

Department of Electrical and Electronics Engineering

Lesson Plan –BEEL606-CONTROL SYSTEM LAB, AY: 2024-25, Even Semester

	Course with Code: CONTROL SYSTEM LAB- BEEL606				Faculty:	Faculty: Dr. Praveen Kumar M		Semester & Section: IV	
Lab Session No.	Date planned (DD/MM)	Experiment to be covered	TLP Planned	Lab Session No	Date planned (DD/M M)	Experiment covered	TLP Executed		
					Lab Sess	ions			
1		Experiment to draw the Speed Torque Characteristics of (i) AC servo motor (ii) DC servo motor.	Practical Session						
2		Experiment to draw synchro-pair characteristics	Practical Session						
3		Experiment to determine frequency response of a second order system.	Practical Session						
4		 a. To simulate a typical second order system and determine step response and evaluate time response specifications. b. To evaluate the effect of additional poles and zeros on time response of second order system. c. To evaluate the effect of pole location on stability d. To evaluate the effect of loop gain of a negative feedback system on stability. 	Practical Session						
5		To simulate a second order system and study the effect of (a) P, (b) PI, (c) PD and (d) PID controller on the step response	Practical Session						
6		 a. To design a passive RC lead compensating network for the given specifications, viz, the maximum phase lead and the frequency at which it occurs and to obtain the frequency response. b. To determine experimentally the transfer function of the lead compensating network. 	Practical Session						

Department of Electrical and Electronics Engineering

7	 a. To design a passive RC lag compensating network for the given specifications, viz, the maximum phase lag and the frequency at which it occurs and to obtain the frequency response. b. To determine experimentally the transfer function of the lag compensating network 	Practical Session	
8	Experiment to draw the frequency response characteristics of the lag – lead compensator network and determination of its transfer function.	Practical Session	
9	 a. To simulate a D.C. Position control system and obtain its step response. b. To verify the effect of input waveform, loop gain and system type on steady state errors. c. To perform trade-off study for lead compensator. d. To design PI controller and study its effect on steady state error. 	Practical Session	
10	 a. To examine the relationship between open-loop frequency response and stability, open-loop frequency and closed loop transient response. b. To study the effect of open loop gain on transient response of closed loop system using root locus. 	Practical Session	
11	 a. To study the effect of open loop poles and zeros on root locus contour b. Comparative study of Bode, Nyquist and root locus with respect to stability 	Practical Session	