
Embedded System Design:BEE613B 2024-25

Department of Electrical & Electronics Engineering, ATMECE, Mysuru Page 1

MODULE 1: Introduction

Structure

1.1 Introduction: Embedded Systems and general purpose computer systems,

1.2 History, classifications, applications and purpose of embedded systems (Chapter 1 – Text

1)

1.3 Core of Embedded Systems : Microprocessors and microcontrollers,

1.4 RISC and CISC controllers,

1.5 Big endian and Little endian processors,

1.6 Application specific ICs,

1.7 Programmable logic devices,

1.8 COTS, sensors and actuators,

1.9 Communication interface, Embedded firmware,

1.10 other system components, PCB and passive components (Chapter 2 – Text 1)

Objectives

Learning Objectives

1. Understand Embedded Systems Basics

• Differentiate embedded vs. general-purpose computers.

• Learn history, classification, and applications.

2. Explore Core Components & Architectures

• Study microprocessors, microcontrollers, RISC & CISC, endianness.

• Understand ASICs, PLDs, and COTS components.

3. Analyze Hardware & Communication

• Learn about sensors, actuators, firmware, and PCBs.

• Understand communication interfaces and passive components.

Embedded System Design:BEE613B 2024-25

Department of Electrical & Electronics Engineering, ATMECE, Mysuru Page 2

1.1 Embedded Systems and General purpose computer systems

Embedded Systems Definition

An embedded system is an electronic/electro-mechanical system designed to perform a

specific function and is a combination of both hardware and firmware (software).

Need:

Embedded systems are becoming an inevitable part of any product or equipment in all fields

including household appliances, telecommunications, medical equipment, industrial control,

consumer products, etc.

Comparison Between Embedded Systems and General-Purpose Computing Systems

Feature Embedded System General Purpose Computing

System

Purpose Designed for a specific

function or task

Designed for multiple applications

and tasks

Operating System Fixed or custom OS, often

non-modifiable

User can install or change OS

(Windows, Linux, etc.)

Hardware Flexibility Limited hardware

customization

Highly flexible, supports multiple

peripherals

User Applications Cannot install third-party

applications

Users can install and run multiple

applications

Interfaces Minimal, task-specific

interfaces (e.g., IR remote)

Multiple interfaces (USB,

Bluetooth, Wi-Fi, Ethernet, etc.)

Computational

Requirements

Real-time processing with

strict deadlines

General-purpose processing, not

always real-time

Power Efficiency Optimized for lower power

consumption

Higher power consumption due to

multitasking capability

Memory Availability Limited and optimized for

function

Large memory (RAM, HDD/SSD)

for multiple applications

Software

Modification

Not user-modifiable Users can modify, update, and

install new software

Functionality

Expansion

Fixed function, cannot be

easily repurposed

Can be repurposed for various

tasks

Example Devices DVD Player, Washing

Machine, Car ECU

Desktop PC, Laptop, Palmtop,

Workstation

Embedded System Design:BEE613B 2024-25

Department of Electrical & Electronics Engineering, ATMECE, Mysuru Page 3

Comparison Between Embedded Systems and General Purpose Computing Systems

Purpose of an Embedded

System: A washing machine

with predefined functions.

Purpose of a General-Purpose

Computing System: A laptop

running multiple applications.

Operating System in an

Embedded System: A digital

thermostat with a fixed

interface.

Operating System in a General-

Purpose Computing System: A

desktop PC with a flexible OS.

Hardware Flexibility in an

Embedded System: A

microwave oven with fixed

buttons.

Hardware Flexibility in a

General-Purpose Computing

System: A desktop PC with

multiple peripherals.

User Applications in an

Embedded System: A smart

thermostat with limited options.

User Applications in a General-

Purpose Computing System: A

smartphone with multiple third-

party apps.

Embedded System Design:BEE613B 2024-25

Department of Electrical & Electronics Engineering, ATMECE, Mysuru Page 4

1.2 History, classifications, applications and purpose of embedded systems

1.2.1

1. Classification Based on Evolution (History)

1. First Generation

• 8-bit microprocessors (8085, Z80) and 4-bit microcontrollers.

• Simple hardware, firmware in Assembly language.

• Examples: Digital telephone keypads, stepper motor control units.

2. Second Generation

• 16-bit microprocessors, 8/16-bit microcontrollers.

• More complex instruction sets, some with embedded OS.

• Examples: Data Acquisition Systems, SCADA systems.

3. Third Generation

• 32-bit processors, 16-bit microcontrollers, DSPs, ASICs.

• Instruction pipelining, real-time and general-purpose OS.

• Examples: Robotics, industrial process control, networking.

4. Fourth Generation

• System-on-Chip (SoC), reconfigurable and multi-core processors.

• High-performance, miniaturized, real-time OS.

• Examples: Smartphones, Mobile Internet Devices (MIDs).

2. Classification Based on Complexity and Performance

1. Small-Scale Embedded Systems

• Simple applications, not time-critical.

• Built on low-cost 8/16-bit microprocessors/microcontrollers.

• May or may not have an OS.

• Example: Electronic toys.

2. Medium-Scale Embedded Systems

• Moderately complex hardware and software.

• Uses 16/32-bit microprocessors/microcontrollers or DSPs.

• Usually includes an embedded OS.

Embedded System Design:BEE613B 2024-25

Department of Electrical & Electronics Engineering, ATMECE, Mysuru Page 5

3. Large-Scale/Complex Embedded Systems

• High-performance, mission-critical applications.

• Uses 32/64-bit RISC processors, RSoC, multi-core processors.

• Includes multiple processors, co-processors, and accelerators.

• Uses high-performance Real-Time Operating Systems (RTOS).

• Examples: Media encoding/decoding, cryptographic processing.

1.2.2 Applications of embedded systems

Embedded Systems in Daily Life

Embedded systems play a crucial role in modern technology, evolving from early models like the

Apollo guidance computer to advanced smart devices. Their applications span multiple domains,

including:

1. Consumer Electronics – Camcorders, cameras.

2. Household Appliances – TVs, DVD players, washing machines, fridges, microwaves.

3. Home Automation & Security – Air conditioners, sprinklers, alarms, CCTV cameras.

4. Automotive Industry – ABS, engine control, ignition, automatic navigation.

5. Telecom – Cell phones, telephone switches, multimedia applications.

6. Computer Peripherals – Printers, scanners, fax machines.

7. Networking – Routers, switches, hubs, firewalls.

8. Healthcare – Scanners, EEG, ECG machines.

9. Measurement & Instrumentation – Digital multimeters, CROs, logic analyzers, PLC

systems.

10. Banking & Retail – ATMs, currency counters, POS systems.

11. Card Readers – Barcode scanners, smart card readers, handheld devices.

1.2.3 Purpose of Embedded Systems

Embedded systems perform various specialized tasks in different domains like consumer electronics,

healthcare, automotive, and telecommunications. Their functionalities can be categorized into six

major roles:

1. Data Collection/Storage/Representation

• Embedded systems collect and process data from the external environment, which can be in

analog or digital form.

• Analog data is converted into digital form using Analog-to-Digital (A/D) converters.

• The collected data may be:

Embedded System Design:BEE613B 2024-25

Department of Electrical & Electronics Engineering, ATMECE, Mysuru Page 6

1. Stored for further processing.

2. Represented visually (LCD, LED) or audibly (buzzers, alarms).

3. Deleted after processing.

• Examples: Digital multimeters, ECG monitoring devices, digital cameras (store and display

images).

2. Data Communication

• Embedded systems enable communication between devices, either through wired (USB, RS-

232, TCP/IP) or wireless (Bluetooth, Wi-Fi, ZigBee) methods.

• Data transmission can be analog or digital, with modern systems favoring digital

communication.

• Some embedded systems serve as dedicated transmission units, ensuring secure and efficient

data exchange.

• Examples: Network routers, switches, telephone systems, home automation devices.

3. Data (Signal) Processing

• Embedded systems are used in applications requiring signal processing, such as audio, video,

and electrical signal manipulation.

• They perform functions like speech coding, audio synthesis, and video encoding.

• Example: Digital hearing aids, which amplify and process sound to improve hearing for

individuals with impairments.

4. Monitoring

• Designed to observe variables but not control them.

• Sensors gather real-time data, which is displayed for monitoring purposes without altering the

system.

• Common in healthcare and industrial applications.

• Examples:

1. Medical: ECG machines (monitor heartbeat but do not regulate it).

2. Industrial: Digital storage oscilloscopes (CROs), logic analyzers, and multimeters

(monitor voltage, current, etc.).

5. Control

• Embedded systems that regulate processes by taking corrective actions based on sensor input.

• These systems consist of sensors (input), actuators (output), and a control unit that adjusts the

output to maintain the desired conditions.

Embedded System Design:BEE613B 2024-25

Department of Electrical & Electronics Engineering, ATMECE, Mysuru Page 7

• Example: Air conditioners:

1. The sensor (thermistor) measures the current temperature.

2. The user input (desired temperature) is set via a remote control.

3. The actuator (compressor) adjusts airflow to maintain the desired temperature.

1.3 Core of Embedded Systems: Microprocessors and microcontrollers

Microprocessors:

• A microprocessor is a CPU on a silicon chip capable of performing arithmetic and

logical operations based on predefined instructions.

• Requires additional hardware components like memory, timers, and interrupt

controllers for functioning, making it dependent and less compact.

• The evolution of microprocessors began with Intel's 4004 (4-bit, 1971), followed by

Intel 8080, 8085, Zilog Z80, and later 16/32/64-bit processors.

• Key Features:

1. General-purpose usage.

2. High performance and processing speeds (modern processors reach up to 2.4

GHz).

3. Based on Harvard or Von-Neumann architectures and use either RISC or

CISC instruction sets.

• Used in high-end markets, industrial control, and advanced embedded applications.

Microcontrollers:

• A microcontroller integrates a CPU, RAM, ROM/Flash memory, timers, I/O ports,

and interrupt control units into a single chip.

• Self-contained and designed specifically for embedded systems, eliminating the need

for external components.

• Early examples include TI’s TMS1000 (1974) and Intel's 8048 (1977), leading to the

highly popular Intel 8051 series in the 1980s.

• Key Features:

1. Application-specific or domain-specific design.

2. Inexpensive, compact, and power-efficient.

3. Modern microcontrollers (e.g., ARM11, Atmel AVR) offer advanced features

like SPI, I2C, USB, and networking.

• Used in consumer electronics, industrial control, IoT, and automotive applications.

Embedded System Design:BEE613B 2024-25

Department of Electrical & Electronics Engineering, ATMECE, Mysuru Page 8

Comparison: Microprocessor vs. Microcontroller

Feature Microprocessor Microcontroller

Definition A silicon chip representing a CPU that

performs arithmetic and logical

operations.

A highly integrated chip with

CPU, RAM, ROM, timers, and I/O

ports for embedded systems.

Dependency Dependent on external hardware

(memory, timers, interrupt controllers,

etc.).

Self-contained and does not

require external hardware for

functioning.

Purpose General-purpose usage in industrial

and high-performance computing.

Designed for specific tasks in

embedded systems.

I/O Ports Does not include built-in I/O ports;

requires external components like

programmable peripheral interface

chips.

Includes multiple built-in I/O ports

(8, 16, or 32-bit) for direct use.

Applications Used in computers, servers, and high-

performance devices.

Used in IoT, robotics, automotive

systems, and consumer electronics.

Architecture Based on Harvard or Von-Neumann

architecture with RISC or CISC

instruction sets.

Similar architectures, often

domain-specific instruction sets

(e.g., AVR for automotive).

Power

Efficiency

Less efficient in terms of power

consumption.

Optimized for power efficiency

and compactness.

Target

Market

High-end markets where performance

is critical.

Embedded markets, where cost and

size are important.

Cost Expensive due to dependency on

external hardware.

Cost-effective, with all required

components integrated.

Microcontrollers are ideal for embedded systems due to their compact design, low cost, and

energy efficiency, while microprocessors are suited for high-performance, general-purpose

applications.

1.4 RISC and CISC controllers,

Feature RISC (Reduced Instruction Set

Computing)

CISC (Complex Instruction Set

Computing)

Instruction Set Lesser number of instructions. Greater number of instructions.

Instruction

Pipelining

Supports instruction pipelining

for increased execution speed.

Generally, no instruction pipelining

is present.

Instruction Set

Orthogonality

Orthogonal instruction set (any

instruction can operate on any

register or use any addressing

mode).

Non-orthogonal instruction set

(instructions are instruction-specific

regarding registers and addressing

modes).

Operations Operations are performed only Operations can be performed directly

Embedded System Design:BEE613B 2024-25

Department of Electrical & Electronics Engineering, ATMECE, Mysuru Page 9

on registers; memory operations

are limited to load and store

instructions.

on registers or memory, depending

on the instruction.

Number of

Registers

Large number of general-

purpose registers are available.

Limited number of general-purpose

registers.

Programming Requires more lines of code as

the instructions are simpler and

perform smaller operations.

Instructions are like macros in C

language, allowing complex

operations with a single instruction,

reducing the code length.

Instruction

Length

Single, fixed-length instructions. Variable-length instructions.

Hardware

Complexity

Uses less silicon and has a lower

pin count due to simpler

instruction decoding.

Requires more silicon and additional

decoder logic to handle complex

instruction decoding.

System

Architecture

Uses Harvard architecture

(separate buses for program and

data memory).

Can use either Harvard or Von-

Neumann architecture (shared bus

for program and data memory).

Key Differences in Applications

• RISC is commonly used in applications requiring high performance and power

efficiency, such as smartphones, tablets, and embedded systems.

• CISC is suitable for applications requiring complex operations, such as desktop

computers, servers, and legacy systems.

RISC focuses on simplicity and efficiency, while CISC emphasizes complexity and

minimizing the number of instructions a programmer needs to write.

Harvard vs. Von-Neumann Architecture Comparison Table

Feature Harvard Architecture Von-Neumann Architecture

Memory Structure Separate memory for instructions

and data

Shared memory for

instructions and data

Instruction and Data

Fetching

Simultaneous fetching of

instructions and data (Pre-

fetching)

Sequential fetching of

instructions and data

Bus System Separate buses for instructions and

data

Single common bus for

instructions and data

Performance High performance due to parallel

execution and pipelining

Lower performance due to

sequential fetching

Cost Comparatively high cost due to

separate memory buses

Cheaper due to simpler

architecture

Memory Alignment No memory alignment problems Memory alignment problems

possible

Self-Modifying Code Does not allow self-modifying

code

Allows self-modifying code

Embedded System Design:BEE613B 2024-25

Department of Electrical & Electronics Engineering, ATMECE, Mysuru Page 10

Program Memory

Corruption Risk

No accidental corruption of

program memory

Chances of accidental

program memory corruption

1.5 Big endian and Little endian processors

Endianness in Memory Storage

Endianness defines how multi-byte data is stored in memory by a processor. It determines the

order in which bytes are arranged in a system where the word size is greater than one byte.

Types of Endianness:

1. Little-Endian:

a. The lower-order byte is stored at the lowest memory address.

b. The higher-order byte is stored at the next higher memory address.

c. Example (for a 4-byte integer Byte3 Byte2 Byte1 Byte0):

i. Memory Order: Byte0 → Byte1 → Byte2 → Byte3 (Lowest to

Highest Address).

d. Commonly used in Intel x86 processors.

2. Big-Endian:

a. The higher-order byte is stored at the lowest memory address.

b. The lower-order byte is stored at the next higher memory address.

c. Example (for a 4-byte integer Byte3 Byte2 Byte1 Byte0):

i. Memory Order: Byte3 → Byte2 → Byte1 → Byte0 (Lowest to

Highest Address).

d. Used in Motorola, PowerPC, and some network protocols.

Embedded System Design:BEE613B 2024-25

Department of Electrical & Electronics Engineering, ATMECE, Mysuru Page 11

Key Differences:

• Little-Endian: Stores least significant byte first.

• Big-Endian: Stores most significant byte first.

• Some architectures, like ARM and PowerPC, support both endianness (bi-endian

systems).

1.6 Application specific ICs

1. Definition:

• ASIC is a microchip designed for a specific application rather than

general-purpose use.

• Replaces conventional logic chips and integrates multiple functions into a

single chip.

2. Advantages:

• Reduces system development cost by integrating multiple functions.

• Smaller size enables compact system designs with high performance.

• Optimized for specific tasks, making them more efficient than general-

purpose processors.

3. Types of ASICs:

• Pre-fabricated ASICs: Designed for specialized applications.

• Custom ASICs: Built using reusable components for specific customer

needs.

4. Non-Recurring Engineering Charge (NRE):

• One-time investment for ASIC fabrication costs.

• Cost-effective only for large-scale commercial production.

5. Application-Specific Standard Product (ASSP):

• If an ASIC is made publicly available, it is called an ASSP.

• Marketed like a general-purpose product but for specific applications.

• Example: ADE7760 Energy Meter ASIC by Analog Devices.

6. Proprietary Nature:

• ASIC designs are usually confidential and not publicly documented.

• Detailed examples are rarely disclosed due to legal and intellectual

property concerns.

1.7 Programmable logic devices,

1. Definition & Types

• Logic devices perform essential system functions like data communication, signal

processing, and control operations.

Embedded System Design:BEE613B 2024-25

Department of Electrical & Electronics Engineering, ATMECE, Mysuru Page 12

• Two main categories:

o Fixed Logic Devices: Permanent circuits, non-changeable once manufactured.

o Programmable Logic Devices (PLDs): Reconfigurable devices with flexible

logic capacity and features.

2. Advantages of PLDs

• Fast Development: No long lead times; immediate testing & deployment.

• Cost-Effective: No Non-Recurring Engineering (NRE) costs like custom ASICs.

• Inventory Control: Order as needed, avoiding surplus or shortage.

• Field Reprogrammability: Devices can be updated even after shipping (e.g.,

firmware updates via the Internet).

3. Types of PLDs

• Field Programmable Gate Arrays (FPGAs):

1. High logic density (millions of gates), high performance.

2. Used in data processing, storage, telecommunications, digital signal

processing.

3. Example: Xilinx Virtex with 8M system gates, built-in processors (IBM

PowerPC), and high-speed interfaces.

• Complex Programmable Logic Devices (CPLDs):

1. Lower logic density (up to 10,000 gates), predictable timing.

2. Ideal for control applications, low-power devices, mobile applications (e.g.,

Xilinx CoolRunner series).

4. PLDs vs Fixed Logic Devices

• PLDs are flexible – Designs can be modified & tested instantly without new

hardware.

• Fixed logic devices are permanent, requiring custom manufacturing for design

changes.

5. FPGA Evolution & Trends

• Older FPGAs: 40 MHz, expensive ($150+), limited gates.

• Modern FPGAs: 300 MHz, millions of gates, integrated processors & memory,

cost <$10.

• FPGAs are now the preferred solution for rapid prototyping and high-performance

applications.

1.8 COTS, sensors and actuators,

Commercial Off-the-Shelf (COTS)

• Definition: COTS products are ready-made components used as-is for easy

integration into systems.

• Examples: Remote control toy car circuits, high-frequency microwave electronics,

analog-to-digital converters, infrared detectors, and TCP/IP plug-in modules (e.g.,

WIZnet, Freescale).

• Advantages:

➢ Readily available, reducing development time & cost.

➢ No need for custom design, firmware is pre-built.

Embedded System Design:BEE613B 2024-25

Department of Electrical & Electronics Engineering, ATMECE, Mysuru Page 13

➢ Faster time-to-market for embedded systems.

• Disadvantages:

➢ No universal standards, leading to vendor lock-in.

➢ Compatibility issues between different manufacturers.

➢ Risk of product discontinuation, affecting long-term design stability.

Sensors & Actuators

• Sensor: A transducer that converts energy from one form to another for measurement

or control.

o Example: Magnetic Hall Effect Sensor in a smart running shoe (measures

cushion-to-magnet distance).

• Actuator: A device that converts signals into physical action (motion).

o Example: Micro Stepper Motor in a smart running shoe (adjusts cushion

position).

1.9 Communication interface, Embedded firmware,

Communication Interfaces

1. Types of Communication Interfaces

• Onboard Communication Interface: Connects components within an embedded

system (e.g., I2C, SPI, UART, Parallel Bus).

• External Communication Interface: Connects the embedded system to other

devices (e.g., USB, Ethernet, Wi-Fi, Bluetooth, RF, GPRS).

2. Inter-Integrated Circuit (I2C) Bus

• Type: Synchronous, bi-directional, half-duplex, two-wire serial interface (SCL &

SDA).

• Developed by: Philips in the 1980s for microcontroller-to-peripheral communication.

• Master-Slave Model:

o Master controls communication, generates clock, and initiates data transfer.

o Slave responds to master’s request.

o Multi-master support allows multiple controllers on the same bus.

3. I2C Communication Sequence

1. Start Condition: Master pulls SDA LOW while SCL is HIGH.

2. Addressing: Master sends 7-bit or 10-bit address of the slave.

3. Read/Write Bit: 1 for Read, 0 for Write.

4. Acknowledgment: Slave acknowledges if the address matches.

5. Data Transfer:

o Write: Master sends 8-bit data to Slave.

o Read: Slave sends 8-bit data to Master.

6. Acknowledgment: Required after each byte transfer.

7. Stop Condition: Master releases SDA HIGH when SCL is HIGH.

Embedded System Design:BEE613B 2024-25

Department of Electrical & Electronics Engineering, ATMECE, Mysuru Page 14

4. I2C Data Rates

• Standard Mode: Up to 100 kbps.

• Fast Mode: Up to 400 kbps.

• High-Speed Mode: Up to 3.4 Mbps.

I2C Bus Interfacing

I2C Communication Sequence with a Slave Device

1. Start Condition:

o Master pulls SDA LOW while SCL is HIGH to signal the start of

communication.

2. Address Transmission:

o Master sends a 7-bit or 10-bit slave address over the SDA line.

o Clock pulses on SCL synchronize the transmission.

3. Read/Write Bit:

o Master sends 1-bit command:

▪ 0 → Write to Slave

▪ 1 → Read from Slave

4. Acknowledgment from Slave:

o The addressed slave acknowledges (ACK) by pulling SDA LOW.

5. Data Transfer:

o If writing, Master sends 8-bit data to Slave.

o If reading, Slave sends 8-bit data to Master.

6. Acknowledgment after Each Byte:

o The receiver (Master or Slave) sends an ACK after receiving each byte.

7. Stop Condition:

o Master pulls SDA HIGH while SCL is HIGH, signaling end of

communication.

Embedded System Design:BEE613B 2024-25

Department of Electrical & Electronics Engineering, ATMECE, Mysuru Page 15

Serial Peripheral Interface (SPI) Bus

• Definition: A synchronous, full-duplex, four-wire serial interface developed by

Motorola.

• Master-Slave System:

o Single master, multiple slaves (only one master active at a time).

o Master generates clock signal and selects the slave via Slave Select (SS).

SPI Signal Lines:

1. MOSI (Master Out Slave In): Data from Master → Slave.

2. MISO (Master In Slave Out): Data from Slave → Master.

3. SCLK (Serial Clock): Synchronizes data transfer.

4. SS (Slave Select): Activates the selected slave (active LOW).

Working Principle:

• Uses Shift Registers for data transfer.

• Data shifts simultaneously between Master & Slave via MOSI & MISO.

• Configurable settings: Master/Slave selection, baud rate, clock control, LSB/MSB

order.

Comparison with I2C:

• Faster than I2C, ideal for continuous data transfer (streams).

• No acknowledgment mechanism, making error detection harder.

Universal Asynchronous Receiver Transmitter (UART):

• Definition: UART is an asynchronous serial communication protocol that does not

require a clock signal for synchronization.

Embedded System Design:BEE613B 2024-25

Department of Electrical & Electronics Engineering, ATMECE, Mysuru Page 16

Key Features:

1. Data Transmission:

o Data transmission is based on pre-defined settings (baud rate, bits/byte, parity,

start/stop bits).

o Special bits (Start and Stop) indicate the start and end of data transmission.

o Parity Bit (optional): Used for error detection (1 for odd, 0 for even parity).

2. Operation:

o Start Bit: Signals the receiver that data is incoming.

o Receiver polls the line at intervals determined by the baud rate.

o Discards Start, Stop, and Parity bits to form the data byte.

3. Connection:

o Transmit (TX) line of sender connects to Receive (RX) line of receiver.

4. Flow Control:

o UART supports hardware handshaking for managing data flow.

5. Implementation:

o Early example: 8250 UART used in IBM PCs.

o Modern microcontrollers feature integrated UARTs for seamless serial

communication.

1-Wire Interface

• Definition: An asynchronous half-duplex communication protocol developed by

Maxim (Dallas Semiconductor).

• Features:

o Uses a single signal wire (DQ) for communication and power transmission.

o Follows a master-slave model supporting multiple slave devices.

o Each device has a unique 64-bit ID (8-bit family code, 48-bit serial number,

8-bit CRC).

Sequence of Operation:

1. Reset Pulse: Master pulls the bus LOW for 480 µs to start communication.

2. Presence Pulse: Slaves respond with a LOW pulse within 60 µs.

3. ROM Command: Master sends the 64-bit address of the slave to address specific

devices.

4. Function Command: Master sends read/write commands to interact with the

slave’s memory or registers.

Embedded System Design:BEE613B 2024-25

Department of Electrical & Electronics Engineering, ATMECE, Mysuru Page 17

5. Data Transfer: Master initiates read/write operations.

Communication Details:

• Time slots: 60 µs per slot.

• Writing:

o Bit ‘1’: Master pulls LOW for 1–15 µs, then releases.

o Bit ‘0’: Master pulls LOW for 60–120 µs.

• Reading:

o Slave sends:

▪ Bit ‘1’: Releases bus.

▪ Bit ‘0’: Holds LOW for the rest of the time slot.

Parallel Interface

• Definition: On-board parallel interfaces are used for communication with peripheral

devices memory-mapped to the host processor/controller.

Features:

1. Communication Control:

o Controlled by Read/Write signals and Device Select (Chip Select) signals

from the host processor.

o Memory Mapping: Devices are assigned a specific address range.

o Address Decoder: Activates the device when the processor selects its address.

2. Data Transfer:

o Direction controlled by Read (RD) and Write (WR) signals.

o Host Initiated: Communication is always initiated by the host processor.

3. Interrupt Handling:

o Devices can signal the processor using interrupts for communication.

o The device's interrupt line is connected to the host processor's interrupt line.

4. Bus Width:

Embedded System Design:BEE613B 2024-25

Department of Electrical & Electronics Engineering, ATMECE, Mysuru Page 18

o Matches the data bus width of the host processor (e.g., 4-bit, 8-bit, 16-bit, 32-

bit, etc.).

5. Timing:

o Parallel communication follows strict timing protocols to ensure proper data

transfer.

External Communication Interfaces – RS-232, RS-422, RS-485

RS-232:

• Legacy Serial Communication standard by EIA, supports point-to-point

communication.

• Baud Rate: Up to 19.2 Kbps, maximum distance 50 ft.

• Uses DB-9/DB-25 connectors and signals logic via voltage levels (+3 to +25V for 0,

-3 to -25V for 1).

• Popular in industrial legacy applications, less common now due to USB, Bluetooth,

etc.

• Requires level converters (e.g., MAX232) for TTL/CMOS logic compatibility.

RS-422:

• Differential data communication, supports up to 100 Kbps over 400 ft.

• Allows multi-drop communication with 1 transmitter and up to 10 receivers.

• Requires RS-232 to RS-422 conversion for use.

RS-485:

• Enhanced RS-422, supports multi-drop communication with up to 32 transmitters

and 32 receivers.

• Uses addressing mechanism to identify slave devices.

• Ideal for long-distance and multi-device communication in industrial applications.

Embedded System Design:BEE613B 2024-25

Department of Electrical & Electronics Engineering, ATMECE, Mysuru Page 19

RS-232 Connector Pin Details (DB-9 and DB-25)

Key Notes:

• DB-9 connectors are more common in modern systems, while DB-25 connectors are

mostly obsolete.

• For simple data transmission, only TXD, RXD, and GND are essential.

• Here are all the pins for RS-232 connectors (DB-9 and DB-25):

Pin Name Pin Number

(DB-9)

Pin Number

(DB-25)

Description

TXD 3 2 Transmit Data: Sends serial data.

RXD 2 3 Receive Data: Receives serial

data.

RTS (Request to

Send)

7 4 Signals readiness to send data.

CTS (Clear to Send) 8 5 Acknowledges readiness to

send/receive data.

DSR (Data Set

Ready)

6 6 Indicates the device is ready.

DTR (Data

Terminal Ready)

4 20 Host signals it is ready to

communicate.

DCD (Data Carrier

Detect)

1 8 Indicates the presence of a valid

carrier signal.

RI (Ring Indicator) 9 22 Indicates an incoming call on a

telephone line.

GND (Ground) 5 7 Signal ground: Provides common

reference for signal levels.

Secondary TXD

(STXD)

- 14 Secondary transmit data for

extended configurations.

Secondary RXD

(SRXD)

- 16 Secondary receive data for

extended configurations.

Secondary RTS

(SRTS)

- 19 Secondary request to send signal.

Secondary CTS

(SCTS)

- 13 Secondary clear to send signal.

SDCD (Secondary

DCD)

- 12 Secondary data carrier detect.

RC (Receiver

Clock)

- 17 Timing signal for receiving

devices.

TC (Transmission - 15 Timing signal for transmitting

Embedded System Design:BEE613B 2024-25

Department of Electrical & Electronics Engineering, ATMECE, Mysuru Page 20

Clock) devices.

Signal Ground (FG) - 1 Frame ground.

NC (No Connection) 9, 10, 11, 18,

23, 24, 25

9, 10, 11, 18,

23, 24, 25

Not connected (reserved).

Universal Serial Bus (USB)

• Definition: High-speed, wired serial bus for data communication, introduced in 1995

by Intel, Microsoft, IBM, and others.

• Topology: Star topology with a USB host supporting up to 127 devices.

• Connectors:

o Type A: Upstream (host).

o Type B: Downstream (slave).

o Includes Mini and Micro USB for small devices.

• Data Transmission:

o Packet-based, host-initiated with standards like OHCI and UHCI.

o Differential signals for noise immunity; supports up to 5m cable length.

• Power Supply: Provides 5V, 500mA to connected devices.

• Device Identification: Uses Product ID (PID) and Vendor ID (VID) for driver

identification.

• Data Transfer Types:

o Control: Device configuration.

o Bulk: Block data (e.g., printers).

o Isochronous: Real-time streaming (e.g., audio).

o Interrupt: Small data (e.g., mouse, keyboard).

• Data Rates:

o USB 1.0: Low (1.5 Mbps), Full (12 Mbps).

o USB 2.0: High (480 Mbps).

o USB 3.0: Super Speed (4.8 Gbps).

USB Connector Pin Details

Pin Signal Name Description

1 VBUS Power Supply (+5V).

2 D− Data Line (Negative).

3 D+ Data Line (Positive).

4 GND Ground.

This pin configuration is applicable for Type A, Type B, Mini USB, and Micro USB

connectors.

IEEE 1394 (FireWire)

• Definition: High-speed, isochronous serial communication bus developed by

Apple in 1985, standardized by IEEE in 1995.

• Other Names: FireWire (Apple), i.LINK (Sony), Lynx (TI).

• Topology: Peer-to-peer, point-to-multipoint (supports up to 63 devices in a tree

structure).

• Cable Length: Up to 15 feet.

• Data Rates: 400 Mbps to 3.2 Gbps.

Embedded System Design:BEE613B 2024-25

Department of Electrical & Electronics Engineering, ATMECE, Mysuru Page 21

• Differential Data Transfer: Uses twisted-pair cables for better noise immunity.

• Connectors:

o 4-pin: Data only.

o 6-pin (Alpha): Data + Power (24-30V).

o 9-pin (Beta): Higher speeds, Power (9-12V for battery devices).

• Use Cases: Digital cameras, camcorders, scanners, direct device-to-device

communication (e.g., scanner to printer).

• Comparison with USB: Faster than USB 2.0, no host required, but costlier.

Wireless Communication Interfaces

Infrared (IrDA):

• Half-duplex, line-of-sight wireless communication.

• Range: 10 cm – 1 m, extendable with higher power.

• Data Rates: 9.6 kbps – 16 Mbps (SIR, MIR, FIR, VFIR, UFIR).

• Uses IR LED for transmission and photodiode for reception.

• Used in: TV remotes, file transfer, mobile phones (before Bluetooth).

Bluetooth (BT):

• Short-range, low-power wireless communication (2.4 GHz RF band).

• Range: ~30 feet, Data Rate: Up to 1 Mbps.

• Supports: Point-to-point and point-to-multipoint (Piconet, max 7 slaves).

• Profiles: GAP (connection setup), SPP (serial data), FTP (file transfer), HID

(keyboards/mice).

• Popular in: Phones, headsets, speakers, wearables.

Wi-Fi (IEEE 802.11):

• Wireless networking communication, IP-based.

• Range: 100-300 feet, Data Rates: 1 Mbps – 150 Mbps.

• Requires Wi-Fi Router for managing connections.

• Security Protocols: WEP, WPA, WPA2.

• Used in: Internet access, smart devices, IoT.

Embedded System Design:BEE613B 2024-25

Department of Electrical & Electronics Engineering, ATMECE, Mysuru Page 22

ZigBee (IEEE 802.15.4):

• Low-power, low-data-rate WPAN (Wireless Personal Area Network).

• Range: Up to 100 meters, Data Rate: 20 – 250 Kbps.

• Network Roles:

o Coordinator (ZC): Initiates and manages the network.

o Router (ZR): Passes data between devices.

o End Device (ZED): Communicates but doesn’t route.

• Used in: Home automation, smart meters, IoT, industrial monitoring.

Zigbee Network Model

GPRS (General Packet Radio Service):

• Packet-switched mobile data communication over GSM networks.

• Max Data Rate: 171.2 kbps.

• Uses: IP, PPP, X.25 protocols.

• Replaced by: EDGE, HSDPA, LTE for higher speeds.

• Used in: Mobile internet, GPS trackers, M2M communication.

Infrared (IrDA) Communication Bluetooth (BT) Communication

Embedded System Design:BEE613B 2024-25

Department of Electrical & Electronics Engineering, ATMECE, Mysuru Page 23

Wi-Fi Communication ZigBee Communication

GPRS Communication

Embedded Firmware

• Definition: Embedded firmware consists of program instructions and configuration

settings stored in an embedded system's memory.

• Development Methods:

1. High-Level Languages (C/C++) – Uses IDEs like Keil for coding,

compiling, debugging, and simulation.

2. Assembly Language – Uses processor-specific instructions but is harder to

write and debug.

• HEX File Creation: Converts code into machine-readable binary format using

cross-compilers or vendor utilities.

• Recommended Approach: High-level languages are preferred due to ease of

coding, portability, faster debugging, and team collaboration.

• Control Algorithm Approaches:

1. Super Loop (Infinite Loop) – Runs continuously like while(1){}.

2. Task Scheduler (RTOS/GPOS) – Splits functions into tasks managed by an

operating system.

Embedded System Design:BEE613B 2024-25

Department of Electrical & Electronics Engineering, ATMECE, Mysuru Page 24

1.10 Other system components, PCB and passive components

Other System Components – Key Points

• Definition: Essential circuits/ICs required for proper functioning of an embedded

system.

• Examples:

o Watchdog Timer – Prevents system hang-ups.

o Reset IC/Circuit – Ensures proper system startup.

o Brown-out Protection – Prevents malfunction during power drops.

• Integration: Some controllers/SoCs have these built-in; others require external

components.

• Additional Components: Level translators, specific function ICs, and interface

circuits as needed.

Essential System Components – Key Points

• Reset Circuit: Ensures proper startup by resetting the processor to a known state at

power-on. Uses passive RC circuits or Reset ICs.

• Brown-out Protection: Prevents malfunction when voltage drops below a threshold.

Implemented using Zener diodes, transistors, or supervisor ICs.

• Oscillator Unit: Generates clock signals for processor operation. Uses quartz

crystals, ceramic resonators, or external oscillator chips.

Embedded System Design:BEE613B 2024-25

Department of Electrical & Electronics Engineering, ATMECE, Mysuru Page 25

• Real-Time Clock (RTC): Maintains system time, date, and alarms. Essential for OS-

based systems for time synchronization.

• Watchdog Timer: Monitors firmware execution and resets the system if it hangs or

malfunctions. Built-in in most processors or available as external ICs.

PCB and Passive Components – Key Points

• Printed Circuit Board (PCB): The foundation of an embedded system, designed

based on schematics and used for component mounting and firmware testing.

• Passive Components: Essential supporting elements like resistors, capacitors,

diodes, etc., ensuring stable operation.

o Example: Regulator IC with filter capacitors for a stable, ripple-free power

supply.

 Outcomes

At the end of the module, students will be able to:

CO-1: Explain characteristics of Embedded System design [L2]

TEXT BOOKS:

Shibu K V, “Introduction to Embedded Systems”, Second Edition, McGraw Hill Education

Reference Books/ Link

NPTL Lectures: https://nptel.ac.in/courses/108102045

 Embedded Systems, IIT Delhi, Prof. Santanu Chaudhary

