

**COURSE MODULES OF THE SUBJECT TAUGHT FOR THE ODD SESSION 2025**

## Course Syllabi with CO's

|                                                                                                 |
|-------------------------------------------------------------------------------------------------|
| 1 B.S.Grewal: "Higher Engineering Mathematics", Khanna publishers, 44th Ed. 2018                |
| 2. E.Kreyszig: "Advanced Engineering Mathematics", John Wiley & Sons, 10th Ed. (Reprint), 2016. |

### List of Reference Books

- 1.V.Ramana: "Higher Engineering Mathematics" McGraw-Hill Education, 11th Ed.
- 2.Srimanta Pal & Subodh C. Bhunia: "Engineering Mathematics" Oxford University Press, 3rd Reprint, 2016.
3. N.P Bali and Manish Goyal: "A textbook of Engineering Mathematics" Laxmi Publications, Latest edition.
4. C. Ray Wylie, Louis C. Barrett: "Advanced Engineering Mathematics" McGraw - Hill Book Co. Newyork, Latested.
5. Gupta C.B, Sing S.R and Mukesh Kumar: "Engineering Mathematic for Semester I and II", Mc- Graw Hill Education(India) Pvt. Ltd 2015.
- 6.K.Dass and Er. Rajnish Verma: "Higher Engineering Mathematics" S.Chand Publication (2014).
7. James Stewart: "Calculus" Cengage publications, 7th edition, 4th Reprint 2019.

### List of URLs, Text Books, Notes, Multimedia Content, etc

<http://nptel.ac.in/courses.php?disciplineID=111>

- [http://www.class-central.com/subject/math\(MOOCs\)](http://www.class-central.com/subject/math(MOOCs))
- <http://academicearth.org/>
- VTU e-Shikshana Program

|                        |                                                                                                                                                                                      |
|------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <b>Course Outcomes</b> | <b>Course Outcomes:</b><br><b>Course outcome (Course Skill Set)</b><br>At the end of the course, the student will be able to :                                                       |
|                        | 1. Understand that physical systems can be described by differential equations and solve such equations                                                                              |
|                        | 2. Make use of correlation and regression analysis to fit a suitable mathematical model for statistical data                                                                         |
|                        | 3. Demonstrate the Fourier series to study the behavior of periodic functions and their applications in system communications, digital signal processing, and field theory.          |
|                        | 4. To use Fourier transforms to analyze problems involving continuous-time signals and to apply Z-Transform techniques to solve difference equations                                 |
|                        | 5. Apply discrete and continuous probability distributions in analyzing the probability models arising in the engineering field. Demonstrate the validity of testing the hypothesis. |

**Internal Assessment Marks:** For the Assignment component of the CIE, there are 25 marks and for the Internal Assessment Test component, there are 25 marks.

### The Correlation of Course Outcomes (CO's) and Program Outcomes (PO's)

| Subject Code:           | BMATE301         | TITLE Mathematics III for EE Engineering |     |     |     |     |     |     | Faculty Name: |      |      |      |   |
|-------------------------|------------------|------------------------------------------|-----|-----|-----|-----|-----|-----|---------------|------|------|------|---|
| List of Course Outcomes | Program Outcomes |                                          |     |     |     |     |     |     |               |      |      |      |   |
|                         | PO1              | PO2                                      | PO3 | PO4 | PO5 | PO6 | PO7 | PO8 | PO9           | PO10 | PO11 | PO12 |   |
| <b>CO-1</b>             | 3                | 2                                        | -   | -   | -   | -   | -   | -   | -             | -    | -    | -    | 1 |
| <b>CO-2</b>             | 2                | 2                                        | -   | -   | -   | -   | -   | -   | -             | -    | -    | -    | 1 |
| <b>CO-3</b>             | 3                | 2                                        | -   | -   | -   | -   | -   | -   | -             | -    | -    | -    | - |
| <b>CO-4</b>             | 3                | 2                                        | -   | -   | -   | -   | -   | -   | -             | -    | -    | -    | 2 |
| <b>CO-5</b>             | 2                | 2                                        | -   | -   | -   | -   | -   | -   | -             | -    | -    | -    | - |

**Note:** 3 = Strong Contribution    2 = Average Contribution    1 = Weak Contribution