Department of Electrical and Electronics Engineering ## Lesson Plan –BEEL606-CONTROL SYSTEM LAB, AY: 2024-25, Even Semester | | Course with Code: CONTROL SYSTEM LAB- BEEL606 | | | | Faculty: | Faculty: Dr. Praveen Kumar M | | Semester & Section: IV | | |-----------------------|---|--|----------------------|----------------------|--------------------------------|------------------------------|-----------------|------------------------|--| | Lab
Session
No. | Date
planned
(DD/MM) | Experiment to be covered | TLP
Planned | Lab
Session
No | Date
planned
(DD/M
M) | Experiment covered | TLP
Executed | | | | | | | | | Lab Sess | ions | | | | | 1 | | Experiment to draw the Speed Torque
Characteristics of (i) AC servo motor (ii) DC
servo motor. | Practical
Session | | | | | | | | 2 | | Experiment to draw synchro-pair characteristics | Practical
Session | | | | | | | | 3 | | Experiment to determine frequency response of a second order system. | Practical
Session | | | | | | | | 4 | | a. To simulate a typical second order system and determine step response and evaluate time response specifications. b. To evaluate the effect of additional poles and zeros on time response of second order system. c. To evaluate the effect of pole location on stability d. To evaluate the effect of loop gain of a negative feedback system on stability. | Practical
Session | | | | | | | | 5 | | To simulate a second order system and study
the effect of (a) P, (b) PI, (c) PD and (d) PID
controller on the step response | Practical
Session | | | | | | | | 6 | | a. To design a passive RC lead compensating network for the given specifications, viz, the maximum phase lead and the frequency at which it occurs and to obtain the frequency response. b. To determine experimentally the transfer function of the lead compensating network. | Practical
Session | | | | | | | ## **Department of Electrical and Electronics Engineering** | 7 | a. To design a passive RC lag compensating network for the given specifications, viz, the maximum phase lag and the frequency at which it occurs and to obtain the frequency response. b. To determine experimentally the transfer function of the lag compensating network | Practical Session | | |----|--|-------------------|--| | 8 | Experiment to draw the frequency response characteristics of the lag – lead compensator network and determination of its transfer function. | Practical Session | | | 9 | a. To simulate a D.C. Position control system and obtain its step response. b. To verify the effect of input waveform, loop gain and system type on steady state errors. c. To perform trade-off study for lead compensator. d. To design PI controller and study its effect on steady state error. | Practical Session | | | 10 | a. To examine the relationship between open-loop frequency response and stability, open-loop frequency and closed loop transient response. b. To study the effect of open loop gain on transient response of closed loop system using root locus. | Practical Session | | | 11 | a. To study the effect of open loop poles and zeros on root locus contour b. Comparative study of Bode, Nyquist and root locus with respect to stability | Practical Session | |