Embedded System Design:BEE613B | 2024-25

MODULE 3: Hardware Software Co design and Program Modelling

Structure

3.1 Hardware Software Co design and Program Modelling : Fundamental issues in Hardware
Software Co-design,

3.2 Computational models in Embedded System Design (Chapter 7 — Text 1: 7.1, 7.2)
3.3 Embedded Hardware Design and Development: Analog Electronic Components,
3.4 Embedded Hardware Design and Development :Digital Electronic Components,
3.5 VLSI & Integrated Circuit Design,

3.6 Electronic Design Automation Tools

Objectives

Learning Objectives

1. Understand Hardware-Software Co-Design: Analyze key issues and architectural
trade-offs.

2. Explore Computational Models: Familiarize with models such as FSM, DFG, and
CDFG.

3. Understand Embedded Hardware Design: Study the role of analog and digital
components.

4. Learn VLSI Design Concepts: Understand IC types, design steps, and
methodologies.

5. Introduction to EDA Tools: Study modern tools like OrCAD, Eagle, and Prote

Department of Electrical & Electronics Engineering, ATMECE, Mysuru Page 1

Embedded System Design:BEE613B | 2024-25

3.1 Hardware Software Co design and Program Modelling

Fundamental Issues in Hardware-Software Co-Design
1. Selecting the Model
o Models describe system characteristics and vary at different design stages.
o Specification Stage — Focus on functionality, not implementation.
o Implementation Stage — Switch to models capturing system structure.
2. Selecting the Architecture
o Defines system implementation in terms of components & interconnections.
o Common architectures:
= Controller Architecture — Implements finite state machine (FSM).
= Datapath Architecture — Implements data flow graph (DFG).
= FSMD Architecture — Combines controller + datapath.
= CISC Architecture — Complex instruction set, reduces memory access.
= RISC Architecture — Simple instruction set, supports pipelining.

= VLIW Architecture — Multiple functional units execute parallel
instructions.

= SIMD (Single Instruction Multiple Data) — Parallel execution using
one controller.

= MIMD (Multiple Instruction Multiple Data) — Multiple processors
execute different instructions.

3. Selecting the Language
o Programming languages map computational models into architecture.
o Software Languages: C, C++, Java (object-oriented models).
o Hardware Languages: VHDL, System C, Verilog (hardware description).

4. Partitioning System Requirements

Department of Electrical & Electronics Engineering, ATMECE, Mysuru Page 2

Embedded System Design:BEE613B | 2024-25

o Deciding which functions should be implemented in hardware vs. software.

o Uses hardware-software trade-offs for optimal performance.

3.2 Computational models in Embedded System Design (Chapter 7 — Text 1: 7.1, 7.2)

Computational Models in Embedded System Design
1. Data Flow Graph (DFG) Model
o Data-driven model, where execution is controlled by data flow.

o Processes (operations) represented by circles, arrows indicate data
movement.

o Used in DSP applications and computational-intensive tasks.

o Acyclic DFG (ADFG): No multiple values for inputs/outputs, no feedback
loops.

Data flow node

\ Data flow node

2. Control Data Flow Graph (CDFG) Model
o Extends DFG model by incorporating control operations (conditionals).
o Uses decision nodes (diamonds) to represent conditional execution.

o Example: Image processing in a digital camera, where the user selects
JPEG, TIFF, BMP format.

Ifflag=1,x=a+b; else y=a—b;

Department of Electrical & Electronics Engineering, ATMECE, Mysuru Page 3

Embedded System Design:BEE613B | 2024-25

Data flow node

a5\
%= Data flow node

()

3. State Machine Model (FSM)

o Models reactive/event-driven systems (e.g., industrial control, automotive
applications).

o System is represented by:
= States (e.g., "Alarm Off", "Waiting", "Alarm On").
= Events (e.g., "Ignition ON", "Seat Belt ON", "Timer Expire").
= Actions & Transitions (state changes triggered by events).

o Example: Seat Belt Warning System in Automobiles

= Ifignition is ON and the seatbelt is not fastened within 10 sec, an
alarm sounds for 5 sec.

= Alarm stops when the belt is fastened, ignition is off, or time expires.
4. Timer State Machine (FSM Model)
o Timer operates in three states:
= IDLE: When timer is not running.
= READY: When the timer is loaded with time delay value.

= RUNNING: Timer counts down until expiration or a stop event occurs.

Department of Electrical & Electronics Engineering, ATMECE, Mysuru Page 4

Embedded System Design:BEE613B | 2024-25

Ignition Key ON

Ignition Key OFF

Seat Belt ON

Event: Load Timer

Action: Timer Count = New Count

Example-1

Question

Design an Automatic Tea/Coffee Vending Machine using FSM Model

A tea/coffee vending machine operates based on a Finite State Machine (FSM) model
with the following requirements:

1.

2.

The machine starts in ‘Wait for Coin’ state.
The user inserts a 5 coin to initiate the vending process.
After inserting the coin, the system transitions to ‘Wait for User Input’ state.
The user can select:
o ‘Tea’ — Transitions to ‘Dispense Tea’ state.

o ‘Coffee’ — Transitions to ‘Dispense Coffee’ state.

Department of Electrical & Electronics Engineering, ATMECE, Mysuru Page 5

Embedded System Design:BEE613B

o ‘Cancel’ — Coin is returned, and state transitions back to ‘Wait for Coin’.

5. Once the drink is dispensed, the system resets back to ‘Wait for Coin’.

6. Additional conditions may include:

o Timeout in ‘Wait for User Input’ state (if no input, coin is returned).

o Error Handling for ‘Water Not Available’ or ‘Mix Not Available’.

Solution — FSM Representation

States of the FSM Model:

1. Wait for Coin — Initial state, waiting for a 5 coin.

2. Wait for User Input — Waiting for selection of Tea, Coffee, or Cancel.

3. Dispense Tea — Vends tea, then returns to Wait for Coin.

4. Dispense Coffee — Vends coffee, then returns to Wait for Coin.

5. Error State (Optional) — Handles no water/mix availability issues.

FSM State Transitions:

Current State

Event (Input)

Next State

Action

Wait for Coin

Insert %5 coin

Wait for User Input

Accept Coin

Wait for User Input

Press ‘Tea’

Dispense Tea

Start Tea Dispensing

Wait for User Input

Press ‘Coffee’

Dispense Coffee

Start Coffee Dispensing

Wait for User Input | Press ‘Cancel’ Wait for Coin Return Coin
Dispense Tea Tea Dispensed Wait for Coin Reset System
Dispense Coffee Coffee Dispensed Wait for Coin Reset System
Wait for User Input | Timeout (No Selection) | Wait for Coin Return Coin

Any State

Error (No Water/Mix)

Error State

Display Error

Error State

Problem Resolved

Wait for Coin

Reset System

Enhancements:

¢ Timeout Mechanism: If the user doesn’t select within a few seconds, the coin is

returned.

Department of Electrical & Electronics Engineering, ATMECE, Mysuru

2024-25

Page 6

Embedded System Design:BEE613B | 2024-25

1.5) FSM Model for)

Error Handling: If water or tea/coffee mix is unavailable, the system enters an Error
State.

State A: Wait for coin

State B: Wait for user input
State C: Dispense tea

State D: Dispense coffee

Example-2

Question

Design a Coin-Operated Public Telephone Unit using FSM Model

A coin-operated public telephone system is modeled using Finite State Machine (FSM)
with the following requirements:

1.

2.

Call initiation starts when the receiver is lifted (off-hook).
The user must insert a %1 coin to proceed with the call.

If the line is busy, the coin is returned when the receiver is placed back on hook (on-
hook).

If the line is connected, the user can talk for 60 seconds.

At the 45th second, the system prompts the user to insert another X1 coin to
continue the call.

If no additional coin is inserted, the call terminates after 60 seconds.
The system resets when the receiver is placed back on-hook.

If there is a line fault, the system enters an ‘Out of Order’ state.

Department of Electrical & Electronics Engineering, ATMECE, Mysuru Page 7

Embedded System Design:BEE613B | 2024-25

Solution — FSM Representation

FSM States:

1. Idle (Wait for Off-Hook) — Initial state, waiting for the receiver to be lifted.

2. Wait for Coin — User must insert a 21 coin.

3. Check Line Status — System checks if the line is busy or connected.

4. Busy Signal — If the line is busy, the coin is returned, and the system resets.

5. Call in Progress — User is allowed to talk for 60 seconds.

6. Prompt for Coin — At 45 seconds, a prompt for another X1 coin is given.

7. Timeout/Call Termination — If no coin is inserted, the call ends after 60 seconds.

8. Out of Order — If a line fault occurs, the system stops working.

FSM State Transitions:

Current State Event (Input) Next State Action
Idle (On-Hook) | Receiver Lifted Wait for Coin Wait for user
input

Wait for Coin Insert X1 Coin Check Line Status Accept Coin

Check Line Line Busy Busy Signal Return Coin

Check Line Line Connected Call in Progress Start 60-sec timer

Call in Progress | Timer =45 sec Prompt for Coin Notify user

Prompt for Insert %1 Coin Call in Progress Extend call

Coin

Prompt for No Coin Inserted Timeout/Terminate End Call

Coin

Call Receiver Placed On- Idle (Wait for Off- Reset System

Terminated Hook Hook)

Any State Line Fault Detected Out of Order Disable System

Out of Order Line Fixed Idle (Wait for Off- Reset System
Hook)

Department of Electrical & Electronics Engineering, ATMECE, Mysuru Page 8

Embedded System Design:BEE613B | 2024-25

Enhancements:

¢ Timeout Mechanism: If the user doesn’t insert a coin within a few seconds after off-
hook, the receiver resets.

« Multiple Coin Handling: If a user inserts an incorrect coin, the system returns it.

e Concurrent Process Handling (HCFSM): If required, a Hierarchical/Concurrent
FSM model can be used for simultaneous state management (e.g., handling timeouts
and user inputs together).

State A: Ready State E: Call in progress

State B: Wait for coin State F: Call terminated

State C: Wait for number State G: Unable to make call
State D: Dialling State H: Invalid number input
State I: Out of order

Event: Line Fault

Event: Place Receiver i
Action: Done

'FSM Model for Coin Operated Telephone System -
Sequential Program Model
1. Definition

o Asequential program model executes functions or processing tasks in a
defined sequence.

o Similar to procedural programming, where instructions run iteratively or
conditionally.

2. Implementation Methods

o Finite State Machine (FSM): Models execution using states, events,
transitions, and actions.

Department of Electrical & Electronics Engineering, ATMECE, Mysuru Page 9

Embedded System Design:BEE613B | 2024-25

o Flow Charts: Visually represent execution flow in sequential steps.
3. Example — Seat Belt Warning System

o Step 1: Detect if ignition is ON.

o Step 2: Check if seatbelt is fastened within 10 seconds.

o Step 3: If seatbelt not fastened, trigger alarm for 5 seconds.

o Step 4: Alarm turns OFF if seatbelt is fastened, ignition is OFF, or time
expires.

C program for the Seat Belt Warning System based on the flowchart:
#include <stdio.h>
int main() {
int ignitionOn, seatBeltOn;
printf("Ignition Key ON? (1 for YES, 0 for NO):);
scanf("%d", &ignitionOn);
if (lignitionOn) {
printf("Ignition OFF. Exiting system.\n");
return O;
}
printf("Waiting for 10 seconds...\n");
printf("Seat Belt ON? (1 for YES, 0 for NO): ");
scanf("%d", &seatBeltOn);
if (seatBeltOn) {
printf("Seat belt fastened. System secure.\n");
return O;
}
printf("Starting alarm for 5 seconds...\n");
printf("Seat Belt ON or Ignition OFF? (1 for YES, 0 for NO): ");

scanf("%d", &seatBeltOn);

Department of Electrical & Electronics Engineering, ATMECE, Mysuru Page 10

Embedded System Design:BEE613B | 2024-25

if (seatBeltOn) {
printf("Alarm stopped. Exiting.\n");

}else {

printf("Alarm timer expired. Stopping alarm.\n");

¥

return O;
}
Explanation:
e The program checks ignition and seat belt status in a few simple conditional blocks.
o It waits briefly, simulating real-time delays implicitly.

o Alarms and conditions (like seat belt fastened or ignition turned off) are handled
succinctly.

(Ignition Key ON)

| Wait for 10 Seconds

Ignition ON?
Seat Belt ON?

Set Timer for 5 Seconds
Start Ala

YES \o Seat Belt ON?

¥

i Stop Alarm 14—
Y

—"(End)—

Fig. 7.7 Seqnenhal ngram Model for seat
belt warning' system T

Department of Electrical & Electronics Engineering, ATMECE, Mysuru Page 11

Embedded System Design:BEE613B | 2024-25

Concurrent/Communicating Process Model
Overview:
e The concurrent process model executes tasks/processes simultaneously, enhancing
CPU utilization.

o Useful for tasks involving I/O waiting or sleep durations, unlike sequential models

that cause poor utilization.

e Requires task scheduling, synchronization, and communication mechanisms.
Example: Seat Belt Warning System (Concurrent Model)
Tasks divided into:

1. Wait Timer Task: Waits for 10 seconds.

2. Ignition Key Monitoring Task: Monitors ignition status (ON/OFF).

3. Seat Belt Monitoring Task: Monitors seat belt status (ON/OFF).

4. Alarm Control Task: Starts/stops the alarm based on conditions.

5. Alarm Timer Task: Waits for 5 seconds after alarm activation.

Event-Based Synchronization:
o Wait Timer Expire Event: Set when the 10-second timer ends.
e Ignition Events:
o ignition_on (Set when ignition is ON).
o ignition_off (Set when ignition is OFF).
o Seat Belt Events:
o seat_belt_on (Set when seat belt is ON).
o seat_belt_off (Set when seat belt is OFF).
e Alarm Timer Events:
o alarm_timer_start (Set when alarm starts).
o alarm_timer_expire (Set when 5-second alarm ends).
Execution Flow:
e Alarm Control Task: Activates alarm only if:
o Wait timer expires.
o lgnition is ON.
o Seat belt is OFF.
« Waits for events:
o Alarm Timer Expire: Ends after 5 seconds.
o Ignition Off or Seat Belt On: Stops alarm immediately.
Uses in Real-Time Systems:

e Synchronization techniques like shared memory, message passing, and events

coordinate tasks.

« Enhances real-time system modeling by handling multiple concurrent tasks.

Department of Electrical & Electronics Engineering, ATMECE, Mysuru Page 12

Embedded System Design:BEE613B | 2024-25

Object-Oriented Model (Brief Overview)
« Definition:
o A system design approach that breaks complex requirements into simple,
reusable components called objects.
o Key Features:
1. Object: Represents a specific part of the system with unique behavior and state.
2. Class: Abstract blueprint of objects, defining:
= State: Member variables.
= Behavior: Member functions.
e Access Modifiers:
o Private: Accessible only within the class.
o Public: Accessible both inside and outside the class.
o Protected: Accessible to the class and derived classes.
o Benefits:
o Reusability: Simplifies complex designs by reusing objects.
o Maintainability: Easier updates and modifications.
o Productivity: Streamlined system design with abstraction, encapsulation, and
protection.

This flowchart represents the Concurrent/Communicating Process Model for
implementing a Seat Belt Warning System in an embedded system. It illustrates how
multiple tasks are executed concurrently and communicate through events to achieve the
desired system behavior.
Key Components of the Flowchart:
1. Initialization:
o Events such as wait_timer_expire, ignition_on, ignition_off, seat_belt_on, and
seat_belt_off are created and initialized.
o Tasks like Wait Timer, Ignition Key Status Monitor, Seat Belt Status Monitor,
Alarm Control, and Alarm Timer are created.
2. Tasks:
o Wait Timer Task:
= Waits for 10 seconds and signals the wait_timer_expire event.
o lIgnition Key Status Monitor Task:
= Continuously monitors the ignition key status (ON or OFF) and sets or
resets corresponding events (ignition_on or ignition_off).
o Seat Belt Status Monitor Task:
= Monitors if the seat belt is fastened or not and sets/resets events
(seat_belt_on or seat_belt_off).
o Alarm Control Task:
= Waits for wait_timer_expire and checks if the ignition is ON and the
seat belt is OFF.
= Starts the alarm and waits for alarm_timer_expire or events like
ignition_off or seat_belt_on to stop the alarm.

Department of Electrical & Electronics Engineering, ATMECE, Mysuru Page 13

Embedded System Design:BEE613B | 2024-25

o Alarm Timer Task:

= Waits for 5 seconds and signals the alarm_timer_expire event.
Purpose:

This model demonstrates:

o Concurrent Task Execution: Tasks like monitoring ignition status, seat belt status,
and managing the alarm run independently but coordinate through events.

e Task Synchronization and Communication: Tasks communicate via events to
ensure logical system behavior, such as triggering alarms only under specific
conditions.

}S‘top A Iarm0

¥ e O]

Ignition Seat beIlSraJ" Mon
Task :

while(){ .- -~
g'{f (Seat Belt ON)

Set Event seat_belt_on;
Reset Event seat belt ojf

}

else

| Set Event seat_belt_off;
Reset Event seat_beIt__‘on;_

J
L

Department of Electrical & Electronics Engineering, ATMECE, Mysuru Page 14

Embedded System Design:BEE613B | 2024-25

3.3 Embedded Hardware Design and Development: Analog Electronic Components

Summary of Embedded System Hardware Components
Analog Electronic Components
1. Resistors:
o Limit current in circuits.
o Example: Current-limiting resistors for LEDs and buzzers.
2. Capacitors:
o Used for signal filtering, reset circuits, RF matching, and power supply

decoupling.
o Types: Electrolytic, ceramic, tantalum.
3. Inductors:

o Filter power supply ripples and noise.
o Commonly used in matching circuits and filters.
4. Diodes:
o Types:
= Schottky Diode: Low voltage drop, fast switching.
= Zener Diode: Allows reverse current flow above breakdown voltage,
used for voltage clamping.
o Applications: Reverse polarity protection, voltage rectification, freewheeling,
etc.
5. Transistors:
o Applications: Switching (ON/OFF) or amplification.
o Common emitter NPN transistor configuration is widely used in driver circuits
for relays, motors, etc.

3.4 Embedded Hardware Design and Development :Digital Electronic Components,

Digital Electronic Components
1. Digital Circuits:
o Used for processing discrete digital signals in microcontrollers,
microprocessors, and SoCs.
o Examples: Address decoders, latches, encoders/decoders.
2. Glue Logic:
o Custom circuits for interfacing incompatible ICs.
3. Standards:
o Transistor-Transistor Logic (TTL) and CMOS Logic describe the electrical
characteristics of digital signals.
This combination of analog and digital components forms the backbone of embedded systems,
providing the foundation for diverse applications.

Department of Electrical & Electronics Engineering, ATMECE, Mysuru Page 15

Embedded System Design:BEE613B | 2024-25

Brief Summary of Key Concepts
Open Collector and Tri-State Output
1. Open Collector:
o Used for interfacing devices operating at different voltage levels.
o Requires a pull-up resistor to define the output state.
o Supports multi-drop connections (e.g., 12C) and enables "Wired AND/OR"
configurations.

Vee

IC internal circuitry Pull-up

resistor

- O/p pin

Externallinterface

2. Tri-State Output:
o Adds a third state, "High Impedance,” to Logic 0 and Logic 1.
o Includes a "Device Enable" line to activate or deactivate the device.
o Useful for shared buses, ensuring only one device drives the bus at a time.

Logic Components
1. Logic Gates: Perform basic logical operations (AND, OR, XOR, etc.) and are
represented by truth tables.

2. Buffer:
o Amplifies current or power.
o Tri-state buffers used for address/data buses allow device selection.

3. Latch:
o Stores binary data, triggered by a clock signal.
o Example: 74LS373 IC for address latching.

Department of Electrical & Electronics Engineering, ATMECE, Mysuru Page 16

Embedded System Design:BEE613B | 2024-25

AND Gate ~Truth Table NAND Gate ~Truth Table
Bty e b et

01 20 0k 0 0T o)1 I 0
0 1 0 | I2 0 1 1 I
1 0 0 1 0 1 ‘
1 1] | 1 1 0

OR Gate -Truth Table NOR Gate —Truth Table
0|01 0 0] AT,

I 0

0 T |1 ol 110 I;D-
1 0 1 1 0 0
1 1 1 1 1 0

NOT Gate -Truth Table X0

I 0
-I2
0

I

I 0
o)

Logic Gates Truth Table and Symbolic repzesentation

Department of Electrical & Electronics Engineering, ATMECE, Mysuru Page 17

Embedded System Design:BEE613B | 2024-25

7418373
Do | O
i i P o
el Y g [
e D, 0y
B D | 0
T =4
BS
741545 ol Ds | Os
| BO__ Dg | O
= e 2] A 0
N
N ~__JouT L 4%
| |
I"[>"I_ —m—R‘—'ﬁD“ L= Latch Enable Output
[OE\

TR

DO...D7

A0....A7

'Fig.8:6) LatchIC for addrehsiliiﬂéh-fngthhnhiploxed address data-bus

4. Decoder:
o Converts input signals into multiple outputs.
o Example: 74L.S138 (3-to-8 decoder) for address decoding.

Input Qutput |
T4AHCI38 p

~—gﬂ:——~ AT AT Ag[EN EAER[ONON 0AON[OA O OQ[OA
Ag O olojojojolafolalifaleft{1j1]
: o el el
Ay 04\ | A |
IR oftfrlojofuifufef{ifo[t]u]i]t

O\ tlololo ol t{t]tjafrlol1]1T1

O o] jojolaftlt|r|tlt][o]1 1
1itlofofof1firjrjafrjrinjol1

- - I ! [i

d‘ﬁ{i’{ BRERDDRRRERRRNRD

(Fig:8.7) 3to8 Decoder IC and 1/ signal states
5. Encoder:
o Performs the reverse of a decoder, encoding inputs to outputs.

Department of Electrical & Electronics Engineering, ATMECE, Mysuru Page 18

Embedded System Design:BEE613B | 2024-25

o Example: 74L.S148 (8-to-3 encoder) for keyboard encoding.

P] R T
HISHS e AR I

A LT el TR ojol1]1f1]1}
2 AQ tfrffrfrltlela|o]ofi]1]1]0
2 AL Tl fafafafelalilo]eft]1]o]1]
— AL [y laaafefafaa]elel 1] 1] o]0l
6 | tfififolfajtjrlolof1]o]1]1]
1. rjrjofrjrjrfijrjojojlirjoj1of
pjojryrf{rir{1rjrjojojifofoju]
of1{ufufu]ufr]tfojofr]ololo

Ly e

coder 1 and YO sigmalstates-

Multiplexers and De-Multiplexers
1. Multiplexer (MUX):

o Connects multiple inputs to a single output, controlled by selector lines.
o Example: 745151 (8-to-1 MUX).

5

Er i put -

D0 LSSt R TR

7 T 0 0lo] 0|Do DO\

- — 0 o] 1] olpt |p1

—[-H:'* 0 [1] 0] 0D |D2

== [0 J1| 1| o[D3 (D3]

o6] J1lo] o] olp4 (D4

=1 1 10| 1] ofps |Ds\!

1=

= — (1]t} o] olps pa]

QI U= 11| 1] o|p7 DN

k) lx = x71070 (1]
Channel Select x: Don’t care

8to I multiplexer IC and 1/0 signal states

2. De-Multiplexer (D-MUX):

o Routes a single input to one of many outputs, controlled by selector lines.
o Example: NL7SZ18 (1-to-2 D-MUX).

Department of Electrical & Electronics Engineering, ATMECE, Mysuru Page 19

Embedded System Design:BEE613B | 2024-25

NL7SZ18
1 ™~ 1YO0
S

Output
Selector}

Combinational and Sequential Circuits
1. Combinational Circuits:
o Output depends only on current inputs.
o Examples: Encoders, decoders, multiplexers, adders.
o Logic simplified using techniques like Karnaugh Map (K-Map).

e A A
HBRRRROTCY / 1 :
|0]0]0[0 0 0 0 0 0

0ol1/1]0 A/

110(1]0 [/0 0| 1

REIEE kA 1 ‘
C:Camy’ K-Map for Output (O) K-Map for Carry (C)

ig-8.1) ‘Truth Table and K-map representation for Hall Adder

The simplified logical expression for the output (¥) and carry (C) of half adder is given below.
Y=4B+AB
C=4B _
The logical expression AB + 4B represents an XOR gate. Please refer to the ‘truth table’ of XOR gate
given under the ‘Logic Gates’ section. Using K-map it can be represented as:

XOR Gate - T ruth Table A9 1
— PR T AT B
0 1 1
1 0 1 1 1 0
! ! 0 K-Map for XOR Gate

(Fig.8.12) TruthTable and K-map representation for XOR Gate

2. Sequential Circuits:
o Output depends on current and past inputs.
o Require memory elements (e.g., flip-flops).
o Types:
= Synchronous: Uses a clock signal (e.g., registers, counters).
= Asynchronous: Relies on input changes (e.g., ripple counters).

Department of Electrical & Electronics Engineering, ATMECE, Mysuru Page 20

Embedded System Design:BEE613B | 2024-25

3.5 VLSI & Integrated Circuit Design,

Brief Summary of VLSI and EDA Concepts
Integrated Circuit (IC) and VLSI Design
1. IC Evolution:
o Transitioned from vacuum tubes to transistors to ICs.
o ICtypes:
= SSI (Small-Scale Integration): 1-2 logic gates (e.g., LS7400).
= MSI (Medium-Scale Integration): Up to 100 gates (e.g., 7490 decade
counter).
= LSl (Large-Scale Integration): >1000 gates.
= VLSI (Very Large-Scale Integration): Millions of gates (e.g.,
Pentium processor).
o IC types include Digital Design, Analog Design, and Mixed Signal Design.
2. VLSI Design Steps:
o System Specification: Defines chip functionality, input/output, timing, and
power requirements.
o Design Entry: Use block diagrams, truth tables, state diagrams, or HDLs like
VHDL/Verilog.
o Functional Simulation: Verifies functionality using simulation tools.
o Logic Synthesis: Optimizes the design for speed, power, and area.
o Physical Design: Maps circuits to target hardware (FPGA, ASIC, etc.).
o Timing Simulation: Analyzes delays and validates timing requirements.
3. VHDL for VLSI:
o Describes hardware behavior or structure.
o Supports Concurrent, Sequential, Hierarchical, and Timing Modeling.
o Enables portability across technologies like CPLD and FPGA.

3.6 Electronic Design Automation Tools

Electronic Design Automation (EDA) Tools
1. Evolution:
o Shift from manual PCB design to automated tools.
o Early PCBs relied on manual sketches; now replaced by CAD/CAM software.
2. Capabilities of EDA Tools:
o Automate PCB design, routing, and layout.
o Ensure precision and faster development cycles.
3. Popular EDA Tools:
o Key Players: Cadence, Protel, Altium, Cadsoft.
o Common Tools: OrCAD, Eagle, Protel, Cadstar.

Department of Electrical & Electronics Engineering, ATMECE, Mysuru Page 21

Embedded System Design:BEE613B | 2024-25

o OrCAD: Widely used, flexible, user-friendly, with evaluation versions
available.

This summary encapsulates 1C and VLSI design methodologies, VHDL applications, and the
role of modern EDA tools in simplifying PCB and hardware design.

Outcomes

At the end of the module, students will be able to:
CO-3: Analyse embedded system software and hardware requirements. [L3]

TEXT BOOKS:

Shibu K V, “Introduction to Embedded Systems”, Second Edition, McGraw Hill Education

Reference Books/ Link

NPTL Lectures: https://nptel.ac.in/courses/108102045
Embedded Systems, IIT Delhi, Prof. Santanu Chaudhary

Department of Electrical & Electronics Engineering, ATMECE, Mysuru Page 22

