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The relative stability and transient performance of a closed loop control system are directly

related to the location of the closed loop poles.

The closed loop poles are the roots of the characteristic equation

The response of a closed loop control system can be adjusted by judicious selection of
system parameter or appropriate gain value to achieve desired performance as the system

parameter or gain value chosen determine the location of the closed loop poles
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The root locus technique is a graphical method of plotting the locus of roots of the characteristic equation

2D OF 4
(&’ Co
N33 Py
%! & EaT
el - L
/ -
S Corero %

In the s-plane as the system parameter or gain is varied

Such a plot clearly depicts the contribution of each open loop pole or zero to the location of closed loop

poles

Further the roots corresponding to a particular value of the system gain can be located on the root locus

or the value of the system gain for a desired location can be determined from the root locus

The gain of the system has a crucial effect on the stability of the system.

Root loci provide very convenient means of analysing the system where this parameter occurs in the
characteristic equation. Thus root locus method is a powerful tool in analysing and designing a feedback

control system
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The Root Locus Concept

The root locus method involves plotting the roots of the characteristic equation of closed

loop system as the gain is varied from zero to infinity. Consider the system shown Fig

e In general, the characteristic equation of a closed loop

system is given as,

1+ G(s)H(s) = 0 r

 For root locus, the gain 'K’ is assumed to be a variable

parameter and is a part of forward path of the closed

loop system. Consider the system shown in the R(s)

G(s) = KG'(s)

controller plant
C(S) “ o P (S )
K G(s)

C(s)
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G(s) - L) cls) KG (s)

] & -
‘ R(s) 1+ KG(s)H(s)
H(s)

e where K = Gain of the amplifier in forward path or

Key Point The closed loop poles i.e. the roots of the

also called System Gain. The characteristic equation . s
above equation are now an on the values of 'K’
becomes,

The characteristic equation will be the denominator of transfer function equated to 0 i.e 1+KG(s)H(s)=0.

Now, for different values of K, different roots of the characteristic equation are obtained. In other words, the location of roots
of characteristic equation on the s-plane will vary with parameter ‘K’.

If the roots are plotted on the s-plane for different values of K, then the collection of all those points i.e the locus of roots —
is called root locus. When K varies from 0 to positive infinity, it is termed as direct root locus and when K varies from
negative infinity to 0, it is called complementary root locus.

The direct and complementary root locus together (K varying from positive infinity to negative infinity) form the complete
root locus.
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R(s) ——s K d G(s) > C(5)

C(s) _ KG(s)
R(s) 1+ KG(s)H(s)

H(s)

G(s) = KG'(s)

e where K = Gain of the amplifier in forward path or
also called System Gain. The characteristic equation

becomes,
1+G(s)H(s) = 0 ie. 1+ KG'(s)H(s) =0
e which contains 'K’ as a variable parameter.

Key Point The closed loop poles i.e. the roots of the

above equation are now an on the values of K.
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o If now gain 'K’ is varied from — oo to + <o then for each
separate value of 'K’ we will get separate set of
locations of the roots of the characteristic equation. If
all such locations are joined, the resulting locus is
called Root Locus. So we can define root locus as, the
locus of the closed loop poles obtained when system
gain 'K’ is varied from - to +c is called Root
Locus.

Key Point When 'K’ is varied from 0 to + e, the
plot is called direct root locus while when "K' is
varied from — co to 0, the plot obtained is called inverse
root locus.
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When K is varied from 0 to +infinity, the plot
IS called direct root locus.

When K is varied from —infinity to 0, the plot
Is called inverse root locus.



[JA T M E

atmel College of Engineering

e But generally the term root locus is used in the sense
of direct root locus. Unless otherwise stated, the

variation in gain K is assumed to be 0 to +< and plot
is called root locus.

¢ The locus obtained by joining all such locations when
K is varied from 0 to + < is called root locus.
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In order to satisfy the performance specifications such as time domain specifications, frequency

domain specifications a compensator is introduced in open loop transfer function

Two methods of designing a control system are design using root locus and design using bode

plot.

In design using root locus, the system is designed to satisfy the specified time domain

specifications.

In design using bode plot, the system is designed to satisfy the specified frequency domain

specifications.
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What is series compensation?

The series compensation is a design procedure in which a compensator is introduced in

series with plant to alter the system behaviour and to provide satisfactory performance (i.e.,

to meet the desired specifications). The block diagram of series compensation scheme is

shown in fig

Gc(s) = Transfer function of series compensator
G(s) = Open loop transfer function of the plant.

H(s) = Feedback path transfer function.

R(s) %

C
GO G |y
H(s)
controller plant
——{ C(s) —f P()
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To understand what root locus plots are, and why they are important, let's examine the behavior of a system

when it is in a control system. Assume that the system is defined by the transfer function:
1
s(s+3)
We'll control this system with a very simple proportional controller in which the input to the system to be

G(s) =

controlled is proportional (with gain, K) to the difference between the input, R(s), and the output, C(s).

E(s) E(s) K |—a G(s)= 1 [;(5}
+ s(s+3)
The loop gain is K-G(s), so the closed loop gain is given by H(s) = ols) _ K-Cls) K-%m
Pyg | PJY g y N _R[S)_I—FKG(S) 11 K- ‘[‘, >
K K

s(s+3)+ K 82435+ K

This expression for H(s) is easily derived: E(s)=R(s)-C(s) and C(s)=K-E(s)=K:(C(s)-R(s)). Collect terms and solve for H(s)=C(s)/R(S).
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We want to examine how the behavior of the system varies as K changes, so let's try several values of

K. Let's arbitrarily try K=1, 10 and 100 so that we have a wide range of K values.

K, Xfer Function Step Response
N C {3) - 1 Step Response
N R(s) g2 + 3541
C =
K=10 S ___ 10 E
R(s) s2 4+ 35410 =
=
C
K—100, 218 ___ 100
R(s) g2 4+ 354100 0 . . i
0 2 4 6 8 10
Time (seconds)

The response with K=1 (blue) is very slow, the response with K=100 (maroon) is faster but very oscillatory.
However the response with K=10 (green) is fast and has about 20% overshoot (we can reduce this overshoot
and maintain the speed of the response). Clearly this method is rather "hit-or-miss™ and it may take us a long
time to find a suitable value for K, especially for more complicated systems.
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For the very simple problem described above, it was possible to calculate the precise
location of the roots, and choose a value of K that gave us a good response. For more
complicated systems it is not so straightforward so we need a more general method for finding
K.

This more general method is called the "root locus™ method. With this technigue we make a
plot of the path of the roots as a parameter (usually the gain K) varies. We then choose pole

locations, and find the value of K necessary
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Root locus technique is a important tool in designing control systems with desired performance

characteristics.

The desired performance of the system can be achieved by adjusting the location of its closed loop poles

in S-Plane by varying one or more system parameters ( Usually open loop gain, K)

G(s) = -
s (5+p;) (5+Ppy)
K
C)_ _G(s) _ sCs+p)+py) . _ K
R(s) 1+G(s) 4. K s{s+p) (s+py)+K

s(s+py) (s*p,)
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The denominator polynomial of C(S)/R(S) is the characteristic equation of the system.

The characteristic equation is given by S(S+P1)(S+P2)+K=0

The roots of characteristic equation depend on open loop gain K, when the gain K is varied from 0 to
infinity, the roots of characteristic equation will take different values. When K=0, the roots are given by

open loop poles. When K -> infinity, the roots will take the value of open loop zeros

The path taken by the roots of characteristic equation when open loop gain K is varied from 0 to infinity

are called root locus/root loci.
Root locus technique is a also used for stability analysis. Using root locus the range of value of K for a
stable system can be determined

The time domain specification damping ratio { and « natural frequency of oscillation of the system can be

calculated
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The Root locus is symmetrical about the real axis
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The root locus is symmetrical about the real axis

jmn + 1 42
S-plane = 1350 .
:
3
Grezk-in Breakalvay ? mar' b
point point . Breakaway Breakaway

point = —2.619 — _— point = -0.381

-..‘I|I "i
v |
- “u,
L J

Centroid
s=-15

O
5=225
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Procedure / Rule for construction of root locus
Rule 1 Locate the open loop poles and zeros in the ‘s’ plane
Root locus branch start from open loop poles and terminate at zeros

» Number of Root locus branch will be equal to Number of open loop poles

Let n=Number of open loop poles “y”

m = Number of finite zero “o”

then (n-m) root locus branch end at zeros “O” at Infinity



IS0 9001:2015

e College of Engineering
Department of EEE
Emitting Elite Energy

Each branch of the root locus originates from an open-loop pole corresponding to K = 0 and
terminates at either on a finite open loop zero (or open loop zero at infinity) corresponding to
K = 0. The number of branches of the root locus terminating on infinity is equal to n—m, (i.e.,
the number of open loop poles minus the number of finite zeros)
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for example ;- Let n=4and m =2 i.e. there are 4 open Loop Poles and 2 open loop finite zero
¢ Then there will be 4 Root locus branch that start/origin from these 4 open Loop Poles

¢ out of those 4 Root locus branch, 2 Root locus branch will ends at finite Zeros and remaining
(n-m) root locus branches will end at zeros at infinity.

s Asymptotes give the direction of this root locus branches which ending at zeros at infinity.

“*The intersection point of asymptotes Line on the real axis is known as centroid.



[JAT M E

atmel College of Engineering

AN

4. + 9ge _ ISO 9001:2015 [eharmentofFes
| jeo
|
e Scale :
A On both axes
2 Units = 1 unit
3
b Brea (awvvay
Centroig L — , :pf '5“53
- 1T 4} ~ * 1% , o
4 -3 —2 -1 0]

[




s

T M E

lege of Engineering

= 45D
o 1
o B
5 =135
“‘1.
\\ I Kmarlz 10
.Breakaway Breakaway

point = -2 619 —

_— point = —0.381

L

Centroid
5=-15

......

IS0 9001:2015

AN

Department of EEE
Emitting Elite Energy



nnnc‘_’
>
: . \
4 faf AJA

""" Department FEEE
SC 9001:2015 0

iLe ) College of Engineering

Rule 2 Determine the root locus on real axis

In order to determine the part of root locus on real axis, take a test point on real axis. If
the total number of poles and zero on the real axis to the right of this test point is ODD number,
then the test point lies on the root locus. If it is Even Number then the test point does not lie on

the root locus.

Each branch of the root locus originates from an open-loop pole corresponding to K = 0 and

terminates at either on a finite open loop zero (or open loop zero at infinity) corresponding to
K = oo, The number of branches of the root locus terminating on infinity is equal to n—m, (i.e.,

the number of open loop poles minus the number of finite zeros)
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No rnot locus
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Rule 3 Determine angle of asymptotes and centroid (meeting point of asymptotes with real axis)
Angle of asymptotes and centroid

If n is the number of poles and m is the number of finite zero, (n-m) root locus branch terminate at zeros
at Infinity.

These n-m root locus branches will go along an asymptotic path and meets the asymptotes at infinity.
hence number of asymptotes is equal to number of root locus branches going to infinity (zeros at infinity)

Or in other words
Asymptotes are straight lines which is parallel to root locus going to infinity and meet
the root locus at infinity
Angles of asymptotes = +£180*(2g+1) / n-m

Where =0, 1, 2, 3...... (n-m)
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Centroid is meeting point of asymptote with real axis, the centroid is given by,
Centroid = (sum of poles — sum of zero) / n-m

Centroid is marked on real axis and from centroid the angle of Angle of asymptotes are marked using

protractor, asymptotes are drawn as dotted lines e 45
,=135 1
t“".
j, Ky = 10
. Breakaway o Breakaway
point = -2.619 --H\‘ ‘/,-—- point = —0.381
—e : l - * -
3 Y S 0
Centroid
) s=-15
¥ |
5 =225
—
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Rule 4 Find Break-away and Break-in points.
Break-away and Break-in points either lie on real axis or exist as complex conjugate pairs

« if there is a root locus on real axis between 2 poles, then there exist a break-away point in between these
two open loop poles

« |f there is a root locus on real axis between two zeros, then there exist a break-in point in between these
two open loop zeros

« |f there is a root locus on real axis between pole and zero then there may be or may not be break-away
point or break-in point
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Follow these steps to find break-away and break-in points

Form an equation K in terms of s from the characteristic equation 1+G(S)H(S)=0
Differentiate K with respect to s and make it equal to zero i.e. dK/ds =0

»  Find the Roots of s.

»  Substitute these values of s in equation K and determine the value of K

» Ifkisreal and positive then s is the actual break point
>

If k is not real and positive then that value of s is not the break point

The Roots of dK/ds = 0 are break-away or break-in points, provided for this value of root, the gain K value
is should be positive and real



Rule No.4: Break away point

: K
Consider G(s)H(s) = S542)
&
» Open loop polesares =0; s=-2 Branches moving
towards break
away point

» Breakaway point is a point on the root locus where multiple roots PSP | .

of the characteristic equation occurs for a particular value of K, -2 / 0
» The root locus branches always leave breakaway point at an )

angle of £180%n, Breakaway point

where n = number of branches approaching at break away
point.



Rule No.4: Break away point

K(s+6)
S(S+2)(s+4)
» Open loop polesares=0;s=-2;s=-4
»Zeroats=-6
» If there are adjacently placed poles on the real axis and -

the real axis between them is a part of the root locus then -6 -4
there exists a minimum one breakaway point in between

adjacently placed poles. Breakaway point

» One breakaway point exists between poles 0 and -2
which are adjacent.

Consider G(s)H(s) =

NRL——

» The poles -2 and -4 are also adjacent but the section
between them is not the part of the root locus and hence
there cannot be a breakaway point between them.




Rule No.4: Break away point

; _ K(s+2)(s+4)
Consider G(s)H(s) = S%5+6)
» Open loop poles; s=0,0,s =-6 Breakaway point |
»Zeros=s=-2,s=-4
i NRL N
> If there are two adjacently placed zeros on the real < > o——8—-0 RL Hﬂ;
axis and section of real axis in between them is a -6 -4 -2 0 \
part of root locus then there exists minimum one ‘ 2 holes
breakaway point in between adjacently placed Branches moving po
Zeros. away form breakaway point

> In these cases the branches move away from the
breakaway point towards open loop zeros. Such
point is called break in point.




Rule No.4: Break away point

Steps to determine the coordinates ofbreakaway point:

- K - . N N
Consider G(s)H(s) = ST determine the co-ordinates of valid breakaway point.
Solution:

Step 1: Construct the Characteristic equation: 1 + G(s)H(s) =0
K ____0 - 3 4 B2 -0
1+S(S+1)(S+4)—0 ; S°+55¢+4s+ K=0;

Step2: K=-S3-5s52-4s

Step 3: Differentiate above equaticc)ln w.r.t. s and equate to 0’
K
— =-352-10s —4=0
ds




Rule No.4: Break away point

Steps to determine the coordinates ofbreakaway point:

Step 4: Roots of the equation dK/ds = 0 gives us the breakaway points.

dK
—=-3s2 —-10s —4=0
ds

3s2+10s+4=0

% ] NRL e *'(—-I
Breakaway points = —o= 122(;_4*4*3 = —0.46,—-2.86 -4 ' -1 f 0
Substituting in expression for K, K = - S3 - 552 - 4s -2.86 ~0.46
invalid valid
Fors=-0.46, K=+0.8793 as no root locus

Fors=-2.86, K =-6.064;
Hence For s =-0.46, K is positive and it is valid breakaway point for the root locus.
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Rule 5 Angle of departure and angle of Arrival of root loci

» if there is a complex pole then find angle of departure from complex pole.

 if there is a complex zero then find angle of arrival at the complex zero.
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Angle of departure from a complex pole A
@d = 180°- (sum of angles of vectors drawn to the complex pole ‘A’ from all other poles)

+ (sum of angles of vector drawn to the complex pole ‘A’ from zeros)

. 9, =180°—tan" =
JO A b
. A | .
\ X 6, =180°-tan™ =
s-plane ¢
I 0, =90°
2 6,=tan”~  Angle of departure]
) d B O P 180°—(8, + 6, +0,) +(8, +6,)
I 3 5 2
i 8% @ —tan? at pole A :
) NG R :
? d c - Angle of departure
T ° | C 5 - =—| Angle of departure at pole A ]
LR at pole A * : _
Ezes
A The angle can be measured using protractor
Fig : Calculation of angle of departure
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Angle of Arrival at a complex Zero A
@a= 180°- (sum of angles of vectors drawn to the complex Zero A’ from all other zeros)

+ (sum of angles of vectors drawn to the complex Zero ‘A’ from poles)

0, =180°—tan™ =
b

joa
A .. a
s-F'IaﬁeJl N c Angle of arrival| _ 180°—(8, +64)+(6, +8, +05)
a  p, =tan" > :
‘ d Angle of arrival .
N - = | Angle of arrival at zero B]
0, = tan" 2 at zero B*
d e b o c ' ¢
[ =

Fig + Calculation of angle of arvival
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Rule 6
Find The Point Where The Root Locus May Cross (intersects) The Imaginary jo Axis

«  The Point Where The Root Locus Intersects The Imaginary Axis Can Be Found By Following Method’s

Method-1

Put S=jm in the characteristic equation 1+G(S)*H(S)=0 and Separate the real part and imaginary part
Two equations are obtained by one by Equating real part to 0 and other by equating imaginary part to 0
Solve the two equation to get  and K

* The value of ® gives the point where the root locus crosses imaginary axis

* The value of K gives the value of open loop gain at there crossing points . Also this value of K is the
limiting/Marginal value of K for stability of the system



Rule 6 : Find The Point Where The Root Locus May Cross (intersects) The Imaginary Axis

Method-2 : intersection of root locus branch with jeo axis can be determined through Routh
Hurwitz Criterion

Consider the characteristic equation 1+G(s)H(s) =0

0.1s3+06552+s+K =10

S3 0.1

S2 0.65

st 0.65+1 —0.1K
K

S K

Range of values of K, 0 <K < é6.5.

row of zeros.

U-ﬁﬁ - 0-1 Kﬂ'l-ﬂf = U

Kma = 6.5

The marginal value of K is value which makes any row other than s° as

To find frequency, find out the auxiliary equation at K.,

A(s) = 06552+ K=0;

0.65s2 + 6.5 0 v Kiar
s2 = =10

t j 3.162

1l

5

= 6.5

s= tjw

w

==

Frequency of oscillations

3.162 rad/sec.



Rule No.6: Intersection of root locus with
Imaginary axis

: K s 1
Consider G(s)H(s) = SGIDGD - . =
Solution: . 20- K
Step 1: Consider the characteristic equation 1+G(s)H(s) =0 5

K S0 K
1+ S(S+1)(S+4)

The marginal value of K is value which

S3+5S2+4S+K =0
makes any row other than s as row of

Zeros.
20— K o B
5 0; Kmar=20 To find frequency, find out the
The auxiliary equation ; A(s) = 5S*+ K=0and K=K ., = 20 auxiliary equation at K,
5S24+20=0; S$?=-4; S==]j2 s= +ijw

w = Frequency of oscillations
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Jo A .
@ =cos ' &
S, +joy1-0
s-plane
A l -
* /i O
—J@'ﬂn
5, %~ ~jo,1-C
4 n

To fix a dominant pole on root locus, draw a line at an angle of cos™'C with respect to negative real
axis. The meeting point of this line with root locus will give the location of dominant pole. The value of K
corresponding to dominant pole can be obtained from magnitude condition.

Let, ifjis ; be the value of gain at dominant pole s @

N 7 - Product of length of vectors from E)pen loop poles to dominant pole
* 747 Product of length of vectors from open loop zeros to dominant pole




Root Locus Technique: Example 1

Consider the open loop transfer function

K

SGrD DG Draw the root locus curve.

G(s)H(s) =

Solution:

Step 1: Poles=P=4; s=0,s=-1, s=-2, s=-3 and
Z=0

Step 2: Number of branches approaching to infinity
N=P-Z=4,

Step 3: Root locus branch on real axis.

Imaginary

4]
3)

2]

1j

Real
H—l=cokeos
5 4 3 2 -1 -1j



Root Locus Technique

Imaginary
Step 4: Angle of asymptotes.
2q +1)180° 4j
P—-Z7 3
Forq=20,0, = 180" — 450
2]
Forq=1,0, =22 - 135° 1j
Forq=2,6; =120 = 225° | | =X Wo Real
Forq=3,6, =" =315° 5 4 3 2 1 1]
-2j
-3j



Root Locus Technique

Poles=P=4; s=0,5s=-1, s=-2, s=-3
Step 5: Centroid

Y. Real parts of poles — ) Real parts of zeros
g =

P—-Z

_0-1-2-3 6

o= ——=-1.5

4 4

Imaginary

4]

1359 3j
450

Centroid -1.5



Root Locus Technique

Step 6: Breakaway point

Characteristic equation = 1+G(s)H(s) =0
K
1-l_s(s+1)(5+2)(s+3) =0

SH+6S3+11S2+6S+K =0

K = -$4-653-11S2%-6S
dK/ds = -4S%-1852-22S-6=0

4S3+18S%2+225+6 =0

Breakaway points = -1.5, -0.381, -2.619

There is no root locus between -1 and -2 and hence -1.5 is not

valid breakaway point.

Fors=-0.381, K=1and Fors=-2.619,K=1

Imaginary
4
135° 3j
450
2j
1j
H H Real
5 -4 -1j
-2j
2250 315°
. -3]
Centroid -1.5
-2.619 -4)

-0.381



Root Locus Technique

Step 7: Intersection with Imaginary axis

Characteristic equation = 1+G(s)H(s) =0
S*+6S3+11S%+6S+K =0

st 1 11 K
s3 6 6 0
s2 10 x 0
St | (60-6K)/10 >§ 0
S0 K
606K _ o, Kmar=10

10

The auxiliary equation = A(s) = 10S2+ K =0

10S2+10=0; s==+1]j
To find frequency, find out the auxiliary equation at K.,

The marginal value of K is value which makes any row

other than s° as row of zeros. w =

Imaginary

4]

135°

3)
45°

Centroid -1.5

tjw
-2.619

-0.381

Frequency of oscillations



Root Locus Technique

Program:

K
G(s)H(s) = . Simulated
s(s+1)(s+2)(s+3) Theoretical Values Values
Poles 0,-1,-2, -3
K Breakaway Point -0.38, -2.69
G(s)H(s) = i
($)H(s) s*+ 6s3+ 1152+ 65 _Gam _ 10
Imaginary Axis T
num=[1]; Crossover :
den=[16 116 0];
sys=tf(num.den);
printsys(num.den);

[r.k]=rlocus(sys)
rlocus(sys)




Program: clc
K

) num=[1];
G(s)H(s) = s(s+1(s+2)(s +3) den:[g_ 23 11 6 0];
sys=tf(num, den);
K
G(s)H(s) = '+ 65° + 1152 + 65 ?izr:fep(sys)

rlocus(sys)
title(‘root locus')

clc #clears all the text from the Command Window, resulting in a clear screen

num=[1]; #Coefficients of the numerator

den=[1 6 11 6 0]; #Coefficients of the denominator

sys=tf(num,den); #creates a continuous-time transfer function with numerator(s) and denominator(s)
specified by num and den

pzmap(sys) #pole zero map title('pole zero map of c(t)")

figure

rlocus(sys)#calculates and plots the root locus of the SISO model sys

title('root locus’)
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clc #clears all the text from the Command Window, resulting in a clear screen

num=[1]; #Coefficients of the numerator

den=[1 6 11 6 0]; #Coefficients of the denominator

sys=tf(num,den); #creates a continuous-time transfer function with numerator(s) and denominator(s)
specified by num and den

pzmap(sys)#pole zero map title('pole zero map of c(t)")

figure

rlocus(sys)#calculates and plots the root locus of the SISO model sys

title(‘root locus')



Root Locus Technique




clc

num=[1];
den=[16 11 6 O];
sys=tf(num, den);

pzmap(sys)
rlocus(sys)

clc #clears all the text from the Command Window, resulting in a clear screen

num=[1]; #Coefficients of the numerator

den=[1 6 11 6 0]; #Coefficients of the denominator

sys=tf(num,den); #creates a continuous-time transfer function with numerator(s) and denominator(s)
specified by num and den

zpk(sys); #zpk is used to create zero-pole-gain models (ZPK objects) or to convert TF or SS models to
zero-pole-gain form

rlocus(sys)#calculates and plots the root locus of the SISO model sys



Solved Example-2

Consider G(s)H(s) = S(S+ZI)((S+4)’ Draw the root locus.

Solution:

Step 1: Number of branches approaching to infinity

P=3,5s=0;s=-2;s=-4; Z=0

N =P -Z =3; Three root locus branches will terminate at
zero @ infinity

Step 2: Locate the root locus path on real axis.

Step 3: Angle of asymptotes
_ (2g+1)180°
- P-Z
180° _ (2+1)180° _

Forg=0,0, =—==60 ;Forg=1, 0, =-—=—=180° Forg=2, 03 =

qg=0,1,2.

_ (4+1)180°

3

One breakaway point
possible

=300

NRL



Solved Example

Angle of asymptotes: 60°, 180°, 300°
P=3,5s=0;s=-2;5=-4; Z=0
Step 4: Centroid

Y.Real parts of poles — ) Real parts of zeros
g =
P -7

 J



Solved Example

Step 5: To find Breakaway point

Characteristic equation 1+G(s)H(s) =0

K
1+ S(S+2)(S+4) 0

S3+6S2+8S+K =0

K = -53-652-8S

X =-352-125-8=0

352+ 12S5+8=0
Breakaway points = -0.845, -3.15
Fors=-3.15; K=-3.079
Fors=-0.845; K=+3.079

For s = -0.845, K is positive hence -0.845 is valid breakaway
point.




Solved Example

Step 6: Intersection point with imaginary axis
Characteristic equation 1+G(s)H(s) =0
S$3+6S2+8S+K =0

48 - K
6 =0; Kmar =48
The auxiliary equation = A(s) =6S2+ K =0
6S2+48=0
$2=-8
S =+j2.828

S3

J/
A

SZ

Sl

Sk K

The marginal value of K is value which makes
any row other than s° as row of zeros.

To find frequency, find out the auxiliary
equation at K.,

s= 1jo

w = Frequency of oscillations



Solved Example




Example 3

A feedback control system has an open loop
transfer function G(s)H(s) =
the root locus.

S(5+3)(5%+25+2) Draw
Solution:

Step 1: Number of poles=P=4; s=0, s=-3, s=-1+],
s=-1-]

Number of zeros=2Z =0

Number of branches approaching towards infinity = N = P-Z
=4

Step 2: Locate the root locus on real axis

-4

Imaginary
3]
2j
1j
/R ——
N | ] l
01 2 3
1] Real
-2



Example 3

Step 3: Angle of asymptotes
_(2q+ 1)180°.
-~ pP-Z

g=012,..

Forq:O,01=$=45°

Forq=1,0, = 3*14800 = 135°

For q =2, 0, = 2= = 225°

Forq=3,6, ="~ =315°

\!71
Y

AN

Imaginary



Example 3

Step 4: Centroid
()

_ X Realparts of poles — } Real parts of zeros
a P-Z
Number of poles=P=4; s=0, s=-3, s=-1+],

s=-1-]

_0-3-1-1_ 5_ .
o= 2 =—3z-"1

Imaginary

3
135°

450

2250 2]

Centroid -1.25 -3j



Example 3

Step 5: Breakaway point

Characteristic equation = 1+G(s)H(s) =0
K
1-|_s(s+3)(sz+25+2) =0

S4+5S3+852+6S+K =0

K = -S4-583-852-6S
dK/ds = -4S3 - 1552-16S-6=0

4S3+1552+16S+6 = 0

Breakaway points = -2.28
Fors=-2.28, K=4.3315

Hence s =-2.28 is valid breakaway point

135°

-2.28

Imaginary

Centroid -1.25




Example 3

Step 6: Intersection with imaginary axis

Characteristic equation = 1+G(s)H(s) =0 Imaginary
S4+5S3+8524+6S+K =0 .
—— 3
s 1 8 K
135°

S3 5 6 0 45°

S 6.8 K 0

S1 | (40.8-5K)/6.8 0 0

S0 K

40.8-5K

408
e 0; Kmar = - = 8.16

The auxiliary equation = A(s) =6.85?+ K=0
6.852+8.16 =0; s=+1.095]

Centroid -1.25 -3j

The marginal value of K is value which makes any row other than s° as row of zeros.
s= *jw -2.28

To find frequency, find out the auxiliary equation at K., ® = Frequency of oscillations



Example 3

Step 6: Angle of departure
1 (1
@p; = 180° — tan™ (I) = 135°
@py = 90°
1 (1
@p; = tan” <§> = 26.56°

Z @p = 135° + 90° + 26.56° = 251.56° Z @,=0°

@;=180° — (Y @p — X @;)
@, =180° —251.56° = —71.56°

>At —1+1j= —71.56°
> At -1-1j = +71.56°

Imaginary

—— 1 chl

7

|
1 2 3

-4
_1J
Real
$ps
-2
cI)PZ
-3]



Example 3

Imaginary

135°

Centroid -1.25 [ -3j

-2.28

Real
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Plot root locus for the T.F  G(s)= RIS

S=—4i».f42—4x11
2 .
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. (Centroid)
J& o5
' e
o s-plane
Pz . %
¥—1B\ (&
: : —!2 <
Z, Rootlccus on reafaxis p, i1 4 .
T T L G ) | Bk
-9-8 <1 -6-5-4 -3¢ =1 Ll 2:345 G
: &)
—=j2 =
=1
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Py =
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Step 3: Angle of asymptotes

o
= +90

180
q=0, Angles== 2

[
g=1, Angles= t‘FED_TxL}_ = 2270°= +90

. |
q=2, Angles= ilﬁ[’z—*‘r’ - +450°= 290

Sum of poles — Sum of zeros _ U 2+j2.64—-2-j264—-(-9)
n—m 2

Centroid =

= 25
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Angle of departure from 8
- =180 ~(6,+06,)+0,
the complex pole p;, ]
o = n- o ) - S +t2 b4
=180 —{127.1°+90 )+ 207 =-164° A
64
6, = 180°- tan~' 2% _ 12710
2 Z
E}: = ma g 'Ei D I'.','I.I
P < 7 b
= tan‘1—?— = 20.7° | 2

D
p 0 S— T
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FREQUENCY RESPONSE ANALYSIS

The response of a system for the sinusoidal input is called sinusoidal response

The ratio of sinusoidal response and sinusoidal input is called sinusoidal transfer function of the system

and general, it is denoted by T(jo)

The sinusoidal transfer function is the frequency domain representation of the system, and so it is also

called frequency domain transfer function
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The sinusoidal transfer, T(jw) can be obtained as shown below
1. Construct a physical model of a system using basic elements/parameters.

2. Determine the differential equations governing the system from the physical model of the system.
3. Take Laplace transform of differential equations in order to convert them to s-domain equation
4. Determine s-domain transfer function, T(s), which is ratio of s-domain output and input.

5. Determine the frequency domain transfer function, T(jo) by replacing s by jo in the s-domain

transfer function, T(s).
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Consider a linear time invariant system with frequency domain transfer function, T(jo) shown in fig

r(t) ST c(t) c(t)=BLh _
r{t)=Asin(fot +0)=AZL0 o) =TUe) ~TUe) " vhere, E:éﬂfgg{?ﬂ)

System with sinusoidal transfer function T(jw).
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The advantages of frequency response analysis

1. The absolute and relative stability of the closed loop system can be estimated from the knowledge of

their open loop frequency response.

2. The practical testing of systems can be easily carried with available sinusoidal signal generators and

precise measurement equipment's .

3. The transfer function of complicated systems can be determined experimentally by frequency

response tests

4. The design and parameter adjustment of the open loop transfer function of a system for specified

closed loop performance is carried out more easily in frequency domain.
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5. When the system is designed by use of the frequency response analysis, the effects of noise,
disturbance and parameters variations are relatively easy to visualize and incorporate corrective

Measures

6. The frequency response analysis and designs can be extended to certain nonlinear control systems.
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Frequency Domain specifications
In designing a control system, we require that the system meets the performance specifications.

Performance specifications are the constraints imposed on the mathematical models describing system

characteristics

In frequency response analysis, following are the frequency-domain specifications.

1) Gain Margin: It is defined as the reciprocal of the magnitude of open-loop transfer function
|G(j(o)H(j(o)| at the frequency where the phase angle is -180°. The frequency at which the phase

angle is -180° is called phase cross over frequency (@, or ®,).

Gain margin is a measure of relative stability of the system. The positive value of gain margin
corresponds to stable system and the negative value of gain margin leads to unstable system. For satisfactory

performance gain margin should be greater than 6 dB.
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0

in ; - 4 Positive
db —db ; y GM _.

-90 : :
b b = === :
T -180 . : Negative
) . . - PM
—270 : -
O 0.  o(log s:cale) Ope Og o(log scale)

. . 1
" Gain Margin, K, = ————
| £ GG )i

The gain margin in db can be expressed as,

K.indb=20 log K_ =20 log ———
: S A R TC T

| Note : G(jo )| is the magnitude of G(jo) at © = ©
| pe

A T M E  Gain margin and Phase margin for stable and unstable system
College of Engineering on Bode pIOt

G (jo) H (jo)

90 —\
>
_180 +ve PM ; PCF

-270 y

Department of EEE
IS0 8001:201% ¢ 0 tite neray

|

1

4 Co
| |

' |

|

I

|

S —

(a) Stable system (b) Unstable system

Bode diagram showing GM and PM for stable and unstable system
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||) Phase margin: It is defined as 180° plus the phase angle @ of the open loop transfer function at gain cross

alme College of Engineering

over frequency  Phase margin, y=180°+¢_,

where, ¢, = £Gljo,)

Note : ZG(jo,) is the phase angle of G(jo)ato =

Stability Conditions :

Mag in dB
_ _ GG HG )|
where @ o, ®, Is called gain cross-over frequency. For a ndB
minimum phase system to be stable, the phase margin must 0dB B
.- . . - +ve GIM.
be positive. Phase margin is also a measure of relative "
- : ) ( HG ) c A
stability for satisfactory performance, the phase margin in degrees R
+ye P.M.
) ) )
should lie between 30° and 60°. ~180 D
gc pc |-0§




Gain Margin and Phase Margin

Gain Marqin:

GM =-20 Log [G(jw)H(jw)| at © = @,

Phase Marqin:

Mag in dB
4
GG HG N
indB
0 dE
| +ve G.M.
G Hi )| —
in degrees
+ve PM.
— o
a0 )
gc pe LGE

Fig. 11.7.1 e < wpe G.M. and P.M. positive, stable system

PM = Angle (G(Jo)H(m)) at ® = o

Mag. in dB
Mag. in dB
IG( HG
in dB A GG JHG N
indB
-ve GM.
0 dE GM. =0dBE
B 0 dE
G{j H{ ) " .
: G{j H(j )
in degrees in degrees
PM. =0°
D
-180° _1ap*
:—ue P.M. 180
e
c
pe g Log LUEI-

Fig. 11.7.2 > W, G, and P.M. negative, unstable system
d Ve pe g v systam

Fig. 11.7.3 wg, = wp, G.M. and P.M. zere, marginally stable
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Iii) Resonant peak 'Mg': It is defined as the maximum value of the magnitude of the closed-loop frequency

response
Mg = max IE (jw)
R

!

The resonant peak is indicative of the relative stability of the system. | Fe]

Band width =

F
3

Performance criteria on frequency domain

For satisfactory transient performance, the value of Mg, should be in the range 1.0 < My < 1.4

(0 dB < Mg, < 3 dB). For the values of Mg, > 1.5, the transient response may exhibit several overshoots. At

the resonant frequency, the resonant peak Mg, is given by the relation M, = e
2
Cy1-¢
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Iv) Resonant frequency o,
It is the frequency at which resonant peak Mr occurs.

It is an indicative of speed of transient response. The smaller the values of w, more sluggish

the time response is. The resonant frequency is given by the relation. o =« J1-2¢2

v) Cut-off rate 'o, 28

It is frequency rate at which the magnitude ratio decreases T

[ [ —
|
'
|
|
1
I

beyond the cut-off frequency .. | <o | ....................

R

It indicates the ability of a system to distinguish the signal

B et e i e e el
~

from unwanted signal

Band width

L 5 ) SRR T
sY

le
fo—

Performance criteria on frequency domain
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vi) Bandwidth 'w,': It is defined as the range of frequencies
over which the system will respond satisfactorily. Often the

bandwidth corresponds to range of frequencies over which the

'magnitude ratio does not differ by more than -3 dB as shown in

Fig. from its value at a specified frequency. The bandwidth is

o,
- |

given " : Band width .
W, = W, [] - 2(;"! + \]2 _ ,1c! + ql;"l ] Performance criteria on frequency domain

¥

The bandwidth indicates how well the system will follow the input signal. For the system to follow the input
accurately, larger bandwidth is desired. However larger bandwidth demands for costlier high performance
components. The Bandwidth is also indicative of rise time in transient response for a given damping factor. A

large bandwidth corresponds to small rise time or fast response



iLe ) College of Engineering

O] VWA

Bode Plot

The Bode plot is a frequency response plot of the sinusoidal transfer function of a system.

Frequency response of a system can be represented graphically by its magnitude |G(jo)| and

phase response ®(w). Such a plot is called Bode plot or logarithmic plot or corner plot.

This method of plotting frequency response employs logarithms of function so that

multiplications and division are reduced to addition and subtraction

Bode plot is a straight forward approach in the analysis of complex transfer functions with

many poles and zeros.
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A Bode plot consists of two graphs. One is a plot of logarithm of the magnitude of a sinusoidal

transfer function versus log w. The other is a plot of the phase angle of a sinusoidal transfer function

versus log o

The log magnitude is expressed in dbs (The decibel is a quantity which control engineering took from

acoustics and is used to compare sound intensities) and the frequency in radians per second

Since log magnitude is also a function of frequency, a convenient way to express frequency bands are

necessary
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The standard representation of the logarithmic magnitude of open loop transfer function of G(jo) is 20

log |G(j )| where the base of the logarithm is 10

The unit used in this (representation of the magnitude is the decibel, usually abbreviated db

The curves are drawn on semilog paper , using the log scale (abcissa) for frequency and the linear scale

(ordinate) for either magnitude (in decibels) or phase angle (in degrees)

The main advantage of the bode plot is that multiplication of magnitudes can be converted into addition
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When the frequency varies from o, to ®, where o, = 10 ®,, then the frequency band is referred to as a

decade

The band from 1 Hz to 10 Hz or from 2 Hz to 20 Hz is one decade We observe that if G(jw) increases by

tenfold or one decade, then the log magnitude increases by 20 db.

1 2 32 4 587801 2 3 4 587801 2 3 4 587801

DECADE DECADE

i e
i i
LINEAR R T TTSMIeR
IR T T TSR
Y-AXIS R TSR
R
LTSt
R
LTSt
T
T
il
T

|

L Log
0.1 0.2 03 1 2 3 10 20 30 100
NON LINEAR X-AXIS
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| Method for sketching an approximate log-magnitude curve

K (1+5T))
s(1+8T,) (1+5T

Consider the open loop transfer function which is in Time constant Form G(s) =

K {1+ joT)
jo (1+ joT,) (1+ joTy)

K£0° 41+ T tan™ oT,

©£90° 1+’ T2 Ltan™ 0T,y1+0°T; Ltan™ oT;

K 1 + T}
The magnitude of G(jo) = |G(jo)l=
& @ y1+0°T 1+ o’TZ

The phase angle of the G(jo) = ZG(jo) = tan"' oT, - 90° — tan™' oT, -tan™’ oT,

G(jo) =
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The magnitude of G(jo) can be expressed in decibels as shown in below
IGGw)] in db = 20 log |G(j)

K 1+0°T’

=20 log mJHmZT: \[Hmlﬁ

=20 log Ex

LN 1
1HI+mET2 X b
1
o ;}Hszj ;)1+m2'r§
K
=20 log E--I-EO log 1}]+m1[f +20 log : + 20 log -
- ;]1+m2*r§ :,;1+.:.:FT.§
K
g b 22
20 log —+20 Iug1f1+m7“1f ~20 log 1+ T2 -20 log../1+m21"§

it is clear that, when the magnitude is expressed in db, the multiplication is converted to addition. Hence in

magnitude plot, the db magnitudes of individual factors of G(jw) can be added
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Therefore to sketch the magnitude plot, a knowledge of the magnitude variations of individual a

factor is essential. The magnitude plot and phase plot of various factors, of G(jo) are explained in the

following section

The basic factors that very frequently occur in a
. : : 2.
typical transfer function G(jo) are,
3
K (1+sT)
GO = T Tsn) (Lo T &
5.
s K({l1+joT
G(jw) =~ .( S '}. 6.
jo (1+joT,) (1+ joTs)
7.

1.

Constant gain, K
Integrai factor, E or _K
jo  (jo)°

- Derivative factor, K x jo or K x (joy

- or —-.-_-.-__I_
I+joT  (1+joT)™

First order factor in denﬂﬁim:ttnr,

First order factor in numerator, (1 +joT) or (1 + joT)

Quadratic factor in denominator, !
1+26 (o / @,)+ (o /0,)

[ o

n n

. _ e
Quadratic factor in numerator, [l +2 [£J+(£J }
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1. Constant gain, K

Let, G(s)=K
F -
S Gie)=K=K £0°
(o) . T']'db K>1
A=|G(jo) indb=20logK A Ko
¢ = £G(jo) =0° n °
> The magnitude plot for a constant gain K is a horizontal — _gph_ O0<K<1

straight line at the magnitude of 20 log K db. and T

independent of Logu.m ¢ 0°

» The phase plot is straight line at 0°.

»>

. @(log scale)

- WhenK > 1, 20 log K 1s positive.
When0<K <1, 20log K is negative.

WhenK=1,  201logK is zero.
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Integral Factor Let, G{s)=£
5

r 3
.:'G{jm)=-,5=54-90° T +20
jo o A o
A=G(jo)| in db =20 log (K/'w} in
o= /Gio)=-90°" .
Wheno=0.1K, " A=201og(1/0.1)=20db T 0°
When o =K, A=20log1=0db _4)_900

= A =201log (1/10)=-20 db e - >
Wheno=10K, A og (1/10) 04K K 10K o(log scale)

From the above analysis it is evident that For n =1, G(s) = K/s"
» The magnitude plot of the integral factor is a straight line with a slope of —20 db/decade and passing
through zero db, when o = K.

» Since the L G(jo) is a constant and independent of o the phase plot is a straight line at angle -90°.
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When an integral factor has multiplicity of n, then,

G(s) = K/s" : T +é0n‘l""":%
G(jo) = K/(jo) = Kio®* £-90n° A L N\
ki K in : : : ;
A= lG(]{D}i indb - = 20 log E]T db_gon ....................
s g L] T 0°
n Kn \
= 20log = =20nlog - 90n gt
o o - 1 -1 . 1 >
01K K1 oK  o(log scale)
¢=2£G{(ju)=-90n"° Bode plot of integral factor, K/(jo)".

Now the Magnitude plot of the integral factor is a straight line with a slope of -20n db/dec and passing

through zero db when o = K ¥, The phase plot is a straight line at -90n°.

» For n =2, The magnitude plot of the integral factor is a straight line with a slope of —40 db/decade and
phase plot is a straight line at angle -180°. and so on

» Forn=3,-60 db/decade and -270°
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Derivative Factor
Let, G(s)=Ks |
~ G(jo)=K jo=Kao Z90°
A=1G(jw)] in db =20 log (K®)
¢ = LG(jo) =+ 90°

When 0 =0.1/K, A=207og(0.1)=-20db o 7 S
Wheno=1/K, A=20log1=0db UL 10 g scale)
When o = 10/K, A=20 iGg 10=+20db ' Bode plot of derivative factor, K x jo.

From the above analysis it is evident that the For n =1, G(s) =K s"

Department of EEE
Emitting Elite Ener

Magnitude plot of the derivative factor is a straight line with a slope of +20 db/decade and passing through

zero db when o = 1/K. Since the L G(jo) is a constant and independent of o, the phase plot is a straight line

at +90°.
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Derivative Factor

When an Derivative Factor has multiplicity of n, then,
G(s)=Ks"
5 Gjo) =K(jo) =Kae" £9%0n°
A =|G(je)| in db = 20 log (Ko®) T +90n°
=20 log (K" @)* =20 n log (K'* ®)
0 = £LG(jo)=90n°

P E

»

- od _1_1 191_ w(log scale)

1 1
KE Kn. . Kn
Bode plot of derivative factor, K(jo)'.

Now the magnitude plot of the derivative factor is a straight line with a slope of +20n db/decade and passing
through zero db when @ = /K", The phase plot is a straight line at +90n°.

» For n =2, The magnitude plot of the integral factor is a straight line with a slope of +40 db/decade and
phase plot is a straight line at angle +180°. and so on
» Forn =3, +60 db/decade and +270°



College of Engineering First order factor in denominator o5 ”;12;‘1 Dpa;m;w
G(s) = ! i
T 1+sT , At very low frequencies, oT <<l;
. 1 1 -1 : ] :
= = Z—tan" T .
Gle)=77 o droatp 0@ At very high frequencies, oT>>1;
st, A=|G(jo)| in db. '
Let, A=|G(jw)| in : . A=-20log Y1+ ®’T? =~ —20 logl =
- . _ o / 212
A= EG(Jm)hndb =20log m 20 logvl+a - A=-201log V1+ 0T ~ =20 log Vo T2 =20 lc-g wT
At&}=—1~,, A=-20log1=0 e
T Y- S = "‘JS Approximate plot
Ato=22, A=-20log10=-20db A -20 Ea:%c_{t_ et Hone:
T " : ““é’ag
The above analysis shows that the magnitude plot of the factor db .0 * i %"et
1/(1+jwT) can be approximated by two straight lines T+450 _\
one is a straight line at 0 db for the frequency range, 0 < v< 1/T, and 4—90° \——
the other is a straight line with slope -20 db/dec for the frequency : .
range, 1/T < o < «. The two straight lines are asymptotes of the exact B 10 o
curve. @ =T T (log scale)
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First order factor in denominator

The frequency at which the two asymptotes meet is called corner frequency or break frequency.
For the factor 1/(1+jwT) the frequency, ®=1/T is the corner frequency, wc . It divides the frequency response

curve into two regions, a curve for low frequency region and a curve for high frequency region

Phase angle, 6 = £G(ijo)=—-tan”! @T

i ~ i )
At the corner frequency, o =0.=—, ¢ =—tan 0T =—tan" 1=—45
Aso -0, ¢—>0°

Aso-—w, 6—-90° N ' _\ ,

The phase angle of the factor, 1/(1+ joT), varies from $-90°

0° to -90° as o is varied from zero to infinity. The s i —»
phase plot is a curve passing through -45° at oc . “=7 7 (logscal)
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When the first order factor in the denominator has a multiplicity of m, then,

G(s)=——1--; = G{jo)= ! = 1

] m + = m m
(1+5T) (1+ joT) [41+m2T2] £Zm tan" 0T

A= |G(jo)| in db=201log 1 —=-20m logy1+@2T?
' [-\!1+m2T‘2j

¢ =2£G(jo)=-m tan"'0T T 0

A _oom

(log scale)
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First order factor in Numerator
G(s)=1+sT _
G(jo)=1+joT =y1+e*T? Ztan'oT

A= |G(jo) in db=20log y1+@>T>
0= 2/G(jw)=tan"' T

A
T 20} - SRREITRIE plol—a. s
Xa L] G .
& T e"f:’“
in go®”

_b
1 10 ®
T T (log scale)

Bode nlor of the facior {1+iaT).

Department of EEE
Emitting Elite Energy

When the first order factor in the Numerator has a multiplicity of m
G(s)=(1+sT)"

G(jo)=(1+joT)" = [«JI +o’T? ] Zmtan"'oT
A= |G(jo)| in db=20log (\/1+sz2) = 20mlogy 1+ ©3T?

0=2G(jo)=mtan T

'3

T +20m
+3m

L J

10 ©

1
®=7 T (log scale)
Bode plot of the factor (1+jeT)".
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w
2 1 ; EC—
G(9) =2 = 1 _ 1 - 1 Z£—tan'— 22

s ] : - Gm) = 2 . @ 2 ® 232 2 1 (0]
1420 — 4| — i il Ll O] G o) 2 0° it 2
| Zmn o) 1+ j o +£mn] 1 [{ﬂn} +J”€mﬂ J[I*gé-] +45 ;}“ﬁ o’
Let, A=!G(jo) in db.

22 2

1 ® )
A =2010g =_2|:}10g-‘j {] _E_J +4§2__2_
. . -

T

4 2 2 Lt)?' {1]4
=-20log \/ 1+ 222 4422 = 20log J - 2524 o
@ I n I

At very high frequencies when © >> @_, the magnitude is,

At very low frequencies when © << ®_, the magnitude is 2 4 4 42 2
2 4 o’ : A=-201l0g [1~ s (2- %)+ =20 log |~ =20 log %:-201%[-3)
: 2 4 o o, -
m 2 m o n n n 5 o
A==-20log |1-— (2— +——m20log1=0
g {ﬂi ( 4{:‘ ) m‘:; 8 : .'.A=—4010g-2—

Ato=0, A=-40logl=0db
At =100, A=-401logl0=-40db
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The magnitude plot of the quadratic factor in the
denominator an be approximated by two straight lines, one is a
straight line at 0 db for the frequency range 0 < ® < on. and the
other is a straight line with slope -40 db/dec for the frequency
range mn < < o. The two straight are asymptotes of the exact
curve. The frequency at which the two asymptotes meet is called

the corner frequency. For the quadratic factor, the frequency wn is

the corner frequency wc,

IS0 9001:2015

Department of EEE
Emitting Elite Energy

©=0, f logrscale)
¢ Bode plot of quadratic factor in denominator.
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The two asymptotes of the exact curve are independent e

of the damping ratio,l. In the exact magnitude plot, resonant peak T
04

Approximate plot

Slope = - 40 db/dec

occurs near the corner frequency and the magnitude of resonant A

peak depends on (. Lower the value of { , larger will be the

resonant peak. Hence by this approximation the error at the corner

frequency depends on damping ratio . The phase plot is obtained

by calculating the phase angle of G(jo) for various values of .

020 Mbg;smle)

¢ Bode plot of quadratic factor in denominator.
\
2";‘3 AS ()] =mn’ d}:_tan_l ..2__C_..:_tan'l :"gf}:
-1 @O
¢ =<£G(jo) =-tan E};. Asw—=0, ¢>0
KL [ en : g
Wi) As @ — o, $-—>-180
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1]
§+2lm s+ @ g S . e @ [ jO@ ) © _ 0
G(s) = 2 2 “=1+2«’;(——J+{—J G(jw)=1+j2£ —+[J ] —J[]—-—TJ +4 = Ltan™ ——2-
{0 o @, @, () W _ w
i i n 1“ 3
mn

The magnitude plot of the quadratic factor in the

Numerator an be approximated by two straight lines, one is a
—Slope= aoaec  Straight line at 0 db for the frequency range 0 < ® < wn. and the

£=0.
;:;g% other is a straight line with slope +40db/dec for the frequency

range wn < o < <. The two straight are asymptotes of the exact

curve. The frequency at which the two asymptotes meet is called

the corner frequency. For the quadratic factor, the frequency n is

the corner frequency mc, Due to this approximation the error at

0 =0, : o(log scale)

" Bode plot of quadratic factor in mamerator: the corner frequency depends on .
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The phase angle varies from 0 to +180°, as  is varied from 0 to «o. At the corner frequency the phase angle

is +90° and independent of {, but at all other frequency it depends on C.

Approximate plot

~ Slope = +40 db/dec
£=05

£=0.3

£=0.1

® =, : m(]og scale)

. Bode plot of quadratic factor in numerator.
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PROCEDURE FOR MAGNITUDE PLOT OF BODE PLOT
From the analysis, the following conclusions can be obtained.

1. The constant gain K, integral and derivative factors Contribute gain (Magnitude) at all frequencies.

2. In approximate plot the first, quadratic and higher order factors contribute gain (magnitude) only

when the frequency is greater than the corner frequency.

Hence the low frequency response upto the lowest corner frequency is decided by K or K/ (jo)*n, K(jo)™n
term . Then at every corner frequency the slope of the magnitude plot is altered by the first, Quadratic and
higher order terms. Therefore the magnitude plot can be started with K or K/(jw)™n or K(jo)”*n term and then

the db magnitude of every first and higher order terms are added one by one in the increasing order of the

corner frequency.
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K (1+sT,)?
Let, G(s) =— (5T
s° (1+sT,) (1+5T;)
Glio)=- K (1+joT)*
0= o)1+ joTy) (1+ joT,)
. 1 1 1
Let, T.<T;<T. The corner frequencies are, o 4=—, O H=—, O3=".
Tl 'T.'J! T3

Let: II:ﬂv::.l ‘:fﬂ,;g {mcz'

The magnitude plot of the individual terms of G(jw), and their combined magnitude plot are
shown an fig
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Magnitude indb  ~———»p

+db
0db

« Magnitude ploté of the term —K-E
: (jo3

—db

+db
Odb

odb
-db

0db
—db
+db

Gdb

—db

'6&0\660 : s
& Magn:itude plot oftheé!erm (1+joT.)

Magnitude plot of the term L
: (1+joTy)

Magnitude plot of the term

‘*100 . 1
'%’so {(1+jaT,)

0 db/dec

.

Oy By 0 ’ w(log scale)

K(1+ joT,)*
(o) (1+ joT, )(1+ joT;)’

: Magnitude plot of bode plot of, G(jw )=

S 7 Tio°7 L Department of EEE
ISQ 2001:20153 Emitting Elite Energy
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The step by step procedure for plotting the magnitude plot is given below

Step 1 Convert the transfer function into Bode form or time constant form. The Bode form
of the transfer function is

K (1+sT, i . K (1+joT;)
G(9= P i, (o) - "D
@2 ®, o2 ®,
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Step 2 : List the corner frequencies in the increasing order and prepare a table as shown below

Term Corner frequency Slope | Change in slope
rad/sec db/dec db/dec

In the above table enter K or K/ (jo)™n, K(jo)*n as the first term and the other terms in the increasing
order of corner frequencies. Then enter the corner frequency, slope contributed by each term and change in

slope at every corner frequency.



ISO 9001:2015

el e COlngC of EllglﬂCCl’ll’lg Department of EEE
in Emitting Elite Energy

Step 3: Choose an arbitrary frequency t, which is lesser than the lowest corner frequency. Calculate the

db magnitude of K or K/ (jo)™n, K(jo)*n at oL, and at the lowest corner frequency

Step 4: Then calculate the gain (db magnitude) at every corner frequency one by one by using
the formula

Gain at @ = change in gain from o _to @ + Gainat o,

7

®
= | Slope from 0, 0 @, X ]ogm—}} + Gainat o,

X

k4
v
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Step 5: Choose an arbitrary frequency (DH, which is greater than the highest corner frequency. Calculate

the gain at (DH by using the formula in step 4

Step 6: In a semilog graph sheet, mark the required range of frequency on x-axis (log scale) and the

range of db magnitude on y-axis (ordinary scale) after choosing proper units.

Step7: Mark all the points obtained in steps 3, 4, and 5 on the graph and join the points by straight lines.
Mark the slope at every part of the graph.

Note: The magnitude plot obtained above is an approximate plot. If an exact plot is needed then

appropriate corrections should be made at every corner frequencies.
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PROCEDURE FOR PHASE PLOT OF BODE PLOT

The phase plot is an exact plot and no approximations are made while drawing the phase plot.
Hence the exact phase angles of G(jw) are computed for various values of » and tabulated. The choice of
frequencies are preferably the frequencies chosen for magnitude plot. Usually the magnitude plot and

phase plot are drawn in a single semilog- sheet on a common frequency scale.

Take another y-axis in the graph where the magnitude plot is drawn and in this y-axis mark
the desired range of phase angles after choosing proper units. From the tabulated values of w and phase

angles, mark all the points on the graph. Join the points by a smooth curve
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DETERMINATION OF GAIN MARGIN AND PHASE MARGIN FROM BODE PLOT

The gain margin in db is given by the negative of db magnitude of G(jo) at the phase cross-
over frequency, ®pc The wpc is the frequency at which phase of G(jo) Is -180°. If the db magnitude of

G(jo) at mwpc is negative then gain margin is positive and vice versa.

Let ®gc be the phase angle of G(jw) at gain cross over frequency mgc. The mgc is the

frequency at which the db magnitude of G(jo) is zero. Now the phase margin, y is given by, y =

180°+ dgc. If dgc is less negative than -180° then phase margin is positive and vice versa
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+db
T Nﬁm\
A 0 —CM

' Positive
PM

in : \
db ) i
—db i :

—_90|

-270

) '( - 180 2 Z Negative
. 6 Poe == ——— == —-—=-= PM

>

>

@ O o(log scale)

{ﬂp; | o(log scale)
Bode plot showing phase margin (PM) and gain margin (GM).
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GAIN ADJUSTMENT IN BODE PLOT

In the open loop transfer function G(jo) the constant K contributes only magnitude. Hence by

changing the value of K the system gain can be adjusted to meet the desired specifications. The desired

specifications are gain margin, phase margin, ®pc and mgc.

In a system transfer function if the value of K required to be estimated to satisfy a desired
specification then draw the bode plot of the system with K = 1. The constant K can add 20logK to every
point of the magnitude plot and due to this addition the magnitude plot will shift vertically up or down.
Hence shift the magnitude plot vertically up or down to meet the desired specification. Equate the vertical

distance by which the magnitude plot is shifted to 20logK and solve for K.
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Plot the Bode diagram for the following transfer and obtain the gain and phase cross over frequencies.

10
s (1+0.4s) (1+0.1s)
The sinusoidal transfer function of G(jw) is obtained by replacing s by jo in the given transfer function.

10
jo (1+0.40) (1+0.10)

G(s) =

- Gljw) =

MAGNITUDE PLOT

1
The corner frequencies are, @, = ﬁjlf =25rad/sec & ©g= XS 10 rad { sec

The various terms of G(jm) are listed in table-1 in the increasing order of their corner frequencies. Also the

table shows the slope contributed by each term and the change in slope at the corner frequency.
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- Gljieo) =

MAGNITUDE PLOT
1
The corner frequencies are, @, = ﬁ% =2.5rad/sec O =53 10 rad { sec

The various terms of G(jo) are listed in table-1 in the increasing order of their corner frequencies. Also the

table shows the slope contributed by each term and the change in slope at the corner frequency.

Term Corner frequency Slope Change in siope
TABLE-1 rad/sec db/dec db/dec
T10 .
jo - . =20,

1 1 D a

1+ j0.40 Pc1=gg =20 -20 ~20-20=-40
1 _1_ w1 e T ‘-‘#_,.-- '

1+ J0. %0 P2=03" =20 020260
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Step 3: Choose an arbitrary frequency L, which is lesser than the lowest corner frequency. Calculate the

db magnitude of Integral Factor ‘10/jo’ at ®L and at the lowest corner frequency cl

Step 4: Then calculate the gain (db magnitude) at every corner frequency one by one by using
the below formula

Gain at @ = change in gain from o _to @ + Gainat o,

®
= | Slope from 0, 0 @, X ]og—}} + Gainat o,

@y

v

v
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Step 5: Choose an arbitrary frequency (H, which is greater than the highest corner frequency. Calculate

the gain at 0+ by using the formula in step 4

Choose a low frequency (DL, such that L < (D¢l and choose a high frequency (MH , such that MH > (Dc2

(ML = 0.1 rad/sec, and (QH = 50 rad/sec

A =|G(jo)| in db

Let us calculate A at L, ®cl, MDc2 and ®H
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Choose a low frequency (DL, such that (L < (Dc1 and choose a high frequency (DH , such that MDH > (Dc2
ML = 0.1 rad/sec and (DH =50 rad/sec

= |G(jo)| indb Let us calculate A at L, ®cl, Mc2 and H
El 20 It:-gE = 40 db
o

110 10
= = =20 log—=12db
At o D 1 A=20 l:l:l'g ‘j-{ﬂ—] 2+5 |

Atw =w, A=20Ilog

10
2 = —+12=-12db
} +A(atm=mc1} d‘4DKIDg25+

(of |

: 0
Ato =, A=|Slope from ot 0, xl0g -

b

Ato=wn, A=|Slopefromo,to mhxing——] "'A{atm—mﬂ} 6l}xlﬂg——+{ 12)=-54db
Weo
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Let the points a, b, ¢c and d be the points corresponding to frequencies (L, wcl, MDc2 and H, respectively
on the magnitude plot

In a semilog graph sheet choose a scale of 1unit = 10db on y-axis

The frequencies are marked in decades from 0.1 to 100 rad/sec on logarithmic scales in x-axis.

Fix the points a, b, ¢ and d on the graph. Join the points by a straight line and mark the slope in the

respective region,
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PHASE PLOT .. G(e)= o (15 ]040) (1+0.10)
The phase angle of G(jo) as a function of w is given by $=-90°-tan—'04o-tan'0.10
The phase angle of G(jw) are calculated for various values of o and listed in table-2
Table-2
o tan-' 0.4 o tan”' 0.1 @ & = £G(jo) Points in
rad/sec deg deg deg phase plot
0.1 - 229 0.57 —82.86 ~ 92 a
1 21.80 2.71 -117.5 =-118 f
25 45.0 14.0 ~149  =-150 g
4 57.9% 21.8 -169.79=-170 h
10 75.96 45.0 -210.96=-210 [
20 82.87 63.43 -236.3 =236 j
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on the same semilog graph sheet choose a scale of 1unit = 20° on the y-axis on the right side of
semilog graph sheet.

Mark the calculated phase angle on the graph sheet. Join the points by a smooth curve
From the graph, the gain and phase cross over frequencies are found to be 5 rad/sec

Gain cross-over frequency = 5 rad/sec.

Phase cross-over frequency = 5 rad/sec.
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Gain Margin and Phase Margin

Gain Margin: Phase Margin:
GM =-20 Log [G(jw)H(jm)| at © = @, PM = An

Magj'l” dg Mag. in dE
Mag. in dB
G0 HT ) C o
in [5G HG G HG |
4 M
in dB in dB A in'dg
B —ve GM. GM. =0 dB
0 dE y 0 dB B 0dE
| +ve GM.
G Hi )| —— A G JHG ) G MG )
in degrees in degrees in degrees
+ve P, P =10
_180° —180° = —180°
D | —ve P
— e
C
= - . Log
b Lo o [
e pe Log pe e .
Fig. 11.7.3 wgy = wpe G.M. and P.M. zere, marginally stable
Fig. 11.7.2 wg, = wp, G.M. and P.M. negative, unstable system system

Fig. 11.7.1 wye < uy, G.M. and P.M. positive. stable system
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Assignment:
) 80 ]
A unity feedback control system has G(s) = ST (5120)" Draw the Bode plot.
Solution:
Step 1: Arrange G(s)H(s) in time constant.
80 80 2

O 2B )20+ 1) s+ 20(5+1)(511) s-Cr1)(5+1)
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Plot the Bode diagram for the following transfer and obtain the gain and phase cross over frequencies.

G(s) = 20
s (1+3s) (1+ 4s8)
The sinusoidal transfer function of G(jo) is obtained by replacing s by jo in the given transfer function.
G{jo) = i
jo (1+j30) (1+ j40)

MAGNITUDE PLOT

The corner frequencies are, ., = %= 0.25rad/sec, & (y= %: 0.333 rad/ sec.

The various terms of G(jm) are listed in table-1 in the increasing order of their corner frequencies. Also the

table shows the slope contributed by each term and the change in slope at the corner frequency.
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20

SO) = T+ o) (1+ o)

MAGNITUDE PLOT

. 1 1 .
The corner frequencies are, ©. ;= Z= 0.25 rad/ sec, Ocg =7 = 0333 rad/ sec.

The various terms of G(jm) are listed in table-1 in the increasing order of their corner frequencies. Also the

table shows the slope contributed by each term and the change in slope at the corner frequency.

Term Corner frequency Slope Change in slope
TABLE-1 radisec db/dec db/dec
20
= - i
_1..__ L l =025 ' hh"‘ 2
1+ jdo g g B 5%
1 = =053 B R B ek
Ty 0 =5 =0 -20 10-20 =60
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Step 3: Choose an arbitrary frequency L, which is lesser than the lowest corner frequency. Calculate the

db magnitude of Integral Factor ‘20/jo’ at ®L and at the lowest corner frequency mcl

Step 4: Then calculate the gain (db magnitude) at every corner frequency one by one by using
the below formula

Gain at @ = change in gain from o _to @ + Gainat o,

®
= | Slope from 0, 0 @, X ]og—}} + Gainat o,

@y

v

v
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Step 5: Choose an arbitrary frequency (H, which is greater than the highest corner frequency. Calculate

the gain (H by using the formula in step 4

Choose a low frequency (DL, such that L < (D¢l and choose a high frequency (MH , such that MH > (Dc2

(DL = 0.15 rad/sec, and (DH = 1rad/sec

A =|G(jo)| in db

Let us calculate A at L, ®cl, MDc2 and ®H
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Choose a low frequency (DL, such that (L < (DH and choose a high frequency (H , such that MH > (Dc2

(ML =0.15 rad/sec and (DH = 1rad/sec

= |G(jo)| indb Let us calculate A at L, ®cl, Mc2 and H

) 20
Alo=w_,, A =|:Siﬁpe from o, 10 o, xlog m&} +ﬁ.{am = ag1)
. mm
_ 0.33 B
=-40 xlog 9% +38=33db

Ato =y, A=[Slope from o pto mhxlog&} Ao =0
® o :

{
= _60xlog ——+33=4db
*109 533+
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Let the points a, b, ¢c and d be the points corresponding to frequencies (L, wcl, MDc2 and H, respectively
on the magnitude plot

In a semilog graph sheet choose a scale of 1unit = 10db on y-axis

The frequencies are marked in decades from 0.01 to 10 rad/sec on logarithmic scales in x-axis.

Fix the points a, b, ¢ and d on the graph. Join the points by a straight line and mark the slope in the

respective region,
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PHASE PLOT  Gjo) = ——20 __

jo (1+j30) (1+ j40)

The phase angle of G(jo) as a function of w is given by & =-80° —tan"* 3w - tan"4o

The phase angle of G(jw) are calculated for various values of o and listed in table-2

Table-2

o, rad/sec tan-! 3a, deg tan-! 40, deg ¢ = £G(jo), deg Points in
_ phase plot

0.15 24.22 30.96 1 -145.18~-146 e

0.2 30.56 38.66 - -159.61=-160 | f

0.25 36.86 45.0 -171.86~-172 g

0.33 447 52.8 -187.5 ~-188 h

0.6 60.14 . 67.38 —218.32~-218 i

1 71.56 75.96 ~237.56~-238 j
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on the same semilog graph sheet choose a scale of 1unit = 20° on the y-axis on the right side of
semilog graph sheet.

Mark the calculated phase angle on the graph sheet. Join the points by a smooth curve

From the graph,

Gain cross-over frequency = 1.1 rad/sec.

Phase cross-over frequency = rad/sec.
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Sketch the bode plot for the following transfer function and determine phase margin and gain

75 (1+0.2s)
5(52+165+100)

G(s) =

On comparing the quadratic factor in the denominator of G(s) with standard form of quadratic factor we
can estimate { and @n

~82+165+100 = 8%+ 2o s+0?

On comparing we get,
©2=100 = o,=10
o, =16 = =—2=-18 _g9

2o, 2x10
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75 (1+0.2s)
s (52 +16$+1DD)

G(s) =

Let us convert the given s-domain transfer function into bode form or time constant form

SGey=— 0028 _ 75(1+02) _ 075(1+0.29)
s (8% +16s + 100) sxman_Q 165 . s (1+0.0157+0.16s
700 " 700

The sinusoidal transfer function G(jo) is obtained by replacing s by jo in G(s)

0.75(1+0.2j0)  0.75(1+j0.20)

= Gjo) = > e
jo (140.01(6)" +0.16j0) o {1-0.0%%+]0.160)
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MAGNITUDE PLOT

The corner frequencies are, 4 :Eizu =brad/sec & Oy =0,=10rad/sec

Note : For the quadratic factor the corner frequency is (n

The various terms of G(jo) are listed in table-1 in the increasing order of their corner frequencies. Also the

table shows the slope contributed by each term and the change in slope at the corner frequency.

Term Corner frequency Siope - Change in slope
rad/sec dbi/dec db/dec
0.75 : o
-—--—jm _ _20 e, -
| B T e o
1+j0.20 By ==s=9 20 ~20+20=0
7702 B o
1 O S
1-0.0%” + j0.160 O =®, =10 -40 O540=-40
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Choose an arbitrary frequency L, which is lesser than the lowest corner frequency. Calculate the db

magnitude of Integral Factor ‘75/jw’ at WL and at the lowest corner frequency cl
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Choose an arbitrary frequency (DH, which is greater than the highest corner frequency. Calculate the gain

(MH by using the formula in step 4

Choose a low frequency (DL, such that L < (D¢l and choose a high frequency (MH , such that MH > (Dc2

(DL = 0.5 rad/sec, and (QH = 20rad/sec

= |G(jo)| in db

Let us calculate A at L, ®cl, MDc2 and ®H
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AL o=w, A=20l0g "> =20 l0g 2> = 3.5 db
jo " 05
AL, ®=0,, A=20 log Dj'?S =20 Ii::u;;]Eli-;-E =-16.5db
m

.
A, ©=0, A={5Inpe fromao, 10 04 x l0g m—ﬁ}"'ﬁ*{mmé}ﬂ}

ci

=0 x Ingig-+{u16.5)=-16.5 db

At 0 =o,, A= [slope from o, to o, x '09?*} +Astozag)
cZ

- _40x log%+(—1ﬁ.5) - _28.5db
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Let the points a, b, ¢c and d be the points corresponding to frequencies (L, wcl, MDc2 and H, respectively
on the magnitude plot

In a semilog graph sheet choose a scale of 1unit = 5db on y-axis

The frequencies are marked in decades from 0.1 to 100 rad/sec on logarithmic scales in x-axis.

Fix the points a, b, ¢ and d on the graph. Join the points by a straight line and mark the slope in the

respective region,
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75 {1.,.{}_25) IS0 9001:2015  gryng fire Enercy
PHASE PLOT G(s)=—;
s (s” + 165+ 100}
. . . . ) 1 . » 0.16m .
The phase angle of G(jo) as a function of o is given by ¢ = /G(jo) =tan™'0.2c — 90° ~tan 00wz foro<o,

Note: In quadratic factors the phase varies from 0° to 180°. But calculator calculates tan-' only between 0°

to 90°. Hence a correction of 180°should be added to phase after on

+ 0.160
o= ZGljo) =tan"'0.20 - 90" — [taﬂ [t 180“] foro >,
1-0.0%
The phase angle of G(jw) are calculated for various values of ® and listed in table-2
o tan"'02 @ En‘*% ¢=<G(w) | Pointsin
rad/sec deg deg deg phase piot

0.5 57 ' 45 -88.9~=-88 e
1 11.3 9.2 ~87.9~-88 f
5 45 ' 46.8 ~91.8%-92 g
10 63.4 90 -116.6 =-116 h
20 75.9 —46.8+180=133.2 -147.3 =148 i

Tab I e-2 50 84.3 -18.4+180=161.6 ~167.3 x-168 i
100 87.1 -92+180=170.8 —173.7=-174 k
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The phase angle of G(jw) are calculated for various values of ® and listed in table-2

¢ = /Gljo) =tan"'0.20 — 90° - tan™’ Tf'[;-%u_f foro <o,
» = ZGjo) =tan"'0.20 - 90" — [tan'?iﬁs(-ﬂ—z + 180‘} foro>o,
Table-2 1f0‘01‘”
® tan~- 102 @ tan”-{-_% ¢ = £G(jo) Points in
rad/sec deg deg deg phase piot
0.5 57 ' 46 ~88.9~-88 e
1 11.3 9.2 ~87.9~-88 f
5 45 | 46.8 ~91.8~-92 g
10 63.4 90 ~116.6 ~—116 h
20 75.9 —46.8+180=133.2 -147.3 =148 i
50 84.3 ~18.4+180=161.6 ~167.3 ~—168 j
100 871 ~ —92+180=170.8 —173.7~-174 k
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on the same semilog graph sheet choose a scale of 1unit = 20° on the y-axis on the right side of
semilog graph sheet.

Mark the calculated phase angle on the graph sheet. Join the points by a smooth curve
Let ®dgc, be the phase of G(jo) at gain cross-over frequency, mge.
From the fig, we get, dgc=-88°
.. Phase margin, g=180° + dgc = 180° — 88° = 92°
The phase plot crosses — 180° only at infinity. The G|(jo)| at infinity is -codb.

Hence gain margin is +oo.



Program-Bode Plot

Program: num = [80];
i 80 ) 20 den =[1 22 40 0];
Gls) = s(s+2)(s+20) s3+22s2+40s G= tf(num’den);
margin(G)
%grid

clc #clears all the text from the Command Window, resulting in a clear screen

num = [80]; #Coefficients of the numerator

den =[1 22 40 0]; #Coefficients of the denominator

G=tf(num, den);#creates a continuous-time transfer function with numerator(s) and denominator(s)
specified by num and den

margin(sys)# margin(sys) plots the Bode response of sys on the screen and indicates the gain and phase
margins on the plot. Gain margins are expressed in dB on the plot

[Gm,Pm,Wcg,Wcp] = margin(sys) #Compute the gain margin, phase margin and frequencies.



Bode Plot
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From the plot note down the gain margin (GM), phase margin (PM) and the corresponding cross over

frequencies.
For unstable systems, GM and PM will not be displayed correctly but can be obtained by clicking on the
plot at suitable points

Click on the phase angle curve and find the frequency at which the curve crosses the 180° line. This gives
the phase cross over frequency o,

Click on the magnitude curve and find the magnitude at w=w,. The gain margin is calculated as, GM =0 -

magnitude at phase cross over frequency
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Click on the magnitude curve and find the frequency at which the curve crosses 0dB line. This will give

the gain cross over frequency o,

Click on the phase angle curve and find the phase angle at ®=w,. The phase margin is calculated as PM =

phase angle at the gain cross over frequency + 180 at o=,

The GM, PM and the cross over frequencies can also be obtained using the following
function. [Gm,Pm,Wcg,Wcp] = margin(sys)
Where GM = gain margin in abs unit (20logGM is the GM in db)



Outcome

» The Gain Margin = 20.8 dB at phase cross over frequency of 6.32 rad/sec.
» The phase Margin = 47.4° at gain cross over frequency of 1.57 rad/sec.

» For the given system both GM and PM are positive hence, the system is
stable.




num = [7.2 36]; \NUMERATOR
den =[0.0005 0.06 1 0 0]; \DENOMINATOR
sys = tf(num, den); \\Transfer Function

bode(sys); \\Frequency response W
margin(sys);

10
Frequency [radfs]




clc

clear all;

close all;

num=[7.2 36]

den=[0.0005 0.06 1 0 0]
G=tf(num,den);

[gm,pm wep weg]=margin(G)

num= 7.2000 36.0000
den= 0.0005 0.0600 1.0000
gm= 21.3376

pm= 31.5989

wep = 37.4091

weg= 7.9003




BODE DIAGRAMS USING MATLAB

Two functions exist that assist in Bode diagrams:
1.“bode” returns/plots the Bode response of a system.
2.“margins” the gain and phase margins and their associated frequencies

Valid syntax for the “bode” utility, for transfer functions, is:
1.[mag,phase,w] = bode(num,den)

2.[mag,phase,w] = bode(num,den,w)

3.[mag,phase] = bode(num,den,w)

4.bode(num,den,w)

5.bode(num,den)

where “num” and “den” contain the polynomial coefficients,



NYQUIST DIAGRAMS USING MATLAB

[re,im] = nyquist(num,den,w)

where
re = real part on the Nyquist diagram
Im = 1imaginary part on the Nyquist Diagram

num = row matrix format representing the numerator of the polynomial
den = row matrix format representing the denominator of the polynomial
w = frequency in rad/sec
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Consider a linear time invariant system with frequency domain transfer function, T(jo) shown in fig

r(t) ST c(t) c(t)=BLh _
r{t)=Asin(fot +0)=AZL0 o) =TUe) ~TUe) " vhere, E:éﬂfgg{?ﬂ)

System with sinusoidal transfer function T(jw).

Let S=jo in G(s)H(s) & calculate magnitude and phase

wopc” Phase cross over frequency
| Gjo)H(o) |

ML @ =|G(jo)H(m)| LG({o)H(o)

Magnitude M Phase @ L G(jo)H(jo)



