
h

MODULE 4: 8051 Serial Port Programming in Assembly and C

Structure

 4.1 Basics of serial communication

4.2 8051 connection to RS242

4.3 8051 serial port programming in assembly

4.4 Serial port programming in 8051 C

8051 Interrupt programming in assembly and C:

4.5 8051 interrupts

4.6 Programming timer

4.7 External hardware

4.8serial communication interrupt

4.9 Interrupt priority in 8051/52

4.10 Interrupt programming in C

Objectives

• To explain in detail the execution of 8051 Assembly language instructions and data

types

• To explain develop 8051 programs for time delay and Interrupts

Department of Electrical & Electronics Engineering, ATMECE, Mysuru Page 1

Microcontroller Notes: BEE403 2024-2025

4.1 Basics of serial communication

1. When a microprocessor communicates with the outside world, it provides the data in

byte-sized chunks. In some cases, such as printers, the information is simply grabbed

from the 8-bit data bus and presented to the 8-bit data bus of the printer.

2. This can work only if the cable is not too long, since long cables diminish and even

distort signals. Furthermore, an 8-bit data path is expensive. For these reasons, serial

communication is used for transferring data between two systems located at distances of

hundreds of feet to millions of miles apart. Figure 4-1 diagrams serial versus

parallel data transfers.

3. The fact that serial communication uses a single data line instead of the 8-bit data line

of parallel communication not only makes it much cheaper but also enables two

computers located in two different cities to communicate over the telephone.

4. For serial data communication to work, the byte of data must be converted to serial

bits using a parallel-in-serial-out shift register; then it can be transmitted over a single

data line. This also means that at the receiving end there must be a serial-in-parallel- out

shift register to receive the serial data and pack them into a byte. Of course, if data is to

be transferred on the telephone line, it must be converted from Os and Is to audio tones,

which are sinusoidal-shaped signals. This conversion is performed by a peripheral

device called a modem, which stands for “modulator/demodulator.”

5. t , When the distance is short, the digital signal can be transferred as it is on a simple

wire and requires no modulation. This is how IBM PC keyboards transfer data to the

motherboard. However, for long-distance data transfers using communication lines

such as a telephone, serial data communication requires a modem

to modulate (convert from Os and 1 s to audio tones) and demodulate (converting

from audio tones to Os and 1 s).

6. Serial data communication uses two methods, asynchronous and synchronous.

The synchronous method transfers a block of data (characters) at a time, while

the asynchronous method transfers a single byte at a time. It is possible to write

software to use either of these methods, but the programs can be tedious and long. For

this reason, there are special 1C chips made by many manufacturers for serial data

communications. These chips are commonly referred to as UART (universal

asynchronous receiver-transmitter) and USART (universal synchronous-asynchronous

receiver-transmitter).

Department of Electrical & Electronics Engineering, ATMECE, Mysuru Page 2

Microcontroller Notes:BEE403 2024-2025

Figure 4-1. Serial versus Parallel Data Transfer

Figure 4.2: Simplex, Half-, and Full-Duplex Transfers

a) Half- and full-duplex transmission

In data transmission if the data can be transmitted and received, it is a duplex transmission.

This is in contrast to simplex transmissions such as with printers, in which the computer

only sends data.

Duplex transmissions can be half or full duplex, depending on whether or not the data

transfer can be simultaneous. If data is transmitted one way at a time, it is referred to as half

duplex.

 If the data can go both ways at the same time, it is full duplex. Of course, full duplex

requires two wire conductors for the data lines (in addition to the signal ground), one for

transmission and one for reception, in order to transfer and receive data simultaneously.

Department of Electrical & Electronics Engineering, ATMECE, Mysuru Page 3

Microcontroller Notes:BEE403 2024-2025

b)Asynchronous serial communication and data framing

1. The data coming in at the receiving end of the data line in a serial data transfer is all

Os and 1s;

2. it is difficult to make sense of the data unless the sender and receiver agree on a set of

rules, a protocol, on how the data is packed, how many bits constitute a character, and

when the data begins and ends.

Start and stop bits

1. Asynchronous serial data communication is widely used for character-oriented

transmissions, while block-oriented data transfers use the synchronous method.

2. In the asynchronous method, each character is placed between start and stop bits.

This is called framing. In data framing for asynchronous communications, the data,

such as ASCII characters, are packed between a start bit and a stop bit.

3. The start bit is always one bit, but the stop bit can be one or two bits. The start bit is

always a 0 (low) and the stop bit(s) is 1 (high).

4. For example, look at Figure 10-3 in which the ASCII character “A” (8-bit binary 0100

0001) is framed between the start bit and a single stop bit. Notice that the LSB is sent

out first.

Figure 4.3: Framing ASCII “A” (41H)

5. Notice in Figure 4.3that when there is no transfer, the signal is 1 (high), which is

referred to as mark. The 0 (low) is referred to as space. Notice that the transmission

begins with a start bit followed by DO, which is the LSB, then the rest of the bits until

the MSB (D7), and finally, the one stop bit indicating the end of the character “A”.

6. In asynchronous serial communications, peripheral chips and modems can be

programmed for data that is 7 or 8 bits wide. This is in addition to the number of stop

bits, 1 or 2. While in older systems ASCII characters were 7-bit, in recent years, due to

the extended ASCII characters, 8-bit data has become common. In some older

systems, due to the slowness of the receiving mechanical device, two stop bits were

Department of Electrical & Electronics Engineering, ATMECE, Mysuru Page 4

Microcontroller Notes:BEE403 2024-2025

used to give the device sufficient time to organize itself before transmission of the

next byte. In modern PCs however, the use of one stop bit is standard.

7. Assuming that we are transferring a text file of ASCII characters using 1 stop bit, we

have a total of 10 bits for each character: 8 bits for the ASCII code, and 1 bit each for

the start and stop bits. Therefore, for each 8-bit character there are an extra 2 bits,

which gives 20% overhead.

8. In some systems, the parity bit of the character byte is included in the data frame in order

to maintain data integrity. This means that for each character (7- or 8-bit, depending

on the system) we have a single parity bit in addition to start and stop bits. The parity bit

is odd or even. In the case of an odd-parity bit the number of data bits, including the

parity bit, has an odd number of Is. Similarly, in an even-parity bit system the total

number of bits, including the parity bit, is even.

9. For example, the ASCII character “A”, binary 0100 0001, has 0 for the even-parity bit.

UART chips allow programming of the parity bit for odd-, even-, and no-parity options.

c) Data transfer rate

1. The rate of data transfer in serial data communication is stated in bps (bits per second).

Another widely used terminology for bps is baud rate.

2. However, the baud and bps rates are not necessarily equal. This is due to the fact that

baud rate . is the modem terminology and is defined as the number of signal changes per

second. In modems a single change of signal, sometimes transfers several bits of data.

As far as the conductor wire is concerned, the baud rate and bps are the same, and for

this reason in this book we use the terms bps and baud interchangeably.

3. The data transfer rate of a given computer system depends on communication ports

incorporated into that system. For example, the early IBM PC/XT could transfer data at

the rate of 100 to 9600 bps.

4. In recent years, however, Pentium-based PCs transfer data at rates as high as 56K bps.

It must be noted that in asynchronous serial data communication, the baud rate is

generally limited to 100,000 bps.

Department of Electrical & Electronics Engineering, ATMECE, Mysuru Page 5

Microcontroller Notes:BEE403 2024-2025

4.1.1 RS232 standards

1. To allow compatibility among data communication equipment made by various

manufacturers, an interfacing standard called RS232 was set by the Electronics

Industries Association (EIA) in 1960. In 1963 it was modified and called RS232A.

2. RS232B and RS232C were issued in 1965 and 1969, respectively. In this book we

refer to it simply as RS232.

3. Today, RS232 is the most widely used serial I/O interfacing standard. This standard is

used in PCs and numerous types of equipment. However, since the standard was set

long before the advent of the TTL logic family, its input and output voltage levels are

not TTL compatible. In RS232, a 1 is represented by -3 to -25 V, while a 0 bit is +3 to

+25 V, making -3 to +3 undefined.

4. For this reason, to connect any RS232 to a microcontroller system we must use

voltage converters such as MAX232 to convert the TTL logic levels to the RS232

voltage levels, and vice versa. MAX232 1C chips are commonly referred to as line

drivers.

RS232 pins

Table 4.1 provides the pins and their labels for the RS232 cable, commonly referred to as the

DB-25 connector. In labelling, DB-25P refers to the plug connector (male) and DB-25S is for

the socket connector (female).

Figure 4.4: RS232 Connector DB-25

Since not all the pins are used in PC cables, IBM introduced the DB-9 version of the serial

I/O standard, which uses 9 pins only, as shown in Table 4.2.

Department of Electrical & Electronics Engineering, ATMECE, Mysuru Page 6

Microcontroller Notes:BEE403 2024-2025

a) Data communication classification

Table 4.1:DB25 Pin connection

Current terminology classifies data communication equipment as DTE (data terminal

equipment) or DCE (data communication equipment). DTE refers to terminals and computers

that send and receive data, while DCE refers to communication equipment, such as modems,

that are responsible for transferring the data.

b) Examining RS232 handshaking signals

To ensure fast and reliable data transmission between two devices, the data transfer must be

coordinated. Just as in the case of the printer, because the receiving device in serial data

communication may have no room for the data, there must be a way to inform the sender to stop

sending data. Many of the pins of the RS-232 connector are used for handshaking signals. Their

descriptions are provided below only as a reference and they can be bypassed since they are

not supported by the 8051 UARTchip.

Department of Electrical & Electronics Engineering, ATMECE, Mysuru Page 7

Microcontroller Notes:BEE403 2024-2025

Figure 4.5: RS232 Connector DB-9

Table 4.2:DB-9 Pin connection

Figure 4.6: Null Modem connection

1. DTR (data terminal ready). When a terminal (or a PC COM port) is turned on, after

going through a self-test, it sends out signal DTR to indicate that it is ready for

communication. If there is something wrong with the COM port, this signal will not be

activated. This is an active-low signal and can be used to inform the •modem that the

computer is alive and kicking. This is an output pin from DTE (PC COM port) and an

input to the modem.

Department of Electrical & Electronics Engineering, ATMECE, Mysuru Page 8

Microcontroller Notes:BEE403 2024-2025

2. DSR (data set ready). When DCE (modem) is turned on and has gone through the

self-test, it asserts DSR to indicate that it is ready to communicate. Thus, it is an

output from the modem (DCE) and input to the PC (DTE). This is an active- low

signal. If for any reason the modem cannot make a connection to the telephone, this

signal remains inactive, indicating to the PC (or terminal) that it cannot accept or send

data.

3. RTS (request to send). When the DTE device (such as a PC) has a byte to transmit, it

asserts RTS to signal the modem that it has a byte of data to transmit. RTS is an

active-low output from the DTE and an input to the modem.

4. CTS (clear to send). In response to RTS, when the modem has room for storing the data

it is to receive, it sends out signal CTS to the DTE (PC) to indicate that it can receive

the data now. This input signal to the DTE is used by the DTE to start transmission.

5. DCD (carrier detect, or DCD, data carrier detect). The modem asserts signal

DCD to inform the DTE (PC) that a valid carrier has been detected and that

contact between it and the other modem is established. Therefore, DCD is an

output from the modern and an input to the PC (DTE).

6. RI (ring indicator). An output from the modem (DCE) and an input to a PC

(DTE) indicates that the telephone is ringing. It goes on and off in synchronization

with the ringing sound. Of the six handshake signals, this is the least often used, due to

the fact that modems take care of answering the phone. However, if the PC is in

charge of answering the phone, this signal can be used.

4.2 8051 connection to RS242

a) RxD and TxD pins in the 8051

1. The 8051 has two pins that are used specifically for transferring and receiving data

serially.

2. These two pins are called TxD and RxD and are part of the port 3 group (P3.0 and

P3.1). Pin 11 of the 8051 (P3.1) is assigned to TxD and pin 10 (P3.0) is designated as

RxD.

Department of Electrical & Electronics Engineering, ATMECE, Mysuru Page 9

Microcontroller Notes:BEE403 2024-2025

3. These pins are TTL compatible; therefore, they require a line driver to make them

RS232 compatible. One such line driver is the MAX232 chip.

b)MAX232

1. Since the RS232 is not compatible with today’s microprocessors and microcontrollers,

we need a line driver (voltage converter) to convert the RS232′s signals to TTL

voltage levels that will be acceptable to the 8051 ‘s TxD and RxD pins.

2. One example of such a converter is MAX232 from Maxim Corp. (www.maxim-

ic.com). The MAX232 converts from RS232 voltage levels to TTL voltage levels, and

vice versa. One advantage of the MAX232 chip is that it uses a +5 V power source

which, is the same as the source voltage for the 8051.

3. In other words, with a single +5 V power supply we can power both the 8051 and

MAX232, with no need for the dual power supplies that are common in many older

systems.

4. The MAX232 has two sets of line drivers for transferring and receiving data, as

shown in

Figure 4.7. The line drivers used for TxD are called Tl and T2, while the line drivers for

RxD are designated as Rl and R2. In many applications only one of each is used. For

example, Tl and Rl are used together for TxD and RxD of the 8051, and the second

set is left unused. Notice in MAX232 that the Tl line driver has a designation of Tlin and

Tlout on pin numbers 11 and 14, respectively.

5. The Tlin pin is the TTL side and is connected to TxD of the microcontroller, while

Tlout is the RS232 side that is connected to the RxD pin of the RS232 DB connector.

The Rl line driver has a designation of Rlin and Rlout on pin numbers 13 and 12,

respectively. The Rlin (pin 13) is the RS232 side that is connected to the TxD pin of the

RS232 DB connector, and Rlout (pin 12) is the TTL side that is connected to the RxD

pin of the microcontroller.

6. MAX232 requires four capacitors ranging from 1 to 22 nF. The most widely used

value for these capacitors is 22 nF.

Department of Electrical & Electronics Engineering, ATMECE, Mysuru Page 10

Microcontroller Notes:BEE403 2024-2025

Figure 4.7. (a) Inside MAX232 and (b) its Connection to the 8051 (Null Modem)

4.3 8051 serial port programming in assembly

Baud rate in the 8051

1. The 8051 transfers and receives data serially at many different baud rates. The baud

rate in the 8051 is programmable. This is done with the help of Timer 1. Before we

discuss how to do that, we will look at the relationship between the crystal frequency

and the baud rate in the 8051.

2. The 8051 divides the crystal frequency by 12 to get the machine cycle frequency. In the

case of XTAL = 11.0592 MHz, the machine cycle frequency is 921.6 kHz

(11.0592 MHz / 12 = 921.6 kHz). The 8051 ‘s serial communication UART circuitry

divides the machine cycle frequency of 921.6 kHz by 32 once more before it is used by

Timer 1 to set the baud rate. Therefore, 921.6 kHz divided by 32 gives 28,800 Hz.

3. This is the number we will use throughout this section to find the Timer 1 value to set

the baud rate. When Timer 1 is used to set the baud rate it must be programmed in

mode 2, that is 8-bit, auto-reload.

 Table 4.3: Baud rate of TH1

Example 4-1

Department of Electrical & Electronics Engineering, ATMECE, Mysuru Page 11

Microcontroller Notes:BEE403 2024-2025

With XTAL = 11.0592 MHz, find the TH1 value needed to have the following baud

rates. (a) 9600 (b) 2400 (c) 1200

Solution:

With XTAL = 11.0592 MHz, we have:

The machine cycle frequency of the 8051 = 11.0592 MHz / 12 = 921.6 kHz, and 921.6 kHz /

32 = 28,800 Hz is the frequency provided by UART to Timer 1 to set baud rate.

Notice that 1/12th of the crystal frequency divided by 32 is the default value upon activation

of the 8051 RESET pin. We can change this default setting.

11.0592MHz

4.3.1 SBUF register

SBUF is an 8-bit register used solely for serial communication in the 8051. For a byte of data to

be transferred via the TxD line, it must be placed in the SBUF register. Similarly, SBUF holds

the byte of data when it is received by the 8051 ‘s RxD line. SBUF can be accessed like any

other register in the 8051. Look at the following examples of how this register is

accessed:

The moment a byte is written into SBUF, it is framed with the start and stop bits and

transferred serially via the TxD pin. Similarly, when the bits are received serially via RxD,

the 8051 deframes it by eliminating the stop and start bits, making a byte out of the data

received, and then placing it in the SBUF.

Department of Electrical & Electronics Engineering, ATMECE, Mysuru Page 12

Microcontroller Notes:BEE403 2024-2025

4.3.2 SCON register

The SCON register is an 8-bit register used to program the start bit, stop bit, and data bits of

data framing, among other things.

The following describes various bits of the SCON register.

 Figure 4.8:. SCON Serial Port Control Register (Bit-Addressable)

a) SMO, SM1

SMO and SMI are D7 and D6 of the SCON register, respectively. These two bits determine the

framing of data by specifying the number of bits per character, and the start and stop bits. They

take the following combinations.

In the SCON register, when serial mode 1 is chosen, the data framing is 8 bits, 1 stop bit, and 1

start bit, which makes it compatible with the COM port of IBM/compatible PCs. More

importantly, serial mode 1 allows the baud rate to be variable and is set by Timer 1 of the

8051. In serial mode 1, for each character a total of 10 bits are transferred, where the first bit is

the start bit, followed by 8 bits of data, and finally 1 stop bit.

b) SM2

Department of Electrical & Electronics Engineering, ATMECE, Mysuru Page 13

Microcontroller Notes:BEE403 2024-2025

SM2 is the D5 bit of the SCON register. This bit enables the multiprocessing capability of the

8051 and is beyond the discussion of this chapter. For our applications, we will make SM2 = 0

since we are not using the 8051 in a multiprocessor environment.

c) REN

The REN (receive enable), bit is D4 of the SCON register. The REN bit is also referred to as

SCON.4 since SCON is a bit-addressable register. When the REN bit is high, it allows the

8051 to receive data on the RxD pin of the 8051. As a result if we want the 8051 to both

transfer and receive data, REN must be set to 1. By making REN = 0, the receiver is disabled.

Making REN — 1 or REN = 0 can

be achieved by the instructions “SETB SCON. 4″ and “CLR SCON. 4″, respectively. Notice

that these instructions use the bit-addressable features of register SCON. This bit can be used to

block any serial data reception and is an extremely important bit in the SCON register.

d) TBS

TBS (transfer bit 8) is bit D3 of SCON. It is used for serial modes 2 and 3. We make TBS = 0

since it is not used in our applications.

e) RB8

RB8 (receive bit 8) is bit D2 of the SCON register. In serial mode 1, this bit gets a copy of the

stop bit when an 8-bit data is received. This bit (as is the case for TBS) is rarely used

anymore. In all our applications we will make RB8 = 0. Like TB8, the RB8 bit is also used in

serial modes 2 and 3.

f) Tl

TI (transmit interrupt) is bit Dl of the SCON register. This is an extremely important flag bit in

the SCON register. When the 8051 finishes the transfer of the 8-bit character, it raises the TI

flag to indicate that it is ready to transfer another byte. The TI bit is raised at the beginning of

the stop bit. We will discuss its role further when programming examples of data

transmission are given.

g) Rl

RI (receive interrupt) is the DO bit of the SCON register. This is another extremely important

flag bit in the SCON register. When the 8051 receives data serially via RxD, it gets rid of the

start and stop bits and places the byte in the SBUF register. Then it raises the RI flag bit to

indicate that a byte has been received and should be picked up before it is lost. RI is raised

Department of Electrical & Electronics Engineering, ATMECE, Mysuru Page 14

Microcontroller Notes:BEE403 2024-2025

halfway through the stop bit, and we will soon see how this bit is used in programs for

receiving data serially.

4.3.3 Programming the 8051 to transfer data serially

In programming the 8051 to transfer character bytes serially, the following steps must be

taken.

1. The TMOD register is loaded with the value 20H, indicating the use of Timer

1 in mode 2 (8-bit auto-reload) to set the baud rate.

2. The TH1 is loaded with one of the values in Table 10-4 to set the baud rate for

serial data transfer (assuming XTAL = 11.0592 MHz).

3. The SCON register is loaded with the value 50H, indicating serial mode 1,

where an 8-bit data is framed with start and stop bits.

1. TR1 is set to 1 to start Timer 1.

2. TI is cleared by the “CLR TI” instruction.

3. The character byte to be transferred serially is written into the SBUF register.

1. The TI flag bit is monitored with the use of the instruction ” JNB TI, xx” to

see if the character has been transferred completely.

4. To transfer the next character, go to Step 5.

Example 4-2

Example 4-3

Write a program to transfer the message “YES” serially at 9600 baud, 8-bit data, 1 stop bit. Do

this continuously.

Department of Electrical & Electronics Engineering, ATMECE, Mysuru Page 15

Microcontroller Notes:BEE403 2024-2025

4.3.4 Importance of the Tl flag

To understand the importance of the role of TI, look at the following sequence of steps that the

8051 goes through in transmitting a character via TxD.

1. The byte character to be transmitted is written into the SBUF register.

2. The start bit is transferred.

3. The 8-bit character is transferred one bit at a time.

 The stop bit is transferred. It is during the transfer of the stop bit that the 8051

raises the TI flag (TI =1), indicating that the last character was transmitted

and it is ready to transfer the next character.

By monitoring the TI flag, we make sure that we are not overloading the SBUF

register. If we write another byte into the SBUF register before TI is raised, the

untransmitted portion of the previous byte will be lost. In other words, when the 8051

finishes

4. After SBUF is loaded with a new byte, the TI flag bit must be forced to 0 by the

“CLR TI” instruction in order for this new byte to be transferred.

Example 4-4

Program the 8051 to receive bytes of data serially, and put them in PI. Set the baud rate at

4800, 8-bit data, and 1 stop bit.

Department of Electrical & Electronics Engineering, ATMECE, Mysuru Page 16

Microcontroller Notes:BEE403 2024-2025

Example 4-5

Assume that the 8051 serial port is connected to the COM port of the IBM PC, and on the PC

we are using the HyperTerminal program to send and receive data serially. PI and P2 of the 8051

are connected to LEDs and switches, respectively. Write an 8051 program to (a) send to the PC

the message “We Are Ready”, (b) receive any data sent by the PC and put it on LEDs connected

to PI, and (c) get data on switches connected to P2 and send it to the PC serially. The program

should perform part (a) once, but parts (b) and (c) continuously. Use the 4800 baud rate.

Department of Electrical & Electronics Engineering, ATMECE, Mysuru Page 17

Microcontroller Notes:BEE403 2024-2025

4.3.5 Importance of RI flag

In receiving bits via its RxD pin, the 8051 goes through the following steps.

1. It receives the start bit indicating that the next bit is the first bit of the character byte it

is about to receive.

2. The 8-bit character is received one bit at time. When the last bit is received, a

byte is formed and placed in SBUF.

Department of Electrical & Electronics Engineering, ATMECE, Mysuru Page 18

Microcontroller Notes:BEE403 2024-2025

3. The stop bit is received. When receiving the stop bit the 8051 makes RI = 1,

indicating that an entire character byte has been received and must be picked

up before it gets overwritten by an incoming character.

4. By checking the RI flag bit when it is raised, we know that a character has been

received and is sitting in the SBUF register. We copy the SBUF contents to a

safe place in some other register or memory before it is lost.

5. After the SBUF contents are copied into a safe place, the RI flag bit must be

forced to 0 by the “CLR RI” instruction in order to allow the next received

character byte to be placed in SBUF. Failure to do this causes loss of the

received character.

4.3.6 Doubling the baud rate in the 8051

There are two ways to increase the baud rate of data transfer in the 8051.

1. Use a higher-frequency crystal.

2. Change a bit in the PCON register, shown below.

Option 1 is not feasible in many situations since the system crystal is fixed. More importantly, it

is not feasible because the new crystal may not be compatible with the IBM PC serial COM

port’s baud rate. Therefore, we will explore option 2. There is a software way to double the

baud rate of the 8051 while the crystal frequency is fixed. This is done with the register called

PCON (power control). The PCON register is an 8-bit register. Of the 8 bits, some are unused,

and some are used for the power control capability of the 8051. The bit that is used for the serial

communication is D7, the SMOD (serial mode) bit. When the 8051 is powered up, D7 (SMOD

bit) of the PCON register is zero. We can set it to high by software and thereby double the

baud rate. The following sequence of instructions must be used to set high D7 of

PCON, since it is not a bit-addressable register:

Department of Electrical & Electronics Engineering, ATMECE, Mysuru Page 19

Microcontroller Notes:BEE403 2024-2025

To see how the baud rate is doubled with this method, we show the role of the SMOD bit (D7

bit of the PCON register), which can be 0 or 1.

We discuss each case.

Baud rates for SMOD = 0

1. When SMOD = 0, the 8051 divides 1/12 of the crystal frequency by 32 and uses that

frequency for Timer 1 to set the baud rate. In the case of XTAL = 11.0592 MHz we

have:

Machine cycle freq. = 11.0592 MHz / 12 = 921.6 kHz

And 921.6 kHz / 32 = 28,800 Hz since SMOD = 0

This is the frequency used by Timer 1 to set the baud rate. This has been the basis of all the

examples so far since it is the default when the 8051 is powered up.

Baud rates for SMOD = 1

With the fixed crystal frequency, we can double the baud rate by making SMOD – 1. When

the SMOD bit (D7 of the PCON register) is set to 1, 1/12 of XTAL is divided by 16 (instead of

32) and that is the frequency used by Timer 1 to set the baud rate. In the case of XTAL =

11.0592 MHz, we have:

Machine cycle freq. = 11.0592 MHz / 12 = 921.6 kHz

And 921.6 kHz / 16 = 57,600 Hz since SMOD = 1

This is the frequency used by Timer 1 to set the baud rate.

Table 4.4: Baud Rate Comparison for SMOD = 0 and SMOD = 1

Note: XTAL = 11.0592 MHz.

Example 4-6

Assuming that XTAL = 11.0592 MHz for the following program, state (a) what this program

does, (b) compute the frequency used by Timer 1 to set the baud rate, and (c) find the baud

rate of the data transfer.

Department of Electrical & Electronics Engineering, ATMECE, Mysuru Page 20

Microcontroller Notes:BEE403 2024-2025

1. This program transfers ASCII letter B (01000010 binary) continuously.

2. With XTAL = 11.0592 MHz and SMOD = 1 in the above program, we have:

11.0592 MHz / 12 = 921.6 kHz machine cycle frequency

921.6 kHz 716 = 57,600 Hz frequency used by Timer 1 to set the baud rate

57,600 Hz / 3 = 19,200 baud rate

Example 10-7

Find the TH1 value (in both decimal and hex) to set the baud rate to each of the following. (a)

9600 (b) 4800 if SMOD = 1 Assume that XTAL – 11.0592 MHz.

Solution:

With XTAL = 11.0592 MHz and SMOD = 1, we have Tinier 1 frequency = 57,600 Hz.

3. 57,600 / 9600 = 6; therefore, TH1 = -6 or TH1 = FAH.

4. 57,600 / 4800 = 12; therefore, TH1 = -12 or TH1 = F4H.

Department of Electrical & Electronics Engineering, ATMECE, Mysuru Page 21

Microcontroller Notes:BEE403 2024-2025

Example 4-8

Find the baud rate if TH1 = -2, SMOD = 1, and XTAL – 11.0592 MHz. Is this baud rate

supported by IBM/compatible PCs?

Solution:

With XTAL – 11.0592 MHz and SMOD = 1, we have Timer 1 frequency = 57,600-Hz. The

baud rate is 57,600 / 2 = 28,800. This baud rate is not supported by the BIOS of the PCs;

however, the PC can be programmed to do data transfer at such a speed, Also,

HyperTerminal in Windows supports this and other baud rates.

Example 4-9

Assume a switch is connected to pin PL7. Write a program to monitor its status and

send two messages to serial port continuously as follows:

SW=0 send “NO”

SW=1 send “YES”

Assume XTAL = 11.0592 MHz, 9600 baud, 8-bit data, and 1 stop bit.

Solution:

Department of Electrical & Electronics Engineering, ATMECE, Mysuru Page 22

Microcontroller Notes:BEE403 2024-2025

4.4 Serial port programming in 8051 C

Transmitting and receiving data in 8051 C

Example 4.10

Department of Electrical & Electronics Engineering, ATMECE, Mysuru Page 23

Microcontroller Notes:BEE403 2024-2025

Example 4.11

Example 4.12

Department of Electrical & Electronics Engineering, ATMECE, Mysuru Page 24

Microcontroller Notes:BEE403 2024-2025

Example 4.13

Write an 8051 C program to send two different strings to the serial port. Assuming that

SW is connected to pin P2.0, monitor its status and make a decision as follows:

SW = 0: send your first name

SW = 1: send your last name

Assume XTAL = 11.0592 MHz, baud rate of 9600, 8-bit data, 1 stop bit.

Department of Electrical & Electronics Engineering, ATMECE, Mysuru Page 25

Microcontroller Notes:BEE403 2024-2025

Example 4.14

Write an 8051 C program to send the two messages “Normal Speed” and “High Speed” to the

serial port. Assuming that SW is connected to pin P2.0, monitor its status and set the baud

rate as follows:

SW = 0 28,800 baud rate

SW = 1 56K baud rate

Assume that XTAL = 11.0592 MHz for both cases.

Solution:

Department of Electrical & Electronics Engineering, ATMECE, Mysuru Page 26

Microcontroller Notes:BEE403 2024-2025

4.4.1 8051 C compilers and the second serial port

Since many C compilers do not support the second serial port of the DS89C4xO chip, we

have to declare the byte addresses of the new SFR registers using the sfr keyword. Table 10-6

and Figure 10-12 provide the SFR byte and bit addresses for the DS89C4xO chip.

Example 4-15

Write a C program for the DS89C4xO to transfer letter “A” serially at 4800 baud

continuously. Use the second serial port with 8-bit data and 1 stop bit. We can only use Timer 1

to set the baud rate.

 Solution:

Department of Electrical & Electronics Engineering, ATMECE, Mysuru Page 27

Microcontroller Notes:BEE403 2024-2025

Example 4-16

Program the DS89C4xO in C to receive bytes of data serially via the second serial port and

put them in PI. Set the baud rate at 9600, 8-bit data, and 1 stop bit. Use Timer 1 for baud rate

generation.

Department of Electrical & Electronics Engineering, ATMECE, Mysuru Page 28

Microcontroller Notes:BEE403 2024-2025

4.5 8051 interrupts

Interrupts vs. polling

a) A single microcontroller can serve several devices. There are two ways to do that:

interrupts or polling.

b) In the interrupt method, whenever any device needs its service, the device notifies the

microcontroller by sending it an interrupt signal. Upon receiving an interrupt signal, the

microcontroller interrupts whatever it is doing and serves the device. The program associated

with the interrupt is called the interrupt service routine (ISR) or interrupt handler.

c) In polling, the microcontroller continuously monitors the status of a given device; when

the status condition is met, it performs the service. After that, it moves on to monitor the next

device until each one is serviced. Although polling can monitor the status of several devices and

serve each of them as certain conditions are met, it is not an efficient use of the

microcontroller.

d) The advantage of interrupts is that the microcontroller can serve many devices (not all at the

same time, of course); each device can get the attention of the microcontroller based on the

priority assigned to it. The polling method cannot assign priority since it checks all devices

in a round-robin fashion. More importantly, in the interrupt method the

microcontroller can also ignore (mask) a device request for service. This is again not possible

with the polling method.

Department of Electrical & Electronics Engineering, ATMECE, Mysuru Page 29

Microcontroller Notes:BEE403 2024-2025

e)The most important reason that the interrupt method is preferable is that the polling method

wastes much of the microcontroller’s time by polling devices that do not need service. So in

order to avoid tying down the microcontroller, interrupts are used. For example, in discussing

timers in Chapter 9 we used the instruction “JNB TF, target”, and waited until the timer

rolled over, and while we were waiting we could not do anything else.

f)That is a waste of the microcontroller’s time that could have been used to perform some

useful tasks. In the case of the timer, if we use the interrupt method, the microcontroller can go

about doing other tasks, and when the TF flag is raised the timer will interrupt the

microcontroller in whatever it is doing.

Interrupt service routine

When an interrupt is invoked, the microcontroller runs the interrupt service routine. For every

interrupt, there is a fixed location in memory that holds the address of its ISR. The group of

memory locations set aside to hold the addresses of ISRs is called the interrupt vector table.

Steps in executing an interrupt

Upon activation of an interrupt, the microcontroller goes through the following steps.

1. It finishes the instruction it is executing and saves the address of the next

instruction (PC) on the stack.

2. It also saves the current status of all the interrupts internally (i.e., not on the

stack).

3. It jumps to a fixed location in memory called the interrupt vector table that

holds the address of the interrupt service routine.

4. The microcontroller gets the address of the ISR from the interrupt vector table

and jumps to it. It starts to execute the interrupt service subroutine until it

reaches the last instruction of the subroutine, which is RETI (return from interrupt).

5. Upon executing the RETI instruction, the microcontroller returns to the place

where it was interrupted. First, it gets the program counter (PC) address from

the stack by popping the top two bytes of the stack into the PC. Then it starts

to execute from that address.

Department of Electrical & Electronics Engineering, ATMECE, Mysuru Page 30

Microcontroller Notes:BEE403 2024-2025

4.5.1 Six interrupts in the 8051

In reality, only five interrupts are available to the user in the 8051, but many manufacturers’

data sheets state that there are six interrupts since they include reset. The six interrupts in the

8051 are allocated as follows.

1. Reset. When the reset pin is activated, the 8051 jumps to address location 0000. This

is the power-up reset.

2. Two interrupts are set aside for the timers: one for Timer 0 and one for Timer

3. Memory locations OOOBH and 001BH in the interrupt vector table belong

to Timer 0 and Tinier 1, respectively.

4. Two interrupts are set aside for hardware external hardware interrupts. Pin

numbers 12 (P3.2) and 13 (P3.3) in port 3 are for the external hardware interrupts

INTO and INT1, respectively. These external interrupts are also referred

to as EX1 and EX2. Memory locations 0003H and 0013H in the interrupt vector table

are assigned to INTO and INT1, respectively.

5. Serial communication has a single interrupt that belongs to both receive and

transmit. The interrupt vector table location 0023H belongs to this interrupt.

From Table 4.5 , also notice that only three bytes of ROM space are assigned to the reset pin.

They are ROM address locations 0, 1, and 2. Address location 3 belongs to external hardware

interrupt 0. For this reason, in our program we put the LJMP as the first instruction and

redirect the processor away from the interrupt vector table

Table 4.5; Interrupt Vector Table for the 8051

Figure 4.9. Redirecting the 8051 from the Interrupt Vector Table at Power-up

Department of Electrical & Electronics Engineering, ATMECE, Mysuru Page 31

Microcontroller Notes:BEE403 2024-2025

4.5.2 Enabling and disabling an interrupt

Upon reset, all interrupts are disabled (masked), meaning that none will be responded to by the

microcontroller if they are activated. The interrupts must be enabled by software in order for the

microcontroller to respond to them. There is a register called IE (interrupt enable) that is

responsible for enabling (unmasking) and disabling (masking) the interrupts. Note that IE is a

bit-addressable register.

Steps in enabling an interrupt

1. To enable an interrupt, we take the following steps: .1. Bit D7 of the IE register (EA)

must be set to high to allow the rest of register to take effect.

2. If EA = 1, interrupts are enabled and will be responded to if their corresponding bits

in IE are high. If EA = 0, no interrupt will be responded to, even if the associated bit in

the IE register is high.

Figure 4.10. IE (Interrupt Enable) Register

Department of Electrical & Electronics Engineering, ATMECE, Mysuru Page 32

Microcontroller Notes:BEE403 2024-2025

Example 4-16

4.6 Programming timer

.

Figure 4.11. TF Interrupt

Roll-over timer flag and interrupt

1. Timer flag (TF) is raised when the timer rolls over. In that chapter, we also showed

how to monitor TF with the instruction “JNB TF, target”. In polling TF, we have to

wait until the TF is raised.

2. The problem with this method is that the microcontroller is tied down while waiting for

TF to be raised, and cannot do any thing else. Using interrupts solves this problem and

avoids tying down the controller.

3. If the timer interrupt in the IE register is enabled, whenever the timer rolls over, TF is

raised, and the microcontroller is interrupted in whatever it is doing, and jumps to the

interrupt vector table to service the ISR.

Department of Electrical & Electronics Engineering, ATMECE, Mysuru Page 33

Microcontroller Notes:BEE403 2024-2025

4. In this way, the microcontroller can do other things until it is notified that the timer

has rolled over

Example 4-17

Write a program that continuously gets 8-bit data from PO and sends it to PI while

simultaneously creating a square wave of 200 (as period on pin P2.1. Use Timer 0 to create the

square wave. Assume that XTAL =11.0592 MHz.

Solution:

Example 4-18

Write a program o create a square wave that has a high portion of 1085 us and a low portion of

15 us. Assume XTAL = 11.0592 MHz. Use Timer 1.

Department of Electrical & Electronics Engineering, ATMECE, Mysuru Page 34

Microcontroller Notes:BEE403 2024-2025

Notice that the low portion of the pulse is created by the 14 MC (machine cycles) where

each MC = 1.085 us and 14 x 1.085 us = 15.19 us.

Example 4-19

Write a program to generate a square wave of 50 Hz frequency on pin PI .2. UseTimer 0.

Assume that XTAL = 11.0592MHz.

Department of Electrical & Electronics Engineering, ATMECE, Mysuru Page 35

Microcontroller Notes:BEE403 2024-2025

4.7 External hardware interrupts

The 8051 has two external hardware interrupts. Piri 12 (P3.2) and pin 13 (P3.3) of the 8051,

designated as INTO and INT1, are used as external hardware interrupts. Upon activation of

these pins, the 8051 gets interrupted in whatever it is doing and jumps to the vector table to

perform the interrupt service routine.

Department of Electrical & Electronics Engineering, ATMECE, Mysuru Page 36

Microcontroller Notes:BEE403 2024-2025

Figure 4.12: Activation of INTO and INT1

a) External interrupts INTO and INT1

There are only two external hardware interrupts in the 8051: INTO and INT1. They are

located on pins P3.2 and P3.3 of port 3, respectively. The interrupt vector table locations

0003H and 0013H are set aside for INTO and INT1, respectively. As mentioned in Section 11.1,

they are enabled and disabled using the IE register. How are they activated? There are two types

of activation for the external hardware interrupts: (1) level triggered, and (2) edge triggered.

Let’s look at each one. First, we see how the level-triggered interrupt works.

4.7.1 Level-triggered interrupt

In the level-triggered mode, INTO and INT1 pins are normally high (just like all I/O port pins)

and if a low-level signal is applied to them, it triggers the interrupt. Then the microcontroller

stops whatever it is doing and jumps to the interrupt vector table to service that interrupt. This

is called a level-triggered or level-activated interrupt and is the default mode upon reset of

the 8051. The low-level signal at the INT pin must be removed before the execution of the last

instruction of the interrupt service routine, RETI; otherwise, another interrupt will be

generated. In other words, if the low-level interrupt signal is not removed before the ISR is

finished it is interpreted as another interrupt and the 8051 jumps to the vector table to execute

the ISR again.

Example 4.20

Assume that the INT1 pin is connected to a switch that is normally high. Whenever it goes low,

it should turn on an LED. The LED is connected to PI .3 and is normally off. When it is turned

on it should stay on for a fraction of a second. As long as the switch is pressed low, the LED

should stay on.

Department of Electrical & Electronics Engineering, ATMECE, Mysuru Page 37

Microcontroller Notes:BEE403 2024-2025

Solution:

4.7.2 Sampling the low level-triggered interrupt

1. Pins P3.2 and P3.3 are used for normal I/O unless the INTO and INT1 bits in the IE

registers are enabled. After the hardware interrupts in the IE register are enabled, the

controller keeps sampling the INT« pin for a low-level signal once each machine

cycle. According to one manufacturer’s data sheet “the pin must be held in a low state

until the start of the execution of ISR.

2. If the INTn pin is brought back to a logic high before the start of the execution of ISR

there will be no interrupt.” However, upon activation of the interrupt due to the low level,

it must be brought back to high before the execution of RETI. Again, according to one

manufacturer’s data sheet, “If the INTw pin is left at a logic low after the RETI

instruction of the ISR, another interrupt will be activated after one instruction is

executed.” Therefore, to ensure the activation of the hardware interrupt at the INTw pin,

make sure that the duration of the low-level signal is around 4 machine cycles,

Department of Electrical & Electronics Engineering, ATMECE, Mysuru Page 38

Microcontroller Notes:BEE403 2024-2025

but no more. This is due to the fact that the level-triggered interrupt is not latched.

Thus the pin must be held in a low state until the start of the ISR execution.

Figure 4.13:. Minimum Duration of the Low Level-Triggered Interrupt (XTAL =

11.0592 MHz)

4.7.3 Edge-triggered interrupts

As stated before, upon reset the 8051 makes INTO and INT1 low-level triggered interrupts. To

make them edge-triggered interrupts, we must program the bits of the TCON register. The

TCON register holds, among other bits, the ITO and IT1 flag bits that determine level- or

edge-triggered mode of the hardware interrupts. ITO and IT1 are bits DO and D2 of the

TCON register, respectively. They are also referred to as TCON.O and TCON.2 since the

TCON register is bit-addressable. Upon reset, TCON.O (ITO) and TCON.2 (III) are both Os,

meaning that the external hardware interrupts of INTO and INT1 pins are low-level triggered.

By making the TCON.O and TCON.2 bits high with instructions such as “SETB TCON. 0″ and

“SETB TCON. 2″, the external hardware interrupts of INTO and INT1 become edge-

triggered. For example, the instruction “SETB CON. 2″ makes INT1 what is called an edge-

triggered interrupt, in which, when a high-to-low signal is applied to pin P3.3, in this case, the

controller will be interrupted and forced to jump to location 0013H in the vector table to service

the ISR (assuming that the interrupt bit is enabled in the IE register).

Figure 4.14:. TCON (Timer/Counter) Register (Bit-addressable)

TF1 TCON.7 Timer 1 overflow flag. Set by hardware when timer/counter 1

overflows. Cleared by hardware as the processor vectors to the interrupt service routine.

TR1 TCON.6 Timer 1 run control bit. Set/cleared by software to turn timer/counter 1 on/off.

Department of Electrical & Electronics Engineering, ATMECE, Mysuru Page 39

Microcontroller Notes:BEE403 2024-2025

TF0 TCON.5 Timer 0 overflow flag. Set by hardware when timer/counter 0 overflows.

Cleared by hardware as the processor vectors to the service routine.

TR0 TCON.4 Timer 0 run control bit. Set/cleared by software to turn

timer/counter 0 on/off.

IE1 TCON.3 External interrupt 1 edge flag. Set by CPU when the external interrupt edge (H-

to-L transition) is detected. Cleared by CPU when the interrupt is processed. Note: This flag

does not latch low-level triggered interrupts.

IT1 TCON.2 Interrupt 1 type control bit. Set/cleared by software to specify falling edge/low-

level triggered external interrupt.

IE0 TCON.1 External interrupt 0 edge flag. Set by CPU when external interrupt (H-to-L

transition) edge is detected. Cleared by CPU when interrupt is processed. Note: This flag

does not latch low-level triggered interrupts.

IT0 TCON.0 Interrupt 0 type control bit. Set/cleared by software to specify falling edge/low-

level triggered external interrupt.

Example 4-21

Assuming that pin 3.3 (INT1) is connected to a pulse generator, write a program in which the

falling edge of the pulse will send a high to PI.3, which is connected to an LED (or buzzer). In

other words, the LED is turned on and off at the same rate as the pulses are applied to the INT1

pin. This is an edge-triggered version of Example 11-5.

Department of Electrical & Electronics Engineering, ATMECE, Mysuru Page 40

Microcontroller Notes:BEE403 2024-2025

4.7.4 Sampling the edge-triggered interrupt

 In edge-triggered interrupts, the external source must be held high for at least one machine

cycle, and then held low for at least one machine cycle to ensure that the transition is seen by

the microcontroller.

1. The falling edge is latched by the 8051 and is held by the TCON register. The TCON. 1

and TCON.3 bits hold the latched falling edge of pins INTO and INT1, respectively.

TCON.l and TCON.3 are also called IEO and IE1, respectively, as shown in Figure

11-6. They function as interrupt-in-service flags.

2. When an interrupt-in-service flag is raised, it indicates to the external world that the

interrupt is being serviced and no new interrupt on this INTw pin will be responded to

until this service is finished. This is just like the busy signal you get if calling a

telephone number that is in use. Regarding the ITO and IT1 bits in the TCON register,

the following two points must be emphasized.

Example 4-22

What is the difference between the RET and RETI instructions? Explain why we cannot use

RET instead of RETI as the last instruction of an ISR.

Solution:

Both perform the same actions of popping off the top two bytes of the stack into the program

counter, and making the 8051 return to where it left off. However, RETI also performs an

additional task of clearing the interrupt-in-service flag, indicating that the servicing of the

interrupt is over and the 8051 now can accept a new interrupt on that pin. If you use RET

instead of RETI as the last instruction of the interrupt service routine, you simply block any new

interrupt on that pin after the first interrupt, since the pin status would indicate that the interrupt

is still being serviced. In the cases of TFO, TF1, TCON.l, and TCON.3, they are cleared by

the execution of RETI.

Department of Electrical & Electronics Engineering, ATMECE, Mysuru Page 41

Microcontroller Notes:BEE403 2024-2025

4.8 Serial communication interrupt

Rl and Tl flags and interrupts

1. TI (transfer interrupt) is raised when the last bit of the framed data, the stop bit, is

transferred, indicating that the SBUF register is ready to transfer the next byte. RI

(received interrupt), is raised when the entire frame of data, including the stop bit, is

received. In other words, when the SBUF register has a byte, RI is raised to indicate that

the received byte needs to be picked up before it is lost (overrun) by new

incoming serial data.

2. As far as serial communication is concerned, all the above concepts apply equally

when using either polling or an interrupt. The only difference is in how the serial

communication needs are served. In the polling method, we wait for the flag (TI or RI)

to be raised; while we wait we cannot do anything else. In the interrupt method, we are

notified when the 8051 has received a byte, or is ready to send the next byte; we

can do other things while the serial communication needs are served.

3. In the 8051 only one interrupt is set aside for serial communication. This interrupt is

used to both send and receive data. If the interrupt bit in the IE register (IE.4) is

enabled, when RI or TI is raised the 8051 gets interrupted and jumps to memory

address location 0023H to execute the ISR. In that ISR we must examine the TI and RI

flags to see which one caused the interrupt and respond accordingly.

Figure 4.15:. Single Interrupt for Both TI and RI

Example 4-23

Write a program in which the 8051 reads data from PI and writes it to P2 continuously while

giving a copy of it to the serial COM port to be transferred serially. Assume that XTAL =

11.0592 MHz. Set the baud rate at 9600.

Solution:

Department of Electrical & Electronics Engineering, ATMECE, Mysuru Page 42

Microcontroller Notes:BEE403 2024-2025

Example 4-24

Write a program in which the 8051 gets data from PI and sends it to P2 continuously while

incoming data from the serial port is sent to PO. Assume that XTAL = 11.0592 MHz. Set the

baud rate at 9600.

Solution:

Department of Electrical & Electronics Engineering, ATMECE, Mysuru Page 43

Microcontroller Notes:BEE403 2024-2025

4.9 Interrupt priority in 8051/52

Interrupt priority upon reset

When the 8051 is powered up, the priorities are assigned according to Table 4.6.

Table 4.6: Interrupt priority

Example 4-26

Discuss what happens if interrupts INTO, TFO, and INT1 are activated at the same time.

Assume priority levels were set by the power-up reset and that the external hardware

interrupts are edge-triggered.

Department of Electrical & Electronics Engineering, ATMECE, Mysuru Page 44

Microcontroller Notes:BEE403 2024-2025

Solution:

If these three interrupts are activated at the same time, they are latched and kept internally. Then

the 8051 checks all five interrupts according to the sequence listed in Table 4.6.If any is

activated, it services it in sequence. Therefore, when the above three interrupts are activated,

IEO (external interrupt 0) is serviced first, then Timer 0 (TFO), and finally IE1 (external

interrupt 1).

Figure 4.16:. Interrupt Priority Register (Bit-addressable)

Example 4-27

(a) Program the IP register to assign the highest priority to INT1 (external interrupt 1), then (b)

discuss what happens if INTO, INT1, and TFO are activated at the same time. Assume that

the interrupts are both edge-triggered.

Solution:

1. MOV IP,#000001006 ;IP.2 = 1 to assign INT1 higher priority

The instruction “SETB IP.2″ also will do the same thing as the above line since

IP is bit-addressable.

2. The instruction in Step (a) assigned a higher priority to INT1 than the others;

therefore, when INTO, INT1, and TFO interrupts are activated at the same time, the

8051services INT1 first, then it services INTO, then TFO. This is due to the fact that

INT1 has a higher priority than the other two because of the instruction in Step (a).

The instruction in Step (a) makes both the INTO and TFO bits in the IP register 0.

Department of Electrical & Electronics Engineering, ATMECE, Mysuru Page 45

Microcontroller Notes:BEE403 2024-2025

Example 4-28

Assume that after reset, the interrupt priority is set by the instruction “MOV IP,

400001100B”. Discuss the sequence in which the interrupts are serviced.

Solution:

The instruction “MOV IP, #0 0 0 0110 OB” (B is for binary) sets the external interrupt 1

(INT1) and Timer 1 (TF1) to a higher priority level compared with the rest of the interrupts.

However, since they are polled according to Table 11-3, they will have the following priority.

4.10 Interrupt programming in C

The 8051 C compilers have extensive support for the 8051 interrupts with two major features

as follows:

1. They assign a unique number to each of the 8051 interrupts, as shown in Table

11-4.

2. It can also assign a register bank to an ISR. This avoids code overhead due to

the pushes and pops of the RO – R7 registers.

Table 4.7: 8051/52 Interrupt Numbers in C

Example 4-29

Write a C program that continuously gets a single bit of data from PI. 7 and sends it to Pl.0,

while simultaneously creating a square wave of 200 (as period on pin P2.5. Use timer 0 to

create the square wave. Assume that XTAL = 11.0592 MHz.

Solution:

Department of Electrical & Electronics Engineering, ATMECE, Mysuru Page 46

Microcontroller Notes:BEE403 2024-2025

Example 4-30

Write a C program that continuously gets a single bit of data from PI. 7 and sends it to Pl.0 in

the main, while simultaneously (a) creating a square wave of 200 us period on pin P2.5, and

Department of Electrical & Electronics Engineering, ATMECE, Mysuru Page 47

Microcontroller Notes:BEE403 2024-2025

(b) sending letter ‘A’ to the serial port. Use Timer 0 to create the square wave. Assume that

XTAL = 11.0592 MHz. Use the 9600 baud rate.

Solution:

Department of Electrical & Electronics Engineering, ATMECE, Mysuru Page 48

Microcontroller Notes:BEE403 2024-2025

Example 4-31

Write a C program using interrupts to do the following:

1. Receive data serially and send it to P0,

2. Read port PI, transmit data serially, and give a copy to P2,

3. Make timer 0 generate a square wave of 5 kHz frequency on P0.l.

Assume that XTAL = 11.0592 MHz. Set the baud rate at 4800.

Solution:

Department of Electrical & Electronics Engineering, ATMECE, Mysuru Page 49

Microcontroller Notes:BEE403 2024-2025

Example 4-32

Write a C program using interrupts to do the following:

1. Generate a 10000 Hz frequency on P2.1 using TO 8-bit auto-reload,

2. Use timer 1 as an event counter to count up a 1-Hz pulse and display it on PO. The

pulse is connected to EX1.

Assume that XTAL = 11.0592 MHz. Set the baud rate at 9600.

Department of Electrical & Electronics Engineering, ATMECE, Mysuru Page 50

Microcontroller Notes:BEE403 2024-2025

Outcomes

At the end of the module, students will be able

CO4: Analyse different I/O devices (Serial), interrupts and develop programs to configure 8051

Microcontroller. [L4, MODULE 4]

Department of Electrical & Electronics Engineering, ATMECE, Mysuru Page 51

Microcontroller Notes:BEE403 2024-2025

