Microcontroller Notes: BEE403 2024-2025

MODULE 4: 8051 Serial Port Programming in Assembly and C

Structure

4.1 Basics of serial communication

4.2 8051 connection to RS242

4.3 8051 serial port programming in assembly
4.4 Serial port programming in 8051 C

8051 Interrupt programming in assembly and C:

4.5 8051 interrupts

4.6 Programming timer

4.7 External hardware

4.8serial communication interrupt
4.9 Interrupt priority in 8051/52

4.10 Interrupt programming in C

Objectives

e To explain in detail the execution of 8051 Assembly language instructions and data

types
e To explain develop 8051 programs for time delay and Interrupts

Department of Electrical & Electronics Engineering, ATMECE, Mysuru Page 1

Microcontroller Notes:BEE403| 2024-2025

4.1 Basics of serial communication

1. When a microprocessor communicates with the outside world, it provides the data in
byte-sized chunks. In some cases, such as printers, the information is simply grabbed
from the 8-bit data bus and presented to the 8-bit data bus of the printer.

2. This can work only if the cable is not too long, since long cables diminish and even
distort signals. Furthermore, an 8-bit data path is expensive. For these reasons, serial
communication is used for transferring data between two systems located at distances of
hundreds of feet to millions of miles apart. Figure 4-1 diagrams serial versus
parallel data transfers.

3. The fact that serial communication uses a single data line instead of the 8-bit data line
of parallel communication not only makes it much cheaper but also enables two
computers located in two different cities to communicate over the telephone.

4. For serial data communication to work, the byte of data must be converted to serial
bits using a parallel-in-serial-out shift register; then it can be transmitted over a single
data line. This also means that at the receiving end there must be a serial-in-parallel- out
shift register to receive the serial data and pack them into a byte. Of course, if data is to
be transferred on the telephone line, it must be converted from Os and Is to audio tones,
which are sinusoidal-shaped signals. This conversion is performed by aperipheral
device called a modem, which stands for “modulator/demodulator.”

5. t, When the distance is short, the digital signal can be transferred as it is on a simple
wire and requires no modulation. This is how IBM PC keyboards transfer data to the
motherboard. However, for long-distance data transfers using communication lines
such as a telephone, serial data communication requires a modem
to modulate (convert from Os and 1 s to audio tones) and demodulate (converting
from audio tones to Os and 1 s).

6. Serial data communication uses two methods, asynchronous and synchronous.
The synchronous method transfers a block of data (characters) at a time, while
the asynchronous method transfers a single byte at a time. It is possible to write
software to use either of these methods, but the programs can be tedious and long. For
this reason, there are special 1C chips made by many manufacturers for serial data
communications. These chips are commonly referred to as UART (universal
asynchronous receiver-transmitter) and USART (universal synchronous-asynchronous
receiver-transmitter).

Department of Electrical & Electronics Engineering, ATMECE, Mysuru Page 2

Microcontroller Notes:BEE403| 2024-2025

Serial Transfer Parallei Transfer

oo

Sender Receiver

YYYYYYYY

5

Figure 4-1. Serial versus Parallel Data Transfer

Simplex Transmitter Receiver

l

Half Duplex Transmitter Receiver

[

i

Receiver Transmitter

Full Dupiex Transmitter Receiver

Receiver Transmitter

i 01 §

Figure 4.2: Simplex, Half-, and Full-Duplex Transfers

a) Half- and full-duplex transmission
In data transmission if the data can be transmitted and received, it is a duplex transmission.
This is in contrast to simplex transmissions such as with printers, in which the computer

only sends data.

Duplex transmissions can be half or full duplex, depending on whether or not the data

transfer can be simultaneous. If data is transmitted one way at a time, it is referred to as half
duplex.

If the data can go both ways at the same time, itis full duplex. Of course, full duplex
requires two wire conductors for the data lines (in addition to the signal ground), one for

transmission and one for reception, in order to transfer and receive data simultaneously.

Department of Electrical & Electronics Engineering, ATMECE, Mysuru Page 3

Microcontroller Notes:BEE403| 2024-2025

b)Asynchronous serial communication and data framing
1. The data coming in at the receiving end of the data line in a serial data transfer is all
Os and 1s;
2. itisdifficult to make sense of the data unless the sender and receiver agree on a set of
rules, a protocol, on how the data is packed, how many bits constitute a character, and

when the data begins and ends.

Start and stop bits

1. Asynchronous serial data communication is widely used for character-oriented
transmissions, while block-oriented data transfers use the synchronous method.

2. In the asynchronous method, each character is placed between start and stop bits.
This is called framing. In data framing for asynchronous communications, the data,
such as ASCII characters, are packed between a start bit and a stop bit.

3. The start bit is always one bit, but the stop bit can be one or two bits. The start bit is
always a 0 (low) and the stop bit(s) is 1 (high).

4. For example, look at Figure 10-3 in which the ASCII character “A” (8-bit binary 0100
0001) is framed between the start bit and a single stop bit. Notice that the LSB is sent

out first.

- 1 -

® Ld L o " - " = L L4
- - " . . . ™ -

LA L

REr e

space

sopf 0 F1 10 i0 0 :i0 0 |1 [sat] g
bit : : bit :

L) L]

goes out lz;st .D? . ‘DI] ‘ gge;nut'ﬁrst
Figure 4.3: Framing ASCII “A” (41H)

5. Notice in Figure 4.3that when there is no transfer, the signal is 1 (high), which is
referred to as mark. The 0 (low) is referred to as space. Notice that the transmission
begins with a start bit followed by DO, which is the LSB, then the rest of the bits until
the MSB (D7), and finally, the one stop bit indicating the end of the character “A”.

6. In asynchronous serial communications, peripheral chips and modems can be
programmed for data that is 7 or 8 bits wide. This is in addition to the number of stop
bits, 1 or 2. While in older systems ASCII characters were 7-bit, in recent years, due to
the extended ASCII characters, 8-bit data has become common. In some older

systems, due to the slowness of the receiving mechanical device, two stop bits were

Department of Electrical & Electronics Engineering, ATMECE, Mysuru Page 4

Microcontroller Notes:BEE403| 2024-2025

used to give the device sufficient time to organize itself before transmission of the
next byte. In modern PCs however, the use of one stop bit is standard.

7. Assuming that we are transferring a text file of ASCII characters using 1 stop bit, we
have a total of 10 bits for each character: 8 bits for the ASCII code, and 1 bit each for
the start and stop bits. Therefore, for each 8-bit character there are an extra 2 bits,
which gives 20% overhead.

8. Insome systems, the parity bit of the character byte is included in the data frame in order
to maintain data integrity. This means that for each character (7- or 8-bit, depending
on the system) we have a single parity bit in addition to start and stop bits. The parity bit
is odd or even. In the case of an odd-parity bit the number of data bits, including the
parity bit, has an odd number of Is. Similarly, in an even-parity bit system the total
number of bits, including the parity bit, is even.

9. For example, the ASCII character “A”, binary 0100 0001, has 0 for the even-parity bit.

UART chips allow programming of the parity bit for odd-, even-, and no-parity options.

c) Data transfer rate

1. The rate of data transfer in serial data communication is stated in bps (bits per second).
Another widely used terminology for bps is baud rate.

2. However, the baud and bps rates are not necessarily equal. This is due to the fact that
baud rate . is the modem terminology and is defined as the number of signal changes per
second. In modems a single change of signal, sometimes transfers several bits of data.
As far as the conductor wire is concerned, the baud rate and bps are the same, and for
this reason in this book we use the terms bps and baud interchangeably.

3. The data transfer rate of a given computer system depends on communication ports
incorporated into that system. For example, the early IBM PC/XT could transfer data at
the rate of 100 to 9600 bps.

4. In recent years, however, Pentium-based PCs transfer data at rates as high as 56K bps.
It must be noted that in asynchronous serial data communication, the baud rate is

generally limited to 100,000 bps.

Department of Electrical & Electronics Engineering, ATMECE, Mysuru Page 5

Microcontroller Notes:BEE403| 2024-2025

4.1.1 RS232 standards

1. To allow compatibility among data communication equipment made by various
manufacturers, an interfacing standard called RS232 was set by the Electronics
Industries Association (EIA) in 1960. In 1963 it was modified and called RS232A.

2. RS232B and RS232C were issued in 1965 and 1969, respectively. In this book we
refer to it simply as RS232.

3. Today, RS232 is the most widely used serial 1/0 interfacing standard. This standard is
used in PCs and numerous types of equipment. However, since the standard was set
long before the advent of the TTL logic family, its input and output voltage levels are
not TTL compatible. In RS232, a 1 is represented by -3 to -25 V, while a 0 bit is +3 to
+25 V, making -3 to +3 undefined.

4. For this reason, to connect any RS232 to a microcontroller system we must use
voltage converters such as MAX232 to convert the TTL logic levels to the RS232
voltage levels, and vice versa. MAX232 1C chips are commonly referred to as line

drivers.

RS232 pins
Table 4.1 provides the pins and their labels for the RS232 cable, commonly referred to as the
DB-25 connector. In labelling, DB-25P refers to the plug connector (male) and DB-25S is for

the socket connector (female).

O.....O............:..: O

Figure 4.4: RS232 Connector DB-25
Since not all the pins are used in PC cables, IBM introduced the DB-9 version of the serial

I/O standard, which uses 9 pins only, as shown in Table 4.2.

Department of Electrical & Electronics Engineering, ATMECE, Mysuru Page 6

Microcontroller Notes:BEE403| 2024-2025

a) Data communication classification
Table 4.1:DB25 Pin connection

Pin Description

Protective ground
Transmitted data {TxD)
Received data (RxD)
Request to send (RTS)
Clear to send (CTS)

Data set ready (DSR)
Signal ground (GND)
Data carrier detect { DUD)
9/10 Reserved for data testing
11 Unassigned

12 Secondary data carrier detect

T [e

I = I E Y)

13 Secondary clear to send
14 Secondary transmitted data
15 Transmit signal element timing

16 Secondary received data

17 Receive signal element timing
18 Unassigned

19 Secondary request to send

20 Data terminal ready {DTR)

21 Signal quality detector

22 Ring indicator

23 Data signal rate select
24 Transmit signal element timing

25 Unassigned

Current terminology classifies data communication equipment as DTE (data terminal
equipment) or DCE (data communication equipment). DTE refers to terminals and computers
that send and receive data, while DCE refers to communication equipment, such as modems,

that are responsible for transferring the data.

b) Examining RS232 handshaking signals

To ensure fast and reliable data transmission between two devices, the data transfer must be
coordinated. Just as in the case of the printer, because the receiving device in serial data
communication may have no room for the data, there must be a way to inform the sender to stop
sending data. Many of the pins of the RS-232 connector are used for handshaking signals. Their
descriptions are provided below only as a reference and they can be bypassed since they are
not supported by the 8051 UARTCchip.

Department of Electrical & Electronics Engineering, ATMECE, Mysuru Page 7

Microcontroller Notes:BEE403| 2024-2025

2
O

6

l'.".'l'. O

/

}

Figure 4.5: RS232 Connector DB-9

Table 4.2:DB-9 Pin connection
Description

Data carrier detect (DCD)
Received data (RxD)
Transmitted data (TxD)
Data terminal ready (DTR)
Signal ground (GND)

Data set ready (DSR)
Request to send (RT5)

Clear to send (CTS)
Ring indicator (RI)

-
=]

WD fed O | | e | e e | e

DTE DTE
TxD TxD

ground

Figure 4.6: Null Modem connection
1. DTR (data terminal ready). When a terminal (or a PC COM port) is turned on, after
going through a self-test, it sends out signal DTR to indicate that it is ready for
communication. If there is something wrong with the COM port, this signal will not be
activated. This is an active-low signal and can be used to inform the *modem that the
computer is alive and kicking. This is an output pin from DTE (PC COM port) and an
input to the modem.

Department of Electrical & Electronics Engineering, ATMECE, Mysuru Page 8

Microcontroller Notes:BEE403| 2024-2025

2. DSR (data set ready). When DCE (modem) is turned on and has gone thr.ough the
self-test, it asserts DSR to indicate that it is ready to communicate. Thus, it is an
output from the modem (DCE) and input to the PC (DTE). This is an active- low
signal. If for any reason the modem cannot make a connection to the telephone, this
signal remains inactive, indicating to the PC (or terminal) that it cannot accept or send
data.

3. RTS (request to send). When the DTE device (such as a PC) has a byte to transmit, it
asserts RTS to signal the modem that it has a byte of data to transmit. RTS is an
active-low output from the DTE and an input to the modem.

4. CTS (clear to send). In response to RTS, when the modem has room for storing the data
it is to receive, it sends out signal CTS to the DTE (PC) to indicate that it can receive
the data now. This input signal to the DTE is used by the DTE to start transmission.

5. DCD (carrier detect, or DCD, data carrier detect). The modem asserts signal
DCD to inform the DTE (PC) that a valid carrier has been detected and that
contact between it and the other modem is established. Therefore, DCD is an
output from the modern and an input to the PC (DTE).

6. RI (ring indicator). An output from the modem (DCE) and an input to a PC
(DTE) indicates that the telephone is ringing. It goes on and off in synchronization
with the ringing sound. Of the six handshake signals, this is the least often used, due to
the fact that modems take care of answering the phone. However, if the PC is in

charge of answering the phone, this signal can be used.

4.2 8051 connection to RS242

a) RxD and TxD pins in the 8051
1. The 8051 has two pins that are used specifically for transferring and receiving data
serially.
2. These two pins are called TxD and RxD and are part of the port 3 group (P3.0 and
P3.1). Pin 11 of the 8051 (P3.1) is assigned to TxD and pin 10 (P3.0) is designated as
RxD.

Department of Electrical & Electronics Engineering, ATMECE, Mysuru Page 9

Microcontroller Notes:BEE403| 2024-2025

3. These pins are TTL compatible; therefore, they require a line driver to ma.ke them
RS232 compatible. One such line driver is the MAX232 chip.

b)MAX232

1. Since the RS232 is not compatible with today’s microprocessors and microcontrollers,
we need a line driver (voltage converter) to convert the RS232's signals to TTL
voltage levels that will be acceptable to the 8051 ‘s TxD and RxD pins.

2. One example of such a converter is MAX232 from Maxim Corp. (Www.maxim-
ic.com). The MAX232 converts from RS232 voltage levels to TTL voltage levels, and
vice versa. One advantage of the MAX232 chip is that it uses a +5 V power source
which, is the same as the source voltage for the 8051.

3. In other words, with a single +5 V power supply we can power both the 8051 and
MAX232, with no need for the dual power supplies that are common in many older
systems.

4. The MAX232 has two sets of line drivers for transferring and receiving data, as
shown in
Figure 4.7. The line drivers used for TxD are called Tl and T2, while the line drivers for
RxD are designated as Rl and R2. In many applications only one of each is used. For
example, Tl and RI are used together for TxD and RxD of the 8051, and the second
set is left unused. Notice in MAX232 that the Tl line driver has a designation of Tlin and
Tlout on pin numbers 11 and 14, respectively.

5. The Tlin pin is the TTL side and is connected to TXD of the microcontroller, while
Tlout is the RS232 side that is connected to the RxD pin of the RS232 DB connector.
The RI line driver has a designation of Rlin and Rlout on pin numbers 13 and 12,
respectively. The Rlin (pin 13) is the RS232 side that is connected to the TxD pin of the
RS232 DB connector, and Rlout (pin 12) is the TTL side that is connected to the RxD
pin of the microcontroller.

6. MAX232 requires four capacitors ranging from 1 to 22 nF. The most widely used

value for these capacitors is 22 nF.

Department of Electrical & Electronics Engineering, ATMECE, Mysuru Page 10

Microcontroller Notes:BEE403| 2024-2025

. ' 2 _]- i BOS1 M 232
CrE1] MAX232
+ 4 L s THOG (PE A LAl 14 2 5
c2els . I AT E_l
Tl ouT -
11 14 w12
- e v RxDD (P3.0) DB
12 o] 13
Tiw T2ouT
10 {>o 7
R2aut R2m
9 o] 8

TiLside 15 | RS232side

Figure 4.7. (a) Inside MAX232 and (b) its Connection to the 8051 (Null Modem)

4.3 8051 serial port programming in assembly

Baud rate in the 8051
1. The 8051 transfers and receives data serially at many different baud rates. The baud
rate in the 8051 is programmable. This is done with the help of Timer 1. Before we
discuss how to do that, we will look at the relationship between the crystal frequency
and the baud rate in the 8051.

2. The 8051 divides the crystal frequency by 12 to get the machine cycle frequency. In the
case of XTAL = 11.0592 MHz, the machine cycle frequency is 921.6 kHz
(11.0592 MHz / 12 = 921.6 kHz). The 8051 ‘s serial communication UART circuitry
divides the machine cycle frequency of 921.6 kHz by 32 once more before it is used by
Timer 1 to set the baud rate. Therefore, 921.6 kHz divided by 32 gives 28,800 Hz.

3. This is the number we will use throughout this section to find the Timer 1 value to set
the baud rate. When Timer 1 is used to set the baud rate it must be programmed in
mode 2, that is 8-bit, auto-reload.

Table 4.3: Baud rate of TH1

Baud Ii;tw.a TH1 (Decimal) TH1 {He;c;

G600 =3 FD

4800 -b FA

2400 -12 F4

1200 -24 E8
Example 4-1

Department of Electrical & Electronics Engineering, ATMECE, Mysuru Page 11

Microcontroller Notes:BEE403| 2024-2025

With XTAL = 11.0592 MHz, find the TH1 value needed to have the following baud
rates. (a) 9600 (b) 2400 (c) 1200

Solution:

With XTAL =11.0592 MHz, we have:

The machine cycle frequency of the 8051 = 11.0592 MHz / 12 = 921.6 kHz, and 921.6 kHz /
32 = 28,800 Hz is the frequency provided by UART to Timer 1 to set baud rate.

(a) 28,800 / 3 = 9600 where =3 = FD (hex) is loaded into TH]
(b) 28,800 / 12 = 2400 where =12 = F4 (hex) is loaded into THI
(¢) 28,800/ 24 = 1200 where -24 = E8 (hex) is loaded into THI

Notice that 1/12th of the crystal frequency divided by 32 is the default value upon activation
of the 8051 RESET pin. We can change this default setting.

11.0592MHz
Machine cycle freq. 28,800 Hz
XTAL - +12 r-aq# +32 S
oscillator 921.6 kHz by UART To Timer | to
set the baud
rate

4.3.1 SBUF register

SBUF is an 8-bit register used solely for serial communication in the 8051. For a byte of data to
be transferred via the TxD line, it must be placed in the SBUF register. Similarly, SBUF holds
the byte of data when it is received by the 8051 ‘s RxD line. SBUF can be accessed like any
other register in the 8051. Look at the following examples of how this register is

accessed:

MOV SEBUF,#'D! ;load SBUF=44H, ASCII for '
MOV SBUF, A ;copy accumulator into SBUF
MOV A, SBUF ;copy SBUF into accumulator

The moment a byte is written into SBUF, it is framed with the start and stop bits and
transferred serially via the TxD pin. Similarly, when the bits are received serially via RxD,
the 8051 deframes it by eliminating the stop and start bits, making a byte out of the data
received, and then placing it in the SBUF.

Department of Electrical & Electronics Engineering, ATMECE, Mysuru Page 12

Microcontroller Notes:BEE403| 2024-2025

4.3.2 SCON register

The SCON register is an 8-bit register used to program the start bit, stop bit, and data bits of
data framing, among other things.

The following describes various bits of the SCON register.

ﬁma | SMI | sM2 | REN | TBS | RBS TI | RI

SMO SCON.7 Serial port mode specifier

SM1 SCON.6 Serial port mode specifier

SM2 SCONS Used for multiprocessor communication. (Make it 0.)

REN SCONA4 Set/cleared by software to enable/disable reception.

TB8 SCON.3 Not widely used.

RB8 SCON.2 Not widely used. .

TI SCON.1 Transmit interrupt flag. Set by hardware at the beginning of
the stop bit in mode 1. Must be cleared by software.

RI SCON.O Receive interrupt flag. Set by hardware halfway through the

stop bit time in mode 1. Must be cleared by software.

|Nore: Make SM2, TBS, and RB8 = 0.
Figure 4.8:. SCON Serial Port Control Register (Bit-Addressable)
a) SMO, SM1
SMO and SMI are D7 and D6 of the SCON register, respectively. These two bits determine the
framing of data by specifying the number of bits per character, and the start and stop bits. They

take the following combinations.

SMo SM1

0 0 Serial Mode 0

0 1 Serial Mode |, 8-bit data, | stop bit, 1 start bit
1 0 Serial Mode 2

| 1 Serial Mode 3

In the SCON register, when serial mode 1 is chosen, the data framing is 8 bits, 1 stop bit, and 1
start bit, which makes it compatible with the COM port of IBM/compatible PCs. More
importantly, serial mode 1 allows the baud rate to be variable and is set by Timer 1 of the
8051. In serial mode 1, for each character a total of 10 bits are transferred, where the first bit is
the start bit, followed by 8 bits of data, and finally 1 stop bit.

b) SM2

Department of Electrical & Electronics Engineering, ATMECE, Mysuru Page 13

Microcontroller Notes:BEE403| 2024-2025

SM2 is the D5 bit of the SCON register. This bit enables the multiprocessing capability of the
8051 and is beyond the discussion of this chapter. For our applications, we will make SM2 =0
since we are not using the 8051 in a multiprocessor environment.

¢) REN

The REN (receive enable), bit is D4 of the SCON register. The REN bit is also referred to as
SCON.4 since SCON is a bit-addressable register. When the REN bit is high, it allows the
8051 to receive data on the RxD pin of the 8051. As a result if we want the 8051 to both
transfer and receive data, REN must be set to 1. By making REN = 0, the receiver is disabled.
Making REN — 1 or REN =0 can

be achieved by the instructions “SETB SCON. 4" and “CLR SCON. 4", respectively. Notice
that these instructions use the bit-addressable features of register SCON. This bit can be used to
block any serial data reception and is an extremely important bit in the SCON register.

d) TBS

TBS (transfer bit 8) is bit D3 of SCON. It is used for serial modes 2 and 3. We make TBS =0
since it is not used in our applications.

e) RB8

RB8 (receive bit 8) is bit D2 of the SCON register. In serial mode 1, this bit gets a copy of the
stop bit when an 8-bit data is received. This bit (as is the case for TBS) is rarely used
anymore. In all our applications we will make RB8 = 0. Like TB8, the RB8 bit is also used in
serial modes 2 and 3.

f) Tl

TI (transmit interrupt) is bit DI of the SCON register. This is an extremely important flag bit in
the SCON register. When the 8051 finishes the transfer of the 8-bit character, it raises the TI
flag to indicate that it is ready to transfer another byte. The TI bit is raised at the beginning of
the stop bit. We will discuss its role further when programming examples of data
transmission are given.

g)RI

RI (receive interrupt) is the DO bit of the SCON register. This is another extremely important
flag bit in the SCON register. When the 8051 receives data serially via RxD, it gets rid of the
start and stop bits and places the byte in the SBUF register. Then it raises the RI flag bit to

indicate that a byte has been received and should be picked up before it is lost. Rl is raised

Department of Electrical & Electronics Engineering, ATMECE, Mysuru Page 14

Microcontroller Notes:BEE403| 2024-2025

halfway through the stop bit, and we will soon see how this bit is used in programs for

receiving data serially.

4.3.3 Programming the 8051 to transfer data serially

In programming the 8051 to transfer character bytes serially, the following steps must be
taken.
1. The TMOD register is loaded with the value 20H, indicating the use of Timer
1 in mode 2 (8-bit auto-reload) to set the baud rate.
2. The TH1 is loaded with one of the values in Table 10-4 to set the baud rate for
serial data transfer (assuming XTAL = 11.0592 MHz).
3. The SCON register is loaded with the value 50H, indicating serial mode 1,
where an 8-bit data is framed with start and stop bits.
1. TR1issetto 1 to start Timer 1.
2. Tl is cleared by the “CLR TI” instruction.
3. The character byte to be transferred serially is written into the SBUF register.
1. The TI flag bit is monitored with the use of the instruction ” JNB TI, xx” to
see if the character has been transferred completely.
4. To transfer the next character, go to Step 5.
Example 4-2
Write a program for the 8051 to transfer letter “A™ serially at 4800 baud, continuously.

Solution:
MOV TMOD,#20H ;Timer 1, mode 2{auto-relcad)
MOV TH1,#-6 ;4800 baud rate
MOV SCON,#50H ;8-bkit, 1 stop, REN enabled
SETE TR1 ;start Timer 1
BAGAIN: MOV SBUF,#"A" ;letter "A" to be transferred
HERE: JMB TI,HERE ;wait for the last bit
CLE TI ;clear TI for next char
SJMP AGAIN ;keep sending A
Example 4-3

Write a program to transfer the message “YES” serially at 9600 baud, 8-bit data, 1 stop bit. Do

this continuously.

Department of Electrical & Electronics Engineering, ATMECE, Mysuru Page 15

Microcontroller Notes:BEE403| 2024-2025

Solution:
MOV TMOD, #20H ;Timer 1, mode 2
MoV TH1,#-3 ;9600 baud
MOV SCON, #50H ;8-bit, 1 stop bit, REN enabled
SETBE TR1 ;start Timer 1
AGAIN: MoV A, #"Y" ;transfer "Yy"
ACRLL TRANS
MoV R, H"E" ;transfer "E"
ACARLL TRANS
MOV L, gna" ;transfer "sS*
ACRLL TRANS
SJMP AGAIN ;keep doing it
im-=-- gerial data transfer subroutine
TRANS : MOV SEUF, A ;1load SBUF
HERE : JHNB TI,HERE ;wait for last bit to transfer
CLR TI ;get ready for next byte
RET

4.3.4 Importance of the Tl flag

To understand the importance of the role of T1, look at the following sequence of steps that the
8051 goes through in transmitting a character via TxD.
1. The byte character to be transmitted is written into the SBUF register.
2. The start bit is transferred.
3. The 8-bit character is transferred one bit at a time.
The stop bit is transferred. It is during the transfer of the stop bit that the 8051
raises the TI flag (Tl =1), indicating that the last character was transmitted
and it is ready to transfer the next character.
By monitoring the TI flag, we make sure that we are not overloading the SBUF
register. If we write another byte into the SBUF register before TI is raised, the
untransmitted portion of the previous byte will be lost. In other words, when the 8051
finishes
4. After SBUF is loaded with a new byte, the TI flag bit must be forced to 0 by the

“CLR TTI” instruction in order for this new byte to be transferred.

Example 4-4
Program the 8051 to receive bytes of data serially, and put them in PI. Set the baud rate at

4800, 8-bit data, and 1 stop bit.

Department of Electrical & Electronics Engineering, ATMECE, Mysuru Page 16

Microcontroller Notes:BEE403| 2024-2025

Solution:
MOV TMOD, #20H ;Timer 1, meode 2{auto-reload)
MoV TH1,#-6 ;4800 baud
MOV SCON, #50H ;8-bit, 1 stop, REN enabled
SETE TR1 ;start Timer 1

HERE: JHE RI,HERE jwalt for char to come in
MOV A, SBUF ;save ilncoming byte in A
MOV P1,A ;jsend to port 1
CLR RI ;jget ready to receive next byte
SJMP HERE ;keep getting data

Example 4-5

Assume that the 8051 serial port is connected to the COM port of the IBM PC, and on the PC
we are using the HyperTerminal program to send and receive data serially. Pl and P2 of the 8051
are connected to LEDs and switches, respectively. Write an 8051 program to (a) send to the PC
the message “We Are Ready”, (b) receive any data sent by the PC and put it on LEDs connected
to PI, and (c) get data on switches connected to P2 and send it to the PC serially. The program
should perform part (a) once, but parts (b) and (c) continuously. Use the 4800 baud rate.

Department of Electrical & Electronics Engineering, ATMECE, Mysuru Page 17

Microcontroller Notes:BEE403| 2024-2025

Solution:

;make P2 an input port

;Timer 1, mode 2{auto-relcad)
;4800 baud rate

;8-bit,1 step, REN enabled
;start Timer 1

:load peointer for message

;get the character

;if last character get out
;otherwise call transfer
jnext one

;jstay in loop

:read data on P2

;transfer it serially

;get the serial data
;jdisplay it on LEDs

;stay in loop indefinitly

serial data transfer. ACC has the data

iload the data

;stay here until last bit gone
;get ready for next char
;return to caller

receive data serially in ACC

ORG ©
MOV P2, #0FFH
MOV~ TMOD, ¥20H
MOV TH1, #OFAH
MOV SCON, #50H
SETB TRl
MOV DPTR, #MYDATA
CLR A
MOVC A,@A+DPTR
J3 E 1
ACALL SEND
INC DPTR
SIMP H_ 1
MOV A, P2
ACALL SEND
ACALL RECV
MOV P1,A
SJMP B 1
MOV SEUF,A
JNE TI,E 2
CLR TI
RET
JNB RI,RECV
MOV A, SBUF
CLR RI
RET

The message

DE "We Are Readvy",0

END

To
PC
COM
port

8051

;wait here for char
;save it in ACC

;aget ready for next char
;return to caller

—(TxD

e Rx D

P2 SW

-

Pl:;:z: LED
—

4.3.5 Importance of RI flag

In receiving bits via its RxD pin, the 8051 goes through the following steps.

1. It receives the start bit indicating that the next bit is the first bit of the character byte it

is about to receive.

2. The 8-bit character is received one bit at time. When the last bit is received, a

byte is formed and placed in SBUF.

Department of Electrical & Electronics Engineering, ATMECE, Mysuru Page 18

Microcontroller Notes:BEE403| 2024-2025

3. The stop bit is received. When receiving the stop bit the 8051 makes.RI =1,
indicating that an entire character byte has been received and must be picked
up before it gets overwritten by an incoming character.

4. By checking the RI flag bit when it is raised, we know that a character has been
received and is sitting in the SBUF register. We copy the SBUF contents to a
safe place in some other register or memory before it is lost.

5. After the SBUF contents are copied into a safe place, the RI flag bit must be
forced to 0 by the “CLR RI” instruction in order to allow the next received
character byte to be placed in SBUF. Failure to do this causes loss of the

received character.

4.3.6 Doubling the baud rate in the 8051

There are two ways to increase the baud rate of data transfer in the 8051.
1. Use a higher-frequency crystal.
2. Change a bit in the PCON register, shown below.

D7 DO
[sMob] - | - | -~ T GFt J GFo [PD | IDL]

Option 1 is not feasible in many situations since the system crystal is fixed. More importantly, it
is not feasible because the new crystal may not be compatible with the IBM PC serial COM
port’s baud rate. Therefore, we will explore option 2. There is a software way to double the
baud rate of the 8051 while the crystal frequency is fixed. This is done with the register called
PCON (power control). The PCON register is an 8-bit register. Of the 8 bits, some are unused,
and some are used for the power control capability of the 8051. The bit that is used for the serial
communication is D7, the SMOD (serial mode) bit. When the 8051 is powered up, D7 (SMOD
bit) of the PCON register is zero. We can set it to high by software and thereby double the
baud rate. The following sequence of instructions must be used to set high D7 of

PCON, since it is not a bit-addressable register:

MOV A, PCON ;place a copy of PCON in ACC
SETE ACC.7 ;make 0O7=1
MOV PCON, A ;now SMOD=1 without

;changing any other bits

Department of Electrical & Electronics Engineering, ATMECE, Mysuru Page 19

Microcontroller Notes:BEE403| 2024-2025

To see how the baud rate is doubled with this method, we show the role of the SMOD bit (D7

bit of the PCON register), which can be 0 or 1.

We discuss each case.

Baud rates for SMOD =0

1. When SMOD = 0, the 8051 divides 1/12 of the crystal frequency by 32 and uses that

frequency for Timer 1 to set the baud rate. In the case of XTAL = 11.0592 MHz we
have:

Machine cycle freq. = 11.0592 MHz / 12 = 921.6 kHz

And 921.6 kHz / 32 = 28,800 Hz since SMOD =0

This is the frequency used by Timer 1 to set the baud rate. This has been the basis of all the

examples so far since it is the default when the 8051 is powered up.

Baud rates for SMOD =1
With the fixed crystal frequency, we can double the baud rate by making SMOD — 1. When
the SMOD bit (D7 of the PCON register) is set to 1, 1/12 of XTAL is divided by 16 (instead of
32) and that is the frequency used by Timer 1 to set the baud rate. In the case of XTAL =
11.0592 MHz, we have:
Machine cycle freq. = 11.0592 MHz / 12 = 921.6 kHz
And 921.6 kHz / 16 = 57,600 Hz since SMOD =1
This is the frequency used by Timer 1 to set the baud rate.

Table 4.4: Baud Rate Comparison for SMOD =0 and SMOD =1

TH1 (Decimal) (Hex) SMOD =0 SMOD = [
-3 FD 9,600 19,200
6 FA 4,800 9,600
-12 F4 2,400 4,300
24 ER 1,200 2,400

Note: XTAL =11.0592 MHz.

Example 4-6
Assuming that XTAL = 11.0592 MHz for the following program, state (a) what this program
does, (b) compute the frequency used by Timer 1 to set the baud rate, and (c) find the baud

rate of the data transfer.

Department of Electrical & Electronics Engineering, ATMECE, Mysuru Page 20

Microcontroller Notes:BEE403| 2024-2025

MOV A,PCON ;B = PCON
SETE ACC.7 jmake D7 = 1
MOV PCON,A ;SMOD = 1, double baud rate

iwith same XTAL freq.

MOV TMOD,#20H ;Timer 1, mode 2 [auto-relcad)

MOV TH1, -3 ;18200 (57,800 / 2 = 19200 baud rate
;since SMOD=1)

MOV SCOW,#50H ;B-bit data,l stop bit, RI enabled

SETE TEl ;start Timer 1
MOV A, H"B" ;etransfer letter B
A 1l:. CLR TI ;make sure TI=0
MOV SBUF,A ;transfer it
H1: JNB TI H_1 ;8tay here until the last bit is gone
SIMP A 1 ;keep sending "B" again and again
Solution:

1. This program transfers ASCII letter B (01000010 binary) continuously.
2. With XTAL =11.0592 MHz and SMOD =1 in the above program, we have:
11.0592 MHz / 12 = 921.6 kHz machine cycle frequency
921.6 kHz 716 = 57,600 Hz frequency used by Timer 1 to set the baud rate
57,600 Hz / 3 = 19,200 baud rate
Example 10-7
Find the TH1 value (in both decimal and hex) to set the baud rate to each of the following. (a)
9600 (b) 4800 if SMOD = 1 Assume that XTAL — 11.0592 MHz.
Solution:
With XTAL =11.0592 MHz and SMOD = 1, we have Tinier 1 frequency = 57,600 Hz.
3. 57,600 /9600 = 6; therefore, TH1 =-6 or TH1 = FAH.
4. 57,600 /4800 = 12; therefore, TH1 =-12 or TH1 = F4H.

11.0592 MHz SMOD =1

+ 16 |57.600 Hz T'_?

Machine cycle freq.
XTAL —|]2 - 1o set

oscillator 921.6 kHz 28,800 Hz baud

=3 —
32 rate

Department of Electrical & Electronics Engineering, ATMECE, Mysuru Page 21

Microcontroller Notes:BEE403| 2024-2025

Example 4-8

Find the baud rate if TH1 = -2, SMOD =1, and XTAL — 11.0592 MHz. Is this baud rate
supported by IBM/compatible PCs?

Solution:

With XTAL - 11.0592 MHz and SMOD = 1, we have Timer 1 frequency = 57,600-Hz. The
baud rate is 57,600 / 2 = 28,800. This baud rate is not supported by the BIOS of the PCs;
however, the PC can be programmed to do data transfer at such a speed, Also,
HyperTerminal in Windows supports this and other baud rates.

Example 4-9

Assume a switch is connected to pin PL7. Write a program to monitor its status and
send two messages to serial port continuously as follows:

SW=0 send “NO”

SW=1 send “YES”

Assume XTAL = 11.0592 MHz, 9600 baud, 8-bit data, and 1 stop bit.

Solution:

Department of Electrical & Electronics Engineering, ATMECE, Mysuru Page 22

Microcontroller Notes:BEE403| 2024-2025

MAIN:

81:

FHN+:

NEXT:

EQU P1.7
OH

TMCD, #20H
TH1,#-3
SCON, #50H
TR1

SWl

B2 .1,HNEXT
DPFTR, #MESS1
B

A, zh+DFTER
51
SENDCOM
DPTR

FN

DFTE, #MESS2
A

A, 2A+DFTE
51
SENDCOM
DFTR

LN

SEUF., A
TI,HERE
TI

PNO", O
"YES",0
END

;starting position
;9600 baud rate

;start timer

imake SW an input
:check SW status

;1f SW=0 display "HO"

;read the value

;check for end of line
;send value to serial port
;move to next value
;repeat

;if sSW=1 display "YES"

;jread the value

;check for end of line
;8end value to serial port
;move to next wvalue
;repeat

;place value in buffer
;walt until transmitted
;elear
;return

4.4 Serial port programming in 8051 C

Transmitting and receiving data in 8051 C

Example 4.10

Department of Electrical & Electronics Engineering, ATMECE, Mysuru Page 23

Microcontroller Notes:BEE403| 2024-2025

Write a C program for the 8051 to transfer the letter A" serially at 4300 baud continu-
ously. Use B-bit data and | stop bit.

Sotution:

finclude <regsl.hs
vold main (woid)

{

THMOD=0x23; Jfuze Timer 1, 8-BIT auto-relaad
TH1=0xFA; /4800 haud rate
SCON=0%x50;
TR1l=1;
whnile(l}
{

SEUF="A4'; fiplace value in buffer

while (TI==0);

TI=0;

}

Example 4.11

Write an 8051 C program to transfer the message “YES™ serially at 9600 baud, 8-bit
data, 1 stop bit. Do this continuously.

Solution:

#include <reg51.h>

wvoid SerTx{unsigned char);

woid main(void)

{
TMOD=0x20; J/use Timer 1,8-BIT auto-reload
TH1=0xFD; /79600 baud rate
SCON=0x50;
TR1l=1; //start timer
while (1)
{
SerT=('Y');
SerTx('E'};
SexrTx({'S"};
}
}
void SerTx(unsigned char x}
{
SBUP=x; //place value in buffer
while (TI==0); J/wait until transmitted
TI=0;
}
Example 4.12

Department of Electrical & Electronics Engineering, ATMECE, Mysuru Page 24

Microcontroller Notes:BEE403| 2024-2025

Program the 8051 in C to receive bytes of data serially and put them in P1. Set the baud
rate at 4300, B-bit data, and 1 stop bit.
Selution:
#include <regEl.h>
void main ({void)
i
unsigned char mybyte;

TMOD=0x20; J/fuse Timer 1,8-BIT auto-reload
TH1=0xFA; / /4800 baud rate
SCCN=0x50;
TRi=1; //start timer
whilefl! /frepeat forever
{
while (RI==0); J//wait to receive
mybyte=SBUF; //save wvalue
Pl=mybyte; //write wvalue to port
RI=0;
}
}
Example 4.13

Write an 8051 C program to send two different strings to the serial port. Assuming that
SW is connected to pin P2.0, monitor its status and make a decision as follows:

SW = 0: send your first name

SW = 1: send your last name

Assume XTAL = 11.0592 MHz, baud rate of 9600, 8-bit data, 1 stop bit.

Department of Electrical & Electronics Engineering, ATMECE, Mysuru Page 25

Microcontroller Notes:BEE403| 2024-2025

Solution:

#include <regS5l.h>
shit MYSW=P2"0; J/input switch
volid main{void)
{
ungigned char z:
unsigned char fname([)="ALI";
unsigned char lname[]="SMITH";

TMOD=0%20; J/use Timer 1,8-BIT auto-reload
TH1=0xFD; / /9600 baud rate
SCON=0x50;
TRi=1; //start timer
if (MYSW==0) //check switch
{
for{z=0;z<3:z++) J/write name
{
SBUF=fname [z] ; //place value in buffer
while (TI==0); J/wait for transmit
TI=0;
I
}
eglse
{
for({z=0;:z<5;:z++) //write name
{
SEUF=1lname[=z]; //place value in buffer
while (TI==0); J//wait for transmit
TI=0;
)
}
}
Example 4.14

Write an 8051 C program to send the two messages “Normal Speed” and “High Speed” to the
serial port. Assuming that SW is connected to pin P2.0, monitor its status and set the baud
rate as follows:

SW =0 28,800 baud rate

SW =1 56K baud rate

Assume that XTAL = 11.0592 MHz for both cases.

Solution:

Department of Electrical & Electronics Engineering, ATMECE, Mysuru Page 26

Microcontroller Notes:BEE403| 2024-2025

#include <regSl.h-
sbit MYSW=P2"0; //input switch
void main (void)
{
unsigned char z;
unsigned char Messl[]="Normal Speed";
unsigned char Mess2[]="High Speed";

TMOD=0x20; f/fuse Timer 1,8-BIT autc-reload
TH1=0xFF; /728,800 for normal speed
SCON=0x50;
TR1=1; ffatart timer
if (MYSW==0)
{
for{z=0;z<12;z++)
{
SBUF=Messl [z] ; //place wvalue in buffer
while (TI==0); //wait for transmit
TI=0;
}
!
else
{ .
CON=PCON | 0xB0D; //for high speed of 56K

for{z=0;2<10;2++)

{

SBUF=Mess2[z] ; //place value in buffer
while (TI==0); //wait for transmit
TI=0;

}

4.4.1 8051 C compilers and the second serial port

Since many C compilers do not support the second serial port of the DS89C4xO chip, we
have to declare the byte addresses of the new SFR registers using the sfr keyword. Table 10-6
and Figure 10-12 provide the SFR byte and bit addresses for the DS89C4xO chip.

Example 4-15

Write a C program for the DS89C4xO to transfer letter “A” serially at 4800 baud
continuously. Use the second serial port with 8-bit data and 1 stop bit. We can only use Timer 1
to set the baud rate.

Solution:

Department of Electrical & Electronics Engineering, ATMECE, Mysuru Page 27

Microcontroller Notes:BEE403| 2024-2025

#include <regb5l.h>
sfr SBUF1=0xCl;
sfr SCON1=0xCO;
shit TI1l=0%C1;
vold main{void)

{
TMOD=0x20; //use Timer 1 for 2nd serial port
TH1=0xFA; //4800 baud rate
SCON1=0x50; //use 2nd serial port SCON1 register
TR1=1; //start timer
while (1)
{

SEUF1="A"'; f/fuse 2nd serial port SBUF1 register

while (TIl==0}; //wait for transmit

TIl=0;

}
DSaRCaxD MAX 232 e
14
<00 (P3.1y P11 2 :]—i_:g
RxD0 (P3.0) o3 123 3
7 2 5 = -
%01 (P1.3) FA—10 R 3
RxD1 (P12) [5
FC
Example 4-16

Program the DS89C4xO0 in C to receive bytes of data serially via the second serial port and
put them in PI. Set the baud rate at 9600, 8-bit data, and 1 stop bit. Use Timer 1 for baud rate
generation.

Department of Electrical & Electronics Engineering, ATMECE, Mysuru Page 28

Microcontroller Notes:BEE403| 2024-2025

Solution:

#include <regSl.h=>
sfr SBUFl1=0xC1;
sfr SCON1=0xC0;
shit RI1=0xC0;
void main(void}

{
unsigned char mybyte;
TMOD=0xZ0; //use Timer 1,5-BIT autc-reload
TH1=0%FD; / /9600
SCON1=0x50; /fuse SCON1 of 2nd serial port
TR1=1;
wh:'lile{l}
while (RI1l==0) ; f/monitor RI1 of 2nd serial port
mybyte=SBUF1; f/use SBUFl of 2nd serial port
B2=mybyte; f/place value on port
RI1=0;
1

4.5 8051 interrupts

Interrupts vs. polling

a) A single microcontroller can serve several devices. There are two ways to do that:
interrupts or polling.

b) In the interrupt method, whenever any device needs its service, the device notifies the
microcontroller by sending it an interrupt signal. Upon receiving an interrupt signal, the
microcontroller interrupts whatever it is doing and serves the device. The program associated
with the interrupt is called the interrupt service routine (ISR) or interrupt handler.

c) In polling, the microcontroller continuously monitors the status of a given device; when
the status condition is met, it performs the service. After that, it moves on to monitor the next
device until each one is serviced. Although polling can monitor the status of several devices and
serve each of them as certain conditions are met, it is not an efficient use of the
microcontroller.

d) The advantage of interrupts is that the microcontroller can serve many devices (not all at the
same time, of course); each device can get the attention of the microcontroller based on the
priority assigned to it. The polling method cannot assign priority since it checks all devices
in a round-robin fashion. More importantly, in the interrupt method the
microcontroller can also ignore (mask) a device request for service. This is again not possible

with the polling method.

Department of Electrical & Electronics Engineering, ATMECE, Mysuru Page 29

Microcontroller Notes:BEE403| 2024-2025

e)The most important reason that the interrupt method is preferable is that the polling method
wastes much of the microcontroller’s time by polling devices that do not need service. So in
order to avoid tying down the microcontroller, interrupts are used. For example, in discussing
timers in Chapter 9 we used the instruction “JNB TF, target”, and waited until the timer
rolled over, and while we were waiting we could not do anything else.

f)That is a waste of the microcontroller’s time that could have been used to perform some
useful tasks. In the case of the timer, if we use the interrupt method, the microcontroller can go
about doing other tasks, and when the TF flag is raised the timer will interrupt the
microcontroller in whatever it is doing.

Interrupt service routine

When an interrupt is invoked, the microcontroller runs the interrupt service routine. For every
interrupt, there is a fixed location in memory that holds the address of its ISR. The group of

memory locations set aside to hold the addresses of ISRs is called the interrupt vector table.

Steps in executing an interrupt
Upon activation of an interrupt, the microcontroller goes through the following steps.

1. It finishes the instruction it is executing and saves the address of the next
instruction (PC) on the stack.

2. It also saves the current status of all the interrupts internally (i.e., not on the
stack).

3. It jumps to a fixed location in memory called the interrupt vector table that
holds the address of the interrupt service routine.

4. The microcontroller gets the address of the ISR from the interrupt vector table
and jumps to it. It starts to execute the interrupt service subroutine until it
reaches the last instruction of the subroutine, which is RETI (return from interrupt).

5. Upon executing the RETI instruction, the microcontroller returns to the place
where it was interrupted. First, it gets the program counter (PC) address from
the stack by popping the top two bytes of the stack into the PC. Then it starts
to execute from that address.

Department of Electrical & Electronics Engineering, ATMECE, Mysuru Page 30

Microcontroller Notes:BEE403| 2024-2025

45.1 Six interrupts in the 8051

In reality, only five interrupts are available to the user in the 8051, but many manufacturers’
data sheets state that there are six interrupts since they include reset. The six interrupts in the
8051 are allocated as follows.
1. Reset. When the reset pin is activated, the 8051 jumps to address location 0000. This
is the power-up reset.
2. Two interrupts are set aside for the timers: one for Timer 0 and one for Timer
3. Memory locations OOOBH and 001BH in the interrupt vector table belong
to Timer 0 and Tinier 1, respectively.
4. Two interrupts are set aside for hardware external hardware interrupts. Pin
numbers 12 (P3.2) and 13 (P3.3) in port 3 are for the external hardware interrupts
INTO and INT1, respectively. These external interrupts are also referred
to as EX1 and EX2. Memory locations 0003H and 0013H in the interrupt vector table
are assigned to INTO and INT1, respectively.
5. Serial communication has a single interrupt that belongs to both receive and
transmit. The interrupt vector table location 0023H belongs to this interrupt.
From Table 4.5, also notice that only three bytes of ROM space are assigned to the reset pin.
They are ROM address locations 0, 1, and 2. Address location 3 belongs to external hardware
interrupt 0. For this reason, in our program we put the LIMP as the first instruction and
redirect the processor away from the interrupt vector table

Table 4.5: Interrupt Vector Table for the 8051

Interrupt ROM Location (Hex) Pin Flag Clearing
Reset Q000 9 Auto

External hardware interrupt 0 (INTO) 0003 P3.2 (12) Auto

Timer @ interrupt (TFQ) 000B Auto

External hardware interrupt 1 (INT1) 0013 P3.3(13) Auto

Timer | interrupt (TF1) 0018 Auto

Serial COM interrupt (R1 and TI) 0023 Programmer

clears it.
ORG 0 jwake-up ROM reset location

LJMP MAIN ;bypass interrupt vector table

;---- the wake-up program
ORG 30H

MAIN '
END

Figure 4.9. Redirecting the 8051 from the Interrupt Vector Table at Power-up

Department of Electrical & Electronics Engineering, ATMECE, Mysuru Page 31

Microcontroller Notes:BEE403| 2024-2025

=52 Emaptmganddisatmgamiterropt

Upon reset, all interrupts are disabled (masked), meaning that none will be responded to by the

microcontroller if they are activated. The interrupts must be enabled by software in order for the

microcontroller to respond to them. There is a register called IE (interrupt enable) that is

responsible for enabling (unmasking) and disabling (masking) the interrupts. Note that IE is a

bit-addressable register.

Steps in enabling an interrupt

1. To enable an interrupt, we take the following steps: .1. Bit D7 of the IE register (EA)

must be set to high to allow the rest of register to take effect.

2. If EA =1, interrupts are enabled and will be responded to if their corresponding bits

in IE are high. If EA =0, no interrupt will be responded to, even if the associated bit in

the IE register is high.

DO

— [ET2 TES [ETI [EXI | ET0 | EX0 |

D7

[EA |
EA IE7
[E.6
ET? IES
ES IE4
ET1 IE32
EX1 IE2
ET0 IE.|
EX0 IE.0

Disables all interrupts. If EA = 0, no interrupt is acknowledged.

If EA = 1, each interrupt source is individually enabled or disabled

by setting or clearing ils enable bit.

Not implemented, reserved for future use.*

Enables or disables Timer 2 overflow or capture intercupt (8052 only).
Enables or disables the serial port.interrupt.

Enables or disables Timer 1 overflow interrupt.

Enables or disables external interrupt 1.

Enables or disables Timer 0 overflow mterrupt.

Enables or disables external interrupt 0.

*User software should not write 1s to reserved bits. These bits may be used
in future flash microcontrollers to invoke new features,

Figure 4.10. IE (Interrupt Enable) Register

Department of Electrical & Electronics Engineering, ATMECE, Mysuru Page 32

Microcontroller Notes:BEE403| 2024-2025

Example 4-16

Show the instructions to (a) enable the serial interrupt, Timer O interrupt, and external
hardware interrupt 1 (EX1), and (b) disable (mask) the Timer 0 interrupt, then (c) show
how to disable all the interrupts with a single instruction.

Solution:

{a) MOV IE,#10010110B ;enable serial, Timer 0, EX1

Since IE is a bit-addressable register, we can use the following instructions to access
individual bits of the register.

(b) CLR IE.1 ;mask (disable) Timer 0 interrupt only
(c) CLR IE.7 ;disable all interrupts

Another way to perform the “MOV IE,#10010110B" instruction is by using single-
bit instructions as shown below.

SETB IE.7 ;iEA=1, Global enable
SETE I1E.4 ;enable serial interrupt
SETB IE.1 ;enable Timer 0 interrupt
SETB IE.Z2 ;enable EX1

4.6 Programming timer

TFQ Timer O Interrupt Vector TF1 Timer { Interrupt Vector
— 000BH —_— GOIBH
Jumps to jumps to

Figure 4.11. TF Interrupt
Roll-over timer flag and interrupt
1. Timer flag (TF) is raised when the timer rolls over. In that chapter, we also showed
how to monitor TF with the instruction “JNB TF, target”. In polling TF, we have to
wait until the TF is raised.

2. The problem with this method is that the microcontroller is tied down while waiting for
TF to be raised, and cannot do any thing else. Using interrupts solves this problem and
avoids tying down the controller.

3. If the timer interrupt in the IE register is enabled, whenever the timer rolls over, TF is
raised, and the microcontroller is interrupted in whatever it is doing, and jumps to the

interrupt vector table to service the ISR.

Department of Electrical & Electronics Engineering, ATMECE, Mysuru Page 33

Microcontroller Notes:BEE403| 2024-2025

4. In this way, the microcontroller can do other things until it is notified that the timer

has rolled over

Example 4-17

Write a program that continuously gets 8-bit data from PO and sends it to Pl while
simultaneously creating a square wave of 200 (as period on pin P2.1. Use Timer 0O to create the
square wave. Assume that XTAL =11.0592 MHz.

Solution:

We will use Timer 0 in mode 2 (auto-reload). THO = 100/1.085 ps = 92.

;—Upon wake-up go to main, avoid using memory space ;allocat-
ed to Interrupt Vector Table

ORG 0000H

LIMP MAIN ;bypass interrupt vector table

;— ISR for Timer 0 to generate sguare wave

ORG 000BH ;Timer 0 interrupt vector table
CPL P2.1 ;toggle P2.1 pin
RETI ;return from ISR

;—-The main program for initialization
ORG 0030H ;after wvector table space
MAIN: MOV TMOD, #02H ;Timer 0, mode 2(auto-relocad)
MOV PO, #0FFH ;make PO an input port
MOV THO,#-92 ;THO=A4H for -92
MOV IE,#82H ;IE=10000010(bin} enable Timer 0

SETE TRO ;8tart Timer 0O
BACK: MOV A,PO ;get data from PO
MOV Pl,A ;issue it to P1
SIJMP BACK ijkeep doing it
;loop unless interrupted by TFO
END
Example 4-18

Write a program o create a square wave that has a high portion of 1085 us and a low portion of
15 us. Assume XTAL = 11.0592 MHz. Use Timer 1.

Department of Electrical & Electronics Engineering, ATMECE, Mysuru Page 34

Microcontroller Notes:BEE403| 2024-2025

Solution:
Since 1085 ps is 1000 = 1.085 we need to use mode | of Timer 1.

;i--Upon wake-up go to main, aveid using memory space
;==allocated to Interrupt Vector Table
ORZ 0000H
LJME MARIN :bypass interrupt wvector table
;=-I5R for Timer 1 to generate asguare wave
ORG O0OC1BH iTimer 1 interrupt vector table
LJMP ISR T1 ;jump to ISR
;--The main program for initialization
ORG QO030H ;after wvector table
MAIN: MOV TMOD,#10H ;Timer 1, mode 1
MOV PO,HBOFFH ;make PO an input port
MOV TL1,#018H ;TL1l=18 the Low byte of -1000
MOV TH1,#0FCH ;TH1=FC the High byte of -1000

MOV IE, #88H ;IE=10001000 enable Timer 1 int.
SETE TR1 ;gtart Timer 1
BACK: MOV A,PQ ;jget data from PO
MOV P1,A ;issue it to Pl
SIMP BACK ;keep doing it

;=--Timer 1 ISE. Must be reloaded since not auto-reload

ISE_Tl: CLE TE1l ;stop Timer 1
CLE P2.1 ;P2.1=0, start of low portion
MOV R2, #4 : 2 MC
HERE: DJNZ R2,HERE ;4x2 machine cycle (MC) g8 MC
MOV TL1,#18H ;load Tl Low byte value 2 MC
MOV TH1i,#0FCH ;load T1 High byte wvalue 2 MC
SETE TR1 ;starts Timer 1 1 MC
SETE F2.1 :P2.1=1, back to high 1 MC
RETI ;return to main
END

Notice that the low portion of the pulse is created by the 14 MC (machine cycles) where

each MC =1.085 us and 14 x 1.085 us = 15.19 us.

Example 4-19

Write a program to generate a square wave of 50 Hz frequency on pin Pl .2. UseTimer 0.

Assume that XTAL = 11.0592MHz.

Department of Electrical & Electronics Engineering, ATMECE, Mysuru

Page 35

Microcontroller Notes:BEE403| 2024-2025

Solution:
ORG O
LJMP MAIN
ORG 000BH ;ISR for Timer 0
CPL Pl.2 icomplement P1.2
MOV TLO, #00 ireload timer values
MOov THO, #0DCH
RETI ;return from interrupt
ORG 30H ;starting location for prog.
- main program for initialization
MAIN: MOV TMOD, #00000001B ;Timer 0, Mode 1
MOV TLO, #00
MOV THO, #0DCH
MOV IE,#82H ;enable Timer 0 interrupt
SETE TRO ;start timer
HERE: SJMF HERE istay here until interrupted
END
8051
Pl.2

50 Hz square wave

4.7 External hardware interrupts

The 8051 has two external hardware interrupts. Piri 12 (P3.2) and pin 13 (P3.3) of the 8051,
designated as INTO and INT1, are used as external hardware interrupts. Upon activation of
these pins, the 8051 gets interrupted in whatever it is doing and jumps to the vector table to

perform the interrupt service routine.

Department of Electrical & Electronics Engineering, ATMECE, Mysuru Page 36

Microcontroller Notes:BEE403| 2024-2025

Level-triggered
EP-INT? * ¥imo De
in 3.2} ') 1EQ 0003
Edge-triggered _+_ {TCOM.1)
Level-triggered
INTI o ¥ Do
(Pin 3.3) — 1T = J—* 0013

Edge-triggered | ¥_| |(TCON3)

Figure 4.12: Activation of INTO and INT1
a) External interrupts INTO and INT1
There are only two external hardware interrupts in the 8051: INTO and INT1. They are
located on pins P3.2 and P3.3 of port 3, respectively. The interrupt vector table locations
0003H and 0013H are set aside for INTO and INT1, respectively. As mentioned in Section 11.1,
they are enabled and disabled using the IE register. How are they activated? There are two types
of activation for the external hardware interrupts: (1) level triggered, and (2) edge triggered.

Let’s look at each one. First, we see how the level-triggered interrupt works.

4.7.1 Level-triggered interrupt

In the level-triggered mode, INTO and INT1 pins are normally high (just like all 1/0 port pins)
and if a low-level signal is applied to them, it triggers the interrupt. Then the microcontroller
stops whatever it is doing and jumps to the interrupt vector table to service that interrupt. This
is called a level-triggered or level-activated interrupt and is the default mode upon reset of
the 8051. The low-level signal at the INT pin must be removed before the execution of the last
instruction of the interrupt service routine, RETI; otherwise, another interrupt will be
generated. In other words, if the low-level interrupt signal is not removed before the ISR is
finished it is interpreted as another interrupt and the 8051 jumps to the vector table to execute
the ISR again.

Example 4.20
Assume that the INT1 pin is connected to a switch that is normally high. Whenever it goes low,
it should turn on an LED. The LED is connected to PI .3 and is normally off. When it is turned
on it should stay on for a fraction of a second. As long as the switch is pressed low, the LED
should stay on.

Department of Electrical & Electronics Engineering, ATMECE, Mysuru Page 37

Microcontroller Notes:BEE403| 2024-2025

Solution:
ORG 0000H
LJMP MAIN ;bypass interrupt vector table
i==-I8R for hardware interrupt INT1 to turn on the LED
ORG 0013H ; INT1 ISR
SETBE PF1.3 ;turn on LED
MOV R3,#255 ;load counter
BACK: DJNZ R3,BACK ijkeep LED on for a while
CLR Pl1.3 jturn off the LED
RETI ;return from ISR
;==MAIN program for initialization
ORG 30H
MAIN: MOV IE,#10000100B ;enable external INT1
HERE: SJMF HERE ;stay here until interrupted
END

Pressing the switch will turn the LED on. If it is kept activated, the LED stays on.

Vee
8051
to
\ P13 LED
INTI
L

4.7.2 Sampling the low level-triggered interrupt

1. Pins P3.2 and P3.3 are used for normal I/O unless the INTO and INT1 bits in the IE
registers are enabled. After the hardware interrupts in the IE register are enabled, the
controller keeps sampling the INT« pin for a low-level signal once each machine
cycle. According to one manufacturer’s data sheet “the pin must be held in a low state
until the start of the execution of ISR.

2. If the INTn pin is brought back to a logic high before the start of the execution of ISR
there will be no interrupt.” However, upon activation of the interrupt due to the low level,
it must be brought back to high before the execution of RETI. Again, according to one
manufacturer’s data sheet, “If the INTw pin is left at a logic low after the RETI
instruction of the ISR, another interrupt will be activated after one instruction is
executed.” Therefore, to ensure the activation of the hardware interrupt at the INTw pin,

make sure that the duration of the low-level signal is around 4 machine cycles,

Department of Electrical & Electronics Engineering, ATMECE, Mysuru Page 38

Microcontroller Notes:BEE403| 2024-2025

but no more. This is due to the fact that the level-triggered interrupt is not latched.

Thus the pin must be held in a low state until the start of the ISR execution.

1 MC
F 4 machine cycles 1o INTO
_E S us or INT1 pins

4 % 1.085 us

Note: On RESET, ITO {TCON.0) and IT1 {TCON.2) are both low, making
external interrupts level-triggered.

Figure 4.13:. Minimum Duration of the Low Level-Triggered Interrupt (XTAL =
11.0592 MHz)

4.7.3 Edge-triggered interrupts

As stated before, upon reset the 8051 makes INTO and INT1 low-level triggered interrupts. To
make them edge-triggered interrupts, we must program the bits of the TCON register. The
TCON register holds, among other bits, the ITO and IT1 flag bits that determine level- or
edge-triggered mode of the hardware interrupts. ITO and IT1 are bits DO and D2 of the
TCON register, respectively. They are also referred to as TCON.O and TCON.2 since the
TCON register is bit-addressable. Upon reset, TCON.O (ITO) and TCON.2 (l11) are both Os,
meaning that the external hardware interrupts of INTO and INT1 pins are low-level triggered.
By making the TCON.O and TCON.2 bits high with instructions such as “SETB TCON. 0” and
“SETB TCON. 2", the external hardware interrupts of INTO and INT1 become edge-
triggered. For example, the instruction “SETB CON. 2" makes INT1 what is called an edge-
triggered interrupt, in which, when a high-to-low signal is applied to pin P3.3, in this case, the
controller will be interrupted and forced to jump to location 0013H in the vector table to service

the ISR (assuming that the interrupt bit is enabled in the IE register).

D7 Do
| Tfr | TRI | TFO | TRO | 1E1 | ITI [1EO | 1TO |

Figure 4.14:. TCON (Timer/Counter) Register (Bit-addressable)

TF1 TCON.7 Timer 1 overflow flag. Set by hardware when timer/counter 1
overflows. Cleared by hardware as the processor vectors to the interrupt service routine.

TR1 TCON.6 Timer 1 run control bit. Set/cleared by software to turn timer/counter 1 on/off.

Department of Electrical & Electronics Engineering, ATMECE, Mysuru Page 39

Microcontroller Notes:BEE403| 2024-2025

TFO TCON.5 Timer 0 overflow flag. Set by hardware when timer/counter 0 overflows.
Cleared by hardware as the processor vectors to the service routine.

TRO TCON.4 Timer 0 run control bit. Set/cleared by software to turn

timer/counter 0 on/off.

IE1 TCON.3 External interrupt 1 edge flag. Set by CPU when the external interrupt edge (H-
to-L transition) is detected. Cleared by CPU when the interrupt is processed. Note: This flag
does not latch low-level triggered interrupts.

IT1 TCON.2 Interrupt 1 type control bit. Set/cleared by software to specify falling edge/low-
level triggered external interrupt.

IEO TCON.1 External interrupt O edge flag. Set by CPU when external interrupt (H-to-L
transition) edge is detected. Cleared by CPU when interrupt is processed. Note: This flag
does not latch low-level triggered interrupts.

ITO TCON.O Interrupt O type control bit. Set/cleared by software to specify falling edge/low-

level triggered external interrupt.

Example 4-21

Assuming that pin 3.3 (INT1) is connected to a pulse generator, write a program in which the
falling edge of the pulse will send a high to PI1.3, which is connected to an LED (or buzzer). In
other words, the LED is turned on and off at the same rate as the pulses are applied to the INT1

pin. This is an edge-triggered version of Example 11-5.

Solution:
ORG QoO00H
LIMP MAIN

;--ISR for hardware interrupt INT1 to turnm on the LED
ORG 0013H ;INT1 ISR
SETE Pl.3 ;turn on the LED
MOV R3, #2655

BACK: DJNZ R3,BACK ;keep the LED on for a while
CLE P1.3 ;turn off the LED
RETI ;return from ISR

;--MRIN program for initialization
ORG 30H

MAIN: SETE TCON.Z ,make INT1 edge-trigger interrupt

] MOV IE,#10000100B ;enable External INT1

HERE: SJMP HERE ;stay here until interrupted

END

Department of Electrical & Electronics Engineering, ATMECE, Mysuru Page 40

Microcontroller Notes:BEE403| 2024-2025

Z.7.Z Sampling the edge-triggered mterrupt

In edge-triggered interrupts, the external source must be held high for at least one machine
cycle, and then held low for at least one machine cycle to ensure that the transition is seen by

the microcontroller.

Minimum pulse duration to detect
edge-triggered interrupts. -— 3o ps
XTAL = 11.0592 MHz 1.085 ps -——

1. The falling edge is latched by the 8051 and is held by the TCON register. The TCON. 1
and TCON.3 bits hold the latched falling edge of pins INTO and INTL1, respectively.
TCON.I and TCON.3 are also called IEO and IE1, respectively, as shown in Figure
11-6. They function as interrupt-in-service flags.

2. When an interrupt-in-service flag is raised, it indicates to the external world that the
interrupt is being serviced and no new interrupt on this INTw pin will be responded to
until this service is finished. This is just like the busy signal you get if calling a
telephone number that is in use. Regarding the ITO and IT1 bits in the TCON register,
the following two points must be emphasized.

Example 4-22

What is the difference between the RET and RETI instructions? Explain why we cannot use
RET instead of RETI as the last instruction of an ISR.

Solution:

Both perform the same actions of popping off the top two bytes of the stack into the program
counter, and making the 8051 return to where it left off. However, RETI also performs an
additional task of clearing the interrupt-in-service flag, indicating that the servicing of the
interrupt is over and the 8051 now can accept a new interrupt on that pin. If you use RET
instead of RET]I as the last instruction of the interrupt service routine, you simply block any new
interrupt on that pin after the first interrupt, since the pin status would indicate that the interrupt
is still being serviced. In the cases of TFO, TF1, TCON.I, and TCON.3, they are cleared by
the execution of RETI.

Department of Electrical & Electronics Engineering, ATMECE, Mysuru Page 41

Microcontroller Notes:BEE403| 2024-2025

4.0 Serlal communication mterrupt

Rl and TI flags and interrupts
1. TI (transfer interrupt) is raised when the last bit of the framed data, the stop bit, is
transferred, indicating that the SBUF register is ready to transfer the next byte. RI
(received interrupt), is raised when the entire frame of data, including the stop bit, is
received. In other words, when the SBUF register has a byte, RI is raised to indicate that
the received byte needs to be picked up before it is lost (overrun) by new
incoming serial data.

2. As far as serial communication is concerned, all the above concepts apply equally
when using either polling or an interrupt. The only difference is in how the serial
communication needs are served. In the polling method, we wait for the flag (T1 or RI)
to be raised; while we wait we cannot do anything else. In the interrupt method, we are
notified when the 8051 has received a byte, or is ready to send the next byte; we
can do other things while the serial communication needs are served.

3. Inthe 8051 only one interrupt is set aside for serial communication. This interrupt is

used to both send and receive data. If the interrupt bit in the IE register (IE.4) is
enabled, when RI or TI is raised the 8051 gets interrupted and jumps to memory
address location 0023H to execute the ISR. In that ISR we must examine the Tl and RI
flags to see which one caused the interrupt and respond accordingly.

n :j) 0023
Rl

Serial inlcrrt;pt is invoked by TI or RI flags

Figure 4.15:. Single Interrupt for Both Tl and RI
Example 4-23
Write a program in which the 8051 reads data from PI and writes it to P2 continuously while
giving a copy of it to the serial COM port to be transferred serially. Assume that XTAL =
11.0592 MHz. Set the baud rate at 9600.

Solution:

Department of Electrical & Electronics Engineering, ATMECE, Mysuru Page 42

Microcontroller Notes:BEE403| 2024-2025

ORG O
LJMP MAIN
ORG 23H
LJMP SERIAL jjump to serial interrupt ISR
ORG 30H

MAIN: MOV P1,#0FFH ;make Pl an input port
MOV TMOD, §20H jtimer 1, mode 2 (auto-reload)
MOV TH1, #0FDH ;9600 baud rate
MOV SCON, #50H ;8-bit, 1 stop, REN enabled
Mow 1E, #10010000B jenable serial interrupt
SETE TR1 j8tart timer 1

BACK: MOV A,P1 iread data from port 1
MOV SBUF, A igive a copy to SBUF
MOV P2,A ;j8end it to P2
SJMP BACK ;etay in loop indefinitely

i

jrmmm e m e Serial Port ISR

ORG 100H

SERIAL: JE TI, TRANS ;jump if TI is high
MOV A,SBUF jotherwise due to receive
CLR RI ;clear RI since CPU doess not
RETI jreturn from ISR

TRANS: CLE TI ;jclear TI since CPU does not
RETI jreturn from ISR
END

Example 4-24

Write a program in which the 8051 gets data from Pl and sends it to P2 continuously while
incoming data from the serial port is sent to PO. Assume that XTAL = 11.0592 MHz. Set the
baud rate at 9600.

Solution:

Department of Electrical & Electronics Engineering, ATMECE, Mysuru Page 43

Microcontroller Notes:BEE403| 2024-2025

MATIMN:

BACK:

SERIAL:

TRANS :

——————————————————— SERIAL PORT ISR

0

MAIN

23H

SERIAL ;jump to serial ISR

3I0H

P1, #0FFH ;make Pl an input port

TMOD, #20H jeimer 1, mode 2(auto-reload)

TH1, #0FDH ;9600 baud rate

SCON, #50H ;8-bit,l1 stop, REN enabled

IE, #10010000B ;enable serial interrupt

TR1 ;jstart Timer 1

A,P1l ;read data from port 1

Pz2,4a ;send it to P2

BACK ;stay in loop indefinitely

100H

TI, TRANS ;jump if TI is high

A, SBUF ;otherwise due to receive

PO,A ;send incoming data to FO

RI ;clear RI since CPU doesn’t
;return from ISR

TI ;elear TI since CPU doesn't

sreturn from ISR

4.9 Interrupt priority in 8051/52

Interrupt priority upon reset

When the 8051 is powered up, the priorities are assigned according to Table 4.6.

Example 4-26

Table 4.6: Interrupt priority

E.Ighﬂst to Lowest Priority

Extemal Interrupt 0 (INTO)
Timer Interrupt {) (TFD)
External Interrupt 1 (INT1)
Timer Interrupt | (TF1)
Serial Communication (RI =TI
Timer 2 {8052 only) TF2

Discuss what happens if interrupts INTO, TFO, and INT1 are activated at the same time.

Assume priority levels were set by the power-up reset and that the external hardware

interrupts are edge-triggered.

Department of Electrical & Electronics Engineering, ATMECE, Mysuru Page 44

Microcontroller Notes:BEE403| 2024-2025

Solution:

If these three interrupts are activated at the same time, they are latched and kept internally. Then

the 8051 checks all five interrupts according to the sequence listed in Table 4.6.If any is

activated, it services it in sequence. Therefore, when the above three interrupts are activated,

IEO (external interrupt 0) is serviced first, then Timer 0 (TFO), and finally IE1 (external

interrupt 1).

D7

D0

[P72 [PS [PT1I | Pxa | P10 | PX0 |

Priority bit = 1 assigns high priority. Priority bit = 0 assigns low priority.

PT2
PS

FTI
PX1
PTO
PX0

IP.7
IP.6
IP.5
P4
IF.3
P2
IP.1
IP.O

Reserved

Reserved

Timer 2 imterrupt priority bit (8052 only)
Serial port interrupt priority bit

Timer 1 interrupt priority bit

External interrupt | priority bit

Timer © interrupt priority bit

External interrupt O priority bit

User software should never write 1s to unimplemented bits, since they may be used in

future products.

Figure 4.16:. Interrupt Priority Register (Bit-addressable)

Example 4-27

(a) Program the IP register to assign the highest priority to INT1 (external interrupt 1), then (b)

discuss what happens if INTO, INT1, and TFO are activated at the same time. Assume that

the interrupts are both edge-triggered.

Solution:

1. MOV IP,#000001006 ;IP.2 = 1 to assign INT1 higher priority
The instruction “SETB IP.2"” also will do the same thing as the above line since
IP is bit-addressable.

2. The instruction in Step (a) assigned a higher priority to INT1 than the others;
therefore, when INTO, INT1, and TFO interrupts are activated at the same time, the
8051services INT1 first, then it services INTO, then TFO. This is due to the fact that

INT1 has a higher priority than the other two because of the instruction in Step (a).
The instruction in Step (a) makes both the INTO and TFO bits in the IP register 0.

Department of Electrical & Electronics Engineering, ATMECE, Mysuru Page 45

Microcontroller Notes:BEE403| 2024-2025

Example 4-28
Assume that after reset, the interrupt priority is set by the instruction “MOV IP,

400001100B”. Discuss the sequence in which the interrupts are serviced.

Solution:

The instruction “MOV IP, #0 0 0 0110 OB” (B is for binary) sets the external interrupt 1
(INT1) and Timer 1 (TF1) to a higher priority level compared with the rest of the interrupts.
However, since they are polled according to Table 11-3, they will have the following priority.

Highest Priority External Interrupt 1 (INT1)
Timer Interrupt 1 (TF1)
External Interrupt ¢ (INTO)
Timer Interrupt 0 (TFQ)

Lowest Priority Sertal Communication (RI+TI)

4.10 Interrupt programming in C

The 8051 C compilers have extensive support for the 8051 interrupts with two major features
as follows:
1. They assign a unique number to each of the 8051 interrupts, as shown in Table
11-4.
2. It can also assign a register bank to an ISR. This avoids code overhead due to
the pushes and pops of the RO — R7 registers.
Table 4.7: 8051/52 Interrupt Numbers in C

Interrupt Na_mg Numbers used by 8051 C
External Interrupt O {(INTD) 1]

Timer Interrupt 0 {TFO) I

External Interrupt 1 (INT1) 2

Timer Intertupt 1 {TF1) 3

Serial Communication (RI + TI) 4

Timer 2 (3052 only) {TF2) 5

Example 4-29

Write a C program that continuously gets a single bit of data from PI. 7 and sends it to PI.0,
while simultaneously creating a square wave of 200 (as period on pin P2.5. Use timer 0 to
create the square wave. Assume that XTAL = 11.0592 MHz.

Solution:

Department of Electrical & Electronics Engineering, ATMECE, Mysuru Page 46

Microcontroller Notes:BEE403| 2024-2025

We will use timer 0 in mode 2 (auto-reload). One half of the period is 100 ps.
100 /1. 085 us = 92, and THO = 256 — 92 = 164 or A4H

#include <regSl.h>

shit SW = P1*7;
shit IND = P1%0;
sbit WAVE = P2°5;

void timer0{void) interrupt 1

{
WAVE = ~WAVE; //toggle pin

}

void main{)

{

SW = 1; [/make switch input
TMOD = 0x02; '
THO = 0xhAd; f/THO = -92
IE = 0x82; //enable interrupts for timer 0
while{1)

{

IND = 2W; S/aend awitech to LED
}

200 ps /2 =100 ps
100 ps / 1.085 ps = 92
8051

P10 LED

SWITCH

P17 5000 Hz

Example 4-30
Write a C program that continuously gets a single bit of data from PI. 7 and sends it to P1.0 in

the main, while simultaneously (a) creating a square wave of 200 us period on pin P2.5, and

Department of Electrical & Electronics Engineering, ATMECE, Mysuru Page 47

Microcontroller Notes:BEE403| 2024-2025

(b) sending letter ‘A’ to the serial port. Use Timer O to create the square wave. Assume that
XTAL =11.0592 MHz. Use the 9600 baud rate.

Solution:

We will use Timer (} in mode 2 (auto-reload). THO = 100/1.085 ps =-92, which is A4H
#include <reg5l.h>

sbit SW = P1°7;

sbit IND = P1%0;

sbit WAVE = P275;

void timer0{void) interrupt 1

{
WAVE = -WAVE; //toggle pin
}
void serial0() interrupt 4
{
if(TI == 1}
{
SBUF = 'A'; //send A to serial port
TI = 0; //clear interrupt
}
else
{
RI = 0; //clear interrupt
!
}
void main{}
{
SW = 1; //make switch input
TH1 = -3; / /9600 baud
TMOD = 0%22: J/mode 2 for both timers
THO = 0Oxh4; //-92=R4H for timer 0
SCON = 0x50;
TRO = 1;
TR1 = 1; //start timer
IE = 0x92; //enable interrupt for TO
while (1) //stay here
{
IND = SW; //send switch to LED
}

Department of Electrical & Electronics Engineering, ATMECE, Mysuru Page 48

Microcontroller Notes:BEE403| 2024-2025

Example 4-31
Write a C program using interrupts to do the following:
1. Receive data serially and send it to PO,
2. Read port PI, transmit data serially, and give a copy to P2,
3. Make timer 0 generate a square wave of 5 kHz frequency on PO.I.
Assume that XTAL = 11.0592 MHz. Set the baud rate at 4800.

Solution:

#include <regS51.h>
sbit WAVE = PO™1;

volid timer0() interrupt 1

{
WAVE = ~WAVE; //toggle pin
}
volid seriall{} interrupt 4
{
1f(TI == 1)
{
TI = Q; //clear interrupt
}
else
{
BP0 = SBUF; //put value on pins
RI = 0; //clear interrupt
!
}
volid maind)
{
unsigned char x;
Pl = OxFF; //make P1 an input
TMOD = 0x22;
TH1 = 0xF6; / /4800 baud rate
BCOH = 0x50;
THO = OxAfd; //5 kHz has T = 200 us
IE = 0x92; //enable interrupts
TR1 = 1; //start timer 1
TRO = 1; //start timer 0
while{l)
{
x = P1; //read value from pins
SBUF = x; J/put value in buffer
P2 = x; J//write value to pins
}
}

Department of Electrical & Electronics Engineering, ATMECE, Mysuru Page 49

Microcontroller Notes:BEE403| 2024-2025

Example 4-32
Write a C program using interrupts to do the following:
1. Generate a 10000 Hz frequency on P2.1 using TO 8-bit auto-reload,
2. Use timer 1 as an event counter to count up a 1-Hz pulse and display it on PO. The
pulse is connected to EX1.
Assume that XTAL = 11.0592 MHz. Set the baud rate at 9600.

Solution:
#include <regSl.h>

sbit WAVE = P2°1;
unsigned char ont;

void timer0() interrupt 1

{
WAVE = ~WAVE: J//toggle pin

}

void timerl () interrupt 3

{

cnb++; J//inerement counter
FD = cnt; J//display walue on pins
}

void main{)

{

cnt = 0; //set counter to Zeroc
TMOD = 0x42;

THO = 0x-486; //10000 Hz

IE = OxBé&; //enable interrupts

TRO = 1; //start timer 0

TRl = 1; //start timer 1
while(1l}; //wait until interrupted

}
1 /10000 Hz = 100 us

100 us / 2 = 50 ps
50 ps / 1.085 ps = 46 8051
PO LEDs
Pl MMM UL
10000 Hz

Department of Electrical & Electronics Engineering, ATMECE, Mysuru Page 50

Microcontroller Notes:BEE403| 2024-2025

Outcomes

At the end of the module, students will be able
CO4: Analyse different 1/0 devices (Serial), interrupts and develop programs to configure 8051
Microcontroller. [L4, MODULE 4]

Department of Electrical & Electronics Engineering, ATMECE, Mysuru Page 51

