

Department of Electrical and Electronics Engineering

COURSE MODULES OF THE SUBJECT TAUGHT FOR THE SESSION AUGUST-DECEMBER, ODD SEMESTER, AY 2025-26

Course Syllabi with CO's

Faculty Name : Shreeshayana R		Academic Year: 2025-26				
Department: Electrical & Electronics Engineering						
Course Code	Course Title	Core/Elective	Prerequisite	Contact Hours		Total Hrs/ Sessions
				L	T	
BEE303	Analog Electronic Circuits	IPCC	Basic Electrical Engineering	3	2	50 hours Theory + 11 Lab slots
Objectives	1. To provide the knowledge for the analysis of transistor biasing and thermal stability circuits. 2. To develop skills to design the electronic circuits like amplifiers, power amplifiers and oscillators. 3. To understand the importance of FET and MOSFET and FET/MOSFET amplifiers					
Topics Covered as per Syllabus						Teaching Hours
Diode Circuits: Diode clipping and clamping circuits. Transistor Biasing and Stabilization: The operating point, load line analysis, DC analysis and design of fixed bias circuit, emitter stabilized bias circuit, collector to base bias circuit, voltage divider bias circuit, modified DC bias with voltage feedback. Bias stabilization and stability factors for fixed bias circuit, collector to base bias circuit and voltage divider bias circuit, bias compensation, Transistor switching circuits						8 2
Revised Bloom's Taxonomy Level	L1 – Remembering, L2 – Understanding, L3-Applying, L4-Analysing					
Module-2: Transistor at Low Frequencies: Hybrid model, h-parameters for CE, CC and CB modes, mid-band analysis of single stage amplifier, simplified hybrid model, analysis for CE, CB and CC(emitter voltage follower circuit) modes, Millers Theorem and its dual, analysis for collector to base bias circuit and CE with un bypassed emitter resistance.						8 2
Transistor frequency response: General frequency considerations, effect of various capacitors on frequency response, Miller effect capacitance, high frequency response, hybrid - pi model, CE short circuit current gain using hybrid-pi model, multistage frequency effects						8 2
Revised Bloom's Taxonomy Level	L1 – Remembering, L2 – Understanding, L3-Applying, L4-Analysing					
Module-3: Multistage amplifiers: Cascade connection, analysis for CE-CC mode, CE-CE mode, CASCODE stage-unbypassed and bypassed emitter resistance modes, Darlington connection using h-parameter model.						8 2
Feedback Amplifiers: Classification of feedback amplifiers, concept of feedback, general characteristics of negative feedback amplifiers, Input and output resistance with feedback of various feedback amplifiers, analysis of different practical feedback amplifier circuits						8 2
Revised Bloom's Taxonomy Level	L1 – Remembering, L2 – Understanding, L3-Applying, L4-Analysing					
Module-4: Power Amplifiers: Classification of power amplifiers, Analysis of class A, Class B, class C and Class AB amplifiers, Distortion in power amplifiers, second harmonic distortion, harmonic distortion in						8 2

Department of Electrical and Electronics Engineering

Class B amplifiers, cross over distortion and elimination of cross over distortion.

Oscillators:

Concept of positive feedback, frequency of oscillation for RC phase oscillator, Wien Bridge oscillator, Tuned oscillator circuits, Hartley oscillator, Colpitt's oscillator, crystal oscillator and its types

Revised Bloom's Taxonomy Level L₁ – Remembering, L₂ – Understanding, L₃-Applying, L₄-Analysing

Module-5: Construction, working and characteristics of JFET and MOSFET (enhance and Depletion type) Biasing of JFET and MOSFET. Fixed bias configuration, self bias configuration, voltage divider biasing.

Analysis and design of JFET (only common source configuration with fixed bias) and MOSFET amplifiers.

Revised Bloom's Taxonomy Level L₁ – Remembering, L₂ – Understanding, L₃-Applying, L₄-Analysing

8 2

Practice (Laboratory) Part

(PRACTICAL COMPONENT OF IPCC)

Cycle-1

- 1) Experiments on series, shunt and double ended clippers and clampers.
- 2) Design, simulation and Testing of Full wave – centre tapped transformer type and Bridge type rectifier circuits with and without Capacitor filter. Determination of ripple factor, regulation and efficiency.
- 3) Static Transistor characteristics for CE, CB and CC modes and determination of h parameters.
- 4) Frequency response of single stage BJT and FET RC coupled amplifier and determination of half power points, bandwidth, input and output impedances.
- 5) Design and testing of BJT -RC phase shift oscillator for given frequency of oscillation.

Cycle-2

- 6) Design and testing of Hartley and Colpitt's oscillator for given frequency of oscillation.
- 7) Determination of gain, input and output impedance of BJT Darlington emitter follower with and without bootstrapping.
- 8) Design and testing of Class A and Class B power amplifier and to determine conversion efficiency.
- 9) Design, simulation (MATLAB) and testing of Wien bridge oscillator for given frequency of oscillation.
- 10) Design and simulation of Full wave – centre tapped transformer type and Bridge type rectifier circuits with and without Capacitor filter using MATLAB. Determination of ripple factor, regulation and efficiency.

List of Text Books

TEXT BOOKS:

1. Electronic Devices and Circuit Theory, Robert L Boylestad Louis Nashelsky, Pearson, 11th Edition, 2015
2. Electronic Devices and Circuits, Millman and Halkias, Mc Graw Hill, 4th Edition, 2015
3. Electronic Devices and Circuits, David A Bell, Oxford University Press, 5th Edition, 2008

List of Reference Books

1. Microelectronics Circuits Analysis and Design, Muhammad Rashid, Cengage Learning, 2nd Edition, 2014
2. A Text Book of Electrical Technology, Electronic Devices and Circuits, B.L. Theraja, A.K. Theraja, S. Chand, Reprint, 2013
3. Electronic Devices and Circuits, Anil K. Maini, Vasha Agarwal, Wiley, 1st Edition, 2009
4. Electronic Devices and Circuits, S. Salivahanan, Suresh, Mc Graw Hill, 3rd Edition, 2013
5. Fundamentals of Analog Circuits, Thomas L Floyd, Pearson, 2nd Edition, 2012

ATME COLLEGE OF ENGINEERING

Department of Electrical and Electronics Engineering

List of URLs, Text Books, Notes, Multimedia Content, etc

www.nptel.ac.in

https://onlinecourses.nptel.ac.in/noc20_ee45/preview

<https://youtube.com/playlist?list=PLp6ek2hDcoNDAw1BehPFazZ5ogPV8UIQa>

<https://nptel.ac.in/courses/117107094>

<https://www.ti.com/design-resources/design-tools-simulation/analog-circuits/overview.html>

<https://www.analog.com/en/education/education-library/tutorials/analog-electronics.html>

Course Outcomes	At the end of the course the student will be able to:
	CO1: Analyze the behaviour of transistor biasing, switching, clipper, and clamper circuits by evaluating how component values and configurations influence their output responses. [L4]
	CO2: Inspect and produce the preliminary design of the Transistor at Low Frequencies [L4]
	CO3: Examine and produce the preliminary design of the multistage and feedback amplifiers [L4]
	CO4: Analyse and produce the preliminary design of power amplifier circuits and oscillators. [L4]
CIE: Theory component are 25 marks and that for the practical component is 25 marks	
Theory component (25): Internal Assessment Marks (15) + other assessment (10)	
The student has to secure 40% of 25 marks to qualify in the CIE of the theory component of IPCC	
Practical component (25): 15 marks for the conduction of the experiment and preparation of laboratory record, and 10 marks for the test to be conducted after the completion of all the laboratory sessions.	
The student has to secure 40% of 25 marks to qualify in the CIE of the practical component of the IPCC.	
Note: 2 Session Tests are conducted during the semester and marks allotted based on average of 2 IAs.	

CO - PO - PSO Mapping

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	-	PSO1	PSO2
CO1	3	3	2	-	2	2	-	-	3	2	-	2	-	3	-
CO2	3	3	2	-	2	2	-	-	3	2	-	2	-	3	-
CO3	3	3	2	-	2	2	-	-	3	2	-	2	-	3	-
CO4	3	3	2	-	2	2	-	-	3	2	-	2	-	3	-
CO5	3	3	2	-	2	2	-	-	3	2	-	2	-	3	-