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                                                              MODULE - 5 
 
SYSTEM ANALYSIS USING POLAR PLOTS: NYQUIST CRITERION 
 
System Analysis using Polar Plots: Nyquist Criterion 

Polar plots can be used to predict feed back control system stability by the application of Nyquist 

Criterion, and therefore are also referred as Nyquist Plots. It is a labor saving technique in the 

analysis of dynamic behaviour of control systems in which the need for finding roots of 

characteristic equation of the system is eliminated.   

Consider a typical closed loop control system which may be represented by the simplified block 

diagram as shown in Figure 6.4 

 
 
 
 
 
 

 
 
  Figure 6.4 Simplified System Block Diagram 
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The closed-loop transfer function or the relationship between the output and input of the system 

is given by   
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The open-loop transfer function is G(S) H(S) (the transfer function with the feedback loop 

broken at the summing point). 

1+ G(S) H(S) is called Characteristic Function which when equated to zero gives the 

Characteristic Equation of the system. 

1 + G(S) H(S) = 0   Characteristic Equation  

The characteristic function F(S) = 1 + G(S) H(S) can be expressed as the ratio of two factored 

polynomials. 
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The Characteristic equation in general can be represented as  

F(S) = K (S+Z1) (S+Z2) (S+Z3) ………. (S+Zn) = 0 

Then: 

–Z1, -Z2, -Z3 …. –Zn are the roots of the characteristic equation  

 at S= -Z1, S= -Z2, S= -Z3,   1+ G(S) H(S) becomes zero.  

These values of S are termed as Zeros of F(S)  

Similarly: 

at S= -P1, S= -P2, S= -P3 ……. Etc.  1+ G (S) H (S) becomes infinity.  

These values are called Poles of F (S). 
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Condition for Stability 

For stable operation of control system all the roots of characteristic equation must be 

negative real numbers or complex numbers with negative real parts. Therefore, for a system 

to be stable all the ―Zeros‖ of characteristic equation (function) should be either negative real 

numbers or complex numbers with negative real parts. These roots can be plotted on a complex-

plane or S-plane in which the imaginary axis divides the complex plane in to two parts: right half 

plane and left half plane. Negative real numbers or complex numbers with negative real parts lie 

on the left of S-plane as shown Figure 6.5. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 6.5 Two halves of Complex Plane 
 
Therefore the roots which are positive real numbers or complex numbers with positive real parts 

lie on the right-half of S-plane. 

In view of this, the condition for stability can be stated as ―For a system to be stable all the 

zeros of characteristic equation should lie on the left half of S-plane‖. 

Therefore, the procedure for investigating system stability is to search for ‗Zeros‘ on the right 

half of S-plane, which would lead the system to instability, if present. However, it is 

impracticable to investigate every point on S-plane as to which half of S-plane it belongs to and 
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so it is necessary to have a short-cut method. Such a procedure for searching the right half of S-

plane for the presence of Zeros and interpretation of this procedure on the Polar plot is given by 

the Nyquist Criterion. 

Nyquist Criterion: Cauchy‘s Principle of Argument:  

In order to investigate stability on the Polar plot, it is first necessary to correlate the region of 

instability on the S-plane with identification of instability on the polar plot, or 1+GH plane. The 

1+GH plane is frequently the name given to the plane where 1+G(S) H(S) is plotted in complex 

coordinates with S replaced by j. Likewise, the plot of G(S) H(S) with S replaced by j is often 

termed as GH plane. This terminology is adopted in the remainder of this discussion.  

 

The Nyquist Criterion is based on the Cauchy‘s principle of argument of complex variable 

theory. Consider [F(S) = 1+G(S) H(S)] be a single valued rational function which is analytic 

everywhere in a specified region except at a finite number of points in S-plane. (A function F(S) 

is said to be analytic if the function and all its derivatives exist). The points where the function 

and its derivatives does not exist are called singular points. The poles of a point are singular 

points.  

Let CS be a closed path chosen in S-plane as shown Figure 6.6 (a) such that the function F(S) is 

analytic at all points on it. For each point on CS represented on S-plane there is a corresponding 

mapping point in F(S) plane. Thus when mapping is made on F(S) plane, the curve CG mapped 

by the function F(S) plane is also a closed path as shown in Figure 6.6 (b). The direction of 

traverse of CG in F(S) plane may be clockwise or counter clockwise, depending upon the 

particular function F(S).  
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Then the Cauchy principle of argument states that: The mapping made on F(S) plane will 

encircle its origin as many number of times as the difference between the number of Zeros 

and Poles of F(S) enclosed by the S-plane locus CS in the S-plane. 

 

   

Figure 6.6 (a)       Figure 6.6 (b) 

Figure 6.6 Mapping on S-plane and F(S) plane 

Thus         N = Z – P 

 N0+j0 = Z – P 

Where N0+j0: Number of encirclements made by F(S) plane plot (CG) about its origin.      

Z and P: Number of Zeros and Poles of F(S) respectively enclosed by the locus CS in the S-

plane. 

Illustration: Consider a function F(S)  
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Zeros: -1, (-2-j2), (-2+j2) indicated by O (dots) in the S-plane 

Poles: 0, -3, -5, (-5 –j2), (-5 +j2) indicated by X (Cross) in S-plane: As shown in Figure 6.6 (c) 
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 Figure 6.6 (c)       Figure 6.6 (d) 

Now consider path CS1 (CCW) on S-plane for which: 

Z: 2,  P =1 

Consider another path CS2 (CCW) in the same S plane for which:   

 Z = 1,  P = 4 

CG1 and CG2 are the corresponding paths on F(S) plane [Figure 6.6 (d)].   

Considering CG1 [plot corresponding to CS1 on F (S) plane]  

N0+j0 = Z – P = 2-1 = +1 

CG1 will encircle the origin once in the same direction of CS1 (CCW) 

Similarly for the path CG2  

N0+j0 = Z – P = 1 – 4 = - 3  

CG2 will encircle the origin 3 times in the opposite direction of CS2 (CCW) 

Note: The mapping on F(S) plane will encircle its origin as many number of times as the 

difference between the number of Zeros and Poles of F(S) enclosed by the S-plane locus. 

From the above it can be observed that  

S-plane +j 

-j 

σ 

CS2 

-σ 

CS1 

O: ZEROS 
X: POLES 

+j 

-j 

σ 

CG2 

-σ 

CG1 

CG2 

CG2 

(0+j0) 

F(S) = 1+G(S) H(S) plane 

CS1 

CS2 

Department of EEE, ATMECE 6

18EE61



Control Systems                                                                                                                                                          
 

 
 

In the expression  

N= Z - P,  

N can be positive when:  Z>P 

N = 0 when:  Z = P 

N can be negative when:  Z<P 

 When N is positive the map CG encircles the origin N times in the same direction as that of 

CS 

 When N = 0, No encirclements 

 N is negative the map CG encircles the origin N times in the opposite direction as that of CS  

Nyquist Path and Nyquist Plot 

The above Cauchy‘s principle of argument can be used to investigate the stability of control 

systems. We have seen that if the Zeros of characteristic function lie on the right half of S-plane 

it will lead to system instability. Now, to encircle the entire right half of S-plane, select a closed 

path as shown in Figure 6.6 (e) such that all the Zeros lying on the right-half of S-plane will lie 

inside this path. This path in S-plane is known as Nyquist path. Nyquist path is generally taken 

in CCW direction. This path consists of the imaginary axis of the S-plane (S = 0+j, - <  < ) 

and a closing semicircle of infinite radius. If the system being tested has poles of F(S) on the 

imaginary axis, it is customary to modify the contour as shown Figure 6.6 (f) excluding these 

poles from the path. 
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Figure 6.6 (e): Nyquist Path     Figure 6.6 (f) 

Corresponding to the Nyquist path a plot can be mapped on F(S) = 1+G(S) H(S) plane as shown 

in Figure 6.6 (g) and the number of encirclements made by this F(S) plot about its origin can be 

counted. 

 

Figure 6.6 (g) 

Now from the principle of argument 

N0+j0 = Z-P   

N0+j0 = number of encirclements made by F(S) plane plot 

Z, P: Zeros and Poles lying on right half of S-plane 
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For the system to be stable: Z = 0 

N0+j0 = - P  Condition for Stability 

Apart from this, the Nyquist path can also be mapped on G(S) H(S) plane (Open-loop transfer 

function plane) as shown in Figure 6.6 (h).  

Now consider  

F(S) = 1+ G(S) H(S) for which the origin is (0+j0) as shown in Figure 6.6 (g). 

Therefore G(S) H(S) = F(S) – 1 

  = (0+j0) – 1 = (-1+j0) Coordinates for origin on G(S) H(S) plane as shown in 

Figure 6.6(h)  

     

   Figure 6.6 (h) 

Thus a path on 1+ G(S) H(S) plane can be easily converted to a path on G(S) H(S) plane or open 

loop transfer function plane. This path will be identical to that of 1+G(S) H(S) path except that 

the origin is now shifted to the left by one as shown in Figure 6.6 (h). 

This concept can be made use of by making the plot in G(S) H(S) plane instead of 1+ G(S) H(S) 

plane. The plot made on G(S) H(S) plane is termed as the Niquist Plot and its net encirclements 

about (-1+j0) (known as critical point) will be the same as the number of net encirclements made 

by F(S) plot in the F(S) = 1+G(S) H(S) plane about the origin. 

Now, the principle of argument now can be re-written as 

Img 
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N-1+j0 = Z-P 

Where N-1+j0 = Number of net encirclements made by the G(S) H(S) plot (Nyquist Plot) in the 

G(S) H(S) plane about -1+j0 

For a system to be stable Z = 0 

N-1+j0 = -P 

 

Thus the Nyquist Criterion for a stable system can be stated as The number of net 

encirclements made by the Nyquist plot in the G(S) H(S) plane about the critical point       

(-1+j0) is equal to the number of poles of F(S) lying in right half of S-plane. [Encirclements 

if any will be in the opposite direction. Poles of F(S) are the same as the poles of G(S) H(S)]. 

Thus the stability of closed-loop control system is determined from its open-loop transfer 

function. 

 

System Analysis using Nyquist Criterion: Illustrations   

Illustration 1: Sketch the Nyquist plot for the system represented by the open loop transfer 

function and comment on its stability. 
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K
SHSG   Poles: S = 0 (on imaginary axis) and S = -a 

Step 1: Define Nyquist path. Let the Nyquist path be defined as given below. 
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Section I:  S = +j to S = +j0; Section II:  S = +j0 to S = -j0 

Section III:  S = -j0 to S = -j; Section IV:  S = -j to S = +j 

 

2. Corresponding to different sections namely I, II, III, and IV Obtain polar plots on G(S) H(S) 

plane, which are nothing but Nyquist Plots. 

Nyquist Plot for Section I:  In S-plane section I runs from S= + j to S = +j0  

To obtain polar plot in G(S) H(S) plane: 
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G(S) H(S) = K/a – S = 0 - 900 = - 900 
 
 

            
 
 
Nyquist Plot for Section II:  In S-plane section II runs from S= + j0 to S = -j0 
 
In this region 0S  
 
In S-plane section II is a semicircle from S = + j0 to S = -j0 of radius r ≈ 00, covering an angle of 
1800 in clockwise direction 
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But S = re+j equation of a circle in exponential form 
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This shows that G(S) H(S) plot of section II of Nyquist path is a circle of radius =  starting 
from S = +j0 and ending at a point S = -j0 covering an angle of 1800 in opposite direction of 
section II of Nyquist path (CCW direction i.e., negative sign) 
 

In general if G (S) H (S) = 
nS

K 1
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nr

K 1

 

   
 
The G (S) H (S) plot will be a portion circle (part) of radius R , starting at a point S = +jθ 
and ending at a point S = -jθ covering an angle of (n*1800) in the opposite direction (CCW) 
(since sign is negative)  
 
Nyquist Plot for Section III: In S-plane section III runs from S= -j0 to S = j∞ 
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G(S) H(S) = K - S2 = 0 – 2 (-900) = 1800 ;  (‗S‘ is negative) 
 
 

 
 
This Section III is the mirror image of section of the Section I. 
 
Nyquist Plot for Section IV: In S-plane section IV runs from S= -j∞ to S = j∞ 
 
In this region S   
 
In the S-plane it is a semicircle of radius R from S = - j ∞ to S = + j ∞ covering an angle of 
1800 in the counter clockwise direction. 
 
 In the G(S) H(S) plane 
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Thus G(S) H(S) plot for section IV is also a circle of radius 0r starting at S = - j ∞ and 
ending at S = + j ∞ covering an angle of 2* 1800 (2) in the opposite direction (CW). 
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Now assemble the Nyquist plots of all the sections as given below to get the overall Nyquist 
plot 
 

 
 
From Nyquist Criterion: 
 
No. of encirclements made by Nyquist plot about (– 1 +j0) = N-1+j0 = Z – P 
 
P = No. of poles lying in the right half of S plane 
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For the function
)(
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
 , the Poles are: S = 0, S = - a = 0, which lie on the left half 

of S-plane 
 
Therefore P = 0: Number of poles on the right half of S-plane  
 
N-1+j=0

 = 0 as counted from the Nyquist plot  
 
N-1+j0 = Z – P  
 
0 = Z – 0 
 
Therefore Z = 0 
 
Number of zeros lying on the right half of S-plane is 0 and hence the system is stable 
 
Illustration 2: Obtain the Nyquist diagram for the system represented by the block diagram given 
below and comment on its stability 
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Recommended Questions: 
 

1. Explain briefly the different Graphical Methods to Represent Frequency Response Data . 
 
2.  A second order system has a natural frequency of 10 rad/sec and a damping ratio of 0.5. 

Sketch the polar plot for the system. 

3.  Obtain the polar plot for the transfer function  

4. Sketch the polar plots for the system represented by the following open loop transfer function.
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5. Sketch the polar plots for the system represented by the following open loop transfer function. 
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6.  Sketch the polar plots for the system represented by the following open loop transfer function.   
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7.   Draw Nyquist path for the function F(s) 
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