Microcontroller Notes: BEE403 2024-2025

MODULE 3: 8051 Programming in C

Structure

3a)
3.1 Data types and time delay in 8051C
3.2 10 programming in 8051C
3.3 Logic operations in 8051 C
3.4 Data conversion program in 8051 C
3.5 Accessing code ROM space in 8051C
3.6 Data serialization using 8051C

3 b) 8051 Timer programming in Assembly and C:
3.7 Programming 8051 timers
3.8 Counter programming

3.9 Programming timers 0 and 1 in 8051 C

Objectives

e To explain in detail the execution of 8051 C language
e To explain develop 8051C programs for time delay

Department of Electrical & Electronics Engineering, ATMECE, Mysuru Page 1

Microcontroller Notes:BEE403| 2024-2025

3.1 Data types in 8051C

Why program the 8051 in C?

Compilers produce hex files that we download into the ROM of the microcontroller. The size
of the hex file produced by the compiler is one of the main concerns of microcontroller
programmers, for two reasons:

1. Microcontrollers have limited on-chip ROM.
2. The code space for the 8051 is limited to 64K bytes.
Following are some of the major reasons for writing programs in C instead of Assembly:
1. Itis easier and less time consuming to write in C than Assembly.
2. Cis easier to modify and update.
3. You can use code available in function libraries.

4. C code is portable to other microcontrollers with little or no modification.

C data types for the 8051

Since one of the goals of 8051 C programmers is to create smaller hex files, it is worthwhile
to re-examine C data types for 8051 C. In other words, a good understanding of C data types
for the 8051 can help programmers to create smaller hex files. In this section we focus on the
specific C data types that are most useful and widely used for the 8051 microcontroller.

1. Unsigned char

A. Since the 8051 is an 8-bit microcontroller, the character data type is the most natural
choice for many applications. The unsigned char is an 8-bit data type that takes a
value in the range of 0 — 255 (00 — FFH). It is one of the most widely used data types for
the 8051. In many situations, such as setting a counter value.

B. Where there is no need for signed data we should use the unsigned char instead of the
signed char. Remember that C compilers use the signed char as the default if we do not
put the keyword unsigned in front of the char (see Example 1-1). We can also use the

unsigned char data type for a string of ASCII characters, including extended

Department of Electrical & Electronics Engineering, ATMECE, Mysuru Page 2

Microcontroller Notes:BEE403| 2024-2025

ASCII characters. Example 1-2 shows a string of ASCII characters. See Example 1-3
for toggling ports.

C. Indeclaring variables, we must pay careful attention to the size of the data and try to use
unsigned char instead of int if possible. Because the 8051 has a limited number of
registers and data RAM locations, using the int in place of the char data type can lead to
a larger size hex file. Such a misuse of the data types in compilers such as

Microsoft Visual C++ for x86 IBM PCs is not a significant issue.

Example 1-1
Write an 8051 C program to send values 00 - FF to port P1.
Solution:
#include <reg%l.h>

void main(void)

{

unsigned char z;
for(z=0;2<=255;2++)
Pl=z;

Run the above program on your simulator to see how P1 displays values 00 - FFH in
binary.

Example 1-2

Write an 8051 C program to send hex values for ASCII characters of 0,1,2,3,4,5,A,B,C

and D to port P1.

Solution

#include<reg51.h>

void main (void)

{

Unsigned char mynum|[] =“0,1,2,3,4,5,A,B,C,D”;

Unsigned char z;

For(z=0;z<=10;z++)

P1=mynum(z);

b

Department of Electrical & Electronics Engineering, ATMECE, Mysuru Page 3

Microcontroller Notes:BEE403| 2024-2025

Example 1-3

Write an 8051 C program to toggle all the bits of PI continuously.

Solution:
/l Toggle PI forever
include <reg51.h>

void main(void)

{
for{;:)
{
Pl=0x55;
Pl=0xAA;
}
}

2. Signed char

//repeat forever

J/0x indicates the data is in hex {binary)

The signed char is an 8-bit data type that uses the most significant bit (D7 of D7 — DO) to

represent the — or + value. As a result, we have only 7 bits for the magnitude of the signed

number, giving us values from -128 to +127. In situations where + and — are needed to

represent a given quantity such as temperature, the use of the signed char data type is a must.

Again notice that if we do not use the keyword unsigned, the default is the signed value. For

that reason we should stick with the unsigned char unless the data needs to be represented as

signed numbers.

Example 1-4

Write an 8051 C program to send values of -4 to +4 to port P1.

Solution:
//sign numbers

#include <regqSl.h>

volid maini{void)
{

LY

char mynum{)= .+7,-1,+2,-2,+3,-3,+4,-4};
unsigned char z;
fori(z=0;z<=8;z++)

Pi=mynum [z];

Department of Electrical & Electronics Engineering, ATMECE, Mysuru Page 4

Microcontroller Notes:BEE403| 2024-2025

3. Unsigned int

1. The unsigned int is a 16-bit data type that takes a value in the range of 0 to 65535
(0000 — FFFFH). In the 8051, unsigned int is used to define 16-bit variables such as
memory addresses. It is also used to set counter values of more than 256.

2. Since the 8051 is an 8-bit microcontroller and the int data type takes two bytes of
RAM, we must not use the int data type unless we have to.

3. Since registers and memory accesses are in 8-bit chunks, the misuse of int variables
will result in a larger hex file. Such misuse is not a big deal in PCs with 256
megabytes of memory, 32-bit Pentium registers and memory accesses, and a bus
speed of 133 MHz.

4. However, for 8051 programming do not use unsigned int in places where unsigned
char will do the job. Of course the compiler will not generate an error for this misuse,
but the overhead in hex file size is noticeable.

5. Also in situations where there is no need for signed data (such as setting counter
values), we should use unsigned int instead of signed int.

6. This gives a much wider range for data declaration. Again, remember that the C

compiler uses signed int as the default if we do not use the keyword unsigned.

4. Signed int

Signed int is a 16-bit data type that uses the most significant bit (015 of D15 — DO) to
represent the — or + value. As a result, we have only 15 bits for the magnitude of the number, or
values from -32,768 to +32,767.

5. Shit (single bit)
The sbit keyword is a widely used 8051 C data type designed specifically to access single-bit
addressable registers. It allows access to the single bits of the SFR registers. We can use sbit

to access the individual bits of the ports as shown in Example 1-5.

Example 1-5
Write an 8051 C program to toggle bit DO of the port P1 (P1.0) 50,000 times.

Department of Electrical & Electronics Engineering, ATMECE, Mysuru Page 5

Microcontroller Notes:BEE403| 2024-2025

Solution:
#ineclude <regSl.hs
sbit MYBIT = P170; //notice that sbit is
[//declared ocutside of main
void main{void)
{

unsigned int =z;
for {(z=0; z<=50000; zZ++)
{
MYBIT = 0;
MYBIT = 1;
}

Bit and sfr

The bit data type allows access to single bits of bit-addressable memory spaces 20 —
2FH. Notice that while the sbit data type is used for bit-addressable SFRs, the bit data type is
used for the bit-addressable section of RAM space 20 -2FH. To access the byte-size SFR
registers, we use the sfr data type. We will see the use of sbit, bit, and sfr data types in the next
section.

Table 3.1:Some Widely Used Data Types for 8051 C

Data Type Size in Bits _Data Range/Usage

unsiged char 8-bit 0 to 255

{signed) char 8-bit —128 to +127

unsigned int 16-bit 0 to 65535

(signd) int 16-bit -32,768 10 +32,767

shit 1-bit SFR bit-addressable only

bit 1-bit RAM bit-addressable only
sfr B-bit RAM addresses 80 - FFH only

3.1.1 Time delay in C

There are two ways to create a time delay in 8051 C:
1. Using a simple for loop
2. Using the 8051 timers
In either case, when we write a time delay we must use the oscilloscope to measure the

duration of our time delay. Next, we use the for loop to create time delays.

Department of Electrical & Electronics Engineering, ATMECE, Mysuru Page 6

Microcontroller Notes:BEE403| 2024-2025

In creating a time delay using a for loop, we must be mindful of three factors that can affect

the accuracy of the delay.

1. The 8051 design. Since the original 8051 was designed in 1980, both the fields
of 1C technology and microprocessor architectural design have seen great
advancements.The number of machine cycles and the
number of clock periods per machine cycle vary among different versions of
the 8051/52 microcontroller.

2. While the original 8051/52 design used 12 clock periods per machine cycle, many of
the newer generations of the 8051 use fewer clocks per machine cycle.

For example, the DS5000 uses 4 clock periods per machine cycle, while the
DS89C420 uses only one clock per machine cycle.

3. The crystal frequency connected to the XI — X2 input pins. The duration of the
clock period for the machine cycle is a function of this crystal frequency.

4. Compiler choice. The third factor that affects the time delay is the compiler
used to compile the C program. When we program in Assembly language, we
can control the exact instructions and their sequences used in the delay sub
routine. In the case of C programs, it is the C compiler that converts the C
statements and functions to Assembly language instructions. As a result, dif
ferent compilers produce different code. In other words, if we compile a given
8051 C programs with different compilers, each compiler produces different

hex code.

Example 1-6

Write an 8051 C program to toggle bits of Pl continuously forever with some delay.
Solution:

/I Toggle PI forever with some delay in between “on” and “off”,

include <reg51.h>

Department of Electrical & Electronics Engineering, ATMECE, Mysuru Page 7

Microcontroller Notes:BEE403| 2024-2025

vold main (void}

1
L

unsigned int x;

fori;;:) [/ frepeat forever
{

Pl=0x55;
for(x=0;x<40000;x++}; //delay size unknown
Fl=0xAk;
for{x=0;x<40000;x++);

)

I

Example 1-7

Write an 8051 C program to toggle the bits of PI ports continuously with a 250 ms delay.
Solution:

The program below is tested for the DS89C420 with XTAL = 11.0592 MHz.

#include <regSl.h-=

void MSDelay{unsigned int);

void main(void)

{
while{l) J/repeat forever
{

Bl=0x55;
MEDelay (250) ;
Pl=0xaA;
MSDelay {250} ;

w224 MSDelay(unsigned int itime)
unsigned int i, J;

fori{i=0;icitime;i++)
for{3=0;3<1275;3++);

Example 1-8

Department of Electrical & Electronics Engineering, ATMECE, Mysuru Page 8

Microcontroller Notes:BEE403| 2024-2025

Write a 8051 C program to toggle all the bits of PO and P2 continuously with a 250 ms
delay.

Solution:

//This program is tested for the DS89C420 with XTAL = 11.0592 MHz
#include <regSl.h>

void MSDelay({unsigned int);

void main{void)

{
while (1) {//ancther way to do it forever
{
FO=0x55; -
P2=0x55;
MSDelay (250} ;
FO=0xAn;
F2=0xAX;
MEDelay (250} ;
}
}
void MSDelay(unsigned int itime)
{

unsigned int i, 1§;
for{i=0;icitime;i++)
fori{j=0;3<1275;j++);

3.2 10 programming in 8051C

Byte size 1/0
As we stated in Chapter 4, ports PO — P3 are byte-accessible. We use the PO — P3 labels as

defined in the 8051/52 C header file.

Example 1-9
LEDs are connected to bits Pl and P2. Write an 8051 C program that shows the count from 0

to FFH (0000 0000 to 1111 1111 in binary) on the LEDs.

Solution:

Department of Electrical & Electronics Engineering, ATMECE, Mysuru Page 9

Microcontroller Notes:BEE403| 2024-2025

#include <regSl.hs

#define LED B2 //notice how we can define P2
void maini{veid)
{
Pl=00; ffclear P1
LED=0; /fclear P2
for(;;) //repeat forever
{
Fl++; //increment P1
LED++; //increment P2
1
}
Example 1-10

Write an 8051 C program to get a byte of data from PI, wait 1/2 second, and then send it to
P2.

Solution:

#include <regS5l.h>
vold MSDelay{unsigned int};
void main{void)

{

unsigned char mybyte:-

P1=0xFF; //make Pl an input port
while (1)
{
mybyte=Pl; //get a byte from P1
MSDelay (500} ;
P2=mvhyte; //send it to P2

R

i

wzid MSDelay(unsigned int itime)
- ed int 1, j;

=0ricitime;i++])
i3=0;3<1275;]++);

b1 l.il'

L PO

=3
-
CIt

Example 1-11
Write an 8051 C program to get a byte of data from PO. If it is less than 100, send it to
PI; otherwise, send it to P2.

Solution:

Department of Electrical & Electronics Engineering, ATMECE, Mysuru Page 10

Microcontroller Notes:BEE403| 2024-2025

#include <regSl1.h>
volid main{veid)

{
unsigned char mybvte;
PO=0xFF; //make PO an input port
while(l)
{
mybyte=F0; JS/get a byce from PO
if (mybyte<100)
Pl=mybyte; //send it to Pl if less than 100
else
F2=mybyte; //send it to P2 if more than 100
b
}

3.2.1 Bit-addressable 1/0 programming

1. The 1/O ports of PO — P3 are bit-addressable. We can access a single bit without
disturbing the rest of the port. We use the sbit data type to access a single bit of PO —

P3.0ne way to do that is to use the Px"y format where x is the port 0, 1, 2, or 3,

and y is the bit 0 — 7 of that port.

"7 indicates P1.7. When using this method, you need to include the
2. For example, P1

reg51 .h file. Study the next few examples to become familiar with the syntax.

Example 1-12

Write an 8051 C program to toggle only bit P2.4 continuously without disturbing the rest of
the bits of P2.

Solution:

//toggling an individal bit
#include <regSli.h>

sbit mybit = P2%4; //notice the way single bit is declared
void main{void)
{
while({1l)
{
mybit=1; J/turn on P2.4
mybit=0; J/turn off P2.4
}
}

Department of Electrical & Electronics Engineering, ATMECE, Mysuru Page 11

Microcontroller Notes:BEE403| 2024-2025

Example 1-13
Write an 8051 C program to monitor bit P1.5. If it is high, send 55H to PO; otherwise,

sendAAHtoP2.
Solution:

#include =regS5l.h=>
shit mybit = P1"5; J/notice the way single bit is declared
void main(void)
{
mybit=1; //make mybit an input
while{l)
{
if (mybit==1)
PO=0x55;
else
P2=0%Ak;

Example 1-14
A door sensor is connected to the P 1.1 pin, and a buzzer is connected to P1.7. Write an 8051

C program to monitor the door sensor, and when it opens, sound the buzzer. You can sound
the buzzer by sending a square wave of a few hundred Hz.

Solution:

ginclude <regSl.h>
volid MSDelay(unsigned int};
sbit Dsensor = P1"1; //notice the way single bit is defined
sbit Buzzer = P177;
volid main(wvoid)
{
Dsensor=1; //make P1l.1 an input
while (Dsensor==1)
{
buzzer=0;
MSDelay (200} ;
buzzer=1;
MEDelay {200} ;

vz:3 MSDelay({unsigned int itime)

urnsigned int i, j;
fovri=0;icitime;i+4})
for{j=0;3<1275;9++);

Department of Electrical & Electronics Engineering, ATMECE, Mysuru Page 12

Microcontroller Notes:BEE403| 2024-2025

Example 1-15

The data pins of an LCD are connected to PI. The information is latched into the LCD
whenever its Enable pin goes from high to low. Write an 8051 C program to send “The Earth
is but One Country” to this LCD.

Solution:

#include <regsl.hs
#define LCDData P1 J/LCDData declaration
sbit En=P2"0; //the enable pin
void main(void)
{
ungigned char message[]+ "The Earth is but One Country";
unsigned char z;

for(z=0;Z2<28;2++) //zend all the 28 characters
{
LCDData=message [z] ;
En=1l; /fa high-
En=0; f//-to-low pulse to latch the LCD data
}

3.2.2 Accessing SFR addresses 80 — FFH

Another way to access the SFR RAM space 80 — FFH is to use the sfr data type. We can also
access a single bit of any SFR if we specify the bit address as shown in Example 1-16. Both the
bit and byte addresses for the PO — P3 ports are given in Table 1.2. Notice in Examples 1- 16,
that there is no “include <reg51.h> statement. This allows us to access any byte of the SFR
RAM space 80 — FFH. This is a method widely used for the new generation of 8051
microcontrollers, and we will use it in future chapters.

Table 2: Single Bit Addresses of Ports

PO Addr P1 Addr P2 Addr P3 Addr Port’s Bit
P0.0 _ 80H P10 90H P20 AOH P30 BOH DO
P0.1 _ 8IH Pl.1_ 91H P2.1 AlH P31 BIH DI
P0.2 82H P1.2 92H P22 A2H P32 B2H D2
P03 83H P13 93H P23 A3H P33 B3H D3
P04 84H P14 94H P24 A4H P34 B4H D4
P0.5 85H P1.5 95H P25 ASH P35 BSH D5
PO.6 86H P16 96H P26 A6H P36 Bé6H D6
P07 87H P1.7 97H P27 ATH P37 BTH D7

Department of Electrical & Electronics Engineering, ATMECE, Mysuru Page 13

Microcontroller Notes:BEE403| 2024-2025

Example 1-16
Write an 8051 C program to get the status of bit P1.0, save it, and send it to P2.7 continuously.

Solution:

Write an 8051 C program to turn bit P1.5 on and off 50,000 times.
Solution:

spit MYBIT = 0x95; //another way to declare bit P1°5
void main(void)
i
unsigned int z;
fori{z=0;z<50000;2++)

1
MYBIT=1;
MYBIT=0;
}
}
Example 1-17

Write an 8051 C program to toggle all the bits of PO, P1, and P2 continuously with a
250 ms delay.’ Use the sfr keyword to declare the port addresses.

// Accessing Ports as SFRs using the sfr data type
sfr PO = 0xB0; //declaring PO using sfr data type
sfr P1 = 0x80;
sfr P2 = 0QxAQ:;
void MSDelay (unsigned int);
void main(void)
{
while (1) //do it forever
{
PO=0x55;
P1=0x55;
P2=0x55;
MSDelay (250) ; //250 ms delay
PO=0xRA;
Pl=0xARA;
P2=0x%AA;
MSDelay {250) ;

}

void MSDelay(unsigned int itime)
{
unsigned int i, j;
for{i=0;icitime;i++)
for{(j=0;3<1275;j++);

Department of Electrical & Electronics Engineering, ATMECE, Mysuru Page 14

Microcontroller Notes:BEE403| 2024-2025

Using bit data type for bit-addressable RAM
The sbit data type is used for bit-addressable SFR registers only. Sometimes we need to store
some data in a bit-addressable section of the data RAM space 20 — 2FH. To do that, we use

the bit data type, as shown in Example 1-18.

Example 1-18
Write an 8051 C program to get the status of bit PL.O, save it, and send it to P2.7
continuously.

Solution:

#include <reg5l.h>

gsbit inbit = P170;

gbit outbit = P2°7; //sbit is used to declare SFR bits

bit membit; //notice we use bit to declare
//bit-addressable memory

void main{void)

{
while (1)
{
membit=inbit; //get a bit from P1.0
cutbit=membit; //and send it to P2.7
i
}

3.3 Logic operations in 8051 C

Bit-wise operators in C
1. While every C programmer is familiar with the logical operators AND (&&), OR (]|),
and NOT (1), many C programmers are less familiar with the bitwise operators AND
(&), OR (]), EX-OR ("), Inverter (~), Shift Right (»), and Shift Left («).
2. These bit-wise operators are widely used in software engineering for embedded
systems and control; consequently, understanding and mastery of them are critical in

microprocessor-based system design and interfacing. See Table 1-3.

Table 1-3: Bit-wise Logic Operators for C

Department of Electrical & Electronics Engineering, ATMECE, Mysuru Page 15

Microcontroller Notes:BEE403| 2024-2025

AND OR EX-OR Inverter
A B A&B - AlB A"B Y=-B
0 0 0 0 0 I
0 1 {)] | 0
| 0 0 1 |
1 1] 1 0
The following shows some examples using the C logical operators.
1. 0x35 & 0x0F = 0x05 /* ANDing */
2, 0x04 | 0x68 = Ox6C /* ORing: %/
3. 0x54 ~ 0x78 = 0x2C /* XORing */
4. ~0x55 = OxAA /* Inverting 55H */
Example 1-19

Run the following program on your simulator and examine the results.
Solution:

#include <reg51.h> void main (void)

{

PO = 0x35 & OxOF; //ANDing

Pl = 0x04 | 0x68; //ORing

P2=0x54 * 0x78; //XORing
PO=-0x55; //inversing

Pl= Ox9A » 3; //shifting right 3 times
P2= 0x77 » 4; /[shifting right 4 times
p0= 0x6 « 4; //shifting left 4 times

Example 1-20

Write an 8051 C program to toggle all the bits of PO and P2 continuously with a 250 ms
delay. Use the inverting operator.

Solution:

The program below is tested for the DS89C420 with XTAL = 11.0592 MHz.

Department of Electrical & Electronics Engineering, ATMECE, Mysuru Page 16

Microcontroller Notes:BEE403| 2024-2025

#include <regS5l.h>
void MSDelay{unsigned int);
vold main(void)

{
PO=0x55;
P2=0x55;
while{1)
{
PO=~F0;
P2=~P2;
MSDelay (250} ;
}
}
void MSDelay{unsigned int itime)
{

unsigned int i, j;
for(i=0;i<itime;i++}
for(j=0;j<1275;j++);

3.3.1 Bit-wise shift operation in C

There are two bit-wise shift operators in C: (1) shift right (»), and (2) shift left («).
Their format in C is as follows:

data » number of bits to be shifted right
data « number of bits to be shifted left

The following shows some examples of shift operators in C.

1. 0x9A >> 3= (x13 /* shifting right 3 times */

2. 0x77>> 4 = (x07 /* shifting right 4 times */

3. Ox6 << 4 = 0x60 /* shifting left 4 times */
Example 1-21

Write an 8051 C program to toggle all the bits of PO, PI, and P2 continuously with a 250 ms
delay. Use the Ex-OR operator.

Solution:

Department of Electrical & Electronics Engineering, ATMECE, Mysuru Page 17

Microcontroller Notes:BEE403| 2024-2025

The program below is tested for the DS89C420 with XTAL = 11.0592 MHz.
#include <regSl.h>
vold MSDelay{unsigned int);
void main{void)
{
PO=0Xx55;
Pl=0x55;
P2=0x55;
while (1)
{
PO=P0"0xFF;
P1=P1"0xFF;
P2=P2"0xFF;
MSDelay (250} ;

}

vold MSDelay{unsigned int icime)

{

unsigned int i, j;
for{i=0;i<itime;i++)
for{i=0;4<1275;3++};

Example 1-22
Write an 8051 C program to get bit P1.0 and send it to P2.7 after inverting it.

Solution:

#include <reg5l.h>

sbit inbit=P1%0;

shit outbit=P2°7; f//sbit is used declare port (SFR) bits
bit membit; //nctice this is bit-addressable memory
void main{void) :

{

while (1}
! membit=inbit; //get a bit from P1.0
suthit=~membit ; J/invert it and send it to P2.7
}
| }
Example 1-23

Write an 8051 C program to read the P1.0 and P1.1 bits and issue an ASCII character to PO

according to the following table.

Department of Electrical & Electronics Engineering, ATMECE, Mysuru Page 18

Microcontroller Notes:BEE403| 2024-2025

PL.1 P10
0
0
1
I

0 send ‘0" to PO
1 send ‘1" to PO
0 send 2" to PO
1 send *3" to PO
Solution:

#include <regsl.h>
vold maini{veoid)

{
unsigned char z;
z=P1; Jiread Pl
Z=Z&0X3; J/mask the unused bits
switchiz) J/make decision
{
case{0) :
{
FO='0"'; //issue ASCII 0
break;
}
c?seil}:
PO="1"; /fissue ASCII 1
} break;
c?se{z}:
PO='2"; //issue ASCII 2
break;
}
case(3):
{
PO='3"; J/issue BSCITI 3
break;
1
}
}

3.4 Data conversion program in 8051 C

a)ASCII numbers

On ASCII keyboards, when the key “0" is activated, “Oil 0000” (30H) is provided to
the computer. Similarly, 31H (Oil 0001) is provided for the key “1”, and so on, as shown in
Table 1-4.

Department of Electrical & Electronics Engineering, ATMECE, Mysuru Page 19

Microcontroller Notes:BEE403| 2024-2025

Table 1-4: ASCII Code for Digits 0 — 9

Kev ASCIH {hex) Binary BCD (unpacked)
0 3 011 0000 D000 (000
1 31 011 0001 Q00 (001
2 32 011 0010 (040 R0
3 33 o011 0011 (00 (011
4 34 011 0100 (RO OO
3 35 o1 ol Q00 01010
6 38 011 0110 0000 0110
7 37 011 0111 0000 al11
5 38 11 1000 D000 | Do
9 39 011 1001 0000 1001

b) Packed BCD to ASCII conversion

The RTC provides the time of day (hour, minute, second) and the date (year, month, day)
continuously, regardless of whether the power is on or off. However, this data is provided in
packed BCD. To convert packed BCD to ASCII, it must first be converted to unpacked BCD.
Then the unpacked BCD is tagged with Oil 0000 (30H). The following demonstrates
converting from packed BCD to ASCII. See also Example 7-24.

Packed BCD Unpacked BCD ASCII
QOxZ9 D02, =05 D32, 0x39
QO1l01001 oooe0010, 00001001 GOLI0010,00111001

c) ASCII to packed BCD conversion

To convert ASCII to packed BCD, it is first converted to unpacked BCD (to get rid of the 3),
and then combined to make packed BCD. For example, 4 and 7 on the keyboard give 34H
and 37H, respectively. The goal is to produce 47H or “0100 0111", which is packed BCD.

Key ASCII Onpacked BCD Packed BCD
4 34 ooooco1a0
7 37 oo000111 01000111 or 47H

After this conversion, the packed BCD numbers are processed and the result will be in
packed BCD format Chapter 16discusses the RTC chip and uses the BCD and ASCII

conversion programs shown in Examples 1-24 and 1-25.

Department of Electrical & Electronics Engineering, ATMECE, Mysuru Page 20

Microcontroller Notes:BEE403| 2024-2025

Example 1-24

Write an 8051 C program to convert packed BCD 0x29 to ASCII and display the bytes
on Pl and P2,

Solution:

#include <regSl.h=
void main{veid)

{
ungigned char x, y, z;
unsigned char mybyte = 0x29;
®x = mybyte & 0x0F; f/mask lower 4 bits
Pl = x | 0x30; //make it ASCII
y = mybyte & 0xF0; //mask upper 4 bits
Yy =y = 4; J/shift it to lower 4 bits
P2 = v | 0x30; //make it ASCII

}

Example 7-25

Write an 8051 C program to convert ASCII digits of ‘4" and ‘7" to packed BCD and dis-
play them on P1.

Solution:

#include <regSl.hs
void main (void}
{
unsigned char boedbyte;
unsigned char w='4';
unsigned char z='7';

W o= w & Ox0F:; Jimask 3
W = W << 4; //shift left to make upper BCD digit
z = z & OxOF; [imagk 3

becdbyte = w | z; //combine to make packed BCD
Pl = bcdbyte;

3.4.1 Checksum byte in ROM

1. To ensure the integrity of ROM contents, every system must perform the checksum
calculation.

2. The process of checksum will detect any corruption of the contents of ROM. One of
the causes of ROM corruption is current surge, either when the system is turned on or
during operation.

3. To ensure data integrity in ROM, the checksum process uses what is called

a checksum byte.

Department of Electrical & Electronics Engineering, ATMECE, Mysuru Page 21

Microcontroller Notes:BEE403| 2024-2025

4. The checksum byte is an extra byte that is tagged to the end of a series of bytes of
data. To calculate the checksum byte of a series of bytes of data, the following steps can
be taken.

5. Add the bytes together and drop the carries.

1. Take the 2's complement of the total sum. This is the checksum byte, which
becomes the last byte of the series.

2. To perform the checksum operation, add all the bytes, including the checksum
byte. The result must be zero. If it is not zero, one or more bytes of data have

been changed (corrupted).

Example 1-26

Assume that we have 4 bytes of hexadecimal data: 25H, 62H, 3FH, and 52H. (a) Find the
checksum byte, (b) perform the checksum operation to ensure data integrity, and (c) if the
second byte 62H has been changed to 22H, show how checksum detects the error.

Solution:

(a) Find the checksum byte.

25H
+ 62H
+ 3FH
+ 52H

118H (Dropping carry of | and taking the 2's complement, we get ESH.)

(b) Perform the checksum operation to ensure data integrity.

25H
+ 62H
+ iFH
+ 5ZH
+ EBH

200H (Dropping the carries we get (0, which means data is not cormupted)

(c) If the second byte 62H has been changed to 22H, show how checksum detects

the error.
25H

+ 22H
+ 3FH
+ G53H
+ ESH

1C0H (Dropping the carry, we get COH, which means data is corrupted.)

Department of Electrical & Electronics Engineering, ATMECE, Mysuru Page 22

Microcontroller Notes:BEE403| 2024-2025

Example 1-27
Write an 8051 C program to calculate the checksum byte for the data given in Example 7-26.

Solution:

#include =reg5l1.h=
void main(void)

{
unsigned char mydata[] = {0x25,0x62,0x3F,0x52};
unsigned char sum=0;
unsigned char x;
unsigned char chksumbyte;
for(x=0;%<d ;x++)
{
P2Z=mydata[x]; //issue each byte to P2
sum=sum+mydata [x] ; //add them together
Pl=sum; /fissue the sum to Pl
}
chksumbyte=-sum+1; //make 2's complement
Pl=chksumbyte; //show the checksum byte
}
Example 1-28

Write an 8051 C program to perform step (b) of Example 7-26. If data is good, send ASCI|I
character ‘G’ to PO. Otherwise send ‘B’ to PO.

Solution:

#include <regSl1.h>
void main({void)
{
unsigned char mydata(]={0x25,0x62,0x3F, 0x52, 0xE8};
unsigned char chksum=0;
unsigned char x:
for (x=0;xe<b x++)
chksum=chksum+mydata [x]; //add them together
if (chksum==0}

PO="'G";
else
PO='B";

Department of Electrical & Electronics Engineering, ATMECE, Mysuru Page 23

Microcontroller Notes:BEE403| 2024-2025

—3# 2 Bimary thex)todecmmatarmdASCHronversior 865+

1. The printf function is part of the standard I/O library in C and can do many things,

including converting data from binary (hex) to decimal, or vice versa. But printf takes a
lot of memory space and increases your hex file substantially. For this reason, in
systems based on the 8051 microcontroller, it is better to write your own conversion
function instead of using printf.

One of the most widely used conversions is the binary to decimal conversion. In
devices such as ADC (Analog-to-Digital Conversion) chips, the data is provided to

the microcontroller in binary.

In some RTCs, data such as time and dates are also provided in binary. In order to
display binary data we need to convert it to decimal and then to ASCII. Since the
hexadecimal format is a convenient way of representing binary data we refer to the
binary data as hex.

The binary data 00 — FFH converted to decimal will give us 000 to 255. One way to do
that is to divide it by 10 and keep the remainder. For example, 11111101 or FDH is
253 in decimal. The following is one version of an algorithm for conversion of hex

(binary) to decimal:

Quotient Remainder
FD/0A 19 3 (low digit) LSD
19/0A 2 5 (middle digit)

2 (high digit) (MSD)

Example 1-29

Write an 8051 C program to convert 11111101 (FD hex) to decimal and display the digits on
PO, PI, and P2,

Solution:

#include <regs5l.h=
void maini{void)

{

unsigned char x, binbyte, di, 4z, d3;

binbyte = 0XFD; [/binary(hex) byte

¥ = binbyte [/ 10; //fdivide by 10

dl = binbyte % 10; //find remainder (LSD)

d2 = % % 10; f/middle digit

dl3 = x / 10; //most significant digit (MSD}
PO = d1;

Pl = d2;

P2 = 4d3;

Department of Electrical & Electronics Engineering, ATMECE, Mysuru Page 24

Microcontroller Notes:BEE403| 2024-2025

3.5 Accessing code ROM space in 8051C

Using the code (program) space for predefined data is the widely used option in the 8051.
RAM data space v. code data space
In the 8051 we have three spaces in which to store data. They are as follows:

1. The 128 bytes of RAM space with address range 00 — 7FH. (In the 8052, it is
256 bytes.) We can read (from) or write (into) this RAM space directly or indirectly
using the RO and RI registers.

2. The 64K bytes of code (program) space with addresses of 0000 — FFFFH. This
64K bytes of on-chip ROM space is used for storing programs (opcodes) and
therefore is directly under the control of the program counter (PC).

3. There are two problems with using this code space for
data.

a) First, since it is ROM memory, we can burn our predefined data and
tables into it. But we cannot write into it during the execution of the program.

b) The second problem is that the more of this code space we use for data, the less is
left for our program code. For example, if we have an 8051 chip such as
DS89C420 with only 16K bytes of on-chip ROM, and we use 4K bytes of it to
store some look-up table, only 12K bytes is left for the code program. For
some applications this can be a problem. For this reason Intel created another
memory space called external memory especially for data.

4. The 64K bytes of external memory, which can be used for both RAM and ROM. This
64K bytes is called external since we must use the MOVX Assembly language
instruction to access it. At the time the 8051 was designed, the cost of on-chip ROM was
very high; therefore, Intel used all the on-chip ROM for code but allowed
connection to external RAM and ROM. In other words, we have a total of 128K bytes
of memory space since the off-chip or external memory space of 64K bytes plus the 64K

bytes of on-chip space provides you a total of 128K bytes of memory space.

Department of Electrical & Electronics Engineering, ATMECE, Mysuru Page 25

Microcontroller Notes:BEE403| 2024-2025

3.5 .1 RANM data space usage by the 8051 C compiler

In Assembly language programming, as shown in Chapters 2 and 5, the 128 bytes of RAM
space is used mainly by register banks and the stack. Whatever remains is used for scratch
pad RAM. The 8051 C compiler first allocates the first 8 bytes of the RAM to bank 0 and
then some RAM to the stack. Then it starts to allocate the rest to the variables declared by the
C program. While in Assembly the default starting address for the stack is 08, the C compiler
moves the stack’s starting address to somewhere in the range of 50 — 7FH. This allows us to
allocate contiguous RAM locations to array elements.
In cases where the program has individual variables in addition to array elements, the 8051 C
compiler allocates RAM locations in the following order:
1. Bank 0 addresses 0-7
2. Individual variables addresses 08 and beyond
3. Array elements addresses right after variables
4. Stack addresses right after array elements
5. You can verify the above order by running Example 7-30 on your 8051 C simulator
and examining the contents of the data RAM space. Remember that array elements
need contiguous RAM locations and that limits the size of the array due to the fact
that we have only 128 bytes of RAM for everything. In the case of Example 1-31 the

array elements are limited to around 100.

Example 1-30
Compile and single-step the following program on your 8051 simulator. Examine the

contents of the 128-byte RAM space to locate the ASCII values.

Solution:
#include <regSl.h>
void main(veid)
{
unsigned char mynum[]= "ABCDEF"; //This uses RAM space
//to store data
unsigned char z;
for(z=0;z2<=6;2++)
Bl=myrium [z];

Department of Electrical & Electronics Engineering, ATMECE, Mysuru Page 26

Microcontroller Notes:BEE403| 2024-2025

Example 1-31
Write, compile, and single-step the following program on your 8051 simulator. Examine the

contents of the code space to locate the values.

Solution:
#include <reg5l.h=
void main{void)

{
unsigned char mydata(160]; //100 byte space in RAM
unsigned char x,z=0;
for (x=0;%<100;%++)
{
Te=; S /count down
mydata [x] =z; //save it in RAM
Pl=2; /{give a copy to Pl too
1
}

3.5.2 Accessing code data space in 8051 C

To make the C compiler use the code space instead of the RAM space, we need to put the

keyword code in front of the variable declaration. The following are some examples:

code unsigned char mynum[l= "012345ABCD"; //use code space
code unsigned char weekdays=7, month=0x12; //use code space

Example 1-32
Compile and single-step the following program on your 8051 simulator. Examine the

contents of the code space to locate the ASCII values.

Solution:

#include <regSl.h>
volid main(void)

{

code unsigned char mynum[]= "ABCDEF"; //uses code space
//for data
unsigned char z;
for{z=0;z<=6;24++)
Fl=mynum[z] ;
}

Compiler variations
Example 1-33. It shows three different versions of a program that sends me string “HELLO” to

the PI port. Compile each program with the 8051 C compiler of your choice and compare

Department of Electrical & Electronics Engineering, ATMECE, Mysuru Page 27

Microcontroller Notes:BEE403| 2024-2025

the hex file size. Then compile each program on a different 8051 C compiler, and examine the
hex file size to see the effectiveness of your C compiler.

Example 1-33
Compare and contrast the following programs and discuss the advantages and disadvantages of

each one.

(a)
#include <regS51.h>
void main{void)
{
Pl="H";
P1="E"';
P1="L";
Pl="L";
1='0"';

(b)
#include <regS51.h>
volid main{void)

{
unsigned char mydata[]="HELLO";
unsigned char z;
for{z=0;z<=5;z++)
Pl=mydatalz];

(c)
#include <reg51.h>
void main(void)

{

J//Notice Keyword code
code unsigned char mydatal] ="HELLO";
unsigned char z;
for{z=0;z<=5;:2++)
Pl=mydatalz]:;

}

Solution:

All the programs send out “HELLO” to PI, one character at a time, but they do it in different
ways. The first one is short and simple, but the individual characters are embedded into the
program. If we change the characters, the whole program changes. It also mixes the code and
data together. The second one uses the RAM data space to store array elements, therefore the
size of the array is limited. The third one uses a separate area of the code space for data. This
allows the size of the array to be as long as you want if you have the on-chip ROM. However,
the more code space you use for data, the less space is left for your program code. Both
programs (b) and (c) are easily upgradable if we want to change the string itself or make it

longer. That is not the case for program (a).

Department of Electrical & Electronics Engineering, ATMECE, Mysuru Page 28

Microcontroller Notes:BEE403| 2024-2025

3.6 Data serialization using 8051C

Serializing data is a way of sending a byte of data one bit at a time through a single pin of
microcontroller. There are two ways to transfer a byte of data serially:

1. Using the serial port. When using the serial port, the programmer has very
limited control over the sequence of data transfer. The detail of serial port data
transfer is discussed in Chapter 10.

2. The second method of serializing data is to transfer data one bit a time and control the
sequence of data and spaces in between them. In many new generations
of devices such as LCD, ADC, and ROM the serial versions are becoming popular

since they take less space on a printed circuit board.

Example 1-34
Write a C program to send out the value 44H serially one bit at a time via P1.O. The LSB

should go out first.

Solution:
//SERIALIZING DATA VIA P1.0 (SHIFTING RIGHT)
#include <regSl.hs
sbit P1b0 = P170;
sbit rTegALSB = ACCT0;
void main (void)
{
unsigned char conbyte = 0x44;
unsigned char x;
ACC = conbyte;
for{x=0; x<8; =H++)
{
Plb0 = regALSE;
ACC = ACC =>>» 1;

}

PIN

REG A el P1.0
D7 DO

Example 1-35
Write a C program to send out the value 44H serially one bit at a time via P1.O. The

MSB should go out first.

Department of Electrical & Electronics Engineering, ATMECE, Mysuru Page 29

Microcontroller Notes:BEE403| 2024-2025

Solution:
f/SERIALIZING DATA VIA Fl
#include <regsl.h>
sbit P1b0 = P170;
sbit regAMSB = ACC"™7;
volid main(void)
{
unsigned char conbyte
unsigned char x;
ACC = conbyte;
fori{x=0;
{
Plbt =
ACT =

xeB; N++)

reghAMSB;
ACC == 1;

ot

Example 1-36

.0

= 0xd4;

(SHIFTING

LEFT}

Write a C program to bring in a byte of data serially one bit at a time via Pl .0. The LSB

should come in first.

Solution:
//BRINGING IN DATA VIA P1.0
#include <regSl.h>
sbhit P1b0 = P170;
gbit ACCMSB = ACC"7;
void main{void)
{
ungigned char conbyte =
unsigned char x;
for{x=0; x<8; X++)
{
ACCMSE =
ACC =

}

P2=ACC;

Flbo;
ACC »> 1;

PIN

{SHIFTING RIGHT)

Daxdd ;

P1.0

REG A

D7

DO

Department of Electrical & Electronics Engineering, ATMECE, Mysuru

Page 30

Microcontroller Notes:BEE403| 2024-2025

o./ Programming oUal Uimers

The 8051 has two timers: Timer 0 and Timer 1. They can be used either as timers or as event
counters.
Basic registers of the timer
Both Timer 0 and Timer 1 are 16 bits wide. Since the 8051 has an 8-bit architecture, each 16-
bit timer is accessed as two separate registers of low byte and high byte. Each timer is
discussed separately.
Timer O registers
1. The 16-bit register of Timer O is accessed as low byte and high byte. The low byte
register is called TLO (Timer O low byte) and the high byte register is referred to as THO
(Timer 0O high byte).
2. These registers can be accessed like any other register, such as A, B, RO, RI, R2, etc.
For example, the instruction “MOV TLO , #4FH” moves the value 4FH into TLO, the
low byte of Timer 0.
3. These registers can also be read like any other register. For example, “MOV R5 ,
THO” saves THO (high byte of Timer 0) in RS.

| THO I TLO |

IS4 DIIEMI DN DOy DAY DE I D7 | Da [D5 | D4 | D3 | D2 § D1 | DO

Figure 3.1.: Timer 0 Registers

Timer 1 registers

i TH1 ! TL! —

DS DD DI2ZIDINDIO DO | DR DT D6 DS | D4 D3 D2 | D1 D0

Figure 3.2.: Timer 0 Registers
Timer I is also 16 bits, and its 16-bit register is split into two bytes, referred to as TLI (Timer
I low byte) and TH1 (Timer 1 high byte). These registers are accessible in the same way as

the registers of Timer 0.

Department of Electrical & Electronics Engineering, ATMECE, Mysuru Page 31

Microcontroller Notes:BEE403| 2024-2025

3.7.1 TMOD (timer mode) register

1. Both timers 0 and 1 use the same register, called TMOD, to set the various timer
operation modes. TMOD is an 8-bit register in which the lower 4 bits are set aside for
Timer 0 and the upper 4 bits for Timer 1.

2. Ineach case, the lower 2 bits are used to set the timer mode and the upper 2 bits to

specify the operation.

(MSB} (LSB)

GATE | CT M1 MO JGATE| T | M1 | Mo
Timer 1 Timer 0

GATE Gating control when set. The timer/counter is enabled only while the INTx pin
is high and the TRx control pin is set. When cleared, the timer is enabled
whenever the TRx control bit is set.

C/T Timer or counter selected cleared for timer operation {(input from internal
system clock). Set for counter operation {input from Tx input pin).

M1 Mode bit |

MO Mode bit 0

Ml MO ds'.ds Operating Mode
0 0 13-bit timer mode
8-bit timer/counter THx with TLx as 5-bit prescaler
0 | | 16-bit timer mode
[6-bit timer/counters THx and TLx are cascaded; there is
no prescaler
| i} 2 B-bit auto reload
8-bit auto reload timer/counter: THx holds a value that is
to be reloaded into TLx each time it overflows,
1 | 3 Split timer mode

Figure 3.3: TMOD Register
M1, MO
MO and Ml select the timer mode. As shown in Figure 9-3, there are three modes: 0, 1, and 2.
Mode 0 is a 13-bit timer, mode 1 is a 16-bit timer, and mode 2 is an 8-bit timer. We will
concentrate on modes 1 and 2 since they are the ones used most widely. We will soon
describe the characteristics of these modes, after describing the rest of the TMOD register.
C/T (clock/timer)
This bit in the TMOD register is used to decide whether the timer is used as a delay generator
or an event counter. If C/T = 0, it is used as a timer for time delay generation. The clock

source for the time delay is the crystal frequency of the 8051.

Department of Electrical & Electronics Engineering, ATMECE, Mysuru Page 32

Microcontroller Notes:BEE403| 2024-2025

Example 1-37
Indicate which mode and which timer are selected for each of the following.

(@) MOV TMOD,#01H (b) MOV TMOD,#20H (c) MOV TMOD #12H
Solution:
We convert the values from hex to binary. From Figure 9-3 we have:
1. TMOD = 00000001, mode 1 of Timer O is selected.
2. TMOD = 00100000, mode 2 of Timer 1 is selected.
1. TMOD = 00010010, mode 2 of Timer 0, and mode 1 of
Timer 1 are selected.

Clock source for timer
As you know, every timer needs a clock pulse to tick. What is the source of the clock pulse for

the 8051 timers? If C T = 0. the crystal frequency attached to the 8051 is the source of the clock
for the timer. This means that the size of the crystal frequency attached to the 8051 also decides
the speed at which the 8051 timer ticks. The frequency for the timer is always 1 12th the
frequency of the crystal attached to the 8051.

Example 1-38

Find the timer’s clock frequency and its period for various 805 1-based systems. with the
following crystal frequencies.

{a) 12 MHz

(b) 16 MHz

(c) 11.0582 MH=z

Solution:

AXTAL
oscillator

Y
o
=

(a) 1/12 = 12 MHz 1 MHz and T = 1/1 MHz = 1 us

(b) 1/12 x 16 MH=z 1.333 MHz and T = 1/1.333 MHz = .75 us

{¢) 1/12 x 11.0592 MHz = 9$21.6 kHz;
T = 1/921.6 kHz = 1.085 ps

NOTE THAT 8051 TIMERS USE 1/12 OF XTAL FREQUENCY, REGARDLESS OF
MACHINE CYCLE TIME.

Department of Electrical & Electronics Engineering, ATMECE, Mysuru Page 33

Microcontroller Notes:BEE403| 2024-2025

Example 1-39
Find the value for TMOD if we want to program Timer 0 in mode 2, use 8051 XTAL for the

clock source, and use instructions to start and stop the timer.

Solution:

TMOD= 0000 0010 Timer 0, mode 2,
C/T =0 to use XTAL clock source, and
gate = 0 to use internal (software)
start and stop method.

Now that we have this basic understanding of the role of the TMOD register, we will look at the
timer’s modes and how they are programmed to create a time delay. Because modes 1 and 2 are
so widely used, we describe each of them in detail.

Although various 8051-based systems have an XTAL frequency of 10 MHz to 40 MHz, we will
concentrate on the XTAL frequency of 11.0592 MHz. The reason behind such an odd number
has to do with the baud rate for serial communication of the 8051. XTAL =11.0592 MHz allows
the 8051 system to communicate with the IBM PC with no errors.

GATE

1. The other bit of the TMOD register is the GATE bit. Notice in the TMOD register of
that both Timers 0 and 1 have the GATE bit.

2. Every timer has a means of starting and stopping. Some timers do this by software,
some by hardware, and some have both software and hardware controls. The timers in
the 8051 have both.

3. The start and stop of the timer are controlled by way of software by the TR (timer
start) bits TRO and TR1. This is achieved by the instructions “SETB TR1"” and “CLR
TR1" for Timer 1, and “SETB TRO” and “CLR TRO” for Timer O.

4. The SETB instruction starts it, and it is stopped by the CLR instruction. These

instructions start and stop the timers as long as GATE = 0 in the TMOD register.

5. The hardware way of starting and stopping the timer by an external source is achieved
by making GATE =1 in the TMOD register.

6. However, to avoid further confusion for now, we will make GATE = 0, meaning that
no external hardware is needed to start and stop the timers. In using software to start and
stop the timer where GATE = 0. all we need are the instructions “SETB TRx” and “CLR
TRx”.

Department of Electrical & Electronics Engineering, ATMECE, Mysuru Page 34

Microcontroller Notes:BEE403| 2024-2025

3.7.2 Mode 1 programming

The following are the characteristics and operations of mode 1:
1. It is a 16-bit timer; therefore, it allows values of 0000 to FFFFH to be loaded
into the timer’s registers TL and TH.
2. After TH and TL are loaded with a 16-bit initial value, the timer must be start
ed. This is done by “SETB TRO” for Timer 0 and “SETB TR1” for Timer 1.

3. After the timer is started, it starts to count up. It counts up until it reaches its limit of
FFFFH. When it rolls over from FFFFH to 0000, it sets high a flag bit called TF
(timer flag). This timer flag can be monitored. When this timer flag is raised, one
option would be to stop the timer with the instructions “CLR TRO” or “CLR TR1", for
Timer 0 and Timer 1, respectively. Again, it must be noted that each timer has its own
timer flag: TFO for Timer 0, and TF1 for Timer 1.

4. After the timer reaches its limit and rolls over, in order to repeat the process the

registers TH and TL must be reloaded with the original value, and TF must be reset to

0.

JLI

XTAL = =12 [:: I TH l L= I TF]
oscillator I overflow

TR TF goes high
CIT=0 when FFFF -0 flag

Steps to program in mode 1
To generate a time delay, using the timer’s mode 1, the following steps are taken. To clarify
these steps, see Example 1-40

1. Load the TMOD value register indicating which timer (Timer O or Timer 1) is

to be used and which timer mode (0 or 1) is selected.
1. Load registers TL and TH with initial count values.
2. Start the timer.
1. Keep monitoring the timer flag (TF) with the “JNB TFx, target” instruction to
see if it is raised. Get out of the loop when TF becomes high.

3. Stop the timer.

4. Clear the TF flag for the next round.

5. Go back to Step 2 to load TH and TL again.

Department of Electrical & Electronics Engineering, ATMECE, Mysuru Page 35

Microcontroller Notes:BEE403| 2024-2025

To calculate the exact time delay and the square wave frequency generated on pin P1 .5, we
need to know the XTAL frequency.

The scientific calculator in the Accessories directory of Microsoft Windows can help you to
find the TH, TL values. This calculator supports decimal, hex, and binary calculations.

(@) in hex

(FFFF — YYXX + 1) X 1.085 us where YYXX are TH, TL initial values respectively. Notice
that values YYXX are in hex.

(b) in decimal

Convert YYXX values of the TH,TL register to decimal to get a NNNNN decimal number,
then (65536 — NNNNN) x 1.085 mircosec

Timer Delay Calculation for XTAL = 11.0592 MHz

Example 1-40
In the following program, we are creating a square wave of 50% duty cycle (with equal

portions high and low) on the PL.5 bit. Timer 0 is used to generate the time delay. Analyze the

program.
MOV TMCD, #01 ;Timer 0, mode 1(i6-bit mode)
HERE: MOV TLO, #0FZH ;TLO = F2H, the Low byte
MOV~ THO, #0FFH ;THO = FFH, the High byte
CPL Pl.5 ;toggle P1.5
ACALL DELAY
SJMP HERE ;load TH, TL again
j——delay using Timer 0O
DELAY :
SETE TRO ;etart Timer 0
AGAIN: JNB TFO, AGAIN ;monitor Timer 0 flag until
;it rolls over
CLR TR ;stop Timer O
CLR TFO ;elear Timer o flag
RET
Solution:

In the above program notice the following steps.
1. TMOD is loaded.
2. FFF2H is loaded into THO — TLO.
3. PL1.5istoggled for the high and low portions of the pulse.
4. The DELAY subroutine using the timer is called.
5. Inthe DELAY subroutine, Timer 0 is started by the “SETB TRO” instruction.

Department of Electrical & Electronics Engineering, ATMECE, Mysuru Page 36

Microcontroller Notes:BEE403| 2024-2025

1. Timer 0 counts up with the passing of each clock, which is provided by the

crystal
oscillator. As the timer counts up, it goes through the states of FFF3, FFF4,

FFFS5,
FFF6, FFF7, FFF8, FFF9, FFFA, FFFB, and so on until it reaches FFFFH.
One more
clock rolls it to 0, raising the timer flag (TFO = 1). At that point, the JNB
instruction
falls through.

2. Timer 0 is stopped by the instruction “CLR TRO”. The DELAY subroutine
ends,

and the process is repeated.
Notice that to repeat the process, we must reload the TL and TH registers and start the timer

again.

TF =0 TF=0 TF =0 TF=0 TF =1

Example 1-41
Calculate the amount of time delay in the DELAY subroutine generated by the timer. Assume

that XTAL = 11.0592 MHz.

Solution:

The timer works with a clock frequency of 1/12 of the XTAL frequency; therefore, we have
11.0592 MHz / 12 = 921.6 kHz as the timer frequency. As a result, each clock has a period of T
=1/921.6 kHz = 1.085 (is. In other words, Timer 0 counts up each 1.085 us resulting in delay
= number of counts x 1.085 us.

The number of counts for the rollover is FFFFH — FFF2H = ODH (13 decimal). However, we
add one to 13 because of the extra clock needed when it rolls over from FFFF to O and raises
the TF flag. This gives 14 x 1.085 us = 15.19 us for half the pulse. For the entire period T =2 x
15.19 (as = 30.38 (is gives us the time delay generated by the timer.

Department of Electrical & Electronics Engineering, ATMECE, Mysuru Page 37

Microcontroller Notes:BEE403| 2024-2025

Example 1-42

Calculate the frequency of the square wave generated on pin P1. 5.

Solution:

In the time delay calculation of Example 9-5, we did not include the overhead due to
instructions in the loop. To get a more accurate timing, we need to add clock cycles due to the
instructions in the loop. To do that, we use the machine cycles from Table A-l in Appendix A,

as shown below.

Cycles
HEERE: MOV TLO, #0F2H 2
MOV THO, #0FFH 2
CPL P1.5 1
ACALL DELAY 2
SJMP HERE 2
j———————delay using Timer 0
DELAY :
SETE TRO 1
AGARIN: JNB TFO, AGATN 14
CLR TRO 1
CLE TFO 1
RET 2
Total 28

T=2x 28 » 1.085 ps = 60.76 ps and F = 16458.2 Hz.

NOTE THAT 8051 TIMERS USE 1/12 OF XTAL FREQUENCY, REGARDLESS OF
MACHINE CYCLE TIME.

Example 1-43
Find the delay generated by Timer O in the following code, using both of the methods of

Figure 3.3. Do not include the overhead due to instructions.

CLE P2.3 ;clear P23

MOV TMOD, #01 ;Timer 0, mode 1(l6-hit mode}
HERE: MoV TLOC, #3EH ;TLO = 3EH, Low byte

MOV THO, #0BBH ;THO = B8H, High bvte

SETE P2.3 :8ET high PB2.3

SETE TERO ;start Timer 0
AGAIN: JNB TFO,AGAIN ;monitor Timer O flag

CLE TERO ;gtop Timer 0O

CLR TFO ;clear Timer 0 flag for

;next round
CLE BP2.3

Solution:

Department of Electrical & Electronics Engineering, ATMECE, Mysuru Page 38

Microcontroller Notes:BEE403| 2024-2025

1. (FFFF-B83E + 1) =47C2H= 18370 in decimal and 18370 x 1.085 ps= 19.931.45ms.

2. Since TH — TL = B83EH = 47166 (in decimal) we have 65536 — 47166 = 18370.
This means that the timer counts from B83EH to FFFFH.. This plus rolling over to 0
goes through a total of 18370 clock cycles, where each clock is 1.085us in duration.
Therefore, we have 18370 x 1.085 ps = 19.93145 ms as the width of the pulse.

Example 1-44

Modify TL and TH in Example 9-7 to get the largest time delay possible. Find the delay in ms.
In your calculation, exclude the overhead due to the instructions in the loop.

Solution:

To get the largest delay we make TL and TH both 0. This will count up from 0000 to FFFFH

and then roll over to zero.

CLE P2.3 ;clear P23

MOV TMOD, #01 ;Timer 0, mode 1{l&6-bit mode)
HERE: MOV TLO, #0 ;TLO = 0, Low byte

MOV THO, %0 ;THO = ¢, High byte

SETE P2.3 ;SET P2.3 high

SETE TRO ;start Timer O
BGRIN: JHE TFQ, AGAIN smonitor Timer O flag

CLRE TRQ ;stop Timer O

CLE TF0 ;clear Timer 0 flag

CLE P2.3

Making TH and TL both zero means that the timer will count from 0000 to FFFFH, and then
roll over to raise the TF flag. As a result, it goes through a total of 65536 states. Therefore, we
have delay = (65536 — 0) x 1.085 ps = 71.1065 ms.

Example 1-45
The following program generates a square wave on pin PL5 continuously using Timer 1 for a
time delay. Find the frequency of the square wave if XTAL =11.0592 MHz. In your

calculation do not include the overhead due to instructions in the loop.

Department of Electrical & Electronics Engineering, ATMECE, Mysuru Page 39

Microcontroller Notes:BEE403| 2024-2025

MOV TMOD, #10H
AGAIN: MOV TL1,#34H
MOV TH1,#76H

SETE TR1
BACH : JHE TF1,BACK
CLR TR1
CPL P1.5
CLE TF1
SIMF AGAIN

Solution:

;Timer 1, mode 1{i&-bit}
;TL1 = 324H, Low byte

;THL = 7éH, High bvte
;{7634H = timer wvalue)
;start Timer 1

;stay until timer rolls over
jgtop Timer 1

;jcomp. P1.5 to get hi, lo
;clear Timer 1 flag
;reload timer since Mode 1
;is not auto-reload

In the above program notice the target of SIMP. In mode 1, the program must reload the TH,

TL register every time if we want to have a continuous wave. Now the calculation. Since
FFFFH — 7634H = 89CBH + 1 = 89CCH and 89CCH = 35276 clock count. 35276 x 1.085 us =
38.274 ms for half of the square wave. The entire square wave length is 38.274 x 2 =

76.548 ms and has a frequency = 13.064 Hz.

Also notice that the high and low portions of the square wave pulse are equal. In the above

calculation, the overhead due to all the instructions in the loop is not included.

Finding values to be loaded into the timer

1. Assuming that we know the amount of timer delay we need, the question is how to

find the values needed for the TH, TL registers. To calculate the values to be loaded into

the TL and TH registers look at Example 9-10 where we use crystal frequency of 11.0592

MHz for the 8051 system.

2. Assuming XTAL = 11.0592 MHz from Example 9-10 we can use the following steps

for finding the TH, TL registers’ values.

1. Divide the desired time delay by 1.085 us.

2. Perform 65536 — n, where n is the decimal value we got in Step 1.

1. Convert the result of Step 2 to hex, where yyxx is the initial hex value to be

loaded into the timer’s registers.

3. Set TL =xxand TH =yy.

Department of Electrical & Electronics Engineering, ATMECE, Mysuru Page 40

Microcontroller Notes:BEE403| 2024-2025

Example 1-46

Assume that XTAL = 11.0592 MHz. What value do we need to load into the timer’s registers if
we want to have a time delay of 5 ms (milliseconds)? Show the program for Timer 0 to
create a pulse width of 5 ms on P2.3.

Solution:

Since XTAL = 11.0592 MHz, the counter counts up every 1.085 us. This means that out of
many 1.085 us intervals we must make a 5 ms pulse. To get that, we divide one by the other.
We need 5 ms /¢! .085 us = 4608 clocks. To achieve that we need to load into TL and TH the
value 65536 — 4608 = 60928 = EEOOH. Therefore, we have TH = EE and tt = on

CLE P2.3 ;olear P23

MOV TMOD, 401 ;Timer O, mode 1 (l16-bit model
HERE: MOV TLO, #0 ;TLO = 0, Low byvte

MOV THO, #0EEH ;THO = EE{ hex), High byte

SETE P2z.3 ;S5ET P2.3 high

SETB TRO ;start Timer 0O
AGAIN: JNE TFO,AGAIN jmonitor Timer 0 flag

;until it rolls aver

CLE FZ2.3 ;olear P2.3

CLE TRO ;etop Timer o€

CLE TFO ;jclear Timer 0 flag

Example 1-47

Assuming that XTAL = 11.0592 MHz, write a program to generate a square wave of 2 kHz

frequency on pin P1 .5.

Solution:

Look at the following steps.
1. T=1/f=1/2 kHz = 500 ps the period of the square wave.
2 1/2 of it for the high and low portions of the pulse is 250 ps.
3. 250 us/1.085 us =230 and 65536 — 230 = 65306. which in hex is FF1AH.
4. TL =1AH and TH = FFH. all in hex. The program is as follows.

MOV THOD, 810H ;Timer 1, mode 1(16-bit)
AGAIN: MOV TL1,#1AH ;TLL=2AH, Low byte
MO TH1,#0FtTH ;TH1=FFH. High byte
SETE TR1 ;start Timer 1
BACK : JNE TF1,BACK ;stay until timer rolls owver
CLE TRl ;stor Timer 1
CPL P1.5 ;complement F1.5 to get hi, lo
CLE TF1 ;clear Timer 1 flag
SJMEF AGAIN rreload timer since mode 1

;is not auto-reload

Department of Electrical & Electronics Engineering, ATMECE, Mysuru Page 41

Microcontroller Notes:BEE403| 2024-2025

Example 1-48
Assuming XTAL = 11.0592 MHz, write a program to generate a square wave of 50 Hz
frequency on pin P2.3.
Solution:
Look at the following steps.
1. T—1/50Hz =20 ms, the period of the square wave.
2. 1/2 of it for the high and low portions of the pulse = 10 ms
3. 10 ms / 1.085 us = 9216 and 65536 — 9216 = 56320 in decimal, and in hex it is
DCOOH.
4. TL=00and TH = DC (hex)

The program follows.

MoV TMOD, #10H ;Timer 1, mode 1 (l&a-bit)
AGAIMN: MoV TLL, #00 ;TL1 = 04, Low byte
MOV TH1, #0DCH iTH1 = DCH, High byte
SETE TRl ;start Timer 1
BACK: JHE TF1,BACK ;stay until timer rolls ower
LE TR1 ;stop Timer 1
CPL P2.3 ;comp. P2.3 to get hi, lo
CLRE TF1 jclear Timer 1 flag
SIJMP AGAIN ;reload timer since mode 1

iig not auto-relcad

3.7.3 Generating a large time delay

As we have seen in the examples so far, the size of the time delay depends on two factors,
(a) The crystal frequency, and

(b) The timer’s 16-bit register in mode 1.

Both of these factors are beyond the control of the 8051 programmer. We saw earlier that the

largest time delay is achieved by making both TH and TL zero.

Using Windows calculator to find TH, TL
The scientific calculator in Microsoft Windows is a handy and easy-to-use tool to find the TH,
TL values. Assume that we would like to find the TH, TL values for a time delay that uses
35,000 clocks of 1.085 us. The following steps show the calculation.

1. Bring up the scientific calculator in MS Windows and select decimal.

2. Enter 35,000.

Department of Electrical & Electronics Engineering, ATMECE, Mysuru Page 42

Microcontroller Notes:BEE403| 2024-2025

3. Select hex. This converts 35,000 to hex, which is 88B8H.
4. Select +/- to give -35000 decimal (7748H).
1. The lowest two digits (48) of this hex value are for TL and the next two (77)
are for TH. We ignore all the Fs on the left since our number is 16-bit data.

Example 1-49
Examine the following program and find the time delay in seconds. Exclude the overhead due

to the instructions in the loop.

MOV THMCD, $10H ;Timer 1, mode 1{1&-bit}
MOV R3,#200 jcounter for multiple delay
AGATIHN : MOV TLY, #08H ;TL1 = 98, Low byte
MoV TH1, #01H ;TH1L = 01, High byte
SETE TEl ;start Timer 1
BACE : JHE TF1, BACK ;stay until timer rollis over
CLE TE1l ;etop Timer 1
CLE TFlL ;iclear Timer 1 flag
DJNE R3,AGAIN ;if B3 not zero then

;reload timer

Solution:
TH — TL = 0108H = 264 in decimal and 65536 — 264 = 65272. Now 65272 x 1.085 ps =

70.820 ms, and for 200 of them we have 200 x 70.820 ms = 14.164024 seconds.

3.7.4 Mode 0

Mode 0 is exactly like mode 1 except that it is a 13-bit timer instead of 16-bit. The 13-bit
counter can hold values between 0000 to 1FFFH in TH — TL. Therefore, when the timer

reaches its maximum of 1FFH, it rolls over to 0000, and TF is raised.

3.7.5 Mode 2 programming

The following are the characteristics and operations of mode 2.

1. It is an 8-bit timer; therefore, it allows only values of 00 to FFH to be loaded
into the timer’s register TH.

2. After TH is loaded with the 8-bit value, the 8051 gives a copy of it to TL. Then
the timer must be started. This is done by the instruction “SETB TRO” for
Timer 0 and “SETB TR1 !¢ for Timer 1. This is just like mode 1.

3. After the timer is started, it starts to count up by incrementing the TL register.

It counts up until it reaches its limit of FFH. When it rolls over from FFH to

Department of Electrical & Electronics Engineering, ATMECE, Mysuru Page 43

Microcontroller Notes:BEE403| 2024-2025

00, it sets high the TF (timer flag). If we are using Timer 0, TFO goes high; if

we are using Timer 1, TF1 is raised.

- ﬂ .
XTAL o =12 | TL ;;;r o
oscillator . .
TR reload TF goes high
= hen FF —==0
cF -0 un

4. When the TL register rolls from FFH to 0 and TF is set to 1, TL is reloaded
automatically with the original value kept by the TH register. To repeat the process, we
must simply clear TF and let it go without any need by the programmer to reload the
original value. This makes mode 2 an auto-reload, in contrast with mode 1 inwhich
the programmer has to reload TH and TL.

5. It must be emphasized that mode 2 is an 8-bit timer. However, it has an auto-
reloading capability. In auto-reload, TH is loaded with the initial count and a copy of it
is given to TL. This reloading leaves TH unchanged, still holding a copy of the
original value. This mode has many applications, including setting the baud rate in

serial communication,

Steps to program in mode 2
To generate a time delay using the timer’s mode 2, take the following steps.
1. Load the TMOD value register indicating which timer (Timer O or Timer 1) is
to be used, and select the timer mode (mode 2).
2. Load the TH registers with the initial count value.
3. Start the timer.
4. Keep monitoring the timer flag (TF) with the “JNB TFx, target” instruction to see
whether it is raised. Get out of the loop when TF goes high.
5. Clear the TF flag.

6. Go back to Step 4, since mode 2 is auto-reload.

Department of Electrical & Electronics Engineering, ATMECE, Mysuru Page 44

Microcontroller Notes:BEE403| 2024-2025

Example 1-50
Assuming that XTAL = 11.0592 MHz. find (a) the frequency of the square wave generated on
pin P 1.0 in the following program, and (b) the smallest frequency achievable in this

program, and the TH value to do that.

MOV TMOD, #20H ;Tl/mode 2/8-bitfauto-reload
MOV THL, #5 ;THL = §
SETE TEl ;start Timer 1

BACK: JNE IFLl, BACK ;tay until timer rolls over
CPL Pl1.0 scomp. P1.0 to get hi, lo
CLR TFl ;olear Timer 1 flag
SJMP BACK ;mode 2 is auto-reload

Solution:

First notice the target address of SIMP. In mode 2 we do not need to reload TH since
it is auto-reload. Now (256 — 05) x 1.085 ps = 251 x 1.085 us = 272.33 ps is the
high portion of the pulse. Since it is a 50% duty cycle square wave, the period T is
twice that; as a result T = 2 x 272.33 us = 544.67 us and the frequency = 1.83597
kHz.

1. To get the smallest frequency, we need the largest T and that is achieved when TH

= 00.
2. In that case, we have T = 2 x 256 x 1.085 ps = 555.52 ps and the frequency
= 1.8kHz.
Example 1-51
Find the frequency of a square wave generated on pin P1.0,
Solution:
MOV TMOD, #2H ;Timer 0, mode 2
i (8-bit, auto-reload)
MOV THO, #0 ; THO=0
AGAIN: MOV RS, #250 ;jecount for multiple delay
ACALL DELAY
CPL FPF1.0 ;toggle P1.0
SIMP AGAIN ;i repeat
DELAY : SETE TRO ;8tart Timer 0
BACK: JNBE TFO, BACK ;stay until timer rolls over
CLE TRO ;2top Timer O
CLR TFO iclear TF for next round
DJINZ RS, DELAY
RET

T=2(250 x 256 x L1085 ps)= 138.88 ms, and frequency = 72 Hz.
Example 1-52

Department of Electrical & Electronics Engineering, ATMECE, Mysuru Page 45

Microcontroller Notes:BEE403| 2024-2025

Assuming that we are programming the timers for mode 2, find the value (in hex) loaded into

TH for each of the following cases.

(a) MOV TH1, #-200 (b) MOV THO, #-60
(¢) MOV TH1,%-3 (dy mov TH1,#-12
(e) MOV THO, #-48

Solution:

You can use the Windows scientific calculator to verify the results provided by the assembler.
In Windows calculator, select decimal and enter 200. Then select hex, then +/- to get the TH
value. Remember that we only use the right two digits and ignore the rest since our data is an

8-bit data. The following is what we get.

Decimal 2’s complemeny (TH value)
=200 3BH
60 C4H
-3 FDH
-12 F4H
=48 DOH

3.7.6 Assemblers and negative values

Since the timer is 8-bit in mode 2, we can let the assembler calculate the value for TH. For
example, in “MOV TH1 ,#-10 0", the assembler will calculate the -100 = 9C, and makes TH1 =
9C in hex. This makes our job easier.

Example 1-53

Find (a) the frequency of the square wave generated in the following code, and (b) the duty

cycle of this wave.

MOV TMOL, #2H ;Timer ©, mode 2
;{8-bit, autoc-reload)
MOV THO, #-150 ;THO = 6AH = 2's comp of -150
AGAIN: SETE Fl.3 ;P1.3 = 1

ACALL DELAY

ACARLL DELAY

CLE P1.3 ;P1.3 = 0
RCALL DELAY

SIMFP AGAIN

DELAY :
SETE TRO ;start Timer 0

BACK : JHNB TFO, BACE ;stay until timer rolls owver
CLR TR0 ;stop Timer O
CLE TFO ;clear TF for next round
RET

Department of Electrical & Electronics Engineering, ATMECE, Mysuru Page 46

Microcontroller Notes:BEE403| 2024-2025

Solution:

For the TH value in mode 2, the conversion is done by the assembler as long as we enter a
negative number. This also makes the calculation easy. Since we are using 150 clocks, we
have time for the DELAY subroutine = 150 x 1.085 ps = 162 ps. The high portion of the
pulse is twice that of the low portion (66% duty cycle). Therefore, we have: T = high portion

+ low portion = 325.5 (is + 162.25us = 488.25 ps and frequency = 2.048 kHz.

Notice that in many of the time delay calculations we have ignored the clocks caused by the
overhead instructions in the loop. To get a more accurate time delay, and hence frequency,
you need to include them. If you use a digital scope and you don’t get exactly the same
frequency as the one we have calculated, it is because of the overhead associated with those

instructions.

3.8 Counter programming

C/T bit in TMOD register
1. Recall from the last section that the C/T bit in the TMOD register decides the source
of the clock for the timer. If C/T = 0, the timer gets pulses from the crystal.

2. In contrast, when C/T = 1, the timer is used as a counter and gets its pulses from
outside the 8051. Therefore, when C/T = 1, the counter counts up as pulses are fed
from pins 14 and 15.

3. These pins are called TO (Timer 0 input) and Tl (Timer 1 input). Notice that these
two pins belong to port 3.

4. In the case of Timer 0, when C/T = 1, pin P3.4 provides the clock pulse and the
counter counts up for each clock pulse coming from that pin. Similarly, for Timer 1,
when C/T =1 each clock pulse coming in from pin P3.5 makes the counter count up.

Table 1.5 : Port 3 Pins Used For Timers 0 and 1

Pin Port Pin Function Description
14 P3d To Timer'Counter € external input
15 P35 Tl Timer/Counter | external input
(MSE) {LSB)
GaTE] v [i | Mo JGATE] o1 | M1 | Mo
Timer | Tirmer 0

Department of Electrical & Electronics Engineering, ATMECE, Mysuru Page 47

Microcontroller Notes:BEE403| 2024-2025

Example 1-54

Assuming that clock pulses are fed into pin TI, write a program for counter 1 in mode

2 to count the pulses and display the state of the TL1 count on P2.

MOV TMOD, #01100000E

0

Solution:
MOV TH1, &
SETB PF3.5
AGAIN: SETE TR1
BACEK.: MOV A,TL1
MOV P2,A
JMB TF1,BACK
CLRE TR1
CLR TF1
SJMP AGAIN

;ocounter 1, mode 2,C/T=1
jexternal pulses
;jclear THI1

;jmake T1 input

;jstart the counter
jget copy of count TLA
jdisplay it on port 2
;keep doing it if TF=0
jstop the counter 1
;make TF=0

jkeep doing it

Natice in the above program the role of the instruction “SETE P3.5". Since
ports are set.up for output when the 8051 is powered up, we make P3.5 an input port by
making it high. In other words, we must configure (set high) the T1 pin (pin P3.5) to

allow pulses to be fed into it.

P2 is connected to 8 LEDs
and input T1 to pulse.

BOS1

1o
LEDs

P2

T

Tl

In Example 1-54, we use Timer 1 as an event counter where it counts up as clock pulses are

fed into pin 3.5. These clock pulses could represent the number of people passing through an

entrance, or the number of wheel rotations, or any other event that can be converted to pulses.

In Example 1-54, the TL data was displayed in binary. In Example 9-19, the TL registers are

converted to ASCII to be displayed on an LCD.

LI overtlow
Timerfli flag
exferna
ol D'—[THCIITLI}I —=[TF0]
pn = | TFO goes high
CT=1 TRO when FFFF =0

JLI overflow
Timer |I flag
exlerna THI|TLI TF1
oxter [O {TE]
pin 3.5 ’ :

- TFI goes high
CT=1 TRI when FFFF -0

Department of Electrical & Electronics Engineering, ATMECE, Mysuru Page 48

Microcontroller Notes:BEE403| 2024-2025

Example 1-55
Assume that a 1-Hz frequency pulse is connected to input pin 3.4. Write a program to display

counter 0 on an LCD. Set the initial value of THO to -60.
Solution:
To display the TL count on an LCD, we must convert 8-bit binary data to ASCII. See Chapter 6

for data conversion.

ACALL LCD_SET_UP jinitialize the LCD

MOV TMOD, #00000110B ; counter O,mode 2,C/T=1

MOV THEO,#-60 ;ocounting 60 pulses

SETB P3.4 ;make TO as input
AGRIN: SETBE TRO ;Btarts the counter
BACK: MOV A, TLO ;get copy of count TLO

ACALL CONV ;convert in RZ, R3, R4

ACALL DISPLAY ;display on LCD

JNE TFC, BACK ;loop 1f TFO=0

CLR TRC istop the counter 0

CLE TFO ;make TFO=0

SJMEF AGAIN ikeep doing it

jconverting 8-bit binary to ASCII
;jupon return, R4, R3, RZ have ASCII data (R2 has LEZD)

CONV : MOV B, 10 ;divide by 10
DIV AR
MOV R2,B ;save low digit
MOV B, #10 ;divide by 10 once more
DIV AR
ORL B, #30H ;make it ASCII
MO R4, A ;save MED
MOV ALB
ORL A, #30H imake 2nd digit an ASCII
MOV R3,R2 j®ave 1t
MOV A,R2
ORL A, %30H ;make 3rd digit an ASCII
MOV RZ,A ;=ave the RSCII
RET '
8051
Plb— 1o
— LCD
_|_I__l_|_p3r4 —
| Hz clock TO -

By using 60 Hz we can generate seconds, minutes, hours.
Note that on the first round, it starts from 0, since on RESET, TLO = 0. To solve this problem,

load TLO with -60 at the beginning of the program.

Department of Electrical & Electronics Engineering, ATMECE, Mysuru Page 49

Microcontroller Notes:BEE403| 2024-2025

I overflow flag JLI1 averflow flag
Ti 0 - Ti 1 — —
external {00 4{TF0] || external :)—| TLT 4—{TF1]
input |_) input r A
pin 3.4 . - pin 3.5) -

TRO reload IR1 reload
CT=1 TF(goes high CT=1 TF1 goes high
when FF =0 when FF =0

Figure 3.3 :Timer 0 with External Input (Mode 2) Figure 3.4 Timer 1 with External
Input (Mode 2)
As another example of the application of the timer with C/T = 1, we can feed an external
square wave of 60 Hz frequency into the timer. The program will generate the second, the
minute, and the hour out of this input frequency and display the result on an LCD. This will be

a nice digital clock, but not a very accurate one.

Table 1.5 : Equivalent Instructions for the Timer Control Register (TCON)

For Timer 0
SETB TRO = SETE TCONMN.4
CLR TRO = CLR TCON.4
SETB TFO = SETB TCON.5
CLE TFO = CLR TCON.5
For Timer 1 .
SETB TRI = SETB TCOM.6&
CLR TRI = CLR TCON.6
SETB TF1 = SETB TCON.7
CLR TF1 = CLR TCON.7

TCON: Timer/Counter Control Register

[TFi | TR [tro | TRO | 1ET] amt] ieo | 170 |

Department of Electrical & Electronics Engineering, ATMECE, Mysuru Page 50

Microcontroller Notes:BEE403| 2024-2025

3.8.1 TCON register

1. In the examples so far we have seen the use of the TRO and TR1 flags to turn on or
off the timers. These bits are part of a register called TCON (timer control). This
register is an 8-bit register.
2. Asshown in Table 1.5, the upper four bits are used to store the TF and TR bits of both

Timer 0 and Timer 1. The lower four bits are set aside for controlling the interrupt bits.
We must notice that the TCON register is a bit-addressable register. Instead of using
instructions such as “SETB TR1” and “CLR TR1", we could use “SETB TCON. 6" and
“CLR TCON. 6", respectively.

The case of GATE = 1in TMOD

XTAL

+12 —
OSCILLATOR I ciino

CiT=1
TOIN

Pin 3.2

Y

TRO

Gate

INTO Pin
Pin 3.2

Figure 3.5. Timer/Counter 0

1. All discussion so far has assumed that GATE = 0. When GATE = 0, the timer is
started with instructions “SETB TRO” and “SETB TR1"”, for Timers 0 and 1,
respectively.

2. What happens if the GATE bit in TMOD is set to 1.if GATE = 1, the start and stop of
the timer are done externally through pins P3.2 and P3.3 for Timers 0 and 1,
respectively.

3. This is in spite of the fact that TRx is turned on by the “SETB TRx” instruction. This
allows us to start or stop the timer externally at any time via a simple switch. This
hardware way of controlling the stop and start of the timer can have many
applications.

4. For example, assume that an 8051 system is used in a product to sound an alarm
every second using Timer 0, perhaps in addition to many other things. Timer 0 is

turned on by the software method of using the “SETB TRO” instruction and is beyond

Department of Electrical & Electronics Engineering, ATMECE, Mysuru Page 51

Microcontroller Notes:BEE403| 2024-2025

the control of the user of that product. However, a switch connected to pin P3.2 can be

used to turn on and off the timer, thereby shutting down the alarm.

XTAL ——

+12 _
OSCILLATOR =0
Y
A
CiT=1
TIMN
Pin 3.5

TR1

Gate

INT1 Pin
Pin 3.3

Figure 3.6. Timer/Counter 1

3.9 Programming timers 0 and 1 in 8051 C

Accessing timer registersin C

In 8051 C we can access the timer registers TH, TL, and TMOD directly using the reg51 .h
header file.

Example 1-56

Write a 8051 C program to toggle all the bits of port P1 continuously with some delay in
between. Use Timer 0, 16-bit mode to generate the delay.

Solution:

Department of Electrical & Electronics Engineering, ATMECE, Mysuru Page 52

Microcontroller Notes:BEE403| 2024-2025

#include <regSl.h=
void TODelay{veoid);
void maini{veid)

{
while (1) /frepeat forever

{
P1=0x55; //toggle all bits of Pl
TODelay () ; //delay size unknown
Pl=0xAA; //toggle all bits of Pl
TODelay(};

}

!

void TODelay ()}

{
TMODR=0x01; J/Timer ¢, Mode 1
TLO=0x00; J/load TLO
THO=0x35; //load THO
TRO=1: f/turn on TO
while (TF0==0) ; J/wait for TFO to roll over
TRO=0; J/turn off TO
TFO=0; Jfeclear TFO
}

FFFFH - 3500H = CAFFH = 51967 + | = 51968

51968 x 1.085 ps = 56.384 ms is the approximate delay.

8051

PO LEDs

Calculating delay length using timers

Delay duration for the AT89C51/52 and DS89C4xO chips

As we stated before, there is a major difference between the AT89C51 and DS89C4xO chips in
term of the time it takes to execute a single instruction. Although the DS89C4xO executes
instructions 12 times faster than the AT89C51 chip, they both still use Osc/12 clock for their

timers. The faster execution time for the instructions will have an impact on your delay length.

Department of Electrical & Electronics Engineering, ATMECE, Mysuru Page 53

Microcontroller Notes:BEE403| 2024-2025

To verify this very important point, compare parts (a) and (b) of Example 9-21 since they
have been tested on these two chips with the same speed and C compiler.

Timers 0 and 1 delay using mode 1 (16-bit non auto-reload)

Examples 9-21 and 9-22 show 8051 C programming of the timers 0 and 1 in mode 1 (16-bit
non-auto reload). Examine them to get familiar with the syntax.

Timers 0 and 1 delay using mode 2 (8-bit auto-reload)

Study these examples below to get familiar with the syntax.

Example 1-57

Write an 8051 C program to toggle only bit PL.5 continuously every 50 ms. Use Timer O,
mode 1 (16-bit) to create the delay. Test the program (a) on the AT89C51 and (b) on the
DS89C420.

Solution:

#include =regs5l.h>
wvold TOMIDelay (void) ;
sbit mybit=P175;

wvoid main(void)

{
while (1)
{
mybit=--mybic; /ftoggle P1.S
ToM1Delayi) ; A/ Timar ¢, mode 1{1&é6-bit}

t
H

{a} Tested for ATS2CS51. XTAL=11.0592 MHz, using the Proview32 compiler

volid TOMlDelay (void)

{
TMOD=0x01 ; S Timer O, mode 1{1lé6-bitc]
TLOG=0xFD ; S load TLO
THO=0x4E; S rMload THO
TRO=1; Sieurn on TO
while ({TFO==0]) ; FSrlwait for TFO to roll over
TRO=0 ; Sleurn of £ TO
TFQO=10; Ffrelear TFO
H

(b) Tested tor DSEOC4200 XTAL=11.0592 MHz. using the Proview32 compiler

wold TOM1lDelay (woid)

{

TMOD =001 ; SSTimer 0, mode 1L{1&8-bit)
TLO=0xFD ; //load TLO

THO=0x4EB ; //fload THO

TRO=1; Slfeurn on TO

while (TFO==0) ; fiwait for TFO to roll over
TRO=0; Flfocurn of £ TO

TFO=0; ffclear TFO

}
FFFFH — 4BFDH = B402H = 46082 + 1 = 46083

Timer delay = 46083 = 1085 ps = 50 ms

Department of Electrical & Electronics Engineering, ATMECE, Mysuru Page 54

Microcontroller Notes:BEE403| 2024-2025

Example 1-58
Write an 8051 C program to toggle all bits of P2 continuously every 500 ms. Use Timer 1.

mode 1 to create the delay.
Solution:

fftested for DS89C420, XTAL = 11.0592 MHz, using the Proview32 compiler

#include <regSl.h>
void TiIM1Delay (void)
void mainivoid)
{
unsigned char x;
P2=0x55;
while{l}
{
P2=-P2; //tegale all bkics of B2
fori{x=0;%x<20;x++}
TiMlDelay () :

}

void T1M1Delay (void)

{
TMOD=0x10; f/Timer 1, mode 1{16-bit)
TL1=0xFE; f/load TL1
TH1=0xAS; //load TH1
TR1=1; J/fturn on Tl
while (TF1l==0}; JS/wait for TF1 to roll over
TRE1=0; JSieurn off Tl
TF1=0; //elear TF1
}

ASFEH = 42494 in decimal
65336 — 42494 = 23042

23042 x 1.085 ps = 25 ms and 20 x 25 ms = 500 ms

Example 1-59
Write an 8051 C program to toggle only pin P1.5 continuously every 250 ms. Use Timer 0,

mode 2 (8-bit auto-reload) to create the delay.

Solution:

Department of Electrical & Electronics Engineering, ATMECE, Mysuru Page 55

Microcontroller Notes:BEE403| 2024-2025

/ftested for DSBOC420, XTAL = 11.0592 MHz, using the Proview32 compiler

#include <reg5l.h>»
void TOM2Delay (void) ;
sbit mybit=P1"5;
vold main{void)

{

unsigned char x, v;

while{l)
{
mybit=~mybit; //toggle P1.5
for {x=0;x<250;x++) //due to for loop overhead
foriy=0;y=<36;y++) //we put 36 and not 40
TOM2ZDelay () ;
}
1
vold TOM2Delay{void)
{
TMOD=0x02; J/Timer 0, mode 2({28-bkit auto-reload)
THO=-23; //load THO (auto-reload wvalue)
TRO=1; JAturn on TO
while {TF0==0); {/wait for TFO to roll over
TRO=0; J/turn off TO
TF0=0; /iclear TFO
}
256-23 = 233

23 x1.085us =25 us
25 us x 250 x 40 = 250 ms by calculation.
However, the scope output does not give us this result. This is due to overhead of the for loop

in C. To correct this problem, we put 36 instead of 40.

Example 1-60
Write an 8051 C program to create a frequency of 2500 Hz on pin P2.7. Use Timer 1. mode 2

to create the delay.

Solution:

Department of Electrical & Electronics Engineering, ATMECE, Mysuru Page 56

Microcontroller Notes:BEE403| 2024-2025

/ested for DSRE9C420, XTAL = 11.0592 MHz, using the Proview32 compiler

$include <regSl.hs
void TiIMZDelay (void) ;
sbit mybit=P2"7;

volid main(void}

{
unsigned char x;
while (1)
{
mybit=-mybit; fifcoggle P2.7
TiMzDelay (!} ;
1
i
void TIM2Delay (void)
{
TMOD=0x20; Si/Timer 1, mode Z{(8-bit auto-reload!)
TH1=-184; Siload THl{auto-reload wvalue}
TR1=1; Srlturn on TI
while (TF1l==0) ; Jifwait for TFl to roll over
TR1=0; Siturn off T1
TF1=0; ficlear TF1

I /2500 Hz = 400 us
400 ps /2 =200 us

200 ps /1085 pus = 184

8051

2500 Hz

P2.T || Il || II [l M II ||

Example 1-61

A switch is connected to pin P1.2. Write an 8051 C program to monitor SW and create
the following frequencies on pin PI1.7:

SW=0: 500 Hz

SW=1: 750 Hz

Use Timer 0, mode 1 for both of them.

Solution:

Department of Electrical & Electronics Engineering, ATMECE, Mysuru Page 57

Microcontroller Notes:BEE403| 2024-2025

iested for ATROCS1/52, XTAL = 11.0592 MHz, using the Proview32 compiler
#include <regSl.h=
sbhit mybit=P1"5;
sbit SW=P1"7;
void TOM1Delay {(unsiged char) ;
voeid main{void)
{
SW=1; S/make P1.7 an input
whilei(l)
{
mybit=-mybit; //toggle P1.5
if (SW==0) //check switch
ToOM1lDelay (0) ;
else
TOM1Delay ({1} ;
}
}
wvold TOM1Delay (unsigned char c}
it
TMOD=0x0ZL ;
if (c==0}
{
TLO=0x67; fIFPCERT
THO=0xFC;

}

else

{

TLO=0x3A; fAFDSA
THO=0xFD;

}
TRO=1;
while (TFC0==0] ;
TRO=0;
TFO0=0;

}

FC67H = 64615

65536 — 64615 =921

921 x 1085 ps = 999 285 us
1 /(999285 ps = 2) = 500 Hz

3.9.1 C Programming of timers 0 and 1 as counters

A timer can be used as a counter if we provide pulses from outside the chip instead of using the
frequency of the crystal oscillator as the clock source. By feeding pulses to the TO (P3.4) and
TI (P3.5) pins, we turn Timer 0 and Timer 1 into counter 0 and counter 1, respectively. Study
the next few examples to see how timers 0 and 1 are programmed as counters using the C

language.

Department of Electrical & Electronics Engineering, ATMECE, Mysuru Page 58

Microcontroller Notes:BEE403| 2024-2025

Example 1-62

Assume that a 1-Hz external clock is being fed into pin Tl (P3.5). Write a C program for
counter 1 in mode 2 (8-bit auto reload) to count up and display the state of the TL1 count on PI.
Start the count at OH.

Solution:

#include <reqSl.h>
sbit T1 = P3°5;
void main(veid)

{

Tl=1; J/make T1 an input
TMOD=0x60; I
TE1=0; //set count to O
while (1] /{repeat forever
{
do
{
TR1=1: //start timer
P1=TL1; //place value on pins
1
while (TFl==0): J/wait here
TR1=0; J/stop timer
TF1=0; //elear flag
i
}
B051
P1 is connected to 8 LEDs. Pl to

T1 (P3.5) is connected to a LEDs

1-Hz external clock. I O g Y

| Hz Tl

i

Example 1-63

Assume that a 1-Hz external clock is being fed into pin TO (P3.4). Write a C program for
counter 0 in mode -1 (16-bit) to count the pulses and display the THO and TLO registers on P2
and PI, respectively.

Solution:

Department of Electrical & Electronics Engineering, ATMECE, Mysuru Page 59

Microcontroller Notes:BEE403| 2024-2025

#include <reg51.h=»

void maini{veoid)

{
TO=1; f/make TO an input
TMOD=0x05; i
TLO=0; //set count to O
THO=0: /{set count to O
while (1) //repeat forever
{
do
{
TRO=1; //start timer
P1=TLO; f/place value on pins
P2=THO; i
}
while (TF0==0); f/wait here
TRO=0; /{stop timer
TFQ=0;
}
}
8051
Y] — Pl and
— P2 1o
S I — | LEDs
| Hz clock TO P34 —
Example 1-64

Assume that a 2-Hz external clock is being fed into pin Tl (P3.5). Write a C program for
counter 0 in mode 2 (8-bit auto reload) to display the count in ASCII. The 8-bit binary count
must be converted to ASCII. Display the ASCII digits (in binary) on PO, PI, and P2 where PO

has the least significant digit. Set the initial value of THO to 0.

Solution:

Department of Electrical & Electronics Engineering, ATMECE, Mysuru Page 60

Microcontroller Notes:BEE403| 2024-2025

To display the TL1 count we must convert 8-bit binary data to ASCII. See Chapter 7 for data
conversion. The ASCII values will be shown in binary. For example, ’9" will show as
00111001 on ports.

#include <regsl.h>
void BinToASCII (unsigned char) ;
volid main()
{

unsigned char value;

Ti=1;

TMOD=0x06 ;

THO=0;

while (1)
{
do
{
TRO=1;
value=TL0O;
BinToASCII{value} ;

}

while (TFO==0} ;
TRO=0;
TFO=0;
)
}

vold BinToASCII {(unsigned char value) //see Chapter 7

{

unsigned char x,d1l,d2,d3;
x = value / 10;

dl = value % 10
d2 = % % 10;

d? = = / 10

PO = 30 | d4d1;
P1 = 30 | d2;

P2 = 30 | d3

Example 1-65

Assume that a 60-Hz external clock is being fed into pin TO (P3.4). Write a C program for
counter 0 in mode 2 (8-bit auto-reload) to display the seconds and minutes on Pl and P2,
respectively.

Solution:

Department of Electrical & Electronics Engineering, ATMECE, Mysuru Page 61

Microcontroller Notes:BEE403| 2024-2025

#include <regtSl.h>

veid ToTime (unsigned char);

vc:iid main{}
unsigned char wval;
TO=1;
TMOD=0x06 ; //T0, mode 2, counter
THO=-60; //sec = 60 pulses
while(l)

{
dao

{

TRO=1;
sec=TL0;

} ToTime (val} ;
while (TF0==0) ;
TRO=0;

TFO=0;
}
}

volid ToTime (unsigned char val)
{
unsigned char sec, min;
min = walue / 60;
sec = value % 60;
Fl = sec;
F2 = min;

8051
P]::: Pl and
— P2to
I P14 P2 [— LEDs
60 Hz clock TO —

By using 60 Hz, we can generate seconds, minutes, hours.

Outcomes

At the end of the module, students will be able to:
Evaluate software delays, timer delays and timer programming using both Assembly and C language.
[L5, MODULE 3]

Department of Electrical & Electronics Engineering, ATMECE, Mysuru Page 62

