
The stability criterion for application in the frequency domain was developed by H. Nyquist in

1932 and is based upon theory of complex variables due to Cauchy's. This theorem is concerned with the

mapping of contours in the complex s-plane.

Nyquist Stability Analysis



Two methods of designing a control system are design using root locus and design using bode

plot.

In design using bode plot, the system is designed to satisfy the specified frequency domain

specifications.

In design using root locus, the system is designed to satisfy the specified time domain

specifications.



Stability of a system can be accessed by determining the gain margin and phase margin. These gain

and phase margins can be found by drawing the frequency response plots.

Polar plots, Bode plots, Nyquist plots are the examples of frequency response plots



The Nyquist plot combines gain and phase into one plot in the complex plane. It is drawn by plotting the

complex gain G(jω) for all frequencies ω. That is, the plot is a curve in the plane parameterized by ω.

Bode plots show the frequency response of a system. There are two Bode plots one for gain (or

magnitude) and one for phase.



Application of Mapping Theorem in Nyquist Stability Analysis

For analyzing the stability of control system, we consider a closed contour (Nyquist Path or

Nyquist Contour) in the s-plane enclosing the entire right half s-plane. The contour consists of entire jω

axis form ω = -∞ to ω = +∞ and semi circular path of infinite radius as shown in Fig. (a). The radius of the

semicircle is treated as Nyquist Encirclement



The Nyquist method is concerned with mapping of F(s)=1+G(s)H(s), and finding the number

of encirclement about the critical point i.e. , the origin of F(s) Plane. It is rather difficult to plot the

function F(s)=1+G(s)H(s), whereas the open loop transfer function G(s)H(s) is readily available and can

be directly mapped from s-plane to G(s)H(s)-plane. The plot of F(s)=1+G(s)H(s) and G(s)H(s) is shown

in Fig. (a) it can be seen that the vector 1+G(s)H(s) is the sum of unit vector and the vector G(s)H(s).

1+G(s)H(s) is identical to the vector drawn from (-1+j0) point to the terminal point of vector G(s) H(s)

as shown in Fig. Therefore the critical point origin on 1+G(s)H(s) Plane is same as critical point (-1+j0)

on G(s)H(s) plane. Therefore the stability of a closed loop system is investigated by examining

encirclement of the (-1,+j0) point by the G(S)H(S) contour



Application of Mapping Theorem in Nyquist Stability Analysis

This Nyquist path obviously encloses all the poles and zeros lying on right of s-plane. This closed

contour in the s-plane is then mapped onto G(s)H(s)-Plane as a closed curve and the total number of

encirclement about the critical point (-1,+ j0) is determined.

Once the number of encirclement is determined, the number of closed

loop zeros can be obtained from Nyquist stability criterion

If there is a pole at the origin or on the imaginary axis(the jω-axis),

mapping about this point becomes indeterminate and in such cases, a

detour is taken around these point and the mapping is done as shown in

Fig. (b) (In such a case Nyquist path is modified in such a way to bypass

these poles by selecting semicircles of radius tending to zero around

them).



Nyquist Encirclement

A point is said to be encircled by a contour if it is found inside the contour.

Nyquist Mapping

The process by which a point in s-plane is transformed into a point in F(s) plane is called mapping and F(s) is 

called mapping function.



Nyquist stability Criterion

For closed loop stability, No Zeros of 1+G(s)H(s) must be in the Right half of S-plane, i.e. Z=0 for

stability, so Nyquist criteria obtained by substituting Z=0 in N=Z-P i.e N = -P

P = Number of Poles of G(s)H(s) on the right half of the S-Plane

N= Number of Encirclement of the critical point (-1,+ j0) point of F-plane by Nyquist plot

Clockwise encirclement are taken positive and anticlockwise encirclement are as negative

Z = Number of Zeros of 1+G(s)H(s) on the Right half of S-plane

Nyquist criterion expressed Mathematically a Z = P +N



Nyquist stability criterion states that for absolute stability of the system, the number of encirclements of new

origin of F-plane by Nyquist plot must be equal to number for poles of 1+G(s)H(s) i.e. poles of G(s)H(s)

which are in the right half of s-plane and in clockwise direction.

The Nyquist plot obtained by mapping Nyquist path

from S-plane to F-plane should not encircle origin of

F-plane.

Note : Now for ease of mapping Nyquist path from s-

plane to F -plane, instead of considering mapping

function as 1+ G(s)H(s), it is considered as G(s)H(s)

only

So in all the problems solved hereafter, N is the number of encirclements of a critical point -1+ j0 and not the 

encirclements of origin as mapping function used is G(s)H(s) and not the function 1 + G(s)H(s).



Generalized Nyquist Path and its Mapping

F(s) has two poles on imaginary axis at ±jω while one pole at origin. Then

Nyquist path should be selected as shown in figure

Depending upon the situation of poles of G(s)H(s) Nyquist path should be selected.



Generalized Nyquist Path and its Mapping



Now Mapping of these sections in S-Plane can be achieved by drawing the polar plots for various sections

and joing one after the other, the mapped locus called Nyquist Plot,

From the encirclement of the critical point (-1,+ j0) by Nyquist Plot, stability of the system can be predicted

count the number of encirclements of the critical point (-1,+ j0) and check whether it satisfies N = -P



Polar Graph

Start of Polar Plot End of Polar Plot



Polar plot is a plot of magnitude of G(jω) versus the phase of G(jω) in polar coordinates

Notes on general polar plots

Type 0 systems: finite starting point on the positive real axis, the terminal point is the origin tangent to

one of the axis ˆ

Type 2 systems : the starting magnitude is infinity and asymptotic to -180, Also the curve converges to

zero tangent to one of the axis

Type 1 Systems : starting at infinity asymptotically parallel to -ve imaginary axis, Also the curve

converges to zero tangent to one of the axis

For physical realizable systems, the order of the denominator is larger than or equal to that of the numerator

of the transfer function











Draw Nyquist Plot, Investigate the stability of a negative feedback control system whose open loop transfer

function is given by G(s) H(s) = 100 / (S+1) (S+2) (S+3)

Step 1 Count number of poles of G(s)H(s) are in right half of S-Plane

i.e. with positive Real Part, This is the value of ‘P’

P = 0,  As No Open Loop poles in the right half of S-Plane

Step 2      Decide the stability criterion  as  N = -P 

i.e. How many times Nyquist plot should encircle “ -1+j0 ” point for absolute stability

Here P = 0, No Encirclement of critical Point “ -1+j0 ” i.e. (-1, 0) by Nyquist plot for stability



Step 3 Select Nyquist Path as per the function G(s)H(s). Identify the various segments on the contour with

reference to Nyquist path

Select Nyquist contour which encloses the entire right half s-plane except singular points. The Nyquist

contour encloses all the right half s-plane poles and zeros of G(s)H(s). The poles on imaginary axis are

singular points and so they are avoided by taking a detour around it.

Here Select the proper Nyquist contour – Include the entire right half of s-plane by drawing a semicircle

of radius R, with R tends to infinity



Step 4 Analyze the Section I, II and III as a starting point and terminating point. Last section III analysis is

not required for closed loop stability

Express the magnitude and phase equations in terms of ω and Estimate the magnitude and phase

for different values of ω

Let S=jω in G(s)H(s) & calculate magnitude and phase M∟Ø =│G(jω)H(jω)│*∟G(jω)H(jω)



∟G(jω)H(jω)

M∟Ø =│G(jω)H(jω)│∟G(jω)H(jω)



Analyze the Section I, II and III as a starting point and terminating point

Terminating point phase angle - Starting point phase angle = Positive value, then sketch polar plot of

Section I in Anticlockwise rotation

Terminating point phase angle - Starting point phase angle = Negative value, then sketch polar plot of

Section I in clockwise rotation

Section I S=jω ω Magnitude |G(jω)H(jω)| Phase angle ∟G(jω)H(jω)

At Starting point (a) S= j∞ ω = ∞ 0 -270˚

At Terminating point (b) S= 0 ω = 0  16.6 0˚



 Mapping of these sections in F-Plane can be achieved by drawing the polar plots for various

sections and joing one after the other, the mapped locus called Nyquist Plot,



Section II : Mirror Image of Section I on real axis

Section II S=jω ω
Magnitude 

|G(jω)H(jω)|
Phase angle ∟G(jω)H(jω)

At Starting point (b) S= 0 ω = 0 16.6 0˚

At Terminating point (c) S= -j∞ ω = -∞  0 +270˚



Section III : Last section III analysis is not required for closed loop stability

Section II S=jω ω Magnitude |G(jω)H(jω)| Phase angle ∟G(jω)H(jω)

At Starting point (b) S= -j∞ ω = -∞ 0 +270˚

At Terminating point (a) S= +j∞ ω = ∞  0 -270˚



Step 5 Find “ωpc” Phase cross over frequency mathematically & “Q” intersection of Nyquist plot

with negative real axis





 Step 6: Sketch the Nyquist plot, Drawn polar plots for various sections( i.e. Section I, II and

III) are joined one after the other, The mapped locus is called Nyquist Plot



Step 7: find the value of N, Number of Encirclement of the critical point (-1,+ j0) point of F-

plane by Nyquist plot

If N = -P then system is stable, If N ≠ -P then system is unstable

Clockwise encirclement are taken positive and anticlockwise encirclement are as negative



Step 8: Determine Gain Margin





clc #clears all the text from the Command Window, resulting in a clear screen

num = [100]; #Coefficients of the numerator

den =[1 6 11 6]; #Coefficients of the denominator

sys=tf(num,den);#creates a continuous-time transfer function with numerator(s) and denominator(s)

specified by num and den

nyquist(sys) # creates a Nyquist plot of a dynamic system sys

[re,im,w]=nyquist(sys)# return the real and imaginary parts of the frequency response at the frequencies w

(in rad/TimeUnit).

G(s) H(s) = 100 / (S+1) (S+2) (S+3)

clc

num = [100];

den =[1 6 11 6];

sys=tf(num, den);

nyquist(sys)

[re,im,w]=nyquist(sys)

Program



Draw Nyquist Plot, Investigate the stability of a negative feedback control system whose open loop transfer

function is given by G(s) H(s) = K / S (S+2) (S+10) & hence calculate the range of value of K for Stability.

Step 1 Count number of poles of G(s)H(s) are in right half of S-Plane

i.e. with positive Real Part, This is the value of ‘P’

P = 0,  As No Open Loop poles in the right half of S-Plane

Step 2      Decide the stability criterion  as  N = -P 

i.e. How many times Nyquist plot should encircle “ -1+j0 ” point for absolute stability

Here N = 0, So Critical Point “ -1+j0 ” i.e. (-1, 0) Should Not get encircled by Nyquist plot for

stability



Step 3 Select Nyquist Path as per the function G(s)H(s). Identify the various segments on the contour with

reference to Nyquist path

Select Nyquist contour which encloses the entire right half s-plane except singular points. The Nyquist

contour encloses all the right half s-plane poles and zeros of G(s)H(s). The poles on imaginary axis are

singular points and so they are avoided by taking a detour around it.

Here Select the proper Nyquist contour – Include the entire right half of s-plane by drawing a semicircle

of radius R, with R tends to infinity

Pole is at orgin hence Nyquist 

contour is as shown

G(s)H(s) has one pole at orgin



Step 4 Analyze the Section I, II, III & IV as a starting point and terminating point. Last section IV analysis is

not required for closed loop stability

Express the magnitude and phase equations in terms of ω and Estimate the magnitude and phase

for different values of ω

Let S=jω in G(s)H(s) & calculate magnitude and phase M∟Ø =│G(jω)H(jω)│*∟G(jω)H(jω)

G(s) H(s) = K / S (S+2) (S+10)







Analyze the Section I, II, III and IV as a starting point and terminating point

Terminating point phase angle - Starting point phase angle = Positive value, then sketch polar plot of

Section I in Anticlockwise rotation

Terminating point phase angle - Starting point phase angle = Negative value, then sketch polar plot of

Section I in clockwise rotation

Section I S=jω ω Magnitude |G(jω)H(jω)| Phase angle ∟G(jω)H(jω)

At Starting point (a) S= j∞ ω = ∞ 0 -270˚

At Terminating point (b) S= +j0 ω = +0  ∞ -90˚







Section III : Mirror Image of Section I about real axis

Section III S=jω ω
Magnitude 

|G(jω)H(jω)|
Phase angle ∟G(jω)H(jω)

At Starting point (c) S= -j0 ω = −0 ∞ +90˚

At Terminating point (d) S= -j∞ ω = -∞  0 +270˚



Section IV : Last section IV analysis is not required for closed loop stability

Section IV S=jω ω
Magnitude 

|G(jω)H(jω)|
Phase angle ∟G(jω)H(jω)

At Starting point (d) S= -j∞ ω = -∞ 0 +270˚

At Terminating point (a) S= +j∞ ω = ∞  0 -270˚



Step 5 Find “ωpc” Phase cross over frequency mathematically & “Q” intersection of Nyquist plot

with negative real axis







 Step 6: Sketch the Nyquist plot, Drawn polar plots for various sections( i.e. Section I, II III &

IV) are joined one after the other, The mapped locus is called Nyquist Plot



Step 7: find the value of N, Number of Encirclement of the critical point (-1,+ j0) point of F-

plane by Nyquist plot

If N = -P then system is stable, If N ≠ -P then system is unstable

Clockwise encirclement are taken positive and anticlockwise encirclement are as negative



Draw Nyquist Plot, Investigate the stability of a negative feedback control system whose open loop transfer

function is given by G(s) H(s) = 5 / s(1-s)

Step 1 Count number of poles of G(s)H(s) are in right half of S-Plane

i.e. with positive Real Part, This is the value of ‘P’

P = 1,  As No Open Loop poles in the right half of S-Plane

Step 2      Decide the stability criterion  as  N = -P 

i.e. How many times Nyquist plot should encircle “ -1+j0 ” point for absolute stability

Here N = -P, Therefore N = -1 for stability, Nyquist Plot Must Encircle critical Point “ -1+j0 ” i.e.

(-1, 0) once in Clockwise direction for stability



Step 3 Select Nyquist Path as per the function G(s)H(s). Identify the various segments on the contour with

reference to Nyquist path

Select Nyquist contour which encloses the entire right half s-plane except singular points. The Nyquist

contour encloses all the right half s-plane poles and zeros of G(s)H(s). The poles on imaginary axis are

singular points and so they are avoided by taking a detour around it.

Here Select the proper Nyquist contour – Include the entire right half of s-plane by drawing a semicircle

of radius R, with R tends to infinity

Pole is at orgin hence Nyquist 

contour is as shown

G(s)H(s) has one pole at orgin



Step 4 Analyze the Section I, II, III & IV as a starting point and terminating point. Last section IV analysis is

not required for closed loop stability

Express the magnitude and phase equations in terms of ω and Estimate the magnitude and phase

for different values of ω

Let S=jω in G(s)H(s) & calculate magnitude and phase M∟Ø =│G(jω)H(jω)│*∟G(jω)H(jω)

G(s) H(s) = 5 / s(1-s)





Analyze the Section I, II, III and IV as a starting point and terminating point

Terminating point phase angle - Starting point phase angle = Positive value, then sketch polar plot of

Section I in Anticlockwise rotation

Terminating point phase angle - Starting point phase angle = Negative value, then sketch polar plot of

Section I in clockwise rotation

Section I S=jω ω Magnitude |G(jω)H(jω)| Phase angle ∟G(jω)H(jω)

At Starting point (a) S= j∞ ω = ∞ 0 0˚

At Terminating point (b) S= +j0 ω = +0  ∞ -90˚





Section II : S= +j0 to S= -j0

Section II S=jω ω Magnitude |G(jω)H(jω)| Phase angle∟G(jω)H(jω)

At Starting point (b) S= +j0 ω = +0 ∞ -90˚

At Terminating point (c) S= -j0 ω = -0  ∞ +90˚



Section III : Mirror Image of Section I about real axis

Section III S=jω ω Magnitude |G(jω)H(jω)| Phase angle∟G(jω)H(jω)

At Starting point (c) S= -j0 ω = −0 ∞ +90˚

At Terminating point (a) S= -j∞ ω = -∞  0 0˚



Section IV : Last section IV analysis is not required for closed loop stability

Section IV S=jω ω Magnitude |G(jω)H(jω)| Phase angle∟G(jω)H(jω)

At Starting point (a) S= -j∞ ω = −∞ 0 0˚

At Terminating point (a) S= +j∞ ω = +∞  0 0˚



Step 5 Find “ωpc” Phase cross over frequency mathematically & “Q” intersection of Nyquist plot

with negative real axis



 Step 6: Sketch the Nyquist plot, Drawn polar plots for various sections( i.e. Section I, II III &

IV) are joined one after the other, The mapped locus is called Nyquist Plot



Step 7: find the value of N, Number of Encirclement of the critical point (-1,+ j0) point of F-

plane by Nyquist plot

If N = -P then system is stable, If N ≠ -P then system is unstable

Clockwise encirclement are taken positive and anticlockwise encirclement are as negative





x+jy , │magnitude│ = √x²+y² , ∟Phase angle = Tan¹־(y/x) j² = -1, j = √-1,   j³= -j



A controller is the most important component of the control system. It is responsible for the performance of

the control system. It is a device or an algorithm that works to maintain the value of the controlled variable at

set point

Controller



A controller with transfer function Gc(s) can be introduced in cascade with open loop transfer

function G(s) as shown in fig. to modify the transient and steady state response of the system

P, PI, PD and PID controller



P-controller and its characteristics

The proportional controller is a device that produces an output signal which is proportional

to the input signal.

The proportional controller improves the steady state tracking accuracy, disturbance signal

rejection and relative stability. It also decreases the sensitivity of the system to parameter

variations.

Proportional controller (Kp) reduces the rise time, increases the overshoot, and reduces the 

steady-state error

Kp= Proportional gain



PI-controller and what are its effect on system performance

The PI-controller is a device that produces an output signal consisting of two terms-one proportional

to input signal and the other proportional to the integral of input signal.

The introduction of PI-controller in the system reduces the steady state error and increases the order

and type number of the system by one

Integral control (Ki) tends to decrease the rise time, increase both the overshoot and the settling time, 

and reduces the steady-state error

T.F of PI Controller



PD-controller and what are its effect on system performance

The PD-controller is a device that produces an output signal consisting of two terms-one 
proportional to input signal and the other proportional to the derivative of input signal.

The PD-controller increases the damping of the system which results in reducing the peak 
overshoot

Derivative control (Kd) tends to reduce both the overshoot and the settling time

T.F of PD Controller



PID controller and what are its effect on system performance

The PID controller is a device which produces an output signal consisting of three terms-

one proportional to input signal, another one proportional to integral of input signal and the

third one proportional to derivative of input signal

The PID controller stabilises the gain, reduces the steady state error and peak overshoot of

the system.

T.F of PID Controller



When you are designing a PID controller for a given system, follow the steps shown below to obtain a desired

response.

1.Obtain an open-loop response and determine what needs to be improved

2.Add a proportional control to improve the rise time

3.Add a derivative control to reduce the overshoot

4.Add an integral control to reduce the steady-state error

5.Adjust each of the gains Kp Ki and Kd until you obtain a desired overall response



Consider the system with open loop transfer function & unity feedback system.   G(𝑺) = 𝟏 / (𝑺²+𝟏𝟎𝑺+𝟐0)

Closed loop transfer function can be obtained by using the relation 𝑪𝑺/𝑹(𝑺)=𝑮(𝑺)𝟏+𝑮𝑺𝑯(𝑺)

𝑪𝑺/ 𝑹(𝑺)=𝟏 / (𝑺²+𝟏𝟎𝑺+𝟐𝟏 )



Time domain 

specification 

parameter

Simulated 

values

Delay Time 0.383s

Rise Time 0.94s

Peak Time 2.34s

Settling Time 2.37s

Peak Overshoot ----

Steady State Error
0.9524











Effect of proportional Derivative (PD) controller on the response

 In PD controller the actuating signal consists of proportional error signal and

also the derivative of error signal.

 Closed Loop Transfer Function

𝐶 𝑆

𝑅(𝑆)
=

𝐾𝑃 + 𝐾𝐷𝑆

𝑆2 + 10 + 𝐾𝐷 𝑆 + 20 + 𝐾𝑃

 The derivative controller reduces the peak overshoot and settling time.

 To control the steady state error the derivative gain KD must be high.

 The PD controller reduces the response times of the system and can make it

susceptible to noise.



Response of PD controller

Time domain 

specification 

parameter

Simulated 

values

KP 100

KD 10

Delay Time 0.054s

Rise Time 0.159s

Peak Time 0.335s

Settling Time 0.504s

Peak Overshoot ---

Steady State Error
0.166



Effect of proportional Integral Derivative (PID) controller on the response

 For PID controller, the actuating signal consists of proportional

error signal and also the derivative and integral of error signal.

 Closed Loop Transfer Function

𝑪 𝑺

𝑹(𝑺)
=

𝑺𝟐𝑲𝑫 + 𝑺𝑲𝑷 + 𝑲𝑰

𝑺𝟑 + 𝟏𝟎 + 𝑲𝑫 𝑺𝟐 + 𝟐𝟎 + 𝑲𝑷 𝑺 + 𝑲𝑰

 The PID controller removes the steady state error and reduces

the settling time while maintaining reasonable transient

response.





SYSTEM COMPENSATION

After carrying out the stability analysis of feedback control system, if it is found that the system

performance is not satisfactory then certain modification or redesign has to be carried out

In redesigning control system, an additional components have to be incorporated. The additional

component or device compensates for the performance deficiency and is called compensator.

The Process of redesign or addition of device is called compensation.

The only difference between controller and compensator is that controller additional elements like

differentiator that subtracts the measured value of the output from the demanded value and mechanism for

adjusting set point whereas compensator only includes elements that modify the dynamic behaviour of the

control system



What is compensation?

The compensation is the design procedure in which the system behaviour is altered to meet

the desired specifications, by introducing additional device called compensator.

The two types of compensation schemes employed in control system are series

compensation and feedback or parallel compensation.



In order to satisfy the performance specifications such as time domain specifications, frequency domain

specifications a compensator is introduced in open loop transfer function

The different types of compensators are used which may be mechanical, electrical hydraulic, pneumatic or

any other type of device.

Types of System Compensation

There are four types of system compensation. They are

1. Cascade or Series compensation

2. Feedback. compensation

3. Input compensation and

4. Output compensation.



In cascade compensation the compensating element whose transfer function Gc(s) is placed in series with

the forward transfer function G(s). It is also referred as series compensation

The series compensation is a design procedure in which a compensator is introduced in series with plant to

alter the system behaviour and to provide satisfactory performance (i.e., to meet the desired

specifications). The block diagram of series compensation scheme is shown in fig)

Gc(s) = Transfer function of series compensator

G(s) = Open loop transfer function of the plant.

H(s) = Feedback path transfer function.



The feedback compensation is a design procedure in which a compensator is introduced in the feedback

path so as to meet the desired specifications. It is also called parallel compensation. The block diagram of

feedback compensation scheme is shown in fig

What is feedback compensation?

Gc(s) = Transfer function of feedback compensator

Feedback compensation H(s) = Feedback path transfer function.

G1(s),G2 (s) = Open loop transfer function of the components of the plant.



Feedback compensation may be used to improve system stability, to reduce steady state error and improve

speed of response of the system

Similarly the compensating device may be

placed at the Input or along the output side

as shown in Fig.(c) and (d) to improve the

performance of the system. The selection

of a particular compensation depends upon

nature of the signals, power levels at

various points, availability of the

components and the cost considerations.


