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MODULE - 4 
 Root–Locus Techniques 
 

The characteristics of the transient response of a closed loop control system are related to 
location of the closed loop poles. If the system has a variable loop gain, then the location of the 
closed loop poles depends on the value of the loop gain chosen. It is important, that the designer 
knows how the closed loop poles move in the s-plane as the loop gain is varied. W. R. Evans 
introduced a graphical method for finding the roots of the characteristic equation known as root 
locus method. The root locus is used to study the location of the poles of the closed loop transfer 
function of a given linear system as a function of its parameters, usually a loop gain, given its 
open loop transfer function. The roots corresponding to a particular value of the system 
parameter can then be located on the locus or the value of the parameter for a desired root 
location can be determined from the locus. It is a powerful technique, as an approximate root 
locus sketch can be made quickly and the designer can visualize the effects of varying system 
parameters on root locations or vice versa. It is applicable for single loop as well as multiple loop 
system. 
 
 5. ROOT LOCUS CONCEPT 
 

To understand the concepts underlying the root locus technique, consider the second 
order system shown in Fig. 1. 

                                      
                                    Fig. 3 Second order control system 
 

The open loop transfer function of this system is 

)1(
a)s(s

KG(s)


  

Where, K and a are constants. The open loop transfer function has two poles one at origin s = 0 
and the other at s = -a. The closed loop transfer function of the system shown in Fig.1 is 
 

(2)
Kass

K
G(s)H(s)1
G(s)

R(s)
C(s)

2 



  

 
 
 
The characteristic equation for the closed loop system is obtained by setting the 

denominator of the right hand side of Eqn.(2) equal to zero. That is, 
 

R(s) E(s) 

− 

 
a)s(s

K


 
C(s) 
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(3)0 KassG(s)H(s)1 2   
 

The second order system under consideration is always stable for positive values of a and 
K but its dynamic behavior is controlled by the roots of Eqn.(3) and hence, in turn by the 
magnitudes of a and K, since the roots are given by 
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From Eqn.(4), it is seen that as the system parameters a or K varies, the roots change. 

Consider a to be constant and gain K to be variable. As K is varied from zero to infinity, the two 
roots s1 and s2 describe loci in the s-plane. Root locations for various ranges of K are: 
 

1) K= 0, the two roots are real and coincide with open loop poles of the system s1 = 
0, s2 = -a.  

2) 0  K < a2/4, the roots are real and distinct. 
3) K= a2/4, roots are real and equal. 
4) a2/4 < K < , the rots are complex conjugates. 

 
The root locus plot is shown in Fig.2 

 
                                Fig. 4 Root loci of s2+as+K as a function of K 
  

Figure 2 has been drawn by the direct solution of the characteristic equation. This 
procedure becomes tedious. Evans graphical procedure helps in sketching the root locus quickly. 
The characteristic equation of any system is given by 
 

(5)0Δ(s)   
Where, (s) is the determinant of the signal flow graph of the system given by Eqn.(5). 
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∆=1-(sum of all individual loop gains)+(sum of gain products of all possible combinations of 
two nontouching loops – sum of gain products of all possible combination of three 
nontouching loops) +  ∙∙∙ 

Or 
(6)PPP1Δ(s)

m m3m m2m m1
  

Where, Pmr is gain product of mth possible combination of r nontouching loops of the graph. 
 

The characteristic equation can be written in the form 
 

(7)0
B(s)

KA(s)1

0P(s)1





 

 
For single loop system shown in Fig.3 

 
(8)G(s)H(s)P(s)   

 
Where, G(s)H(s) is open loop transfer function in block diagram terminology or transmittance in 
signal flow graph terminology. 
 
 
 
 
 
 
 
Fig. 5 Single loop feedback system 
 
 

From Eqn.(7) it can be seen that the roots of the characteristic equation (closed loop 
poles)occur only for those values of s where 
 

(9)1P(s)   
 

Since, s is a complex variable, Eqn.(9) can be converted into the two Evans conditions 
given below. 
 

)10(1)( sP  

)11(2,1,0);12(180)(   qqsP  
 

Roots of 1+P(s) = 0 are those values of s at which the magnitude and angle condition 
given by Eqn.(10) and Eqn.(11). A plot of points in the complex plane satisfying the angle 

− 

R(s) E(s) 


 
G(s)  

C(s) 

H(s)  
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criterion is the root locus. The value of gain corresponding to a root can be determined from the 
magnitude criterion. 
 

To make the root locus sketching certain rules have been developed which helps in 
visualizing the effects of variation of system gain K ( K > 0 corresponds to the negative feed 
back  and K < 0 corresponds to  positive feedback control system) and the effects of shifting 
pole-zero locations and adding in anew set of poles and zeros.       
 
 
5.1 GENERAL RULES FOR CONSTRUCTING ROOT LOCUS 
 

1) The root locus is symmetrical about real axis. The roots of the characteristic equation are 
either real or complex conjugate or combination of both. Therefore their locus must be 
symmetrical about the real axis. 

 
2) As K increases from zero to infinity, each branch of the root locus originates from an 

open loop pole (n nos.) with K= 0 and terminates either on an open loop zero (m nos.) 
with K =  along the asymptotes or on infinity (zero at  ). The number of branches 
terminating on infinity is equal to (n – m). 

 

 
3) Determine the root locus on the real axis. Root loci on the real axis are determined by 

open loop poles and zeros lying on it. In constructing the root loci on the real axis choose 
a test point on it. If the total number of real poles and real zeros to the right of this point 
is odd, then the point lies on root locus. The complex conjugate poles and zeros of the 
open loop transfer function have no effect on the location of the root loci on the real axis. 
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4) Determine the asymptotes of root loci. The root loci for very large values of s must be 
asymptotic to straight lines whose angles are given by 

 

)12(1-mn0,1,2,;
mn

1)(2q180asymptotesofAngle
A





 



q  

 
5) All the asymptotes intersect on the real axis. It is denoted by a , given by 

 

)13(
mn

)zz(z)pp(p
mn

zerosofsumpolesofsumσ

m21n21

a












 

 
6) Find breakaway and breakin points. The breakaway and breakin points either lie on the 

real axis or occur in complex conjugate pairs. On real axis, breakaway points exist 
between two adjacent poles and breakin in points exist between two adjacent zeros. To 

calculate these polynomial 0
ds
dK

  must be solved. The resulting roots are the breakaway 

/ breakin points. The characteristic equation given by Eqn.(7), can be rearranged as  
 

)z(s)z)(szK(sA(s)           

and )p(s)p)(sp(s B(s) where,
(14)0KA(s)B(s)

m21

n21









  

  The breakaway and breakin points are given by 
 

)15(0B
ds
dABA

ds
d

ds
dK


















  

 
Note that the breakaway points and breakin points must be the roots of Eqn.(15), but 
not all roots of Eqn.(15) are breakaway or breakin points. If the root is not on the root 
locus portion of the real axis, then this root neither corresponds to breakaway or breakin 
point. If the roots of Eqn.(15) are complex conjugate pair, to ascertain that they lie on 
root loci, check the corresponding K value. If K is positive, then root is a breakaway or 
breakin point.  
 

7) Determine the angle of departure of the root locus from  a complex pole 
 

)16()zerosotherfromquestioninpolecomplexatovectorsofanglesof(sum
poles)otherfromquestioninpolecomplexatovectorsofanglesof(sum

180pcomplexafromdepartureofAngle





 

 

 
8) Determine the angle of arrival of the root locus at a complex zero 
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(17)poles)otherfromquestioninzerocomplexatovectorsofanglesof(sum
zeros)otherfromquestioninzerocomplexatovectorsofanglesof(sum

180zerocomplexatarrivalofAngle





 

 

 
9) Find the points where the root loci may cross the imaginary axis. The points where the 

root loci intersect the j axis can be found by  
a) use of Routh‘s stability criterion or 
b) letting s = j in the characteristic equation , equating both the real part and 

imaginary part to zero, and solving for  and K. The values of  thus found give 
the frequencies at which root loci cross the imaginary axis. The corresponding K 
value is the gain at each crossing frequency. 

 

 
  
10) The value of K corresponding to any point s on a root locus can be obtained using the 

magnitude condition, or 
 

)18(
zerostopointsbetweenlengthofproduct
polestopointsbetweenlengthsofproductK   

 
PHASE MARGIN AND GAIN MARGIN OF ROOT LOCUS 
 
Gain Margin  
 

It is a factor by which the design value of the gain can be multiplied before the closed 
loop system becomes unstable. 
 

(19)
KofvalueDesign

overcrossimaginaryatKofValueMarginGain   

The Phase Margin 
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Find the point j1 on the imaginary axis for which     1jHjG  for the design value 
of K i.e.    

design
Kj/AjB  .  

The phase margin is  

  (20))H(jωjωargG180φ
11

 
 

 
 
Problem No 1 
 
Sketch the root locus of a unity negative feedback system whose forward path transfer function 

is  
s
KG(s)  . 

Solution: 
  

1) Root locus is symmetrical about real axis.  
   
2) There are no open loop zeros(m = 0). Open loop pole is at s = 0 (n = 1). One branch of 

root locus starts from the open loop pole when K = 0 and goes to   asymptotically when 
K   . 

 
3) Root locus lies on the entire negative real axis as there is one pole towards right of any 

point on the negative real axis. 
 

4) The asymptote angle is A = .01,)12(180





mnq

mn

q

  

       Angle of asymptote is A =   180. 
 

5) Centroid of the asymptote is 
mn

zeros)of(sumpoles)of(sumσA



  

                                                                 0.0
1
0
  

 
6) The root locus does not branch. Hence, there is no need to calculate the break points. 
 
7) The root locus departs at an angle of -180 from the open loop pole at s = 0. 

 
 
8) The root locus does not cross the imaginary axis. Hence there is no imaginary axis cross 

over. 
 
 
        The root locus plot is shown in Fig.1 
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Figure 6 Root locus plot of K/s 
 
Comments on stability: 
 
The system is stable for all the values of K > 0. Th system is over damped. 
 
Problem No 2 

The open loop transfer function is 21)(s
2)K(sG(s)




 . Sketch the root locus plot 

Solution:  
 

1) Root locus is symmetrical about real axis.    
 
2) There is one open loop zero at s=-2.0(m=1). There are two open loop poles at 

           s=-1, -1(n=2). Two branches of root loci start from the open loop pole when 
           K= 0. One branch goes to open loop zero at s =-2.0 when K   and other goes to       
            (open loop zero) asymptotically when K   . 

 
3) Root locus lies on negative real axis for s ≤ -2.0 as the number of open loop poles plus 

number of open loop zeros to the right of s=-0.2 are odd in number. 
 

4) The asymptote angle is A = .01,)12(180





mnq

mn

q

  

      Angle of asymptote is A =  180. 
 

5) Centroid of the asymptote is 
mn

zeros)of(sumpoles)of(sumσA



  

                                                                 0.0
1

)2()11(



  
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6) The root locus has break points. 

 
 
 
 
 
 
 
 
 

 
The root loci brakesout  at the open loop poles at s=-1, when K =0 and breaks in onto the 
real axis at s=-3, when K=4. One branch goes to open loop zero at s=-2 and other goes to 
 along the asymptotically. 

 
7) The branches of the root locus at s=-1, -1 break at K=0 and are tangential to a line s=-

1+j0 hence depart at 90. 
 
8) The locus arrives  at open loop zero at 180. 
 
9) The root locus does not cross the imaginary axis, hence there is no need to find the 

imaginary axis cross over. 
 
The root locus plot is shown in Fig.2. 
 

 
Figure 7 Root locus plot of K(s+2)/(s+1)2 

 
 
 

4K3,s0;K1,s

0
2)(s

1)(s2)1)(s2(s

0
ds
dKbygivenispointBreak

2)(s
1)(sK

21

2

2

2














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Comments on stability: 
System is stable for all values of K > 0. The system is over damped for K > 4. It is critically 
damped at K = 0, 4. 
 

Problem No 3 

The open loop transfer function is 
2)s(s
4)K(sG(s)




 . Sketch the root locus. 

Solution: 
 

1) Root locus is symmetrical about real axis.    
 
2) There are is one open loop zero  at s=-4(m=1). There are two open loop poles at s=0, -

2(n=2). Two branches of root loci start from the open loop poles when K= 0. One branch 
goes to open loop zero when K   and other goes to infinity asymptotically when  K  
. 

 
 
 
3) Entire negative real axis except the segment between s=-4 to s=-2 lies on the root locus. 

4) The asymptote angle is A = .01,1,0,)12(180





mnq

mn

q




  

Angle of asymptote are  A =  180. 
 
 
 

5) Centroid of the asymptote is 
mn

zeros)of(sumpoles)of(sumσA



  

                                                                  0.2
1

)4()2(



  

 
6) The brake points are given by dK/ds =0. 
 
 
 
 
 
 
 
 
 
7) Angle of departure from open loop pole at s =0 is 180. Angle of departure from pole at 

s=-2.0 is 0. 
 
8) The angle of arrival at open loop zero at s=-4 is 180 

11.7K6.828,s
0.343;K1.172,s

0
4)(s

2s)(s4)2)(s(2s
ds
dK

4)(s
2)s(sK

2

1

2

2















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9) The root locus does not cross the imaginary axis. Hence there is no imaginary cross over. 

 
The root locus plot is shown in fig.3. 
 
 

 
Figure 3 Root locus plot of K(s+4)/s(s+2) 
 
Comments on stability: 
System is stable for all values of K. 
0 > K > 0.343      :   > 1 over damped 
K  = 0.343           :   = 1 critically damped 
0.343 > K > 11.7 :   < 1 under damped 
K  = 11.7             :   = 1 critically damped 
K > 11.7              :   >1 over damped. 
 
Problem No 4 

The open loop transfer function is 
3.6)(ss
0.2)K(sG(s) 2 


 . Sketch the root locus. 

Solution: 
 

1) Root locus is symmetrical about real axis.    
 
2) There is one open loop zero  at s = -0.2(m=1). There are three open loop poles at 

 s = 0, 0, -3.6(n=3). Three branches of root loci start from the three open loop poles when 
K= 0 and one branch goes to open loop zero at s = -0.2 when K   and other two go to  
 asymptotically when K   . 
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3) Root locus lies on negative real axis between -3.6 to -0.2 as the number of open loop 
poles plus open zeros to the right of any point on the real axis in this range is odd. 

 

4) The asymptote angle is A = 1,01,)12(180





mnq

mn

q

  

       Angle of asymptote are  A =  90,  270.  
 

5) Centroid of the asymptote is 
mn

zeros)of(sumpoles)of(sumσA



  

                                                           7.1
2

)2.0()6.3(



  

 
6) The root locus does branch out, which are given by dK/ds =0. 

 
 
 
 
 
 
 
 
 
 

The root loci brakeout  at the open loop poles at s = 0, when K =0 and breakin onto the 
real axis at s=-0.432, when K=2.55 One branch goes to open loop zero at s=-0.2 and 
other goes breaksout with the another locus starting from open loop ploe at s= -3.6. The 
break point is at s=-1.67 with K=3.66. The loci go to infinity in the complex plane with 
constant real part s= -1.67.  

 
7) The branches of the root locus at s=0,0 break at K=0 and are tangential to imaginary axis 

or depart at 90. The locus departs from open loop pole  at s=-3.6 at 0. 
 
8) The locus arrives at open loop zero at s=-0.2 at 180. 
 
9) The root locus does not cross the imaginary axis, hence there is no imaginary axis cross 

over. 
 
The root locus plot is shown in Fig.4. 
 

ly.respective 3.662.55,0,Kand1.670.432,0,s
01.44s4.8s2s

0.2)(s
)3.6s(s0.2)7.2s)(s(3s

ds
dK

0.2s
)3.6s(s-K

23

2

232

23














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Figure 4 Root locus plot of K(s+0.2)/s2(s+3.6) 

 
Comments on stability: 

System is stable for all values of K. System is critically damped at K= 2.55, 3.66. It is under 
damped for 2.55 > K > 0 and K >3.66. It is over damped for 3.66 > K >2.55. 

 
Problem No 5 

The open loop transfer function is 
25)6ss(s

KG(s)


 . Sketch the root locus. 

Solution: 
 

1) Root locus is symmetrical about real axis.    
 
2) There are  no open loop zeros (m=0). There are three open loop poles at s=-0, 

 -3j4(n=3). Three branches of root loci start from the open loop poles when K= 0 and all 
the three branches go   asymptotically when K   . 

 
3) Entire negative real axis lies on the root locus as there is a single pole at s=0 on the real 

axis. 
 

4) The asymptote angle is A = .2,1,01,1,0,)12(180





mnq

mn

q




  

  Angle of asymptote are  A =  60,  180, 300. 
 

5) Centroid of the asymptote is 
mn

zeros)of(sumpoles)of(sumσA



  

                                                                  0.2
3

)33(



  
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6) The brake points are given by dK/ds =0. 

j18.0434K
j2.0817and2s

02512s3s
ds
dK

25s)6s(s25)6ss(sK

1,2

1,2

2

232









 

For a point to be break point, the corresponding value of K is a real number greater than 
or equal to zero. Hence, S1,2 are not break points. 

 
7) Angle of departure from the open loop pole at s=0 is 180. Angle of departure from 

complex pole s= -3+j4 is 

zeros) from inquestion polecomplex  a  to vectorsof angles  theof (sum
poles)other  fromquestion in  polecomplex  a  to vectorsof angles  theof (sum

180p





 

 

 
 87.36)90

3
4tan180(180 1

p    

Similarly, Angle of departure from complex pole s= -3-j4 is 
 36.87or323.13)270(233.13180φp   

 
8) The root locus does cross the imaginary axis. The cross over point and the gain at the 

cross over can be obtained by 
 
5.2 Rouths criterion 
The characteristic equation is 0K25s6ss 23  . The Routh‘s array is 
 
 
 
 
 
 
For the system to be stable K < 150. At K=150 the auxillary equation is 6s2+150=0. 
s = ±j5. 
or  
substitute s= j in the characteristic equation. Equate real and imaginary parts to zero. Solve 
for  and K. 
 
 
 
 
 

 

6s
6

K150s
K6s
251s

0

1

2

3



     

 
1500,Kj50,ω

025ωjωK)6ω(
0Kjω25jω6jω

0K25s6ss

22

23

23









Department of EEE, ATMECE 14

18EE61



Control Systems                                                                                                                                                          
 

 
 

The plot of root locus is shown in Fig.5. 
 

 
Figure 5 Root locus plot of K/s(s2+6s+25) 
 
 
Comments on stability: 
System is stable for all values of  150 > K > 0. At K=150, it has sustained oscillation of 5rad/sec. 
The system is unstable for K >150. 
 
Problem No 1 
 
Sketch the root locus of a unity negative feedback system whose forward path transfer function 

is 
j)3j)(s31)(s(s

2)K(sG(s)H(s)



   . Comment on the stability of the system. 

 
Solution: 
  

9) Root locus is symmetrical about real axis.  
   
10) There  is one open loop zero  at s = -2 (m = 1). There are three  open loop poles at 

            s = -1, -3 ± j (n=3). All the  three  branches of root  locus start  from the open loop    
            poles  when K = 0. One  locus  starting  from s = -1  goes  to  zero at s = -2 when 
            K  , and other two branches  go to  asymptotically (zeros at ) when K   . 

11) Root locus lies on the negative real axis in the range s=-1 to s= -2 as there is one pole to 
the right of any point s on the real axis in this range. 

 

12) The asymptote angle is A = .0,11mnq,
mn

1)(2q180




 

  

       Angle of asymptote is A =   90, 270. 
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13) Centroid of the asymptote is 
mn

zeros)of(sumpoles)of(sumσA



  

                                                                 2.5
1

2)(3)31(



  

 
14) The root locus does not branch. Hence, there is no need to calculate break points. 
 
15) The angle of departure at real pole at s=-1 is 180. The angle of departure at the complex 

pole at s=-3+j is 71.57. 
 

zeros) from inquestion polecomplex  a  to vectorsof angles  theof (sum
poles)other  fromquestion in  polecomplex  a  to vectorsof angles  theof (sum

180p





 

 

 
 
 
 
 
 
 
 

 
 
 
 
The angle of departure at the complex pole at s=-3-j is -71.57. 
 
 
 
16) The root locus does not cross the imaginary axis. Hence there is no imaginary axis cross 

over. 
 
        The root locus plot is shown in Fig.1 
 









57.71135)90(153.43180

90
0
2tanθ,135or  -45

1-
1tan

153.43)atan2(-2,1θ

153.43or  57.26
2-

1tanθ

p

1
3

1

1

1
1

















 57.71522)270(206.57180
p


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Figure 1 Root locus plot of K(s+2)/(s+1)(s+3+j)(s+3-j) 

 
Comments on stability: 
 
The system is stable for all the values of K > 0.  

 
Problem No 2 
 

The open loop transfer function is
10)0.6s0.5)(ss(s

KG(s)H(s) 2 
    Sketch the root locus 

plot. Comment on the stability of the system.                                  . 
 
 
Solution:  
 

10) Root locus is symmetrical about real axis.    
 
11) There are no open loop zeros (m=0). There are  four open loop poles (n=4) at s=0,  

-0.5, -0.3 ± j3.1480. Four branches of root loci start from the four open loop poles when 
K= 0 and go to   (open loop zero at infinity)  asymptotically when K  .  
 

12) Root locus lies on negative real axis between s = 0 to s = -0.5 as there is one pole to the 
right of any point s on the real axis in this range. 

 

13) The asymptote angle is A = .3,2,1,01,)12(180





mnq

mn

q

  

      Angle of asymptote is A =  45,  135, 225, ±315. 
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14) Centroid of the asymptote is 
mn

zeros)of(sumpoles)of(sumσA



  

                                                                 275.0
4

)3.03.05.0(



  

The value of K at s=-0.275 is 0.6137. 
 
15) The root locus has break points. 
 

K = -s(s+0.5)(s2+0.6s+10) = -(s4+1.1s3+10.3s2+5s) 
 
Break points are given by dK/ds = 0 
 

0520.6s3.3s4s
ds
dK 23   

 
s= -0.2497, -0.2877 j 2.2189 
 
There is only one break point at -0.2497. Value of K at s = -0.2497 is 0.6195.  

 
16) The angle of departure at real pole at s=0 is  180 and at s=-0.5 is 0. The angle of 

departure at the complex pole at s = -0.3 + j3.148 is -91.8 

           
zeros) from inquestion polecomplex  a  to vectorsof angles  theof (sum

poles)other  fromquestion in  polecomplex  a  to vectorsof angles  theof (sum
180p





 

 

 
 
 
 
 
      The angle of departure at the complex pole at s = -0.3 - j3.148 is 91.8 
 
 
 
17) The root locus does cross the imaginary axis, The cross over frequency and gain is 

obtained from Routh‘s criterion. 
 

The characteristic equation is  
 
  s(s+0.5)(s2+0.6s+10)+K =0 or   s4+1.1s3+10.3s2+5s+K=0 
 
 
 
 
 







8.91)9086.4(95.4180

90
0

6.296tanθ, 4.68
0.2

3.148tan

4.95or6.84
0.3-

3.148tanθ

p

1
3

1
2

1
1















 91.8  )270273.6(264.6180
p


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The Routh‘s array is 
 

 
 
 
 
 
 
 
 

The system is stable if  0 < K < 26.13 
 
The auxiliary equation at K 26.13 is  5.75s2+26.13 = 0 which gives s = ± j2.13 at 
imaginary axis crossover. 
 
The root locus plot is shown in Fig.2. 
 

 
Figure 8 Root locus plot of K/s(s+0.5)(s2+0.6s+10) 

 
 
Comments on stability: 
 
System is stable for all values of  26.13 >K > 0. The system has sustained oscillation at = 
2.13 rad/sec at K=26.13. The system is unstable for K > 26.13. 
 

Problem No 3 
 

The open loop transfer function is 
20)4s)(s4s(s

KG(s) 2 
 . Sketch the root locus. 

 

Ks
5.75

1.1K-28.75s

K5.75s
51.1s

K10.31s

0

1

2

3

4
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Solution: 
 

10) Root locus is symmetrical about real axis.    
 
11) There are no open loop zeros (m=0). There are three open loop poles (n=3) at s = -0, -4, -

2  j4. Three branches of root loci start from the three open loop poles when K= 0 and to 
infinity asymptotically when K   . 

 
12) Root locus lies on negative real axis between s = 0 to s = -4.0 as there is one pole to the 

right of any point s on the real axis in this range. 
 

13) The asymptote angle is A = 3,2,1,01,)12(180





mnq

mn

q

  

       Angle of asymptote are  A =  45,  135,  225,  315. 
 

14) Centroid of the asymptote is 
mn

zeros)of(sumpoles)of(sumσA



  

                                                           0.2
4

)0.40.20.2(



  

 
15) The root locus does branch out, which are given by dK/ds =0. 

 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
The root loci brakeout  at the open loop poles at s = -2.0, when K = 64 and breakin and 
breakout at s=-2+j2.45, when K=100  
 

16) The angle of departure at real pole at s=0 is  180 and at s=-4 is 0. The angle of 
departure at the complex pole at s = -2 + j4 is -90. 

100Kj2.45,2.0s

64;K2.0,s
40)16s2)(4s(s

08040s32s16s8s4s
08072s24s4s

0
ds
dKbygivenispointBreak

80s)36s8s(s
20)4s4)(ss(sK

2

1

2

223

23

234

2
















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zeros) from inquestion polecomplex  a  to vectorsof angles  theof (sum
poles)other  fromquestion in  polecomplex  a  to vectorsof angles  theof (sum

180p





 

 

 
 
 
 
 
 
 
 
 

 
The angle of departure at the complex pole at s = -2 – j4 is 90 
 
 
 
 

17) The root locus does cross the imaginary axis, The  cross over point and gain at cross over 
is obtained by either Routh‘s array or substitute s= j in the characteristic equation and 
solve for  and gain K by equating the real and imaginary parts to zero. 
 
Routh‟s array 

 
The characteristic equation is  0K80s36s8ss 234    

 
 
 
 
 
 
 
 
 
 

For the system to be stable K > 0 and 2080-8K > 0. The imaginary crossover is given by 
2080-8K=0 or K = 260.  
 
At K = 260, the auxiliary equation is 26s2+260 = 0. The imaginary cross over occurs at s= 
j10.  

 
or  
 
 

Ks
26

8K2080s

K26s
808s

K361s
isarrayRouthsThe

0

1

2

3

4










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0
8tanθ,4.36

2
4tanθ
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116.6or63.4
2-
4tanθ

p
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


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Department of EEE, ATMECE 21

18EE61



Control Systems                                                                                                                                                          
 

 
 

 
 
 
 
 
 
 
 
 
 
 

The root locus plot is shown in Fig.3. 
 

 
Figure 9 Root locus plot of K/s(s+4)(s2+4s+20) 

 
Comments on stability: 
For 260 > K > 0 system is stable 
K = 260 system has stained oscillations of 10 rad/sec. 
K > 260 system is unstable. 
 
 
 
 
 
 
 
 
 
 
 

       

   

260K0K36ωω
10js;10j0,ω080ω8ω

zerotopartsimaginaryandrealEquate
080ω8ωjK36ωω

0Kjω80jω36jω8jω

jωsput
0K80s36s8ss

24

3

324

234

234












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Recommended Questions: 
 

1. Give the general rules for constructing root locus. 

 
2. Define Phase margin and Gain margin of root locus. 

 
3. Sketch the root locus of a unity negative feedback system whose forward path transfer 

function is  
s
KG(s)  . 

4. The open loop transfer function is 21)(s
2)K(sG(s)




 . Sketch the root locus plot. 

5. The open loop transfer function is 
2)s(s
4)K(sG(s)




 . Sketch the root locus. 

6. The open loop transfer function is 
25)6ss(s

KG(s)


 . Sketch the root locus. 

7. The open loop transfer function is 
20)4s)(s4s(s

KG(s) 2 
 . Sketch the root 
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