B->b (15) 3(q, &, B) = @
(8) 3(q,b,C) =0 (16) 94(q,&,C)=0

* Notes:

—Recall that the grammar G was required to be in GNF before the construction could be applied.
—As a result, it was assumed at the start that € was not in the context-free language L.

*Suppose gisinL:
1) First, let L’ =L — {&}
Fact: If Lisa CFL, then L’ =L — {¢} is a CFL.
By an earlier theorem, there is GNF grammar G such that L’ = L(G).
2) Construct a PDA M such that L’ = Lg(M)
How do we modify M to accept €?

Add 5(q, & S) = {(g, £)}? No!

«Counter Example:

Consider L = {g, b, ab, aab, aaab, ...}
Then L’ ={b, ab, aab, aaab, ...}



*The GNF CFG for L’:
(1) S—>aS
2) S—>b

*The PDA M Accepting L’:

Q={a}
Y=T={a b}
r=v={s}
z=S
6(q, 8, S) ={(a, )}
5(q, b, S) = {(q, &)}
3(q,e,S)=0
*1f3(q, &, S) = {(q, )} is added then:

L(M) = {g, a, aa, aaa, ..., b, ab, aab, aaab, ...}

3) Instead, add a new start state q’ with transitions:
3(q’, &, S) = {(q’, ©), (a4, S)}
eLemma 1: Let L be a CFL. Then there exists a PDA M such that L = Lg(M).
«Lemma 2: Let M be a PDA. Then there exists a CFG grammar G such that Lg(M) = L(G).

*Theorem: Let L be a language. Then there exists a CFG G such that L = L(G) iff there exists a
PDA M such that L = Le(M).

*Corollary: The PDAs define the CFLs.

Equivalence of CEG to PDAsS

e Example: Consider the grammar for arithmetic expressions we introduced earlier.
It is reproduced below for convenience. G = ({E, T, F}, {n, v, +, *, (, )}, P, E), where



E={ 1 E - E + T,
2: E - T,
3: T - T F,
4: - F,
5 F - n,
6: F - v,
7. F - ( E ),
}

Suppose the input to our parser is the expression, n*(v+n*v). Since G is unambiguous
this expression has only one leftmost derivation, p = 2345712463456. We describe the
behavior of the PDA in general, and then step through its moves using this derivation to
guide the computation.

PDA Simulator:

o Step 1: Initialize the stack with the start symbol (E in this case). The start symbol
will serve as the bottom of stack marker (Zo).

o Step 2: Ignoring the input, check the top symbol of the stack.

= Case (a) Top of stack is a nonterminal, “X”’: non-deterministically decide
which
X-rule to use as the next step of the derivation. After selecting a rule,
replace X in the stack with the rightpart of that rule. If the stack is non-
empty, repeat step 2. Otherwise, halt (input may or may not be empty.)

= Case(b) Top of stack is a terminal, “a”: Read the next input. If the input
matches a, then pop the stack and repeat step 2.
Otherwise, halt (without popping “a” from the stack.)

o This parsing algorithm by showing the sequence of configurations the parser
would assume in an accepting computation for the input, n*(v+n*v).
Assume “q0” is the one and only state of this PDA.

o p (leftmost derivation in G) = 2345712463456
(90, n*(v+n*v), E)

2=M (g0, n*(v+n*v), T)
3=M (g0, n*(v+n*v), T*F)

4=M (g0, n*(v+n*v), F*F)



5=M (q0, n*(v+n*v), n*F) read=>M (g0, *(v+n*v), *F)
read=M (q0, (v+n*v), F)

7=M (g0, (v+n*v), (E)) read=M (q0, v+n*v), E) )

1=M (O, v+n*v),E+T) )

2=M (g0, v+n*v), T+T))

4=M (0, v+n*v), F+T))

6=M (g0, v+n*v), v+T) ) read=M (g0, +n*Vv), +T))
read=M (g0, n*v), T))

3=M (g0, n*v), T*F))

4=M (g0, n*V), F*F) )

5=M (g0, n*v), n*F)) read=M (g0, *v), *F) )
read=M (qO, V), F) )

6=M (q0, v), v)) read=M (0, ),))

read=M (qoO, I, I') accept!

Deterministic PDAs and DCFLs
e Definition: A Deterministic Pushdown Automaton (DPDA) is a 7-tuple,

M=(Q,Z,T,39, qo, Zo, A),
where
Q = finite set of states,
¥ = input alphabet,
I" = stack alphabet,

go € Q =the initial state,
Zo I = bottom of stack marker (or initial stack symbol), and

d: Q x (X U{L}) xI' > Q x I'* = the transition function (not necessarily total).
Specifically,

[1] ifd(q, a, Z) is defined for some a X and Z €T, then d(q, L, Z) = ® and
ld(g, a, 2)|=1.



[2] Conversely, if d(q, L, Z) # @, for some Z, then d(q, a, Z) = ®, for all a X,
and |d(q, L, 2)|=1.

e NOTE: DPDAs can accept their input either by final state or by empty stack — just as for
the non-deterministic model. We therefore define Dsw and Dste, respectively, as the
corresponding families of Deterministic Context-free Languages accepted by a DPDA by
empty stack and final state.



MODULE 1V:

Turing Machines

The Halting Problem

The Universal language

A Church- Turing thesis
Linear Bounded Automata.

1. Turing Machines (TM)

e Generalize the class of CFLs:

akrowrE=

i Recursively enumerable languages are also known as type 0 languages.
i Context-sensitive languages are also known as type 1 languages.
i Context-free languages are also known as type 2 languages.

i Regular languages are also known as type 3 languages.

®*  TMs model the computing capability of a general purpose computer, which informally can
be described as:

— Effective procedure
*Finitely describable
*Well defined, discrete, “mechanical” steps
* Always terminates
— Computable function
* A function computable by an effective procedure

° TMs formalize the above notion.

1.1 Deterministic Turing Machine (DTM)

* Two-way, infinite tape, broken into cells, each containing one symbol.
* Two-way, read/write tape head.

® Finite control, i.e., a program, containing the position of the read head, current symbol being
scanned, and the current state.

® Aninput string is placed on the tape, padded to the left and right infinitely with blanks,
read/write head is positioned at the left end of input string.

* In one move, depending on the current state and the current symbol being scanned, the TM 1)
changes state, 2) prints a symbol over the cell being scanned, and 3) moves its’ tape head one



cell left or right.
® Many modifications possible.

1.2 Formal Definition of a DTM

— ADTMi s aseven-tuple:
M=(Q,XT,95,0qo,B,F)

A finite set of states

A finite tape alphabet

A distinguished blank symbol, which is in T’

A finite input alphabet, which is a subset of I'— {B}
The initial/starting state, qo is in Q

A set of final/accepting states, which is a subset of Q
A next-move function, which is a mapping from
QxI'—>QxIx{L,R}

MmO

O/J'l'lioz

Intuitively, 8(q,s) specifies the next state, symbol to be written and the direction of tape
head movement by M after reading symbol s while in
state Q.

*  Example #1: {0"1"| n >=1}

0 1 X Y B
G (@QuXR) - - @, Y,R) -
Qs (@.0R) (@Y L) - @.Y,R) -
2 (0L - (@, X,R) (G Y,L) -
0 - - - (@ Y,R) (44 B/R)

G - . . . .



—  Example #1: {0"1"| n >=1}

Qo
Q1
Q2
03
Qs

0 1 X Y B
(91, X, R) - - (93 Y, R) -
(91,0, R) (92, Y, L) - (g1, Y, R) -
(92,0, L) - (g0, X, R) (92,Y,L) -
- - - (04, B, R)

The TM basically matches up 0’s and 1°’s
Qg is the “scan right” state

g2 is the “scan left” state

ga is the final state

(93, Y, R)

—  Example #2: {w | wis in {0,1}* and w ends with a 0}

0

00

10

10110

Not ¢

Q ={do, 1, 02}

I ={0, 1, B}

=10, 1}

F= {0}

0 1 B

do (do, 0, R) (%, 1, R) (g1, B, L)
01 (02,0, R) - -
02 - - -

Qo IS the “scan right” state
. is the verify O state



—  Definition: Let M = (Q, =, T, §, qo, B, F) be a TM, and let w be a string in *. Then w is
accepted by M iff

QoW | —* aupo
Where p isin Fand a; and oz are in I'*

—  Definition: Let M = (Q, X, T, 3, qo, B, F) be a TM. The language accepted by M, denoted
L(M), is the set
L={w | wis in Z* and w is accepted by M}
In contrast to FA and PDAs, if a TM simply passes through a final state then the string is accepted.
«  Given the above definition, no final state of an TM need have any exiting transitions.
Henceforth, this is our assumption.
« Ifxisnotin L(M) then M may enter an infinite loop, or halt in a non-final state.
«  Some TMs halt on all inputs, while others may not. In either case the language
defined by TM is still well defined.

—  Definition: Let L be a language. Then L is recursively enumerable if there existsa TM M
such that L = L(M).

— IfLisr.e. thenL = L(M) for some TM M, and
«If x is in L then M halts in a final (accepting) state.
«If x is not in L then M may halt in a non-final (non-accepting) state, or loop
forever.

—  Definition: Let L be a language. Then L is recursive if there exists a TM M such that L =
L(M) and M halts on all inputs.

— If L isrecursive then L = L(M) for some TM M, and
«If x is in L then M halts in a final (accepting) state.
«If x is not in L then M halts a non-final (non-accepting) state.

— The set of all recursive languages is a subset of the set of all recursively enumerable
languages

— Terminology is easy to confuse: A TM is not recursive or recursively enumerable,
rather a language is recursive or recursively enumerable.
—  Observation: Let L be anr.e. language. Then there is an infinite list Mo, My, ... of TMs

such that L = L(M;).

—  Question: Let L be a recursive language, and Mo, My, ... a list of all TMs such that L =
L(M;), and choose any i>=0. Does M; always halt?

Answer: Maybe, maybe not, but at least one in the list does.



Question: Let L be a recursive enumerable language, and Mo, My, ... a list of all TMs such
that L = L(M;), and choose any i>=0. Does M; always halt?

Answer: Maybe, maybe not. Depending on L, none might halt or some may halt.

If L is also recursive then L is recursively enumerable.

Question: Let L be a recursive enumerable language that is not recursive (L is in r.e. —r), and

M0| Mly .

. alist of all TMs such that L = L(M;), and choose any i>=0. Does M; always halt?

Answer: Nol! If it did, then L would not be inr.e. —r, it would be recursive.

Let M bea TM.

Question: IsL(M) r.e.?
Answer: Yes! By definition it is!

Question: Is L(M) recursive?
Answer: Don’t know, we don’t have enough information.

Question: IsL(M) inr.e —r?
Answer: Don’t know, we don’t have enough information.

Let M be a TM that halts on all inputs:

Question: Is L(M) recursively enumerable?
Answer: Yes! By definition it is!

Question: Is L(M) recursive?
Answer: Yes! By definition it is!

Question: IsL(M) inr.e —r?
Answer: No! It can’t be. Since M always halts, L(M) is recursive.

Let M be a TM.

As noted previously, L(M) is recursively enumerable, but may or may not be
recursive.

Question: Suppose that L(M) is recursive. Does that mean that M always halts?
Answer: Not necessarily. However, some TM M’ must exist such that L(M”) = L(M)
and M’ always halts.

Question: Suppose that L(M) is inr.e. —r. Does M always halt?
Answer: No! If it did then L(M) would be recursive and therefore not inr.e. —r.

Let M be a TM, and suppose that M loops forever on some string x.



*  Question: Is L(M) recursively enumerable?
Answer: Yes! By definition it is.

«  Question: Is L(M) recursive?
Answer: Don’t know. Although M doesn’t always halt, some other TM M’ may exist

such that L(M”) = L(M) and M’ always halts.

« Question: IsL(M) inr.e. —r?
Answer: Don’t know.

Closure Properties for Recursive and Recursively Enumerable Languages

®  TMs Model General Purpose Computers:

« IfaTM cando it, so can a GP computer
« Ifa GP computer can do it, then so cana TM

If you want to know if a TM can do X, then some equivalent question are:
«  Can a general purpose computer do X?
« Cana C/C++/Javaletc. program be written to do X?

For example, is a language L recursive?
« Can a C/C++/Javaletc. program be written that always halts and accepts L?

®*  TM Block Diagrams:
« If L is a recursive language, then a TM M that accepts L and always halts can be
pictorially represented by a “chip” that has one input and two outputs.

« If Lisarecursively enumerable language, then a TM M that accepts L can be
pictorially represented by a “chip” that has one output.

«  Conceivably, M could be provided with an output for “no,” but this output cannot be
counted on. Consequently, we simply ignore it.

—  Theorem: The recursive languages are closed with respect to complementation, i.e., if L is
a recursive language, then so is

Proof: Let M be a TM such that L = L(M) and M always halts. Construct TM M’ as



AUTOMATA THEORY AND COMPUTABILITY 17CS54

OITOWS.

M*
Ves

———»  ves
S o<
no

Note That:
— M’ accepts iff M does not
— M’ always halts since M always halts

W

From this it follows that the complement of L is recursive. ¢

Theorem: The recursive languages are closed with respect to union, i.e., if Lyand L are
recursive languages, then so Is

Proof: Let M1 and M2 be TMs such that Ly = L(M3) and Lz = L(M2) and M1 and M2 always
halts. Construct TM M’ as follows:

Note That:
«  LM’)=L(M1) U L(My2)
«L(M’) is a subset of L(M1) U L(M>)
*L(M1) U L(My) is a subset of L(M")
« M’ always halts since M1 and M2 always halt

It follows from this that Ls = L1 U L2 isrecursive.

Theorem: The recursive enumerable languages are closed with respect to union, i.e., if Ly
and L are recursively enumerable languages, then so is Ls = L1 UL>

Proof: Let M1 and M2 be TMs such that L1 = L(M1) and L2 = L(Mz). Construct M’ as
follows:



M ves ves
L

L 4

w

W =

ves

M,

L 4

Note That:
—  L(M’)=L(Mz) U L(My)
<L(M) is a subset of L(M1) U L(M>)
-L(M1) U L(M>) is a subset of L(M”)
— M’ halts and accepts iff M1 or M2 halts and accepts

It follows from this that is recursively enumerable.

2. The Halting Problem — Backaround

Definition: A decision problem is a problem having a yes/no answer (that one presumably
wants to solve with a computer). Typically, there is a list of parameters on which the
problem is based.

— Givena list of numbers, is that list sorted?

—  Givenanumber X, is x even?

— Given a C program, does that C program contain any syntax errors?
— Givena TM (or C program), does that TM contain an infinite loop?

From a practical perspective, many decision problems do not seem all that interesting.
However, from a theoretical perspective they are for the following two reasons:

—  Decision problems are more convenient/easier to work with when proving
complexity results.

— Non-decision counter-parts are typically at least as difficult to solve.

Notes:
— The following terms and phrases are analogous:

Algorithm - A halting TM program
Decision Problem - A language
(un)Decidable - (non)Recursive



Statement of the Halting Problem

Practical Form: (P1)

Input: Program P and input |.
Question: Does P terminate on input 1?

Theoretical Form: (P2)

Input: Turing machine M with input alphabet X and string w in X*.
Question: Does M halt on w?

A Related Problem We Will Consider First: (P3)

Input: Turing machine M with input alphabet X and one final state, and string w in X*.
Question: Is w in L(M)?

Analogy:

Input: DFA M with input alphabet X and string w in Z*.
Question: Is w in L(M)?

Is this problem decidable? Yes!

¢ Over-All Approach:

We will show that a language Lg is not recursively enumerable

From this it will follow that s not recursive
Using this we will show that a language Ly is not recursive

From this it will follow that the halting problem is undecidable.

3. The Universal Lanquage

. Define the language L as follows:

Ly = {x|xisin {0, 1}* and x = <M,w> where M is a TM encoding and w is in L(M)}

. Let x be in {0, 1}*. Then either:

1. X doesn’t have a TM prefix, in which case x is not in Ly

2. X hasa TM prefix, i.e., x = <M,w> and either:

a  Wisnotin L(M), in which case x is not in Ly

by W isin L(M), in which case x is in Ly



Compare P3 and L.:

(P3):

Input: Turing machine M with input alphabet X and one final state, and string w in Z*.

Notes:

Ly is P3 expressed as a language

Asking if Ly is recursive is the same as asking if P3 is decidable.

We will show that L is not recursive, and from this it will follow that P3 is un-
decidable.

From this we can further show that the halting problem is un-decidable.

Note that Ly is recursive if M is a DFA.

4. Church-Turing Thesis

There is an effective procedure for solving a problem if and only if there is a TM that
halts for all inputs and solves the problem.

There are many other computing models, but all are equivalent to or subsumed by TMs.
There is no more powerful machine (Technically cannot be proved).

DFAs and PDAs do not model all effective procedures or computable functions, but only
a subset.

If something can be “computed” it can be computed by a Turing machine.

Note that this is called a Thesis, not a theorem.

It can’t be proved, because the term “can be computed” is too vague.

But it is universally accepted as a true statement.

Given the Church-Turing Thesis:

o What does this say about "computability"?
o Are there things even a Turing machine can't do?

o Ifthere are, then there are things that simply can't be "computed."

= Not with a Turing machine



= Not with your laptop
= Not with a supercomputer

o There ARE things that a Turing machine can't do!!!
« The Church-Turing Thesis:

o In other words, there is no problem for which we can describe an algorithm that
can’t be done by a Turing machine.

The Universal Turing machine

« If Tm’s are so damned powerful, can’t we build one that simulates the behavior of any
Tm on any tape that it is given?

» Yes. This machine is called the Universal Turing machine.
« How would we build a Universal Turing machine?

o We place an encoding of any Turing machine on the input tape of the Universal
Tm.

o The tape consists entirely of zeros and ones (and, of course, blanks)

o Any Tm is represented by zeros and ones, using unary notation for elements and
zeros as separators.

« Every Tm instruction consists of four parts, each a represented as a series of 1's and
separated by 0's.

 Instructions are separated by 00.

« We use unary notation to represent components of an instruction, with
» 0=1,
» 1=11,

> 2=111,



> 3=1111,
» n=111..111 (n+1 1's).
Weencodegnasn+11's

We encode symbol a,asn+11's

We encode move left as 1, and move right as 11
1111011101111101110100101101101101100
g3, a2, 4, @2, L Jo, a1, Q1, a1, R

Any Turing machine can be encoded as a unique long string of zeros and ones,
beginning with a 1.

Let Tn be the Turing machine whose encoding is the number n.

5. Linear Bounded Automata

A Turing machine that has the length of its tape limited to the length of the input string is
called a linear-bounded automaton (LBA).

A linear bounded automaton is a 7-tuple nondeterministic Turing machine M = (Q, S, G,
d, 0o,Gaccept, Qreject) €XCEPL that:

a.  There are two extra tape symbols < and >, which are not elements of G.

b.  The TM begins in the configuration (qo<x>), with its tape head scanning the
symbol < in cell 0. The > symbol is in the cell immediately to the right of the input
string X.

c.  The TM cannot replace < or > with anything else, nor move the tape head left
of < or right of >.



Context-Sensitivity

Context-sensitive production any production 1 1 11 satisfying |[P<| .

Context-sensitive grammar any generative grammar G = ([, [1, I, 1 ) such that every
production in IT context-sensitive.

No empty productions.

Context-Sensitive Language

Language L context-sensitive if there exists context-sensitive grammar G such that either
L=L(G)orL=L(G)u{}

Example:
The language L = {a"b"c": n> 1} is a C.S.L. the grammar is

S = abc/ aAbc,
Ab > bA,
AC - Bbce,
bB - Bb,
aB - aa/ aaA
The derivation tree of a*b%c® is looking to be as following
S = aAbc
= abAc
= abBbcc
= aBbbcc = aaAbbcc
= aabAbcc
= aabbAcc = aabbBbccc
= aabBbbccc
= aaBbbbccc

= aaabbbccc



CSG =1LBA
A language is accepted by an LBA iff it is generated by a CSG.

Just like equivalence between CFG and PDA

Given an x € CSG G, you can intuitively see that and LBA can start with S, and
nondeterministically choose all derivations from S and see if they are equal to the input
string x. Because CSL’s are non-contracting, the LBA only needs to generate derivations
of length < |x|. This is because if it generates a derivation longer than |x|, it will never be
able to shrink to the size of |x|.



MODULEV

=

Chomsky Hierarchy Languages
Turing Reducibility
3. TheClassP

N

-

Chomsky Hierarchy of Languages

e A containment hierarchy (strictly nested sets) of classes of formal grammars

The Hierarchy

Class Grammars Languages Automaton

Type-0Unrestricted Recursively enumerable Turing machine
(Turing-recognizable)

none Recursive Decider

(Turing-decidable)

Type-1 Context-sensitive Context-sensitive Linear-bounded
Type-2 Context-free Context-free Pushdown
Type-3 Regular Regular Finite

Type 0 Unrestricted:

Languages defined by Type-0 grammars are accepted by Turing machines .

Rules are of the form: a — f, where a and £ are arbitrary strings over a vocabulary V and
oaFe

Type 1 Context-sensitive:

Languages defined by Type-1 grammars are accepted by linear-bounded automata.

Syntax of some natural languages (Germanic)



Rules are of the form:
aAp — aBf
S—e¢

where



Type 2 Context-free:

Languages defined by Type-2 grammars are accepted by push-down automata.
Natural language is almost entirely definable by type-2 tree structures
Rules are of the form:

A—a

Where

A€EN

a € (N U X)*

Type 3 Reqular:

Languages defined by Type-3 grammars are accepted by finite state automata
Most syntax of some informal spoken dialog
Rules are of the form:
A — ¢
A — a
A —aB
where

A, BENanda €X

The Universal Turing Machine

» If Tm’s are so damned powerful, can’t we build one that simulates the behavior of any
Tm on any tape that it is given?



» Yes. This machine is called the Universal Turing machine.
» How would we build a Universal Turing machine?
» We place an encoding of any Turing machine on the input tape of the Universal
Tm.
» The tape consists entirely of zeros and ones (and, of course, blanks)

» Any Tm is represented by zeros and ones, using unary notation for elements and
zeros as separators.

» Every Tm instruction consists of four parts, each a represented as a series of 1's and
separated by 0's.

> Instructions are separated by 00.

» We use unary notation to represent components of an instruction, with

» 0=1,

» 1=11,
» 2=111,
» 3=1111,

> n=111..111 (n+1 1's).
» Weencodegnasn+11's
» We encode symbolanbasn+11's
» We encode move left as 1, and move right as 11
1111011101111101110100101101101101100
03, a2, G4, a2, L do, a1, O, a1, R

» Any Turing machine can be encoded as a unique long string of zeros and ones, beginning
with a 1.

» Let T, be the Turing machine whose encoding is the number n.



2. Turing Reducibility

« Alanguage A is Turing reducible to a language B, written A <t B, if A is decidable
relative to B

« Below it is shown that Etwm is Turing reducible to EQtwm
* Whenever A is mapping reducible to B, then A is Turing reducible to B
— The function in the mapping reducibility could be replaced by an oracle

« Anoracle Turing machine with an oracle for EQtm can decide Etm



TEX™ = «On input <M>

1. Create TM My such that L(M1) =&
M1 has a transition from start state to reject state for every element of 2.
1. Call the EQTm oracle on input <M,M>>

2. If it accepts, accept; if it rejects, reject”

o TEO™ decides Etm

« Ermis decidable relative to EQtm

* Applications

« If A<y B and B is decidable, then A isdecidable

« If A<rB and A is undecidable, then B is undecidable

« If A<yB and B is Turing-recognizable, then A is Turing-recognizable

« If A<rB and A is non-Turing-recognizable, then B is non-Turing-recognizable

3. The class P

A decision problem D is solvable in polynomial time or in the class P, if there exists an
algorithm A such that

A Takes instances of D as inputs.

A always outputs the correct answer “Yes” or “No”.

There exists a polynomial p such that the execution of A on inputs of size n always
terminates in p(n) or fewer steps.

EXAMPLE: The Minimum Spanning Tree Problem is in the class P.

The class P is often considered as synonymous with the class of computationally
feasible problems, although in practice this is somewhat unrealistic.

The class NP

A decision problem is nondeterministically polynomial-time solvable or in the class NP if
there exists an algorithm A such that

A takes as inputs potential witnesses for “yes” answers to problem D.
A correctly distinguishes true witnesses from false witnesses.



« There exists a polynomial p such that for each potential witnesses of each instance of
size n of D, the execution of the algorithm A takes at most p(n) steps.

« Think of a non-deterministic computer as a computer that magically “guesses” a
solution, then has to verify that it is correct

o Ifasolution exists, computer always guesses it

o One way to imagine it: a parallel computer that can freely spawn an infinite
number of processes

= Have one processor work on each possible solution
= All processors attempt to verify that their solution works
= [faprocessor finds it has a working solution

o So: NP = problems verifiable in polynomial time

o Unknown whether P = NP (most suspect not)

NP-Complete Problems

*  We will see that NP-Complete problems are the “hardest” problems in NP:
o Ifany one NP-Complete problem can be solved in polynomial time.

o Then every NP-Complete problem can be solved in polynomial time.
o And in fact every problem in NP can be solved in polynomial time (which would
show P = NP)
o Thus: solve hamiltonian-cycle in O(n'®) time, you’ve proved that P = NP. Retire
rich & famous.
* The crux of NP-Completeness is reducibility

o Informally, a problem P can be reduced to another problem Q if any instance of P
can be “easily rephrased” as an instance of Q, the solution to which provides a
solution to the instance of P

= What do you suppose “easily” means?
= This rephrasing is called transformation
o Intuitively: If P reduces to Q, P is “no harder to solve” than Q
* Anexample:
o P: Givenaset of Booleans, is at least one TRUE?

o Q: Given a set of integers, is their sum positive?



o Transformation: (X1, X2, ..., Xn) = (Y1, Y2, ..., yn) Where yi= 1 if xi= TRUE, yi=0

if xi=FALSE

Another example:

©)

Solving linear equations is reducible to solving quadratic equations

= How can we easily use a quadratic-equation solver to solve linear
equations?

Given one NP-Complete problem, we can prove many interesting problems NP-Complete

©)

(@]

o

(@]

NP Hard

Graph coloring (= register allocation)
Hamiltonian cycle

Hamiltonian path

Knapsack problem

Traveling salesman

Job scheduling with penalties, etc.

e Definition: Optimization problems whose decision versions are NP- complete are
called NP-hard.

e Theorem: If there exists a polynomial-time algorithm for finding the optimum in

any NP-hard problem, then P = NP.

Proof: Let E be an NP-hard optimization (let us say minimization) problem, and let A
be a polynomial-time algorithm for solving it. Now an instance J of the corresponding
decision problem D is of the form (I, c), where | is an instance of E, and c is a
number. Then the answer to D for instance J can be obtained by running A on | and
checking whether the cost of the optimal solution exceeds c. Thus there exists a
polynomial-time algorithm for D, and NP-completeness of the latter implies P= NP.



