Microcontroller Note: BEE403| 2024-2025

MODULE 2: Assembly Programming and Instruction of 8051

Structure

2.1 Introduction to 8051 assembly programming
2.2 Assembling and running an 8051 program
2.3 Data types and Assembler directives

2.4 Arithmetic, logic instructions and programs

2.5 Jump, loop and call instructions

2.6 10 port programming

Objectives

e To explain in detail the execution of 8051 Assembly language instructions and data
types

e To explain loop, conditional and unconditional jump and call, handling and
manipulation of 1/0 instructions.

Department of Electrical & Electronics Engineering, ATMECE, Mysuru Page 1

Microcontroller Note:BEE403| 2024-2025

2.1 Introduction to 8051 assembly programming

e In the early days of the computer, programmers coded in machine language,
consisting of Os and 1s : Tedious, slow and prone to error.

e Assembly languages, which provided mnemonics for the machine code instructions,
plus other features, were developed: An Assembly language program consist of a
series of lines of Assembly language instructions

e Assembly language is referred to as a low level language: It deals directly with the
internal structure of the CPU.

2.1.1 Assembly language instruction includes

e A mnemonic (abbreviation easy to remember) f the commands to the CPU, telling
it what those to do with those items
e optionally followed by one or two operands f the data items being manipulated
e A given Assembly language program is a series of statements, or lines:
1. Assembly language instructions f
Tell the CPU what to do
2. Directives (or pseudo-instructions)
Give directions to the assembler

General syntax for 8051 assembly language is as follows:

LABEL: OPCODE OPERAND; COMMENT

e LABEL: (THIS IS NOT NECESSARY UNLESS THAT SPECIFIC LINE HAS TO
BE ADDRESSED). The label is a symbolic address for the instruction. When the
program is assembled, the label will be given specific address in which that
instruction is stored. Unless that specific line of instruction is needed by a branching
instruction in the program, it is not necessary to label that line. Eg: BACK, HERE

e OPCODE: Opcode is the symbolic representation of the operation. The assembler
converts the opcode to a unique binary code (machine language). Eg:MOV, ADD

e OPERAND: While opcode specifies what operation to perform, operand specifies
where to perform that action. The operand field generally contains the source and
destination of the data. In some cases only source or destination will be available
instead of both. The operand will be either address of the data, or data itself.

e COMMENT: Always comment will begin with ; or // symbol. To improve the
program quality, programmer may always use comments in the program.

Department of Electrical & Electronics Engineering, ATMECE, Mysuru Page 2

Microcontroller Note:BEE403| 2024-2025

2.2 Assembling and running an 8051 program

The steps of Assembly language program is outlined as follows:

1. First we use an editor to type a program, many excellent editors or word processors

are available that can be used to create and/or edit the program

¢ Notice that the editor must be able to produce an ASCII file

e For many assemblers, the file names follow the usual DOS conventions, but the
source file has the extension “asm‘ or “src”, depending on which assembly you
are using.

2. The “asm” source file containing the program code created in step 1 is fed to an 8051
assembler f The assembler converts the instructions into machine code. The
assembler will produce an object file and a list file .The extension for the object file is
“obj” while the extension for the list file is “Ist”

3. Assembler require a third step called linking f
e The linker program takes one or more object code files and produce an absolute

object file with the extension “abs” f
e This abs file is used by 8051 trainers that have a monitor program
4. Next the “abs” file is fed into a program called “OH” (object to hex converter) which
creates a file with extension “hex” that is ready to burn into ROM
e This program comes with all 8051 assemblers

e f Recent Windows-based assemblers combine step 2 through 4 into one step

EDITOR

PROGRAM

myfile.asm

ASSEMBLER
PROGRAM

myfile.lst

myfile.obj Other obj files

myfile.abs

l

myfile.hex

Fig: 2.1: Steps of Assembly language program

Department of Electrical & Electronics Engineering, ATMECE, Mysuru Page 3

Microcontroller Note:BEE403| 2024-2025

2.2.1 The Ist (list) file

1. It lists all the opcodes and addresses as well as errors that the assembler detected.
2. The programmer uses the Ist file to find the syntax errors or debug

2.3 Data types and Assembler directives

Assembler directives tell the assembler to do something other than creating the machine code
for an instruction. In assembly language programming, the assembler directives instruct the
assembler to

1. Process subsequent assembly language instructions

2. Define program constants

3. Reserve space for variables

The following are the widely used 8051 assembler directives.

1. ORG (origin): The ORG directive is used to indicate the starting address. It can be used
only when the program counter needs to be changed. The number that comes after
ORG can be either in hex or in decimal.

Eg: ORG 0000H;

2. EQU and SET : EQU and SET directives assign numerical value or register name to
the specified symbol name.
EQU is used to define a constant without storing information in the memory.
The symbol defined with EQU should not be redefined.
SET directive allows redefinition of symbols at a later stage.

3. DB (DEFINE BYTE): The DB directive is used to define an 8 bit data. DB directive
initializes memory with 8 bit values.
The numbers can be in decimal, binary, hex or in ASCII formats.
For decimal, the 'D' after the decimal number is optional, but for binary and
hexadecimal, 'B' and ‘H’ are required.
For ASCII, the number is written in quotation marks (‘LIKE This).
DATAL: : DB 40H ; hex
DATAZ2: DB 01011100B ;binary
DATAZ3: DB 48 ; decimal
DATA4:DB'HELL O’ ; ASCII

4. END: The END directive signals the end of the assembly module. It indicates the end of
the program to the assembler. Any text in the assembly file that appears after the END
directive is ignored. If the END statement is missing, the assembler will generate
an error message.

Department of Electrical & Electronics Engineering, ATMECE, Mysuru Page 4

Microcontroller Note:BEE403| 2024-2025

2.4 Arithmetic, logic instructions and programs

8051 Instructions The instructions of 8051 can be broadly classified under the following
headings.

1. Data transfer instructions

2. Arithmetic instructions

3. Logical instructions

4. Branch instructions

5. Subroutine instructions

6. Bit manipulation instructions
1. Data transfer instructions.

In this group, the instructions perform data transfer operations of the following types.
a. Move the contents of a register Rn to A

i. MOV A R2

ii. MOV A R7

b. Move the contents of a register A to Rn

i. MOV R4,A
ii. MOV RL,A

c. Move an immediate 8 bit data to register A or to Rn or to a memory location (direct or
indirect)

i. MOV A, #45H

ii. MOV R6, #51H

iii. MOV 30H, #44H

iv. MOV @RO, #0E8H

v. MOV DPTR, #0F5A2H

vi. MOV DPTR, #5467H
d. Move the contents of a memory location to A or A to a memory location using direct and indirect
addressing

i. MOV A, 65H

ii. MOV A, @RO
iii. MOV 45H, A
iv. MOV @R1, A

Department of Electrical & Electronics Engineering, ATMECE, Mysuru Page 5

Microcontroller Note:BEE403| 2024-2025

e. Move the contents of a memory location to Rn or Rn to a memory location using direct addressing

i. MOV R3, 65H
ii. MOV 45H, R2

f. Move the contents of memory location to another memory location using direct and indirect
addressing

i. MOV 47H, 65H

ii. MOV 45H, @RO

g. Move the contents of an external memory to A or A to an external memory
i. MOVX A,@R1

ii. MOVX @RO,A
iii. MOVX A,@DPTR
iv. MOVX@DPTR,A

h. Move the contents of program memory to A
i. MOVC A, @A+PC
ii. MOVC A, @A+DPTR
< — =
il g J I
|
|

; [
A Regis'er Addfesslng |
Instructions l
MOV A, @Ri Internal ‘
MOV A, Direct RAM |
RO or R1 > ‘ External
RAM
MOVX A, @Ri Internal
and
] MOVX A, @DPTR External
DPTR I - ROM
MOVC A, @A + DPTR
DPTR + A G 2
MOVC A, @A + PC
PC+A -

Fig:2.2: Addressing using MOV,MOVX,MOVC

Department of Electrical & Electronics Engineering, ATMECE, Mysuru Page 6

Microcontroller Note:BEE403| 2024-2025

2.4.1 Arithmetic instructions

The 8051 can perform addition, subtraction. Multiplication and division operations on 8 bit numbers:

a) Addition:
In this group, we have instructions to
i. Add the contents of A with immediate data with or without carry.
i. ADD A, #45H
ii. ADDC A, #OB4H
ii. Add the contents of A with register Rn with or without carry.
i. ADD A, R5
ii. ADDC A, R2
iii. Add the contents of A with contents of memory with or without carry using direct and indirect

addressing

i. ADD A, 51H

ii. ADDC A, 75H
iii. ADD A, @R1
iv. ADDC A, @RO

Example: The Accumulator holds 0C3H (11000011B) and register 0 holds 0OAAH (10101010B) with
the carry flag set. The following instruction, ADDC A,R0 leaves 6EH (01101110B) in the
Accumulator with AC cleared and both the Carry flag and OV set to 1.

CY AC and OV flags will be affected by this operation.

Department of Electrical & Electronics Engineering, ATMECE, Mysuru Page 7

Microcontroller Note:BEE403 | 2024-2025

Unsigned Addition

Unsigned numbers make use of the carry flag to detect when the result of an ADD opera-
tion is a number larger than FFh. If the carry is set to one after an ADD, then the carry can
be added to a higher order byte so that the sum is not lost. For instance,

95d = 01011111b
189d = 10111101b
284d 1 00011100b = 284d

The C flag is set to 1 to account for the carry out from the sum. The program could add the
carry flag to another byte that forms the second byte of a larger number.

Signed Addition

Signed numbers may be added two ways: addition of like signed numbers and addition
of unlike signed numbers. If unlike signed numbers are added, then it is not possible
for the result to be larger than —128d or +127d, and the sign of the result will always be
correct. For example,

—001d = LL1tLLtlb
+027d = 00011011b
+026d 00011010b = +026d

Here, there is a carry from bit 7 so the carry flag is 1. There is also a carry from bit 6, and
the OV flag is 0. For this condition, no action need be taken by the program to correct

the sum.
Here, there is a carry from bit 7 so the carry flag is 1. There is also a carry from bit 6, and
the OV flag is 0. For this condition, no action need be taken by the program to correct

the sum.
If positive numbers are added, there is the possibility that the sum will exceed + 127d,

as demonstrated in the following example:

+100d = 01100100b
+050d = 00110010b

+150d 10010110b = —106d

Ignoring the sign of the result, the magnitude is seen to be +22d which would be correct if
we had some way of accounting for the +128d, which, unfortunately, is larger than a
single byte can hold. There is no carry from bit 7 and the carry flag is 0; there is a carry

from bit 6 so the OV flag is 1.
An example of adding two positive numbers that do not exceed the positive limit is:

+045d = 00101101b
+075d = 0100101 1b

+120d 01111000b = 120d

Note that there are no carries from bits 6 or 7 of the sum; the carry and OV flags are

both 0.
The result of adding two negative numbers together for a sum that does not exceed the

negative limit is shown in this example:
—030d = 11100010b
~050d = 11001110b
~080d 10110000b = —080d

Department of Electrical & Electronics Engineering, ATMECE, Mysuru Page 8

Microcontroller Note:BEE403| 2024-2025

b) Subtraction:
SUBB A, <src-byte>
Function: Subtract with borrow
Description: SUBB subtracts the indicated variable and the carry flag together from the Accumulator,
leaving the result in the Accumulator. SUBB sets the carry (borrow) flag if a borrow is needed for bit
7 and clears C otherwise. (If C was set before executing a SUBB instruction, this indicates that a
borrow was needed for the previous step in a multiple-precision subtraction, so the carry is subtracted
from the Accumulator along with the source operand.) AC is set if a borrow is needed for bit 3 and
cleared otherwise. OV is set if a borrow is needed into bit 6, but not into bit 7, or into bit 7, but not bit
6
Example: The Accumulator holds 0C9H (11001001B), register 2 holds 54H (01010100B), and the
carry flag is set. The instruction, SUBB A,R2 will leave the value 74H (01110100B) in the
accumulator, with the carry flag and AC cleared but OV set.
In this group, we have instructions to
i. Subtract the contents of A with immediate data with or without carry.
i. SUBB A, #45H
ii. SUBB A, #OB4H
ii. Subtract the contents of A with register Rn with or without carry.
i. SUBB A, R5
ii. SUBB A, R2
iii. Subtract the contents of A with contents of memory with or without carry using direct and indirect
addressing
i. SUBB A, 51H
ii. SUBB A, 75H
iii. SUBB A, @R1
iv. SUBB A, @R0O
CY AC and OV flags will be affected by this operation.

Department of Electrical & Electronics Engineering, ATMECE, Mysuru Page 9

Microcontroller Note:BEE403 | 2024-2025

Unsigned Subtraction

Because the C flag is always subtracted from A along with the source byte, it must be set
to 0 if the programmer does not want the flag included in the subtraction. If a multi-byte
subtraction is done, the C flag is cleared for the first byte and then included in subsequent
higher byte operations.

The result will be in true form, with no borrow if the source number is smaller than
A, or in 2's complement form, with a borrow if the source is larger than A. These are nor
signed numbers, as all eight bits are used for the magnitude. The range of numbers is from
positive 255d (C = 0, A = FFh) to negative 255d (C = 1, A = 0lh).

The following example demonstrates subtraction of larger number from a smaller
number:

015d = 00001111b
SUBB 100d = 01100100b

—085d 1 10101011b = 171d

The C fAlag is set to 1, and the OV flag is set to 0. The 2's complement of the result is 085d.
The reverse of the example yields the following result:

100d = 01100100b
015d = 00001111b

085d 01010101b = 085d

The C flag is set to (0, and the OV fag is set to 0. The magnitude of the result is in true form.

Signed Subtraction

As is the case for addition, two combinations of unsigned numbers are possible when sub-
tracting: subtracting numbers of like and unlike signs. When numbers of like sign are
subtracted, it is impossible for the result to exceed the positive or negative magnitude
limits of +127d or —128d, so the magnitude and sign of the result do not neced to be
adjusted. as shown in the following example:

+100d = 01100100b (Carry flag = () before SUBB)
SUBB +126d = 01111110b

-026d 1 11100110b = —026d

There is a borrow into bit positions 7 and 6; the carry flag is set to 1, and the OV flag is
cleared.

c) Multiplication
¢ MUL AB: This instruction multiplies two 8 bit unsigned numbers which are stored in A and
B register.
e After multiplication the lower byte of the result will be stored in accumulator and higher
byte of result will be stored in B register.
Eg. MOV A#45H ; [A]=45H
MOV B#0F5H ; [B]=F5H
MUL AB; [A] x [B] = 45 x F5 = 4209 ;[A]=09H, [B]=42H

Department of Electrical & Electronics Engineering, ATMECE, Mysuru Page 10

Microcontroller Note:BEE403| 2024-2025

d) Division:
e DIV AB. This instruction divides the 8 bit unsigned number which is stored in A by the 8 bit
unsigned number which is stored in B register.
e After division the result will be stored in accumulator and remainder will be stored in B
register.
Eg. MOV A#45H; [A]=0E8H
MOV B,#0F5H ; [B]=1BH
DIV AB; [A]/[B] = E8 /1B = 08 H with remainder 10H ;[A] = 08H, [B]=10H

Function: Divide

Description: DIV AB divides the unsigned eight-bit integer in the Accumulator by the unsigned
eight-bit integer in register B. The Accumulator receives the integer part of the quotient; register B
receives the integer remainder. The carry and OV flags are cleared.

Exception: if B had originally contained 00H, the values returned in the Accumulator and B register
are undefined and the overflow flag are set. The carry flag is cleared in any case.

Example: The Accumulator contains 251 (OFBH or 11111011B) and B contains 18 (12H or
00010010B). The following instruction, DIV AB leaves 13 in the Accumulator (ODH or 00001101B)
and the value 17 (11H or 00010001B) in B, since 251 = (13 x 18) + 17. Carry and OV are both
cleared.

e) DA A (Decimal Adjust After Addition)

When two BCD numbers are added, the answer is a non-BCD number. To get the result in BCD, we
use DA A instruction after the addition.

DA A works as follows.

o If lower nibble is greater than 9 or auxiliary carry is 1, 6 is added to lower nibble
e If upper nibble is greater than 9 or carry is 1, 6 is added to upper nibble.

Eg 1: MOV A #23H
MOV R1,#55H
ADD AR1// [A]=78
DA A/l [A]=78 no changes in the accumulator after da a

Eg 2: MOV A#53H
MOV R1,#58H
ADD AR1//[A]=ABh
DA A/l [A]=11, C=1, ANSWER IS 111. Accumulator data is changed after DA A

Department of Electrical & Electronics Engineering, ATMECE, Mysuru Page 11

Microcontroller Note:BEE403| 2024-2025

Increment: Increments the operand by one.
1. INC increments the value of source by 1.
2. If the initial value of register is FFh, incrementing the value will cause it to reset to 0.
3. The Carry Flag is not set when the value "rolls over" from 255 to 0. In the case of "INC
DPTR", the value two-byte unsigned integer value of DPTR is incremented. If the initial
value of DPTR is FFFFh, incrementing the value will cause it to reset to 0.
Eg: INC A
INC Rn
INC DIRECT
INC @Ri
INC DPTR

Decrement: decrements the operand by one
DEC decrements the value of source by 1. If the initial value of is 0, decrementing the value will

cause it to reset to FFh. The Carry Flag is not set when the value "rolls over" from 0 to FFh.
Eg: DEC A

DECRn

DEC DIRECT

DEC @Ri

2.4.2 Logical Instructions

a) Logical AND

ANL destination, source: ANL does a bitwise "AND" operation between source and destination,
leaving the resulting value in destination. The value in source is not affected. "AND" instruction
logically AND the bits of source and destination

ANL A#DATA

ANL A, Rn

ANL A,DIRECT

ANL A @RI

ANL DIRECT,A

ANL DIRECT, #DATA

Example: If the Accumulator holds 0C3H (1100001IB), and register 0 holds 55H (01010101B), then
the following instruction, ANL A,RO leaves 41H (01000001B) in the Accumulator

Department of Electrical & Electronics Engineering, ATMECE, Mysuru Page 12

Microcontroller Note:BEE403| 2024-2025

b) Logical OR

ORL destination, source: ORL does a bitwise "OR" operation between source and destination,
leaving the resulting value in destination. The value in source is not affected. * OR ™ instruction
logically OR the bits of source and destination.

ORL A#DATA

ORL A, Rn

ORL A,DIRECT

ORL A,@Ri

ORL DIRECT,A

ORL DIRECT, #DATA

Example: If the Accumulator holds 0C3H (11000011B) and RO holds 55H (01010101B) then the
following instruction, ORL A RO leaves the Accumulator holding the value 0D7H (11010111B).

¢) Logical Ex-OR

XRL destination, source: XRL does a bitwise "EX-OR" operation between source and destination,
leaving the resulting value in destination. The value in source is not affected. " XRL " instruction

logically EX-OR the bits of source and destination.

XRL A#DATA

XRL ARn

XRL ADIRECT

XRL A,@Ri

XRL DIRECT,A

XRL DIRECT, #DATA

Example: If the Accumulator holds 0C3H (1100001IB) and register 0 holds 0AAH (10101010B) then
the instruction, XRL A RO leaves the Accumulator holding the value 69H (01101001B).

d)Logical NOT

CPL complements operand, leaving the result in operand. If operand is a single bit then the state of
the bit will be reversed. If operand is the Accumulator then all the bits in the Accumulator will be
reversed.

CPLA

CPLC

CPL bit address

Department of Electrical & Electronics Engineering, ATMECE, Mysuru Page 13

Microcontroller Note:BEE403| 2024-2025

SWAP A

Swap the upper nibble and lower nibble of A

Function: Swap nibbles within the Accumulator

Description: SWAP A interchanges the low- and high-order nibbles (four-bit fields) of the
Accumulator (bits 3 through 0 and bits 7 through 4). The operation can also be thought of as a 4- bit
rotate instruction. No flags are affected. Example: The Accumulator holds the value OC5H
(11000101B). The instruction, SWAP A leaves the Accumulator holding the value 5CH (01011100B)

XCH A <byte>

Function: Exchange Accumulator with byte variable Description: XCH loads the Accumulator with the
contents of the indicated variable, at the same time writing the original Accumulator contents to the
indicated variable. The source/destination operand can use register, direct, or register-indirect
addressing.

Example: RO contains the address 20H. The Accumulator holds the value 3FH (0011111IB). Internal
RAM location 20H holds the value 75H (01110101B). The following instruction, XCH A,@RO0 leaves
RAM location 20H holding the values 3FH (00111111B) and 75H (01110101B) in the accumulator.

CPLA

Function: Complement Accumulator

Description: CPLA logically complements each bit of the Accumulator (one’s complement). Bits
which previously contained a 1 are changed to a 0 and vice-versa. No flags are affected.

Example: The Accumulator contains 5CH (01011100B). The following instruction, CPL A leaves
the Accumulator set to 0A3H (10100011B).

CPL bit

Function: Complement bit

Description: CPL bit complements the bit variable specified. A bit that had been a 1 is changed to 0 and
vice-versa. No other flags are affected. CLR can operate on the carry or any directly addressable bit.
Example: Port 1 has previously been written with 5BH (01011101B). The following instruction
sequence, CPL P1.1CPL P1.2 leaves the port set to 5BH (01011011B).

Department of Electrical & Electronics Engineering, ATMECE, Mysuru Page 14

Microcontroller Note:BEE403| 2024-2025

Rotate Instructions

RR A

This instruction is rotate right the accumulator. Its operation is illustrated below. Each bit is shifted
one location to the right, with bit 0 going to bit 7.

76543210

ACC

Ls.

RL A
Rotate left the accumulator. Each bit is shifted one location to the left, with bit 7 going to bit O

s s s g s s g
76 543210

ACC
Example: The Accumulator holds the value 0C5H (11000101B). The following instruction,
RL A leaves the Accumulator holding the value 8BH (10001011B) with the carry unaffected.

RRC A
Rotate right through the carry. Each bit is shifted one location to the right, with bit 0 going into the

carry bit in the PSW, while the carry was at goes into bit 7

g e s el s
C 76 543210
ACC
Example: The Accumulator holds the value 0C5H (11000101B), the carry is zero. The following
instruction, RRC A leaves the Accumulator holding the value 62 (01100010B) with the carry set.
RLC A
Rotate left through the carry. Each bit is shifted one location to the left, with bit 7 going into the carry

bit in the PSW, while the carry goes into bit 0.

I P FFFEFEETF h|_i
C 76543210
ACC
Example: The Accumulator holds the value 0C5H(11000101B), and the carry is zero. The following

instruction, RLC A leaves the Accumulator holding the value 8BH (10001010B) with the carry set.

Department of Electrical & Electronics Engineering, ATMECE, Mysuru Page 15

Microcontroller Note:BEE403| 2024-2025

2.5 Branch (JUMP) Instructions

Jump and Call Program Range There are 3 types of jump instructions.

They are:-

1. Relative Jump

2. Short Absolute Jump

3. Long Absolute Jump

1. Relative Jump

Jump that replaces the PC (program counter) content with a new address that is greater than (the
address following the jump instruction by 127 or less) or less than (the address following the jump by
128 or less) is called a relative jump. Schematically, the relative jump can be shown as follows: -

A

128
Relative Jump instruction
Jump Next X X X X X
range . Instruction

127

Fig 2.3: Relative Jump Range

The advantages of the relative jump are as follows:-

1. Only 1 byte of jump address needs to be specified in the 2's complement form, ie. For jumping
ahead, the range is 0 to 127 and for jumping back, the range is -1 to -128.

2. Specifying only one byte reduces the size of the instruction and speeds up program execution.

3. The program with relative jumps can be relocated without reassembling to generate absolute jump

addresses.

Disadvantages of the absolute jump: -
1. Short jump range (-128 to 127 from the instruction following the jump instruction)
Instructions that use Relative Jump

SJMP ; this is unconditional jump

Department of Electrical & Electronics Engineering, ATMECE, Mysuru Page 16

Microcontroller Note:BEE403| 2024-2025

Operation: SIMP Function: Short Jump Syntax: SIMP reladdr
Description: SJIMP jumps unconditionally to the address specified reladdr. Reladdr must be within -
128 or +127 bytes of the instruction that follows the SIMP instruction

The remaining relative jumps are conditional jumps

]JC <relative address>

JNC <relative address>

]B bit, <relative address>

JNB bit, <relative address>

]BC bit, <relative address>

CJNE <destination byte>, <source byte>, <relative address>
DJNZ <byte>, <relative address>

JZ <relative address>

JNZ <relative address>

2. Short Absolute Jump
e Inthis case only 11bits of the absolute jump address are needed. The absolute jump address
is calculated in the following manner.
¢ In 8051, 64 kbyte of program memory space is divided into 32 pages of 2 kbyte each.
The hexadecimal addresses of the pages are given as follows:-
Page (Hex) Address (Hex)

00 0000 - 07FF
01 0800 - OFFF
02 1000 - 17FF
03 1800 - 1FFF
1E F000 - F7FF
1F F800 - FFFF

e It can be seen that the upper 5bits of the program counter (PC) hold the page number and the
lower 11bits of the PC hold the address within that page.

e Thus, an absolute address is formed by taking page numbers of the instruction (from the
program counter) following the jump and attaching the specified 11bits to it to form the 16-bit
address.

Advantage:
The instruction length becomes 2 bytes.

Example of short absolute jump: -

ACALL <address 11>
AJMP <address 11>

Department of Electrical & Electronics Engineering, ATMECE, Mysuru Page 17

Microcontroller Note:BEE403| 2024-2025

3. Long Absolute Jump/Call
e Applications that need to access the entire program memory from 0000H to FFFFH use long
absolute jump.
e Since the absolute address has to be specified in the op-code, the instruction length is 3 bytes
(except for IMP @ A+DPTR). This jump is not re-locatable.
Example: -
LCALL <address 16>

LJMP <address 16>
JMP @A+DPTR

Operation: LIMP

Function: Long Jump

Syntax: LJMP code address.

Description: LIMP jumps unconditionally to the specified code address.

Another classification of jump instructions is

1. Unconditional Jump

2. Conditional Jump

1. The unconditional jump is a jump in which control is transferred unconditionally to the target

location.

a. LIMP (long jump). This is a 3-byte instruction. First byte is the op-code and second and third bytes
represent the 16-bit target address which is any memory location from 0000 to FFFFH eg: LIMP
3000H

b. AJMP: this causes unconditional branch to the indicated address, by loading the 11 bit address to 0
-10 bits of the program counter. The destination must be therefore within the same 2K blocks.

c. SIMP (short jump). This is a 2-byte instruction. First byte is the op-code and second byte is the
relative target address, 00 to FFH (forward +127 and backward -128 bytes from the current PC value).
To calculate the target address of a short jump, the second byte is added to the PC value which is

address of the instruction immediately below the jump.

Department of Electrical & Electronics Engineering, ATMECE, Mysuru Page 18

Microcontroller Note:BEE403| 2024-2025

2. Conditional Jump instructions.

JBC
JNB
JB
JNC
jC

CJNE reg,#data
CJNE A,byte

DJNZ
JNZ
JZ

Jump if bit = 1 and clear bit

Jump if bit = 0

Jump ifbit = 1

Jump if CY = 0

Jump if CY = 1

Jump if byte # #data

Jump if A # byte
Decrement and Jump if A # 0
Jump ifA#0
Jump ifA =0

All conditional jumps are short jumps.

Operation: JNC
Function: Jump if Carry Not Set
Syntax: JNC reladdr

Description: JNC branches to the address indicated by reladdr if the carry bit is not set. If the carry bit

is set program execution continues with the instruction following the JNB instruction.

Operation: JC
Function: Jump if Carry Set
Syntax: JC reladdr

Description: JC will branch to the address indicated by reladdr if the Carry Bit is set. If the Carry Bit is

not set program execution continues with the instruction following the JC instruction.

Operation: JNB
Function: Jump if Bit Not Set
Syntax: JNB bit addr, reladdr

Description: JNB will branch to the address indicated by reladdress if the indicated bit is not set. If the

bit is set program execution continues with the instruction following the JNB instruction.

Operation: JB
Function: Jump if Bit Set
Syntax: JB bit addr, reladdr

Description: JB branches to the address indicated by reladdr if the bit indicated by bit addr is set. If the

bit is not set program execution continues with the instruction following the JB instruction.

Department of Electrical & Electronics Engineering, ATMECE, Mysuru

Page 19

Microcontroller Note:BEE403| 2024-2025

Operation: JNZ

Function: Jump if Accumulator Not Zero

Syntax: JNZ reladdr

Description: JNZ will branch to the address indicated by reladdr if the Accumulator contains any

value except 0. If the value of the Accumulator is zero program execution continues with the
instruction following the JNZ instruction.

Operation: JZ

Function: Jump if Accumulator Zero

Syntax: JNZ reladdr

Description: JZ branches to the address indicated by reladdr if the Accumulator contains the value 0. If

the value of the Accumulator is non-zero program execution continues with the instruction

following the JNZ instruction.

Operation: DINZ

Function: Decrement and Jump if Not Zero

Syntax: DINZ register, reladdr

Description: DIJNZ decrements the value of register by 1. If the initial value of register is 0,
decrementing the value will cause it to reset to 255 (OXFF Hex). If the new value of register is not 0 the
program will branch to the address indicated by relative addr. If the new value of register is 0

program flow continues with the instruction following the DIJNZ instruction.

Operation: CINE

Function: Compare and Jump If Not Equal

Syntax: CINE operandl,operand2,reladdr

Description: CINE compares the value of operandl and operand2 and branches to the indicated

relative address if operandl and operand2 are not equal. If the two operands are equal program flow
continues with the instruction following the CINE instruction. The Carry bit (C) is set if operandl is less

than operand2, otherwise it is cleared.

Department of Electrical & Electronics Engineering, ATMECE, Mysuru Page 20

Microcontroller Note:BEE403 | 2024-2025

Memaory Address (HEX)

FFFF LADD Limit

Mext Page

\

Tsaooumt | B
|
PC + 127d | Relativelimit |—— o :
INC)
| |
P Mext Opcode — JBe_ ——.—-+jfl —_ LMP
Jump Opcode CINE | |
| omz g i
| 1z Jumps | I
I JNZ I I
PC - 1284 Relative Limit ——] SIMP I I
| |
- I I
This Page |— _SADDLimit f—————— d |
|
/ |
/ |
I
|
000 wootmit (0 1

Fig: 2.4: Jump Instruction Ranges

2.5. 1 Bit level jump instructions

e Bit level JUMP instructions will check the conditions of the bit and if condition is true, it
jumps to the address specified in the instruction.

e All the bit jumps are relative jumps.

Department of Electrical & Electronics Engineering, ATMECE, Mysuru Page 21

Microcontroller Note:BEE403 | 2024-2025

Bit Jumps

Bit jumps all operate according to the status of the carry flag in the PSW or the status of
any bit-addressable location. All bit jumps are relative to the program counter.
Jump instructions that test for bit conditions are shown in the following table:

Mnemonic Operation

JC radd Jump relative if the carry flag is set to |
JMNC radd Jump relative if the carry flag is reset to 0
JB b,radd Jump relative if addressable bit is set to |

JNB b,radd Jump relative if addressable bit is reset to 0
JBC b,radd Jump relative if addressable bit is set, and clear the addressable bit to 0

Note that no flags are affected unless the bit in JBC is a flag bit in the PSW. When the bit
used in a JBC instruction is a port bit, the SFR latch for that port is read, tested, and

altered.

Byte Jumps

Byte jumps—jump instructions that test bytes of data—behave as bit jumps. If the condi-
tion that is tested is frue, the jump is taken; if the condition is false the instruction after
the jump is executed. All byte jumps are relative to the program counter.

The following table lists examples of byte jumps:

Mnemonic Operation

CINE A add radd Compare the contents of the A register with the contents of the
direct address; if they are not equal, then jump to the relative
address; set the carry flag to 1 if A is Jess than the contents
of the direct address; otherwise, set the carry flag to 0

CINE A, #n,radd Compare the contents of the A register with the immediate
number n; if they are not equal, then jump to the relative
address; set the carry flag to 1 if A is less than the number,
otherwise, set the carry flag to 0

CINE Rn,#n,radd Compare the contents of register Rn with the immediate
number n; if they are nor equal, then jump to the relative
address; set the carry flag to 1 if Rn is less than the number;
otherwise, set the carry flag to 0

CINE @Rp,#n,radd Compare the contents of the address contained in register Rp
to the number n; if they are nor equal, then jump to the
relative address; set the carry flag to 1 if the contents of the
address in Rp are less than the number; otherwise, set the
carry flag to 0

Department of Electrical & Electronics Engineering, ATMECE, Mysuru Page 22

Microcontroller Note:BEE403 | 2024-2025

2.5.2 Subroutine CALL and RETURN Instructions

Subroutines are handled by CALL and RET instructions There are two types of CALL instructions

Call instructions may be included explicitly in the program as mnemonics or implicitly included using
hardware interrupts.

Subroutine: Subroutine is a standalone program or small program in a main program

“A Subroutine is a program that may be used many times in the execution of a larger program.The
subroutine could be written into the body of the main program everywhere it is needed resulting in the

fastest possible code execution.”

1. LCALL address (16 bit)
e This is long call instruction which unconditionally calls the subroutine located at the
indicated 16 bit address.
e This is a 3 byte instruction.

e The LCALL instruction works as follows.

a. During execution of LCALL, [PC] = [PC]+3; (if address where LCALL resides is say, 0x3254;
during execution of this instruction [PC] = 3254h + 3h = 3257h

[SP]=[SP]+1; (if SP contains default value 07, then SP increments and [SP]=08

[[SP]] = [PC7.0]; (lower byte of PC content ie., 57 will be stored in memory location 08.
[SP]=[SP]+1; (SP increments again and [SP]=09)

[[SP]] = [PCis.g]; (higher byte of PC content ie., 32 will be stored in memory location 09.

L= i =2

With these the address (0x3254) which was in PC is stored in stack.
f. [PC]= address (16 bit); the new address of subroutine is loaded to PC. No flags are affected.

2. ACALL address (11 bit)
This is absolute call instruction which unconditionally calls the subroutine located at the indicated 11

bit address. This is a 2 byte instruction. The SCALL instruction works as follows.

a. During execution of SCALL, [PC] = [PC]+2; (if address where LCALL resides is say, 0x8549;
during execution of this instruction [PC] = 8549h + 2h = 854Bh

[SP]=[SP]+1; (if SP contains default value 07, then SP increments and [SP]=08

[[SP]] = [PC7-0]; (lower byte of PC content ie., 4B will be stored in memory location 08.
[SP]=|SP]+1; (SP increments again and [SP]=09)

[[SP]] = [PCis-g]; (higher byte of PC content ie., 85 will be stored in memory location 09.

T aen o

With these the address (0x854B) which was in PC is stored in stack.

f. [PCip-0]=address (11 bit); the new address of subroutine is loaded to PC. No flags are
affected.

Department of Electrical & Electronics Engineering, ATMECE, Mysuru Page 23

Microcontroller Note:BEE403 | 2024-2025

RET instruction
RET instruction pops top two contents from the stack and load it to PC.
g. [PCiss] =[[SP]] ;content of current top of the stack will be moved to higher byte of PC.
h. [SP]=[SP]-1; (SP decrements)
i. [PCs-0] = [[SP]] ;content of bottom of the stack will be moved to lower byte of PC.
j- [SP]=[SP]-1; (SP decrements again)

2.5.3 Calls and Stack

1. A call, hardware or software when initiated, causes a jump to the address where the
subroutine is located.

2. At the end of the subroutine the program resumes operation at the opcode address
immediately following the call.
Call can be located anywhere in the program space and used many times.

4. The stack area of internal RAM is used to automatically store the address, called the return
address, of the instruction found immediately after the call.

5. Stack and stack pointer are often used to designate the top of the stack area in RAM that is
pointed to by the stack pointer

Program Counter
PCH PCL
! I
- I
1 1 f o | StackArea |sp l RET RETI
PCH PCL
Program Counter
ACALL LCALL
interrupt

Internal RAM

Fig 2.5 : Storing and Retrieving Return address

1. A call opcode occurs in the program software, or an interrupt is generated in the
hardware circuitry.

2. The return address of the next instruction after the call instruction or interrupt is
found in the program counter.

3. The return address bytes are pushed on the stack, fow byte firsr.

4. The stack pointer is incremented for cach push on the stack.

5. The subroutine address is placed in the program counter.

6. The subroutine is executed.

7. A RET (return) opcode is encountered at the end of the subroutine.

Department of Electrical & Electronics Engineering, ATMECE, Mysuru Page 24

Microcontroller Note:BEE403| 2024-2025

8. Two pop operations restore the return address to the PC from the stack area in

internal RAM.

9. The stack pointer is decremented for each address byte pop.

2.6 1 O port programming

1.

I/O Port pins, Ports and Circuits: One major feature of a microcontroller is versatility
built into the I/O circuits that connect the 8051 to the outside world.

Out of 40 pins 24 pins may each be used for one of two entirely different functions
yielding a total pin configuration of 64.

But the port pins have been multiplexed to perform different functions to make 8051
as40PinIC

The port pin circuitry is as shown below

Port-0

Read Vee

Latch
)/\ Address Control
Data

PO.x
Pin

Int
Bus D pox Q o(1)

Write Latch \0_—“:

latch Q a))

}l

Read
pin

Fig. 2. 6 : Port -0
Port -0 has 8 pins (P0.0-P0.7).The structure of a Port-0 pin is shown in Fig.2.6 ..Port-
0 can be configured as a normal bidirectional I/O port or it can be used for
address/data interfacing for accessing external memory.
When control is '1', the port is used for address/data interfacing. When the control is '0’,
the port can be used as a normal bidirectional 1/O port. Let us assume that control is '0'".
When the port is used as an input port, '1" is written to the latch. In this situation both the
output MOSFETSs are 'off'. Hence the output pin floats. This high impedance pin can be
pulled up or low by an external source.
When the port is used as an output port, a ‘1" written to the latch again turns 'off' both the
output MOSFETs and causes the output pin to float. An external pull-up is
required to output a '1".

Department of Electrical & Electronics Engineering, ATMECE, Mysuru Page 25

Microcontroller Note:BEE403| 2024-2025

5. But when '0' is written to the latch, the pin is pulled down by the lower MOSFET.
Hence the output becomes zero. When the control is '1', address/data bus controls the
output driver MOSFETS. If the address/data bus (internal) is '0', the upper MOSFET is
'off' and the lower MOSFET is 'on'.

6. The output becomes '0". If the address/data bus is '1', the upper transistor is 'on' and
the lower transistor is 'off".

7. Hence the output is 1. Hence for normal address/data interfacing (for external
memory access) no pull-up resistors are required. Port-0 latch is written to with 1's

when used for external memory access

Port-1
Q.*Z'nl’

o
intemal

Pull-up

|
1 P11 x

Inema

Bus P1.x

Laich
Writs > - T

latch -

N

<
Lead
Fig 2.7 : Port 1 Structure

1. Port-1 has 8 pins (P1.1-P1.7) .The structure of a port-1 pin is shown in fig Fig.2.7

2. Port-1 does not have any alternate function i.e. it is dedicated solely for 1/O
interfacing. When used as output port, the pin is pulled up or down through internal pull-
up.

3. To use port- 1 as input port, ‘1" has to be written to the latch. In this input mode when
'1' is written to the pin by the external device then it reads fine.

4. But when '0'" is written to the pin by the external device then the external source must
sink current due to internal pull-up. If the external device is not able to sink the
current the pin voltage may rise, leading to a possible wrong reading.

Department of Electrical & Electronics Engineering, ATMECE, Mysuru Page 26

Microcontroller Note:BEE403 | 2024-2025

Port-2
Read Addvass Control Vel
Latch
\]J Internal
Sull-up
P2x
Intemal T Pin
Bus D prx Q Vo e
Write Latch \ l>,_
latch | N

%

Fead
din

Fig 2.8: Port 2 Structure

1. Port-2 has 8-pins (P2.0-P2.7) . The structure of a port-2 pin is shown in Fig 2.8

2. Port-2 is used for higher external address byte or a normal input/output port. The 1/0
operation is similar to Port-1.

3. Port-2 latch remains stable when Port-2 pin are used for external memory access.
Here again due to internal pull-up there is limited current driving capability.

Port-3

Raad Alernae
Latch Ouput function

Intarnal

Pull-up

VA

P3x
Pin

Internal)
Bus D s03x @
Write Latch ,_1
latcn il |

=z

< 1
T

ARBMIE
Input lunction

Fig 2.9: Port 3 Structure

1. Each pin of Port-3 can be individually programmed for I/O operation or for alternate
function. The alternate function can be activated only if the corresponding latch has
been written to '1".

2. To use the port as input port, '1' should be written to the latch. This port also has
internal pull-up and limited current driving capability.

3. Alternate functions of Port-3 pins —

Department of Electrical & Electronics Engineering, ATMECE, Mysuru Page 27

Microcontroller Note:BEE403| 2024-2025

P30 RxD
P31 [TxD
P32 INTO
P33 INT
P34 TO
P35S Tl
P36 WE
P37 RO

Note:

1. Port 1, 2, 3 each can drive 4 LS TTL inputs.

2. Port-0 can drive 8 LS TTL inputs in address /data mode. For digital output port, it needs
external pull-up resistors.

3. Ports-1,2and 3 pins can also be driven by open-collector or open-drain outputs.

e Each Port 3 bit can be configured either as a normal 1/O or as a special function bit.
Reading a port (port-pins) versus reading a latch.

e There is a subtle difference between reading a latch and reading the output port pin.

The status of the output port pin is sometimes dependant on the connected load.

e For instance if a port is configured as an output port and a '1' is written to the latch,
the output pin should also show '1'.

e If the output is used to drive the base of a transistor, the transistor turns 'on'. If the
port pin is read, the value will be '0" which is corresponding to the base-emitter
voltage of the transistor.

e Reading a latch: Usually the instructions that read the latch, read a value, possibly
change it, and then rewrite it to the latch. These are called "read-modify-write"
instructions.

2.6.1 Programs

1. Write a program to add the values of locations 50H and 51H and store the result in locations in 52h
and 53H.

ORG 0000H ; Set program counter 0000H

MOV A,50H ; Load the contents of Memory location 50H into A

ADD ADD A,51H ; Add the contents of memory 51H with CONTENTS A

MOV 52H,A ; Save the LS byte of the result in 52H

MOV A, #00 ; Load 00H into A

ADDC A, #00 ; Add the immediate data and carry to A

MOV 53H,A ; Save the MS byte of the result in location 53h

END

Department of Electrical & Electronics Engineering, ATMECE, Mysuru Page 28

Microcontroller Note:BEE403| 2024-2025

2. Write a program to subtract a 16 bit number stored at locations 51H-52H from 55H-56H and store the
result in locations 40H and 41H. Assume that the least significant byte of data or the result is stored

in low address. If the result is positive, then store 00H, else store 01H in 42H.

ORG 0000H ; Set program counter 0000H

MOV A, 55H ; Load the contents of memory location 55 into A
CLR C; Clear the borrow flag

SUBB A,51H ; Sub the contents of memory 51H from contents of A
MOV 40H, A ; Save the LSByte of the result in location 40H

MOV A, 56H ; Load the contents of memory location 56H into A
SUBB A, 52H ; Subtract the content of memory 52H from the content A
MOV 41H, A; Save the MSbyte of the result in location 41.

MOV A, #00 ; Load 005 into A

ADDC A, #00 ; Add the immediate data and the carry flag to A
MOV 42H, A ; If result is positive, store0O0H, else store OIH in 42H
END

3. Write a program to add two 16 bit numbers stored at locations 51H-52H and 55H-56H and store the
result in locations 40H, 41H and 42H. Assume that the least significant byte of data and the result is

stored in low address and the most significant byte of data or the result is stored in high address.

ORG 0000H ; Set program counter 0000H

MOV A,51H ; Load the contents of memory location 51H into A
ADD A,55H ; Add the contents of 55H with contents of A
MOV 40H,A ; Save the LS byte of the result in location 40H
MOV A,52H ; Load the contents of 52H into A

ADDC A,56H ; Add the contents of 56H and CY flag with A
MOV 41H,A ; Save the second byte of the result in 41H
MOV A #00 ; Load O0H into A

ADDC A#00 ; Add the immediate data 00H and CY to A
MOV 42H,A ; Save the MS byte of the result in location 42H
END

Department of Electrical & Electronics Engineering, ATMECE, Mysuru Page 29

Microcontroller Note:BEE403| 2024-2025

4. Write a program to add two Binary Coded Decimal (BCD) numbers stored at locations 60H and
61H and store the result in BCD at memory locations 52H and 53H. Assume that the least significant

byte of the result is stored in low address.

ORG 0000H ; Set program counter 0000H

MOV A,60H ; Load the contents of memory location 6.0.H into A

ADD A,61H ; Add the contents of memory location 61H with contents of A
DA A ; Decimal adjustment of the sum in A

MOV 52H, A ; Save the least significant byte of the result in location 52H
MOV A #00 ; Load 00H into .A
ADDC A #00H ; Add the immediate data and the contents of carry flag to A
MOV 53H,A ; Save the most significant byte of the result in location 53:,
END

5. Write a program to clear 10 RAM locations starting at RAM address 1000H.

ORG 0000H ;Set program counter 0000H

MOV DPTR, #1000H ;Copy address 1000H to DPTR CLR A ;
Clear A MOV R6, #0AH ;Load OAH to R6 again:

MOVX @DPTR,A ;Clear RAM location pointed by DPTR
INC DPTR ;Increment DPTR

DJNZ R6, again ;Loop until counter R6=0

END

6. Write a program to compute 1 + 2 + 3 + N (say N=15) and save the sum at70H

ORG 0000H ; Set program counter 0000H N EQU 15 MOV RO0,#00 ;
Clear RO

CLR A ; Clear A

again: INC RO ; Increment RO

ADD A, RO ; Add the contents of RO with A

CJNE RO,#N,again ; Loop until counter, RO, N

MOV 70H,A ; Save the result in location 70H

END

Department of Electrical & Electronics Engineering, ATMECE, Mysuru Page 30

Microcontroller Note:BEE403| 2024-2025

7. Write a program to multiply two 8 bit numbers stored at locations 70H and 71H and store the result at
memory locations 52H and 53H. Assume that the least significant byte of the result is stored in low
address.

ORG 0000H ; Set program counter 0000H

MOV A, 70H ; Load the contents of memory location 70h into A

MOV B, 71H ; Load the contents of memory location 71H into B

MUL AB ; Perform multiplication

MOV 52H,A ; Save the least significant byte of the result in location 52H

MOV 53H,B ; Save the most significant byte of the result in location 53

END

Outcomes

At the end of the Module, the students will be able to:

e CO1l: Interpret the architectural features of 8051 microcontroller and its peripherals, Memory
organization, memory interfacing and looping instructions. (L4) MODULE 1, 2

e CO2: Develop 8051 programs in assembly language to solve arithmetic and logical programs. (L3)
MODULE 1, 2

Department of Electrical & Electronics Engineering, ATMECE, Mysuru Page 31

