
The relative stability and transient performance of a closed loop control system are directly

related to the location of the closed loop poles.

The closed loop poles are the roots of the characteristic equation

The response of a closed loop control system can be adjusted by judicious selection of

system parameter or appropriate gain value to achieve desired performance as the system

parameter or gain value chosen determine the location of the closed loop poles

The Root Locus 



The root locus technique is a graphical method of plotting the locus of roots of the characteristic equation

in the s-plane as the system parameter or gain is varied

Such a plot clearly depicts the contribution of each open loop pole or zero to the location of closed loop

poles

Further the roots corresponding to a particular value of the system gain can be located on the root locus

or the value of the system gain for a desired location can be determined from the root locus

The gain of the system has a crucial effect on the stability of the system.

Root loci provide very convenient means of analysing the system where this parameter occurs in the

characteristic equation. Thus root locus method is a powerful tool in analysing and designing a feedback

control system



The Root Locus Concept

The root locus method involves plotting the roots of the characteristic equation of closed

loop system as the gain is varied from zero to infinity. Consider the system shown Fig



The Root Locus Concept

The characteristic equation will be the denominator of transfer function equated to 0 i.e 1+KG(s)H(s)=0.

Now, for different values of K, different roots of the characteristic equation are obtained. In other words, the location of roots

of characteristic equation on the s-plane will vary with parameter ‘K’.

If the roots are plotted on the s-plane for different values of K, then the collection of all those points i.e the locus of roots —

is called root locus. When K varies from 0 to positive infinity, it is termed as direct root locus and when K varies from

negative infinity to 0, it is called complementary root locus.

The direct and complementary root locus together (K varying from positive infinity to negative infinity) form the complete

root locus.



The Root Locus Concept





When K is varied from 0 to +infinity, the plot

is called direct root locus.

When K is varied from –infinity to 0, the plot

is called inverse root locus.





In order to satisfy the performance specifications such as time domain specifications, frequency

domain specifications a compensator is introduced in open loop transfer function

Two methods of designing a control system are design using root locus and design using bode

plot.

In design using bode plot, the system is designed to satisfy the specified frequency domain

specifications.

In design using root locus, the system is designed to satisfy the specified time domain

specifications.



The series compensation is a design procedure in which a compensator is introduced in

series with plant to alter the system behaviour and to provide satisfactory performance (i.e.,

to meet the desired specifications). The block diagram of series compensation scheme is

shown in fig

Gc(s) = Transfer function of series compensator

G(s) = Open loop transfer function of the plant.

H(s) = Feedback path transfer function.

What is series compensation?



To understand what root locus plots are, and why they are important, let's examine the behavior of a system

when it is in a control system. Assume that the system is defined by the transfer function:

This expression for H(s) is easily derived: E(s)=R(s)-C(s) and C(s)=K·E(s)=K·(C(s)-R(s)). Collect terms and solve for H(s)=C(s)/R(s).

We'll control this system with a very simple proportional controller in which the input to the system to be

controlled is proportional (with gain, K) to the difference between the input, R(s), and the output, C(s).

The loop gain is K·G(s), so the closed loop gain is given by



Design: Trial and Error Solution

We want to examine how the behavior of the system varies as K changes, so let's try several values of 

K. Let's arbitrarily try K=1, 10 and 100 so that we have a wide range of K values.

The response with K=1 (blue) is very slow, the response with K=100 (maroon) is faster but very oscillatory.

However the response with K=10 (green) is fast and has about 20% overshoot (we can reduce this overshoot

and maintain the speed of the response). Clearly this method is rather "hit-or-miss" and it may take us a long

time to find a suitable value for K, especially for more complicated systems.



For the very simple problem described above, it was possible to calculate the precise

location of the roots, and choose a value of K that gave us a good response. For more

complicated systems it is not so straightforward so we need a more general method for finding

K.

This more general method is called the "root locus" method. With this technique we make a

plot of the path of the roots as a parameter (usually the gain K) varies. We then choose pole

locations, and find the value of K necessary



Root locus technique is a important tool in designing control systems with desired performance

characteristics.

The desired performance of the system can be achieved by adjusting the location of its closed loop poles

in S-Plane by varying one or more system parameters ( Usually open loop gain, K)



The denominator polynomial of C(S)/R(S) is the characteristic equation of the system.

The roots of characteristic equation depend on open loop gain K, when the gain K is varied from 0 to

infinity, the roots of characteristic equation will take different values. When K=0, the roots are given by

open loop poles. When K -> infinity, the roots will take the value of open loop zeros

The characteristic equation is given by S(S+P1)(S+P2)+K=0

The path taken by the roots of characteristic equation when open loop gain K is varied from 0 to infinity

are called root locus/root loci.

Root locus technique is a also used for stability analysis. Using root locus the range of value of K for a

stable system can be determined

The time domain specification damping ratio ζ and ω natural frequency of oscillation of the system can be

calculated



The Root locus is symmetrical about the real axis



The root locus is symmetrical about the real axis



Procedure / Rule for construction of root locus

Rule 1   Locate the open loop poles and zeros in the ‘s’ plane

Root locus branch start from open loop poles and terminate at zeros

 Number of Root locus branch will be equal to Number of open loop poles

Let n = Number of open loop poles “χ”

m = Number of finite zero “o”

then (n-m) root locus branch end at zeros “O” at Infinity





for example :- Let n = 4 and m = 2 i.e. there are 4 open Loop Poles and 2 open loop finite zero

 Then there will be 4 Root locus branch that start/origin from these 4 open Loop Poles

 out of those 4 Root locus branch, 2 Root locus branch will ends at finite Zeros and remaining

(n-m) root locus branches will end at zeros at infinity.

Asymptotes give the direction of this root locus branches which ending at zeros at infinity.

The intersection point of asymptotes Line on the real axis is known as centroid.







Rule 2 Determine the root locus on real axis

In order to determine the part of root locus on real axis, take a test point on real axis. If

the total number of poles and zero on the real axis to the right of this test point is ODD number,

then the test point lies on the root locus. If it is Even Number then the test point does not lie on

the root locus.





Rule 3  Determine angle of asymptotes and centroid (meeting point of asymptotes with real axis)

Angle of asymptotes and centroid 

If n is the number of poles and m is the number of finite zero, (n-m) root locus branch terminate at zeros 

at Infinity. 

These n-m root locus branches will go along an asymptotic path and meets the asymptotes at infinity. 

hence number of asymptotes is equal to number of root locus branches going to infinity (zeros at infinity)

Or in other words

Asymptotes are straight lines which is parallel to root locus going to infinity and meet 

the root locus at infinity

Angles of asymptotes = ±180*(2q+1) / n-m

Where q=0, 1, 2, 3……(n-m)



Centroid is meeting point of asymptote with real axis, the centroid is given by, 

Centroid = (sum of poles – sum of zero) / n-m

Centroid is marked on real axis and from centroid the angle of Angle of asymptotes are marked using

protractor, asymptotes are drawn as dotted lines





Rule 4 Find Break-away and Break-in points.

Break-away and Break-in points either lie on real axis or exist as complex conjugate pairs

• if there is a root locus on real axis between 2 poles, then there exist a break-away point in between these

two open loop poles

• If there is a root locus on real axis between two zeros, then there exist a break-in point in between these

two open loop zeros

• If there is a root locus on real axis between pole and zero then there may be or may not be break-away

point or break-in point



Follow these steps to find break-away and break-in points

Form an equation K in terms of s from the characteristic equation 1+G(S)H(S)=0

Differentiate K with respect to s and make it equal to zero i.e. dK/ds = 0 .

 Find the Roots of s.

 Substitute these values of s in equation K and determine the value of K

 If k is real and positive then s is the actual break point

 If k is not real and positive then that value of s is not the break point

The Roots of dK/ds = 0 are break-away or break-in points, provided for this value of root, the gain K value

is should be positive and real



Consider 𝑮 𝒔 𝑯 𝒔 =
𝑲

𝑺 𝑺+𝟐

Open loop poles are s = 0; s = -2

Breakaway point is a point on the root locus where multiple roots
of the characteristic equation occurs for a particular value of K.

The root locus branches always leave breakaway point at an
angle of ±1800/n,

where n = number of branches approaching at break away
point.



Consider 𝑮 𝒔 𝑯 𝒔 =
𝑲(𝒔+𝟔)

𝑺 𝑺+𝟐 (𝒔+𝟒)

Open loop poles are s = 0; s = -2; s = -4

Zero at s = -6

If there are adjacently placed poles on the real axis and
the real axis between them is a part of the root locus then
there exists a minimum one breakaway point in between
adjacently placed poles.

One breakaway point exists between poles 0 and -2
which are adjacent.

The poles -2 and -4 are also adjacent but the section
between them is not the part of the root locus and hence
there cannot be a breakaway point between them.



Consider 𝑮 𝒔 𝑯 𝒔 =
𝑲(𝒔+𝟐)(𝒔+𝟒)

𝑺𝟐 𝑺+𝟔

Open loop poles; s = 0, 0, s = -6

Zeros = s = -2, s = -4

If there are two adjacently placed zeros on the real
axis and section of real axis in between them is a
part of root locus then there exists minimum one
breakaway point in between adjacently placed
zeros.

In these cases the branches move away from the
breakaway point towards open loop zeros. Such
point is called break in point.



Steps to determine the coordinates ofbreakaway point:

Consider 𝑮 𝒔 𝑯 𝒔 =
𝑲

𝑺 𝑺+𝟏 (𝒔+𝟒)
, determine the co-ordinates of valid breakaway point.

Solution:

Step 1: Construct the Characteristic equation: 1 + G(s)H(s) = 0

𝟏 +
𝑲

𝑺 𝑺+𝟏 (𝒔+𝟒)
= 𝟎 ; S3 + 5s2 + 4s + K = 0;

Step 2: K = - S3 - 5s2 - 4s

Step 3: Differentiate above equation w.r.t. s and equate to ‘0’
𝒅𝑲

𝒅𝒔
= −𝟑𝒔𝟐 − 𝟏𝟎𝒔 − 𝟒 = 𝟎



Steps to determine the coordinates ofbreakaway point:

Step 4: Roots of the equation dK/ds = 0 gives us the breakaway points.

𝒅𝑲

𝒅𝒔
= −𝟑𝒔𝟐 − 𝟏𝟎𝒔 − 𝟒 = 𝟎

𝟑𝒔𝟐+ 𝟏𝟎𝒔 + 𝟒 = 𝟎

Breakaway points =
−𝟏𝟎± 𝟏𝟎𝟎 −𝟒∗𝟒∗𝟑

𝟐∗𝟑
= −𝟎. 𝟒𝟔, −𝟐. 𝟖𝟔

Substituting in expression for K, K = - S3 - 5s2 - 4s

For s = -0.46, K = +0.8793

For s = -2.86, K = -6.064;

Hence For s = -0.46, K is positive and it is valid breakaway point for the root locus.



Rule 5

• if there is a complex pole then find angle of departure from complex pole.

• if there is a complex zero then find angle of arrival at the complex zero.

Angle of departure and angle of Arrival of root loci



Angle of departure from a complex pole A

Ød =  180˚- (sum of angles of vectors drawn to the complex pole ‘A’ from all other poles)

+ (sum of angles of vector drawn to the complex pole ‘A’ from zeros)

The angle can be measured using protractor



Angle of Arrival at a complex Zero A

ØA= 180˚- (sum of angles of vectors drawn to the complex Zero ‘A’ from all other zeros) 

+ (sum of angles of vectors drawn to the complex Zero ‘A’ from poles)



Rule 6 
Find The Point Where The Root Locus May Cross (intersects) The Imaginary jω Axis

• The Point Where The Root Locus Intersects The Imaginary Axis Can Be Found By Following Method’s

Method-1

Put S=jω in the characteristic equation 1+G(S)*H(S)=0 and Separate the real part and imaginary part

Two equations are obtained by one by Equating real part to 0 and other by equating imaginary part to 0

Solve the two equation to get ω and K

• The value of ω gives the point where the root locus crosses imaginary axis

• The value of K gives the value of open loop gain at there crossing points . Also this value of K is the
limiting/Marginal value of K for stability of the system



S3 0.1 1

S2 0.65 K

S1 𝟎. 𝟔𝟓 ∗ 𝟏 − 𝟎. 𝟏𝐊

𝐊
0

S0 K ---

The marginal value of K is value which makes any row other than s0 as 
row of zeros. 

To find frequency, find out the auxiliary equation at Kmar

Method-2 : intersection of root locus branch with jω axis can be determined through Routh

Hurwitz Criterion

Rule 6 :  Find The Point Where The Root Locus May Cross (intersects) The Imaginary Axis

Consider the characteristic equation 1+G(s)H(s) = 0



Consider 𝑮 𝒔 𝑯 𝒔 =
𝑲

𝑺 𝑺+𝟏 (𝑺+𝟒)

Solution:

Step 1: Consider the characteristic equation 1+G(s)H(s) = 0

𝟏 +
𝑲

𝑺 𝑺+𝟏 (𝑺+𝟒)
= 𝟎

S3+5S2+4S+K = 0

𝟐𝟎 − 𝑲

𝟓
= 𝟎 ; 𝑲𝒎𝒂𝒓 = 𝟐𝟎

The auxiliary equation ; A(s) = 5S2 + K = 0 and K=Kmar = 20

5S2+20 = 0; S2 = -4; S = ± j2

S3 1 4

S2 5 K

S1
𝟐𝟎 − 𝑲

𝟓
0

S0 K

The marginal value of K is value which 

makes any row other than s0 as row of 
zeros. 

To find frequency, find out the 

auxiliary equation at Kmar



Rule 7 To determine value of Open Loop Gain K  at any point of root locus



Consider the open loop transfer function

𝑮 𝒔 𝑯 𝒔 =
𝑲

𝒔 𝒔+𝟏 𝒔+𝟐 𝒔+𝟑
, Draw the root locus curve.

Solution:

Step 1: Poles = P = 4; s = 0, s = -1, s = -2, s = -3 and

Z = 0

Step 2: Number of branches approaching to infinity

N = P – Z = 4.

Step 3: Root locus branch on real axis.

Imaginary

Real

-1j

-2j

-3j

-4j

1j

2j

3j

4j

-1-2-3-4-5

0



Step 4: Angle of asymptotes.

𝜽 =
𝟐𝒒 + 𝟏 𝟏𝟖𝟎°

𝑷 − 𝒁
; 𝒒 = 𝟎, 𝟏, 𝟐, …

For q = 0, 𝜽𝟏 =
𝟏𝟖𝟎°

𝟒
= 𝟒𝟓°

For q = 1, 𝜽𝟐 =
𝟑∗𝟏𝟖𝟎°

𝟒
= 𝟏𝟑𝟓°

For q = 2, 𝜽𝟑 =
𝟓∗𝟏𝟖𝟎°

𝟒
= 𝟐𝟐𝟓°

For q = 3, 𝜽𝟒 =
𝟕∗𝟏𝟖𝟎°

𝟒
= 𝟑𝟏𝟓°

Imaginary

Real

-1j

-2j

-3j

-4j

1j

2j

3j

4j

-1-2-3-4-5

0



Poles = P = 4; s = 0, s = -1, s = -2, s = -3

Step 5: Centroid

𝝈 =
σ𝑹𝒆𝒂𝒍 𝒑𝒂𝒓𝒕𝒔 𝒐𝒇 𝒑𝒐𝒍𝒆𝒔 − σ𝑹𝒆𝒂𝒍 𝒑𝒂𝒓𝒕𝒔 𝒐𝒇 𝒛𝒆𝒓𝒐𝒔

𝑷 − 𝒁

𝝈 =
𝟎 − 𝟏 − 𝟐 − 𝟑

𝟒
= −

𝟔

𝟒
= −𝟏. 𝟓

Imaginary

Real

-1j

-2j

-3j

-4j

1j

2j

3j

4j

-1-2-3-4-5

0

135º

225º 315º

45º

Centroid -1.5



Step 6: Breakaway point

Characteristic equation = 1+G(s)H(s) = 0

𝟏 +
𝑲

𝒔 𝒔 + 𝟏 𝒔 + 𝟐 𝒔 + 𝟑
= 𝟎

S4+6S3+11S2+6S+K = 0

K = -S4-6S3-11S2-6S

dK/ds = -4S3 – 18S2 – 22S – 6 = 0

4S3+18S2+22S+6 = 0

Breakaway points = -1.5, -0.381, -2.619

There is no root locus between -1 and -2 and hence -1.5 is not

valid breakaway point.

For s = -0.381, K = 1 and For s = -2.619, K = 1

Imaginary

Real

-1j

-2j

-3j

-4j

1j

2j

3j

4j

-1-2-3-4-5

0

135º

225º 315º

45º

Centroid -1.5

-2.619
-0.381



Step 7: Intersection with Imaginary axis

Characteristic equation = 1+G(s)H(s) = 0

S4+6S3+11S2+6S+K = 0

The auxiliary equation = A(s) = 10S2 + K = 0

10S2 + 10 = 0; s = ±1j

Imaginary

Real

-1j

-2j

-3j

-4j

1j

2j

3j

4j

-1-2-3-4-5

0

135º

225º 315º

45º

Centroid -1.5

S4 1 11 K

S3 6 6 0

S2 10 K 0

S1 (60-6K)/10 0 0

S0 K

𝟔𝟎 − 𝟔𝑲

𝟏𝟎
= 𝟎; 𝑲𝒎𝒂𝒓 = 𝟏𝟎

-0.381
-2.619The marginal value of K is value which makes any row 

other than s0 as row of zeros. 

To find frequency, find out the auxiliary equation at Kmar



Program:

𝑮 𝒔 𝑯 𝒔 =
𝑲

𝒔 𝒔 + 𝟏 𝒔 + 𝟐 𝒔 + 𝟑

𝑮 𝒔 𝑯 𝒔 =
𝑲

𝒔𝟒+ 𝟔𝒔𝟑+ 𝟏𝟏𝒔𝟐+ 𝟔𝒔

Theoretical Values
Simulated 

Values

Poles 0, -1, -2, -3

Breakaway Point -0.38, -2.69

Gain 10

Imaginary Axis 

Crossover
± 1j



Program:

𝑮 𝒔 𝑯 𝒔 =
𝑲

𝒔 𝒔 + 𝟏 𝒔 + 𝟐 𝒔 + 𝟑

𝑮 𝒔 𝑯 𝒔 =
𝑲

𝒔𝟒+ 𝟔𝒔𝟑+ 𝟏𝟏𝒔𝟐+ 𝟔𝒔

clc

num=[1];

den=[1 6 11 6 0];

sys=tf(num, den);

pzmap(sys)

figure

rlocus(sys)

title('root locus')

clc #clears all the text from the Command Window, resulting in a clear screen

num=[1]; #Coefficients of the numerator

den=[1 6 11 6 0]; #Coefficients of the denominator

sys=tf(num,den); #creates a continuous-time transfer function with numerator(s) and denominator(s)

specified by num and den

pzmap(sys) #pole zero map title('pole zero map of c(t)')

figure

rlocus(sys)#calculates and plots the root locus of the SISO model sys

title('root locus')



clc #clears all the text from the Command Window, resulting in a clear screen

num=[1]; #Coefficients of the numerator

den=[1 6 11 6 0]; #Coefficients of the denominator

sys=tf(num,den); #creates a continuous-time transfer function with numerator(s) and denominator(s)

specified by num and den

pzmap(sys)#pole zero map title('pole zero map of c(t)')

figure

rlocus(sys)#calculates and plots the root locus of the SISO model sys

title('root locus')





clc

num=[1];

den=[1 6 11 6 0];

sys=tf(num, den);

pzmap(sys)

rlocus(sys)

clc #clears all the text from the Command Window, resulting in a clear screen

num=[1]; #Coefficients of the numerator

den=[1 6 11 6 0]; #Coefficients of the denominator

sys=tf(num,den); #creates a continuous-time transfer function with numerator(s) and denominator(s) 

specified by num and den

zpk(sys); #zpk is used to create zero-pole-gain models (ZPK objects) or to convert TF or SS models to 

zero-pole-gain form

rlocus(sys)#calculates and plots the root locus of the SISO model sys



Consider 𝑮 𝒔 𝑯 𝒔 =
𝑲

𝑺 𝑺+𝟐 (𝑺+𝟒)
, Draw the root locus.

Solution:

Step 1: Number of branches approaching to infinity

P = 3, s = 0; s = -2; s = -4; Z = 0

N = P – Z = 3; Three root locus branches will terminate at

zero @ infinity

Step 2: Locate the root locus path on real axis.

Step 3: Angle of asymptotes

𝜽 =
𝟐𝒒 + 𝟏 𝟏𝟖𝟎𝟎

𝑷 − 𝒁
, 𝒒 = 𝟎, 𝟏, 𝟐.

For q=0, 𝜽𝟏 =
𝟏𝟖𝟎𝟎

𝟑
= 𝟔𝟎 ; For q=1, 𝜽𝟐 =

𝟐+𝟏 𝟏𝟖𝟎𝟎

𝟑 = 1800 ; For q=2, 𝜽𝟑 =
𝟒+𝟏 𝟏𝟖𝟎𝟎

𝟑 = 𝟑𝟎𝟎



Angle of asymptotes: 600, 1800, 3000

P = 3, s = 0; s = -2; s = -4; Z = 0

Step 4: Centroid

𝝈 =
𝟎−𝟐−𝟒

𝟑
= −

𝟔

𝟑
= −𝟐

𝝈 =
σ𝑹𝒆𝒂𝒍 𝒑𝒂𝒓𝒕𝒔 𝒐𝒇 𝒑𝒐𝒍𝒆𝒔 − σ𝑹𝒆𝒂𝒍 𝒑𝒂𝒓𝒕𝒔 𝒐𝒇 𝒛𝒆𝒓𝒐𝒔

𝑷 − 𝒁



Step 5: To find Breakaway point

Characteristic equation 1+G(s)H(s) = 0

𝟏 +
𝑲

𝑺 𝑺+𝟐 (𝑺+𝟒)
= 𝟎

S3+6S2+8S+K = 0

K = -S3-6S2-8S

𝒅𝑲

𝒅𝒔
= −𝟑𝑺𝟐 − 𝟏𝟐 𝑺 − 𝟖 = 𝟎

3S2 + 12S+8 = 0

Breakaway points = -0.845, -3.15

For s = -3.15; K = -3.079

For s = -0.845; K = +3.079

For s = -0.845, K is positive hence -0.845 is valid breakaway
point.



Step 6: Intersection point with imaginary axis

Characteristic equation 1+G(s)H(s) = 0

S3+6S2+8S+K = 0

𝟒𝟖 − 𝑲

𝟔
= 𝟎; 𝑲𝒎𝒂𝒓 = 𝟒𝟖

The auxiliary equation = A(s) = 6S2 + K = 0

6S2 + 48 = 0

S2 = -8

S = ± j2.828

S3 1 8

S2 6 K

S1
𝟒𝟖 − 𝑲

𝟔
0

S0 K

The marginal value of K is value which makes 
any row other than s0 as row of zeros. 

To find frequency, find out the auxiliary 

equation at Kmar





A feedback control system has an open loop

transfer function 𝑮 𝒔 𝑯 𝒔 =
𝑲

𝑺 𝑺+𝟑 (𝑺𝟐+𝟐𝑺+𝟐)
. Draw

the root locus.

Solution:

Step 1: Number of poles = P = 4 ; s = 0, s = -3, s = -1 + j,

s = -1 – j

Number of zeros = Z = 0

Number of branches approaching towards infinity = N = P-Z
= 4

Step 2: Locate the root locus on real axis

Imaginary

Real

-1 2 3

-1j

-2j

-3j

1j

2j

3j

1-2-3-4 0



Step 3: Angle of asymptotes

𝜽 =
𝟐𝒒 + 𝟏 𝟏𝟖𝟎°

𝑷 − 𝒁
; 𝒒 = 𝟎, 𝟏, 𝟐,…

For q = 0, 𝜽𝟏 =
𝟏𝟖𝟎°

𝟒
= 𝟒𝟓°

For q = 1, 𝜽𝟐 =
𝟑∗𝟏𝟖𝟎°

𝟒
= 𝟏𝟑𝟓°

For q = 2, 𝜽𝟑 =
𝟓∗𝟏𝟖𝟎°

𝟒
= 𝟐𝟐𝟓°

For q = 3, 𝜽𝟒 =
𝟕∗𝟏𝟖𝟎°

𝟒
= 𝟑𝟏𝟓°

Imaginary

Real

-1 2 3

-1j

-2j

-3j

1j

2j

3j

1-2-3-4 0



Step 4: Centroid

𝝈

=
σ𝑹𝒆𝒂𝒍 𝒑𝒂𝒓𝒕𝒔 𝒐𝒇 𝒑𝒐𝒍𝒆𝒔 − σ𝑹𝒆𝒂𝒍 𝒑𝒂𝒓𝒕𝒔 𝒐𝒇 𝒛𝒆𝒓𝒐𝒔

𝑷 − 𝒁

Number of poles = P = 4 ; s = 0, s = -3, s = -1 + j,

s = -1 – j

𝝈 =
𝟎 − 𝟑 − 𝟏 − 𝟏

𝟒
= −

𝟓

𝟒
= −𝟏. 𝟐𝟓

Imaginary

Real

-1 2 3

-1j

-2j

-3j

1j

2j

3j

1-2-3-4 0

Centroid -1.25

45º

225º

135º

315º



Step 5: Breakaway point

Characteristic equation = 1+G(s)H(s) = 0

𝟏 +
𝑲

𝒔 𝒔 + 𝟑 𝒔𝟐+ 𝟐𝒔 + 𝟐
= 𝟎

S4+5S3+8S2+6S+K = 0

K = -S4-5S3-8S2-6S

dK/ds = -4S3 – 15S2 – 16S – 6 = 0

4S3+15S2+16S+6 = 0

Breakaway points = -2.28

For s = -2.28, K = 4.3315

Hence s = -2.28 is valid breakaway point

Imaginary

Real

-1 2 3

-1j

-2j

-3j

1j

2j

3j

1-2-3-4 0

Centroid -1.25

45º

225º

135º

315º

-2.28



Step 6: Intersection with imaginary axis

Characteristic equation = 1+G(s)H(s) = 0

S4+5S3+8S2+6S+K = 0

The auxiliary equation = A(s) = 6.8S2 + K = 0

6.8S2 + 8.16 = 0; s = ±1.095 j

Imaginary

Real

-1 2 3

-1j

-2j

-3j

1j

2j

3j

1-2-3-4 0

Centroid -1.25

45º

225º

135º

315º

-2.28

S4 1 8 K

S3 5 6 0

S2 6.8 K 0

S1 (40.8-5K)/6.8 0 0

S0 K

𝟒𝟎.𝟖−𝟓𝑲

𝟔.𝟖
= 𝟎; 𝑲𝒎𝒂𝒓 =

𝟒𝟎.𝟖

𝟓
= 𝟖. 𝟏𝟔

The marginal value of K is value which makes any row other than s0 as row of zeros. 

To find frequency, find out the auxiliary equation at Kmar



Step 6: Angle of departure

𝝋𝑷𝟏 = 𝟏𝟖𝟎° − tan−𝟏
𝟏

𝟏
= 𝟏𝟑𝟓°

𝝋𝑷𝟐 = 𝟗𝟎°

𝝋𝑷𝟑 = tan−𝟏
𝟏

𝟐
= 𝟐𝟔. 𝟓𝟔°

෍𝝋𝑷 = 𝟏𝟑𝟓° + 𝟗𝟎° + 𝟐𝟔. 𝟓𝟔° = 𝟐𝟓𝟏. 𝟓𝟔° ෍𝝋𝒛 = 𝟎°

𝝋𝒅 = 𝟏𝟖𝟎° − ( σ𝝋𝑷 − σ𝝋𝒁 )

𝝋𝒅 = 𝟏𝟖𝟎° − 𝟐𝟓𝟏. 𝟓𝟔° = −𝟕𝟏. 𝟓𝟔°

𝑨𝒕 − 𝟏 + 𝟏𝒋 = −𝟕𝟏. 𝟓𝟔°

At -1-1j = +71.56º

Imaginary

Real

-1 2 3

-1j

-2j

-3j

1j

2j

3j

1-2-3-4 0

φP2

φP3

φP1



Imaginary

Real
-1 2 3

-1j

-2j

-3j

1j

2j

3j

1-2-3-4 0

Centroid -1.25

45º

225º

135º

315º

-2.28



Plot root locus for the T.F



Step 3: Angle of asymptotes









FREQUENCY RESPONSE ANALYSIS

The response of a system for the sinusoidal input is called sinusoidal response

The ratio of sinusoidal response and sinusoidal input is called sinusoidal transfer function of the system

and general, it is denoted by T(jω)

The sinusoidal transfer function is the frequency domain representation of the system, and so it is also

called frequency domain transfer function



The sinusoidal transfer, T(jω) can be obtained as shown below

1. Construct a physical model of a system using basic elements/parameters.

2. Determine the differential equations governing the system from the physical model of the system.

3. Take Laplace transform of differential equations in order to convert them to s-domain equation

4. Determine s-domain transfer function, T(s), which is ratio of s-domain output and input.

5. Determine the frequency domain transfer function, T(jω) by replacing s by jω in the s-domain

transfer function, T(s).



Consider a linear time invariant system with frequency domain transfer function, T(jω) shown in fig



The advantages of frequency response analysis

1. The absolute and relative stability of the closed loop system can be estimated from the knowledge of

their open loop frequency response.

2. The practical testing of systems can be easily carried with available sinusoidal signal generators and

precise measurement equipment's .

3. The transfer function of complicated systems can be determined experimentally by frequency

response tests

4. The design and parameter adjustment of the open loop transfer function of a system for specified

closed loop performance is carried out more easily in frequency domain.



5. When the system is designed by use of the frequency response analysis, the effects of noise,

disturbance and parameters variations are relatively easy to visualize and incorporate corrective

measures

6. The frequency response analysis and designs can be extended to certain nonlinear control systems.



Frequency Domain specifications

In designing a control system, we require that the system meets the performance specifications.

Performance specifications are the constraints imposed on the mathematical models describing system

characteristics

In frequency response analysis, following are the frequency-domain specifications.

i) Gain Margin: It is defined as the reciprocal of the magnitude of open-loop transfer function

│G(jω)H(jω)│ at the frequency where the phase angle is -180°. The frequency at which the phase

angle is -180° is called phase cross over frequency (ωpc or ωπ).

Gain margin is a measure of relative stability of the system. The positive value of gain margin

corresponds to stable system and the negative value of gain margin leads to unstable system. For satisfactory

performance gain margin should be greater than 6 dB.



Gain margin and Phase margin for stable and unstable system 

on Bode plot



Gain margin and Phase margin for stable and unstable system 

on Bode plot



ii) Phase margin: It is defined as 180° plus the phase angle Φ of the open loop transfer function at gain cross

over frequency

where ωgc or ωg is called gain cross-over frequency. For a

minimum phase system to be stable, the phase margin must

be positive. Phase margin is also a measure of relative

stability for satisfactory performance, the phase margin

should lie between 30º and 60°.



Gain Margin:

GM = - 20 Log |G(jω)H(jω)| at ω = ωpc

Phase Margin:

PM = Angle (G(jω)H(jω)) at ω = ωgc



iii) Resonant peak 'MR': It is defined as the maximum value of the magnitude of the closed-loop frequency

response

The resonant peak is indicative of the relative stability of the system.

For satisfactory transient performance, the value of MR should be in the range 1.0 < MR < 1.4

(0 dB < MR < 3 dB). For the values of MR > 1.5, the transient response may exhibit several overshoots. At

the resonant frequency, the resonant peak MR is given by the relation



iv) Resonant frequency ωr

It is the frequency at which resonant peak MR occurs.

It is an indicative of speed of transient response. The smaller the values of ωr more sluggish

the time response is. The resonant frequency is given by the relation.

v) Cut-off rate 'ωc

It is frequency rate at which the magnitude ratio decreases

beyond the cut-off frequency ωc.

It indicates the ability of a system to distinguish the signal

from unwanted signal



vi) Bandwidth 'ωb': It is defined as the range of frequencies

over which the system will respond satisfactorily. Often the

bandwidth corresponds to range of frequencies over which the

'magnitude ratio does not differ by more than -3 dB as shown in

Fig. from its value at a specified frequency. The bandwidth is

given

The bandwidth indicates how well the system will follow the input signal. For the system to follow the input

accurately, larger bandwidth is desired. However larger bandwidth demands for costlier high performance

components. The Bandwidth is also indicative of rise time in transient response for a given damping factor. A

large bandwidth corresponds to small rise time or fast response



Frequency response of a system can be represented graphically by its magnitude |G(jω)| and

phase response Φ(ω). Such a plot is called Bode plot or logarithmic plot or corner plot.

This method of plotting frequency response employs logarithms of function so that

multiplications and division are reduced to addition and subtraction

Bode plot is a straight forward approach in the analysis of complex transfer functions with

many poles and zeros.

The Bode plot is a frequency response plot of the sinusoidal transfer function of a system.

Bode Plot 



The log magnitude is expressed in dbs (The decibel is a quantity which control engineering took from

acoustics and is used to compare sound intensities) and the frequency in radians per second

Since log magnitude is also a function of frequency, a convenient way to express frequency bands are

necessary

A Bode plot consists of two graphs. One is a plot of logarithm of the magnitude of a sinusoidal

transfer function versus log ω. The other is a plot of the phase angle of a sinusoidal transfer function

versus log ω



The standard representation of the logarithmic magnitude of open loop transfer function of G(jω) is 20

log |G(j ω)| where the base of the logarithm is 10

The unit used in this (representation of the magnitude is the decibel, usually abbreviated db

The curves are drawn on semilog paper , using the log scale (abcissa) for frequency and the linear scale

(ordinate) for either magnitude (in decibels) or phase angle (in degrees)

The main advantage of the bode plot is that multiplication of magnitudes can be converted into addition



When the frequency varies from ω1 to ω2 where ω2 = 10 ω1, then the frequency band is referred to as a

decade

The band from 1 Hz to 10 Hz or from 2 Hz to 20 Hz is one decade We observe that if G(jω) increases by 

tenfold or one decade, then the log magnitude increases by 20 db.



Consider the open loop transfer function which is in Time constant Form,

Method for sketching an approximate log-magnitude curve



The magnitude of G(jω) can be expressed in decibels as shown in below

it is clear that, when the magnitude is expressed in db, the multiplication is converted to addition. Hence in

magnitude plot, the db magnitudes of individual factors of G(jω) can be added



Therefore to sketch the magnitude plot, a knowledge of the magnitude variations of individual a

factor is essential. The magnitude plot and phase plot of various factors, of G(jω) are explained in the

following section

The basic factors that very frequently occur in a

typical transfer function G(jω) are,



1. Constant gain, K

 The magnitude plot for a constant gain K is a horizontal

straight line at the magnitude of 20 log K db. and

independent of Log10ω

 The phase plot is straight line at 0°.



Integral Factor

From the above analysis it is evident that For n =1,

 The magnitude plot of the integral factor is a straight line with a slope of –20 db/decade and passing

through zero db, when ω = K.

 Since the ∟G(jω) is a constant and independent of ω the phase plot is a straight line at angle -90°.



When an integral factor has multiplicity of n, then,

Now the Magnitude plot of the integral factor is a straight line with a slope of -20n db/dec and passing

through zero db when ω = K 1/n. The phase plot is a straight line at -90nº.

 For n =2, The magnitude plot of the integral factor is a straight line with a slope of –40 db/decade and

phase plot is a straight line at angle -180°. and so on

 For n = 3, –60 db/decade and -270°



Derivative Factor

From the above analysis it is evident that the For n =1,

Magnitude plot of the derivative factor is a straight line with a slope of +20 db/decade and passing through

zero db when ω = 1/K. Since the ∟G(jω) is a constant and independent of ω, the phase plot is a straight line

at +90°.



Derivative Factor

When an Derivative Factor has multiplicity of n, then,

Now the magnitude plot of the derivative factor is a straight line with a slope of +20n db/decade and passing

through zero db when ω = 1/K1/n. The phase plot is a straight line at +90nº.

 For n =2, The magnitude plot of the integral factor is a straight line with a slope of +40 db/decade and

phase plot is a straight line at angle +180°. and so on

 For n = 3, +60 db/decade and +270°



First order factor in denominator

The above analysis shows that the magnitude plot of the factor

1/(1+jωT) can be approximated by two straight lines

one is a straight line at 0 db for the frequency range, 0 < ω< 1/T, and 

the other is a straight line with slope -20 db/dec for the frequency 

range, 1/T < ω < ∞. The two straight lines are asymptotes of the exact 

curve.



First order factor in denominator

The frequency at which the two asymptotes meet is called corner frequency or break frequency.

For the factor 1/(1+jωT) the frequency, ω=1/T is the corner frequency, ωc . It divides the frequency response

curve into two regions, a curve for low frequency region and a curve for high frequency region

The phase angle of the factor, 1/(1+ jωT), varies from

0° to -90° as ω is varied from zero to infinity. The

phase plot is a curve passing through -45° at ωc .



When the first order factor in the denominator has a multiplicity of m, then,



First order factor in Numerator When the first order factor in the Numerator has a multiplicity of m



Quadratic (Second order) factor in denominator



The magnitude plot of the quadratic factor in the

denominator an be approximated by two straight lines, one is a

straight line at 0 db for the frequency range 0 < ω < ωn. and the

other is a straight line with slope -40 db/dec for the frequency

range ωn < ω < ∞. The two straight are asymptotes of the exact

curve. The frequency at which the two asymptotes meet is called

the corner frequency. For the quadratic factor, the frequency ωn is

the corner frequency ωc ,



The two asymptotes of the exact curve are independent

of the damping ratio,ζ. In the exact magnitude plot, resonant peak

occurs near the corner frequency and the magnitude of resonant

peak depends on ζ. Lower the value of ζ , larger will be the

resonant peak. Hence by this approximation the error at the corner

frequency depends on damping ratio ζ. The phase plot is obtained

by calculating the phase angle of G(jω) for various values of ω.



Quadratic (Second order) factor in Numerator

The magnitude plot of the quadratic factor in the

Numerator an be approximated by two straight lines, one is a

straight line at 0 db for the frequency range 0 < ω < ωn. and the

other is a straight line with slope +40db/dec for the frequency

range ωn < ω < ∞. The two straight are asymptotes of the exact

curve. The frequency at which the two asymptotes meet is called

the corner frequency. For the quadratic factor, the frequency ωn is

the corner frequency ωc, Due to this approximation the error at

the corner frequency depends on ζ.



The phase angle varies from 0 to +180°, as ω is varied from 0 to ∞. At the corner frequency the phase angle

is +90° and independent of ζ, but at all other frequency it depends on ζ.



PROCEDURE FOR MAGNITUDE PLOT OF BODE PLOT

From the analysis, the following conclusions can be obtained.

1. The constant gain K, integral and derivative factors Contribute gain (Magnitude) at all frequencies.

2. In approximate plot the first, quadratic and higher order factors contribute gain (magnitude) only

when the frequency is greater than the corner frequency.

Hence the low frequency response upto the lowest corner frequency is decided by K or K / (jω)^n, K(jω)^n

term . Then at every corner frequency the slope of the magnitude plot is altered by the first, Quadratic and

higher order terms. Therefore the magnitude plot can be started with K or K/(jω)^n or K(jω)^n term and then

the db magnitude of every first and higher order terms are added one by one in the increasing order of the

corner frequency.



The magnitude plot of the individual terms of G(jω), and their combined magnitude plot are 

shown an fig





The step by step procedure for plotting the magnitude plot is given below 

Step 1 Convert the transfer function into Bode form or time constant form. The Bode form 

of the transfer function is



In the above table enter K or K / (jω)^n,  K(jω)^n  as the first term and the other terms in the increasing 

order of corner frequencies. Then enter the corner frequency, slope contributed by each term and change in 

slope at every corner frequency.

Step 2 : List the corner frequencies in the increasing order and prepare a table as shown below



Step 3: Choose an arbitrary frequency ωL, which is lesser than the lowest corner frequency. Calculate the

db magnitude of K or K / (jω)^n, K(jω)^n at ωL, and at the lowest corner frequency

Step 4: Then calculate the gain (db magnitude) at every corner frequency one by one by using 

the formula



Step 5: Choose an arbitrary frequency ωH, which is greater than the highest corner frequency. Calculate

the gain at ωH by using the formula in step 4

Step 6: In a semilog graph sheet, mark the required range of frequency on x-axis (log scale) and the

range of db magnitude on y-axis (ordinary scale) after choosing proper units.

Step7: Mark all the points obtained in steps 3, 4, and 5 on the graph and join the points by straight lines.

Mark the slope at every part of the graph.

Note: The magnitude plot obtained above is an approximate plot. If an exact plot is needed then

appropriate corrections should be made at every corner frequencies.



The phase plot is an exact plot and no approximations are made while drawing the phase plot.

Hence the exact phase angles of G(jω) are computed for various values of ω and tabulated. The choice of

frequencies are preferably the frequencies chosen for magnitude plot. Usually the magnitude plot and

phase plot are drawn in a single semilog- sheet on a common frequency scale.

PROCEDURE FOR PHASE PLOT OF BODE PLOT

Take another y-axis in the graph where the magnitude plot is drawn and in this y-axis mark

the desired range of phase angles after choosing proper units. From the tabulated values of w and phase

angles, mark all the points on the graph. Join the points by a smooth curve



DETERMINATION OF GAIN MARGIN AND PHASE MARGIN FROM BODE PLOT

The gain margin in db is given by the negative of db magnitude of G(jω) at the phase cross-

over frequency, ωpc The ωpc is the frequency at which phase of G(jω) is -180°. If the db magnitude of

G(jω) at ωpc is negative then gain margin is positive and vice versa.

Let Φgc be the phase angle of G(jω) at gain cross over frequency ωgc. The ωgc is the

frequency at which the db magnitude of G(jω) is zero. Now the phase margin, γ is given by, γ =

180°+ Φgc. If Φgc is less negative than -180° then phase margin is positive and vice versa





GAIN ADJUSTMENT IN BODE PLOT

In the open loop transfer function G(jω) the constant K contributes only magnitude. Hence by

changing the value of K the system gain can be adjusted to meet the desired specifications. The desired

specifications are gain margin, phase margin, ωpc and ωgc.

In a system transfer function if the value of K required to be estimated to satisfy a desired

specification then draw the bode plot of the system with K = 1. The constant K can add 20logK to every

point of the magnitude plot and due to this addition the magnitude plot will shift vertically up or down.

Hence shift the magnitude plot vertically up or down to meet the desired specification. Equate the vertical

distance by which the magnitude plot is shifted to 20logK and solve for K.



Plot the Bode diagram for the following transfer and obtain the gain and phase cross over frequencies.

The sinusoidal transfer function of G(jω) is obtained by replacing s by jω in the given transfer function.

MAGNITUDE PLOT

The corner frequencies are, & 

The various terms of G(jω) are listed in table-1 in the increasing order of their corner frequencies. Also the

table shows the slope contributed by each term and the change in slope at the corner frequency.



MAGNITUDE PLOT

The corner frequencies are,

The various terms of G(jω) are listed in table-1 in the increasing order of their corner frequencies. Also the

table shows the slope contributed by each term and the change in slope at the corner frequency.

TABLE-1



Step 3: Choose an arbitrary frequency ωL, which is lesser than the lowest corner frequency. Calculate the

db magnitude of Integral Factor ‘10/jω’ at ωL and at the lowest corner frequency ωc1

Step 4: Then calculate the gain (db magnitude) at every corner frequency one by one by using 

the below formula



Step 5: Choose an arbitrary frequency ωH, which is greater than the highest corner frequency. Calculate

the gain at ωH by using the formula in step 4

ωL = 0.1 rad/sec, and ωH = 50 rad/sec

A = |G(jω)| in db

Let us calculate A at ωL , ωc1, ωc2 and ωH

Choose a low frequency ωL, such that ωL < ωc1 and choose a high frequency ωH , such that ωH  > ωc2



Choose a low frequency ωL, such that ωL < ωC1 and choose a high frequency ωH , such that ωH  > ωc2

ωL = 0.1 rad/sec and ωH = 50 rad/sec

A = |G(jω)| in db Let us calculate A at ωL , ωc1, ωc2 and ωH



Let the points a, b, c and d be the points corresponding to frequencies ωL , ωc1, ωc2 and ωH, respectively

on the magnitude plot

In a semilog graph sheet choose a scale of 1unit = 10db on y-axis

The frequencies are marked in decades from 0.1 to 100 rad/sec on logarithmic scales in x-axis.

Fix the points a, b, c and d on the graph. Join the points by a straight line and mark the slope in the

respective region.



PHASE PLOT

The phase angle of G(jω) as a function of ω is given by

The phase angle of G(jω) are calculated for various values of ω and listed in table-2

Table-2



on the same semilog graph sheet choose a scale of 1unit = 20° on the y-axis on the right side of 

semilog graph sheet.

Mark the calculated phase angle on the graph sheet. Join the points by a smooth curve

From the graph, the gain and phase cross over frequencies are found to be 5 rad/sec

Gain cross-over frequency = 5 rad/sec.

Phase cross-over frequency = 5 rad/sec.











Gain Margin:

GM = - 20 Log |G(jω)H(jω)| at ω = ωpc

Phase Margin:

PM = Angle (G(jω)H(jω)) at ω = ωgc



A unity feedback control system has 𝑮 𝒔 =
𝟖𝟎

𝒔 𝒔+𝟐 𝒔+𝟐𝟎
; Draw the Bode plot.

Solution:

Step 1: Arrange G(s)H(s) in time constant.

𝑮 𝒔 =
𝟖𝟎

𝒔 ∗ 𝟐
𝒔
𝟐
+ 𝟏 𝟐𝟎

𝒔
𝟐𝟎

+ 𝟏
=

𝟖𝟎

𝒔 ∗ 𝟒𝟎
𝒔
𝟐
+ 𝟏

𝒔
𝟐𝟎

+ 𝟏
=

𝟐

𝒔 ∗
𝒔
𝟐
+ 𝟏

𝒔
𝟐𝟎

+ 𝟏

Assignment:



Plot the Bode diagram for the following transfer and obtain the gain and phase cross over frequencies.

The sinusoidal transfer function of G(jω) is obtained by replacing s by jω in the given transfer function.

MAGNITUDE PLOT

The corner frequencies are, & 

The various terms of G(jω) are listed in table-1 in the increasing order of their corner frequencies. Also the

table shows the slope contributed by each term and the change in slope at the corner frequency.



MAGNITUDE PLOT

The corner frequencies are,

The various terms of G(jω) are listed in table-1 in the increasing order of their corner frequencies. Also the

table shows the slope contributed by each term and the change in slope at the corner frequency.

TABLE-1



Step 3: Choose an arbitrary frequency ωL, which is lesser than the lowest corner frequency. Calculate the

db magnitude of Integral Factor ‘20/jω’ at ωL and at the lowest corner frequency ωc1

Step 4: Then calculate the gain (db magnitude) at every corner frequency one by one by using 

the below formula



Step 5: Choose an arbitrary frequency ωH, which is greater than the highest corner frequency. Calculate

the gain ωH by using the formula in step 4

ωL = 0.15 rad/sec, and ωH = 1rad/sec

A = |G(jω)| in db

Let us calculate A at ωL , ωc1, ωc2 and ωH

Choose a low frequency ωL, such that ωL < ωc1 and choose a high frequency ωH , such that ωH  > ωc2



Choose a low frequency ωL, such that ωL < ωH and choose a high frequency ωH , such that ωH  > ωc2

ωL = 0.15 rad/sec and ωH = 1rad/sec

A = |G(jω)| in db Let us calculate A at ωL , ωc1, ωc2 and ωH



Let the points a, b, c and d be the points corresponding to frequencies ωL , ωc1, ωc2 and ωH, respectively

on the magnitude plot

In a semilog graph sheet choose a scale of 1unit = 10db on y-axis

The frequencies are marked in decades from 0.01 to 10 rad/sec on logarithmic scales in x-axis.

Fix the points a, b, c and d on the graph. Join the points by a straight line and mark the slope in the

respective region.



PHASE PLOT

The phase angle of G(jω) as a function of ω is given by

The phase angle of G(jω) are calculated for various values of ω and listed in table-2

Table-2



on the same semilog graph sheet choose a scale of 1unit = 20° on the y-axis on the right side of 

semilog graph sheet.

Mark the calculated phase angle on the graph sheet. Join the points by a smooth curve

From the graph,

Gain cross-over frequency = 1.1 rad/sec.

Phase cross-over frequency = rad/sec.







Sketch the bode plot for the following transfer function and determine phase margin and gain

On comparing the quadratic factor in the denominator of G(s) with standard form of quadratic factor we

can estimate ζ and ωn



Let us convert the given s-domain transfer function into bode form or time constant form

The sinusoidal transfer function G(jω) is obtained by replacing s by jω in G(s)



MAGNITUDE PLOT

The corner frequencies are,

The various terms of G(jω) are listed in table-1 in the increasing order of their corner frequencies. Also the

table shows the slope contributed by each term and the change in slope at the corner frequency.

&

Note : For the quadratic factor the corner frequency is ωn



Choose an arbitrary frequency ωL, which is lesser than the lowest corner frequency. Calculate the db

magnitude of Integral Factor ‘75/jω’ at ωL and at the lowest corner frequency ωc1



Choose an arbitrary frequency ωH, which is greater than the highest corner frequency. Calculate the gain

ωH by using the formula in step 4

ωL = 0.5 rad/sec, and ωH = 20rad/sec

A = |G(jω)| in db

Let us calculate A at ωL , ωc1, ωc2 and ωH

Choose a low frequency ωL, such that ωL < ωc1 and choose a high frequency ωH , such that ωH  > ωc2





Let the points a, b, c and d be the points corresponding to frequencies ωL , ωc1, ωc2 and ωH, respectively

on the magnitude plot

In a semilog graph sheet choose a scale of 1unit = 5db on y-axis

The frequencies are marked in decades from 0.1 to 100 rad/sec on logarithmic scales in x-axis.

Fix the points a, b, c and d on the graph. Join the points by a straight line and mark the slope in the

respective region.



PHASE PLOT

The phase angle of G(jω) as a function of ω is given by

The phase angle of G(jω) are calculated for various values of ω and listed in table-2

Table-2

Note: In quadratic factors the phase varies from 0° to 180°. But calculator calculates tan-ⁱ only between 0°

to 90°. Hence a correction of 180°should be added to phase after ωn



The phase angle of G(jω) are calculated for various values of ω and listed in table-2

Table-2







on the same semilog graph sheet choose a scale of 1unit = 20° on the y-axis on the right side of 

semilog graph sheet.

Mark the calculated phase angle on the graph sheet. Join the points by a smooth curve

Let Φgc, be the phase of G(jω) at gain cross-over frequency, ωgc. 

From the fig, we get, Φgc= -88°

:: Phase margin, g=180° + Φgc = 180° – 88° = 92°

The phase plot crosses – 180° only at infinity. The G|(jω)| at infinity is -∞db.

Hence gain margin is +∞.



Program:

𝑮 𝒔 =
𝟖𝟎

𝒔 𝒔 + 𝟐 𝒔 + 𝟐𝟎
=

𝟖𝟎

𝒔𝟑+ 𝟐𝟐𝒔𝟐+ 𝟒𝟎𝒔

clc #clears all the text from the Command Window, resulting in a clear screen

num = [80]; #Coefficients of the numerator

den =[1 22 40 0]; #Coefficients of the denominator

G=tf(num, den);#creates a continuous-time transfer function with numerator(s) and denominator(s) 

specified by num and den

margin(sys)# margin(sys) plots the Bode response of sys on the screen and indicates the gain and phase 

margins on the plot. Gain margins are expressed in dB on the plot

[Gm,Pm,Wcg,Wcp] = margin(sys) #Compute the gain margin, phase margin and frequencies.

num = [80];

den =[1 22 40 0];

G = tf(num,den);

margin(G)

%grid





From the plot note down the gain margin (GM), phase margin (PM) and the corresponding cross over

frequencies.

For unstable systems, GM and PM will not be displayed correctly but can be obtained by clicking on the

plot at suitable points

Click on the phase angle curve and find the frequency at which the curve crosses the 1800 line. This gives

the phase cross over frequency ωp

Click on the magnitude curve and find the magnitude at ω=ωp. The gain margin is calculated as, GM = 0 -

magnitude at phase cross over frequency



The GM, PM and the cross over frequencies can also be obtained using the following

function. [Gm,Pm,Wcg,Wcp] = margin(sys)

Where GM = gain margin in abs unit (20logGM is the GM in db)

Click on the magnitude curve and find the frequency at which the curve crosses 0dB line. This will give

the gain cross over frequency ωg.

Click on the phase angle curve and find the phase angle at ω=ωg. The phase margin is calculated as PM =

phase angle at the gain cross over frequency + 180̊ at ω=ωg.



 The Gain Margin = 20.8 dB at phase cross over frequency of 6.32 rad/sec.

 The phase Margin = 47.4º at gain cross over frequency of 1.57 rad/sec.

 For the given system both GM and PM are positive hence, the system is

stable.



num = [7.2 36]; \\NUMERATOR

den = [0.0005 0.06 1 0 0]; \\DENOMINATOR

sys = tf(num, den);   \\Transfer Function

bode(sys); \\Frequency response 

margin(sys);



clc

clear all;

close all;

num=[7.2 36]

den=[0.0005 0.06 1 0 0]

G=tf(num,den);

[gm,pm wep weg]=margin(G)

bode(G),grid

num =    7.2000   36.0000

den =    0.0005    0.0600    1.0000         0         0

gm =   21.3376

pm =   31.5989

wep =   37.4091

weg =    7.9003



Valid syntax for the “bode” utility, for transfer functions, is:

1.[mag,phase,w] = bode(num,den)

2.[mag,phase,w] = bode(num,den,w)

3.[mag,phase] = bode(num,den,w)

4.bode(num,den,w)

5.bode(num,den)

where “num” and “den” contain the polynomial coefficients,

BODE DIAGRAMS USING MATLAB

Two functions exist that assist in Bode diagrams:

1.“bode” returns/plots the Bode response of a system.

2.“margins” the gain and phase margins and their associated frequencies



NYQUIST DIAGRAMS USING MATLAB

[re,im] = nyquist(num,den,w)

where

re = real part on the Nyquist diagram

im = imaginary part on the Nyquist Diagram

num = row matrix format representing the numerator of the polynomial

den = row matrix format representing the denominator of the polynomial

w = frequency in rad/sec



Consider a linear time invariant system with frequency domain transfer function, T(jω) shown in fig

│G(jω)H(jω)│

ωpc” Phase cross over frequency 

Let S=jω in G(s)H(s) & calculate magnitude and phase 

M∟Ø =│G(jω)H(jω)│ ∟G(jω)H(jω)

Magnitude M ∟G(jω)H(jω)Phase Ø


