

MODULE 3: 8051 Programming in C

Structure

3 a)

 3.1 Data types and time delay in 8051C

3.2 IO programming in 8051C

3.3 Logic operations in 8051 C

3.4 Data conversion program in 8051 C

3.5 Accessing code ROM space in 8051C

3.6 Data serialization using 8051C

3 b) 8051 Timer programming in Assembly and C:

3.7 Programming 8051 timers

3.8 Counter programming

3.9 Programming timers 0 and 1 in 8051 C

Objectives

• To explain in detail the execution of 8051 C language

• To explain develop 8051C programs for time delay

Department of Electrical & Electronics Engineering, ATMECE, Mysuru Page 1

Microcontroller Notes: BEE403 2024-2025

3.1 Data types in 8051C

Why program the 8051 in C?

Compilers produce hex files that we download into the ROM of the microcontroller. The size

of the hex file produced by the compiler is one of the main concerns of microcontroller

programmers, for two reasons:

1. Microcontrollers have limited on-chip ROM.

2. The code space for the 8051 is limited to 64K bytes.

Following are some of the major reasons for writing programs in C instead of Assembly:

1. It is easier and less time consuming to write in C than Assembly.

2. C is easier to modify and update.

3. You can use code available in function libraries.

4. C code is portable to other microcontrollers with little or no modification.

C data types for the 8051

Since one of the goals of 8051 C programmers is to create smaller hex files, it is worthwhile

to re-examine C data types for 8051 C. In other words, a good understanding of C data types

for the 8051 can help programmers to create smaller hex files. In this section we focus on the

specific C data types that are most useful and widely used for the 8051 microcontroller.

1. Unsigned char

A. Since the 8051 is an 8-bit microcontroller, the character data type is the most natural

choice for many applications. The unsigned char is an 8-bit data type that takes a

value in the range of 0 – 255 (00 – FFH). It is one of the most widely used data types for

the 8051. In many situations, such as setting a counter value.

B. Where there is no need for signed data we should use the unsigned char instead of the

signed char. Remember that C compilers use the signed char as the default if we do not

put the keyword unsigned in front of the char (see Example 1-1). We can also use the

unsigned char data type for a string of ASCII characters, including extended

Department of Electrical & Electronics Engineering, ATMECE, Mysuru Page 2

Microcontroller Notes:BEE403 2024-2025

ASCII characters. Example 1-2 shows a string of ASCII characters. See Example 1-3

for toggling ports.

C. In declaring variables, we must pay careful attention to the size of the data and try to use

unsigned char instead of int if possible. Because the 8051 has a limited number of

registers and data RAM locations, using the int in place of the char data type can lead to

a larger size hex file. Such a misuse of the data types in compilers such as

Microsoft Visual C++ for x86 IBM PCs is not a significant issue.

Example 1-1

Example 1-2

Write an 8051 C program to send hex values for ASCII characters of 0,1,2,3,4,5,A,B,C

and D to port P1.

Solution

#include<reg51.h>

void main (void)

{

Unsigned char mynum[] = “0,1,2,3,4,5,A,B,C,D”;

Unsigned char z;

For(z=0;z<=10;z++)

P1=mynum(z);

}

Department of Electrical & Electronics Engineering, ATMECE, Mysuru Page 3

Microcontroller Notes:BEE403 2024-2025

Example 1-3

Write an 8051 C program to toggle all the bits of PI continuously.

Solution:

// Toggle PI forever

include <reg51.h>

void main(void)

2. Signed char

The signed char is an 8-bit data type that uses the most significant bit (D7 of D7 – DO) to

represent the – or + value. As a result, we have only 7 bits for the magnitude of the signed

number, giving us values from -128 to +127. In situations where + and – are needed to

represent a given quantity such as temperature, the use of the signed char data type is a must.

Again notice that if we do not use the keyword unsigned, the default is the signed value. For

that reason we should stick with the unsigned char unless the data needs to be represented as

signed numbers.

Example 1-4

Department of Electrical & Electronics Engineering, ATMECE, Mysuru Page 4

Microcontroller Notes:BEE403 2024-2025

3. Unsigned int

1. The unsigned int is a 16-bit data type that takes a value in the range of 0 to 65535

(0000 – FFFFH). In the 8051, unsigned int is used to define 16-bit variables such as

memory addresses. It is also used to set counter values of more than 256.

2. Since the 8051 is an 8-bit microcontroller and the int data type takes two bytes of

RAM, we must not use the int data type unless we have to.

3. Since registers and memory accesses are in 8-bit chunks, the misuse of int variables

will result in a larger hex file. Such misuse is not a big deal in PCs with 256

megabytes of memory, 32-bit Pentium registers and memory accesses, and a bus

speed of 133 MHz.

4. However, for 8051 programming do not use unsigned int in places where unsigned

char will do the job. Of course the compiler will not generate an error for this misuse,

but the overhead in hex file size is noticeable.

5. Also in situations where there is no need for signed data (such as setting counter

values), we should use unsigned int instead of signed int.

6. This gives a much wider range for data declaration. Again, remember that the C

compiler uses signed int as the default if we do not use the keyword unsigned.

4. Signed int

Signed int is a 16-bit data type that uses the most significant bit (015 of D15 – DO) to

represent the – or + value. As a result, we have only 15 bits for the magnitude of the number, or

values from -32,768 to +32,767.

5. Sbit (single bit)

The sbit keyword is a widely used 8051 C data type designed specifically to access single-bit

addressable registers. It allows access to the single bits of the SFR registers. We can use sbit

to access the individual bits of the ports as shown in Example 1-5.

Example 1-5

Write an 8051 C program to toggle bit DO of the port P1 (Pl.0) 50,000 times.

Department of Electrical & Electronics Engineering, ATMECE, Mysuru Page 5

Microcontroller Notes:BEE403 2024-2025

Bit and sfr

The bit data type allows access to single bits of bit-addressable memory spaces 20 –

2FH. Notice that while the sbit data type is used for bit-addressable SFRs, the bit data type is

used for the bit-addressable section of RAM space 20 -2FH. To access the byte-size SFR

registers, we use the sfr data type. We will see the use of sbit, bit, and sfr data types in the next

section.

Table 3.1:Some Widely Used Data Types for 8051 C

3.1.1 Time delay in C

There are two ways to create a time delay in 8051 C:

1. Using a simple for loop

2. Using the 8051 timers

In either case, when we write a time delay we must use the oscilloscope to measure the

duration of our time delay. Next, we use the for loop to create time delays.

Department of Electrical & Electronics Engineering, ATMECE, Mysuru Page 6

Microcontroller Notes:BEE403 2024-2025

In creating a time delay using a for loop, we must be mindful of three factors that can affect

the accuracy of the delay.

1. The 8051 design. Since the original 8051 was designed in 1980, both the fields

of 1C technology and microprocessor architectural design have seen great

advancements.The number of machine cycles and the

number of clock periods per machine cycle vary among different versions of

the 8051/52 microcontroller.

2. While the original 8051/52 design used 12 clock periods per machine cycle, many of

the newer generations of the 8051 use fewer clocks per machine cycle.

For example, the DS5000 uses 4 clock periods per machine cycle, while the

DS89C420 uses only one clock per machine cycle.

3. The crystal frequency connected to the XI – X2 input pins. The duration of the

clock period for the machine cycle is a function of this crystal frequency.

4. Compiler choice. The third factor that affects the time delay is the compiler

used to compile the C program. When we program in Assembly language, we

can control the exact instructions and their sequences used in the delay sub

routine. In the case of C programs, it is the C compiler that converts the C

statements and functions to Assembly language instructions. As a result, dif

ferent compilers produce different code. In other words, if we compile a given

8051 C programs with different compilers, each compiler produces different

hex code.

Example 1-6

Write an 8051 C program to toggle bits of PI continuously forever with some delay.

Solution:

// Toggle PI forever with some delay in between “on” and “off”,

include <reg51.h>

Department of Electrical & Electronics Engineering, ATMECE, Mysuru Page 7

Microcontroller Notes:BEE403 2024-2025

Example 1-7

Write an 8051 C program to toggle the bits of PI ports continuously with a 250 ms delay.

Solution:

The program below is tested for the DS89C420 with XTAL = 11.0592 MHz.

Example 1-8

Department of Electrical & Electronics Engineering, ATMECE, Mysuru Page 8

Microcontroller Notes:BEE403 2024-2025

3.2 IO programming in 8051C

Byte size I/O

As we stated in Chapter 4, ports PO – P3 are byte-accessible. We use the PO – P3 labels as

defined in the 8051/52 C header file.

Example 1-9

LEDs are connected to bits PI and P2. Write an 8051 C program that shows the count from 0

to FFH (0000 0000 to 1111 1111 in binary) on the LEDs.

Solution:

Department of Electrical & Electronics Engineering, ATMECE, Mysuru Page 9

Microcontroller Notes:BEE403 2024-2025

Example 1-10

Write an 8051 C program to get a byte of data from PI, wait 1/2 second, and then send it to

P2.

Solution:

Example 1-11

Write an 8051 C program to get a byte of data from PO. If it is less than 100, send it to

PI; otherwise, send it to P2.

Solution:

Department of Electrical & Electronics Engineering, ATMECE, Mysuru Page 10

Microcontroller Notes:BEE403 2024-2025

3.2.1 Bit-addressable I/O programming

1. The I/O ports of PO – P3 are bit-addressable. We can access a single bit without

disturbing the rest of the port. We use the sbit data type to access a single bit of PO –

P3.One way to do that is to use the Px

^7 indicates PI.7. When using this method, you need to include the

reg51 .h file. Study the next few examples to become familiar with the syntax.

Example 1-12

Write an 8051 C program to toggle only bit P2.4 continuously without disturbing the rest of

the bits of P2.

Solution:

Department of Electrical & Electronics Engineering, ATMECE, Mysuru Page 11

Microcontroller Notes:BEE403 2024-2025

^y format where x is the port 0, 1, 2, or 3,

and y is the bit 0 – 7 of that port.

2. For example, P1

Example 1-13

Write an 8051 C program to monitor bit PI.5. If it is high, send 55H to PO; otherwise,

sendAAHtoP2.

Solution:

Example 1-14

A door sensor is connected to the P 1.1 pin, and a buzzer is connected to PI.7. Write an 8051

C program to monitor the door sensor, and when it opens, sound the buzzer. You can sound

the buzzer by sending a square wave of a few hundred Hz.

Solution:

Department of Electrical & Electronics Engineering, ATMECE, Mysuru Page 12

Microcontroller Notes:BEE403 2024-2025

Example 1-15

The data pins of an LCD are connected to PI. The information is latched into the LCD

whenever its Enable pin goes from high to low. Write an 8051 C program to send “The Earth

is but One Country” to this LCD.

Solution:

3.2.2 Accessing SFR addresses 80 – FFH

Another way to access the SFR RAM space 80 – FFH is to use the sfr data type. We can also

access a single bit of any SFR if we specify the bit address as shown in Example 1-16. Both the

bit and byte addresses for the PO – P3 ports are given in Table 1.2. Notice in Examples 1- 16,

that there is no ^include <reg51.h> statement. This allows us to access any byte of the SFR

RAM space 80 – FFH. This is a method widely used for the new generation of 8051

microcontrollers, and we will use it in future chapters.

Table 2: Single Bit Addresses of Ports

Department of Electrical & Electronics Engineering, ATMECE, Mysuru Page 13

Microcontroller Notes:BEE403 2024-2025

Example 1-16

Write an 8051 C program to get the status of bit Pl.0, save it, and send it to P2.7 continuously.

Solution:

Example 1-17

Write an 8051 C program to toggle all the bits of PO, P1, and P2 continuously with a

250 ms delay.’ Use the sfr keyword to declare the port addresses.

Department of Electrical & Electronics Engineering, ATMECE, Mysuru Page 14

Microcontroller Notes:BEE403 2024-2025

Using bit data type for bit-addressable RAM

The sbit data type is used for bit-addressable SFR registers only. Sometimes we need to store

some data in a bit-addressable section of the data RAM space 20 – 2FH. To do that, we use

the bit data type, as shown in Example 1-18.

Example 1-18

Write an 8051 C program to get the status of bit Pl.O, save it, and send it to P2.7

continuously.

Solution:

3.3 Logic operations in 8051 C

Bit-wise operators in C

1. While every C programmer is familiar with the logical operators AND (&&), OR (||),

and NOT (!), many C programmers are less familiar with the bitwise operators AND

(&), OR (|), EX-OR (

Table 1-3: Bit-wise Logic Operators for C

Department of Electrical & Electronics Engineering, ATMECE, Mysuru Page 15

Microcontroller Notes:BEE403 2024-2025

^), Inverter (~), Shift Right (»), and Shift Left («).

2. These bit-wise operators are widely used in software engineering for embedded

systems and control; consequently, understanding and mastery of them are critical in

microprocessor-based system design and interfacing. See Table 1-3.

Example 1-19

Run the following program on your simulator and examine the results.

Solution:

#include <reg51.h> void main (void)

{

P0 = 0×35 & OxOF; //ANDing

Pl = 0×04 | 0×68; //ORing

P2= 0×54 * 0×78; //XORing

P0= -0×55; //inversing

Pl= Ox9A » 3; //shifting right 3 times

P2= 0×77 » 4; //shifting right 4 times

p0= 0×6 « 4; //shifting left 4 times

Example 1-20

Write an 8051 C program to toggle all the bits of PO and P2 continuously with a 250 ms

delay. Use the inverting operator.

Solution:

The program below is tested for the DS89C420 with XTAL = 11.0592 MHz.

Department of Electrical & Electronics Engineering, ATMECE, Mysuru Page 16

Microcontroller Notes:BEE403 2024-2025

3.3.1 Bit-wise shift operation in C

There are two bit-wise shift operators in C: (1) shift right (»), and (2) shift left («).

Their format in C is as follows:

data » number of bits to be shifted right

data « number of bits to be shifted left

Example 1-21

Write an 8051 C program to toggle all the bits of PO, PI, and P2 continuously with a 250 ms

delay. Use the Ex-OR operator.

Solution:

Department of Electrical & Electronics Engineering, ATMECE, Mysuru Page 17

Microcontroller Notes:BEE403 2024-2025

Example 1-22

Write an 8051 C program to get bit Pl.0 and send it to P2.7 after inverting it.

Solution:

Example 1-23

Write an 8051 C program to read the P1.0 and P1.1 bits and issue an ASCII character to PO

according to the following table.

Department of Electrical & Electronics Engineering, ATMECE, Mysuru Page 18

Microcontroller Notes:BEE403 2024-2025

3.4 Data conversion program in 8051 C

a)ASCII numbers

On ASCII keyboards, when the key “0″ is activated, “Oil 0000″ (30H) is provided to

the computer. Similarly, 31H (Oil 0001) is provided for the key “1″, and so on, as shown in

Table 1-4.

Department of Electrical & Electronics Engineering, ATMECE, Mysuru Page 19

Microcontroller Notes:BEE403 2024-2025

Table 1-4: ASCII Code for Digits 0 – 9

b) Packed BCD to ASCII conversion

The RTC provides the time of day (hour, minute, second) and the date (year, month, day)

continuously, regardless of whether the power is on or off. However, this data is provided in

packed BCD. To convert packed BCD to ASCII, it must first be converted to unpacked BCD.

Then the unpacked BCD is tagged with Oil 0000 (30H). The following demonstrates

converting from packed BCD to ASCII. See also Example 7-24.

c) ASCII to packed BCD conversion

To convert ASCII to packed BCD, it is first converted to unpacked BCD (to get rid of the 3),

and then combined to make packed BCD. For example, 4 and 7 on the keyboard give 34H

and 37H, respectively. The goal is to produce 47H or “0100 0111″, which is packed BCD.

After this conversion, the packed BCD numbers are processed and the result will be in

packed BCD format Chapter 16discusses the RTC chip and uses the BCD and ASCII

conversion programs shown in Examples 1-24 and 1-25.

Department of Electrical & Electronics Engineering, ATMECE, Mysuru Page 20

Microcontroller Notes:BEE403 2024-2025

Example 1-24

Example 7-25

3.4.1 Checksum byte in ROM

1. To ensure the integrity of ROM contents, every system must perform the checksum

calculation.

2. The process of checksum will detect any corruption of the contents of ROM. One of

the causes of ROM corruption is current surge, either when the system is turned on or

during operation.

3. To ensure data integrity in ROM, the checksum process uses what is called

a checksum byte.

Department of Electrical & Electronics Engineering, ATMECE, Mysuru Page 21

Microcontroller Notes:BEE403 2024-2025

4. The checksum byte is an extra byte that is tagged to the end of a series of bytes of

data. To calculate the checksum byte of a series of bytes of data, the following steps can

be taken.

5. Add the bytes together and drop the carries.

1. Take the 2′s complement of the total sum. This is the checksum byte, which

becomes the last byte of the series.

2. To perform the checksum operation, add all the bytes, including the checksum

byte. The result must be zero. If it is not zero, one or more bytes of data have

been changed (corrupted).

Example 1-26

Assume that we have 4 bytes of hexadecimal data: 25H, 62H, 3FH, and 52H. (a) Find the

checksum byte, (b) perform the checksum operation to ensure data integrity, and (c) if the

second byte 62H has been changed to 22H, show how checksum detects the error.

Solution:

Department of Electrical & Electronics Engineering, ATMECE, Mysuru Page 22

Microcontroller Notes:BEE403 2024-2025

Example 1-27

Write an 8051 C program to calculate the checksum byte for the data given in Example 7-26.

Solution:

Example 1-28

Write an 8051 C program to perform step (b) of Example 7-26. If data is good, send ASCII

character ‘G’ to PO. Otherwise send ‘B’ to PO.

Solution:

Department of Electrical & Electronics Engineering, ATMECE, Mysuru Page 23

Microcontroller Notes:BEE403 2024-2025

3.4.2 Binary (hex) to decimal and ASCII conversion in 8051 C

1. The printf function is part of the standard I/O library in C and can do many things,

including converting data from binary (hex) to decimal, or vice versa. But printf takes a

lot of memory space and increases your hex file substantially. For this reason, in

systems based on the 8051 microcontroller, it is better to write your own conversion

function instead of using printf.

2. One of the most widely used conversions is the binary to decimal conversion. In

devices such as ADC (Analog-to-Digital Conversion) chips, the data is provided to

the microcontroller in binary.

3. In some RTCs, data such as time and dates are also provided in binary. In order to

display binary data we need to convert it to decimal and then to ASCII. Since the

hexadecimal format is a convenient way of representing binary data we refer to the

binary data as hex.

4. The binary data 00 – FFH converted to decimal will give us 000 to 255. One way to do

that is to divide it by 10 and keep the remainder. For example, 11111101 or FDH is

253 in decimal. The following is one version of an algorithm for conversion of hex

(binary) to decimal:

Example 1-29

Write an 8051 C program to convert 11111101 (FD hex) to decimal and display the digits on

PO, PI, and P2.

Solution:

Department of Electrical & Electronics Engineering, ATMECE, Mysuru Page 24

Microcontroller Notes:BEE403 2024-2025

3.5 Accessing code ROM space in 8051C

Using the code (program) space for predefined data is the widely used option in the 8051.

RAM data space v. code data space

In the 8051 we have three spaces in which to store data. They are as follows:

1. The 128 bytes of RAM space with address range 00 – 7FH. (In the 8052, it is

256 bytes.) We can read (from) or write (into) this RAM space directly or indirectly

using the RO and Rl registers.

2. The 64K bytes of code (program) space with addresses of 0000 – FFFFH. This

64K bytes of on-chip ROM space is used for storing programs (opcodes) and

therefore is directly under the control of the program counter (PC).

3. There are two problems with using this code space for

data.

a) First, since it is ROM memory, we can burn our predefined data and

tables into it. But we cannot write into it during the execution of the program.

b) The second problem is that the more of this code space we use for data, the less is

left for our program code. For example, if we have an 8051 chip such as

DS89C420 with only 16K bytes of on-chip ROM, and we use 4K bytes of it to

store some look-up table, only 12K bytes is left for the code program. For

some applications this can be a problem. For this reason Intel created another

memory space called external memory especially for data.

4. The 64K bytes of external memory, which can be used for both RAM and ROM. This

64K bytes is called external since we must use the MOVX Assembly language

instruction to access it. At the time the 8051 was designed, the cost of on-chip ROM was

very high; therefore, Intel used all the on-chip ROM for code but allowed

connection to external RAM and ROM. In other words, we have a total of 128K bytes

of memory space since the off-chip or external memory space of 64K bytes plus the 64K

bytes of on-chip space provides you a total of 128K bytes of memory space.

Department of Electrical & Electronics Engineering, ATMECE, Mysuru Page 25

Microcontroller Notes:BEE403 2024-2025

3.5 .1 RAM data space usage by the 8051 C compiler

In Assembly language programming, as shown in Chapters 2 and 5, the 128 bytes of RAM

space is used mainly by register banks and the stack. Whatever remains is used for scratch

pad RAM. The 8051 C compiler first allocates the first 8 bytes of the RAM to bank 0 and

then some RAM to the stack. Then it starts to allocate the rest to the variables declared by the

C program. While in Assembly the default starting address for the stack is 08, the C compiler

moves the stack’s starting address to somewhere in the range of 50 – 7FH. This allows us to

allocate contiguous RAM locations to array elements.

In cases where the program has individual variables in addition to array elements, the 8051 C

compiler allocates RAM locations in the following order:

1. Bank 0 addresses 0-7

2. Individual variables addresses 08 and beyond

3. Array elements addresses right after variables

4. Stack addresses right after array elements

5. You can verify the above order by running Example 7-30 on your 8051 C simulator

and examining the contents of the data RAM space. Remember that array elements

need contiguous RAM locations and that limits the size of the array due to the fact

that we have only 128 bytes of RAM for everything. In the case of Example 1-31 the

array elements are limited to around 100.

Example 1-30

Compile and single-step the following program on your 8051 simulator. Examine the

contents of the 128-byte RAM space to locate the ASCII values.

.

Department of Electrical & Electronics Engineering, ATMECE, Mysuru Page 26

Microcontroller Notes:BEE403 2024-2025

Example 1-31

Write, compile, and single-step the following program on your 8051 simulator. Examine the

contents of the code space to locate the values.

3.5.2 Accessing code data space in 8051 C

To make the C compiler use the code space instead of the RAM space, we need to put the

keyword code in front of the variable declaration. The following are some examples:

Example 1-32

Compile and single-step the following program on your 8051 simulator. Examine the

contents of the code space to locate the ASCII values.

Solution:

Compiler variations

Example 1-33. It shows three different versions of a program that sends me string “HELLO” to

the PI port. Compile each program with the 8051 C compiler of your choice and compare

Department of Electrical & Electronics Engineering, ATMECE, Mysuru Page 27

Microcontroller Notes:BEE403 2024-2025

the hex file size. Then compile each program on a different 8051 C compiler, and examine the

hex file size to see the effectiveness of your C compiler.

Example 1-33

Compare and contrast the following programs and discuss the advantages and disadvantages of

each one.

Solution:

All the programs send out “HELLO” to PI, one character at a time, but they do it in different

ways. The first one is short and simple, but the individual characters are embedded into the

program. If we change the characters, the whole program changes. It also mixes the code and

data together. The second one uses the RAM data space to store array elements, therefore the

size of the array is limited. The third one uses a separate area of the code space for data. This

allows the size of the array to be as long as you want if you have the on-chip ROM. However,

the more code space you use for data, the less space is left for your program code. Both

programs (b) and (c) are easily upgradable if we want to change the string itself or make it

longer. That is not the case for program (a).

Department of Electrical & Electronics Engineering, ATMECE, Mysuru Page 28

Microcontroller Notes:BEE403 2024-2025

3.6 Data serialization using 8051C

Serializing data is a way of sending a byte of data one bit at a time through a single pin of

microcontroller. There are two ways to transfer a byte of data serially:

1. Using the serial port. When using the serial port, the programmer has very

limited control over the sequence of data transfer. The detail of serial port data

transfer is discussed in Chapter 10.

2. The second method of serializing data is to transfer data one bit a time and control the

sequence of data and spaces in between them. In many new generations

of devices such as LCD, ADC, and ROM the serial versions are becoming popular

since they take less space on a printed circuit board.

Example 1-34

Write a C program to send out the value 44H serially one bit at a time via Pl.O. The LSB

should go out first.

Example 1-35

Write a C program to send out the value 44H serially one bit at a time via Pl.O. The

MSB should go out first.

Department of Electrical & Electronics Engineering, ATMECE, Mysuru Page 29

Microcontroller Notes:BEE403 2024-2025

Example 1-36

Write a C program to bring in a byte of data serially one bit at a time via PI .0. The LSB

should come in first.

Department of Electrical & Electronics Engineering, ATMECE, Mysuru Page 30

Microcontroller Notes:BEE403 2024-2025

3.7 Programming 8051 timers

The 8051 has two timers: Timer 0 and Timer 1. They can be used either as timers or as event

counters.

Basic registers of the timer

Both Timer 0 and Timer 1 are 16 bits wide. Since the 8051 has an 8-bit architecture, each 16-

bit timer is accessed as two separate registers of low byte and high byte. Each timer is

discussed separately.

Timer 0 registers

1. The 16-bit register of Timer 0 is accessed as low byte and high byte. The low byte

register is called TLO (Timer 0 low byte) and the high byte register is referred to as THO

(Timer 0 high byte).

2. These registers can be accessed like any other register, such as A, B, RO, Rl, R2, etc.

For example, the instruction “MOV TLO , #4FH” moves the value 4FH into TLO, the

low byte of Timer 0.

3. These registers can also be read like any other register. For example, “MOV R5 ,

THO” saves THO (high byte of Timer 0) in R5.

Figure 3.1.: Timer 0 Registers

Timer 1 registers

Figure 3.2.: Timer 0 Registers

Timer I is also 16 bits, and its 16-bit register is split into two bytes, referred to as TLl (Timer

I low byte) and TH1 (Timer 1 high byte). These registers are accessible in the same way as

the registers of Timer 0.

Department of Electrical & Electronics Engineering, ATMECE, Mysuru Page 31

Microcontroller Notes:BEE403 2024-2025

3.7.1 TMOD (timer mode) register

1. Both timers 0 and 1 use the same register, called TMOD, to set the various timer

operation modes. TMOD is an 8-bit register in which the lower 4 bits are set aside for

Timer 0 and the upper 4 bits for Timer 1.

2. In each case, the lower 2 bits are used to set the timer mode and the upper 2 bits to

specify the operation.

 Figure 3.3:TMOD Register

M1, MO

MO and Ml select the timer mode. As shown in Figure 9-3, there are three modes: 0, 1, and 2.

Mode 0 is a 13-bit timer, mode 1 is a 16-bit timer, and mode 2 is an 8-bit timer. We will

concentrate on modes 1 and 2 since they are the ones used most widely. We will soon

describe the characteristics of these modes, after describing the rest of the TMOD register.

C/T (clock/timer)

This bit in the TMOD register is used to decide whether the timer is used as a delay generator

or an event counter. If C/T = 0, it is used as a timer for time delay generation. The clock

source for the time delay is the crystal frequency of the 8051.

Department of Electrical & Electronics Engineering, ATMECE, Mysuru Page 32

Microcontroller Notes:BEE403 2024-2025

Example 1-37

Indicate which mode and which timer are selected for each of the following.

(a) MOV TMOD,#01H (b) MOV TMOD,#20H (c) MOV TMOD,#12H

Solution:

We convert the values from hex to binary. From Figure 9-3 we have:

1. TMOD = 00000001, mode 1 of Timer 0 is selected.

2. TMOD = 00100000, mode 2 of Timer 1 is selected.

1. TMOD = 00010010, mode 2 of Timer 0, and mode 1 of

Timer 1 are selected.

Clock source for timer

As you know, every timer needs a clock pulse to tick. What is the source of the clock pulse for

the 8051 timers? If C T = 0. the crystal frequency attached to the 8051 is the source of the clock

for the timer. This means that the size of the crystal frequency attached to the 8051 also decides

the speed at which the 8051 timer ticks. The frequency for the timer is always 1 12th the

frequency of the crystal attached to the 8051.

Example 1-38

NOTE THAT 8051 TIMERS USE 1/12 OF XTAL FREQUENCY, REGARDLESS OF

MACHINE CYCLE TIME.

Department of Electrical & Electronics Engineering, ATMECE, Mysuru Page 33

Microcontroller Notes:BEE403 2024-2025

Example 1-39

Find the value for TMOD if we want to program Timer 0 in mode 2, use 8051 XTAL for the

clock source, and use instructions to start and stop the timer.

Now that we have this basic understanding of the role of the TMOD register, we will look at the

timer’s modes and how they are programmed to create a time delay. Because modes 1 and 2 are

so widely used, we describe each of them in detail.

Although various 8051-based systems have an XTAL frequency of 10 MHz to 40 MHz, we will

concentrate on the XTAL frequency of 11.0592 MHz. The reason behind such an odd number

has to do with the baud rate for serial communication of the 8051. XTAL = 11.0592 MHz allows

the 8051 system to communicate with the IBM PC with no errors.

GATE

1. The other bit of the TMOD register is the GATE bit. Notice in the TMOD register of

that both Timers 0 and 1 have the GATE bit.

2. Every timer has a means of starting and stopping. Some timers do this by software,

some by hardware, and some have both software and hardware controls. The timers in

the 8051 have both.

3. The start and stop of the timer are controlled by way of software by the TR (timer

start) bits TRO and TR1. This is achieved by the instructions “SETB TR1″ and “CLR

TR1″ for Timer 1, and “SETB TRO” and “CLR TRO” for Timer 0.

4. The SETB instruction starts it, and it is stopped by the CLR instruction. These

instructions start and stop the timers as long as GATE = 0 in the TMOD register.

5. The hardware way of starting and stopping the timer by an external source is achieved

by making GATE = 1 in the TMOD register.

6. However, to avoid further confusion for now, we will make GATE = 0, meaning that

no external hardware is needed to start and stop the timers. In using software to start and

stop the timer where GATE = 0. all we need are the instructions “SETB TRx” and “CLR

TRx”.

Department of Electrical & Electronics Engineering, ATMECE, Mysuru Page 34

Microcontroller Notes:BEE403 2024-2025

3.7.2 Mode 1 programming

The following are the characteristics and operations of mode 1:

1. It is a 16-bit timer; therefore, it allows values of 0000 to FFFFH to be loaded

into the timer’s registers TL and TH.

2. After TH and TL are loaded with a 16-bit initial value, the timer must be start

ed. This is done by “SETB TRO” for Timer 0 and “SETB TR1″ for Timer 1.

3. After the timer is started, it starts to count up. It counts up until it reaches its limit of

FFFFH. When it rolls over from FFFFH to 0000, it sets high a flag bit called TF

(timer flag). This timer flag can be monitored. When this timer flag is raised, one

option would be to stop the timer with the instructions “CLR TRO” or “CLR TR1″, for

Timer 0 and Timer 1, respectively. Again, it must be noted that each timer has its own

timer flag: TFO for Timer 0, and TF1 for Timer 1.

4. After the timer reaches its limit and rolls over, in order to repeat the process the

registers TH and TL must be reloaded with the original value, and TF must be reset to

0.

Steps to program in mode 1

To generate a time delay, using the timer’s mode 1, the following steps are taken. To clarify

these steps, see Example 1-40

1. Load the TMOD value register indicating which timer (Timer 0 or Timer 1) is

to be used and which timer mode (0 or 1) is selected.

1. Load registers TL and TH with initial count values.

2. Start the timer.

1. Keep monitoring the timer flag (TF) with the “JNB TFx, target” instruction to

see if it is raised. Get out of the loop when TF becomes high.

3. Stop the timer.

4. Clear the TF flag for the next round.

5. Go back to Step 2 to load TH and TL again.

Department of Electrical & Electronics Engineering, ATMECE, Mysuru Page 35

Microcontroller Notes:BEE403 2024-2025

To calculate the exact time delay and the square wave frequency generated on pin P1 .5, we

need to know the XTAL frequency.

The scientific calculator in the Accessories directory of Microsoft Windows can help you to

find the TH, TL values. This calculator supports decimal, hex, and binary calculations.

(a) in hex

(FFFF – YYXX + 1) X 1.085 us where YYXX are TH, TL initial values respectively. Notice

that values YYXX are in hex.

(b) in decimal

Convert YYXX values of the TH,TL register to decimal to get a NNNNN decimal number,

then (65536 – NNNNN) x 1.085 mircosec

Timer Delay Calculation for XTAL = 11.0592 MHz

Example 1-40

In the following program, we are creating a square wave of 50% duty cycle (with equal

portions high and low) on the PI.5 bit. Timer 0 is used to generate the time delay. Analyze the

program.

Solution:

In the above program notice the following steps.

1. TMOD is loaded.

2. FFF2H is loaded into THO – TLO.

3. P1.5 is toggled for the high and low portions of the pulse.

4. The DELAY subroutine using the timer is called.

5. In the DELAY subroutine, Timer 0 is started by the “SETB TRO” instruction.

Department of Electrical & Electronics Engineering, ATMECE, Mysuru Page 36

Microcontroller Notes:BEE403 2024-2025

1. Timer 0 counts up with the passing of each clock, which is provided by the

crystal

oscillator. As the timer counts up, it goes through the states of FFF3, FFF4,

FFF5,

FFF6, FFF7, FFF8, FFF9, FFFA, FFFB, and so on until it reaches FFFFH.

One more

clock rolls it to 0, raising the timer flag (TFO = 1). At that point, the JNB

instruction

falls through.

2. Timer 0 is stopped by the instruction “CLR TRO”. The DELAY subroutine

ends,

and the process is repeated.

Notice that to repeat the process, we must reload the TL and TH registers and start the timer

again.

Example 1-41

Calculate the amount of time delay in the DELAY subroutine generated by the timer. Assume

that XTAL = 11.0592 MHz.

Solution:

The timer works with a clock frequency of 1/12 of the XTAL frequency; therefore, we have

11.0592 MHz / 12 = 921.6 kHz as the timer frequency. As a result, each clock has a period of T

= 1 / 921.6 kHz = 1.085 (is. In other words, Timer 0 counts up each 1.085 us resulting in delay

= number of counts x 1.085 us.

The number of counts for the rollover is FFFFH – FFF2H = ODH (13 decimal). However, we

add one to 13 because of the extra clock needed when it rolls over from FFFF to 0 and raises

the TF flag. This gives 14 x 1.085 us = 15.19 us for half the pulse. For the entire period T = 2 x

15.19 (as = 30.38 (is gives us the time delay generated by the timer.

Department of Electrical & Electronics Engineering, ATMECE, Mysuru Page 37

Microcontroller Notes:BEE403 2024-2025

Example 1-42

Calculate the frequency of the square wave generated on pin P1. 5.

Solution:

In the time delay calculation of Example 9-5, we did not include the overhead due to

instructions in the loop. To get a more accurate timing, we need to add clock cycles due to the

instructions in the loop. To do that, we use the machine cycles from Table A-l in Appendix A,

as shown below.

NOTE THAT 8051 TIMERS USE 1/12 OF XTAL FREQUENCY, REGARDLESS OF

MACHINE CYCLE TIME.

Example 1-43

Find the delay generated by Timer 0 in the following code, using both of the methods of

Figure 3.3. Do not include the overhead due to instructions.

Department of Electrical & Electronics Engineering, ATMECE, Mysuru Page 38

Microcontroller Notes:BEE403 2024-2025

1. (FFFF-B83E + 1) = 47C2H= 18370 in decimal and 18370 x 1.085 µs= 19.93145ms.

2. Since TH – TL = B83EH = 47166 (in decimal) we have 65536 – 47166 = 18370.

This means that the timer counts from B83EH to FFFFH.. This plus rolling over to 0

goes through a total of 18370 clock cycles, where each clock is 1.085µs in duration.

Therefore, we have 18370 x 1.085 µs = 19.93145 ms as the width of the pulse.

Example 1-44

Modify TL and TH in Example 9-7 to get the largest time delay possible. Find the delay in ms.

In your calculation, exclude the overhead due to the instructions in the loop.

Solution:

To get the largest delay we make TL and TH both 0. This will count up from 0000 to FFFFH

and then roll over to zero.

Making TH and TL both zero means that the timer will count from 0000 to FFFFH, and then

roll over to raise the TF flag. As a result, it goes through a total of 65536 states. Therefore, we

have delay = (65536 – 0) x 1.085 µs = 71.1065 ms.

Example 1-45

The following program generates a square wave on pin PL5 continuously using Timer 1 for a

time delay. Find the frequency of the square wave if XTAL =11.0592 MHz. In your

calculation do not include the overhead due to instructions in the loop.

Department of Electrical & Electronics Engineering, ATMECE, Mysuru Page 39

Microcontroller Notes:BEE403 2024-2025

In the above program notice the target of SJMP. In mode 1, the program must reload the TH,

TL register every time if we want to have a continuous wave. Now the calculation. Since

FFFFH – 7634H = 89CBH + 1 = 89CCH and 89CCH = 35276 clock count. 35276 x 1.085 us =

38.274 ms for half of the square wave. The entire square wave length is 38.274 x 2 =

76.548 ms and has a frequency = 13.064 Hz.

Also notice that the high and low portions of the square wave pulse are equal. In the above

calculation, the overhead due to all the instructions in the loop is not included.

Finding values to be loaded into the timer

1. Assuming that we know the amount of timer delay we need, the question is how to

find the values needed for the TH, TL registers. To calculate the values to be loaded into

the TL and TH registers look at Example 9-10 where we use crystal frequency of 11.0592

MHz for the 8051 system.

2. Assuming XTAL = 11.0592 MHz from Example 9-10 we can use the following steps

for finding the TH, TL registers’ values.

1. Divide the desired time delay by 1.085 us.

2. Perform 65536 – n, where n is the decimal value we got in Step 1.

1. Convert the result of Step 2 to hex, where yyxx is the initial hex value to be

loaded into the timer’s registers.

3. Set TL = xx and TH = yy.

Department of Electrical & Electronics Engineering, ATMECE, Mysuru Page 40

Microcontroller Notes:BEE403 2024-2025

Example 1-46

Assume that XTAL = 11.0592 MHz. What value do we need to load into the timer’s registers if

we want to have a time delay of 5 ms (milliseconds)? Show the program for Timer 0 to

create a pulse width of 5 ms on P2.3.

Solution:

Since XTAL = 11.0592 MHz, the counter counts up every 1.085 us. This means that out of

many 1.085 us intervals we must make a 5 ms pulse. To get that, we divide one by the other.

We need 5 ms /•! .085 us = 4608 clocks. To achieve that we need to load into TL and TH the

value 65536 – 4608 = 60928 = EEOOH. Therefore, we have TH = EE and tt = on

Example 1-47

Assuming that XTAL = 11.0592 MHz, write a program to generate a square wave of 2 kHz

frequency on pin P1 .5.

Solution:

Look at the following steps.

1. T = 1 / f = 1 / 2 kHz = 500 µs the period of the square wave.

2. 1/2 of it for the high and low portions of the pulse is 250 µs.

3. 250 us / 1.085 us = 230 and 65536 – 230 = 65306. which in hex is FF1AH.

4. TL = 1AH and TH = FFH. all in hex. The program is as follows.

Department of Electrical & Electronics Engineering, ATMECE, Mysuru Page 41

Microcontroller Notes:BEE403 2024-2025

Example 1-48

Assuming XTAL = 11.0592 MHz, write a program to generate a square wave of 50 Hz

frequency on pin P2.3.

Solution:

Look at the following steps.

1. T — 1 / 50 Hz = 20 ms, the period of the square wave.

2. 1/2 of it for the high and low portions of the pulse = 10 ms

3. 10 ms / 1.085 us = 9216 and 65536 – 9216 = 56320 in decimal, and in hex it is

DCOOH.

4. TL = 00 and TH = DC (hex)

3.7.3 Generating a large time delay

As we have seen in the examples so far, the size of the time delay depends on two factors,

(a) The crystal frequency, and

(b) The timer’s 16-bit register in mode 1.

Both of these factors are beyond the control of the 8051 programmer. We saw earlier that the

largest time delay is achieved by making both TH and TL zero.

Using Windows calculator to find TH, TL

The scientific calculator in Microsoft Windows is a handy and easy-to-use tool to find the TH,

TL values. Assume that we would like to find the TH, TL values for a time delay that uses

35,000 clocks of 1.085 us. The following steps show the calculation.

1. Bring up the scientific calculator in MS Windows and select decimal.

2. Enter 35,000.

Department of Electrical & Electronics Engineering, ATMECE, Mysuru Page 42

Microcontroller Notes:BEE403 2024-2025

3. Select hex. This converts 35,000 to hex, which is 88B8H.

4. Select +/- to give -35000 decimal (7748H).

1. The lowest two digits (48) of this hex value are for TL and the next two (77)

are for TH. We ignore all the Fs on the left since our number is 16-bit data.

Example 1-49

Examine the following program and find the time delay in seconds. Exclude the overhead due

to the instructions in the loop.

Solution:

TH – TL = 0108H = 264 in decimal and 65536 – 264 = 65272. Now 65272 x 1.085 µs =

70.820 ms, and for 200 of them we have 200 x 70.820 ms = 14.164024 seconds.

3.7.4 Mode 0

Mode 0 is exactly like mode 1 except that it is a 13-bit timer instead of 16-bit. The 13-bit

counter can hold values between 0000 to 1FFFH in TH – TL. Therefore, when the timer

reaches its maximum of 1FFH, it rolls over to 0000, and TF is raised.

3.7.5 Mode 2 programming

The following are the characteristics and operations of mode 2.

1. It is an 8-bit timer; therefore, it allows only values of 00 to FFH to be loaded

into the timer’s register TH.

2. After TH is loaded with the 8-bit value, the 8051 gives a copy of it to TL. Then

the timer must be started. This is done by the instruction “SETB TRO” for

Timer 0 and “SETB TR1

Department of Electrical & Electronics Engineering, ATMECE, Mysuru Page 43

Microcontroller Notes:BEE403 2024-2025

1‘ for Timer 1. This is just like mode 1.

3. After the timer is started, it starts to count up by incrementing the TL register.

It counts up until it reaches its limit of FFH. When it rolls over from FFH to

00, it sets high the TF (timer flag). If we are using Timer 0, TFO goes high; if

we are using Timer 1, TF1 is raised.

4. When the TL register rolls from FFH to 0 and TF is set to 1, TL is reloaded

automatically with the original value kept by the TH register. To repeat the process, we

must simply clear TF and let it go without any need by the programmer to reload the

original value. This makes mode 2 an auto-reload, in contrast with mode 1 in which

the programmer has to reload TH and TL.

5. It must be emphasized that mode 2 is an 8-bit timer. However, it has an auto-

reloading capability. In auto-reload, TH is loaded with the initial count and a copy of it

is given to TL. This reloading leaves TH unchanged, still holding a copy of the

original value. This mode has many applications, including setting the baud rate in

serial communication,

Steps to program in mode 2

To generate a time delay using the timer’s mode 2, take the following steps.

1. Load the TMOD value register indicating which timer (Timer 0 or Timer 1) is

to be used, and select the timer mode (mode 2).

2. Load the TH registers with the initial count value.

3. Start the timer.

4. Keep monitoring the timer flag (TF) with the “JNB TFx, target” instruction to see

whether it is raised. Get out of the loop when TF goes high.

5. Clear the TF flag.

6. Go back to Step 4, since mode 2 is auto-reload.

Department of Electrical & Electronics Engineering, ATMECE, Mysuru Page 44

Microcontroller Notes:BEE403 2024-2025

Example 1-50

Assuming that XTAL = 11.0592 MHz. find (a) the frequency of the square wave generated on

pin P 1.0 in the following program, and (b) the smallest frequency achievable in this

program, and the TH value to do that.

Solution:

First notice the target address of SJMP. In mode 2 we do not need to reload TH since

it is auto-reload. Now (256 – 05) x 1.085 µs = 251 x 1.085 us = 272.33 µs is the

high portion of the pulse. Since it is a 50% duty cycle square wave, the period T is

twice that; as a result T = 2 x 272.33 us = 544.67 us and the frequency = 1.83597

kHz.

1. To get the smallest frequency, we need the largest T and that is achieved when TH

= 00.

2. In that case, we have T = 2 x 256 x 1.085 µs = 555.52 µs and the frequency

= 1.8kHz.

Example 1-51

Example 1-52

Department of Electrical & Electronics Engineering, ATMECE, Mysuru Page 45

Microcontroller Notes:BEE403 2024-2025

Assuming that we are programming the timers for mode 2, find the value (in hex) loaded into

TH for each of the following cases.

You can use the Windows scientific calculator to verify the results provided by the assembler.

In Windows calculator, select decimal and enter 200. Then select hex, then +/- to get the TH

value. Remember that we only use the right two digits and ignore the rest since our data is an

8-bit data. The following is what we get.

3.7.6 Assemblers and negative values

Since the timer is 8-bit in mode 2, we can let the assembler calculate the value for TH. For

example, in “MOV TH1 ,#-10 0″, the assembler will calculate the -100 = 9C, and makes TH1 =

9C in hex. This makes our job easier.

Example 1-53

Find (a) the frequency of the square wave generated in the following code, and (b) the duty

cycle of this wave.

Department of Electrical & Electronics Engineering, ATMECE, Mysuru Page 46

Microcontroller Notes:BEE403 2024-2025

Solution:

For the TH value in mode 2, the conversion is done by the assembler as long as we enter a

negative number. This also makes the calculation easy. Since we are using 150 clocks, we

have time for the DELAY subroutine = 150 x 1.085 µs = 162 µs. The high portion of the

pulse is twice that of the low portion (66% duty cycle). Therefore, we have: T = high portion

+ low portion = 325.5 (is + 162.25µs = 488.25 µs and frequency = 2.048 kHz.

Notice that in many of the time delay calculations we have ignored the clocks caused by the

overhead instructions in the loop. To get a more accurate time delay, and hence frequency,

you need to include them. If you use a digital scope and you don’t get exactly the same

frequency as the one we have calculated, it is because of the overhead associated with those

instructions.

3.8 Counter programming

C/T bit in TMOD register

1. Recall from the last section that the C/T bit in the TMOD register decides the source

of the clock for the timer. If C/T = 0, the timer gets pulses from the crystal.

2. In contrast, when C/T = 1, the timer is used as a counter and gets its pulses from

outside the 8051. Therefore, when C/T = 1, the counter counts up as pulses are fed

from pins 14 and 15.

3. These pins are called TO (Timer 0 input) and Tl (Timer 1 input). Notice that these

two pins belong to port 3.

4. In the case of Timer 0, when C/T = 1, pin P3.4 provides the clock pulse and the

counter counts up for each clock pulse coming from that pin. Similarly, for Timer 1,

when C/T = 1 each clock pulse coming in from pin P3.5 makes the counter count up.

Table 1.5 : Port 3 Pins Used For Timers 0 and 1

Department of Electrical & Electronics Engineering, ATMECE, Mysuru Page 47

Microcontroller Notes:BEE403 2024-2025

Example 1-54

Assuming that clock pulses are fed into pin Tl, write a program for counter 1 in mode

2 to count the pulses and display the state of the TL1 count on P2.

In Example 1-54, we use Timer 1 as an event counter where it counts up as clock pulses are

fed into pin 3.5. These clock pulses could represent the number of people passing through an

entrance, or the number of wheel rotations, or any other event that can be converted to pulses.

In Example 1-54, the TL data was displayed in binary. In Example 9-19, the TL registers are

converted to ASCII to be displayed on an LCD.

Department of Electrical & Electronics Engineering, ATMECE, Mysuru Page 48

Microcontroller Notes:BEE403 2024-2025

Example 1-55

Assume that a 1-Hz frequency pulse is connected to input pin 3.4. Write a program to display

counter 0 on an LCD. Set the initial value of THO to -60.

Solution:

To display the TL count on an LCD, we must convert 8-bit binary data to ASCII. See Chapter 6

for data conversion.

By using 60 Hz we can generate seconds, minutes, hours.

Note that on the first round, it starts from 0, since on RESET, TLO = 0. To solve this problem,

load TLO with -60 at the beginning of the program.

Department of Electrical & Electronics Engineering, ATMECE, Mysuru Page 49

Microcontroller Notes:BEE403 2024-2025

Figure 3.3 :Timer 0 with External Input (Mode 2) Figure 3.4 Timer 1 with External

Input (Mode 2)

As another example of the application of the timer with C/T = 1, we can feed an external

square wave of 60 Hz frequency into the timer. The program will generate the second, the

minute, and the hour out of this input frequency and display the result on an LCD. This will be

a nice digital clock, but not a very accurate one.

Table 1.5 : Equivalent Instructions for the Timer Control Register (TCON)

Department of Electrical & Electronics Engineering, ATMECE, Mysuru Page 50

Microcontroller Notes:BEE403 2024-2025

3.8.1 TCON register

1. In the examples so far we have seen the use of the TRO and TR1 flags to turn on or

off the timers. These bits are part of a register called TCON (timer control). This

register is an 8-bit register.

2. As shown in Table 1.5, the upper four bits are used to store the TF and TR bits of both

Timer 0 and Timer 1. The lower four bits are set aside for controlling the interrupt bits.

We must notice that the TCON register is a bit-addressable register. Instead of using

instructions such as “SETB TR1″ and “CLR TR1″, we could use “SETB TCON. 6″ and

“CLR TCON. 6″, respectively.

The case of GATE = 1 in TMOD

Figure 3.5. Timer/Counter 0

1. All discussion so far has assumed that GATE = 0. When GATE = 0, the timer is

started with instructions “SETB TRO” and “SETB TR1″, for Timers 0 and 1,

respectively.

2. What happens if the GATE bit in TMOD is set to 1.if GATE = 1, the start and stop of

the timer are done externally through pins P3.2 and P3.3 for Timers 0 and 1,

respectively.

3. This is in spite of the fact that TRx is turned on by the “SETB TRx” instruction. This

allows us to start or stop the timer externally at any time via a simple switch. This

hardware way of controlling the stop and start of the timer can have many

applications.

4. For example, assume that an 8051 system is used in a product to sound an alarm

every second using Timer 0, perhaps in addition to many other things. Timer 0 is

turned on by the software method of using the “SETB TRO” instruction and is beyond

Department of Electrical & Electronics Engineering, ATMECE, Mysuru Page 51

Microcontroller Notes:BEE403 2024-2025

the control of the user of that product. However, a switch connected to pin P3.2 can be

used to turn on and off the timer, thereby shutting down the alarm.

Figure 3.6. Timer/Counter 1

3.9 Programming timers 0 and 1 in 8051 C

Accessing timer registers in C

In 8051 C we can access the timer registers TH, TL, and TMOD directly using the reg51 .h

header file.

Example 1-56

Write a 8051 C program to toggle all the bits of port P1 continuously with some delay in

between. Use Timer 0, 16-bit mode to generate the delay.

Solution:

Department of Electrical & Electronics Engineering, ATMECE, Mysuru Page 52

Microcontroller Notes:BEE403 2024-2025

Calculating delay length using timers

Delay duration for the AT89C51/52 and DS89C4xO chips

As we stated before, there is a major difference between the AT89C51 and DS89C4xO chips in

term of the time it takes to execute a single instruction. Although the DS89C4xO executes

instructions 12 times faster than the AT89C51 chip, they both still use Osc/12 clock for their

timers. The faster execution time for the instructions will have an impact on your delay length.

Department of Electrical & Electronics Engineering, ATMECE, Mysuru Page 53

Microcontroller Notes:BEE403 2024-2025

To verify this very important point, compare parts (a) and (b) of Example 9-21 since they

have been tested on these two chips with the same speed and C compiler.

Timers 0 and 1 delay using mode 1 (16-bit non auto-reload)

Examples 9-21 and 9-22 show 8051 C programming of the timers 0 and 1 in mode 1 (16-bit

non-auto reload). Examine them to get familiar with the syntax.

Timers 0 and 1 delay using mode 2 (8-bit auto-reload)

Study these examples below to get familiar with the syntax.

Example 1-57

Write an 8051 C program to toggle only bit PI.5 continuously every 50 ms. Use Timer 0,

mode 1 (16-bit) to create the delay. Test the program (a) on the AT89C51 and (b) on the

DS89C420.

Solution:

Department of Electrical & Electronics Engineering, ATMECE, Mysuru Page 54

Microcontroller Notes:BEE403 2024-2025

Example 1-58

Write an 8051 C program to toggle all bits of P2 continuously every 500 ms. Use Timer 1.

mode 1 to create the delay.

Solution:

Example 1-59

Write an 8051 C program to toggle only pin PI.5 continuously every 250 ms. Use Timer 0,

mode 2 (8-bit auto-reload) to create the delay.

Solution:

Department of Electrical & Electronics Engineering, ATMECE, Mysuru Page 55

Microcontroller Notes:BEE403 2024-2025

256-23 = 233

23 x 1.085 us = 25 us

25 us x 250 x 40 = 250 ms by calculation.

However, the scope output does not give us this result. This is due to overhead of the for loop

in C. To correct this problem, we put 36 instead of 40.

Example 1-60

Write an 8051 C program to create a frequency of 2500 Hz on pin P2.7. Use Timer 1. mode 2

to create the delay.

Solution:

Department of Electrical & Electronics Engineering, ATMECE, Mysuru Page 56

Microcontroller Notes:BEE403 2024-2025

Example 1-61

A switch is connected to pin PI.2. Write an 8051 C program to monitor SW and create

the following frequencies on pin PI.7:

SW=0: 500 Hz

SW=1: 750 Hz

Use Timer 0, mode 1 for both of them.

Solution:

Department of Electrical & Electronics Engineering, ATMECE, Mysuru Page 57

Microcontroller Notes:BEE403 2024-2025

3.9.1 C Programming of timers 0 and 1 as counters

A timer can be used as a counter if we provide pulses from outside the chip instead of using the

frequency of the crystal oscillator as the clock source. By feeding pulses to the TO (P3.4) and

Tl (P3.5) pins, we turn Timer 0 and Timer 1 into counter 0 and counter 1, respectively. Study

the next few examples to see how timers 0 and 1 are programmed as counters using the C

language.

Department of Electrical & Electronics Engineering, ATMECE, Mysuru Page 58

Microcontroller Notes:BEE403 2024-2025

Example 1-62

Assume that a 1-Hz external clock is being fed into pin Tl (P3.5). Write a C program for

counter 1 in mode 2 (8-bit auto reload) to count up and display the state of the TL1 count on PI.

Start the count at OH.

Solution:

Example 1-63

Assume that a 1-Hz external clock is being fed into pin TO (P3.4). Write a C program for

counter 0 in mode -1 (16-bit) to count the pulses and display the THO and TLO registers on P2

and PI, respectively.

Solution:

Department of Electrical & Electronics Engineering, ATMECE, Mysuru Page 59

Microcontroller Notes:BEE403 2024-2025

Example 1-64

Assume that a 2-Hz external clock is being fed into pin Tl (P3.5). Write a C program for

counter 0 in mode 2 (8-bit auto reload) to display the count in ASCII. The 8-bit binary count

must be converted to ASCII. Display the ASCII digits (in binary) on PO, PI, and P2 where PO

has the least significant digit. Set the initial value of THO to 0.

Solution:

Department of Electrical & Electronics Engineering, ATMECE, Mysuru Page 60

Microcontroller Notes:BEE403 2024-2025

To display the TL1 count we must convert 8-bit binary data to ASCII. See Chapter 7 for data

conversion. The ASCII values will be shown in binary. For example, ’9′ will show as

00111001 on ports.

Example 1-65

Assume that a 60-Hz external clock is being fed into pin TO (P3.4). Write a C program for

counter 0 in mode 2 (8-bit auto-reload) to display the seconds and minutes on PI and P2,

respectively.

Solution:

Department of Electrical & Electronics Engineering, ATMECE, Mysuru Page 61

Microcontroller Notes:BEE403 2024-2025

Outcomes

At the end of the module, students will be able to:

Evaluate software delays, timer delays and timer programming using both Assembly and C language.

[L5, MODULE 3]

Department of Electrical & Electronics Engineering, ATMECE, Mysuru Page 62

Microcontroller Notes:BEE403 2024-2025

