
Embedded System Design:BEE613B 2024-25

Department of Electrical & Electronics Engineering, ATMECE, Mysuru Page 1

MODULE 3: Hardware Software Co design and Program Modelling

Structure

3.1 Hardware Software Co design and Program Modelling : Fundamental issues in Hardware

Software Co-design,

3.2 Computational models in Embedded System Design (Chapter 7 – Text 1: 7.1, 7.2)

3.3 Embedded Hardware Design and Development: Analog Electronic Components,

3.4 Embedded Hardware Design and Development :Digital Electronic Components,

3.5 VLSI & Integrated Circuit Design,

3.6 Electronic Design Automation Tools

Objectives

Learning Objectives

1. Understand Hardware-Software Co-Design: Analyze key issues and architectural

trade-offs.

2. Explore Computational Models: Familiarize with models such as FSM, DFG, and

CDFG.

3. Understand Embedded Hardware Design: Study the role of analog and digital

components.

4. Learn VLSI Design Concepts: Understand IC types, design steps, and

methodologies.

5. Introduction to EDA Tools: Study modern tools like OrCAD, Eagle, and Prote

Embedded System Design:BEE613B 2024-25

Department of Electrical & Electronics Engineering, ATMECE, Mysuru Page 2

3.1 Hardware Software Co design and Program Modelling

Fundamental Issues in Hardware-Software Co-Design

1. Selecting the Model

o Models describe system characteristics and vary at different design stages.

o Specification Stage → Focus on functionality, not implementation.

o Implementation Stage → Switch to models capturing system structure.

2. Selecting the Architecture

o Defines system implementation in terms of components & interconnections.

o Common architectures:

▪ Controller Architecture – Implements finite state machine (FSM).

▪ Datapath Architecture – Implements data flow graph (DFG).

▪ FSMD Architecture – Combines controller + datapath.

▪ CISC Architecture – Complex instruction set, reduces memory access.

▪ RISC Architecture – Simple instruction set, supports pipelining.

▪ VLIW Architecture – Multiple functional units execute parallel

instructions.

▪ SIMD (Single Instruction Multiple Data) – Parallel execution using

one controller.

▪ MIMD (Multiple Instruction Multiple Data) – Multiple processors

execute different instructions.

3. Selecting the Language

o Programming languages map computational models into architecture.

o Software Languages: C, C++, Java (object-oriented models).

o Hardware Languages: VHDL, System C, Verilog (hardware description).

4. Partitioning System Requirements

Embedded System Design:BEE613B 2024-25

Department of Electrical & Electronics Engineering, ATMECE, Mysuru Page 3

o Deciding which functions should be implemented in hardware vs. software.

o Uses hardware-software trade-offs for optimal performance.

3.2 Computational models in Embedded System Design (Chapter 7 – Text 1: 7.1, 7.2)

Computational Models in Embedded System Design

1. Data Flow Graph (DFG) Model

o Data-driven model, where execution is controlled by data flow.

o Processes (operations) represented by circles, arrows indicate data

movement.

o Used in DSP applications and computational-intensive tasks.

o Acyclic DFG (ADFG): No multiple values for inputs/outputs, no feedback

loops.

2. Control Data Flow Graph (CDFG) Model

o Extends DFG model by incorporating control operations (conditionals).

o Uses decision nodes (diamonds) to represent conditional execution.

o Example: Image processing in a digital camera, where the user selects

JPEG, TIFF, BMP format.

Embedded System Design:BEE613B 2024-25

Department of Electrical & Electronics Engineering, ATMECE, Mysuru Page 4

3. State Machine Model (FSM)

o Models reactive/event-driven systems (e.g., industrial control, automotive

applications).

o System is represented by:

▪ States (e.g., "Alarm Off", "Waiting", "Alarm On").

▪ Events (e.g., "Ignition ON", "Seat Belt ON", "Timer Expire").

▪ Actions & Transitions (state changes triggered by events).

o Example: Seat Belt Warning System in Automobiles

▪ If ignition is ON and the seatbelt is not fastened within 10 sec, an

alarm sounds for 5 sec.

▪ Alarm stops when the belt is fastened, ignition is off, or time expires.

4. Timer State Machine (FSM Model)

o Timer operates in three states:

▪ IDLE: When timer is not running.

▪ READY: When the timer is loaded with time delay value.

▪ RUNNING: Timer counts down until expiration or a stop event occurs.

Embedded System Design:BEE613B 2024-25

Department of Electrical & Electronics Engineering, ATMECE, Mysuru Page 5

Example-1

Question

Design an Automatic Tea/Coffee Vending Machine using FSM Model

A tea/coffee vending machine operates based on a Finite State Machine (FSM) model

with the following requirements:

1. The machine starts in ‘Wait for Coin’ state.

2. The user inserts a ₹5 coin to initiate the vending process.

3. After inserting the coin, the system transitions to ‘Wait for User Input’ state.

4. The user can select:

o ‘Tea’ → Transitions to ‘Dispense Tea’ state.

o ‘Coffee’ → Transitions to ‘Dispense Coffee’ state.

Embedded System Design:BEE613B 2024-25

Department of Electrical & Electronics Engineering, ATMECE, Mysuru Page 6

o ‘Cancel’ → Coin is returned, and state transitions back to ‘Wait for Coin’.

5. Once the drink is dispensed, the system resets back to ‘Wait for Coin’.

6. Additional conditions may include:

o Timeout in ‘Wait for User Input’ state (if no input, coin is returned).

o Error Handling for ‘Water Not Available’ or ‘Mix Not Available’.

Solution – FSM Representation

States of the FSM Model:

1. Wait for Coin → Initial state, waiting for a ₹5 coin.

2. Wait for User Input → Waiting for selection of Tea, Coffee, or Cancel.

3. Dispense Tea → Vends tea, then returns to Wait for Coin.

4. Dispense Coffee → Vends coffee, then returns to Wait for Coin.

5. Error State (Optional) → Handles no water/mix availability issues.

FSM State Transitions:

Current State Event (Input) Next State Action

Wait for Coin Insert ₹5 coin Wait for User Input Accept Coin

Wait for User Input Press ‘Tea’ Dispense Tea Start Tea Dispensing

Wait for User Input Press ‘Coffee’ Dispense Coffee Start Coffee Dispensing

Wait for User Input Press ‘Cancel’ Wait for Coin Return Coin

Dispense Tea Tea Dispensed Wait for Coin Reset System

Dispense Coffee Coffee Dispensed Wait for Coin Reset System

Wait for User Input Timeout (No Selection) Wait for Coin Return Coin

Any State Error (No Water/Mix) Error State Display Error

Error State Problem Resolved Wait for Coin Reset System

Enhancements:

• Timeout Mechanism: If the user doesn’t select within a few seconds, the coin is

returned.

Embedded System Design:BEE613B 2024-25

Department of Electrical & Electronics Engineering, ATMECE, Mysuru Page 7

• Error Handling: If water or tea/coffee mix is unavailable, the system enters an Error

State.

Example-2

Question

Design a Coin-Operated Public Telephone Unit using FSM Model

A coin-operated public telephone system is modeled using Finite State Machine (FSM)

with the following requirements:

1. Call initiation starts when the receiver is lifted (off-hook).

2. The user must insert a ₹1 coin to proceed with the call.

3. If the line is busy, the coin is returned when the receiver is placed back on hook (on-

hook).

4. If the line is connected, the user can talk for 60 seconds.

5. At the 45th second, the system prompts the user to insert another ₹1 coin to

continue the call.

6. If no additional coin is inserted, the call terminates after 60 seconds.

7. The system resets when the receiver is placed back on-hook.

8. If there is a line fault, the system enters an ‘Out of Order’ state.

Embedded System Design:BEE613B 2024-25

Department of Electrical & Electronics Engineering, ATMECE, Mysuru Page 8

Solution – FSM Representation

FSM States:

1. Idle (Wait for Off-Hook) → Initial state, waiting for the receiver to be lifted.

2. Wait for Coin → User must insert a ₹1 coin.

3. Check Line Status → System checks if the line is busy or connected.

4. Busy Signal → If the line is busy, the coin is returned, and the system resets.

5. Call in Progress → User is allowed to talk for 60 seconds.

6. Prompt for Coin → At 45 seconds, a prompt for another ₹1 coin is given.

7. Timeout/Call Termination → If no coin is inserted, the call ends after 60 seconds.

8. Out of Order → If a line fault occurs, the system stops working.

FSM State Transitions:

Current State Event (Input) Next State Action

Idle (On-Hook) Receiver Lifted Wait for Coin Wait for user

input

Wait for Coin Insert ₹1 Coin Check Line Status Accept Coin

Check Line Line Busy Busy Signal Return Coin

Check Line Line Connected Call in Progress Start 60-sec timer

Call in Progress Timer = 45 sec Prompt for Coin Notify user

Prompt for

Coin

Insert ₹1 Coin Call in Progress Extend call

Prompt for

Coin

No Coin Inserted Timeout/Terminate End Call

Call

Terminated

Receiver Placed On-

Hook

Idle (Wait for Off-

Hook)

Reset System

Any State Line Fault Detected Out of Order Disable System

Out of Order Line Fixed Idle (Wait for Off-

Hook)

Reset System

Embedded System Design:BEE613B 2024-25

Department of Electrical & Electronics Engineering, ATMECE, Mysuru Page 9

Enhancements:

• Timeout Mechanism: If the user doesn’t insert a coin within a few seconds after off-

hook, the receiver resets.

• Multiple Coin Handling: If a user inserts an incorrect coin, the system returns it.

• Concurrent Process Handling (HCFSM): If required, a Hierarchical/Concurrent

FSM model can be used for simultaneous state management (e.g., handling timeouts

and user inputs together).

Sequential Program Model

1. Definition

o A sequential program model executes functions or processing tasks in a

defined sequence.

o Similar to procedural programming, where instructions run iteratively or

conditionally.

2. Implementation Methods

o Finite State Machine (FSM): Models execution using states, events,

transitions, and actions.

Embedded System Design:BEE613B 2024-25

Department of Electrical & Electronics Engineering, ATMECE, Mysuru Page 10

o Flow Charts: Visually represent execution flow in sequential steps.

3. Example – Seat Belt Warning System

o Step 1: Detect if ignition is ON.

o Step 2: Check if seatbelt is fastened within 10 seconds.

o Step 3: If seatbelt not fastened, trigger alarm for 5 seconds.

o Step 4: Alarm turns OFF if seatbelt is fastened, ignition is OFF, or time

expires.

C program for the Seat Belt Warning System based on the flowchart:

#include <stdio.h>

int main() {

 int ignitionOn, seatBeltOn;

 printf("Ignition Key ON? (1 for YES, 0 for NO): ");

 scanf("%d", &ignitionOn);

 if (!ignitionOn) {

 printf("Ignition OFF. Exiting system.\n");

 return 0;

 }

 printf("Waiting for 10 seconds...\n");

 printf("Seat Belt ON? (1 for YES, 0 for NO): ");

 scanf("%d", &seatBeltOn);

 if (seatBeltOn) {

 printf("Seat belt fastened. System secure.\n");

 return 0;

 }

 printf("Starting alarm for 5 seconds...\n");

 printf("Seat Belt ON or Ignition OFF? (1 for YES, 0 for NO): ");

 scanf("%d", &seatBeltOn);

Embedded System Design:BEE613B 2024-25

Department of Electrical & Electronics Engineering, ATMECE, Mysuru Page 11

 if (seatBeltOn) {

 printf("Alarm stopped. Exiting.\n");

 } else {

 printf("Alarm timer expired. Stopping alarm.\n");

 }

 return 0;

}

Explanation:

• The program checks ignition and seat belt status in a few simple conditional blocks.

• It waits briefly, simulating real-time delays implicitly.

• Alarms and conditions (like seat belt fastened or ignition turned off) are handled

succinctly.

Embedded System Design:BEE613B 2024-25

Department of Electrical & Electronics Engineering, ATMECE, Mysuru Page 12

Concurrent/Communicating Process Model

Overview:

• The concurrent process model executes tasks/processes simultaneously, enhancing

CPU utilization.

• Useful for tasks involving I/O waiting or sleep durations, unlike sequential models

that cause poor utilization.

• Requires task scheduling, synchronization, and communication mechanisms.

Example: Seat Belt Warning System (Concurrent Model)

Tasks divided into:

1. Wait Timer Task: Waits for 10 seconds.

2. Ignition Key Monitoring Task: Monitors ignition status (ON/OFF).

3. Seat Belt Monitoring Task: Monitors seat belt status (ON/OFF).

4. Alarm Control Task: Starts/stops the alarm based on conditions.

5. Alarm Timer Task: Waits for 5 seconds after alarm activation.

Event-Based Synchronization:

• Wait Timer Expire Event: Set when the 10-second timer ends.

• Ignition Events:

o ignition_on (Set when ignition is ON).

o ignition_off (Set when ignition is OFF).

• Seat Belt Events:

o seat_belt_on (Set when seat belt is ON).

o seat_belt_off (Set when seat belt is OFF).

• Alarm Timer Events:

o alarm_timer_start (Set when alarm starts).

o alarm_timer_expire (Set when 5-second alarm ends).

Execution Flow:

• Alarm Control Task: Activates alarm only if:

o Wait timer expires.

o Ignition is ON.

o Seat belt is OFF.

• Waits for events:

o Alarm Timer Expire: Ends after 5 seconds.

o Ignition Off or Seat Belt On: Stops alarm immediately.

Uses in Real-Time Systems:

• Synchronization techniques like shared memory, message passing, and events

coordinate tasks.

• Enhances real-time system modeling by handling multiple concurrent tasks.

Embedded System Design:BEE613B 2024-25

Department of Electrical & Electronics Engineering, ATMECE, Mysuru Page 13

Object-Oriented Model (Brief Overview)

• Definition:

o A system design approach that breaks complex requirements into simple,

reusable components called objects.

• Key Features:

1. Object: Represents a specific part of the system with unique behavior and state.

2. Class: Abstract blueprint of objects, defining:

▪ State: Member variables.

▪ Behavior: Member functions.

• Access Modifiers:

o Private: Accessible only within the class.

o Public: Accessible both inside and outside the class.

o Protected: Accessible to the class and derived classes.

• Benefits:

o Reusability: Simplifies complex designs by reusing objects.

o Maintainability: Easier updates and modifications.

o Productivity: Streamlined system design with abstraction, encapsulation, and

protection.

This flowchart represents the Concurrent/Communicating Process Model for

implementing a Seat Belt Warning System in an embedded system. It illustrates how

multiple tasks are executed concurrently and communicate through events to achieve the

desired system behavior.

Key Components of the Flowchart:

1. Initialization:

o Events such as wait_timer_expire, ignition_on, ignition_off, seat_belt_on, and

seat_belt_off are created and initialized.

o Tasks like Wait Timer, Ignition Key Status Monitor, Seat Belt Status Monitor,

Alarm Control, and Alarm Timer are created.

2. Tasks:

o Wait Timer Task:

▪ Waits for 10 seconds and signals the wait_timer_expire event.

o Ignition Key Status Monitor Task:

▪ Continuously monitors the ignition key status (ON or OFF) and sets or

resets corresponding events (ignition_on or ignition_off).

o Seat Belt Status Monitor Task:

▪ Monitors if the seat belt is fastened or not and sets/resets events

(seat_belt_on or seat_belt_off).

o Alarm Control Task:

▪ Waits for wait_timer_expire and checks if the ignition is ON and the

seat belt is OFF.

▪ Starts the alarm and waits for alarm_timer_expire or events like

ignition_off or seat_belt_on to stop the alarm.

Embedded System Design:BEE613B 2024-25

Department of Electrical & Electronics Engineering, ATMECE, Mysuru Page 14

o Alarm Timer Task:

▪ Waits for 5 seconds and signals the alarm_timer_expire event.

Purpose:

This model demonstrates:

• Concurrent Task Execution: Tasks like monitoring ignition status, seat belt status,

and managing the alarm run independently but coordinate through events.

• Task Synchronization and Communication: Tasks communicate via events to

ensure logical system behavior, such as triggering alarms only under specific

conditions.

Embedded System Design:BEE613B 2024-25

Department of Electrical & Electronics Engineering, ATMECE, Mysuru Page 15

3.3 Embedded Hardware Design and Development: Analog Electronic Components

Summary of Embedded System Hardware Components

Analog Electronic Components

1. Resistors:

o Limit current in circuits.

o Example: Current-limiting resistors for LEDs and buzzers.

2. Capacitors:

o Used for signal filtering, reset circuits, RF matching, and power supply

decoupling.

o Types: Electrolytic, ceramic, tantalum.

3. Inductors:

o Filter power supply ripples and noise.

o Commonly used in matching circuits and filters.

4. Diodes:

o Types:

▪ Schottky Diode: Low voltage drop, fast switching.

▪ Zener Diode: Allows reverse current flow above breakdown voltage,

used for voltage clamping.

o Applications: Reverse polarity protection, voltage rectification, freewheeling,

etc.

5. Transistors:

o Applications: Switching (ON/OFF) or amplification.

o Common emitter NPN transistor configuration is widely used in driver circuits

for relays, motors, etc.

3.4 Embedded Hardware Design and Development :Digital Electronic Components,

Digital Electronic Components

1. Digital Circuits:

o Used for processing discrete digital signals in microcontrollers,

microprocessors, and SoCs.

o Examples: Address decoders, latches, encoders/decoders.

2. Glue Logic:

o Custom circuits for interfacing incompatible ICs.

3. Standards:

o Transistor-Transistor Logic (TTL) and CMOS Logic describe the electrical

characteristics of digital signals.

This combination of analog and digital components forms the backbone of embedded systems,

providing the foundation for diverse applications.

Embedded System Design:BEE613B 2024-25

Department of Electrical & Electronics Engineering, ATMECE, Mysuru Page 16

Brief Summary of Key Concepts

Open Collector and Tri-State Output

1. Open Collector:

o Used for interfacing devices operating at different voltage levels.

o Requires a pull-up resistor to define the output state.

o Supports multi-drop connections (e.g., I2C) and enables "Wired AND/OR"

configurations.

2. Tri-State Output:

o Adds a third state, "High Impedance," to Logic 0 and Logic 1.

o Includes a "Device Enable" line to activate or deactivate the device.

o Useful for shared buses, ensuring only one device drives the bus at a time.

Logic Components

1. Logic Gates: Perform basic logical operations (AND, OR, XOR, etc.) and are

represented by truth tables.

2. Buffer:

o Amplifies current or power.

o Tri-state buffers used for address/data buses allow device selection.

3. Latch:

o Stores binary data, triggered by a clock signal.

o Example: 74LS373 IC for address latching.

Embedded System Design:BEE613B 2024-25

Department of Electrical & Electronics Engineering, ATMECE, Mysuru Page 17

Embedded System Design:BEE613B 2024-25

Department of Electrical & Electronics Engineering, ATMECE, Mysuru Page 18

4. Decoder:

o Converts input signals into multiple outputs.

o Example: 74LS138 (3-to-8 decoder) for address decoding.

5. Encoder:

o Performs the reverse of a decoder, encoding inputs to outputs.

Embedded System Design:BEE613B 2024-25

Department of Electrical & Electronics Engineering, ATMECE, Mysuru Page 19

o Example: 74LS148 (8-to-3 encoder) for keyboard encoding.

Multiplexers and De-Multiplexers

1. Multiplexer (MUX):

o Connects multiple inputs to a single output, controlled by selector lines.

o Example: 74S151 (8-to-1 MUX).

2. De-Multiplexer (D-MUX):

o Routes a single input to one of many outputs, controlled by selector lines.

o Example: NL7SZ18 (1-to-2 D-MUX).

Embedded System Design:BEE613B 2024-25

Department of Electrical & Electronics Engineering, ATMECE, Mysuru Page 20

Combinational and Sequential Circuits

1. Combinational Circuits:

o Output depends only on current inputs.

o Examples: Encoders, decoders, multiplexers, adders.

o Logic simplified using techniques like Karnaugh Map (K-Map).

2. Sequential Circuits:

o Output depends on current and past inputs.

o Require memory elements (e.g., flip-flops).

o Types:

▪ Synchronous: Uses a clock signal (e.g., registers, counters).

▪ Asynchronous: Relies on input changes (e.g., ripple counters).

Embedded System Design:BEE613B 2024-25

Department of Electrical & Electronics Engineering, ATMECE, Mysuru Page 21

3.5 VLSI & Integrated Circuit Design,

Brief Summary of VLSI and EDA Concepts

Integrated Circuit (IC) and VLSI Design

1. IC Evolution:

o Transitioned from vacuum tubes to transistors to ICs.

o IC types:

▪ SSI (Small-Scale Integration): 1-2 logic gates (e.g., LS7400).

▪ MSI (Medium-Scale Integration): Up to 100 gates (e.g., 7490 decade

counter).

▪ LSI (Large-Scale Integration): >1000 gates.

▪ VLSI (Very Large-Scale Integration): Millions of gates (e.g.,

Pentium processor).

o IC types include Digital Design, Analog Design, and Mixed Signal Design.

2. VLSI Design Steps:

o System Specification: Defines chip functionality, input/output, timing, and

power requirements.

o Design Entry: Use block diagrams, truth tables, state diagrams, or HDLs like

VHDL/Verilog.

o Functional Simulation: Verifies functionality using simulation tools.

o Logic Synthesis: Optimizes the design for speed, power, and area.

o Physical Design: Maps circuits to target hardware (FPGA, ASIC, etc.).

o Timing Simulation: Analyzes delays and validates timing requirements.

3. VHDL for VLSI:

o Describes hardware behavior or structure.

o Supports Concurrent, Sequential, Hierarchical, and Timing Modeling.

o Enables portability across technologies like CPLD and FPGA.

3.6 Electronic Design Automation Tools

Electronic Design Automation (EDA) Tools

1. Evolution:

o Shift from manual PCB design to automated tools.

o Early PCBs relied on manual sketches; now replaced by CAD/CAM software.

2. Capabilities of EDA Tools:

o Automate PCB design, routing, and layout.

o Ensure precision and faster development cycles.

3. Popular EDA Tools:

o Key Players: Cadence, Protel, Altium, Cadsoft.

o Common Tools: OrCAD, Eagle, Protel, Cadstar.

Embedded System Design:BEE613B 2024-25

Department of Electrical & Electronics Engineering, ATMECE, Mysuru Page 22

o OrCAD: Widely used, flexible, user-friendly, with evaluation versions

available.

This summary encapsulates IC and VLSI design methodologies, VHDL applications, and the

role of modern EDA tools in simplifying PCB and hardware design.

 Outcomes

At the end of the module, students will be able to:

CO-3: Analyse embedded system software and hardware requirements. [L3]

TEXT BOOKS:

Shibu K V, “Introduction to Embedded Systems”, Second Edition, McGraw Hill Education

Reference Books/ Link

NPTL Lectures: https://nptel.ac.in/courses/108102045

 Embedded Systems, IIT Delhi, Prof. Santanu Chaudhary

