

Department of Electronics & Communication Engineering

COURSE MODULE

Faculty Name: Mrs. Keerthi A Kumbar &			Academic Year: 2025-26 (ODD Sem)					
	Mr. Guruprasad K N							
Department: E	CE							
Course Code	Course Title	Core/Elective	Prerequisite	Contact Hours			Total Hrs/ Sessions	
				L	T	P	362210112	
BEC701	Microwave Engineering and Antenna Theory	Core (IPCC)	Vector calculus, Maxwell's equations and wave theory, Electromagnetic field theory, Signals and systems	3	-	2	40 (8 Hours / Module)	

Course objectives: This course will enable students to:

- 1. Describe the microwave properties and its transmission media.
- 2. Describe the microwave devices for several applications.
- 3. Understand the basic concepts of antenna theory.
- 4. Identify antenna types for specific applications.

Topics Covered as per Syllabus

Module-1

Microwave Sources: Introduction, Gunn Diode (Text 2: 7.1,7.1.1,7.1.2)

Microwave transmission lines: Microwave frequencies, Microwave devices, Microwave systems. Transmission line equations and solutions, Reflection Coefficient and Transmission Coefficient. Standing wave and standing wave ratio. Smith chart, Single stub matching.

Text 2: 0.1, 0.2, 0.3, 3.1, 3.2, 3.3, 3.5, 3.6 (except double stub matching)

Module-2

Microwave Network Theory: Introduction, S matrix representation of multi-port networks.

(Text 1: 6.1, 6.3, 6.3.1, 6.3.2)

Microwave passive devices: Coaxial connectors and Adapters, Attenuators, Phase shifters, waveguide Tees, Magic Tee, Circulator, Isolator.

(Text 1: 6.4.2, 6.4.14, 6.4.15, 6.4.16, 6.4.17 A, B)

Module-3

Strip Lines: Introduction, Microstrip lines, Parallel Strip lines.

(Text 2: 11.1,11.2)

Antenna Basics: Introduction, Basic Antenna Parameters, Patterns, Beam Area, Radiation Intensity, Beam efficiency, Directivity and Gain, Antenna Aperture Effective height, Bandwidth, Radio communication Link, Antenna Field Zones.

(Text 3: 2.1-2.7, 2.9-2.11, 2.13).

Module-4

Point sources and arrays: Introduction, Point Sources, Power patterns, Power theorem, Radiation Intensity, Arrays of 2 isotropic point sources, Pattern multiplication, Linear arrays of n Isotropic sources of equal amplitude and Spacing.

(Text 3: 5.1-5.6, 5.9, 5.13)

Electric Dipole: Introduction, Short Electric dipole, Fields of a short dipole. Radiation resistance of a short dipole. Thin linear antenna (field analysis).

(Text 3: 6.1-6.5)

Module-5

Loop and Horn antenna: Introduction: Small loop, Comparison of far fields of small loops and short dipole. Radiation resistance of small loop, Horn Antennas, Rectangular antennas.

(Text 3: 7.1,7.2, 7.4, 7.6, 7.7, 7.8, 7.19, 7.20)

Antenna Types: Yagi Uda array, Parabolic Reflector, Microstrip Antennas, Features of Microstrip Antennas, (Text 3: 8.8, 9.5, 14.1,14.2)

Department of Electronics & Communication Engineering

List of Text Books

Text Books:

- 1. Microwave Engineering -Annapurna Das, Sisir K Das, TMH Publication, 2ndEdition, 2010.
- 2. Microwave Devices and Circuits Samuel Y Liao, Pearson Education.
- 3. Antennas and Wave Propagation -John D Krauss, Ronald J Marhefka, Ahmad S Khan, 4th Edition, McGraw Hill Education, 2013.

Reference Books:

- 1. Microwave Engineering -David M Pozar, John Wiley India Pvt Ltd., Pvt Ltd., 3rd edition, 2008.
- 2. Microwave Engineering-Sushrut Das, Oxford Higher Education, 2nd Edn, 2015.
- 3. Antennas and Wave Propagation-Harish and Sachidananda, Oxford University Press, 2007.

Web links and Video Lectures (e-Resources):

- 1. https://www.tutorialspoint.com/antenna theory/antenna theory horn.html
- 2. http://www.antenna-theory.com/antennas/smallLoop.php

Activity Based Learning (Suggested Activities in Class)/ Practical Based learning

Programming Assignments / Mini Projects can be given to improve practical skills

Course Outcomes: At the end of the course the student will be able to:

CO1 : Describe the use and advantages of microwave transmission					
CO2: Analyze various parameters related to transmission lines.	L3				
CO3: Identify microwave devices for several applications	L3				
CO4: Analyze various antenna parameters and their significance in building the RF system	L3				
CO5: Identify various antenna configurations for suitable applications	L2				

The Correlation of Course Outcomes (CO's) and Program Outcomes (PO's)

Subject Co	Code: BEC701 TITLE: Microwave Engineering and Antenna Theory					Faculty	ulty Name: Mrs. Keerthi A K & Mr. Guruprasad K N						
List of	Program Outcomes												
Course Outcomes	P01	PO2	P03	P04	P05	P06	P07	P08	P09	PO10	P011	PO12	Total
CO-1	3	2	ı	ı	-	-	-	-	-	2	1	3	17
CO-2	3	2	2	2	2	-	-	-	-	2	1	3	17
CO-3	3	2	2	2	2	1	1	1	1	2	1	3	21
CO-4	3	2	2	2	2	1	1	1	1	2	1	3	21
CO-5	3	2	2	2	2	1	1	1	1	2	1	3	21
Total	15	10	10	10	10	3	3	3	3	10	5	15	97

Department of Electronics & Communication Engineering

The Correlation of Course Outcomes (CO's) and Program Specific Outcomes (PSO's)

Subject Cod	le: BEC701	TITLE: Microwave Engineering and Antenna Theory					
List of Course	Program Specific Outcomes						
Outcomes	PSO1	PSO2	Total				
CO-1	2	1	3				
CO-2	2	1	3				
CO-3	2	1	3				
CO-4	2	1	3				
CO-5	2	1	3				
Total	10	5	15				

Note: 3 = Strong Contribution 2 = Average Contribution 1 = Weak Contribution -= No Contribute