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Time domain analysis:

Time Response:

The time response of the system is the output of the closed loop system as a function of time.

denoted by c(t).

The time response can be obtained by solving the differential equation governing the system

Alternatively, the response c(t) can be obtained from the transfer function of the system and the

input(excitation) to the system.

Co)___ 8O _ i
R(s) 1+G(s)H(s)

The closed loop transfer function
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In any practical system, output of the system takes some finite time to reach to its
final value. This time varies from system to system and is dependent on different factors.
Similarly final value achieved by the output also depends on the different factors like

friction, mass or inertia of moving elements, some nonlinearities present etc.
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For example consider a simple ammeter as a system. It is connected in a system
so as to measure current of magnitude 5A. Ammeter pointer hence must deflect to show us
5A reading on it. So 5A is its ideal value that it must show. Now pointer will take some
finite time to stabilise to indicate some reading and after stabilising also, it depends on

various factors like friction, pointer inertia etc. whether it will show us accurate 5 A or not.
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(or Qutput) e closed loop transfer function _ = M(s)
R(s) 1+ G(s)H(s)
The Output or Response in s-domain, C(s) is given by the product of the R c(s)
transfer function and the input, R(s). -
On taking inverse Laplace transform of this product the time domain
response, C(t) can be obtained
Response in s-domain, C(s) = R(S) M(s) where. M(s)= G(s)
1+G(s)H(s)

Response in time domain  ¢(t) = £{C(s)} = £ {R(s)x M(s)}
The time response of a control system consists of two parts : the transient and the steady state

response.
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Transient Response

The transient response is the response of the system when the input changes from one
state to another

The output variation during the time, it takes to achieve its final value is called transient

response. The time required to achieve the final value is called transient period.

The transient response may be exponential or oscillatory. It is represented as C(t).

To get the desired output, system must pass satisfactorily through transient period.
Transient response must vanish after some time to get the final value closer to the desired value.

Such systems in which transient response dies out after some time are called Stable Systems
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From transient response can get following information about the system,
= When the system has started showing its response to the applied excitation

« What is the rate of rise of output ? From this, parameters of system can be designed which can

withstand such rate of rise. It also gives indication about speed of the system

« Whether output is increasing exponentially or it is oscillating

« If output is oscillating, whether it is over shootting its final value.

* When it is settling down to its final value ?

All this information matters much at the time of designing the systems
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Steady state response

It is that part of the time response which remains after complete transient response

vanishes from the system output.

The steady state response is the response as time, t approaches infinity:.
Steady state response is the final value achieved by the system output.

The steady state response indicates the accuracy of the system and it is denoted as Cg.

From steady state response we get;
1. How much away the system output is from its desired value which indicates error.

2. The error is constant or varying with the time
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Consider a vertically suspended spring and when the weight is added as shown in

The deflection of spring abruptly increases and oscillates for some time and then settles down to a
steady value. The steady value is steady state response of the spring. The oscillation that occurs

prior to this steady state is the transient response

Initial value
before welght
added \
Added welght
Sleady siale
" Displacement value

Transient and steady-state response of a spring system
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The step signal is a signal whose value changes
1 from 0 to A and remains constant at A fort > 0.
5 -t
Step Input cit)
clt) % clt) sie— Cg (t) —
Step - _L
= q{n > l ¥
i @5
B i
—Cye(t) — ; .
0 1 Time
-
ole— Stgadytm Transient "
Transient state of time
time system Response for 2"d Order System

Response for 15t Order System for step Input

(Under Damped Case) for step Input
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In Time response analysis of control system, the test input signals are applied and the
response produced by various system to these input signals are compared and then the performance
index is specified. Once the control system is designed based on the test input signals, the
performance of the system to the actual input signals are generally found to be satisfactory.

The input signals to control systems are not known fully ahead of time, the characteristics of
control system which suddenly strain a control system are:

a) Sudden shock

b) Sudden change

c) Constant velocity and acceleration

System dynamic behavior for analysis and design is therefore judged and compared under standard test
signals.
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The test signals can be easily generated in test laboratories and the characteristics of test

signals resembles, the characteristics of actual input signals..

The test signals are used to predetermine the performance of the system. If the response of a system

Is satisfactory for a test signal, then the system will be suitable for practical applications

The commonly used test input signals in control system are Impulse, Step, Ramp, Acceleration and

Sinusoidal signals.

For analyzing transient response mainly step input signal is used and also other signals mainly

ramp and parabolic are not used for this analysis but they are used for steady state analysis.
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1.Step Input (Position Function): Sudden application of input at a specified time.

The step signal is a signal whose value changes from 0 to A and remains constant at A for t > 0.

The step signal resembles an actual steady input to a system. A special case of step signal is unit
step in which A is unity.
Mathematically it can be described as,

fl'.'ll}
R . () = A for £20
= 0 for t<0
1 If A =1, then it is called unit step function
-t and denoted by u(t).
0

Laplace transform of such input is %

If a system is subjected to sudden disturbance then the step input can be used as a test input

signal.
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Example.

If the input is the angular position of shaft, step input represents sudden rotation of the shaft
Change in fluid flow made available by the sudden opening of a value in a line from a pump

\oltage impressed upon an electric network when the network is suddenly connected to a battery by

closing the switch
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Ramp Input

The ramp signal is a signal whose value increases linearly with time from an initial value of
zero at t= 0. The ramp signal resembles a constant velocity input to the system. A special case of ramp

signal is unit ramp signal in which the value of A is unity

The signal will have constant change in value with respect to time i.e., it starts at zero and increases
linearly with time

) Magnitude of Ramp input is nothing but its
r{} slope. Mathematically it is defined as,

it = At fort20
=0 fort<0

If A = 1,.it is called Unit Ramp input. It is

denoted as r(t). Its Laplace transform is j—';-;

«+—— Slope = A
) "t »
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Since the input to the system is unbounded, the output will also be unbounded and the system's response
Is said to be unstable. Ramp inputs are useful in determining the performance of certain system

(eg : Machine tools, missiles).

If the input to a control systems are a gradually changing with respect to time, ramp input is a suitable
test signal.

Example

If the input is of the form of angular displacement of the shaft, the ramp input represents constant speed
rotation of the shaft. Similarly if a temperature is increasing at a constant rate of say 5°C per second

then the quantity is said to have a velocity of this value.
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Unit ramp input employed as mathematical model of the input to a radar fire control system that is

suddenly required to track a target moving with constant velocity.

Ramp signal denotes constant velocity and also basic definition states that its value

increases linearly with time.
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Parabolic Input
In parabolic signal, the instantaneous value varies as square of the time from an initial value of

zero at t = 0. The sketch of the signal with respect to time resembles a parabola.

The parabolic signal resembles a constant acceleration input to the system. A special case of parabolic

signal is unit parabolic signal in which A is unity

- Mathematically this function is described as,

_ ) = %ﬁ, for t 20
«— Slope = At = 0, for t<0
- |

where A is called magnitude of the parabolic input.

g
2
If A=1,ie x(t) =~ itis called unit parabolic input. Its Laplace transform is A

Note : Integral of step signal is ramp signal. Integral of ramp signal is parabolic signal.
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Impulse Input
A signal of very large magnitude which is available for very short duration is called

impulse signal. Ideal impulse signal is a signal with infinite magnitude and zero duration but

with an area of A. The unit impulse signal is a special case, in which A is unity.

) Area of the impulse is nothing but its
magnitude. If its area is unity it is called Unit

I Impulse Input, denoted as §(f).

A Mathematically it can be expressed as,

J M) = A, for t=0

-t

e .

Ll = 0, for t#0

It is a signal which has zero value everywhere except at t = 0, where its magnitude is infinity.
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Since perfect impulse cannot be achieved in practice, it is approximated by a pulse of unit

area having small width.
If the system is subjected to shock inputs, the impulse input can be used.

Pulse inputs are useful in dealing with an operating system because there is no prolonged

disturbance of the output variable and also because pulses are readily imposed on the input

variable.
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For analyzing transient response mainly step input signal is used and also other signals mainly ramp and

parabolic signal are not used for this analysis but they are used for steady state analysis.

Name of the signal Time domain equation Laplace transform of
: of signal, r(t) the signal, R(s)
A
Step A —
. 1
Unit step 1 <
JA
Ramp At Z
]
Unit ramp t 2
A
At £
Parabolic = s
t? LN
Unit parabolic ey 3
Impulse 3(t) 1
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ORDER OF ASYSTEM

The input and output relationship of a control system can be expressed by ntorder differential equation

shown in equation

i n-1 n—2
d d™
t P
EH) 3t p(t)+a, s p(t)+a, g2 p(t) +.....4a, Ep{t) +a, p(t) = bn‘_m q(t)

m—1 _’.r

d"
+b, dm_lq(t} bz oz D+t by z—q(t}+b q(t)

Where p(t) is the Output/Response, q(t) is the Input/Excitation

The order of the system is given by the order of the differential equation governing the
system. If the system is governed by nt order differential equation, then the system is called nth

order system
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Alternatively, the order can be determined from the transfer function of the system. The
transfer function of the system can be obtained by taking Laplace transform of the differential equation

governing the system and rearranging them as a ratio of two polynomials in s, as shown in equation

C()  bys™ + b, sm" +bys™ 4ot by 5+ b

Transfer function, T(s)=
R(s) a05n+al$ +a-,S ks +a,_;s+a

Where C(s) is the Numerator polynomial , R(s) is the Denominator polynomial

The order of the system is given by the maximum power of s in the denominator polynomial

= n n-1 n~2 -+
R(s) a,s +ta s +a25 x PP +aﬂ_s a.

n is the order of the system
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Note : The order can be specified for both open loop system and closed loop system

The numerator and denominator polynomial of equations can be expressed in the factorized form as

shown in below equation

T(s) = CE) _ (5+7z)(s+2)......(s+ 2,)
RE)  (s+py)(s+py)ee(s+D,)

71,72,...... Zm are the Zeros of the system P1, P2, ......Pn are poles of the system

Order of the system is equal to the number of poles of the transfer function

Denominator of the Transfer function represents Characteristic Equation. Consequently if all the roots

of the Characteristic equation have negative real part, the system is stable
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Poles and Zeros. The roots of the denominator polynomial R(s) are the poles of G(s).
The roots of the numerator polynomial C(s) are zeros of G(s).

s+2  s+2 §+2

G{S}: 2 -~ B - . .
STH25+2  (s+1) 41 (s+1—j)s+1+7)

The zeroes can be calculated by equating the numerator to zero:

. ) jer(Im)
The poles can be calculated by equating the denominator to zero
+ 7 1
G(s) has one zero at —2 and two complex conjugate poles at L+ S-plane
In general, a transfer function with m zeros and n poles can be _ _ >
w2 -1 o(Re)
written as
G(s)=k 6-2) ©-z,) where K is the gain ;
(s—p) (5-p,) Jan o

Complex conjugate poles of G(s).
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- Example
T =
Let T8~ (s 612)
By partial fraction expansion, T(s) can be expressed as,
2 A B C
T(s) = T o

s(s+1)(s+2) s s+1 s+2

A is obtained by multiplying T(s) by s and letting s = 0: |
2 2

2
AT x4, S5 (E+2) =0 (s+1)(12)| ., 1x2
B is obtained by multiplying T(s) by (s +1) and letting s = —1.
| 2 2 2
+1 =— =2
= S(S+1)(s+2) x G )L"“ s(s+2)| ., ~U-1+2)
C is obtained by multiplying T(s) by (s +2) and letting 5 = 2.
C= T(s)x{%gy\ = (s+2)1 o2 2 4
2 s(s+1) (5+2) =2 s(s+D)|,_, -2-2+D
. 2 1 2 1
T(s)= = — —— o ——

s(s+1¥(s+2) s s+1 s+2
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Time Response of First Order Control Systems
Only one energy storage element, and thus could be modeled by a first-order differential equation

When the maximum power of s in the denominator of a transfer function is one, the transfer function

represents a first order control system.

The closed loop order system with unity feedback is shown in fig

R(s) - 1 e = Cls
LG e — —» R(s) 1 ( )
T 1+ Ts
Closed loop first ord The closed | fer function of first ord C6s) !
osed loop Tirst oraer system. e closed loop transter function ot Tirst order system, =
P Y P Y R(s) 1+Ts

If the input is unit step then, r(t) = 1 and R(s) =1/S

T is called Time constant of the system
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C(s) _ 1
R(s) 1+Ts

R(s) =1/S

.

The response in s-domain, R
PONSE | n CEO=RETT Ts) S(1+Ts)

By partial fraction expansion 1 _A " B

s(Ts+1) s Ts+1

|1=ATs+ A+ Bs
A =1
AT +B=0 or B=—AT=-T

cg=m -l =l

= The response in time domain
S Ts+1 § (s+yT) P
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C)= =~
®)=7 (s+1/T)
.. ] f.-at]. 1.
The response in time domain Lie }=—
5+a
, NS B .
c(t)y=L {CHE)}=L = [—g 1 ....Equation (1)
S 5+-']-I_;

The response of the closed loop first order system for unit step input.

For step input of step value, A, the equation (1) is multiplied by A

t
For closed loop first order system, Unit step response =i—e T

t
For closed loop first order system Step response = Atl»e TJ
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For closed loop first order system, Unit step response =1—¢ T

t =0, ct) =1-¢e"=0 : : .
When Here T is called Time constant of the system. In a time of 5T,
t = IT, o(t) =1—e!=0.632
t = AT, o(t) =1-¢=0.865 the system is assumed to have attained steady state
_ I _ _ _ _
t = 3T, ct) =1-e7=0.9 The input and output signal of the first order system is shown
t = 4T, c(t) =1-e*=09817
B in fig
t = 5T, c(t) =1-e7=0.993
t = w, c(t) =l-e>=1 Response of First order control Systems to unit step input
T im r(t) 4 o)
- 1 09s[IIIIIIIIIIII I
0.865F-==-----;
x Re 0.632F - - - /
Pole location of a first-
order system R > "

Figa : Unit step input. Figh : Response for Unit step inpul.
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Example: Partial fraction

K AB+C

g5} = =
s(s+p)(s+tpy) S s+p; S+P;

The residues A, B and C are given by,

A=T(@) x 8, _, B=TE) x(5+p) C=T(s) x (s+py)

=0 3=—Pi s==p2
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The First order control system is represented by a TF. C(s)/R(s)= 1/s+5. Determine the time constant and

response for a unit step input.

[ R(s) = 1 for unit step HP]
s

1 A

s(s+5]= s

0.2 02
Clg) a2 _ 208
{s) S S+5

] 1
=] e
0 [s §+5

Cls) =

B Als+5)+Bs

Cls) 1

C(s)

3+5-

J

s(s+5)

R(s) s+5

_R(s) 1
s+5 s(s+5)

As+5A+Bs=1
A+B=0
54 =1

c(t)=0.2(1-¢)

" == 02) [1—e“'*""]

T = 0.2 sec



iLe ) College of Engineering

Second order system

First Order Control Systems had only one energy storage element and thus could be modeled by a

first-order differential equation

Second order system are models with two energy storage elements. The simple step of adding an
additional energy storage element to First Order Control Systems allows much greater variation in the types

of responses, The largest difference is that systems can now exhibit oscillations in time in their natural

response

In this case of the mechanical systems, energy is stored in a spring or an Mass/inertia.

In the case of electrical systems, energy can be stored either in a capacitance or an inductance.

Fluid systems store energy via pressure in fluid capacitances, and via flow rate in fluid inertia (inductance)
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Second order system

When the highest power of s in the denominator of the closed loop transfer function of a system is 2,

then it represents a second order system.

Second order systems are very important as it characterizes the dynamics of many control system

application, such as servomechanisms, air craft and space craft control systems.
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Example of Second order system are models with two energy storage elements

T

—
—v’\ﬁv\/— The system consists of a spring and damper attached to a mass
JbT " which moves laterally on a frictionless surface
piL_i
Frictionless SupportD
N g B
i [:: r - R g Electric RLC circuit with i(t) the input current of a current
0 veo | € Y source, and v(t) the output voltage across a load resistance R.
i

FIGURE RLC circuit.
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The example of second order system is servomechanisms or spring-mass-dash pot system

As an example consider a simple mechanical system, a spring/mass/damper.

It consists of a weight of mass ‘M’ Kg, on a spring with spring constant ‘K’ N/m, its motion damped by

friction with coefficient ‘B’ N-sec/m

X0 C(s)/R(s) = K / Ms2 + Bs + K
K
C(s)/R(s) = (K/IM) / (s> + (B/IM) s + (K/M)
M| tew In transient response analysis
0,2=K/M and 2o, =B/M
=B o=VK/M &=BM)/Q2o,)=B/M)/2VK/M)
TITTITITTITT £=B/2VKM =BJ/Bc

The damping ratio § is defined as the ratio of actual damping ‘B’ to the critical damping ‘B¢’
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Y0  C(8)/R(s) =K/ Ms2+ Bs + K

K The characteristic equation Ms?+ Bs + K = 0, This second-order polynomial has two

M | Ycw Roots, which are the pole locations (natural frequencies) of the system

b b2 — dmk b b2 — dmk

LB L= 2m + 2m 2= 2m N 2m

TN
Before further analysis, it is helpful to introduce some standard terms. The pole locations are

conveniently parameterized in terms of the damping ratio &, and natural frequency ,

Wh i (= ’
e Wn = m S Ekm

(n is the (undamped) natural frequency of the system in rad/sec, i.e., the frequency of oscillations
when the damping ‘B’is zero.
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Lets make the physically reasonable assumption that the values of m, and k are greater than zero (to
maintain system order) and that b is non-negative (to keep things stable). With these assumptions,

there are four classes of pole locations:

First, if b = 0, the poles are Purely Imaginary lying on the imaginary axis at s1 =+jvk/m and s2 =

—j\k/m. This corresponds to & = 0, and is referred to as the undamped case

If b2—-4mk < 0 then the poles are complex conjugates lying in the left half of the s-plane. This

corresponds to the range 0 < § < 1, and is referred to as the underdamped case

If b2 —4mk = 0 then the poles coincide on the real axis at s1 = s2 = — b/2m. This corresponds to & = 1,

and is referred to as the critically damped case.[Two identical (repeated) real roots]
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Finally, if b2 —4mk > 0 then the poles are at distinct locations on the real axis in the left half of the s-

plane. This corresponds to £ > 1, and is referred to as the overdamped case.

¥(s)
X(s)

= K wi/(5]2 + 2w, 85 + w?)
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Damping Ratio

The damping ratio of a second-order system, denoted with the Greek letter zeta ({), is a real
number that defines the damping properties of the system. More damping has the effect of less percent
overshoot, and slower settling time. Damping is the inherent ability of the system to oppose the oscillatory
nature of the system's transient response. Larger values of damping coefficient or damping factor produces
transient responses with lesser oscillatory nature.

Undamped natural frequency of a second order system has the following influence on the response due to various
excitations:

a) Increase in speed of response and decrease sensitivity

b) Decrease in speed of response and increase sensitivity

¢) Has no influence in the dynamic response

d) Increase oscillatory behavior

Answer: a

Explanation: Undamped natural frequency is the frequency that has suffered damping and gets affected by the increase in
the speed of response and decrease in sensitivity.
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e 2
» The closed loop transfer function of Standard second order system is given by Eii = 3 On
. s°+ 2C w, s+ o

Hence the value of & and o, describe the dynamic behaviour of the 2" order system

» Every system has a tendency to oppose the oscillator behaviour of the system which is called damping.

» The damping is measured by a ratio called damping ratio of the system.(&)

The second-order system is parameterized by the two parameters zeta & and w,,, Different choices for

zeta and o, lead to different pole locations and to different behavior of the (modes of) the system

& < 1 the system is said to be underdamped, if & 1, it is overdamped and & =1 the system is said to
be critically damped

> If the & = 0, the system will oscillate with maximum frequency. This frequency is called natural frequency of
oscillation (w,) in rad/sec
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The damping ratio gives us an idea about the nature of the transient response detailing the amount of

overshoot & oscillation that the system will undergo. This is completely regardless of time scaling.

The closed loop transfer function of Standard second order system is €(s) _ wp
given by R(s) s+ 26, s+ o}

» For a second order system the denominator of closed
loop T.F. is quadratic and the coefficients of this

equation are directly related to £ and o,

e Where characteristic equation is, $ +2¢& W, S+ (u% =0

e The standard second order system is that where in

C.L.T.F. numerator is wZ.



DOF 4
>
): j\
1 5 \ . .
. /
"

......

atmet College of Engineering
IS0 9001:2015

Department of EEE
Emitting Elite Energy

@ATME

Key Point : In practice it is not necessary that
C(s) R
Rs) ~ 24 2% st 0 numerator must be always «?. It may be other
" ! constant or polynomial of ‘s’ but denominator middle
term coefficient and last term coefficient always reflect

2Ew, and “wf’ of the system respectively.

e Hence always denominator of a T.F. must be
compared with the standard form s® + 26 0, s+ 2 = 0
to decide the values of £ and w, of the system. The
numerator should not be used for comparison to
obtain the values of £ and .
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Second order system and Time domain specifications

R(s) 02 | C® Rs) | o? C(s)
r > ! s?+ %o s+m2 >
. ki J}n

s?+ 2w, s —

C(s) o,

The closed loop transfer function of second order system is given by 5 5
R(s) - s*+2Lw s+,

(n is the (undamped) natural frequency of the system, i.e., the frequency of oscillations when the
damping § is zero.
Undamped system. =0
€ is the damping ratio of the system Under damped system, -~ 0 <C <1
Critiéaﬂ}f damped system, (=1

http://www.controlsystemsacademy.com/0024/0024.html Over damped system, > 1
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Second order system and Time domain specifications

C(s) % where, ®_= Undamped natural frequency, rad/sec.
R(s) s+ 20w s+ fﬂi C = Damping ratio.
Thus, for
Undamped system. =0
Under damped system, 0 < <1 undamped (¢£=0) systems there are v
Critically damped system, £ =1 e two purely imaginary roots (poles), 51,2 = %)%y
Over. damped system, £ 1 critically damped (¢=1)systems, there are

» two identical (repeated) real roots, = -y,

)

overdamped (¢>1) systems, there are

S
1
» two distinct negative real roots, and !

Sz =—0 )
underdamped (£<1) systems, there are .
 two complex conjugate roots.

. 2
Sl,z = —gﬂ)n + ]ﬂ)n 1—§
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Response of Undamped second order system for unit step input

Cs) _ o, Undamped system, L=0
R(s) - s +2Lm,5+0.

roots are purely imaginary

= =+ . :
Whenl =0, s, 8, =%)J0,: {and the system is undamped

Im{s}A
Response is completely oscillatory )
(sustained oscillations)
{t)a . c(t)4
2l e r i g e m e e mem e
o
1 | S S N A
0 % 0 ' >
Fig 2.9.a : Input.  Fig 2.9.6 : Response.

Pole locations in the s-plane for
second-order mechanical system in
the undamped case (§ = 0).
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Response of Underdamped second order system for unit step input
C(s) . Under damped system, -~ 0<{<1

T

- 2 . | roots are complex conjugate
R(s) s +2Lo, s+0 When0<{ <1, s =_fw. + o )
o S L %2 b0 2045 ) e system is underdamped
2
: - where, o4=0 JI—C
The poles lieat 8 = —0 £ jwy d=7n
oJ = C Wn increasing& Im{s}A
X — — — — Wy = wpy/1 —¢2
() & o) 4 : o - 0 =sin~!¢
increasing ¢ :
l— ]"'“" . Sl Al el = . | E_B{S}
—(wy, = —0 o
!
!
> » |
0 t 0 t |
Fig . .a:input ' Fig b : Response. o ____ —wy
/

Response is oscillates before settling final value. The
oscillations depends on the value of Damping ratio 0= cos! £ = tant WI-C/O 0, =0 1=
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Pole locations in the s-plane for second-order mechanical system in the underdamped case (0 < & < 1).

Arrows show the effect of increasing on and & , respectively.

N Tm{s}A
The poles are at a radius from the origin of ®n and at an mcreasmg:\x _ _{}_ wa= wayf1- (2
angle from the imaginary axis of © = Cos™ & . The figure : wn — 0
also shows the effect of increasing & and on. As & increases increasing ¢ :
from 0 to 1, the poles move along an arc of radius mn from | E_E{S}
O =0 to © = 7/2. As on increases, the poles move radially _C%::_J
away from the origin, maintaining constant angle © = Cos™ :
& and thus constant damping ratio W s
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Pole locations for ®n =1 and £ =0, 0.1, 0.3, 0.7, 0.8, and 1.

OF 4
1 VANA

...........
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Tm{s}A
0.1
DBX X 0
0.7
X
0.8 X
1 Re{s}
% -
0.8 X
X
0.7
X xx0
0.3 o1
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Response of Critically Damped second order system for unit Step input

c(s) . Crifically damped system, =1

R(s) &+2 2 roots are real and equal and

Poles are real, repeated, and located at — @n
r(t) & o) 4
1

0 ? 0 t —wy,

Tm{s}A

AN

Department of EEE
Emitting Elite Energy

Re{s}
-

Fig a > Input. Fig  .b: Response. —X
Response have no oscillations
Pole locations in the s-plane for

second-order mechanical system in the
critically-damped case (¢ = 1).
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Response of Over damped second order system for unit Step input
Over damped system, £>1

C : |
) _ O {mcﬁs are real and unequal and

R ""' 2 2 2 - 2_ .
(s) s°+2[w,s+@; When{>1, s, 5, Cmni%\li 1; the system is overdamped

When & > 1 the poles are real and distinct and the response approaches its steady state value of 1
without overshoot. In this case the system is overdamped

Im{s)A
The two poles are at separate locations on
the real axis
89 = 8] =
. —(C+ V¢ = Dwn (€~ V¢ Dun Refs}
g X X =

Fig  .b:Response.

Response have no oscillations, but it takes
longer time for the response to reach the
final steady value
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Sr.

No. Range of £
1 E =0
2. 0<E<1
3 g =

4, 1{&{::@

Type of closed loop poles
Purely imaginary

Complex conjugates with
negative real part

Real, equal and negative

Real, unequal and negative

Nature of response

Oscillations with constant
frequency and amplitude

Dau‘nped oscillations

Critical and pure exponential

Purely exponential slow an
sluggish

......

s Department of EEE
IS0 2001:201% Emitting Elite Energy

System classification
Undamped
Underdamped

Critically damped

Overdamped
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If £ = 0, then such a second-order system is marginally stable in that the natural response is of constant

amplitude in time

If 0 < £ <1, then such a second-order system is underdamped, the poles have imaginary components, and
the natural response contains some amount of oscillatory component. Lower values of £ correspond with

relatively more oscillatory responses, i.e., are more lightly damped.
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If & = 1, then such a second-order system is critically damped, and the poles are coincident on the negative

real axis at a location @,

If £ > 1, then such a second-order system is overdamped, and the poles are at distinct locations on the

negative real axis. This case can also be thought of as two independent first-order systems
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The second-order system is parameterized by the two parameters zeta & and o,,, Different choices for zeta and

o, lead to different pole locations and to different behavior of the (modes of) the system

e Locations of these roots of characteristic equation i.e. closed loop poles of second order system can be

shown in s-plane as shown in the Fig. Th ts of th
[ € roots o e

Effect of £ on locations of closed loop poles . characteristic equation
on the complex plane.

g =0 = 51’2 = ijﬁ)n
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Step input response :

Complex conjugate More oscillatory
roots : Slower decay Increasing
Oscillatory response frequency

Less oscillatory
: Faster decay
Roots on real axis :
Exponential

nonoscillatory
response Re

>

P 0
F Nondecaying
Fastest oscillations

nonoscillatory
Slow, response
nonoscillatory

response
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Transfer function stability is solely determined by its denominator.
The roots of a denominator are called poles.

Poles located in the left half-plane are stable while poles located in the right half-plane are not stable.

The reasoning is very simple: the Laplace operator "'s"*, which is location in the Laplace domain,

A(jo) axis
. . £=0
can be also written s =0 +jw
S=-0 + jod
Left half-plane has negative sigma c=1 PN
4 y® -
o (o) real axis
The plane below shows the damping frequency and SR S
damping coefficient "zeta" graphically.

AN

Department of EEE
Emitting Elite Energy
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figure shows the time-domain response based on pole location in the Laplace domain.

imaginary part of s (jm)

Complex conjugate pair of roots

Megative real part =» decaying oscillations 5|UW response I'E'EIDI"IP i | X
DsImIve real roots
‘)/ Increasing without boundary
-~
| -
o X
c
3
2 P
= P4
= Complex conjugate pair of roots
-g Positive real part = growing oscillations
7
Megative real roots
Exponential decay
i - - - F
stable left side of S-plane | unstable right side of S-plane
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Response of 2" Order System
to Step Inputs

Overdamped Sluggish, no oscillations

Crtically damped Faster than overdamped. no
oscillation

Underdamped Fast, oscillations occur

Ways to describe underdamped responses:
* Rise time * Time to first peak
* Settling time  * Overshoot
* Decay ratio » Period of oscillation

Speed of response is the speed at which the
response takes the final value and this is
determined by damping factor which reduces
the oscillations and peak overshoot, as the
peak is less then the speed of response will

be more.
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14 -
0.4
1.2 —
0.6
1.0
. 08
il 0.8+ —
0.6 |- —
04 as C J« tdandosT A
0.2 -
0 i | I { L | L ! i ||
0 4 B 12 16 20

Flgure 5.8. Step response of underdamped second-order processes,

0<¢<1

uuuuu n h A

Department of EEE
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1.2 T I T I T I T | !
1.0 =
=10
oBe— 1.5 -
0
X
e G-E - —
KM 10
04 = u
0.2 .
0 1 L 1 i 1 ] ] ] ]
0 4 B 12 & 20

Figure 5.9. Step response of critically-damped and overdamped second-order processes.

£ >1

Note that £ < 0 gives an unstable solution
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Effect of pole location on Stability: : &5

The stability of a feedback system is directly related to the location of the roots of the characteristic equation

of the system transfer function. A 3(s)

For BIBO (Bounded input bounded

output) Stability the integral of impulse

response should be finite, which implies

that the impulse response should be

finite as time ‘t’ tends to infinity

“A linear system will be stable if and only

if all the poles of the transfer function are ¢ stable region unstable region >
located on the left half of the S’ plane”.

Pole locations on the pole-zero plot
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Damped oscillatory response of a second order system for unit step input
c(Da

c(t,)

Allowable error
2% or 5%

Maximum overshoot, rise time and

0.5k delay time are the major factor of the

transient behaviour of the system and

: determines the transient characteristics

== -
=%
~t
’aH_- -
“-H.

0

Damping factor is minimum hence the system will have the maximum overshoot
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Transient Response Speci™ - - P~ -

A
Peak overshoot I‘-IIp
Tolerance band + 2 %
R SUNR A T Y A * In steady state, output
100 gﬁg - ; mp—— remains within + 2 % error
L] ' H
90 % : Zi_-} band
Iy T—
10 % |-
—t -1
i
o i
TE
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Transient Response Specifications of Second Order System

v o Delay Time (Td): It is the time required for the
e e . response to reach 50% of the final value in the first
100 % —F=====f-%- ___M _____ f ll:steady'sttﬁte. thﬂeut attempt 1 + ﬂ ? ,t
[V — ml'l.
e / Rise Time (Tr): It is the time required for the
' —t response to rise from 10% to 90% of the final value
To il for over damped systems and 0 to 90% of the final
- : value for under damped systems.
| -
T, T = - sec where 8 must be in radians.
d

8 = tan™! “l;';!

radians
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3. Peak Time (Tp): Itis the time required for the response to reach its peak value

T
T = =

mn

P w,

D OF 4 2\
% \
4 faf AJA

Peak overshoot Mp

J In steady siale, outpul

sec (o
o, |1 - & B i i o o
50%
10%
Ta
T,
T,

4, Peak Overshoot (Mp): The amount by which output overshoots its

steady state value during the first overshoot.

__ &=

%Mp, =e VI 100

SO 9001:2018%

Department FEEE
Err\

reference
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5. Settling Tine (Ts): It i1s the time required for the response to
decrease and stay within specified percentage of its final value.

'ts —_— e for a tolerance band of + 2% of steady state
Lo,
cft)
Peak overshoot M,
KD{ Tolemrmbimdiz%

O SO B W L i
gg? ----- T;____X:/____M T pom within + 2%
50%

10% /
i 1
T
Tr
To
T!
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Translant response spaclficatlions

e t
o) = 1- gin{my +8)
;h— £2 a
for underdamped system, unit step input

@, 1-82

where 0y

and a =

I
g
.L
I
T
£
2

For a step of A units,

o = Al1- T2 gin (gt 0)
t) - - sin (ugt+
J1-82
1+ 0.7 E n w—0
= se = seq, = sec
A T
% M, = le‘“ *-‘i‘ﬁz]xmn
T, = 3 sec , for £ 2 % tolerance band.

€ @y

Department of EEE
Emitting Elite Energy
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5
S(S+1)
and unity feedback system H(s) = 1, Find the rise time, peak time, settling time and peak overshoot for
unit step input.

Consider an example for the second order system with an open loop transfer function as G(S) =

The closed loop transfer function is determined by using the equation

_Cls) GG

TE= R(s) 1+ G(s)H(s)
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The closed loop transfer function is determined by using the equation

Cs) _ G(s)

TE= R(s) 1+ G(s)H(s)

C(s) _ 5
R(s)  s2+S+5

By substituting the values of G(s) and H(s) in above equation we get, TF =

Standard form of transfer function of a second order system is
C(s) _ W}
R(s) s2?+ 28wys + w2

Comparing Equations, we get w,, = 2.236 and £= 0.224. Since & < 1, the given system is under damped



Solved Example

1. A unity feedback system has an open loop transfer function G(s) = s(s—il) Find the rise

time, peak time, settling time and peak overshoot for unit step input.

5

? 3 s FE N .
Clsy  Gls)  s(s+l) 5 @; =@, \1-&" =2236y1-0223" =2.124 rad/s
R(s) 1+G(s) 5 24545 ;

[ S 1(' 1-0.223
s(s+1) = tan~" = 1.346 rad/s
'lZI 223
C(s) w; - 5
R(s) s™+2l@,5+@ s +5+5
B : i i - 3.141-1.346
Rise time 1, = lf?= =0.845s

r

w, =5 @, 2.124

W, = J5 =2.236 rad/s

28w, = 1 Peak time ,

e A 1
&= =

2w, 2x2236

[}
o
]
13
%!




Solved Example

% Mp = e ™V1-§* %100 =47.8%
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2. A unity feedback system has an Closed loop transfer function is ©(8) _ 5
R(s) %+ 65+ 25

Find the damping ratio, the rise time, peak time, settling time and peak overshoot for unit step
input and expression of output response

Standard form of transfer function of a second order system is
C(s) _ wp
R(s) s? + 28wys + w2

we = 25 and 28wm, = 6
Wy = 5 §= 0.6

Comparing Equations, we get w,, =5 and = 0.6, Since & < 1, the given system is under damped
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f _r2
tan 1 % = 0.9272 radians

/1 — £2 = 5,1 - (0.6)* = 4 rad/sec.

n—0  m—0.92/2

= (.5535 sec.
[.l}d 4
T T 0.785 sec.
[Ud 4

T, = L 1.33 sec.
0y
0 = 1- S0 Gin (g £+ 6)
ct) = 1- sin (wg t+
J1-¢€
e—3t

= 1-—

—— v sin(4t + 0.9272)
\1-(0.6

ot) = 1-1.5625¢e 3 sin (4t + 0.9272)
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3. For the system Shown, find the closed loop transfer function, damping ratio, the rise time, peak

time, settling time and peak overshoot for unit step input, and expression of output response.

Cs) 20 R(s)
5+1)(s+4) { =

The closed loop transfer function is determined by using the equation

Cis) _  G(s)

IF= R(s) 1+ G(s)H(s)
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Standard form of transfer function of a second order system is
C(s) w2
R(s) s2?+ 28w,s + w2

20
Cis)  (s+D(s+4) 20 o, o |
R(s) 1+ 20 2 + Bs 1 04 Comparing, s* + 5s + 24 with s + 2 w, s+ 2

(s+1)(s+ 4)

('1%1 = 24 . o, = 4.8989 rad/sec. 28, =5 . £ = 051031

g = 0, x.l—ﬁz = 4.2129 rad/sec. 0 = tan} Vll_‘é radians
—Emp t N

ct) = 1—% sin (wy t+ 0) = 1.03 radians

V1-¢
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2 r r
4. A system is given by differential equations dy + 4 dy +8y=8x y=oulput and x = input.
dt? dt
Find the damping ratio, the rise time, peak time, settling time and peak overshoot for unit step
input and expression of output response
d? vy dv i
dTﬁ +4-g + 8y =8 Take Laplace Transform of both side
s% Y(s) + 4s Y(s) + 8 Y(s) = 8 X(s)
ie.  Y(s) [52 +4s + 8] = 8 X(s)

Y(s) 8

T.F. e ——
X(s) s2+ 45+ 8
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Standard form of transfer function of a second order system is
C(s) w2
R(s) s2?+ 28w,s + w2

Y(s) 8 T, = Time for peak overshoot
T.F. = P mme for peak overshoo
X(s 2
v TR = _ T = 1.57 sec
o = 8 ie w, =283 rad/sec ©d 2.002
|4 |I _ 2
28w, = 4 . E=0.7067 % M, = e E1-8 100
— _ -1 %0706/ {1-(0.706)2 x100 _ o
g = g y1-8 e \ 4.33 %
. . 4
= 2.83 /1 -(0.7067)% = 2.002 rad/sec T, = Settling time = ;-
In
= 4 = 2 sec

0.7067 x 2.83
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—&up t 1 -¢2
oft) = 1—%5&- (g t+0) where® = tan~! Tﬁ =45°=%1‘ﬂd
1-¢

a 0.7067 « 2.87 t m
ct) = 1- ain(2t+ 1]
J1 - (07067)2

—1- 141 e 2 5i11(2t+ g)
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4. For the system Shown, find the closed loop transfer function, damping ratio, the rise time, peak

time, settling time and peak overshoot for unit step input

e
Z K x(t) X(s)
2 IR i) Transfer function ) and 1i) £, w,, % M , T, and T
g Mo fpe TakeK=33Nim, B=15N - S, M=3 ks
7—0
A B LX) | L dx()
f(t) = 02 +B qt + K x(t) Take Laplace Transform of both side

F(s) = Ms?X(s)+ Bs X(s) + K X(s)

F(S) R Ms2 +Bs+ K

s° +

X(s) 1 _ 1M
2, B
M

+
Z| =
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For K=33, B=15 M=3

}1§((S)) - ) L 09
; M3 _ =
Ms“+Bs+K 2 + NSt M E(s) s2+5s+11 s%+5s+11

Comparing denominator with s+ 2Em,s + 01,21,
w2 = 11 hence ®, = 3.3166 rad/sec
2w, = 5  hence & = 0.7537

% M, = e-ﬂé/v’l-iz %100

[1_g2
% Mp = e‘“é/”'-' 1-8% %100 = 2.7234 %
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Wy = 0,1-E&2 = 21797 rad/sec

T~ 1.4412 sec
P %]
T, = i = 1.6 sec

oy,
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TYPE NUMBER OF CONTROL SYSTEMS

The Type number is specified for open loop transfer function G(S)*H(s). The number of poles of the

open loop transfer function lying at the origin decides the type number of the system

if N is the number of poles at the origin then the type number is N.
Type Number is increased, accuracy is improved, however it aggravates the stability problem of the system

The Open loop transfer function can be expressed as a ratio of two polynomials in s.

P{s} (s+ z)) (+2,) (8+23) --veceves
Q) S (5+py) (5+D7) (5+Pa) o

Z1,Z2, Z3 are the Zeros of the system
P1, P2, P3 are Poles of the system
K = System Gain

G(s) H(s) =K —

If N =0, then the system is type — 0 system
If N = 1, then the system is type — 1 system

If N = 2, then the system is type — 2 system .
N = Number of poles at the origin
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STEADY STATE ERROR

The steady state error is the difference between the actual output and the desired output

The steady state error is the value of error signal e(t), when t tends to infinity.

The steady state error is a measure of system accuracy. c(t)
y y y ! W Ct(t) —"i"-_CSS(t} -
- - Ste n . i +
These errors arise from the nature of inputs, type of system and P \J V ;r
. e
from non linearity of system components s
. 0 T
The steady state performance of a stable control system is generally - — - fime
ransient

judged by its steady state error to step, ramp and parabolic inputs time
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i Consider a closed loop system shown in fig
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R(s) E(s) Cis)
- 1 G(s)
where E(s) = Lrror signal, and
B(s) = Feedback signal 8(s)
Now, Es) = R(s) - B(s) 5
But B(s) = C(s)H(s)
E(s) = error signal in Laplace domain
E(s) = R(s) — C(s)H(s)
and C(s) = E(s)G(s) Let e(t) = error signal in time domain
E(s) = R(s) - E(s) G(s)H(s) - R
~e(t)= CYE®)} = f'{ ©) }
- B(s) + B(s)G(s)H(s) = R(s) 1+G(s) H(s)
I
R :
E(s) = H{ZE—;}H@ for nonunity feedback Let, ess = steady state error..
B = ; fg}{g} for unity feedback The steady state error is defined as the value of e(t)
when t tends to infinity
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Steady state error, e, = b e e(t) « Now we can relate this in Laplace domain by using
final value theorem which states that,

Lim (b = Lim (s
t oo ()_S—}Ub{b)
where F(s) = L{ F(t) }
- Lim 0 = Lim B
Ess_tﬁ_wei)_s_}us{s)
Therefore,
where E(s) is L{ e(t) }.

Steady state error depends on
» Substituting E(s) from the expression derived, we can

1.Input, its type and magnitude

write

2.G(S)H(S) Open loop Transfer function (Type of the system) Lim <R(s)
% T 550 T+ GEHE)

3. Dominant Nonlinearity present if any
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Static Error Constants

When a control system is excited with standard input signal, the steady state error may be zero,

constant or infinity

The value of steady state error depends on the type number and the input signal

Type-0 system will have a constant steady state error when the input is step signal.

Type-1 system will have a constant steady state error when the input is ramp signal or velocity signal.

Type-2 system will have a constant steady state error when the input is parabolic signal or acceleration
signal.
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For the three cases mentioned, the steady state error is associated with one of the constants defined as

follows,

Positional error constant K. = Lim G(s)H(s
P_ 5_}0 (E‘} (b)

un .
s G(s)H(s)

\elocity error constant K, = .0
ﬁ.

Lim 2
5= G(s)H(s)

i K, = g
Acceleration error constant K s—0

Kp, Kv, Ka are in general called static error constant
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Positional Error coefficient

c(t) A
] /‘\ ss - 1+ K A
AN " o S T '
A Lim
N/ 3
\V/ T ) 1+ GOHE)
Actual DEtSil“?ﬂ .
oulput o e For a system selected, =0 G(s)H(s) is constant and
5
0 Time called positional error coefficient of the system
Fig. 7.6.1 dgnnted as KP
A Lim
R(s) = — _
(s) S Kp < 50 G(s)H(s)
_ Lim s R(s)
s T 5 50 T+ GEHE) = Positional error coefficient
_ Lim s-Afs Lim A » And corresponding error is,

s—01+G(s)H(S) s—01+ G(s)H(s)

A e A

_ s~ 1+ K,

1 I‘jm{; H KP
+s—.b{1 {S} (s)

Czg
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Desired
clt) output
I
Actual
output
_ A
g5 = |.<_~|r
0 = Time
Fig. 7.6.2
Lim sR(s)
Cox

" 501+ Gs)H()

Lim s-A / s2

s — 0 1+ G(s)H(s)
Lim A

s —0 s[1+ G(s)H(s)]

Lim A
s —0 s+sG(s)H(s)

Steady State Error When The Input Is Ramp Signal

2D OF 4

5’ Cp

4 o

7 A ‘

§y

e = R .
% € M

B A

4 -
X O %
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Velocity Error coefficient

A
5= Lim
s G(s)H(s)
s =0

Lim
» For a selected system <50 sG(s)H(s) is constant and

called velocity error coefficient as K.

- Lim (e
Ky = (8 GEHb)

= Velocity error coefficient

o And corresponding error is,

A
Css K,




E AT M E Steady State Error When The Input Is Parabolic

g C!lcge of Engincering Acceleration Error coefficient 155 so0n tats Drpvmenac
Desired N Lim A
tput =
. p“\ Actual 50 s [1+ G(s) H(s)]
Cfllﬂ output
e = RA; _ Lim A
s =0 5?4 s? G(s)H(s)
Lim A
e = ———
#0550 s G(s)H(s)
£ = Time Lim
¢ So for a selected system 50 s? G(s)H(s) is constant
Fig. 7.6.3 and called acceleration error coefficient as K.
) Lim 5
_ Lo sRG) K= 8 GOHE)

s T g 50 T+GEH(s)

= Acceleration error coefficient

Lim  s:Afs?
s—0 1+ G(s)H(s) * And corresponding error is,
Lim A e o
s =0 s? [1+ G(s) H(s)] S
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Static Error Constants for various Type Steady State Error for various Type of Inputs
number of system
Error Type number of system il“:;p:;l Tj:)pe nm;lber u; systen;
|Constant 0 1 2 3 g 7 -

K constant o0 @ o Unit St 0 0 0

i HESEP | 1+K,
1
K, 0 constant @ o Unit Ramp o . o | o
0 constant | o 1
R, 0 : Unit Parabolic|] o o0 X 0
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TABLE 7.2 Relationships between input, system type, static error constants, and steady-state errors

Type 0 Type 1 Type 2
Steady-state Static Static Static
Input error formula error constant Error error constant Error error constant Error
Step, u(r) I K, = Constant | K, = oc 0 K, = oo 0
. 1+ K, i | +K, P F
Ramp, tu(r) hi K.=0 00 K, = Constant KL K, = oo 0
Parabola, %r:u[r) KL K,=0 00 K,=0 X K, = Constant L
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Analysis of Static Error Constants and its Steady State Error for various input for different Type
number of system

1€

On to the leas

when The Input Is Step Signal » And corresponding error is,

Lim
Kp = <50 G(s)H(s)

. - A
E\-‘S T F
= Positional error coefficient b+ KP
Type-0 system
FRNY

K,= Lt G(s) H) = Lt KT 72) (%) p 202325 o1ty

50 =0 (s+p,) (5+p2) (8+D3)eenene Pi-P2:D3eseees .

A A
s T 1+K, ~ 1+K

1 Hence in type-0 systems when the input is unit step there will be a constant

o8 = constant

=7 K, steady state error.
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t
cit] Gij
{ A 1
8 A T~
= e = —A
1+K = 1+K
(finite) (finite)
- 0 iy
Time fime
(a)
(b)
Response for 15t Order System for step Input Response for 2" Order System (Under

Damped Case) for step Input

Finite error can be reduced by change in ‘A" or 'K' or both as per requirement
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+ + +
Type-1 system K, = Lt  G(s) H(s) = Lt K (+2) 5+2) 5+2)we _
520 s(sTpy) (+Ppy) (S+P3)eee.
Li i i i
K, = lmﬂ G(s)H(s) = = In system with type number 1, for unit step input the value the Value of Kp
5 Is infinite and so steady state error is zero
A A 1 1
Ces = =—=0 B = = =0
1+ K, e *T1+K, 1+

Mathematically answer for error is zero, practically small error will be present but it will be negligibly small.

Such type of responses may take one of the forms shown in the Fig

c(t)
i

A * A_

e(t)

Cgz—e= ess_...,[}
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o And corresponding error is,

Lim _
s o ° CEHE) A

when The Input Is Ramp Signal

Velocity error coefficient

Type-0 system

K, = Lt sGOHE = Lt K (5+2) (872) (5+2))...
=0 (s+p) (s+p2) (8+Ps)enen.

Lim .
Ky = s G(s)H(s) =

s —0

A A

eFiS = K_V = F = o9
In system with type number 0, for unit ramp input the value the Value of Kv is zero and so steady state

error is infinite

e, =1/K,=1/0=c
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TYPE 0 systems will not follow ramp input of any magnitude and will give large error in the output
which may damage the parameters of system or may cause the saturation in parameters. Hence ramp
input should not be applied to TYPE 0 systems. The output may take the form as shown in the Fig

c(t) c(t)
‘. A

» eSS_-' [=2al

'ESS_-....G:::

(a) Time (b) Time
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_|_ .
Type-1system K, = LtﬂsG(s) H(s)= Lt sK (+2) (5*+2) S+ Z)e _ e e ~ = constant
3

s=»0  s{(s+p)(s+p;) (5+p3)ee Pi-P3-P3eeeeee

Lim
K, = s G(s)H(s) = K

s — 0
A A L
€ = K, = K finite
In system with type number-1, for unit ramp input the value of Kv is Constant and so steady state error is
constant(finite) o c(t)
cC

5~ K =

(finite)

A
K

=|x=

€3z
(finite

e

Time Time
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Type 2system K, = Lt sG(s) H(s) = Lt sK (5 2) 572) 5+ 25)oe_
=0 5* (s+p;) (s+py) (5+P3)
Lim
K, = S0 s G(s)H(s) = oo
A A
Cos = K, =% =0

VN

Department of EEE
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In system with type number-2, for unit ramp input the value of Kv is Infinite and so steady state error is

Zero
e =1/K,=1/0=0 )

Time

c(t)

i

L

ess—.‘- D

Time
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ic Si Lim e And corresponding error is,
when The Input Is Parabolic Signal K, - $2 G(s)H(s) P g
s—0 A
E = _—
=3 ]{‘El

= Acceleration error coefficient

Type-0 system

K, = Lt slG{s) H(s)= Lt s’K (s72) (5+2)) (423
=0 (s+py) (8+py) 5+ p3)es
Lim
Ka = o 8 GOHE) =0 system with type number-0, for unit parabolic input the
value of Ka is Zero and so steady state error is Infinity
A A
s TK,C0 T Type-1 system
{1 K, = LtaG(s}H(s) Lt s’K (st2) (5+2) (s+2)..... -
R Ee——m———n 50 5{5+P1)(5+p3}(5+p3) ......
T K, 0 . A_ A _
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c(t)
A

egg-ﬁ-

Time

......
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c(t)

Time
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Type-2 system

+
K, = Lt EEG[S) H(s) = Lt SEK (s72) (5+2) (s+2y)... s e B L constant
0 s'(s+p,) (s+p,) (s+p3) ...... - P1-D2-P3eeee
. Lim ’ _
K, = <50 s G(s) H(s) = K
A A ()
e e t 1
€ag = K_a = K finite Ci{h] R
A 5= K
s~ K o
(finite) (finite)
Trr_ﬂe Trrrne

(a)
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Static Error Constants for various Type number of system

Error Type number of system
|Constant 0 1 2 3
KP constant a0 0 o0
K 0 constant @ o0 :
Y Steady State Error for various Type
K, 0 0 constant | co of Inputs
Input Type number of system
Signal o] 1 2 3
. 1
Unit St 0 0 0
MR ] 1+K,p
1
Unit Ramp 0 _K: 0 0
1
Unit Parabolic! Q0 a0 - | 0
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1. A unity feedback system is characterised by the open loop transfer Ggs)= 10 .
(s+1)(s+2)

function. Determine the steady state errors for unit step

For unity feedback system H(s) =1

» And corresponding error is, Steady state errors for unit step input

111
Ko= 0 GEHE)
i
Ces T T el =
= Positional error coefficient R 1+ K,
10
KL= Lt Gis)=
P s-3{) ( )= 5—}[] (s+1) {5"‘2}
1 B 1 3 1

8. = = = —
= 14K, 1+5 6
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A unity feedback system is characterised by the open loop transfer function. G¢s) = 25(s+4)
s(s+0.5) (s +2)

ATME

alme College of Engineering

Determine the steady state errors for unit ramp input

For unity feedback system H(s) =1

e And corresponding error is, Steady state errors for unit Ramp input

o = A
55 K’{F Ess l{

(o Limo
Ky = % CEHG)

Velocity error coefficient

 25(s+4) 25x 4
Ky = Lt sG(s)= Lt . 100
SaL) s[s(s+ﬂ.5} (5+2}j| 052

s5—0 5—=0

o1 g0

€
¥ K, 100
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20 (s+3)
s(s+0.1) (s +3)

A unity feedback system is characterised by the open loop transfer function. G(s) =
Determine the steady state errors for unit acceleration input

For unity feedback system H(s) =1

Lim Steady state errors for unit acceleration input €5 =——
K= % GOHE) Ka
= Acceleration error coefficient K, = Lt 52|: i 20 (s +5) :|_= 20x5 _ 100 - 33333
* And corresponding error is, =0 s°(s+0.1) (s+3)] 0.1x3 03
w= % 1 1
Ka B = = =0.003

K, 33333
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A unity feedback system is characterised by the open loop transfer function. G(s)H(s) =

20(1+s)

s2(2+ s)(d+ s)

Determine the Static error coefficient and steady state errors for applied input #(f) = 40+ 2t + 5t2.

GoH(E - 200+ 20 (1+5) Kp = Lim G(s)H(s)
s2(2+s)(d+s) 2 214 5 |xaf 128 25(1+s)
n ("+§)X ( +‘_1J T P as059 105
¥ .‘:: 5 b
2.5(1+ s)
G(s)H(s) = K, = Lim sG(s)H(s)

s2(1+ 0.5s)(1+0.255)

g—0
- Lim - sx25(1+s) .
s—0 s°(1+0.5s)(1+0.255)

Type-2 system
K, = Lim s>G(s)H(s)

5E—

— Lim s2%x25(1+s)
s—0 s2(1+0.5s) (1+0.255s)

= 2.5
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Name of the signal

Time domain equation
of signal, r(t)

Laplace transform of
the signal, R(s)

A
Step A 5
) 1
Unit step 1 <
A
Ramp At 2
. L
Unit ramp t 2
A
: At £
Parabolic N s
2 I
Unit parabolic Py 3
Impulse 3(t) 1
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r(t) = 40+ 2t+ 5t% = 40+ 2t+% t2

= A+ A2t+% t? Hence A = 40 step, A, = 2 ramp, A3 = 10 parabolic

et e tom = A As
85 55l 852 853 1+KP Ku Ka

40 2 10
Total steady state errors €gz = Tt e +—+ 55

=0+0+4=4
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S (b + 1'}

. : - . 2 1
Determine the Static error coefficient and steady state errors for applied input R(s) = S +—+ 33
s

Type-2 system S

A unity feedback system is characterised by the open loop transfer function. ;5 -

Lim Lim 10(s+2) _3 E_;L - _ 1.0
KP _ G(s)H(s) = . R(s) +52 23 ie. r(t) 3+2t+6t
s—0 s >0 g?(s+1)
r(t) = A1+A2t+A23 t?
.
K, - im SG(s)H(s) = sx210{5+2}=m 1
s—0 s—=0 s%*s+1) WhereA1=3,A2=2,A3=§
B Lim Lim s% x10(s+2)
2
Ka s—0 s"GEH(E) s—=0 s%(s+1) (1]
Ay A, A 3
] 2+ 3 0+0+ 2 = 0.01667

Css = 1+1<p K, = 30



College of Engineering Concept of stabil Ity

The term stability refers to the stable working condition of a control system. Every working
system is designed to be stable. In a stable system, the response or output is predictable, finite and stable

for a given input (or for any changes in input or for any changes in system parameters).
The different definitions of the stability are the following
1. A system is stable, if its output is bounded (finite) for any bounded (finite) input.
2. A system is asymptotically stable, if in the absence of the input, the output tends towards zero (or

to the equilibrium state) irrespective of initial conditions

3. A system is stable if for a bounded disturbing input signal , the output vanishes ultimately as t

approaches infinity
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4. A system is unstable if for a bounded disturbing input signal, the output is of infinite amplitude
or oscillatory.

5. For a bounded input signal, if the output has constant amplitude oscillations and constant

frequency of oscillations Such a system is called Marginally stable system/Limited stable

6. If a system output is stable for all variations of its parameters, then the system is called
absolutely stable system.

7.1f a system output is stable for a limited range of variations of its system parameters, then the
system is called conditionally stable system.
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In summary, the following three points may be stated regarding the stability of the system depending on

the location of roots of characteristic equation

(i) If all the roots of characteristic equation has negative real parts, then the system is stable

(i1) If any root of the characteristic equation has a positive real part or if there is a repeated root on
the imaginary axis then the system is unstable

(iii) If the condition (i) is satisfied except for the presence of one or more non repeated roots on the

imaginary axis, then the system is limitedly or marginally stable.
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Consider the characteristic equation of the order ‘n’ is

ags™ 4+ a18™ ' + ass" 2 +...+a, 18' +a,s° =0

The necessary condition is that the coefficients of the characteristic polynomial should be positive.

This implies that all the roots of the characteristic equation should have negative real parts

If any coefficient is zero/Negative, the system is unstable
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Effect of pole location on Stability:

The °S” plane™ is divided into 3 distinct zone from  The stability of a feedback system is directly related to
stability point of view.

i Axis the location of the roots of the characteristic equation of

\&\ A the system transfer function.

~ Left half of Right half of <
locations of system

- S-plane N s-plane
poless=o £jm X
N
~ ~  ~ ) Real Real axis ()

Imaginary axis (jw)
A

SN |

““\ STABLE / STABLE <—= | ==—=> UNSTABLE
{ Repeated } s-plane “A linear system will be stable if and only if all the poles
Unstable \4 Y Y P
{ Non-repeated of the transfer function are located on the left half of the
roots }

Marginally stable ‘S’ plane”.
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Transfer function stability is solely determined by its denominator.
The roots of a denominator are called poles.

Poles located in the left half-plane are stable while poles located in the right half-plane are not stable.

The reasoning is very simple: the Laplace operator 's"*, which is location in the Laplace domain,

can be also written s =0 +jw

Left half-plane has negative sigma

(o) real axis

The plane shows the damping frequency and damping coefficient

"zeta" graphically.

S = -0 - jd R
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Sr.
No.

Nature of closed loop

poles

Locations of closed
loop poles in s-plane

Step response

Stability
condition

1.

Real, negative i.e. in
L.H.S. of s-plane

Complex conjugate with

negative real part i.e. in
L.H.S. of s-plane

Real, positive ie. in
R.H.S. of s-plane (Any
one closed loop pole in
right half irrespective of
number of poles in left
half of s-plane)

+a1

c(t)

c(t) L.

- - .I:
Damped oscillations

c(t)

Exponental bt ¢

increasing towards

Absolutely stable

Absolutely stable

Unstable
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4. Complex conjugate with
positive real part i.e. in
R.H.S. of s-plane

5. Non repeated pair on
imaginary axis without
any pole in RH.S. of
s-plane

—] 2 ==X ~ Oscillations with
increasing amplitude

Y

or

Sustained oscillations

two non repeated pa_i_re.

: . . with two frequency
on imaginary axis, -

components w; and w,

2 I A

..... WALA
""" Department of EEE
IS0 9001:2013 ¢ fing Fiite Energy

Unstable

Marginally or
critically stable

Marginally or
critically stable.
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6. Repeated pair on j
imaginary axis without -
any pole in R.H.S. of )T( I - WA
s-plane - e
’+‘ = 4 ~ Oscillations of t Unstable
increasing amplitude
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For BIBO (Bounded input bounded output) Stability the integral of impulse response should be finite, which implies

that the impulse response should be finite as time ‘t’ tends to infinity

“A linear system will be stable if and only
if all the poles of the transfer function are

located on the left half of the S’ plane”.

<—— stable region

unstable region ——>»

Pole locations on the pole-zero plot
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The Rouths Stability Criterion is a quick and easy method of establishing system stability. The stability of
system can be ascertained without actually having to determine its roots

The Routh-Hurwitz stability criterion is an analytical procedure for determining whether all the roots

of a polynomial characteristic Equation have negative real part or not.

Necessary Condition for Routh-Hurwitz Stability

Consider the Linear time invariant system characteristic equation of the order ‘n’ is -
ags™ 4+ a18™ ! +ags" 2 +.. . ta, 18" +a,s° =0

The first step in analysing the stability of a system is to examine its characteristic equation. The necessary
condition for stability is that all the coefficients of the polynomial characteristic be real and have same sign.
There should be no missing term, If some of the coefficients missing (are zero) or are negative, it can be

concluded that the system is not stable



ATM E

iLe ) College of Engineering

- Department of EEE
Emitting Elite Enert

ags™ 4+ a18™ 1 + ass™ 2 +... +a, 18" +a,s° =0

Note that, there should not be any term missing in the nt" order characteristic equation. This means that

the nt order characteristic equation should not have any coefficient that is of zero value.

When all the coefficients (a0, al, a2...an) are Real & have same sign and there are no missing terms
(none is zero), No guarantee that the system will be stable. For this, we use Routh Hurwitz Criterion to

check the stability of the system. Even though the coefficient are same sign, some of the roots may lie on

the right half of s-plane or on the imaginary axis
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ags"™ + a8 L +ass" 2+, .. +a, 18" +a,s" =0

One should proceed further to examine the sufficient conditions of stability by use of Routh Hurwitz

Criterion to check the stability of the system..

R-H Criteria is based on ordering the coefficients of characteristic Polynomial in the form of array

called the Routh’s array

"The necessary and sufficient condition for stability that all of the elements in the first column of the Routh’s
array Table must be positive. If this condition is not met, the system is unstable and the number of sign
changes in the elements of the first column of the Routh array corresponds to the number of roots of the
characteristic equation in the right half of the s-plane". i.e. equals to the number of roots with positive real

parts.
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Advantages of Routh- Hurwitz Criterion
We can find the stability of the system without solving the equation.

We can easily determine the relative stability of the system.

By this method, we can determine the range of K(Gain) for stability

By this method, we can also determine the point of intersection for root locus with an imaginary

axis
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Limitations of Routh- Hurwitz Criterion

This criterion is applicable only for a linear system.
It does not provide the exact location of poles on the right and left half of the S plane.

In case of the characteristic equation, it is valid only for real coefficients.



©] A

----- Department of EEE
IS0 8001:2015 b Fite Energy

iLe ) College of Engineering

The Routh stability criterion is based on ordering the coefficients of the characteristic equation, into a

schedule, called the Routh array.

C(s) by s™ + by s™ 1+ ..+by,

The T.F of Linear time invariant system can be represented as RGS) 4 S ta sl tay

Consider the Linear time invariant system characteristic equation of the order ‘n’ is -

ags™ + a;8" ' +ass" 2 +. .. +a, 18" +a,8° =0
When the coefficients a0, al, ...................... an are all of the same sign, and none is zero.
Then the Routh's array is given by the coefficients of the polynomial which is arranged in rows and
column

Routh suggested a method of tabulating the coefficients of characteristic equation in a particular way.

Tabulation of coefficients gives an array called Routh's array Table
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aps™ 4+ a;8" ' + ass” 2 +...+a, 18" +a,s" =0

Step 1: Arrange all the coefficients of the above equation in two rows:

Row 1 an as aa
Row 2 ai as as

Step 2: From these two rows we will form the third row:

Row 1 an as aa
Row 2 ai asz as
Row 3 I:l1 bg b5 ...........
1 |Qp Qap Qoas— a0
a; 141 s aq
b, = _l |ﬂ":I a4| - Aplds— A1ag
3 a; 104 as - ay
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Step 3: Now, we shall form fourth row by using second and third row:

Row 1 ap ar aa
Row 2 ai as as
Row 3 |:l1 bg b5 ...........
Row 4 C1 Cs3 (o
Where,
F _l H-'l l‘:13| _ ﬂ1b3—b1ﬂ,3
1 by 1by by - by
1

CEZ —

a; 55| __ ajbg—byag
by -

bl bS by

Step 4: Continue this procedure of forming a new rows:
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ags" 4+ a;8" 1 + ass” 2 +...+a, 18' +a,s° =0

Method of forming an array :

ag a, a,

. %35
by b, by
¢y Cs Cg
an

"5 v y, / ¥ .
Y VAN
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When n is even, the s" row is formed by coefficients of even
order terms (i.e., coefficients of even powers of s) and s"!
row is formed by coefficients of odd order terms (i.e.,

coefficients of odd powers of s).

When n is odd, the s" row is formed by coefficients of odd
order terms (i.e., coefficients of odd powers of s) and s"* row
is formed by coefficients of even order terms (i.e.,

coefficients of even powers of s).

Other row of Routh array upto s° is constructed by using

the elements of previous two rows.
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Consider the Linear time invariant system characteristic equation of the order ‘n’ is -
n n—1 n—2 1 0 _
aps +ais + ass” “+...4+a, 18 +a,s =10

Coefficients for first two rows are written directly from characteristic equation.

Method of forming an array : From these two rows, next rows can be obtained as
" a a, ay ag follows.
gn-1 H:},_-‘Es-:'<:a,3 a, by = ajap—apas  by= aj]ag— apas !b3=a1 ag—apary
al aq aj
-2 b, b, b,
n-3 From 2°¢ and 3™ TOW, 4™ row can be obtained as
S ¢y Cz C3
C1=b133—ﬂlbz c2=b135—31b3
by ’ by
s0 a, ;

This process is to be continued till the coefficient for s
is obtained which will be a . From this array stability of
a system can be predicted.



RH Criterion: Array Formation

aps™ +a1s" L 4+ as" 2+ .. tap 15t +a,s’ =0

Sn a - a a aa |
0 2 > 4 6
o - P [ Y - Y N ——
S S a
gn-2 b, = a,a, _a}>‘ns/ b. = a,f;=a,a, b. = a,a,—a,a,
1 a, >2 a 3 a,
sn-3 C. = b,a,-a,b, C, = b,as —a,b,
1 b, 1 b,
S1
0
S a,
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Sn ag a, ay P
sn- a, as as a, |
Sn-2 b1 — alaza—aoa3 b2 — ala‘la—aoa5 b3 — alaﬁa—aoa7

1 1 1
Sn—3 C. = b,a, -ab, c = b,a;,—ab, -—
1 b1 2 b1
- dl _—
Sl
0
S a,

"The necessary and sufficient condition for stability that all of the elements in the first column of the Routh
array must have same Sign. If this condition is not met, the system is unstable and the number of sign
changes in the elements of the first column of the Routh array corresponds to the number of roots of the
characteristic equation in the right half of the s-plane"”. i.e. equals to the number of roots with positive real

parts.
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Note: If the order of sign change of first column element is +, +, -, + and +. Then + to - is considered as

one sign change and — to + as another sign change.

In the process of constructing Routh array the missing terms are considered as zeros. Also, all the

elements of any row can be multiplied or divided by a positive constant to simplify the computational

work
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Determine the stability of the system using RH criteria whose characteristic equation is
$3+652+11s+6=0

ags"™ + a8 L +ass" 2+, .. +a, 18" +a,s" =0

ap =1, 31=6, az=1], 513=6,n=3

S8 1 1

S2 6 6

Sl 611 —1+6 ~10 -
6

S0 6

There is no sign change in the first column hence the system is stable.
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Determine the stability of the system using RH criteria whose characteristic equation is

$3+4s2+s+16=0

ag=1 aj=4 a;=1, a3=16

S3 1 1

g2 4 16

gl 41-1-16 _ _ 4 0
4

SO 16

There is two sign change in the first column hence the system is unstable. Two roots are located in
the right half of the s-plane.
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Determine the stability of the system using RH criteria whose characteristic equation is

s4+2s3+4s2+65+8=0

S4 1
S3 2
S2 l +1
! |—10
S0 v +8

- Department of EEE
Emitting Elite Enert

There is two sign change in the first column hence the system is unstable. Two Poles are located in

the right half of the s-plane.
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Determine the stability of the system using RH criteria whose characteristic equation is
s*+2s3+10s°+85+3=0

S4 1 10 3
S3 2 8 -
2 210 —1+8 2x3 —1%0 _—
S T -6 =3
2 2
1 6%x8 —2x%3 6x0 —2x0 _—
S = =0
6 6
0 7%x3 —6+0 -
> —7 9
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In construction of Routh array one may come across the following three cases

Case-I : Normal Routh array (Non-zero elements in the first column of Routh array).

Special Cases.

Case-11 : A row of all zeros.

Case-l11: First element of a row is zero but some or other elements are not zero.
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Case-1 : Normal Routh array
In this case, there is no difficulty in forming Routh array. The Routh array can be constructed
explained above. The sign changes are noted to find the number of roots lying on the right half of S-

Plane and the stability of the system can be estimated

In this case,

1.1f there is no sign change in the first column of Routh array then all the roots are lying on left half of

s-plane and the system is stable.

2. If there is sign change in the first column of routh array, then the system is unstable and the
number of roots lying on the right half of s-plane is equal to number of sign changes. The remaining

roots are lying on the left half of s-plane.
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Case-ll : Arow of all zeros

An all zero row indicates the existence of an even polynomial as a factor of the given characteristic
equation. In an even polynomial the exponents of s are even integers or zero only. This even polynomial
factor is also called auxiliary polynomial. The coefficients of the auxiliary polynomial will always be

the elements of the row directly above the row of zeros in the array.

The roots of an auxiliary polynomial (Even polynomial) occur in pairs that are equal in magnitude and
opposite in sign. Hence, these roots can be purely imaginary, purely real or complex. The purely
imaginary and purely real roots occur in pairs. The complex roots occur in groups of four and the
complex roots have quadrantal symmetry, that is the roots are symmetrical with respect to both the real

and imaginary axes
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The roots of an auxiliary polynomial (Even polynomial) occur in pairs that are equal in magnitude

and opposite in sign

_j(.!.‘r.h _ j.j}.l jml

}{
X
X
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On to the lea

The case-Il polynomial can be analyzed by any one of the following two methods.
1. Determine the auxiliary polynomial, A(s)
2. Differentiate the auxiliary polynomial with respect to s, to get d A(s)/ds

3. The row of zeros is replaced with coefficients of dA(s)/ds

4. Continue the construction of the Routh array in the usual manner (as that of case-l1 ) and the

array is interpreted as follows.

A. If there are sign changes in the first column of routh array then the system is unstable. The number of
roots lying on right half of s-plane is equal to number of sign changes. The number of roots on imaginary

axis can be estimated from the roots of auxiliary polynomial. The remaining roots are lying on the left

half of s-plane.
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B. If there are no sign changes in the first column of routh array then the all zeros row indicate the
existence of purely imaginary roots and so the system is limitedly or marginally stable. The roots of

auxiliary equation lies on imaginary axis and the remaining roots lies on left half of s-plane.
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" Determine the stability of the system using RH criteria whose characteristic equation is

s6+ 255+ 8s4 + 1253+ 2052 + 16s+ 16 =0

atimel College of Engineering

ags™ + a18™ ! + ass" 4. . +ap, 18" +a,s" =0 =1,a,=2 a,=8,8;=12, a8, = 20, a5=16, a5 = 16
§]

s 1 8 20 16 > The 4% row ( S8) consists of zeros in all the
)

S 2 12 16 0 elements. An all zero row

st 2 12 16 0 Auxiliary equation: A(s) = 2s4 + 1252 + 16 = 0

S8 0 0 0 0

The coefficients of the auxiliary polynomial will
S3 always be the elements of the row directly above
the row of zeros in the array

SZ
st Differentiate Auxiliary equation w.r.t s
g0 dA(s)/ds =8s% +24s =0

The coefficients of dA(s)/ds are used to form S2 row
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Auxiliary equation: A(s) = 2s*+ 1252+ 16 =0 Differentiate w.r.t s = dA(s)/ds = 8s® + 24s =0

The coefficients of dA(s)/ds are used to form S3row, Complete the construction of array in the usual was
(as that of Case-1)

_ _ g 1 8 20 16
No sign change, hence the system is stable.
s° 2 12 16 0

25 +1252+16=0 o 5 s 16 0
st+6s2+8=0  Puts?=y s | @ 24 0 0
y*+6y+8=0 2| 6 | 16 0
y=-2&y=-4 =1 st | 267 | o0
2=-2&s?=-4 S=+jV2 & s=xj2 <0 16

On examining the elements of 1st column of routh array it is observed that there is no sign change. The row
with all zeros indicate the possibility of roots on imaginary axis. Auxiliary equation has Non-repeated
roots on imaginary axis. Hence the system is limitedly or marginally stable.
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Special Cases. Case-Il1: First element of a row is zero but some or other elements are not zero.

While constructing Routh array, if a zero is encountered as first element of a row then all the elements

of the next row will be infinite. To overcome this problem let 0—& and complete the construction of

array in the usual way (as that of case-I)

Finally let € — 0 and determine the values of the elements of the array which are functions of €. The

resultant array is interpreted as follows.

» Note: If all the elements of a row are zeros then the solution is attempted by considering the

polynomial as case-1l polynomial. Even if there is a single element zero on S! row, it is considered

as a row of all zeros
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A. If there is no sign change in first column of routh array and if there is no row with all zeros, then all

the roots are lying on left half of s-plane and the system is stable.

B. If there are sign changes in first column of routh array and there is no row with all zeros, then some
of the roots are lying on the right half of s-plane and the system is unstable. The number of roots lying
on the right half of s-plane is equal to number of sign changes and the remaining roots are lying on the

left half of s-plane.

C. If there is a row of all zeros after letting € —0, then there is a possibility of roots on imaginary axis.
Determine the auxiliary polynomial as explained in method of case-11, The coefficients of dA(s)/ds are

used to form row of all zeros, Complete the construction of array in the usual was (as that of Case-1)
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Determine the stability of the system using RH criteria whose characteristic equation is
$5+254 + 353+ 652 +25+1=0

Method 1: a,=1,a, =2, a, =3, a;=6,a, = 2, a;=1

)

S 1 3

sS4 2 6

SB 2+%3 —1x6 -0 2%2 —1x1 —15
2 2

S2

Sl

S0

S 1 3 2
S* 2 6 1
S8 € 1.5 0
SZ 6E -3 1 0

&
gl (6€ -3)15

e 0

t9

SO 1

» The 3" row consists of zero in the first element.

» Substitute a small positive number ‘¢

>in place of zero.
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o)
S ! 3 2 Letting € —0
S# 2 6 1 Sb 1 3 2
S3 € 1.5 0 g4 2 6 1
g2 6€ -3 1 0 g3 + ¢ 1.5 0
s - - -
Sl (6e 315 g 0 g2 | -infinity 1 0
of =3 st | +15 0
€
S0 1 30 1
Lim (6e-3 Lim 156e-3)-e>  Lim 9g-45-¢?
E—}U[ € ] =—c0 mgrusnegahve. e—0 6e—3 T £€50 6g-3
_ 0-45-0
T 0-3

= + 1.5 sign is positive.
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Alternative Method for Case-I11; s24+2s* + 353+ 652+ 2s+1 =0

SO 9001:2018%

» Replace S by (1/Z) in Char. Eg. and Transfer the Char Equation into Z plane and formulate the Routh

Array Table ) 7 3 6 2
+ + - =
- + >3 + 72 7 + 1 0

» Take LCM Rearrange the Char Equation Terms in descending powers of Z

o
Z 1 6 2
1+2z + 322+ 623+ 224+ z2°=0
Z4 2 3 1
254274 + 623+ 322+ 22 +1=0 Z° 2*62_1*3 =45 2*2;1*1 15 0
72 4.5%3 —1.5%2 1 0
Two sign changes, hence the system is 4.5 =233
unstable. Zl | 233+15-45+1 _ -0.429
2.33 0 0
Z0 1
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si+54+253+ 2524+ 35+5=()

s'+9s°+24s%+245%+245°+245°+235+15=0.
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Determine the range of K for stability of unity feedback  G(s) =

system whose open loop transfer function is s(s+1)(s+2)

K " L o

Cs) _ _G(s)  _.sls+1)(s+2) _ K Characteristic equation is B (S*1}sTar K0

R(s) 1+G(s) 4, K s(s+1)(s+2)+K - s5(s?+3s+2)+K=0 =  s%+3s2+25+K=0
s{s+1)(s+2)

The highest power of s in the characteristic polynomial is odd number. Hence form the first row using the

coefficients of odd powers of s and form the second row using the coefficients of even power s

|kt e e |

& b e ot 3x2-Kx1
s2 3 1 K o 3
: : © gE 8=k
: 16—K ' 3
5 S _
: 3 : 6 KxK—DxS
| | g9 - =
g0 rOK (6-K)/3
[ ‘ o ﬂ_
L Column-1 s :K
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For the system to be stable there should not be any sign change in the elements

of first column. Hence choose the value of K so that the first column elements

are positive.
From s' row, for the system to be stable, (6-K)/3 >0

From s° row, for the system to be stable, K >0

For (6-K)/3 > 0, the value of K should be less than 6.

.. The range of K for the system to be stable is0 <K < 6.
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For the unity feedback system, G(s) = S(170 43)1?”0 255 Find the range of values of Kfor stability of

unity feedback system, Marginal value of K which causes sustained oscillation in the closed loop

system and Corresponding frequency of sustained oscillation

Characteristic equation = 1+G(s)H(s) =0 and H(s) =1

From s1,
1s K o s? 0.1 1
s(1+ 04s) (1+0.25s) ~ 0.65 - 0.1K > 0
{ A } §2 0.65 K . 085> 0.1K
s[1+065 +01s2]+K = 0 gt | 065 *016; 0.1K 0 6.5 > K
3 2 - | .
0.1s° +0655“+s+ K =90 g0 K From s, K > 0
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3 . . .
S 0.1 1 The marginal value of K is value which makes any row other than
S2 0.65 K s0 as row of zeros.
gl 0.65+x1 —0.1K 0
K 065-01Kpa = 0
50 K

To find frequency, find out the auxiliary equation at K.,

A(s) = 065s2+K=0; s = ij[ﬂ

0.65s%2 + 65 = 0 " Kpar = 6.5
s? = =10

s = tj3.162

w = Frequency of oscillations

3.162 rad/sec.

|



ATM E

atmel College of Engineering

Department of EEE
IS0 8001:2015 ¢ fing eite Ener

K
(s+2) (s+4)(s®+6s+25)"

For the unity feedback system, G(s}=

Find the range of values of K for stability of unity feedback system, Marginal value of K which

causes sustained oscillation in the closed loop system and Corresponding frequency of sustained

oscillation
. K
Cls) _ Gls)  (s+2)(s+4) (s’ +6s+25) _ K
The closed loop T.F R(S) 12G(5) 1, K T (s+2) (s+4) (s? + 65+ 25)+K
(s+2) (s+4) (s® + 65 + 25)

Characteristic equation = 1+G(s)H(s) =0

~(s?+65+8)(s2+65+25)+K=0 =  s5°+125°+69s*+198s+200+K=0
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s*+125% +69s? +198s + 200+K=0

s 1 1 69  200+K.....Row-1 g2 1x69-16.5x1 1x(200+K)
s jE 198 on. ROW-2 2525 200 + K
Divide s° row by 12 to simplify the calculations :
gt : ;- - i - : &9 004K .. Row-1 51: 525 X1655;{5209+K)X1
i H . .
g 1 1 165 Row-2 51 . B6B.25—K
1 s
$2 | B25  2004K ... Row-3 52.5
i i
1 BB6.25-K | _
31 ¥ —W Row-4 56625"K . (2OB+K}
i | gl - 52.5
e L2004, L Row-5 (666.25 - K) / 52.5

- Ao s?: 200 +K
L—Column-1 _

For the system to be stable there should not be any sign change in the elements of first column. Hence choose
the value of K so that the first column elements are positive.
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s* +12s5” +69s% +198s + 200 +K=0

st 1 69 200+4K..... Row-1
s 12 198 o ROW-2
Divide s°rowby 1 210 simplify the calculations

&' 1T T 89 200+K
& L1 185
82 | 525 200+K
f 1
1 I BBE.25-K |
° '525
8 | 200+K
| T— —t R ——

L Column-1

nw,,‘_,v
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£
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From s' row, for the system to be stable [(666.25-K) / 52.5] >0
Since (666.25-K) > 0, K should be less 666.25

From s° row, for the system to be stable (200+K) > 0

Since (200+K) > 0, K should be greater than- 200, but practical

values of K starts from 0. Hence K should be greater than 0.

.. The range of K for the system to be stable is 0 < K < 666.25 .
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s* +12s5” +69s% +198s + 200 +K=0

st 1 69 200+4K..... Row-1
s 12 198 o ROW-2
Divide s°rowby 1 210 simplify the calculations

s i 1 ; 69 200+K
! H
s ! 1 1 165 . The range of K for the system to be stable is 0 < K < 666.25 .
82 | 525 200+K
! 1 The marginal value of K is value which makes any row other
1 I 866.25-K 1
s ' 525 | than s as row of zeros.
. 1 1
s - %Tff ! When K=666.25, the s' row becomes zero, which indicates the

——Column-1 possibility of roots on imaginary . A system will oscillate if it has

roots on imaginary axis and no roots on right half of s-plane the

System is Marginally stable
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When K=666.25, The coefficients of auxiliary equation are given by the s2 row.

The auxiliary equation is 52.5s*+200+K=0

52552 + 200 + 666.25 = 0
o2 ~200-666.25

When K=666.25, system has roots on imaginary axis and so it oscillate the System is Marginally stable

Corresponding frequency of sustained oscillation is given by the roots on imaginary axis w=4.06rad/sec



