Control Systems 18EE61

MODULE -5

SYSTEM ANALYSIS USING POLAR PLOTS: NYQUIST CRITERION

System Analysis using Polar Plots: Nyquist Criterion

Polar plots can be used to predict feed back control system stability by the application of Nyquist
Criterion, and therefore are also referred as Nyquist Plots. It is a labor saving technique in the
analysis of dynamic behaviour of control systems in which the need for finding roots of
characteristic equation of the system is eliminated.

Consider a typical closed loop control system which may be represented by the simplified block

diagram as shown in Figure 6.4

e R >
R(S) ! T G©S) C(s)
H(S)

Figure 6.4 Simplified System Block Diagram
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The closed-loop transfer function or the relationship between the output and input of the system

is given by

CO)_ G
R(S) 1+G(S)H(S)

The open-loop transfer function is G(S) H(S) (the transfer function with the feedback loop
broken at the summing point).

I+ G(S) H(S) is called Characteristic Function which when equated to zero gives the
Characteristic Equation of the system.

1 +G(S)H(S)=0 Characteristic Equation

The characteristic function F(S) = 1 + G(S) H(S) can be expressed as the ratio of two factored
polynomials.

K(S+Z)S+Z)) oo (S+Z,)
SY(S+P)S+P,)S+P,))....... (S+Z,)

Let F(S)=1+G(S)H(S) =

.. The Characteristic equation in general can be represented as

F(S) =K (S+Z)) (S+Z,) (S+Z3) .......... (§+Z,)=0
Then:
21, -2y, -Z5 .... —Z, are the roots of the characteristic equation
. at S=-Z,, S=-Zy, S=-Z3, 1+ G(S) H(S) becomes zero.

These values of S are termed as Zeros of F(S)
Similarly:
at S=-P;, S=-P,, S=-P; ....... Etc. 1+ G (S) H (S) becomes infinity.

These values are called Poles of F (S).
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Condition for Stability

For stable operation of control system all the roots of characteristic equation must be
negative real numbers or complex numbers with negative real parts. Therefore, for a system
to be stable all the —Zeros” of characteristic equation (function) should be either negative real
numbers or complex numbers with negative real parts. These roots can be plotted on a complex-
plane or S-plane in which the imaginary axis divides the complex plane in to two parts: right half
plane and left half plane. Negative real numbers or complex numbers with negative real parts lie

on the left of S-plane as shown Figure 6.5.

Left half R Img Right half
of S Plane ) of S Plane

-3+52

2+j1
P Real
2-j1
-3-j2
y

Figure 6.5 Two halves of Complex Plane‘e
Therefore the roots which are positive real numbers or complex numbers with positive real parts
lie on the right-half of S-plane.

In view of this, the condition for stability can be stated as —For a system to be stable all the
zeros of characteristic equation should lie on the left half of S-plane”.

Therefore, the procedure for investigating system stability is to search for Zeros‘ on the right
half of S-plane, which would lead the system to instability, if present. However, it is

impracticable to investigate every point on S-plane as to which half of S-plane it belongs to and
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so it is necessary to have a short-cut method. Such a procedure for searching the right half of S-
plane for the presence of Zeros and interpretation of this procedure on the Polar plot is given by
the Nyquist Criterion.

Nyquist Criterion: Cauchy*s Principle of Argument:

In order to investigate stability on the Polar plot, it is first necessary to correlate the region of
instability on the S-plane with identification of instability on the polar plot, or 1+GH plane. The
1+GH plane is frequently the name given to the plane where 1+G(S) H(S) is plotted in complex
coordinates with S replaced by jo. Likewise, the plot of G(S) H(S) with S replaced by jo is often

termed as GH plane. This terminology is adopted in the remainder of this discussion.

The Nyquist Criterion is based on the Cauchy‘s principle of argument of complex variable
theory. Consider [F(S) = 1+G(S) H(S)] be a single valued rational function which is analytic
everywhere in a specified region except at a finite number of points in S-plane. (A function F(S)
is said to be analytic if the function and all its derivatives exist). The points where the function
and its derivatives does not exist are called singular points. The poles of a point are singular
points.

Let Cs be a closed path chosen in S-plane as shown Figure 6.6 (a) such that the function F(S) is
analytic at all points on it. For each point on Cgs represented on S-plane there is a corresponding
mapping point in F(S) plane. Thus when mapping is made on F(S) plane, the curve Cg mapped
by the function F(S) plane is also a closed path as shown in Figure 6.6 (b). The direction of
traverse of Cg in F(S) plane may be clockwise or counter clockwise, depending upon the

particular function F(S).

Department of EEE, ATMECE 4



Control Systems 18EE61

Then the Cauchy principle of argument states that: The mapping made on F(S) plane will
encircle its origin as many number of times as the difference between the number of Zeros

and Poles of F(S) enclosed by the S-plane locus Cs in the S-plane.

F(S) = 1+G(S) H(S) plane

. S-plane .
Tﬂm a )]
Si
Ss m
> - .-
Cs
S
S4 }
v
-jo
Figure 6.6 (a) Figure 6.6 (b)

Figure 6.6 Mapping on S-plane and F(S) plane
Thus N=Z-P
No+jo=2Z—-P
Where No+jo: Number of encirclements made by F(S) plane plot (Cg) about its origin.
Z and P: Number of Zeros and Poles of F(S) respectively enclosed by the locus Cg in the S-
plane.

Illustration: Consider a function F(S)

£(S) - K(S+1)(S+2+ j2)(S+2—j2)
T S(S+3)(S+5)(S+5+j2)(S+5-j2)

s Zeros: -1, (-2-12), (-2+j2) indicated by O (dots) in the S-plane

Poles: 0, -3, -5, (-5 —2), (-5 +j2) indicated by X (Cross) in S-plane: As shown in Figure 6.6 (c)
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4P+jm S-plane F(S) = 1+G(S) H(S) plane
o
C;\CGI
. () -
B -0 (040 c
Ca
Ca:
O: ZEROS
X: POLES
Csz V. | -j®
7)
Figure 6.6 (¢) Figure 6.6 (d)

Now consider path Cs; (CCW) on S-plane for which:
Z:2, P=1
Consider another path Cs; (CCW) in the same S plane for which:
Z=1, P=4
Ca1 and Cg; are the corresponding paths on F(S) plane [Figure 6.6 (d)].
Considering Cg [plot corresponding to Cg; on F (S) plane]
S Nojo=Z-P=2-1=+1
Cqci will encircle the origin once in the same direction of Cs; (CCW)
Similarly for the path Cg;
Nosjo=Z—-P=1-4=-3
.~ Cq2 will encircle the origin 3 times in the opposite direction of Cs; (CCW)
Note: The mapping on F(S) plane will encircle its origin as many number of times as the
difference between the number of Zeros and Poles of F(S) enclosed by the S-plane locus.

From the above it can be observed that
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In the expression

N=Z-P,

N can be positive when: 7>P

N=0when: Z=P

N can be negative when: Z<P

e When N is positive the map Cg encircles the origin N times in the same direction as that of
Cs

e  When N = 0, No encirclements

e N is negative the map Cg encircles the origin N times in the opposite direction as that of Cs

Nyquist Path and Nyquist Plot

The above Cauchy‘s principle of argument can be used to investigate the stability of control

systems. We have seen that if the Zeros of characteristic function lie on the right half of S-plane

it will lead to system instability. Now, to encircle the entire right half of S-plane, select a closed

path as shown in Figure 6.6 (e) such that all the Zeros lying on the right-half of S-plane will lie

inside this path. This path in S-plane is known as Nyquist path. Nyquist path is generally taken

in CCW direction. This path consists of the imaginary axis of the S-plane (S = 0+jw, -0 < ® < ©)

and a closing semicircle of infinite radius. If the system being tested has poles of F(S) on the

imaginary axis, it is customary to modify the contour as shown Figure 6.6 (f) excluding these

poles from the path.

Department of EEE, ATMECE 7



Control Systems 18EE61

+joo S-plane
Jrio
0+j0
-0 . —p—
O-Jﬂl( -G —>
S= -joo
l‘ -joo ! +—j(!)
Figure 6.6 (e): Nyquist Path Figure 6.6 (f)

Corresponding to the Nyquist path a plot can be mapped on F(S) = 1+G(S) H(S) plane as shown

in Figure 6.6 (g) and the number of encirclements made by this F(S) plot about its origin can be

counted.
1+ G(S) H(S) plane
; Img
7 N
.
‘\\0+j0: ) .
Real ‘ / Real
e 'Y"\\
!
|
, Img

Figure 6.6 (g)
Now from the principle of argument
No+jo = Z-P
No+jo = number of encirclements made by F(S) plane plot

Z, P: Zeros and Poles lying on right half of S-plane
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For the system to be stable: Z =0
< No+jo =- P Condition for Stability
Apart from this, the Nyquist path can also be mapped on G(S) H(S) plane (Open-loop transfer
function plane) as shown in Figure 6.6 (h).
Now consider
F(S) = 1+ G(S) H(S) for which the origin is (0+j0) as shown in Figure 6.6 (g).
Therefore G(S) H(S)=F(S) -1
= (0+j0) — 1 = (-1+j0) Coordinates for origin on G(S) H(S) plane as shown in

Figure 6.6(h)
G(S) H(S) plane
Img

Origin of the plot™
for G(S) H(S)

Figure 6.6 (h)

Thus a path on 1+ G(S) H(S) plane can be easily converted to a path on G(S) H(S) plane or open
loop transfer function plane. This path will be identical to that of 1+G(S) H(S) path except that
the origin is now shifted to the left by one as shown in Figure 6.6 (h).

This concept can be made use of by making the plot in G(S) H(S) plane instead of 1+ G(S) H(S)
plane. The plot made on G(S) H(S) plane is termed as the Niquist Plot and its net encirclements
about (-1+j0) (known as critical point) will be the same as the number of net encirclements made
by F(S) plot in the F(S) = 1+G(S) H(S) plane about the origin.

Now, the principle of argument now can be re-written as
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N-1+j0 =7Z-P

Where N_i+jo = Number of net encirclements made by the G(S) H(S) plot (Nyquist Plot) in the
G(S) H(S) plane about -1+j0

For a system to be stable Z =0

.'.N_1+j0 =-P

Thus the Nyquist Criterion for a stable system can be stated as The number of net
encirclements made by the Nyquist plot in the G(S) H(S) plane about the critical point
(-1+j0) is equal to the number of poles of F(S) lying in right half of S-plane. [Encirclements
if any will be in the opposite direction. Poles of F(S) are the same as the poles of G(S) H(S)].
Thus the stability of closed-loop control system is determined from its open-loop transfer

function.

System Analysis using Nyquist Criterion: Illustrations
[llustration 1: Sketch the Nyquist plot for the system represented by the open loop transfer

function and comment on its stability.

G(SH (S)SLa) K>0,a>0 Poles: S =0 (on imaginary axis) and S = -a

(S+

Step 1: Define Nyquist path. Let the Nyquist path be defined as given below.
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+j®
S= +joo
= S=+j0 A
-G - . c
S=-j0 20
Nyquist Path
S=-joo
Y -jo

Section I: S=+joto S=+j0; Section II: S=+j0to S=-j0

Section III:  S=-j0to S = -joo; SectionIV: S =-jotoS=+jw

2. Corresponding to different sections namely I, II, III, and IV Obtain polar plots on G(S) H(S)
plane, which are nothing but Nyquist Plots.
Nyquist Plot for Section I: In S-plane section I runs from S=+ joo to S = +j0

To obtain polar plot in G(S) H(S) plane:

G(S)H(S)SLa)K >0,a>0

(S+

(i) G(SH(S)|

S—joo T

K
=<

|G(S)H(S)|: =0

K
s?

ZG(S)H(S) = 45—K2 =/K-/S?

=0-2%90" = - 180"

20 oo
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(ii) G(S)H(S)

_K_
21753 S S

ZG(S)H(S) = ZK/a— £S =0-90" = - 90°

Img  G(S) H(S) Plane
S M(®) | $()

S>w |0 -180°

S—>0 | -90° S=joo

-180° Real
Section [
S=i0 |
i | _90°

Nyquist Plot for Section II: In S-plane section II runs from S=+ j0 to S = -j0
In this region S — 0

In S-plane section II is a semicircle from S =+ j0 to S = -j0 of radius r ~ 0°, covering an angle of
180° in clockwise direction

K K' |
GS)H(S)=——=— where K' =K/a
S(@a S

But S = re'® equation of a circle in exponential form

1
. G(S)H(S) = K.g =Re ™, where R_K_1
re™ T
) K!
G(S) H(S) = R.e?* R=— = (as r is very small)

r
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This shows that G(S) H(S) plot of section II of Nyquist path is a circle of radius = o starting
from S = +j0 and ending at a point S = -j0 covering an angle of 180° in opposite direction of
section II of Nyquist path (CCW direction i.e., negative sign)

Kl

n

In general if G (S) H(S) =

K' :
G(S)H(S) = =Re ™
r

ne+jno9

1
Where R = K—n = ® Img
r G(S) H(S) Plane

Section I1

}ieal

S=i0

The G (S) H (S) plot will be a portion circle (part) of radius R — oo, starting at a point S = +j0
and ending at a point S = -j0 covering an angle of (n*180°) in the opposite direction (CCW)
(since sign is negative)

Nyquist Plot for Section III: In S-plane section III runs from S= -j0 to S = joo

K K
G(SH(S)[s, 9 “SGia "sa- K'/S where K' = (K/a)

L |G(SH(S) =K' /S =

ZG(S)H(S) =sK'- /S, K'is negative
=/K'- /S
ZG(S)H(S) =180"-90°=90°

K

_ _ 2
oo —m‘sﬁqw =K/S

G(SH(9)|s
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IG(S)H(S)| =|—|=0

K
s?

ZG(S)H(S) = ZK - £8*=0-2(-90°)=180";  (_S*is negative)

o 1mg
190" o= ) G(S) H(S) Plane
Section 111
+180° S= -joo

Real

This Section III is the mirror image of section of the Section I.
Nyquist Plot for Section IV: In S-plane section IV runs from S=-joo to S = joo
In this region S — oo

In the S-plane it is a semicircle of radius R — cofrom S = - j oo to S =+ j oo covering an angle of
180° in the counter clockwise direction.

In the G(S) H(S) plane
K
G(SH(S)s.,.. = 57

But S =R ¢" ¢ Equation in circle in exponential form

G(S)H(S) = RZK —re % where r:ﬁ_)o

el R?

Thus G(S) H(S) plot for section IV is also a circle of radius r — Ostarting at S = - j o and
ending at S =+ j oo covering an angle of 2* 180° (2¢) in the opposite direction (CW).
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Img
G(S) H(S) Plane

S= -joo r=0
™)
S= +joo v

Section IV Real

Now assemble the Nyquist plots of all the sections as given below to get the overall Nyquist
plOt Img
-j0 G(S) H(S) Plane

/ \

Real

jo

From Nyquist Criterion:
No. of encirclements made by Nyquist plot about (— 1 +j0) = N_j4jo=Z—-P

P = No. of poles lying in the right half of S plane
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For the function G(S)H(S) = % , the Poles are: S =0, S = - a=0, which lie on the left half
+a

of S-plane

Therefore P = 0: Number of poles on the right half of S-plane

. N.i4j=0 = 0 as counted from the Nyquist plot

N.a+jo=2Z-P

0=Z2-0

Therefore Z =0

Number of zeros lying on the right half of S-plane is 0 and hence the system is stable

[llustration 2: Obtain the Nyquist diagram for the system represented by the block diagram given
below and comment on its stability

RS ) K c®
- S2(S +1) -
S
K
G(S)=———
) S*(:S +1)
H(S)=S
K K
ZGO)H(S)=—F*S Poles are S=0,-1/t ~P=0

S2S+1) . SEE+1)
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Recommended Questions:

1. Explain briefly the different Graphical Methods to Represent Frequency Response Data .
2. A second order system has a natural frequency of 10 rad/sec and a damping ratio of 0.5.
Sketch the polar plot for the system.

3. Obtain the polar plot for the transfer function

4. Sketch the polar plots for the system represented by the following open loop transfer function.

K

5. Sketch the polar plots for the system represented by the following open loop transfer function.

10

CEOHE)= S2(S +5)(S +8)

6. Sketch the polar plots for the system represented by the following open loop transfer function.

10
S(S—2)(S +4)

GOHES) =

7. Draw Nyquist path for the function F(s)
F(S) = KS+1D)(S+2+ J2)(S+2-j2)
S(S+3)S+5)(S+5+j2)(S+5-]2)
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