" op-\n:.r‘,. =
J w:b'p 4 P“‘E, &/ | E
IO i W - Y 4
b L1 W %
ATME i () B /N /-
. » » ™ £ .
oy L O

2tme) College of Engineering

||||||

: Department of EEE
(2015 Emitting Elite Energy

Department of Electrical and Electronics Engineering
Laboratory Manual
Microcontrollers

BEE403
Academic Year: 2024-25

Semester: 1V

Compiled by Verified by Approved by

ATME College of Engineering
13" km Stone, Mysuru-Kanakapura-Bengaluru Road, Mysuru-570028

INSTITUTIONAL VISION AND MISSION

VISION:

Development of academically excellent, culturally vibrant, socially responsible and globally

competent human resources.

MISSION:

e To keep pace with advancements in knowledge and make the students competitive and
capable at the global level.

e To create an environment for the students to acquire the right physical, intellectual,

emotional and moral foundations and shine as torchbearers of tomorrow's society.

e To strive to attain ever-higher benchmarks of educational excellence

DEPARTMENT VISION AND MISSION
VISION:

To create Electrical and Electronics Engineers who excel to be technically competent and fulfill

the cultural and social aspirations of the society.

MISSION:

e To provide knowledge to students that builds a strong foundation in the basic principles
of electrical engineering, problem solving abilities, analytical skills, soft skills and
communication skills for their overall development.

e To offer outcome based technical education.

e To encourage faculty in training & development and to offer consultancy through

research & industry interaction.

PROGRAMME OUTCOMES:

Engineering Graduates will be able to:

POL. Engineering knowledge: Apply the knowledge of mathematics, science, engineering
fundamentals, and an engineering specialization to the solution of complex engineering problems.

PO2. Problem analysis: ldentify, formulate, review research literature, and analyze complex
engineering problems reaching substantiated conclusions using first principles of mathematics,
natural sciences, and engineering sciences.

PO3. Design/development of solutions: Design solutions for complex engineering problems and
design system components or processes that meet the specified needs with appropriate
consideration for the public health and safety, and the cultural, societal, and environmental
considerations.

PO4. Conduct investigations of complex problems: Use research-based knowledge and research
methods including design of EXPERIMENTS, analysis and interpretation of data, and synthesis of
the information to provide valid conclusions.

PO5. Modern tool usage: Create, select, and apply appropriate techniques, resources, and modern
engineering and IT tools including prediction and modeling to complex engineering activities with
an understanding of the limitations.

POG6. The engineer and society: Apply reasoning informed by the contextual knowledge to assess
societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the
professional engineering practice.

PO7. Environment and sustainability: Understand the impact of the professional engineering
solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for
sustainable development.

PO8. Ethics: Apply ethical principles and commit to professional ethics and responsibilities and
norms of the engineering practice.

PO9. Individual and team work: Function effectively as an individual, and as a member or leader
in diverse teams, and in multidisciplinary settings.

PO10. Communication: Communicate effectively on complex engineering activities with the
engineering community and with society at large, such as, being able to comprehend and write
effective reports and design documentation, make effective presentations, and give and receive
clear instructions.

PO11. Project management and finance: Demonstrate knowledge and understanding of the
engineering and management principles and apply these to one’s own work, as a member and
leader in a team, to manage projects and in multidisciplinary environments.

PO12. Life-long learning: Recognize the need for, and have the preparation and ability to engage
in independent and life-long learning in the broadest context of technological change.

Program Specific Outcomes (PSOSs)

At the end of graduation, the student will be able,

PSOL1: Apply the concepts of Electrical & Electronics Engineering to evaluate the performance of
power systems and also to control Industrial drives using power electronics.

PSO2: Demonstrate the concepts of process control for Industrial Automation, design models for

environmental and social concerns and also exhibit continuous self- learning.

Program Educational Objectives (PEOSs)

PEOL: To produce competent and Ethical Electrical and Electronics Engineers who will exhibit

the necessary technical and managerial skills to perform their duties in society.
PEOZ2: To make Graduates continuously acquire and enhance their technical and socio-eco-
nomic skills.

PEO3: To aspire Graduates on R&D activities leading to offering solutions and excel in various

career paths.

PEOA4: To produce quality engineers who have the capability to work in teams and contribute to

real time projects.

LIST OF EXPERIMENTS

CYCLE-I
SI. | Experiment Name COs BTL
No
1 Data Transfer — Block move, Exchange, Sorting, Finding largest elementinan | CO1/CO2 Ls
array.
2 Arithmetic Instructions — Addition/subtraction, multiplication and division, | CO1/C0O2 Ls
square, Cube — (16 bits Arithmetic operations — bit addressable).
3 Up/Down BCD/ Binary Counters CO03 Ls
4 Boolean & Logical Instructions (Bit manipulations). C02/C03 Ls
5 Code conversion: BCD — ASCII; ASCII — Decimal; Decimal - ASCII; HEX - COo3 Ls
Decimal and Decimal —HEX.
6 Programs to generate delay, Programs using serial port and on-Chip timer / | CO3/CO4 Ls
counter.
CYCLE-II
Note: Single chip solution for interfacing 8051 is to be with C Programs for the following experiments.
Sl. No | Experiment Name COs BTL
7 Stepper motor interface for direction and speed control CO5 Ls
8 Simulate and Test a PWM controlled DC Motor CO5 Ls
9 Alphanumerical LCD panel interface. CO5 Ls
10 Generate different waveforms: Sine, Square, Triangular, Ramp using DAC CO5 Ls

interface

REFERENCE BOOK:

1. “The 8051 Microcontroller and Embedded Systems — using assembly and C”’- Muhammad Ali Mazidi and Janice
Gillespie -,PHI,2006/pearson,2006

2. “The 8051 Microcontroller”, V.Udayashankar and Mallikarjuna Swamy, TMH,2009

3. “MSP430 Microcontroller Basics”, John Davies, Elsevier, 2008

4. http://www.magzter.com/IN/EFY -Enterprises-Pvt-Ltd/Micro-Controller-Based-Projects-2nd-

Edition/Technology/22026

http://www.magzter.com/IN/EFY-Enterprises-Pvt-Ltd/Micro-Controller-Based-Projects-2nd-Edition/Technology/22026
http://www.magzter.com/IN/EFY-Enterprises-Pvt-Ltd/Micro-Controller-Based-Projects-2nd-Edition/Technology/22026

COURSE OUTCOMES

At the end of the course the student will be able to:

CO-1: Qutline the 8051 architecture, registers, internal memory organization, addressing modes
CO-2: Discuss 8051 addressing modes, instruction set of 8051, accessing data and 1/O port programming.

CO-3: Develop 8051C programs for time delay, 1/0O operations, 1/O bit manipulation, logic and
arithmetic operations, data conversion and timer/counter programming.

CO-4: Summarize the basics of serial communication and interrupts, also develop 8051 programs for
serial data communication and interrupt programming

CO-5: Program 8051to work with external devices for ADC, DAC, Stepper motor control, DC motor
control.

The Correlation of Course Outcomes (CO’s) and PO’s and PSOs

Cour§e BEE403 Title: Microcontrollers

Code:

Course Program Outcomes PSOs
Outcomes | PO1 PO2 | PO3 | PO4 | PO5 | PO6 | PO7 | PO8 | PO9 | PO10 | PO11 | PO12 | PSO1 | PSO2
CO-1 2 2 - B 3 _ N) 5 > - 5 - 3
CO-2 2 3] 2] 2| 3| - - - 3 2 ; > - 3
CO-3 2 3 2 2 3 - - - 3 2 N 2 - 3
CO-4 2 3]2] 2 |3 - - - 3 2 ; > - 3
CO-5 2 3]2] 2|3 - - - 3 2 - > - 3

Note: 3 = Strong Contribution 2 = Average Contribution 1 = Weak Contribution “-“= No Contribution

TABLE OF CONTENTS

SL. No | Experiment Name Pg.No.
Software
1 Data Transfer — Block move, Exchange, Sorting, Finding largest element in an array. 30
2 Arithmetic Instructions — Addition/subtraction, multiplication and division, square, 42
Cube — (16 bits Arithmetic operations — bit addressable).
3 Up/Down BCD/ Binary Counters 60
4 Boolean & Logical Instructions (Bit manipulations). 64
5 Code conversion: BCD — ASCII; ASCII — Decimal; Decimal - ASCII; HEX - Decimal 66
and Decimal —-HEX.
6 Programs to generate delay, Programs using serial port and on-Chip timer / counter. 73
Interfacing
7 Stepper motor interface for direction and speed control 99
8 Simulate and Test a PWM controlled DC Motor 97
9 Alphanumerical LCD panel interface. 102
10 Generate different waveforms: Sine, Square, Triangular, Ramp using DAC interface 110
Content Beyond syllabus
1 Conditional CAL 111
2 Elevator interface to 8051. 112
3 External ADC and Temperature control interface 114

VTU Syllabus

PROGRAMMING

Data Transfer — Block move, Exchange, Sorting, Finding largest element in an array.

Arithmetic Instructions — Addition/subtraction, multiplication and division, square, Cube — (16 bits
Arithmetic operations — bit addressable).

Up/Down BCD/ Binary Counters.

Boolean & Logical Instructions (Bit manipulations).

Code conversion: BCD — ASCII; ASCII — BCD; ASCII-Decimal, Decimal - ASCII; HEX - Decimal
and Decimal —HEX.

Programs to generate delay, Programs using serial port and on-Chip timer / counter.

Note: Single chip solution for interfacing 8051 is to be with C Programs for the following
experiments.

Il. INTERFACING:

Write C programs to interface 8051 chip to Interfacing modules to develop single chip solutions.

7.
8.
9.

10.

Stepper motor interface for direction and speed control
Simulate and Test a PWM controlled DC Motor
Alphanumerical LCD panel interface.

Generate different waveforms: Sine, Square, Triangular, Ramp using DAC interface.

Microcontrollers Lab Manual (BEE403):2024-2025

INTRODUCTION
Extcrnal
Interrupts BLOCK DIAGRAM OF 8051
l On-chip
Interrupt pumm ROM

. |
Control for code

~

Bus

[S———
sinduy 1ounon

Control

?ﬁ

PO P1P2 P3 TXD RXD

Fig 1: Block diagram of 8051

The 8051 PIN DIAGRAM
ittt NP~ o e e
' PLO Port1Bito ' (P1.0 vee ' Port 0 Bit 0(Address/data 0) |
i P11 Port1Bit1 1 |[P1.1 PO.O ~ ! . I
| . or | ! (a01)38 ' Port 0 Bit 1(Address/data 1) ,
' PL2 PortlBit2 1 |P1.2 : P0.1 | Port 0 Bit 2(Address/data 2) |
+ P1.3 Port1Bit3 :<"°3 . Po.2 ' Port 0 Bit 3(Address/data 3) |
1 P14~ Port1Bitd ., 1P1.4 P0.3 1 Port 0 Bit 4(Address/data 4) |
 PL5 Port1Bit5 , |P1.8 (aDa)35 BELLRL . Port 0 Bit 5(Address/data 5)
i P16 Port1Bit6 i P1.6 | | PO.5 . Port 0 Bit 6(Address/data 6) i
(TR TR en T S PON PN I P08 | | Pont O Bit TAddress/data 7)
eset J .

____________________ | e .

i Port 3 Bit 0 (Receive data) | gas :;)((RT);([;)) 8 0 5]P:::,ii: = IE'er IrE:rt:rrnniil Evr:)zlatk:ee()EPROM

. Port 3 Bit 1 (XMIT Data) 1 | P3T Uit gy ALE d dd gl hg b

| . PSR 12(INTO) | PETN ALE:-Address latch Enable

' Port 3 Bit 2 (Interrupt 0) I [INT1 PSEN:-Program store Enable

| Port 3 Bit 3(Interrupt 1) |<'3~3 L ii(::;)l) P27 Trod

. . 1 I

. Port 3 Bit 4(Timer O Input) ! P3.4 L rP2.6 Port 2 Bit 7 (Address 15)

' Port 3 Bit 5(Timer 1input) , |P3.5 _EEXLEY P2.5 Port 2 Bit 6 (Address 14)

' Port 3 Bit 6(Write Strobe) | |P3.6 | EEUTT | P2.4 Port 2 Bit 5 (Address 13)

' Port 3 Bit 7(Read Strobe) | \e3.7 | Bz | P2.3 > Port 2 Bit 4 (Address 12)

_______________ L ¥a 18(xTAL2| | p2.2 Port 2 Bit 3 (Address 11)

Crystal Input 2 (RN 19 (XTAL1) | P2.1 Port 2 Bit 2 (Address 10)

Crystal Input 1 GND B 1 r2.0 _J Port 2 Bit 1 (Address 9)
Port 2 Bit O (Address 8)

Fig 2: 8051 PIN DIAGRAM

Department of EEE, ATMECE, Mysuru

Microcontrollers Lab Manual (BEE403):2024-2025

PINOUT DESCRIPTION

Pins 1-8: Port 1 Each of these pins can be configured as an input or an output.

Pin 9: RS A logic one on this pin disables the microcontroller and clears the contents of most
registers. In other words, the positive voltage on this pin resets the microcontroller. By applying
logic zero to this pin, the program starts execution from the beginning.

Pins10-17: Port 3 Similar to port 1, each of these pins can serve as general input or output.
Besides, all of them have alternative functions:

Pin 10: RXD Serial asynchronous communication input or Serial synchronous communication
output.

Pin 11: TXD Serial asynchronous communication output or Serial synchronous
communication clock output.

Pin 12: INTO Interrupt O inputs.

Pin 13: INT1 Interrupt 1 input.

Pin 14: TO Counter O clock input.

Pin 15: T1 Counter 1 clock input.

Pin 16: WR Write to external (additional) RAM.

Pin 17: RD Read from external RAM.

Pin 18, 19:X2 X1 Internal oscillator input and output. A quartz crystal which specifies
operating frequency is usually connected to these pins. Instead of it, miniature ceramics
resonators can also be used for frequency stability. Later versions of microcontrollers operate
at a frequency of 0 Hz up to over 50 Hz.

Pin 20: GND Ground.

Pin 21-28: Port 2 If there is no intention to use external memory then these port pins are
configured as general inputs/outputs. In case external memory is used, the higher address byte,
i.e. addresses A8-A15 will appear on this port. Even though memory with capacity of 64Kb is
not used, which means that not all eight port bits are used for its addressing, the rest of them

are not available as inputs/outputs.

Pin 29: PSEN If external ROM is used for storing program then a logic zero (0) appears on it
every time the microcontroller reads a byte from memory.

Pin 30: ALE Prior to reading from external memory, the microcontroller puts the lower address

byte (AO-A7) on PO and activates the ALE output. After receiving signal from the ALE pin,
the external register (usually 74HCT373 or 74HCT375 add-on chip) memorizes the state of PO

Department of EEE, ATMECE, Mysuru

Microcontrollers Lab Manual (BEE403):2024-2025

and uses it as a memory chip address. Immediately after that, the ALU pin is returned its
previous logic state and PO is now used as a Data Bus. As seen, port data multiplexing is
performed by means of only one additional (and cheap) integrated circuit. In other words, this
port is used for both data and address transmission.

Pin 31: EA By applying logic zero to this pin, P2 and P3 are used for data and address
transmission with no regard to whether there is internal memory or not. It means that even there
is a program written to the microcontroller, it will not be executed. Instead, the program written
to external ROM will be executed. By applying logic one to the EA pin, the microcontroller
will use both memories, first internal then external (if exists).

Pin 32-39: Port 0 Similar to P2, if external memory is not used, these pins can be used as
general inputs/outputs. Otherwise, PO is configured as address output (A0-A7) when the ALE
pin is driven high (1) or as data output (Data Bus) when the ALE pin is driven low (0).

Pin 40: VCC +5V power supply.

Department of EEE, ATMECE, Mysuru

Microcontrollers Lab Manual (BEE403):2024-2025

The 8051 Architecture
Imtel BUS 1 Mic roanchitecture P00 - PO.T P20 - P2.7
e e e et el e e e e ——————
]
Ve 1
£ Port 0 Port 2
O Dirivers
LT -_E_: rivers
n
i t 1
n
L]
n
n
R4l addr Part Fort 2 EPRO N
i l—
] Register p—- Ram Letch Letch ROM
]
n &
1 i
- g
i -
.
- I l ¥][
L]
1 .
i 1 1 Program
: Address
i [Tl o | Stack Register
[Poimter
: w ;
n
D e [(o o
H gister
n
: InterTupt, Serial Port | HE -
: and Timer Blocks L=l
H Y
]
: C] FProgram | __ 2
H PSWY Count=r
PSENH d—:— -
|-
ALE/P ROGH =—g— Timing |-5
1 and |- E1 o I DPTR
E&HAFPP —4—=| Canppal 'E o
RST =1 =
1 7
: "
1 Part 1 Part 3
' Latch Latch
i .
n
]
L]
n —
]
[Paort 1 | | . Port 3
: OsC. Dirivers Dirivers
n
n

! ¥ =y I'H """""""""""" Hl HH’I """"""

PLO-PLY P30 - P3.T

Fig 3 :8051 Architecture

8051 SPECIFIC FEATURES

>

Y VY

YVVVYVVVYVY

The 8051 architecture provides many functions (CPU, RAM, ROM, I/O, interrupt logic,
timer, etc.) in a single package

8-bit ALU, Accumulator and 8-bit Registers; hence it is an 8-bitmicrocontroller

8-bit data bus — It can access 8 bits of data in one operation

16-bit address bus — It can access 2'° memory locations — 64 KB (65536 locations) each
of RAM and ROM

On-chip RAM - 128 bytes (data memory)

On-chip ROM - 4 Kbyte (program memory)

Four byte bi-directional input/output port

UART (serial port)

Two 16-bit Counter/timers

Two-level interrupt priority and Power saving mode (on some derivatives)

Department of EEE, ATMECE, Mysuru

http://en.wikipedia.org/wiki/Central_processing_unit
http://en.wikipedia.org/wiki/Random_access_memory
http://en.wikipedia.org/wiki/Read-only_memory
http://en.wikipedia.org/wiki/Input/output
http://en.wikipedia.org/wiki/Interrupt
http://en.wikipedia.org/wiki/Timer
http://en.wikipedia.org/wiki/Integrated_circuit_packaging
http://en.wikipedia.org/wiki/Arithmetic_logic_unit
http://en.wikipedia.org/wiki/8-bit
http://en.wikipedia.org/wiki/8-bit
http://en.wikipedia.org/wiki/Data_bus
http://en.wikipedia.org/wiki/Address_bus
http://en.wikipedia.org/wiki/Kilobyte
http://en.wikipedia.org/wiki/Bytes
http://en.wikipedia.org/wiki/Byte
http://en.wikipedia.org/wiki/Input/output
http://en.wikipedia.org/wiki/Serial_port
http://en.wikipedia.org/wiki/Timer
http://en.wikipedia.org/wiki/Interrupt
http://en.wikipedia.org/wiki/Power_management

Microcontrollers Lab Manual (BEE403):2024-2025

The 8051 Programming Model

8 | ea 8 | as* 8 |89 8 |88
P 3 TMOD TCON i
RETE 5]W Register Register Register Registor
A 8 Interrupt Registers Timar Control Rogisters
Rogister st
— feste I BTl (A1) (%) [T %
Math Regiaters THO T ™I ¥
Counter Countes Counter Countar
Timer/Counter Registers
8 | 98* 8 | 99 8 | 87 8 | 0o’
" SCON SBUF PCON PSW
Register Register Hegistar Register
Serial Dats Registers Flags
General.
Purpose
e 5] 6l
Stack
Polmer
30
o Bit i3
Adoress Bt Addresses for this RAM Area Ondy
20 Area 0o
¥ Register
Bank
18 3
17 Registor A | 83| & | 82 16 | No Address
Bonk Data Pointer
10 2 oM | Rt Program Counter
oF Register
Bank
08 \
07 R7 8 | 8o 8 | 90° 8 | a0t 8 | no*
06 ;: Port 0 Port | Port 2 Port 3
04 Latch Lateh Lateh Lateh
fogister
?m 04 Re
0 03
o ' Number of 1 Direct Byte Adovess
Bits * Indieales B Addressabile
00 RO 000
Byte Internal Internal
Addrasses RAM ROM

Fig 4:8051 Programming Model

Department of EEE, ATMECE, Mysuru

Microcontrollers Lab Manual (BEE403):2024-2025

8051 Microcontroller Instruction Set

Table 1.1: Instructions that Affect Flag Settings

Instruction Flag Instruction Flag
C ov AC C ov AC

ADD X X X | CLRC O

ADDC X X X | CPLC X

SUBB X X X | ANL C,bit X

MUL O X ANL C,/bit X

DIV O X ORL C,bit X

DA X ORL C,/bit X

RRC X MOV C,bit X

RLC X CINE X

SETBC 1

Note: 1. Operations on SFR byte address 208 or bit addresses 209-215 (that is, the PSW or
bits in the PSW) also affect flag settings.

Table 1.2The Instruction Set and Addressing Modes

Rn Register R7-R0 of the currently selected Register Bank.

direct 8-bit internal data location’s address. This could be an Internal Data RAM location (0-127)
oraSFR [i.e., I/O

@R 8-bit internal data RAM location (0-255) addressed indirectly through register R1or RO.

#data 8-bit constant included in instruction.

#data 16 | 16-bit constant included in instruction.

addr 16 16-bit destination address. Used by LCALL and LIMP. A branch can be anywhere within
the 64K byte Program

addr 11 11-bit destination address. Used by ACALL and AJMP. The branch will be within the same

2K byte page ofprogram memory as the first byte of the following instruction.

Rel Signed (two’s complement) 8-bit offset byte. Used by SIMP and all conditional jumps.
Range is -128 to +127
Bit Direct Addressed bit in Internal Data RAM or Special Function Register.
.

Department of EEE, ATMECE, Mysuru

Microcontrollers Lab Manual (BEE403):2024-2025

Table 1.3:Instruction Set Summary

0 1 2 3 4 5 6 7
NOP JBC JB IJNB JC JNC JZ INZ
bit,rel bit, rel bit, rel rel rel rel rel
[3B, 2C] [3B, 2C] [3B, 2C] [2B, 2C] [2B, 2C] [2B, 2C] [2B, 2C]
AIMP ACALL AIMP ACALL AIMP ACALL AIMP ACALL
(PO) (PO) (P1) (P1) (P2) (P2) (P3) (P3)
[2B, 2C] [2B, 2C] [2B, 2C] [2B, 2C] [2B, 2C] [2B, 2C] [2B, 2C] [2B, 2C]
LIMP LCALL RET RETI ORL ANL XRL ORL
addrl6 addrl6 [2C] [2C] dir, A dir, A dir, a C, hit
[3B, 2C] [3B, 2C] [2B] [2B] [2B] [2B, 2C]
RR RRC RL RLC ORL ANL XRL JMP
A A A A dir, #data dir, #data dir, #data @A + DPTR
[3B, 2C] [3B, 2C] [3B, 2C] [2C]
INC DEC ADD ADDC ORL ANL XRL MOV
A A A #data A #data A, #data A, #data A, #data A, #data
[2B] [2B] [2B] [2B] [2B] [2B]
INC DEC ADD ADDC ORL ANL XRL MOV
dir dir A, dir A, dir A, dir A, dir A, dir dir, #data
[2B] [2B] [2B] [2B] [2B] [2B] [2B] [3B, 2C]
INC DEC ADD ADDC ORL ANL XRL MOV
@RO @RO A, @RO A, @RO A, @RO A, @RO A, @RO @RO0, @data
[2B]
INC DEC ADD ADDC ORL ANL XRL MOV
@R1 @R1 A, @R1 A @R1 A @R1 A @R1 A @R1 @R1, #data
[2B]
INC DEC ADD ADDC ORL ANL XRL MOV
RO RO A, RO A RO A RO A RO A RO RO, #data
[2B]
INC DEC ADD ADDC ORL ANL XRL MOV
R1 R1 A R1 A R1 A R1 A R1 A R1 R1, #data
[2B]
INC DEC ADD ADDC ORL ANL XRL MOV
R2 R2 A R2 A R2 A R2 A R2 A R2 R2, #data
[2B]
INC DEC ADD ADDC ORL ANL XRL MOV
R3 R3 A R3 A R3 A R3 A R3 A R3 R3, #data
[2B]
INC DEC ADD ADDC ORL ANL XRL MOV
R4 R4 A R4 A R4 A R4 A R4 A R4 R4, #data
[2B]
INC DEC ADD ADDC ORL ANL XRL MOV
R5 R5 A R5 A R5 A R5 A R5 A R5 R5, #data
[2B]
INC DEC ADD ADDC ORL ANL XRL MOV
R6 R6 A, R6 A, R6 A, R6 A R6 A R6 R6, #data
[2B]
INC DEC ADD ADDC ORL ANL XRL MOV
R7 R7 A R7 A R7 A R7 A R7 A R7 R7, #data
[2B]

Note: Key: [2B] = 2 Byte, [3B] = 3 Byte, [2C] = 2 Cycle, [4C] = 4 Cycle, Blank = 1 byte/1 cycle

Department of EEE, ATMECE, Mysuru

Microcontrollers Lab Manual (BEE403):2024-2025

Table 1.3. Instruction Set Summary (Continued)

8 9 A B C D E F

SIMP MOV ORL ANL PUSH POP MOVX A, MOVX

REL DPTR# C, /bit C, /bit dir dir @DPTR @DPTR, A
[2B, 2C] data 16 [2B, 2C] [2B, 2C] [2B, 2C] [2B, 2C] [2C] [2C]

[3B, 2C]

AIJMP ACALL AIMP ACALL AIMP ACALL AIMP ACALL
(P4) (P4) (P5) (P5) (P6) (P6) (P7) (P7)
[2B, 2C] [2B, 2C] [2B, 2C] [2B, 2C] [2B, 2C] [2B, 2C] [2B, 2C] [2B, 2C]

ANL MOV MOV CPL CLR SETB MOVX MOVX

C, hit bit, C C, bit bit bit bit A @RO WRO, A
[2B, 2C] [2B, 2C] [2B] [2B] [2B] [2B] [2C] [2C]

MOVC A, MOVC A, INC CPL CLR SETB MOVX MOVX
@A+ PC @A + DPTR DPTR C C C A @RI @RI, A

[2C] [2C] [2C] [2C] [2C]

DIV SUBB MUL CINE A, SWAP DA CLR CPL

AB A, #data AB #data, rel A A A A
[2B, 4C] [2B] [4C] [3B, 2C]

MOV SUBB CINE XCH DJIJNZ MOV MOV
dir, dir A, dir A, dir, rel A, dir dir, rel A, dir dir, A
[3B, 2C] [2B] [3B, 2C] [2B] [3B, 2C] [2B] [2B]

MOV SUBB MOV CINE XCH XCHD MOV MOV
dir, @RO A, @RO @RO, dir @RO, #data, rel A, @RO A, @RO A, @RO @RO, A
[2B, 2C] [2B, 2C] [3B, 2C]

MOV SUBB MOV CJINE XCH XCHD MOV MOV
dir, @R1 A, @R1 @R1, dir @R1, #data, rel A, @R1 A, @R1 A, @R1 @R1, A
[2B, 2C] [2B, 2C] [3B, 2C]

MOV SUBB MOV CJINE XCH DINZ MOV MOV
dir, RO A, RO RO, dir RO, #data, rel A RO RO, rel A RO RO, A
[2B, 2C] [2B, 2C] [3B, 2C] [2B, 2C]

MOV SUBB MOV CINE XCH DINZ MOV MOV
dir, R1 A, R1 R1, dir R1, #data, rel A, R1 R1, rel A R1 R1, A
[2B, 2C] [2B, 2C] [3B, 2C] [2B, 2C]

MOV SUBB MOV CINE XCH DJINZ MOV MOV
dir, R2 A R2 R2, dir R2, #data, rel A R2 R2, rel A R2 R2, A
[2B, 2C] [2B, 2C] [3B, 2C] [2B, 2C]

MOV SUBB MOV CINE XCH DJINZ MOV MOV
dir, R3 A R3 R3, dir R3, #data, rel A R3 R3, rel A R3 R3, A
[2B, 2C] [2B, 2C] [3B, 2C] [2B, 2C]

MOV SUBB MOV CINE XCH DINZ MOV MOV
dir, R4 A, R4 R4, dir R4, #data, rel A, R4 R4, rel A, R4 R4, A
[2B, 2C] [2B, 2C] [3B, 2C] [2B, 2C]

MOV SUBB MOV CINE XCH DINZ MOV MOV
dir, R5 A, R5 R5, dir R5, #data, rel A, R5 R5, rel A, R5 R5, A
[2B, 2C] [2B, 2C] [3B, 2C] [2B, 2C]

MOV SUBB MOV CINE XCH DINZ MOV MOV
dir, R6 A, R6 R6, dir R6, #data, rel A, R6 R, rel A, R6 R6. A
[2B, 2C] [2B, 2C] [3B, 2C] [2B, 2C]

MOV SUBB MOV CINE XCH DINZ MOV MOV
dir, R7 A, R7 R7, dir R7, #data, rel A, R7 R7, rel A R7 R7, A
[2B, 2C] [2B, 2C] [3B, 2C] [2B, 2C]

Note: Key: [2B] = 2 Byte, [3B] = 3 Byte, [2C] = 2 Cycle, [4C] = 4 Cycle, Blank = 1 byte/1 cycle

Department of EEE, ATMECE, Mysuru

Microcontrollers Lab Manual (BEE403):2024-2025

Table 1.4:AT89 Instruction Set Summary

Mnemonic Description Byte Oscil’ator
Period
ARITHMETIC OPERATIONS
ADD | ARn Add register to Accumulator 1 12
ADD | A direct | Add direct byte to Accumulator 2 12
ADD | A/@Ri | Add indirect RAM to Accumulator 1 12
ADD | A#data | Add immediate data to Accumulator 2 12
ADDC | ARn Add register to Accumulator with Carry 1 12
ADDC | A, direct | Add direct byte to Accumulator with Carry 2 12
ADDC | A,@Ri | Add indirect RAM to Accumulator with Carry 1 12
ADDC | A#data | Add immediate data to Acc with Carry 2 12
SUBB | ARn Subtract Register from Acc with borrow 1 12
SUBB | Adirect | Subtract direct byte from Acc with borrow 2 12
SUBB | A,@Ri | Subtract indirect RAM from ACC with borrow 1 12
SUBB | A#data | Subtract immediate data from Acc with borrow 2 12
INC A Increment Accumulator 1 12
INC Rn Increment register 1 12
INC direct Increment direct byte 2 12
INC @RI Increment direct RAM 1 12
DEC |A Decrement Accumulator 1 12
DEC Rn Decrement Register 1 12
DEC | direct Decrement direct byte 2 12
DEC @RI Decrement indirect RAM 1 12
INC DPTR | Increment Data Pointer 1 24
MUL | AB Multiply A & B 1 48
DIV AB Divide A by B 1 48
DA A Decimal Adjust Accumulator 1 12
10

Department of EEE, ATMECE, Mysuru

Microcontrollers Lab Manual (BEE403):2024-2025

Department of EEE, ATMECE, Mysuru

Mnemonic Description Byte Oscil,ator
Period
LOGICAL OPERATIONS
ANL | ARn AND Register to Accumulator 1 12
ANL | A direct AND direct byte to Accumulator 2 12
ANL | A @RI AND indirect RAM to Accumulator 1 12
ANL | A#data AND immediate data to Accumulator 2 12
ANL | direct,A AND Accumulator to direct byte 2 12
ANL | direct,#data AND immediate data to direct byte 3 24
ORL | ARnN OR register to Accumulator 1 12
ORL | Adirect OR direct byte to Accumulator 2 12
ORL | A@Ri OR indirect RAM to Accumulator 1 12
ORL | A#data OR immediate data to Accumulator 2 12
ORL | direct,A OR Accumulator to direct byte 2 12
ORL | direct,#data OR immediate data to direct byte 3 24
XRL | ARn Exclusive-OR register to Accumulator 1 12
XRL | Adirect Exclusive-OR direct byte to Accumulator 2 12
XRL | A@Ri Exclusive-OR indirect RAM to Accumulator 1 12
XRL | A#data Exclusive-OR immediate data to Accumulator 2 12
XRL | direct,A Exclusive-OR Accumulator to direct byte 2 12
XRL | direct,#data Exclusive-OR immediate data to direct byte 3 24
CLR | A Clear Accumulator 1 12
CPL A Complement Accumulator 1 12
RL A Rotate Accumulator Left 1 12
RLC |[A Rotate Accumulator Left through the Carry 1 12
RR A Right Rotate Accumulator 1 12
RRC |[A Rotate Accumulator Right through the Carry 1 12
SWAP | A Swap nibbles within the Accumulator 1 12
11

Microcontrollers Lab Manual (BEE403):2024-2025

Mnemonic Description Byte Oscil’ator
Period
DATA TRANSFER
MOV ARnN Move register to Accumulator 1 12
MOV A.direct Move direct byte to Accumulator 2 12
MOV A @RI Move indirect RAM to Accumulator 1 12
MOV A #data Move immediate data to Accumulator 2 12
MOV Rn,A Move Accumulator to register 1 12
MOV Rn,direct Move direct byte to register 2 24
MOV Rn,#data Move immediate data to register 2 12
MOV direct,A Move Accumulator to direct byte 2 12
MOV direct,Rn Move register to direct byte 2 24
MOV direct,direct Move direct byte to direct 3 24
MOV direct, @Ri Move indirect RAM to direct byte 2 24
MOV direct #data Move immediate data to direct byte 3 24
MOV @Ri,A Move Accumulator to indirect RAM 1 12
MOV @Ri,direct Move direct byte to indirect RAM 2 24
MOV @Ri,#data Move immediate data to indirect RAM 2 12
MOV DPTR,#datal6 Load Data Pointer with a16-bit constant 3 24
MOVC A @A+DPTR Move Code byte relative to DPTR to Acc 1 24
MOVC A Q@A+PC Move Code byte relative to PC to Acc 1 24
MOVX A @RI Move External RAM (8-bit addr) to Acc 1 24
MOVX A @DPTR Move External RAM (16-bit addr) to Acc 1 24
MOVX @RIi,A Move Acc to External RAM (8-bit addr) 1 24
MOVX @DPTR,A Move Acc to External RAM (16-bit addr) 1 24
PUSH direct stack Push direct byte onto 2 24
POP direct stack Pop direct byte from 2 24
XCH ARnN Exchange register with Accumulator 1 12
XCH A direct Exchange direct byte with Accumulator 2 12
XCH A Q@RI Exchange indirect RAM with Acc 1 12
XCHD A @RI Exchange low-order Digit indirect RAM L 1
with Acc
12

Department of EEE, ATMECE, Mysuru

Microcontrollers Lab Manual (BEE403):2024-2025

BOOLEAN VARIABLE MANIPULATION

CLR C Clear Carry 1 12
CLR bit Clear direct bit 2 12
SETB C Set Carry 1 12
SETB bit Set direct bit 2 12
CPL C Complement Carry 1 12
CPL bit Complement direct bit 2 12
ANL C,bit AND direct bit to CARRY 2 24
ANL C,/bit AND complement of direct bit to Carry 2 24
ORL C,bit OR direct bit to Carry 2 24
ORL C,/bit OR complement of direct bit to Carry 2 24
MOV C,bit Move direct bit to Carry 2 12
MOV bit,C Move Carry to direct bit 2 24
JC rel Jump if Carry is set 2 24
JNC rel Jump if Carry not set 2 24
JB bit,rel Jump if direct Bit is set 3 24
JNB bit,rel Jump if direct Bit is Not set 3 24
JBC bit,rel Jump if direct Bit is set & clear bit 3 24

PROGRAM BRANCHING
ACAL L addrll Absolute Subroutine Call 2 24
LCALL addrl6 Long Subroutine Call 3 24
RET Return from Subroutine 1 24
RETI Return from interrupt 1 24
AJMP addrll Absolute Jump 2 24
LIMP addrl6 Long Jump 3 24
SIMP rel Short Jump (relative addr) 2 24
JMP @A+DPTR Jump indirect relative to the DPTR 1 24
JZ rel Jump if Accumulator is Zero 2 24
INZ rel Jump if Accumulator is Not Zero 2 24

Compare direct byte to Acc and Jump if 3 Y
CINE A direct,rel Not Equal

13

Department of EEE, ATMECE, Mysuru

Microcontrollers Lab Manual (BEE403):2024-2025

Compare immediate to Acc and Jump if 3 y
CINE A #data,rel Not Equal

Compare immediate to register and Jump 3 y
CINE Rn,#data,rel if Not Equal

Compare immediate to indirect and Jump 3 ”
CINE @Ri,#data,rel if Not Equal
DJINZ Rn,rel Decrement register and Jump if Not Zero 2 24

Decrement direct byte and Jump if Not 3 0
DINZ direct,rel Zero
NOP No Operation 1 12

14

Department of EEE, ATMECE, Mysuru

Microcontrollers Lab Manual (BEE403):2024-2025

SOFTWARE PROGRAMS

15
Department of EEE, ATMECE, Mysuru

Microcontrollers Lab Manual (BEE403):2024-2025

MICRO VISION COMPILER AND SIMULATOR

STEPS FOR EXECUTING THE SOFTWARE PROGRAM:

STEP 1: Select the “Kiel nVision 3” software.

Mozilla Firefox

mpatibiit... | i3 Able2Extra oc... i untitled - Paint & Desktop Jus: 1:00PM

1%

File Edrt View ?:‘Pff‘,l Debug iash Peripherals Tools SVES Window !j_elp

B =. a‘ Newl-l!isigl’wjett... | 188 44| «
New Project Workspace...

RN Import pVisionl Project...

Project Workspace | Open Project...

s& Project

Manage »

R MR

1 C\Keil\C51\Examples\Hello\Hello.UV2
2 C\Kei\C51\Examples\Measure\Measure.UV2
3 CAKeil\CSI\RtxTiny2\Examples\Traffic\ Traffic.UV2
4 C:\Keil\C51\Examples\Blinky\Blinky.UV2
3 C:\Keil\C51\Examples\CSample\CSample.UV2

|
alElaln = |

16
Department of EEE, ATMECE, Mysuru

Microcontrollers Lab Manual (BEE403):2024-2025

STEP 3: Create new project by entering your “File name” and then “Save” your file

¥l pvions .
| Bile Edit View Project Debug Flash Pesipherals Tools SVCS\Y
D@ BB O |FTEL DN

ex|wsl EP N

-] e®crE-
Date modified
items match your search.

af=an @

STEP 4: Choose “Atmel” microcontroller from the database

| File Edit View Project Debug Flash Pefipherals Tools SVCS Window Help
Pt nr|oc|ks %% M| e 08 [BfE o e

P | E &K [Target

B[=a% ¥

17
Department of EEE, ATMECE, Mysuru

Microcontrollers Lab Manual (BEE403):2024-2025

STEP 5: Select “AT89C51” puC and click “OK” and then “YES”

| Bile Edit View Project| Debug Flzsh Peripherals Tools SVCS Wi Help

DGt RB| D |(EE 4B %R i el» 0|8 a BFEer
P 2 6B AXTarget AT =
| Project Workspace x
cru |
Vendor Amel
Device: ATBIC51 I™ Use Extended (LX51) instead of BL51
Toolset: C51 ™ Use Extended Asstimbler (8451) instoad of A5T
Data base Description:
(3 AT83EBS114 A ﬁlwmmmms with 32 1/O Lines. -
(3 AT85C51SND3 Timers/Courters, 6 Intemupts/2 Priority Levels, UART.
i Three-Level Program Memory Lock, 4K Bytes Rlash Memory.
£ ATe7Fs1 128 Bytes Onchip RAM
€ ATE7FSIRC
€3 AT87FS2
€1 AT87FS5WD
£ AT89C1051
(3 AT8C1051U
(3 ATEC2051
-3 AT89C4051
< > -3 ATexCs!
{3 AT8C5115
(3 ATBIC5130 . =
i e - -H“' ------ J » « ’
BE@ @ ok | camos | _tee |
T
e - pvis

_ File Edit View Project Debug Flash Peripherals Tools SVCS Window Help

EH@ P BER(D[EE %Y R A« sl | S Q EBE0 e P m

e

@ 8 i [Targett -lam e
Project Workspace - x

Copy Standard 8051 Stagtup Code to Project Folder and Add File to
Project 7

Yes No |

18
Department of EEE, ATMECE, Mysuru

Microcontrollers Lab Manual (BEE403):2024-2025

righerals Tools SVCS Window Help
& 6 %% % ~I[aa] # |
lam=

%Eile Edit View Project Debug/ Flash Peripherals Tools SVCS Window Help

psHGsBR{oeEE o %R W a4 |-
P E e X g Target -la= @
Project 93

524 Targetl
[F -2 Source Group
4 :i (&) STARTUP.ASL D

STEP 7: Go to “File” and select “New” for text (program) Editing Window.

R

[#] Edit View, Broie Debug Flash Peripherals Tools SVCS Window Help

- =0T 7 Gl M| - |2 @
“l &= =

%Eile Edit View Project Debug Flash Peripherals Togl” SVCS Window Help

el R o0 |EE L %R R ~laaj| e > |
i | o K| 5Y ,ﬁ’élTargeH jﬁ% =

[Project wiorkspace M|

=24 Targetl

E@ Source Group 1
STARTUP.A51

19
Department of EEE, ATMECE, Mysuru

Microcontrollers Lab Manual (BEE403):2024-2025

STEP 8: Type your program in the editing window.

T VG - pVision3 - [TextS

Efile Edit View Project Debug Flash Periphefals Tools SVCS Window Help
Aedd| P RR |92 =E% %% S
& e i X Target1 v \iﬁ o=

|Project Workspace v x| ORG 000DH
@31 Targetl BACK: MOV P1, #00H
ACALL DELAY
ACALL DELAY
MOV P1,#0FFH
ACALL DELAY
ALCALL DELAY
{ ACALL DELAY
SJMP BACE

DELAY: MOV THCD, #01H
MOV TLO, #060H
MOV THO, #O0FOH
S5ETE TRO
REFEAT: JHNE TFO, EEFEAT
CLE TRO
CLE TFO

[<] |
E|l}ﬂ]|¢{}|@,| Text5

STEP 9: Save your program by going to “File” then “Save” option

cols SVCS Window Help

3 New.. - s ——
. - e Y B I B
-
Close AR @
Tl Sove 4 Ctrl+S =
Sive fx.. ORG 0000H
@ Save Al BACK: MOV P1, #00H
ACALL DELAY
Device Database... ACALL DELAY
License Management.. MOV P1,F0FFH
ACALL DELAY
ACALL DELAY
Print Setup... ACALL DELAY
& Print CtrisP SJMP BACK
Print Preview
DELAY: MOV TMOD, $01H

20
Department of EEE, ATMECE, Mysuru

Microcontrollers Lab Manual (BEE403):2024-2025

STEP 10:

> “Save in” your project folder.
Give file name with “*.asm” “extension”.
» And then click on “Save” option

FOEJEE

@ ([BR] 0 g7 @

Project Workspace B oo \ /
251 Targetl AN 1
ORG 0000H
) S UE:A?;:;ILI BACK: MOV P1, #{ 'WSaveas \ ‘ 3l
""" ; ACALL DELA N

ACALL DELR - [vistwanath | e®EcE
MOV P1,$0%
ACALL DELZ L Name Date modified Type
ACALL DELZ Hece':“’*%" || STARTUP.A51 11-5ep-07 250 PM A51 File
aces
) | 1VG.plg 21-Jen-12510PM PLGFile
- % ve 21-Jan-12 4:54 PM piVision Pr
DELAY: , Deskiop

MOV TLO,
MOV THO, {
SETB TRO

REPEAT: JNB TMOD,

CLR TRO
CLR TFO
RET
END
N\ T] 5
el | Fil name: @ asm) | Save ?
7E|ml\’4}|“§ | — ‘ Save as type: | ~| Canc —

[xIr

STEP 11:
e Right click on “Source Group1”
Select “Add Files to “Group Source Group 1”.

Al e 8 @ @BE TN

NSt X 5 ,{%ITavg:H j Ny
lorkspoce X Iac«xa\mms\mwwm

I m ORG_NONOE,
vl Options for Group ‘Source Group 1'

4] Rebuild all target files

(%] Build target
R s
X St 08
)]
= NewGrovp. _______F
i Add Files to Group ‘Source Group 1' PEAT

& Manage Components
Remove Group 'Source Group 1' and its Files

[v] Include Dependencies

IET —

Department of EEE, ATMECE, Mysuru

21

Microcontrollers Lab Manual (BEE403):2024-2025

STEP 12:
» Select to your Project folder

> Select “Files of type” as “ASM source file” if your program is written in assembly

level language or else select 4C file” if your program is in C language

Eile Edit View Py

DEHO L RBY MM -8 @ @BEeTm

Project Workspace =] | S RS : \ {
Projes! Woriapec B ckeincsn, HELLO\p
=53 Torgetl i ~ \)
= OR
&3 Source Group1 i

[STARTUP.ASL

~emsE
ACALL DE! = Date modified Type Siz
11-Sep-07 250 PM AS1 File
2A-Jan-12537PM ASMFile
21-Jan-12510PM PLGFile
21-Jan-12458PM yVision Project

ERT:

5 @X|Target1 A=

[Project Warkspace - x| - -
[C:\Keil\C51\Examples\HELLO\project\Vishwanath\VG.asm \
523 Targetl
5-£5 SourceGroupl N{Y O . ORG 00008 \ ‘ |
STARTUP.ASL BACK: MOV flf:m:] Add Files to Group ‘Source Group 1' \ 2
ACALL D';L Look i [1) Vishwansth K
05 MOV P1,3%(.
06 DEL | MName Date modifie Type siz
g; ras) p.ASL 11-5ep-07 2:50 A1 File
o sour Bm{ Eve 21-Jan-125:37 P
10 N
1 DELAY: MOV TMOL,|
12 MOV TLO,
13 MOV THC,
14 SETB TRO
15
16 REPEAT: JNB TMOL,
17 CLR TRO
18 CLR TFQ
13 RET
n BND o o -
2 [/ N
Fils name: |va \ Add
M Files of type: |Am Source file ("5 “src; ~a") ~| Close
E
IR ve |

T VG - pvisi
File Edit \i Project Debug Flash Peripherals Tools 5VCS Window Help
2= - $ BB | D2 |EE 0% %K Gl lah| 0w« -
£ [E E 1 gk |Target1 e =

| Project Workspa - x|)))
E CHAKeilC51\Examples\HELLON project\Vishwanath\VG.asm
=i ey o1 ORG 0000H
G423 S Group 1

E-E3 Sou C_FEAR?JEMl 02 BELCK: MOV P1, %00H

- 03 ACALL DELRY

04 ACALL DELAY
nc LT] ™ &£nTTm

22
Department of EEE, ATMECE, Mysuru

Microcontrollers Lab Manual (BEE403):2024-2025

STEP 14: Build the target.
e (o to “Project”.
Select “Build Target” or press “F7” key.

File Edit View |Project| Debug Flash Peripherals Tools SVCS5 Window Help

Mew p¥ision Project... E{ﬂ - =3 & 4

Mew Project Workspace..,

Import pWsionl Project...

Project Workspace Open Projact..,

g-823 Targetl Close Projed

Manage L

Select Device \or Target 'Target1'
Remove Item
Options for Target ‘Target1'

Clean target
[¥] Build target
%% Rebuild all target files
Batch Build...
g Translate C:\Keil\C51'\Examples\HELLO\project\Vishwanath\VG.asm
Stop build

Important: After building the target check for the error(s). If there is any error(s) go back to
your program, correct the error(s). The output window shows the line where error is found.

After correcting the error go back to Step 14 and repeat the processes until there is zero error
O e

File Edit Wiew Project Debug Flash Pegpherals Tools 5VCS Window Help

W Ve - pvision3

asadtme| oo e o% % Slea# |« » 02| @@ [T
e 5 g Target [a® =
Project Wi -
roje o] ce ol CifKeinC51\ Examples\HELLO\project\Vishwanath\VG.asm
| EJE T k5|:tal |
arg
- ol ORG 0OO0O0O0H
Shlrrercrsul| | B -
- ACALL DELRY
4 ACALL DELRY
5 MOV Pl1,#0FFH

IR R ““VG

*(Build target 'Target 1
'|assembling vG.asm. ..

linking...
#&% WARNING L5: CODE JFPACE MEMCRY CVERLAP
FROCM: 0000H

Program S5ize: datPf=9.0 =mdata=0 code=5Z
"YG" — 0 Error(s), 3 Warning(s).

23
Department of EEE, ATMECE, Mysuru

Microcontrollers Lab Manual (BEE403):2024-2025

STEP 15: Debugging.

» Go to “Debug”.
ct “Start/ Stop Debug Session” or press “Ctrl+F5” key.

File Edit Yiew Project erugl Flash Pkripherals Tools SVC5 Window Help
'1% = | ﬁ s %@ Start/Stop Debug Session Ctrl+F5 L”ﬁ‘# - = [‘]E =4
: m Lon
@ & @ 53 Run F5 E @
|Project Warkspace P Step F11
- Vishwanath\VG.asm
E1-#23 Targetl P Step Over F10
-3 Source Group 1 (R Step Qut of current Function Ctrl+F11 he
Run to Cursor line Ctrl+F10
Stop Running ¥
FH
-4
Breakpoints... Ctrl+B v
nsert/Remove Breakpoint
Insert/R Breakpoi Fa y
ﬂ Enable/Disable Breakpoint Ctrl+F2
Disable All Breakpoints
. . . D1H
@. Kill All Breakpoints Ctrl+Shift+F2 0 60H
5> Show Mext Statement DFOH
Debug Settings EPERT
Ei Enable/Disable Trace Recording
{5 View Trace Records Ctrl+T
Execution Profiling 4

A0 iy G\ Start/Stop Debug Session CtrieFS —:_LAM PR S
SEe X
Project Warkspace
=) 3 Targetl :
5 43 Source Group1 (14 5
[3) STARTUPA .,
2] VG.asm © stopF

pVision

Executjon Profiling » |

STEP 15: Selecting Output Window.
e Choose appropriate Output window (Memory/serial/logic analyzer) according to your
program output.
e Type in the input parameters (memory address/ port address/ timer) according to your

program.

24
Department of EEE, ATMECE, Mysuru

Microcontrollers Lab Manual (BEE403)2024-2025

STEP 16: Execution.

Go to “Debug”, Select “Run” or press “F5” key for one time execution.

For single step\execution Rress “F11”.

Y VG - pVision3

File Edit Wiew Project [Debug| Flash Pelipherals Tools SVC5 Window Help

3 = % Start/Stop Defug Sessien Ctrl+F5 j{ﬂ (@
NEO®D Run v 5B »
Project Workspace 1 Step F11)
Register | Valul % Step Over . WWishwanath\VG.asm
= Reas)
g:} igg *} Runte Cursor line Ctrl+F10 E::
r2 00 -
3 00
r4 <00 [T Breakpoints... Ctrl+B :
: igg I Insert/Remove Breakpoint Fg v
- Sys i o0 i Disable All Breakpoints -
a 00 i Kill All Breakpoints Ctrl+5Shift+F3 DEO-’
:p ig? o Show Mext Statement DFOH
spmax 007 FPRAT
Outcome:
Before Execution
Address Data Address Data
0x8100 0x12 0x8200 0x00
0x8101 0x24 0x8201 0x00
0x8102 0x56 0x8202 0x00
0x8103 OxFF 0x8203 0x00
0x8104 OXEE 0x8204 0x00
0x8105 O0xAB 0x8205 0x00
0x8106 0x10 0x8206 0x00
0x8107 0x03 0x8207 0x00
After Execution
Address Data Address Data
0x8100 0x12 0x8200 0x12
0x8101 0x24 0x8201 0x24
0x8102 0x56 0x8202 0x56
0x8103 OXFF 0x8203 OxFF
0x8104 OXEE 0x8204 OXEE
0x8105 O0xAB 0x8205 OxAB
0x8106 0x10 0x8206 0x10
0x8107 0x03 0x8207 0x03

Department of EEE, ATMECE, Mysuru

25

Microcontrollers Lab Manual (BEE403):2024-2025

1.Data Transfer — Block move, Exchange, Sorting, Finding largest element

inan Array

Program no 1: Data Transfer - Block move, Exchange

Objective: To transfer 8 bytes of data from external memory location starting from 8100h to

external memory location starting from 8200h

Software: Keil uVision 3

MOV RO, #08H ; initialize the count

MOV R1, #81H ; initialize the source memory location higher byte

MOV R2, #82H ; initialize the destination memory location higher byte

MOV R3, #00H ; initialize the destn& source location lower byte
BACK: MOV DPH, R1 ; get the source memory location address to DPTR

MOV DPL, R3

MOVX A, @DPTR ; get the data from source memory to Accumulator
MOV DPH, R2 ; get the destination memory location address to DPTR

MOVX @DPTR, A ; copy the accumulator content to destination memory

INC R3 ; increment to next source and destination memory
DJINZ RO, BACK ; decrement count. If count! =0 go to label “BACK”
SIMP $

END

Algorithm

1. Initialize registers to hold count data & also the source & destination addresses.

2. Get data from source location into accumulator and transfer to the destination location.
3. Decrement the count register and repeat step till count is zero.

Note: For data transfer with overlap start transferring data from the last location of

Source array to the last location of the destination array.

Department of EEE, ATMECE, Mysuru

26

Microcontrollers Lab Manual (BEE403):2024-2025

Outcome:

Address | Data Address | Data
0x8100 0x12 0x8200 0x12
0x8101 0x24 0x8201 0x24
0x8102 0x56 0x8202 0x56
0x8103 | OXFF 0x8203 OXFF
0x8104 | OXEE 0x8204 | OXEE
0x8105 | OXAB 0x8205 | OXAB
0x8106 0x10 0x8206 0x10
0x8107 0x03 0x8207 0x03

Before exec After Exe

At the end of the program

1. Students will be able to program for data movement

Result: At the end of the Program execution, block of data is transferred from source memory to
destination memory

Department of EEE, ATMECE, Mysuru

27

Microcontrollers Lab Manual (BEE403):2024-2025

Program no:2

Objective: To exchange 8 bytes of data between external memories location starting from 8100h

and external memory location starting from 8200h

ORG 0000H
MOV RO, #08H ; initialize the count
MOV R1, #81H ; initialize the memory1 location higher byte
MOV R2, #82H ; initialize the memory2 location higher byte
MOV R3, #00H ; initialize the memoryl&memory?2 location lower byte
BACK: MOV DPH, R1 ; get the memory1 location address to DPTR
MOV DPL, R3

MOVX A, @DPTR ; get the data from memory1 to Accumulator
MOV B,A ; copy the accumulator content to B register
MOV DPH, R2 ; get the memory?2 location address to DPTR
MOVX A @DPTR ; get the data from memory2 to Accumulator
XCH A,B ; exchange the accumulator and B register content
MOVX @DPTR,A ; copy the accumulator content to memory?2
MOV A,B ; get the B register content to accumulator

MOV DPH,R1 ; get the memoryl location address to DPTR

MOVX @DPTR, A ; copy the accumulator content to memoryl

INC R3 ; increment to next source and destination memory
DINZ RO, BACK ; decrement count. If count! =0 go to label “BACK”
SIMP $

END

Algorithm

1. Initialize registers to hold count data (array size) & also the source & destination addresses.
2. Get data from source location into accumulator and save in a register.

3. Get data from the destination location into accumulator.

4. Exchange the data at the two memory locations.

5. Decrement the count register and repeat steps till count is zero.

Department of EEE, ATMECE, Mysuru

28

Microcontrollers Lab Manual (BEE403):2024-2025

Outcome: Program No: 2

Before Execution

OUTCOME

Address | Data
0x8100 | 0Ox12
0x8101 | Ox24
0x8102 | 0x56
0x8103 | OxFF
0x8104 | OXEE
0x8105 | OxAB
0x8106 | 0x10
0x8107 | 0x03

Address | Data
0x8200 | 0x32
0x8201 | OxFF
0x8202 | OXAD
0x8203 | OXDA
0x8204 | 0x88
0x8205 | 0x99
0x8206 | 0x56
0x8207 | 0x55

After Execution

OUTCOME

Address | Data
0x8100 | 0x32
0x8101 | OxFF
0x8102 | OXAD
0x8103 | OXxDA
0x8104 | 0x88
0x8105 | 0x99
0x8106 | 0x56
0x8107 | 0x55

Address | Data
0x8200 | Ox12
0x8201 | 0x24
0x8202 | 0x56
0x8203 | OxFF
0x8204 | OXEE
0x8205 | OXAB
0x8206 | 0x10
0x8207 | 0x03

At the end of the program
Students will be able to program for data exchange between two external memory locations

Result
After execution data stored in 8 memory location of both 8100h-8107h and 8200h-8207h gets
interchanged.

29
Department of EEE, ATMECE, Mysuru

Microcontrollers Lab Manual (BEE403):2024-2025

Data Transfer — Largest/Smallest element in an Array

Program no: 3
Objective: To find the largest number in a given array of size 5 starting from 5100h external memory

location. The largest number has to be stored in 8100h external memory location

ORG 0000H
MOV R1,#04H ; initialize the count
MOV DPTR, #5100H ; initialize the external memory location
MOVX A @DPTR ; get the data from memory to accumulator
BACK: MOV B,A ; move the content from accumulator to B register
INC DPTR ; increment the external memory location
MOVX A @DPTR ; get the data from memory to accumulator
CJINE A,B,NEXT ; compare accumulator content and B register content, if not
equal Jump to label ‘NEXT’
DJNZ R1,BACK ; if A & B are equal, then decrement count, if count! =0
Jump to label ‘BACK’
SIJMP LAST ; If count=0, then short jump to label’ LAST’
NEXT: JNCL2 ; If A & B are not equal, then check CY=1(A<B)
; If CY! =1(A>B) jump to label ‘L2’
XCHA,B ; If CY=1, Exchange A & B
L2: DJNZ R1, BACK ; Decrement count, if count! =0, jump to label,” BACK’
LAST: MOV DPTR, #8100H ; Initialize new memory location for storing largest data
MOVX @DPTR,A ; move the largest data from accumulator to new memory
Location.
SIMP $
END

30
Department of EEE, ATMECE, Mysuru

Outcome: Program No: 3

Microcontrollers Lab Manual (BEE403): 2024-2025

Before execution

After execution

Address | Data
0x5100 | 0x12
0x5101 | 0x24
0x5102 | 0x56
0x5103 | OxFF
0x5104 | OXEE

Address

Data

0x8100

OxFF

For
largest

At the end of the program

Students will be able to program for determining the largest number in an given array

Result:

At the end of the program, the largest number in a given array of size 5 starting from 5100h external
memory location is entered & the largest number has to be stored in 8100h external memory location

Department of EEE, ATMECE, Mysuru

31

Program no: 4

Microcontrollers Lab Manual (BEE403):2024-2025

Objective: To find the smallest number in a given array of size 5 starting from 5100h external memory

BACK:

NEXT:

L2:
LAST:

Department of EEE, ATMECE, Mysuru

location. The largest number has to be stored in 8100h external memory location

ORG 0000H

MOV R1,#04H

MOV DPTR, #5100H
MOVX A ,@DPTR
MOV B,A

INC DPTR

MOVX A, @DPTR
CJINE A,B, NEXT

DINZ R1,BACK

SIMP LAST
JC L2

XCHA,B

DJIJNZ R1, BACK
MOV DPTR, #8100H
MOVX @DPTR, A

SIMP $
END

; initialize the count
; initialize the external memory location

; get the data from memory to accumulator
;move the content from accumulator to B register
;increment the external memory location

; get the data from memory to accumulator

;if A & B are equal, then decrement count, if count! =0

Jump to label ‘BACK’

;if count=0, then short jump to label’ LAST’

; If A& B are not equal, then check CY=1(A<B)
If CY=1jump to label ‘L2’

;JIf CY! =1, Exchange A & B

; Decrement count, if count! =0, jump to label,” BACK’

; Initialize new memory location for storing smallest data
; move the smallest data from accumulator to new memory

Location

; compare accumulator content and B register content, if not
equal Jump to label ‘NEXT’

32

Outcome: Program no: 4

Before Execution

Note: Replace JNC by JC to find
smallest number in a given array.

Address | Data
0x5100 | Ox12
0x5101 | Ox24
0x5102 | 0x56
0x5103 | OxFF
0x5104 | OxEE
After Execution
For smallest
Address | Data
0x8100 | Ox12

At the end of the program

Microcontrollers Lab Manual (BEE403):2024-2025

Students will be able to program for determining the smallest number in an given array

Result:

At the end of the program, the smallest number in a given array of size 5 starting from 5100h external
memory location is entered & the smallest number has to be stored in 8100h external memory location

Department of EEE, ATMECE, Mysuru

33

Microcontrollers Lab Manual (BEE403): 2024-2025

Data Transfer —Sorting

Program no: 5

Objective: The array of data which has to be arranged in the ascending order starts from 5100h external
memory location. The array contains 5 data’s. Rearrange the data in the ascending order

ORG 0000H
MOV R1, #04H ; initialize the step count

L1: MOV A, R1 ; move the count to accumulator
MOV R2, A ; move accumulator content to R2 (comparison)
MOV DPTR, #5100H ; Initialize the external memory location

L2: MOVX A @DPTR ; get the data from memory to accumulator

MOV B,A ; move the accumulator content to B register
INC DPTR ; increment the external memory location.
MOVX A, @DPTR ; get the data from memory to accumulator
CINEA, B, L3 ; compare accumulator content and B register content, if not
equal Jump to label ‘L3’

SIJMP L5 ; short jump to label L5

L3: JC L4 ; If A& B are not equal, then check CY! =1(A<B)

If CY =1(A>B) jump to label ‘L4’

SIJMP L5 ; short jump to label L5

L4: XCH A,B ;Exchange A & B
MOVX @DPTR, A ; move accumulator content to external memory
INC DPTR ; increment the external memory location

L5: DINZ R2, L2 ; decrement comparison count, if count! =0 then jump to
; label L2’.

DIJNZ R1, L1 ; decrement step count, if count! =0 then jump to label ‘L1’
SIMP $
END

34
Department of EEE, ATMECE, Mysuru

Outcome: Program no: 5

Before Execution

Address | Data
0x5100 | Ox1F
0x5101 | OxD4
0x5102 | 0x56
0x5103 | OxFF
0x5104 | 0x01

before

After Execution-Ascending

Address | Data
0x5100 | Ox01
0x5101 | Ox1F
0x5102 | 0x56
0x5103 | 0XD4
0x5104 | OxFF

At the end of the program

Microcontrollers Lab Manual (BEE403):2024-2025

Students will be able to program to sort number in an given array in ascending order.

Result

After execution, The array of data which has to be arranged in the ascending order starts from 5100h
external memory location and the array contains 5 data rearranged in the ascending order

Department of EEE, ATMECE, Mysuru

35

Program no: 6

Microcontrollers Lab Manual (BEE403):2024-2025

Objective: The array of data which has to be arranged in the descending order starts from 5100h
external memory location. The array contains 5 data’s. Rearrange the data in the ascending

L1:

L2:

L3:

L4:

L5:

Department of EEE, ATMECE, Mysuru

order

ORG 0000H

MOV R1, #04H
MOV AR1

MOV R2, A

MOV DPTR, #5100H
MOVX A, @DPTR
MOV B,A

INC DPTR

MOVX A, @DPTR
CINE AB,L3

SIMP L5
JNC L4

SIMP L5
XCHA,B

MOVX @DPTR,A
DEC DPL

XCH A,B

MOVX @DPTR, A
INC DPTR

DINZ R2, L2

DINZR1, L1
SIMP $
END

; initialize the step count

; move the count to accumulator

; move accumulator content to R2 (comparison)
; Initialize external memory location

; get the data from memory to accumulator

; move the accumulator content to B register.

; increment the external memory location.

; get the data from memory to accumulator

;compare accumulator content and B register content, if not

equal Jump to label ‘L3’

; short jump to label L5

;If A& B are not equal, then check CY=1(A<B)
If CY!=1(A>B) jump to label ‘L4’

; short jump to label L5

;JIf CY! =1, Exchange A & B
; move the data from accumulator to external memory

; decrement the lower byte of external memory

;Exchange A & B

; move accumulator content to external memory
; increment the external memory location

; decrement comparison count, if count! =0 then jump to

; label’ L2’.

; decrement step count, if count! =0 then jump to label ‘L1’

36

Outcome: Program no: 6

Before Execution

Note: Replace JNC by JC for arranging

the given data in ascending order.
Address | Data
0x5100 | Ox1F
0x5101 | OxD4
0x5102 | 0x56
0x5103 | OxFF
0x5104 | Ox01

before

After Execution

Descending
Address | Data
0x5100 | OxFF
0x5101 | OxD4
0x5102 | 0x56
0x5103 | OX1f
0x5104 | 0x01

At the end of the program

Microcontrollers Lab Manual (BEE403):2024-2025

Students will be able to program to sort number in an given array in descending order.

Result

After execution, the array of data which has to be arranged in the descending order starts from 5100h
external memory location and the array contains 5 data rearranged in the descending order

Department of EEE, ATMECE, Mysuru

37

Microcontrollers Lab Manual (BEE403):2024-2025

2. Arithmetic Instructions — Addition, Subtraction, Multiplication and
Division, Square, Cube — (16 Bits Arithmetic Operations — Bit Addressable)

Program no: 7

Objective: To add two 8 bit numbers placed in 8100h and 8101h external memory location. The
Outcome has to be stored in 8200h and 8201h external memory location.

Outcome:

ORG 0000H

MOV DPTR, #8100H
MOVX A ,@DPTR
MOV B, A

INC DPTR

MOVX A, @DPTR
ADD A /B

MOV DPTR, #8201H
MOVX @DPTR, A
MOV A, #00H
ADDC A, #00H

DEC DPL

MOVX @DPTR, A
SIMP $

END

; initialize external memory location

; get the data from memory to accumulator

; move the content from accumulator to B register
; increment the memory location

; get the data from memory to accumulator

; add the content of A and B

; initialize new memory location

; move the content from accumulator to memory
; move the value ‘00’ to accumulator

; add accumulator data with carry

; decrement lower byte of memory

; move the accumulator content to memory

Before Execution

After Execution

Address | Data Address | Data
0x8100 | OxFF 0x8200 | Ox01
0x8101 | OxFF 0x8201 | OxFE

At the end of the program

Students will be able to understand practical utilization of 8 bit Addition

Result:

Addition of two 8 bit numbers placed in 8100h and 8101h external memory location is
performed and the Outcome is stored in 8200h and 8201h external memory location.

38

Department of EEE, ATMECE, Mysuru

Program no: 8

Objective:

Department of EEE, ATMECE, Mysuru

Microcontrollers Lab Manual (BEE403):2024-2025

To add two 16 bit numbers, first 16 bit number placed in 8100h and 8101h external
memory location and second 16 bit number placed in 8200h and 8201h external memory
location. The Outcome has to be stored in 8300h, 8301h and 8302h external memory

location.

ORG 0000H

MOV DPTR,#8101H
MOVX A ,@DPTR
MOV B,A

MOV DPTR,#8201H
MOVX A, @DPTR
ADD AB

MOV DPTR,#8302H
MOVX @DPTR,A
MOV DPTR,#8100H
MOVX A, @DPTR
MOV B,A

MOV DPTR,#8200H
MOVX A, @DPTR
ADDC AB

MOV DPTR,#8301H
MOVX @DPTR,A
MOV A #00H
ADDC A #00H

DEC DPL

MOVX @DPTR,A
SIMP $

END

; initialize the external memory location

; get the 1% LSB data from memory to accumulator
; move the content from accumulator to B register

; initialize new memory location

: get the 2" LSB data from memory to accumulator
; add the content of A and B

; initialize new memory location

; move the accumulator content to memory

; initialize new memory location

; get the 1% MSB data from memory to accumulator
; move the content from accumulator to B register

; initialize new memory location

: get the 2" MSB data from memory to accumulator
; add the content of A and B with carry

; initialize new memory location

; move the accumulator content to memory

; move the value ‘00’ to accumulator

; add accumulator data with carry

; decrement lower byte of memory

; move the accumulator content to memory

39

Outcome Program No: 8

Microcontrollers Lab Manual (BEE403):2024-2025

Before execution

Before Execution After Execution

Address | Data

0x8100 | OxFF

0x8101 OxFF

Before execution

Address | Data
0x8300 | 0x01
0x8301 | OxFF
0x8301 | OXFE

0x8200 OxFF
0x8201 OxFF
Before execution
0x8300 0x00
0x8301 0x00
0x8301 0x00

At the end of the program

Students will be able to understand practical utilization of 16 bit Addition

Result

Addition of two 16 bit numbers is performed, first 16 bit number placed in 8100h and 8101h
external memory location and second 16 bit number placed in 8200h and 8201h external memory
location. The Outcome is stored in 8300h, 8301h and 8302h external memory location.

Department of EEE, ATMECE, Mysuru

40

Microcontrollers Lab Manual (BEE403):2024-2025

Program no: 9

Objective: To subtract two 8 bit numbers placed in 8100h and 8101h external memory location. The
Outcome has to be stored in 8200h and 8201h external memory location. The 8200h
memory location indicates the sign of the Outcome.

ORG 0000H
MOV DPTR, #8100H ; initialize external memory location
MOVX A @DPTR ; get the data from memory to accumulator
MOV B,A ; move the content from accumulator to B register
INC DPTR ; increment the memory location
MOVX A,@DPTR
SUBB A, B ; Subtract the content of B from Accumulator with borrow
MOV DPTR, #8201H ; initialize new memory location
MOVX @DPTR, A ; move the content from accumulator to memory
MOV A, #00H ; move the value ‘00’ to accumulator
SUBB A, #00H ; subtract ‘00’ from A with borrow
DEC DPL ; decrement lower byte of memory location
MOVX @DPTR, A ; move the accumulator content to memory location
SIMP $
END
Qutcome:
CASE 1: CASE 2:

Negative Outcome Positive Outcome

Before Execution Before Execution

Address Data Address Data

0x8100 0x02 0x8100 0x01

0x8101 0x01 0x8101 0x02

0x8200 0x00 0x8200 0x00

0x8201 0x00 0x8201 0x00

After Execution After Execution

Address Data Address Data

0x8100 0x02 0x8100 0x02

0x8101 0x01 0x8101 0x01

0x8200 OxFF 0x8200 0x00

0x8201 OxFF 0x8201 0x01

41
Department of EEE, ATMECE, Mysuru

Microcontrollers Lab Manual (BEE403):2024-2025

At the end of the program
Students will be able to understand subtraction of two 8 bit numbers
Result

Subtraction of two 8 bit numbers placed in 8100h and 8101h external memory location is
performed and the Outcome is stored in 8200h and 8201h external memory location.

42
Department of EEE, ATMECE, Mysuru

Microcontrollers Lab Manual (BEE403):2024-2025

Program no: 10

Objective: To subtract two 16 bit numbers, first 16 bit number placed in 8100h and 8101h external
memory location and second 16 bit number placed in 8200h and 8201h external memory
location. The Outcome has to be stored in 8300h, 8301h and 8302h external memory
location. The 8300h memory location indicates the sign of the Outcome.

ORG 0000H

MOV DPTR,#8101H ; initialize the external memory location

MOVX A ,@DPTR ; get the 1% LSB data from memory to accumulator

MOV B,A ; move the content from accumulator to B register

MOV DPTR,#8201H ; initialize new memory location

MOVX A @DPTR : get the 2" LSB data from memory to accumulator

SUBB AB ; Subtract the content of B from Accumulator with
borrow

MOV DPTR,#8302H ; initialize new memory location

MOVX @DPTR,A ; move the accumulator content to memory

MOV DPTR,#8100H ; initialize new memory location

MOVX A @DPTR ; get the 1% MSB data from memory to accumulator

MOV B,A ; move the content from accumulator to B register

MOV DPTR,#8200H ; initialize new memory location

MOVX A,@DPTR : get the 2" MSB data from memory to accumulator

SUBB A,B : Subtract the content of B from Accumulator with
borrow

MOV DPTR,#8301H ; initialize new memory location

MOVX @DPTR,A ; move the accumulator content to memory

MOV A,#00H ; move the value ‘00’ to accumulator

SUBB A,#00H ; subtract ‘00’ from A with borrow

DEC DPL ; decrement lower byte of memory location

MOVX @DPTR,A ; move the accumulator content to memory

SIMP $

END

43
Department of EEE, ATMECE, Mysuru

Outcome Program no: 10

CASE 2:

Positive Outcome

Before execution

Address | Data
0x8100 0x12
0x8101 0x45
0x8200 0x23
0x8201 0x12
0x8300 0x00
0x8301 0x00
0x8302 0x00
Before execution
Address | Data
0x8300 | 0X00
0x8301 | 0X10
0x8302 | OxCD

CASE 1:
Negative Outcome
Before
execution
Address | Data
0x8100 | 0x23
0x8101 | 0x12
0x8200 | 0x12
0x8201 | 0x45
0x8300 | 0x00
0x8301 | 0x00
0x8302 | 0x00
Before
execution
Address | Data
0x8300 | OXFF
0x8301 | OXEF
0x8302 | 0x33

At the end of the program

Microcontrollers Lab Manual (BEE403):2024-2025

Students will be able to understand 16 bit subtraction of positive and negative outcome.

Result

Subtraction of two 16 bit numbers is performed, first 16 bit number placed in 8100h and
8101h external memory location and second 16 bit number placed in 8200h and 8201h external memory
location. The Outcome is stored in 8300h, 8301h and 8302h external memory location.

Department of EEE, ATMECE, Mysuru

44

Microcontrollers Lab Manual (BEE403): 2024-2025

Program no: 11

Objective: To multiply two 8 bit numbers placed in external memory location 8100h and 8101h. The
Outcome will be stored in external memory location 8200h and 8201h.

ORG 0000H

MOV DPTR, #8100H ; initialize the external memory location

MOVX A, @DPTR ; get the data from memory to accumulator

MOV B,A ; move the content from accumulator to B register

INC DPTR ; increment the memory location

MOVX A @DPTR ; get the data from memory to accumulator

MUL AB ; Multiply the content of A and B

MOV DPTR,#8201H ;initialize the new memory location

MOVX @DPTR,A ; move the accumulator content (LSB of multiplied
; ans.) To memory location 8201h

MOV A,B ; Move B content (MSB of multiplied ans.) To A

DEC DPL ; decrement lower byte of memory location

MOVX @DPTR,A ; move the accumulator content to memory location

SIMP $

END

Outcome Program no: 11

Before Execution

Address | Data
0x8100 | OxFF
0x8101 | OxFF

After Execution

Address | Data
0x8200 | OxFE
0x8201 | Ox01

At the end of the program

Students will be able to understand 8 bit multiplication.
Result At the end of the execution two 8 bit numbers are placed in external memory location 8100h
and 8101h and the multiplication Outcome is stored in external memory location 8200h and 8201h

45
Department of EEE, ATMECE, Mysuru

Microcontrollers Lab Manual (BEE403):2024-2025

Program no: 12
Objective: To multiply 8 bit number placed in external memory location 8100h with the 16 bit
number placed in external memory location 8200h and 8201h .The Outcome will be stored
in external memory location 8300h, 8301h and 8302h.

ORG 0000H

MOV DPTR,#8100H ; initialize the external memory location

MOVX A @DPTR ; get the data from memory to accumulator

MOV B,A ; move the content from accumulator to B register
MOV RO,A ; get the multiplier to RO register

MOV DPTR,#8201H ; get the lower byte of multiplicand to accumulator
MOVX A,@DPTR

MUL AB ; multiply multiply*lower byte multiplicand

MOV DPTR, #8302H
MOVX @DPTR,A

;store the lower byte Outcome in Outcome+2 memory

MOV R1,B ; move the upper byte Outcome in R1

MOV DPTR,#8200H ; get the upper byte of multiplicand to accumulator

MOVX A, @DPTR

MOV B,R0 ; get the multiplier to B register

MUL AB ; multiply multiply*upper byte multiplicand

ADDC AR1 ;Add lower byte Outcome with R1 (upper byte
Outcome of lower multiplicand multiplication)

MOV DPTR,#8301H ; store the Outcome in Outcome memory+1 location

MOVX @DPTR,A

MOV A B ; get the upper byte Outcome of upper multiplicand

ADDC A #00H ; add the carry to upper multiplicand Outcome

DEC DPL

MOVX @DPTR,A ; store the Outcome in Outcome memory location

SIMP $

END

Department of EEE, ATMECE, Mysuru

46

Outcome: Program no:12

Before Execution

Address | Data
0x8100 | OXFF
Address | Data
Address | Data 0x8300 | Ox00
0x8200 | OxFF 0x8301 | Ox00
0x8201 | OxFF 0x8302 | Ox00
After Execution
Address | Data Address | Data
0x8100 | OxFF 0x8300 | OXFE
0x8301 | OXFF
0x8302 | 0x01
Address | Data
0x8200 | OXFF
0x8201 | OxFF

At the end of the program

Microcontrollers Lab Manual (BEE403):2024-2025

Students will be able to understand Program to multiply 8bit number with 16 bit number.

Result

At the end of the execution, 8 bit number placed in external memory location 8100h is multiplied
with the 16 bit number placed in external memory location 8200h and 8201h .The Outcome is stored
in external memory location 8300h, 8301h and 8302h.

Department of EEE, ATMECE, Mysuru

47

Program no: 13

Objective:

L1:

L2:

Microcontrollers Lab Manual (BEE403):2024-2025

To multiply 16 bit numbers placed in internal memory location 30h and 31h with the

16 bit number placed internal memory location 40h and 41h .The Outcome will be stored
in internal memory location 50h, 51h, 52h and 53h.

ORG 0000H

MOV R2,#00H

MOV B,31H
MOV A/41H
MUL AB
MOV 53H,A
MOV R0,B
MOV B,31H
MOV A,40H
MUL AB
MOV R1,B
ADD ARO
JNC L1

INC R1
MOV RO,A
MOV B,30H
MOV A/41H
MUL AB
ADD ARO
JNC L2

INC R1
MOV 52H,A
MOV AB
ADD AR1

JNC L3

; clear R2 register

; get lower byte of inputl to register B

; get lower byte of input2 to register A

; multiply two inputs

; store the lower byte Outcome+3 memory location

; save the partial Outcomel in RO

; get lower byte of inputl to register B

; get upper byte of input2 to register A

; multiply two inputs

; store the partial Outcome2 in register R1

; add the partial Outcomel with lower byte Outcome
; after addition if carry=0, jump to label “L1”

; if carry! = 0, increment partial Outcome2

; store the partial Outcome3 in RO

; get upper byte of inputl to register B

; get lower byte of input2 to register A

; multiply two inputs

; add partial Outcome3 with lower byte of the multiplied Outcome
; after addition if carry=0, jump to label “L1”

; if carry! = 0, increment partial Outcome2

; store the partial Outcome3 in Outcome+2 memory location
; get the upper byte of the Outcome to accumulator

; add partial Outcome2 with the accumulator content

; after addition if carry=0, jump to label “L1”

48

Department of EEE, ATMECE, Mysuru

INC R2

L3:MOV R1,A

MOV B,30H
MOV A,40H
MUL AB
ADD AR1
JNC L4

INC R2

L4:MOV 51H,A

MOV A B
ADD AR2
MOV 50H,A
SIMP $

END

Outcome:

Microcontrollers Lab Manual (BEE403):2024-2025

; iIf carry! = 0, increment register R2

; store the partial Outcome? to register R1
; get upper byte of inputl to register B

; get upper byte of input2 to register A

; multiply two inputs
; add partial Outcome2 with the accumulator content
; after addition if carry=0, jump to label “L1”

; if carry! = 0, increment register R2

; store the lower byte Outcome+1 memory location

; get the upper byte Outcome of the multiplication

; add the accumulator content with R2 content

; store the upper byte Outcome in Outcome+0 memory location

Before Execution

Address | Data
0x0030 | OxFF
0x0031 | OXFF Address | Data
0x0050 | 0x00
Address | Data 0x0051 | Ox00
0x0040 | OXFF 0x0052 | 0x00
0x0041 | OxFF 0x0053 | 0x00
After Execution
Address | Data Address | Data
0x0030 | OxFF 0x0050 | OXFF
0x0031 | OxFF 0x0051 | OXFE
0x0052 | 0x00
0x0053 | 0x01
Address | Data
0x0040 | OxFF
0x0041 | OxFF

Department of EEE, ATMECE, Mysuru

49

Microcontrollers Lab Manual (BEE403):2024-2025

At the end of the program

Students will be able to understand Program to multiply two 16 bit numbers.

Result
At the end of the execution, 16 bit numbers placed in internal memory location 30h and 31h is

multiplied with the 16 bit number placed internal memory location 40h and 41h .The Outcome is stored
in internal memory location 50h, 51h, 52h and 53h.

50
Department of EEE, ATMECE, Mysuru

Microcontrollers Lab Manual (BEE403):2024-2025

Program no: 14

Objective: To perform 8 bit / 8bit division. Dividend is placed in external memory location 8200h,
and divisor is placed in the external memory 8100h, the Outcome will be placed in the
memory location 8300h (quotient) and 8301h (remainder)

ORG 0000H

MOV DPTR, #8100H ; get the divisor data address

MOVX A, @DPTR ; get the divisor to accumulator

MOV B, A ; save the divisor in the register B

MOV DPTR, #8200H ; get the dividend data address

MOVX A, @DPTR ; get the dividend to accumulator

DIV AB ; divide A/B

MOV DPTR, #8300H ;get the quotient memory address to DPTR
MOVX @DPTR, A ; store the quotient in 8300h memory location
MOV A B ; get the remainder to accumulator

INC DPTR ; get the next address to store the remainder
MOVX @DPTR,A ; store the remainder in 8301h memory location
SIMP $

END

Outcome:
Before Execution

Address | Data
0x8100 | 0x13
0x8200 | Ox45

After Execution

Address | Data
0x8300 | 0x03
0x8301 | Ox0C

At the end of the program

Students will be able to understand Program 8 bit / 8bit division.

Result : At the end of the execution, Dividend is placed in external memory location 8200h, and divisor
is placed in the external memory 8100h, the Outcome is placed in the memory location 8300h (quotient)
and 8301h (remainder).

51
Department of EEE, ATMECE, Mysuru

Microcontrollers Lab Manual (BEE403):2024-2025

Program no: 15

Objective: To find square of given number, input is placed in external memory location 8100h,
and Outcome is placed in the external memory 8101h and 8102h.

ORG 0000H

MOV DPTR,#8100H ; get the source address

MOVX A @DPTR ; get the input data to accumulator

MOV B, A ; move the input data to B register

MUL AB ; get the square of the number

INC DPTR ; get the Outcome+1 address to store the square Outcome
INC DPTR

MOVX @DPTR, A ; save the lower byte of the Outcome

DEC DPL ; get the Outcome memory location

MOV A B ; get the upper byte of the Outcome to the Accumulator
MOVX @DPTR, A ; store the upper byte of the Outcome to memory location
SIMP $

END

Outcome:

Before Execution

Address | Data
0x8100 | OxFF

After Execution

Address | Data
0x8101 | OxFE
0x8102 | Ox01

At the end of the program
Students will be able to understand Program find square of a given numbers.
Result
At the end of the execution, input is placed in external memory location 8100h, and Outcome is placed
in the external memory 8101h and 8102h

52
Department of EEE, ATMECE, Mysuru

Microcontrollers Lab Manual (BEE403):2024-2025

Program no: 16

Objective: To find cube of given number, input is placed in external memory location 8100h, and
Outcome is placed in the external memory 8200h, 8201h and 8202h

ORG 0000H

MOV DPTR,#8100H ; get the source address

MOVX A @DPTR ; get the input data to accumulator

MOV B, A ; move the input data to B register

MOV RO,A ; copy the input data to the register RO

MUL AB ; get the square of the input number

MOV R1,B ; copy the upper byte of the square Outcome in the R1 register
MOV B,R0 ; get the input data to register B

MUL AB ; get the lower byte of the cube Outcome

MOV DPTR,#8202H ; get the Outcome+2 memory location

MOVX @DPTR,A ; store the lower byte of cube output in Outcome+2 memory
MOV R2,B ; store the upper byte partial Outcome in R2

MOV B,R1 ; get the previous partial Outcome to register B

MOV ARO ; get the input to accumulator

MUL AB ; get the second upper byte partial Outcome

ADDC AR2 ; add the input data to the partial Outcome with the previous carry
DEC DPL ; get the Outcome+1 memory location

MOVX @DPTR,A : store the 2" byte of cube output in Outcome+1 memory
MOV A B ; get the upper byte of the multiplied output to accumulator
ADDC A #00H ; add with the previous carry

DEC DPL ; get the Outcome memory location

MOVX @DPTR, A store the 3" byte of cube output in Outcome memory

SIMP $

END

53
Department of EEE, ATMECE, Mysuru

Microcontrollers Lab Manual (BEE403):2024-2025

Outcome Program no: 16

Before Execution

Address | Data
0x8200 | 0X00

0x8201 | 0X00
Address | Data 0x8202 | Ox00

0x8100 | OxFF

After Execution

Address | Data
0x8200 | OXFD
0x8201 | 0X02
0x8202 | OXFF

Address | Data
0x8100 | OxFF

At the end of the program
Students will be able to understand Program to find cube of a given numbers.

Result

At the end of the execution, input is placed in external memory location 8100h, and Outcome
is placed in the external memory 8200h, 8201h and 8202h

54
Department of EEE, ATMECE, Mysuru

Program no: 17

Microcontrollers Lab Manual (BEE403):2024-2025

Objective: To check the given number placed in external memory location 8100h is odd or even, If
the given number is odd store FFh in R1 register else if even store 11h in R1 register.

ORG 0000H
MOV DPTR,#8100H
MOVX A, @DPTR
RRC A
JC ODD
MOV R1, #11H
SIMP LAST
ODD: MOV R1,#0FFH
LAST: SIMP $
END

Outcome:

; get the input data from source memory location
: get the O™ bit of input data to carry flag
+ if 0" bit=1, input number is odd

; store “11” in R1 to indicate even number

; store “FF” in R1 to indicate odd number

Case 1: Odd Number

Before
Address Data
0x8100 OxFF
R1 0x00

Case 2: Even Number

Before

Address | Data

0x8100 | OxFE

R1 0x00

After
Address Data
0x8100 OxFF
R1 OxFF

Indicate Odd Number

After
Address | Data
0x8100 | OxFF
R1 0x11

Indicate Even Number

At the end of the program

Students will be able to understand Program to find the given number is odd or even.

Result

At the end of the execution, the given number placed in external memory location 8100h is
verified and if the given number is odd FFh is stored in R1 register else if even 11h is stored in R1

register

55

Department of EEE, ATMECE, Mysuru

Program no: 18

Objective: To check the given number placed in external memory location 8100h is Positive or
Negative., If the given number is Negative store FFh in R1 register else if Positive store

11h in R1 register.

; get the input data from source memory location

; get the 0™ bit of input data to carry flag

L if O

; store “11” in R1 to indicate positive number

; store “FF” in R1 to indicate negative number

Microcontrollers Lab Manual (BEE403):2024-2025

bit=1, input number is negative

ORG 0000H
MOV DPTR,#8100H
MOVX A,@DPTR
RLC A
JC negative
MOV R1, #11H
SIMP LAST
Negative: MOV R1, #0FFH
LAST: SIMP $
END
Outcome:
Case 1: Odd Number
Before
Address | Data
0x8100 | OxFF
R1 0x00
After
Address | Data
0x8100 OxFF
R1 OxFF
Indicates Negafée Number

Case 2: Even Number

Before

Address

Data

0x8100

OxFE

R1 0x00

After

Address

Data

0x8100

OxFF

R1

Ox]1

Indicates Positive Number

/

Note: “RRC A” instruction is used to find odd or even. If we replace it by “RLC A” and change the
loop name from ODD to +ve, we can find the given number is positive or negative.

At the end of the program

Students will be able to understand Program to find the given number is Positive or Negative.

Result

At the end of the execution, the given number placed in external memory location 8100h is
verified and if the given number is Positive FFh is stored in R1 register else if Negative. 11h is stored

in R1 register.

Department of EEE, ATMECE, Mysuru

56

Program no: 19
Objective: To check the number of logical zeroes and ones in the given number placed in the external
memory location 8100h. The number of logical ones is indicated in the R2 register and the number of
logical zeroes is indicated in the register R3.

NEXTBIT:

ONES:

LAST:

Outcome:

ORG 0000H

MOV DPTR,#8100H
MOVX A, @DPTR
MOV R1,#08H
MOV R2,#00H
MOV R3,#00H

RRC A

JC ONES

INC R3

SIMP LAST

INC R2

DINZ R1, NEXTBIT
SIMP $

END

Microcontrollers Lab Manual (BEE403):2024-2025

;get the input data from source memory location

; keep the count in R1 to check 8 bits of input data
; counter for logical ones

; counter for logical zeroes

; get the LSB bit to carry flag

; If bit is one jump to label ONES

; if no carry increment zero counter

; if no carry increment ones counter

; if all the 8 bits are not checked, go back to label NEXTBIT

Before execution

Address | Data
0x8100 | Ox72
R2 0x00
R3 0x00

After execution

Address
R2 0x04~
R3 0x04 1

Logical ones
Data / J

P Logical zeros

At the end of the program
Students will be able to understand Program to find the logical ones and zeroes in the given number.

Result

At the end of the execution, the given number placed in the external memory location 8100h. The number
of logical ones is indicated in the R2 register and the number of logical zeroes is indicated in the register

R3.

Department of EEE, ATMECE, Mysuru

57

Microcontrollers Lab Manual (BEE403):2024-2025

Program no: 20

Objective: To generate the ten Fibonacci numbers. It should be stored in external memory location

starting from 9400h

ORG 0000H

MOV RO,#09H ; Set Counter to generate 10 Fibonacci numbers

MOV DPTR,#9400H ; initialize the memory location to store the Fibonacci series
MOV R1,#00H ; get the first number to R1

MOV AR1 ; get the first number to accumulator

MOVX @DPTR,A ; store the first Fibonacci number in memory.

MOV A#01H ; get the second data to accumulator

BACK: INCDPTR

MOVX @DPTR,A ; store the next data in memory+1 location

MOV R2,A ; store the present number inR2 register

ADD AR1 ; get the previous data to present data in accumulator
DA A ; decimal adjust the Outcome

MOV R1,02H ; get the R2 content to R1 register

DJNZ RO, BACK ; loop back until count is zero

STOP: SIMP STOP

END

Outcome:

Address | Data Address | Data

0x9400 0x00 0x9400 | 0x00
0x9401 0x00 0x9401 | 0x01
0x9402 0x00 0x9402 | 0x01
0x9403 0x00 0x9403 | 0x02
0x9404 0x00 0x9404 | 0x03
0x9405 0x00 0x9405 | 0x05
0x9406 0x00 0x9406 | 0x08
0x9407 0x00 0x9407 | 0x13
0x9408 0x00 0x9408 | 0x21

0x9409 | 0x00 0x9409 | 0x34
Before Execution After Execution

58
Department of EEE, ATMECE, Mysuru

Microcontrollers Lab Manual (BEE403):2024-2025

At the end of the program
Students will be able to understand Program to find working of Fibonacci series.

Result
At the end of the execution, ten Fibonacci is stored in external memory location starting from
9400h.

59
Department of EEE, ATMECE, Mysuru

Microcontrollers Lab Manual (BEE403):2024-2025

3. Up/Down BCD/ Binary Counters
Program no: 21

Objective: To display BCD up count (00 to 99) continuously in Portl. The delay between two
counts should be 1 second. Configure TMOD register in TimerO Model configuration.

ORG 0000H
MOV A #00H ; A=00H
L1: MOV P1,A ; A=00H---->P1=00H
ADD A#01H ; A=00H + 01H =01H->A
DA A ; 0001 02 0304 05 06 07 08 09 10

LCALL DELAY ;

SIMP L1 ;
DELAY: MOV TMOD,#01H ; configure timerQ in model

MOV RO, #1FH ; get the count for repetition of timer register count
BACK: MOV TLO, #00H ; set the initial count for 1sec

MOV THO, #00H

SETBTRO ; start the timer

REPEAT: JNB TFO, REPEAT ; wait until timer overflows
CLRTRO . halt the timer
CLR TFO ; clear the timer0 overflow interrupt
DJNZ RO, BACK ; if repetition count!= 0, go to label back
RET ; return to the main program
END

Outcome: Program no: 21

Observe the BCD up count operation in Portl.

60
Department of EEE, ATMECE, Mysuru

Sample view:

TimerfCounter 0

Tirner/Caunter 0
tode

Microcontrollers Lab Manual (BEE403): 2024-2025

1: 16 Bit Timer/Counter

Timer

TCOM: |0=10 THOC

THO: |0=F1 TLO: |0=B5
v T0OPin [TFO

GATE v INTO#

Parallel Port 1
Fart 1

! Eits
P1: [0x88 [T T T el Tl
Pins: |0x88 [T T T Wl Wl

At the end of the program

A 4

Timer O working in model in Timer

TMOD register is configured to work as:

e Timer O in Timer mode
e To work in mode 1 (16 bit timer)

TRO bit controls the running of the timer
TRO=1; Timer0O will be in running state

TRO=0;Timer0 will be in halt state

1. Students will be able to understand the way in which subroutines are called and returns made

in counters.

2. Analyze the calls and subroutines made in the program

Result

At the end of the execution, BCD up count is displayed continuously in Portl.

Department of EEE, ATMECE, Mysuru

61

Program no: 22

Microcontrollers Lab Manual (BEE403):2024-2025

Objective: To display BCD down count (99 to 00) continuously in Portl. The delay between two
counts should be 1 second. Configure TMOD register in TimerO Model configuration.

L1:

DELAY:

BACK:

REPEAT:

Department of EEE, ATMECE, Mysuru

ORG 0000H

MOV A, #99H
MOV P1, A

ADD A, #99H

DA A

LCALL DELAY
SIMP L1

MOV TMOD, #01H
MOV RO, #1FH
MOV TLO, #00H
MOV THO, #00H
SETB TRO

JNB TFO, REPEAT
CLRTRO

CLR TFO

DJNZ RO, BACK
RET

END

; get the first BCD value to accumulator

; display the count in P1

; get the next BCD down count value

; decimal adjust the count

; call the delay of 1sec

; repeat forever

; configure timerQ in model

; get the count for repetition of timer register count

. set the initial count for 1sec

; start the timer

; wait until timer overflows

; halt the timer

; clear the timer0 overflow interrupt

; if repetition count!= 0, go to label back

; return to the main program

62

Microcontrollers Lab Manual (BEE403):2024-2025

Outcome: Program no: 22
Observe the BCD down count operation in Port1.

sSample view:

TimerfCounter, 0 E|

Timer/Counter 0
tode

1: 15 Bit Timer/Counter ' Timer O working in model in Timer

Timner
TMOD register is configured to work as:

TCOM: (010 TMOD

e Timer O in Timer mode
THO: |0xF1 TLO: |0=E3 e To work in mode 1 (16 bit timer)

[+ T0O Pin [TFO
Control

TRO bit controls the running of the timer
GATE |w [NTOH
TRO=1; Timer0O will be in running state

TRO=0;Timer0O will be in halt state

Parallel Port 1

Fart 1
Bitz 1]

7
P1: [0%48 [T T T Wl
Fins: [0ud5 [~ Rl v

At the end of the program
1. Students will be able to understand the way in which subroutines are called and returns made
in counters.
2. Analyze the calls and subroutines made in the program

Result
At the end of the execution, BCD down count is displayed continuously in Port1.

63
Department of EEE, ATMECE, Mysuru

Microcontrollers Lab Manual (BEE403):2024-2025

4. Boolean & Logical Instructions (Bit manipulations)
Program no: 23

Objective: To relies the Boolean expression ABD+ABD+ABD. And A=1, B=1, D=0. Store the input
in the 00h, 01h and 02h bit memory location. Store the Outcome of ABD in 03h bit memory
location and store the Outcome of ABD in 04h bit memory location. Store the final Outcome
in 08h bit memory location.

ORG 0000H

SETB 00H ; initialize input A=1

SETB 01H ; initialize input B=1

CLR 02H ;initialize input D=00

MOV C,01H ; get B input to carry flag

ANL C,02H ; AND D with B

ANL C,/00H ; get the expression ABD

MOV 03H,C ; store it in 03h bit memory location
MOV C,00H ; get A input to carry flag

ANL C,02H ; AND D with A

ANL C,/01H : get the expression ABD

MOV 04H,C ; store it in 04h bit memory location
MOV C,00H ; get A input to carry flag

ANL C,01H ; AND B with A

ANL C,/02H : get the expression ABD

ORL C,03H :ABD + ABD

ORL C, 04H ;ABD + ABD + ABD

MOV 08H,C ; store the Outcome in the internal bit memory 08h
SIMP $

END

64
Department of EEE, ATMECE, Mysuru

Microcontrollers Lab Manual (BEE403):2024-2025

Outcome Program no: 23

) Bjt addresses
Before Execution:

07 06 05 04 03 02 01 00
20 byte address 0 0 0 0 0 0 0 0

o—»
o—>
>—>

Bijt addresses

OF |OE |OD [0OC |0OB |OA |09 |08
0 0 0 0 0 0 0 0.

ABD+ABD+ABD.

21 byte address

. Bit addresses
After Execution:

07h | 06h | 05h | 04h | 03h | 02h | 01h | OOh
20 byte address 0 0 0

o—» ©
w—p
>—p

}t addresses

OFh | OEh | ODh | OCh [OBh | OAh | 09h | 08h
0 0 0 0 0 0 0 1

ABD+ABD+ABD.

21 byte address

At the end of the program
Students will be able to write program to realize boolean expression.

Result

At the end of the execution, Boolean expression ABD+ABD+ABD is realized and the Outcome
of ABD in 03h bit memory location and the Outcome of ABD in 04h bit memory location. The final
Outcome in 08h bit memory location.

65
Department of EEE, ATMECE, Mysuru

Microcontrollers Lab Manual (BEE403):2024-2025

5. Code Conversion: BCD — ASCII; ASCII — Decimal; Decimal — ASCII;
HEX — Decimal and Decimal - HEX

Program no: 24

Objective: To convert ASCII (30-39) number placed in internal memory location 20h to its
equivalent unpacked BCD number (00-09). The Outcome as to be stored in internal memory
location 40h.

ORG 0000H
MOV RO, #20H ; get the source memory address in RO

MOV R1, #40H ; get the destination memory address in R1

MOV A,@RO ; @20H=33---->A=33H

XRL A, #30H ; A=33H X-OR 30H =03H ---->A=03H
MOV @R1, A ; A=03H------ @40H=03H

SIMP $

END

Outcome:

Before Execution

Address Data Address Data
0x0020 0x36 0x0040 0x00

After Execution

Address Data Address Data
0x0020 0x36 0x0040 0x06

At the end of the program
Students will be able to understand program to convert ASCII number to its equivalent
unpacked BCD number

Result

At the end of the execution, ASCII (30-39) numbers placed in internal memory location 20h is
converted to its equivalent unpacked BCD number (00-09). The Outcome is stored in internal memory
location 40h.

66
Department of EEE, ATMECE, Mysuru

Program no: 25

Microcontrollers Lab Manual (BEE403):2024-2025

Objective: To convert unpacked BCD number (00-09) placed in internal memory location 20h to its
equivalent ASCII number (30-39). The Outcome as to be stored in internal memory location

40h.

ORG 0000H

MOV RO, #20H
MOV R1, #40H
MOV A,@RO
ORL A, #30H

MOV @R1, A

SIMP $

END

Outcome:

Before Execution

Address | Data
0x0020 | 0x06
0x0040 | 0x00

After Execution

Address

Data

0x0040

0x36

At the end of the program

; get the source memory address in RO

; get the destination memory address in R1

; get the BCD data from source memory to accumulator
; convert to ASCII by adding 30h to input BCD data

; store the ASCII Outcome in destination memory

Students will be able to understand program to convert ASCII number to its equivalent
unpacked BCD number

Result

At the end of the execution, ASCII (30-39) numbers placed in internal memory location 20h is
converted to its equivalent unpacked BCD number (00-09). The Outcome is stored in internal memory

location 40h.

67

Department of EEE, ATMECE, Mysuru

Program no: 26

Microcontrollers Lab Manual (BEE403):2024-2025

Objective: ~ To convert unpacked BCD number (00-99) placed in internal memory location 20h to
its equivalent ASCII number (30-39). The Outcome as to be stored in internal memory
location 40h and 41h. 54 3534
ORG 0000H
MOV RO,#20H ; get the source memory address in RO 76
MOV R1,#40H ; get the destination memory address in R1
MOV A @RO ; get the input data to accumulator
ANL A #0FOH ; mask off the lower nibble 01110110 AND 11110000 = O/P=70
SWAP A ; exchange upper and lower nibble A=07
ORL A#30H ; convert upper nibble to ASCII 07 OR30 0111 OR 00110000
MOV @R1,A ; send the ASCII data to destination memory a=37
MOV A @RO ; get the input data to accumulator
ANL A#OFH ; mask off the upper nibble
ORL A#30H ; convert lower nibble to ASCII
INC R1 ; increment the destination memory location
MOV @R1,A ; send the ASCII data to destination memory
SIMP $
END

Outcome:

Before Execution After Execution
Address Data Address Data
0x0020 0x76 0x0020 0x76
0x0040 0x00 0x0040 0x37
0x0041 0x00 0x0041 0x36

At the end of the program
Students will be able to understand code conversion program from packed BCD number to its
equivalent ASCII number.

Result

At the end of the execution, unpacked BCD number (00-99) placed in internal memory location
20h is converted to its equivalent ASCII number (30-39). The Outcome is stored in internal memory
location 40h and 41h.

68

Department of EEE, ATMECE, Mysuru

Microcontrollers Lab Manual (BEE403):2024-2025

Program no: 27

Objective: To convert ASCII (30-39) number placed in internal memory location 20h and 21h to its
equivalent packed BCD number (00-99). The Outcome as to be stored in internal memory
location 40h

ORG 0000H

MOV RO,#20H ; get the source memory address in RO

MOV R1,#40H ; get the destination memory address in R1
MOV A @RO ; get the ASCII input data to accumulator
ANL A#OFH ; mask off the upper nibble (convert to unpacked BCD)
SWAP A ; exchange upper and lower nibble
MOV R2,A ; save the accumulator content in R2 register
INC RO ; get the second input memory location
MOV A @RO ; get the second data to accumulator
ANL A#OFH ; mask off the upper nibble (convert to unpacked BCD)
ORL A, R2 ; convert the two unpacked BCD data to packed data
MOV @R1,A ; store in Outcome memory location
SIMP $
END
Outcome:
Before execution After execution

Address Data Address Data

0x0020 0x34 0x0020 0x34

0x0021 0x33 0x0040 0x33

0x0040 0x00 0x0041 0x43

At the end of the program
Students will be able to understand code conversion program from ASCII number to its
equivalent packed BCD number.

Result

At the end of the execution, ASCII (30-39) number placed in internal memory location 20h and
21h is converted to its equivalent packed BCD number (00-99). The Outcome is stored in internal
memory location 40h.

69
Department of EEE, ATMECE, Mysuru

Microcontrollers Lab Manual (BEE403):2024-2025

Program no: 28

Objective: To convert the hexadecimal number placed in the external memory location 8100h to
decimal number and store the Outcome in the external memory location 8200h and 8201h.

ORG 0000H

MOV DPTR,#8100H ; get the input data (hex number) memory location
MOVX A @DPTR ; get the input data to accumulator

MOV B,#0AH ; get the divisor to B register

DIV AB ; divide input data by 10d

MOV R1,B ; store the remainder in register in R1

MOV B,#0AH ; get the divisor to B register

DIV AB ; divide the quotient of previous division by 10d
MOV RO,A ; move the quotient to RO register

MOV A B ; get the remainder to accumulator

SWAP A ; interchange upper and lower nibble

ORL AR1 ; concatenate units and tens place

MOV DPTR,#8201H ; get the Outcome+1 memory location

MOVX @DPTR,A ; store the tens and units(accumulator) place Outcome
DEC DPL ; get the Outcome+0 memory address

MOV ARO ; get the hundreds place value of the output to accumulator
MOVX @DPTR,A : store the Outcome.

SIMP $

END

70
Department of EEE, ATMECE, Mysuru

Microcontrollers Lab Manual (BEE403):2024-2025

Outcome: Program no: 28

Before Execution After Execution

Address | Data Address | Data
0x8200 | 0x02 0x8100 | OXFF

0x8201 | Ox55 0x8200 | 0x00
0x8201 | 0x00

At the end of the program
Students will be able to understand code conversion program from hexadecimal number to
decimal number.

Result

At the end of the execution, hexadecimal number placed in the external memory location 8100h
is converted to decimal number and the Outcome is stored in the external memory location 8200h and
8201h.

71
Department of EEE, ATMECE, Mysuru

Program no: 29

Microcontrollers Lab Manual (BEE403):2024-2025

Objective: To convert the decimal number placed in the external memory location 8100h to
hexadecimal number and store the Outcome in the external memory location 8101h

ORG 0000H

MOV DPTR,#8100H

MOVX A, @DPTR

MOV B,A

ANL A#OFH

MOV R1,A

MOV A B

ANL A #0FOH

SWAP A

MOV B,#0AH

MUL AB

ADD AR1

INC DPTR

MOVX @DPTR,A

SIMP $

END

Outcome:

; get the input data (decimal number) memory location

; get the input data (decimal number) to accumulator

; get the data to register B

; mask off the upper nibble of the input data

; save the accumulator data in register R1

; get the input data to accumulator

: mask off the lower nibble

; interchange the upper and lower nibble

; get the multiplier to register B

; multiply upper nibble of input data with 0Ah

; add multiplied data with input data’s lower nibble value

; get the Outcome memory location address to DPTR

; store the hex decimal value in the Outcome memory location

Before Execution

Address | Data
0x8100 | 0x63
0x8101 | Ox3F

After execution

Address | Data
0x8100 | Ox63
0x8101 | Ox00
0x8201 | Ox00

At the end of the program

Students will be able to understand code conversion decimal number to hexadecimal number.

Result

At the end of the execution, decimal number is placed in the external memory location 8100h
and the converted result is stored in the external memory location 8101h

Department of EEE, ATMECE, Mysuru

72

Microcontrollers Lab Manual (BEE403):2024-2025

6.Programs to generate delay, Programs using serial port and on-Chip

timer / counter
Program no: 30

Objective: To generate the square wave in P1 with the 50% duty cycle and the time delay of 10ms
using timer. Assume the crystal frequency of 24 MHz Configure the timer in TimerO model.

ORG 0000H
MOV P1, #0FFH ; initialize P1
BACK: XRL 90H, #0FFH ; generate square wave signal
ACALL DELAY ; call 10ms delay
SJMP BACK ; repeat forever
DELAY: MOV TMOD, #01H ; configure the timer0 in model
MOV TLO, #0EOH ; set the initial value in timer register for 10ms

MOV THO, #0B1H

SETB TRO ; start the timer

REPEAT: JNB TFO, REPEAT ; wait until timer overflows
CLRTRO ; halt the timer
CLRTFO ; clear the timer0 overflow interrupt
RET ; ret to the main program
END

Outcome: Program no: 30
Observed the 50% duty cycle square wave in P1 and measured the time delay of 10ms.
At the end of the program
Students will be able to program generating delays using timers and serial programming
Result

At the end of the execution, square wave is generated in P1 with the 50% duty cycle and the
time delay of 10ms using timer.

73
Department of EEE, ATMECE, Mysuru

Microcontrollers Lab Manual (BEE403):2024-2025

Sample view:

X

Setup Logic Analyzer, .
Use the insert button to

enter the output

Current Logic Analyzer Signals:
i

\ 4

[> Enter the output

< b4

Signal Display Dizplay Range
Dizplay Type: |Analog - Max: 0«FF
Color: lil hirn: 0=0

™ Hexadecimal Display
Dizgplay Formula [Signal & kask) > Shift

And Mazk: 0=FFFFFFFF Shift Right: |n

Export / Import

E=port Signal D efinitions. .. | Impart Signal Definitions.... |

.| After entering the
output parameter close

Kill &l ||{ Clase |/i et

Q Logic Analyzer v X
Min Time: — baw Time: Range: Grid: Zoom; Code: | Setup Mindtax:
00s | 3078399+ [0100000: | 0.005000+ |:| | | [|

DeFF——

o
Place the Hold the Note down
marker cursor the time
B0- &— Z L L
2980000 £ SaETs | Pl 2080000 5
¢ Mouse Pos Cursor Delts 3
Time: 3,002851 5 2992817 5 2 Hz
OldValue: 255 0 -
MNewalue: i] i} 0 v 4
it: ZE PCE: 0xFFO00003 0xFFO00003

Fig 5: Screenshot of waveform in Logic analyzer window

74
Department of EEE, ATMECE, Mysuru

Program no: 31

Microcontrollers Lab Manual (BEE403):2024-2025

Objective: To generate the square wave with the on time delay of 6ms and off time delay of

BACK:

DELAY:

REPEAT:

ORG 0000H

MOV P1, #00H
ACALL DELAY
ACALL DELAY
MOV P1, #0FFH
ACALL DELAY
ACALL DELAY
ACALL DELAY
SJMP BACK
MOV TMOD, #01H
MOV TLO, #060H
MOV THO, #0FOH
SETB TRO

JNB TFO, REPEAT
CLR TRO
CLRTFO

RET

END

Outcome Program no: 31

At the end of the program
Students will be able to program generating delays using timers.

Result

4msec.Configure the timer in TimerO model. Assume the crystal frequency of 24 MHz

; generate OFF time through P1

; Call 2ms delay subroutine twice to get 4ms

; generate ON time through P1

; Call 2ms delay subroutine thrice to get 6ms

; repeat the processes forever
; configure the timer0 in model

; set the initial value in timer register for 2ms

: start the timer

: wait until timer overflows

. halt the timer

; clear the timer0 overflow interrupt

; ret to the main program

At the end of the execution, square wave is generated in P1 with 6msec on time and 4msec off

time delay.

Department of EEE, ATMECE, Mysuru

75

Microcontrollers Lab Manual (BEE403):2024-2025

Sample view:

X

Setup Logic Analyzer.]
Use the insert button to enter

the output parameter.

Current Logic Analyzer Signals:
P

A 4

[> Enter the output parameter

4 ¥
Signal Display Display Range
Dizplay Type: lm [LEVY ’DKFFi
Calor: Min: ’Drﬁﬂi
™ Hexadecimal Display
Dizplay Formula [Signal & Mazk] > > Shift

And baszk: 0«FFFFFFFF Shift Right: |p

Expart / Import

Expart Signal Definitions. .. | Irmpart Signal Definitions... |

After entering the output
parameter close the

Kill &l ||{ Dlose |/i Her—]

OFF Time measure:

ﬂ Logic Analyzer]

Min Time: tan Tirne: Ranne: [rid: Zoam: Code: | Setup Minddax:
00s | 68275155 S000000ms [2500000ms [in |[ou][ar][-] | | | |
04FF C — L =
i A A AR N
Place the | . | Hold the | | ' ' ' |
' ' ' ' Note down '
marker . . | cursor here
! ! . . ! ! the time delay !
I:IHI:I_l 1 5 : 1 E 1 E 1 : 1 E 1 E 1 E 1 : 1 1 E E 1 E 1
30000 s | e P
¢ Mouse Pos Cursor
Time: 3116571 s 3112535 247733 Hz |
Cldvalue:] 255
MNewValue: 255 255
PC5: 0xFFO00007 0xFFO00007

Fig 6: Screenshot of waveform in Logic analyzer window for OFF Time measure

76
Department of EEE, ATMECE, Mysuru

Microcontrollers Lab Manual (BEE403):2024-2025

ON Time measure:

ﬂ Logic Analyzer \

Setup Minda:

Code:

Zoom;

b ax Time: Fange: Ganid;

Wit Time:

6527516 s (5000000 ms (2500000 ms [i] 0wt][] |

N0z

=
B el
ma
| 1 L ol
"
| =
1
T m >
I]
o
()
)
................................. o)
Z
i =
) L
o B
| ke
=
1S N L]
B M:..
[=T]
| _ _B w
o
5 mm ™
e o | L =Em
Syl
|- oo e T
(@)] |
T ©
o
-~ E
[[=
|
I R =
[|
| (=]
[im]
e m
£
= —
5 8 .
- =
O Y =
b S Sl 2
E rE E
Ld |

255
255

255
0

OldValue:

MNewValue:

PCS:

OxFFOD0007

OxFFO00000

it: ZE

Fig 7: Screenshot of waveform in Logic analyzer window for ON Time measure

77

Department of EEE, ATMECE, Mysuru

Microcontrollers Lab Manual (BEE403):2024-2025

Program no: 32

Objective:

BACK:

HERE:

Outcome:

To send the letter ‘J” serially using the UART at the baud rate of 9600. Configure SCON

register in mode 1. Assume the crystal frequency of 11.0592 MHz

ORG 0000H

MOV TMOD, #20H ; configure the timerl in mode2

MOV TH1, #-3 ; count for the baud rate of 9600

MOV SCON, #50H ; configure SCON to model

SETB TR1 ; start the timer

MOV SBUF, #'J' ; send the letter ‘)’ through SBUF register

JNB TI, HERE ; wait until ‘)’ character is sent (8bits are transferred)
CLRTI ; clear serial interrupt for next character to be sent
SIMP BACK ; repeat the processes

SIMP $

END

Transmitted the letter ‘J” serially using UART at the baud rate of 9600.

[WSERIAL - p¥isiond

File Edit View Project Flash Debug Peripherals Tools SVCS Window Help

Ngdd 4889 P EE W LAY 1 EER
®E0 0000 [OREERA 27826 % 3
Regisers v X SERIALASM UART L
Reqster ‘Value ‘ _j LART#2
- Regs 3 UART#3
:10 g:gg J Debug (printf} Viewer

Department of EEE, ATMECE, Mysuru

78

Microcontrollers Lab Manual (BEE403):2024-2025

JART #1 yiXx

AphRABAARBAARBARDRARABRAARBAARBAADRAAABAAABAARBARARANARANABAAABAARRANARARABRAARBAARBAR D RANARAAABAAABAA AT

At the end of the program
Students will be able to write program for serial programming.

Result
At the end of the execution, letter ‘J’ is transmitted serially using the UART at the baud rate of
9600.

79
Department of EEE, ATMECE, Mysuru

Microcontrollers Lab Manual (BEE403):2024-2025

Program no: 33

Objective: To find the GCD and LCM of the given two numbers, which are placed in the external
memory location 9400h and 9401h. The GCD of the two given numbers as to be stored in
external memory location 9402h and the LCM as to be stored in the external memory

location 9403h and 9404h.

ORG 0000H

MOV DPTR,#9400H ; get the source memory address

MOVX A @DPTR ; get the first value to Accumulator

MOV R1,A ; store the first input value in R1 register

MOV R3,A ; store the first input value in R3 register

INC DPTR ; get the source memory+1 address

MOVX A @DPTR ; get the second value to accumulator

MOV R2, A ; store the second input value to register R2

MOV R4, A ; store the second input value to register R4
AGAIN: MOV A, R1 ; get the first input value back to accumulator

CINE A, 02H, CHECK ; if input1! = input2 jump to label “CHECK”

SIJMP OVER ; if two inputs are equal jump to label “OVER”
CHECK: JNC GCD ; if input1 > input2, jump to label “GCD”
XCH AR2 ; if input2 > inputl, exchange both the inputs
MOV R1,A
GCD: CLRC ; Clear carry flag
SUBB AR2 . subtract first number from second number
MOV R1,A ; get the Outcome of subtraction to register R1
SIMP AGAIN ; go back to label “AGAIN”
OVER: INC DPTR ; get the Outcome memory address
MOVX @DPTR, A ; store the GCD of two input numbers in Outcome memory.
MOV B, A ; get the GCD output to B register
MOV A, R3 ; get the first input to Accumulator
DIV AB ; divide second input number by GCD value
MOV B, R4 ; get the second number to register B
MUL AB ; multiply second number with previous division’s quotient

80
Department of EEE, ATMECE, Mysuru

Microcontrollers Lab Manual (BEE403):2024-2025

INC DPTR
INC DPTR ;get the Outcome+2 memory address
MOVX @DPTR,A ; store the lower byte of LCM output to Outcome+2 memory
MOV A B ; get the upper byte of LCM value to register A
DEC DPL ; get the Outcome+1 memory address
MOVX @DPTR,A ; store the upper byte of LCM output to Outcome+1 memory
SIMP $
END
Outcome:

Before Execution

Address Data
0x9400 0x05
0x9401 0x06

Address Data
0x9402 0x00
0x9403 0x00
0x9404 0x00

After Execution

Address Data
0x9400 0x05
0x9401 0x06

Address Data
0x9402 0x01
0x9403 0x00
0x9404 Ox1E

At the end of the program

Students will be able to program GCD and LCM of the given two numbers.
Result

At the end of the execution, GCD and LCM of the given two numbers is placed in the external
memory location 9400h and 9401h. The result is stored in external memory location 9402h and the
LCM as to be stored in the external memory location 9403h and 9404h.

81
Department of EEE, ATMECE, Mysuru

Program no: 34

Objective:

NEXT:

FACTO:

Microcontrollers Lab Manual (BEE403):2024-2025

To find the factorial of the given number placed in the external memory location 8300h.

The Outcome as to be stored in the memory location 8400h and 84001h

ORG 0000H

MOV DPTR, #8300H
MOVX A, @DPTR
MOV B, #00H

CJINE A, #00H, NEXT

MOV A, #01H
SIMP L2

CINE A, #01H, FACTO

SIMP L2
MOV R1, #01H
MOV R2, #01H
MOV RO, A

REPEAT: MOV A, R2

L2:

Department of EEE, ATMECE, Mysuru

INCR1
MOV B, R1
MUL AB
MOV R2, A
MOV A, RO
CINE A, 01H, REPEAT
MOV A, R2
MOV DPTR, #8401H
MOVX @DPTR, A
DEC DPL
MOV A B
MOVX @DPTR, A
SIMP $
END

; get the input memory address

; get the input number to accumulator

; Clear register B

; if input number is! = 00 jump to label “NEXT”

; iIf input number is = 00 store factorial as 01 in accumulator
; jump to label “L2”

; if input number is! = 01 jump to label “FACTO”

; jump to label “L2”

; Initialize register R1 with 01

; Initialize register R2 with 01

; copy the input data to register RO

; get the R2 register content to accumulator

; increment the register R1 content

; get the R1 register content to register B

; multiply the accumulator and B register content

; store the lower byte of Outcome to register R2

; get the input number to accumulator

; if input number! = register R1 content, jump to “REPEAT”
; if equal, get lower byte of factorial output to accumulator
; get the Outcome+1 memory address

; store the lower byte of Outcome in Outcome+1 memory

; get the Outcome memory address

; get the upper byte of factorial Outcome to accumulator

; store the upper byte of Outcome in Outcome memory

82

Outcome Program no: 34

Before execution

Address

Data

0x8300

0x06

Address

Data

0x8400

0x00

0x8401

0x00

After execution

Address | Data
0x8400 | 0x02
0x8401 | 0xDO

At the end of the program

Microcontrollers Lab Manual (BEE403):2024-2025

Students will be able to program factorial of the given number

Result

At the end of the execution, factorial of the given number is placed in the external memory
location 8300h. The Outcome is stored in the memory location 8400h and 84001h

Department of EEE, ATMECE, Mysuru

83

Microcontrollers Lab Manual (BEE403):2024-2025

HARDWARE PROGRAMS

84
Department of EEE, ATMECE, Mysuru

|
: RS232 Female |
L Connector l

IDE Female
Connector

Department of EEE, ATMECE, Mysuru

Microcontrollers Lab Manual (BEE403):2024-2025

LCD DISPL/ Y

ol <D |I3t- il
I 1.= ’

% Swi H
| |- e

. w/ L5¢
R7C AR)

CAPTURI

Y
(Y
%\'-u\n-

gt e

) .| _—
<»°°B B olrm@ o=uFower

‘ -

"/\g ;

'

IFFFFFFF R

Fig 1..: AT89C51 Development Board

: RS232 Male
L Connector

85

Microcontrollers Lab Manual (BEE403):2024-2025

»l

i IDE Female Connector !

L supply |
>l RS232 Male and Female l
: Connector l
P
DB 9 Pin |

Fig 2..: Components for Interfacing

86
Department of EEE, ATMECE, Mysuru

Microcontrollers Lab Manual (BEE403):2024-2025

Il. INTERFACING:

Hardware Programs

7. Generate different waveforms: Sine, Square, Triangular, Ramp using DAC interface.

Obijective: Write a C program to generate square wave on Portl and display the ramp
wave in CRO using DAC interface.

Components: AT89C51ED2 Development board, DAC interface, RS 232 Cable, DC Power

supply Vcc: +5V, 1.5A, Vdd:+/-12V,0.1A, CRO, probes

Block Diagram of DAC Interface:

Program

SERIAL PORT DUAL DAC CRO

CH1

PO DACI

Y

il

PC
8051 P1
L—'[icroccp'ltroller

=)
e
[e]
Y

CH2

—I +3V,GND ’_ T T T

POWER SUPPLY
Fig 1.1.: Interfacing diagram of DAC

#include <at89c51xd2.h>
void delay(void);
void main ()
{
while(1)
{
P1 = 0x0; ;To get a square wavewith OV as initial point, minimum 8 bit

bit value 0x0 is provided.

delay(); ;delay is provided to control thje frequency of the wave.
P1 = Oxff; ;To get a square wave 0f 5V, maximum 8 bit value FF
is provided.
87

Department of EEE, ATMECE, Mysuru

Microcontrollers Lab Manual (BEE403):2024-2025

delay();
¥
¥
void delay(void)
{
inti;
for(i=0;i<=300;i++);
¥

1) To Generate a Square Wave:

» #include <Reg 51h> - This is to use the registers of 8051 microcontroller for
programming.

> Reg 51.h is a reader file which contains all the registers of 8051 microcontroller.

» For getting a square wave of 5V (maximum output that can be obtained using the Kkit)
we have to provide the maximum 8 bit number that is OFFH and to get OV we have to
give O0H.

» So first give 00H as the digital input to DAC and then provide some delay. This delay
is used to control the frequency of square wave.

» Then again provide FFH to get 5V output. The loop should be repeated continuously to
get a square waveform.

Delay Function:

void delay (unsigned int x)

{

for (;x>0;x--);

}

Void means the function does not return any delay is the function name and the parameter
passed to the function is of integer data type (that is it can hold 16 bit data). So whatever value

is passed to the delay function the variable ‘X’ takes that value.

Therefore loop is defined without initialization. Then the x value is decremented until it

becomes zero. So the delay can be obtained. For different x value we will get different delay.

88
Department of EEE, ATMECE, Mysuru

Microcontrollers Lab Manual (BEE403)2024-2025

In the main program

main ()

Unsigned character ON =0 X 45, it means ‘ON’ is a variable of data type unsigned character
(i.e., 8 bit) and is initialized with 0 X 45. Similarly for ‘OFF’

P0=0 X 00; This is to configure PO as output port. To configure as output port 00 should be
given and to configure as input port FF should be given to the corresponding port special
function register.

while (1): - This statement is used to repeat the loop infinite times. So that we will get a
continuous waveform.

Then give the value required for ON and OFF condition
For 0V — 00H

S5V —-FFH

Therefore for getting 1V at the output the digital value should be %H.

Then for 2V % X 2y andson.

Similarly for changing the frequency, change the value that is passed to the delay function.

Delay (1) if we are giving and we will get the wave shown in figure 1.1b

89
Department of EEE, ATMECE, Mysuru

Microcontrollers Lab Manual (BEE403):2024-2025

Vo/| limit fig 1.1 a

fig1.1b

Fig 1.2.: Waveform of Square wave
Outcome

At the end of the program
The exercise shall make the students competent in using DAC interface to 8051 and change
the frequency and amplitude

Result
At the end of the execution, C program to generate square wave on Portl is written and the
waveform is displayed in CRO using DAC interface.

90
Department of EEE, ATMECE, Mysuru

Microcontrollers Lab Manual (BEE403):2024-2025

Obijective: Write a C program to generate triangular wave on Portl and display the
triangular wave in CRO using DAC interface.
Components: AT89C51ED2 Development board, DAC interface, RS 232 Cable, DC Power

supply Vcc: +5V,1.5A,Vdd:+/-12V,0.1A, CRO, probes
Program
#include <at89c51xd2.h>

idata unsigned char count; //unsigned char-—>8 bit data type count
void main ()

{
while(1)

{

for(count=0;count!=0xff;count++)
P1=count;
for(count=0xff; count>0;count--)

{

Pl1=count;

FF-5V

5v — — —

ov

Fig 1.2.: Waveform of triangular wave

91
Department of EEE, ATMECE, Mysuru

Microcontrollers Lab Manual (BEE403):2024-2025

2) To generate Triangular waveform:

To get a triangular waveform, the variable value is invreased from 00H to the required
amplitude value (max FFH) and after reaching the value the variable is decremented
continuously to 00H. So two for loops are used for getting a triangular wave. By changing the
delay function value the slope of triangular wave form can be controlled.

Outcome

At the end of the program
The exercise shall make the students competent in using DAC interface to 8051 and change
the frequency and amplitude

Result
At the end of the execution, C program to generate triangular wave on Portl is written and the
waveform is displayed in CRO using DAC interface.

92
Department of EEE, ATMECE, Mysuru

Microcontrollers Lab Manual (BEE403):2024-2025

Objective: Write a C program to generate Sine wave on Portl and display the Sine wave
in CRO using DAC interface.

Components: AT89C51ED2 Development board, DAC interface, RS 232 Cable, DC Power
supply Vcc: +5V,1.5A,Vvdd:+/-12V,0.1A, CRO, probes
Program

#include <at89c51xd2.h>

xdata unsigned char sine_tab[49]={
0x80,0x90,0xA1,0xB1,0xC0,0xCD,0xDA,0xE5,0xEE,0xF6,0xFB,0xFE,0xFF,0xFE,0
xFB,0xF6,0xEE,0xE5,0xDA,0xCD,0xC0,0xB1,0xA1,0x90,0x80,0x70,0x5F,0x4F,0x
40,0x33,0x26,0x1B,0x12,0x0A,0x05,0x02,0x00,0x02,0x05,0x0A,0x12,0x1B,0x26,0x
33,0x40,0x4F,0x5F,0x70,0x80}%;

/I V=128+128sinf

idataint count;

void main ()
{
while (1)
{
for(count=0;count<49;count++)
{
P1 =sine_tab [count];
}
}
}
Calculation:
128+128 sin 0

6 =0, 128+128 sin0 =0 x 80
6 =7.5=128+128 sin7.5=0x 90

Take 8 value 7.5 and calculate for the 49 hex values in the program

93
Department of EEE, ATMECE, Mysuru

Microcontrollers Lab Manual (BEE403):2024-2025

3) To generate Sine wave:
The equation for Sine wave is V, = 128(1 + sin 0)
Vo =128 + 128sin 0
By giving different values for 0, different amplitude of the Sine wave can be obtained.
When 6 = 0,V, = 128 because sin0 =0
When 6 = 7.5,V, = 128 + 128sin 7.5

|

|

|

|

When 6 = 350,V, = 128 4+ 1285sin 350,

So 0 value is increased from 0° to 350° and the corresponding output voltages are arranged in
an array.
The each value is given to port 0 to get the sine wave at the output.

To get 5V Sine wave V, = 128 + 1285sin 0
To get 2.5V Sine wave V, = 128 + 128 sin 6 and so on.

5v

Fig 1.3.: Waveform of Sine wave
Outcome

At the end of the program
The exercise shall make the students competent in using DAC interface to 8051 and change

the frequency and amplitude

Result
At the end of the execution, C program to generate sine wave on Portl is written and the
waveform is displayed in CRO using DAC interface.

94
Department of EEE, ATMECE, Mysuru

Microcontrollers Lab Manual (BEE403):2024-2025

Obijective: Write a C program to generate ramp wave on Portl and display the Ramp
wave in CRO using DAC interface.

Components: AT89C51ED2 Development board, DAC interface, RS 232 Cable, DC Power
supply Vcc: +5V,1.5A,Vdd:+/-12V,0.1A, CRO, probes
Program

#include <at89c51xd2.h>

idata unsigned char count;

void main ()
{
count = 0x0;
while(1)
{
P1 = count;
count++;
}
}
8]0 o B e FFH
OV mm o 5V
S5v

Fig 1.4.: Waveform of Sine wave

95
Department of EEE, ATMECE, Mysuru

Microcontrollers Lab Manual (BEE403):2024-2025

4) To Generate Ramp wave:

To get a ramp waveform at the output, a variable is increased from 00H to FFH and
then after ready FFH, then again the variable value is increased from O0H to FFH.
This loop repeats continuously to generate Ramp waveform.

So inside for loop the value of variable is increased from 00H to FFH.

By changing the delay function value the slope of the Ramp waveform (frequency)

can be controlled.

For OOH — 0V
FFH - 5V
7FH — 2.5V etc.
Outcome

At the end of the program
The exercise shall make the students competent in using DAC interface to 8051 and change
the frequency and amplitude

Result
At the end of the execution, C program to generate ramp wave on Portl is written and the
waveform is displayed in CRO using DAC interface.

96
Department of EEE, ATMECE, Mysuru

Microcontrollers Lab Manual (BEE403):2024-2025

8. DC Motor Interface to 8051

Objective: Write C program to interface DC motor to AT89C51ED2 pC to control the
speed of DC motor with different duty cycle.

Components: AT89C51ED2 Development board, DC Motor interface, RS 232 Cable,

DC Power supply: 5V

SERIAL PORT
DC.
PC ! PO motor
8051 —
Microcontroller
F 3
+5V_GND
POWER SUPPLY

Fig 1.5.: Block diagram DC Motor
/P

> P24

Motor

A
A 4

Program

#include <at89c51xd2.h>
/I off time : variable to hold value for 30 milliseconds
/I on time: variable to hold value for 10 milliseconds
sbit P24=P274; Port 2 bit 4 , Input
idata unsigned char off_time,on_time;
idata unsigned char ii;
void main ()
{
TCON =0;
TMOD = 0x01; /Iselect mode 1, timer O
off_time = 30;
on_time = 10;
while(1)

97
Department of EEE, ATMECE, Mysuru

Microcontrollers Lab Manual (BEE403):2024-2025

{

P24 =1; // make P2.4 high

for(ii=0;ii<on_time;ii++)

{
TLO = 0x66; //timer count set
THO = OxFC; // load timer high and low registers
TRO =1, /] start timer O

/I each time the timer overflfow occurs at 1 milli second
while(!TFO) // till timer does not overflow
{

TFO =0; /I reset timeroverflow flag
TRO=0; // stop timer O

}

P24 =0; /lreset P2.4

for(ii=0;ii<off_time;ii++)

{
TLO = 0x66; //timer count set for
THO = OxFC; // load timer high and low registers
TRO =1, /] start timer O
while(ITF0)
{
}
TFO =0; // reset timer overflow flag
TRO=0; /] stop timer O

}

}
}
Outcome

1. The exercise shall make the students competent in utilising DC motor for various
applications

Result
At the end of the execution, C program to interface DC motor to AT89C51ED2 uC to control
the speed of DC motor with different duty cycle is performed.

98
Department of EEE, ATMECE, Mysuru

Microcontrollers Lab Manual (BEE403):2024-2025

9. Stepper Motor Interface to 8051
Objective: Write C program to rotate stepper motor clockwise.

Components: AT89C51ED2 Development board, Stepper Motor interface, RS 232 Cable,

DC Power Supply: 5V

Program

Stepper Motor Clockwise.

Rotate Stepper Motor Anticlockwise

#include <at89c51xd2.h>

Void delay (void);

Void main (void)

{

while(1)

{
P2=0x07; // output 0x07 to port P2
delay(); // generate delay

P2=0x0b; // output 0x0b to port P2
delay(); // generate delay

P2=0x0d; // output 0x0d to port P2
delay(); // generate delay
P2=0x0e; // output 0x0e to port P2
delay(); // generate delay

}
}
void delay(void)
{
int i;
for (i=0;i<=30000;i++);
}

#include <at89c51xd2.h>
void delay(void);

void main(void)

{

while(1)

{
P2=0x0e; // output 0x0e to portP2

delay(); // generate delay

P2=0x0d; // output 0x0d to port P2
delay(); // generate delay

P2=0x0b; // output OxOb to portP2
delay(); // generate delay

P2=0x07; // output 0x07 to portP2
delay(); // generate delay

}
}
void delay(void)
{
int i;
for(i=0;i<=30000;i++);
}

Department of EEE, ATMECE, Mysuru

99

Microcontrollers Lab Manual (BEE403):2024-2025

Objective: Write C program to rotate stepper motor N rotation clockwise. (Where N=1,
2,3...n).

Components: AT89C51ED2 Development board, Stepper Motor interface, RS 232 Cable,
DC Power Supply: 5V

SERIAL PORT
Stepper
PC PO Motor |-p| Stepper
8051 - Driver Motor
Microcontroller |
+5V,GND +12V 12V, GND L3V,
GND

POWER SUPPLY

Fig 1.6.: Block diagram StepperMotor

Program

#include <at89c51xd2.h>

void delay(void);

void main()

{

unsigned char i, j, k=0;

int value [] = {Ox0b, 0x07, 0x0e, 0x0d}; /l for anticlockwise { , , , .}
unsigned char countl = 3; /IN=3

unsigned char count = 200;

for (j=0;j<countl;j++)//count number of rotations

{

for(i=0;i<count; i++)//count for number of steps
{
P2=value[K];

k=k+1;

if(k>3)

k=0;

delay();

}

}
while(1);

100
Department of EEE, ATMECE, Mysuru

Microcontrollers Lab Manual (BEE403):2024-2025

}
void delay(void)

{
unsigned int i;
for(i=0;i<10000;i++);

Outcome:

At the end of the program, Students will be able to analyze interfacing of stepper motor.

Result
At the end of the execution, C program to interface Stepper motor to AT89C51ED2 uC is
performed and step control is observed.

Hobby Project Circuit:
https://www.electronicshub.org/interfacing-dc-motor-8051-microcontroller/

https://www.electronicshub.org/automatic-railway-gate-controller/

101
Department of EEE, ATMECE, Mysuru

Microcontrollers Lab Manual (BEE403):2024-2025

10. Alphanumeric LCD Interface
Alphanumeric LCD panel and Hex keypad input interface to 8051

Objective: Write a 8051 C Program to send ‘A’, ‘T’, ‘M, ‘E’, ¢ ’°, ‘M, °Y’, “S’, ‘O’, ‘R,
‘E’, to LCD display.

Components: AT89C51ED2 Development board, LCD panel interface, RS 232 Cable, DC
Power Supply: +5V

SERIAL PORT

Kev
PC PO = Board
8051
Microcontroller

Y

+5V_GND

POWERSUPPLY

Fig 1.6.: Block diagram LCD and Keypad interface

Program

#include <at89c51xd2.h>
sfr Idata = 0x80;

shit rs=P2"4;

shit rw=P2"5;

shit en=P2"6;

void Icddata(unsigned char value);

void lcdcmd(unsigned char value);

void MSDelay(unsigned int itime);

void main()

{
lcdecmd(0x38); 5X7 matrix
MSDelay(250);
Ilcdcmd(0xQe); Display on, cursor blinking
MSDelay(250);
lcdcmd(0x01); Clear display screen
MSDelay(250);
lcdcmd(0x06); Increment cursor (shift cursor to right)
MSDelay(250);

102
Department of EEE, ATMECE, Mysuru

Microcontrollers Lab Manual (BEE403):2024-2025

lcdcmd(0x80); //Force cursor to the beginning of first line
MSDelay(250);
Icddata('A");
MSDelay(250);
Icddata('T");
MSDelay(250);
Icddata('M");
MSDelay(250);
Icddata(’E");
MSDelay(250);
Icddata(' ');
MSDelay(250);
Icddata('M");
MSDelay(250);
Icddata('Y");
MSDelay(250);
Icddata(’'S");
lcdcmd(0xCO);
MSDelay(250);
Icddata('O";
MSDelay(250);
Icddata('R");
MSDelay(250);
Icddata('E");
here: goto here;

void lcdcmd(unsigned char value)
{
Idata = value;
rs=0;
rw=0;
en=1,;
MSDelay(1);
en=0;
return;

}

void Icddata(unsigned char value)
{
Idata = value;
rs=1,
rw=0;
en=1;
MSDelay(1);

103
Department of EEE, ATMECE, Mysuru

Microcontrollers Lab Manual (BEE403):2024-2025

en=0;
return;
}
void MSDelay(unsigned int itime)
{
unsigned int i,j;
for(i=0;i<itime;i++)
for(j=0;j<1275;j++);
}
Outcome:
The above exercise shall make the students competent in using LCD for various
applications.
Result

At the end of the execution, C program is written for LCD interfacing and the Characters are
observed.

Hobby Project circuit:
https://www.electronicshub.org/interfacing16x2-lcd-with-pic-microcontroller/
https://www.electronicshub.org/interfacing-16x2-lcd-avr-microcontroller/

104
Department of EEE, ATMECE, Mysuru

Microcontrollers Lab Manual (BEE403):2024-2025

Obijective: Write an 8051 C Program to interface HEX Keypad to AT89C51ED2 uC to
display the key pressed.

Components: AT89C51ED2 Development board, HEX Keypad interface, RS 232 Cable, DC
Power Supply: 5V

Program

#include <at89c51xd2.h>
void lcd_init(void);

void clr_disp(void);

void lcd_com(unsigned char);
void lcd_data(unsigned char);
void scan(void);

void get_key(void);

void display(void);

void delay(char);

idata unsigned char row,col,key;

code unsigned char scan_code[16]={ OXEE, OxDE,0xBE,OX7E,
OxED, 0xDD, 0xBD, 0x7D,
OxEB, 0xDB, 0xBB, 0x7B,
OxE7, OxD7, 0xB7, Ox77};

code unsigned char ASCII_CODE[16]={'0','4'8','C,
'1','5''9','D’,
2''6"'A"'E",
'3,'7",'B','F'};

idata unsigned char temp,temp2,temp3,resl,flag, Outcome;

shit enable=P2"6;

shit rw=P2/5;
shit rs=P274;
void main ()
{

Icd_init();

105
Department of EEE, ATMECE, Mysuru

delay(5);
P2=0x0f;

while(1)

get_key();
display();
delay(100);

} /lend of main()
void get_key(void)

{

Department of EEE, ATMECE, Mysuru

unsigned char i;

flag = 0x00;
while(1)

for(row=0;row<4;row++)

if(row == 0)

temp3=0xfe;

else if(row == 1)

temp3=0xfd;

else if(row == 2)

temp3=0xfb;

else if(row == 3)

temp3=0xf7;

P1 =temps3;
scan();
delay(10);

Microcontrollers Lab Manual (BEE403):2024-2025

//check for row depending on bit

//assign value to temp3

if(flag == 0xff)

break:

106

Microcontrollers Lab Manual (BEE403):2024-2025

} // end of for
if(flag == Oxff)
break;

} // end of while
for(i=0;i<16;i++)

{
if(scan_code[i] == resl) /lequate the scan_code with resl
{
Outcome = ASCII_CODE(i]; //same position value of
ascii code
break;
¥
}
}
void scan(void)
{
unsigned char t;
temp2 = P2;
temp2 = temp2 & OxOf; /lread port2 ,mask with Ox0fh
if(temp2 = 0x0f) /lis any change in temp2
{
delay(30); /lgive debounce delay check again
delay(30);
temp2 = P2;
temp2 = temp2 & 0xOf;
do
{
flag = Oxff;

resl = temp2; // store the value in resl
t = (temp3 << 4) & 0xf0;

resl =resl |t;

temp2 = P2;

107
Department of EEE, ATMECE, Mysuru

Microcontrollers Lab Manual (BEE403):2024-2025

temp2 = temp2 & 0xOf;
}
while(temp2 != 0x0f);
}

else

{
flag = 0x00;

} // end of scan()

void display(void)
{
lcd_com(0x80); /ldisplay address for key value
delay(5);
Icd_data(Outcome);
delay(5);
}
void lcd_init(void)
{
lcd_com(0x38); /ldisplay value for count
delay(5);

lcd_com(0x38);
delay(5);

lcd_com(0x0f); // display on ; cursor on
delay(5);

lcd_com(0x06); /1 shift cursor right
delay(5);

clr_disp();

108
Department of EEE, ATMECE, Mysuru

void clr_disp(void)
{
lcd_com(0x01);
delay(5);
}
void lcd_com(unsigned char temp)
{
PO = temp;
rs=0;
rw = 0;
enable=1,;
delay(5);
enable=0;

¥

void lcd_data(unsigned char temp)
{
PO = temp;
rs=1;
rw=0;
enable = 1;
delay(5);
enable = 0;

}
void delay(char r)

{
intrl;

for(r1=0;rl<r;r++);

Department of EEE, ATMECE, Mysuru

Microcontrollers Lab Manual (BEE403):2024-2025

109

Microcontrollers Lab Manual (BEE403):2024-2025

Outcome:

The above exercise shall make the students competent in using HEX Keypad interface

for various applications.

Result

At the end of the execution, C program is written for Hex Keypad interface and the typed
Characters are observed.

110
Department of EEE, ATMECE, Mysuru

Content beyond Syllabus

Microcontrollers Lab Manual (BEE403):2024-2025

Conditional CALL, Subroutine, Return instructions

Program no: 1

Objective:

L1:

L2:

To display hexadecimal up/down count (00h to FFh and FFh to 00h) continuously in

Portl. The delay between two counts should be 1 second. Configure TMOD register in
Timer0 Model configuration.

ORG 0000H

MOV A #00H
MOV P1,A
INC A

LCALL DELAY

CJINE A#0FFH,L1
MOV P1,A

LCALL DELAY
DEC A

CJINE A#00H,L2

SIMP L1

DELAY: MOV TMOD,#01H

BACK:

MOV RO,#1FH
MOV TLO,#00H
MOV THO0,#00H
SETB TRO

REPEAT: JNB TFO, REPEAT

Department of EEE, ATMECE, Mysuru

CLR TRO
CLRTFO

DJINZ RO, BACK
RET

END

; get the first BCD value to accumulator
; display the count in P1

; increment the count

; call the delay of 1sec

; check count has reached FFh, if not continue up count

; display the count in P1

; call the delay of 1sec

; decrement the count

; check count has reached 00h, if not continue down count

; repeat forever

; configure timerO in model
; get the count for repetition of timer register count

: set the initial count for 1sec

: start the timer

: wait until timer overflows

. halt the timer

; clear the timer0 overflow interrupt

; if repetition count!= 0, go to label back

; return to the main program

111

Microcontrollers Lab Manual (BEE403):2024-2025

Outcome Program no: 1
Observe the hexadecimal up/down count operation in Port1.

Sample view:

TimerfCounter 0

Timer/Counter 0
tode

A 4

1: 16 Bit Timer/Counter Timer O working in model in Timer

Tirner
TMOD register is configured to work as:

TCOM: {010 THOC

e Timer O in Timer mode
THUO: |0xF1 TLO: |U=B3 e To work in mode 1 (16 bit timer)

v T0Pin [TFO

TRO bit controls the running of the timer
GATE | INTOH
TRO=1; Timer0O will be in running state

TRO=0;Timer0 will be in halt state

Parallel Port 1

Part 1
Bits 1]

Fi
P1:[0s0C [T T el T
Pins: [0u0C [T~ T

At the end of the program
1. Students will be able to understand the way in which subroutines are called and returns made
in counters.
2. Analyze the calls and subroutines made in the program

Result
At the end of the execution, hexadecimal up/down count (00h to FFh and FFh to 00h) is
displayed continuously in Port1.

112
Department of EEE, ATMECE, Mysuru

Elevator Interface to 8051.

Objective: Write a C program to understand the functioning of an elevator.

Microcontrollers Lab Manual (BEE403):2024-2025

Components: AT89C51ED2 Development board, elevator interface, RS 232 Cable, DC Power

Supply: 5V
Elevator
PC PO
8051
Microcontroller
F 3
+5V_GND

Fig 1.7.: Block diagram elevator interface

Program
#include <at89c51xd2.h>
void delay(unsigned int);
main()

{

unsigned char xdataFIr[9] = {O0xff,0x00,0x03,0xff,0x06,0xff,0xff,0xff,0x09};
unsigned char xdataFClr[9] = {0xff,0XEQ,0xD3,0xff,0xB6,0xff,0xff,0xff,0x79};

unsigned char RegFIr,CurFIr = 0x01,i,j;

PO = 0x00;

PO = 0x0f0;

while(1)

{
P1 = OxOf;
ReqFIr = P1 | Ox0f0;
while(RegFIr == 0x0ff)
ReqgFlr = P1 | Ox0f0;
ReqFIr = ~RegFlr;
if(CurFIr == ReqgFlr)

Department of EEE, ATMECE, Mysuru

113

PO = FCIr[CurFIr];

¥
else if(CurFIr>ReqgFIr)

{

i = FIr[CurFIr] - FIr[ReqFIr];

j = FIr[CurFIr];
for(;i>0;i--)
{
PO = 0x0f0[j;
-
delay(50000);
}

else

{

i = FIr[ReqgFIr] - FIr[CurFIr];

j = FIr[CurFIr];
for(;i>0;i--)
{
PO = 0x0f0 | j;
j++;

delay(50000);

}

}
CurFlr = RegFlr;

PO = FClIr [CurFIr];

void delay (unsigned int x)

{

for (;x>0;x--);

¥

Department of EEE, ATMECE, Mysuru

Microcontrollers Lab Manual (BEE403):2024-2025

114

Microcontrollers Lab Manual (BEE403):2024-2025

Outcome:
At the end of the program

Students will be able to understand the functioning of an elevator.

Result

At the end of the execution, C program is written for interface elevator to 8051 microcontroller
and the result are observed.

115
Department of EEE, ATMECE, Mysuru

External ADC and Temperature Control Interface.

Objective: Write a C Program to interface temperature sensor.

BLOCK DIAGRAM

Microcontrollers Lab Manual (BEE403):2024-2025

1

Fig 1.8.: Block diagram of Temperature Interface to 8051

PROGRAM

#include < reg51Xd2.h>
shit cmpout = P3/4;

sbit rel_on = P0"0;

#define dac_data P1
void delay ()

{
Int I;

for (1=0; 1<10;1++);
¥

void main ()

{

unsigned char dacip;
unpout = ‘1 ;

dac_data = 0X00 ;

PO = 0X00 ;
while (1)
{

Department of EEE, ATMECE, Mysuru

Temperat
PC 2051 PO ure
Microcontroller Sensor
+3V, GND

116

Microcontrollers Lab Manual (BEE403):2024-2025

dacip = OXff;
do;
{
dacip ++ ;

Dac_data = dacip;

delay ();

¥

while (cmpout);

If (dacip > 0X20)
Rel on=1;
else
rel_on=0;
}

Outcome:
At the end of the program

The students will be able to interface temperature sensor and analyze its output
Result

At the end of the execution, C program is written for temperature sensor and the result are
observed.

Hobby Project Circuit:
https://www.electronicshub.org/temperature-controlled-dc-fan-using-microcontroller/
https://www.electronicshub.org/digital-temperature-sensor-circuit/

117
Department of EEE, ATMECE, Mysuru

Microcontrollers Lab Manual (BEE403): 2024-2025

PROGRAM FOR BLOCK MOVE USING EXCHANGE_MNEMONIC

SIZE OF BLOCK = 05
SOURCE DATA: FROM 40H TO 44H INTERNAL RAM (data view)
DESTINATION: FROM 50H TO 54H INTERNAL RAM (data view)

back:

Org 0000h
mov r3, #05h
mov r0, #40h
mov rl, #50h
mov a, @r0
xch a, @r1
mov @r0, a
incr0

incrl

djnz r3, back
end

; r3 is counter
; 10 is source pointer
; rl is destination pointer
; a € [[r0]]
;swap a & [[r1]]
; [[r0]] €a
; increment r0 & rl to point
next memory location
; jump on not zero to back

PROGRAM TO SEARCH ELEMENT IN THE ARRAY OF BYTES IN EXTERNAL RAM

VALUES ARE STORED IN EXTERNAL RAM USING XDATA VIEW STARTING FROM 9000H

ML.

org 8000h

loop:

skip:

Department of EEE, ATMECE, Mysuru

mov r0,#03h
mov rl,#10h
mov r2,#00h

mov dptr ,#9000h

movx a,@dptr
clrc

subb a,r1

inc dptr

jnz skip

incr2

djnz r0,loop
end

; array size
; array element
; counter to know search element

; to check element is present or not

118

Microcontrollers Lab Manual (BEE403): 2024-2025
PROGRAM TO FIND SQUARE & CUBE OF A NUMBER

SQUARE:
Org 0000h
mov r0, #06h ;10 =06h
mov a, r0 ;a=06
mov 0fOh, r0 :b=06
mul ab ; a=24h, b=00h
end
CUBE:
org 0000h
mov r0, #0ah ;70 = #10h
mov a, r0 ;a=10h
mov 0fOh, r0 ;b =10h
mul ab ;a=64h,b=00
mov 0fOh, r0 ;b =10h
mul ab ;a=e8,b=03
end

Department of EEE, ATMECE, Mysuru 118

Microcontrollers Lab Manual (BEE403):2024-2025

Viva Questions

1. What do you mean by Embedded System? Give examples.

2. Why are embedded Systems useful?

3. What are the segments of Embedded System?

4. What is Embedded Controller? 5. What is Microcontroller?

6. List out the differences between Microcontroller and Microprocessor.

7. How are Microcontrollers more suitable than Microprocessor for Real Time Applications?

8. What are the General Features of Microcontroller? 9. Explain briefly the classification of
Microcontroller. 10. Explain briefly the Embedded Tools. 11. Explain the general features of
8051 Microcontroller.

12. How many pin the 8051 has? 13. Differentiate between Program Memory and Data
Memory.

14. What is the size of the Program and Data memory?
15. Write a note on internal RAM. What is the necessity of register banks? Explain.

16. How many address lines are required to address 4K of memory? Show the necessary
calculations.

17. What is the function of accumulator?

18. What are SFR’s? Explain briefly.

19. What is the program counter? What is its use?

20. What is the size of the PC?

21. What is a stack pointer (SP)?

22. What is the size of SP?

23. What is the PSW? And briefly describe the function of its fields.
24. What is the difference between PC and DPTR?

25. What is the difference between PC and SP?

26. What is ALE? Explain the functions of the ALE in 8051.
27. Describe the 8051 oscillator and clock.

28. What are the disadvantages of the ceramic resonator?

118
Department of EEE, ATMECE, Mysuru

Microcontrollers Lab Manual (BEE403):2024-2025

29. What is the function of the capacitors in the oscillator circuit?

30. Show with an example, how the time taken to execute an instruction can be calculated.
31. What is the Data Pointer register? What is its use in the 80517

32. Explain how the 8051 implement the Harvard Architecture?

33. Explain briefly the difference between the Von Neumann and the Harvard Architecture.
34. Describe in detail how the register banks are organized.

35. What are the bit addressable registers and what is the need?

36. What is the need for the general purpose RAM area?

37. Write a note on the Stack and the Stack Pointer.

38. Why should the stack be placed high in internal RAM?

39. Explain briefly how internal and external ROM gets accessed.

40. What are the different addressing modes supported by 8051 Microcontroller ?
41. Explain the Immediate Addressing Mode.

42. Explain the Register Addressing Mode.

43. Explain the Direct Addressing Mode.

44. Explain the Indirect Addressing Mode.

45. Explain the Code Addressing Mode.

46. Explain in detail the Functional Classification of 8051 Instruction set
47. What are the instructions used to operate stack?
48. What are Accumulator specific transfer instructions?

49. What is the difference between INC and ADD instructions?

50. What is the difference between DEC and SUBB instructions?
51. What is the use of OV flag in MUL and DIV instructions?
52. What are single and two operand instructions?

53. Explain Unconditional and Conditional JMP and CALL instructions.

54. Explain the different types of RETURN instructions.

55. What is a software delay?

119
Department of EEE, ATMECE, Mysuru

Microcontrollers Lab Manual (BEE403):2024-2025

56. What are the factors to be considered while deciding a software delay?
57. What is a Machine cycle?

58. What is a State?

59. Explain the need for Hardware Timers and Counters?

60. Give a brief introduction on Timers/Counter.

61. What is the difference between Timer and Counter operation?
62. How many Timers are there in 80517

63. What are the three functions of Timers?

64. What are the different modes of operation of timer/counter?

65. Give a brief introduction on the various Modes.

66. What is the count rate of timer operation?

67. What is the difference between mode 0 and mode 1?

68. What is the difference Modes 0,1,2 and 3?

69. How do you differentiate between Timers and Counters?

70. Explain the function of the TMOD register and its various fields?
71. How do you control the timer/counter operation?

72. What is the function of TFO/TF1 bit

73. Explain the function of the TCON register and its various fields?
74. Explain how the Timer/Counter Interrupts work.
75. Explain how the 8051 counts using Timers and Counters.

76. Explain Counting operation in detail in the 8051.
77. Explain why there is limit to the maximum external frequency that can be counted.
78. What’s the benefit of the auto-reload mode?

79. Write a short note on Serial and Parallel communication and highlight their advantages
and disadvantages.

80. Explain Synchronous Serial Data Communication.

81. Explain Asynchronous Serial Data Communication.

120
Department of EEE, ATMECE, Mysuru

Microcontrollers Lab Manual (BEE403):2024-2025

82. Explain Simplex data transmission with examples.

83. Explain Half Duplex data transmission with examples.
84. Explain Full Duplex data transmission with examples.
85. What is Baud rate?

86. What is a Modem?

87. What are the various registers and pins in the 8051 required for Serial communication?
Explain briefly. 88. Explain SCON register and the various fields.

89. Explain serial communication in general (synchronous and asynchronous). Also explain
the use of the parity bit.

90. Explain the function of the PCON register during serial data communication.

91. How the Serial data interrupts are generated?

92. How is data transmitted serially in the 8051? Explain briefly.

93. How is data received serially in the 80517 Explain briefly.

94. What are the various modes of Serial Data Transmission? Explain each mode briefly.
95. Explain with a timing diagram the shift register mode in the 8051.

96. What is the use of the serial communication mode 0 in the 8051?

97. Explain in detail the Serial Data Mode 1 in the 8051.

98. Explain how the Baud rate is calculated for the Serial Data Mode 1.

99. How is the Baud rate for the Multiprocessor communication Mode calculated?

100. Explain in detail the Multiprocessor communication Mode in the 8051.

101. Explain the significance of the 9th bit in the Multiprocessor communication Mode.
102. Explain the Serial data mode 3 in the 8051.

103. What are interrupts and how are they useful in Real Time Programming?

104. Briefly describe the Interrupt structure in the 8051.

105. Explain about vectored and non-vectored interrupts in general.

106. What are the five interrupts provided in the 8051?

107. What are the three registers that control and operate the interrupts in 80517

108. Describe the Interrupt Enable (IE) special function register and its various bits.

121
Department of EEE, ATMECE, Mysuru

Microcontrollers Lab Manual (BEE403):2024-2025

109. Describe the Interrupt Priority (IP) special function register and its need.
110. Explain in detail how the Timer Flag interrupts are generated.

111. Explain in detail how the Serial Flag interrupt is generated.

112. Explain in detail how the External Flag interrupts are generated.

113. What happens when a high logic is applied on the Reset pin?

114. Why the Reset interrupt is called a non-maskable interrupt?

115. Why do we require a reset pin?

116. How can you enable/disable some or all the interrupts?

117. Explain how interrupt priorities are set? And how interrupts that occur simultaneously
are handled. 118. What Events can trigger interrupts, and where do they go after getting
triggered?

119. What are the actions taken when an Interrupt Occurs?

110. What are Software generated interrupts and how are they generated?
111. What is RS232 and MAX232?

112. What is the function of RS and E pins in an LCD?

113. What is the use of R/W pin inan LCD?

114. What is the significance of DA instruction?

115. What is packed and unpacked BCD?

116. What is the difference between CY and OV flag?

117. When will the OV flag be set?

118. What is an ASCII code?

122
Department of EEE, ATMECE, Mysuru

Microcontrollers Lab Manual (BEE403):2024-2025

MICROCONTROLLER - LAB QUESTION BANK

1. a) Write an ALP to move a Block of N-data starting at location X to location Y using
8051/MSP430 b) Write a C program to interface stepper motor to 8051.

2. a) Write an ALP to find cube of given 8-bit data using 8051 /MSP430. b) Write a C program
to interface stepper motor to 8051.

3. a) Write an ALP to implement a binary/decimal up/down counter using 8051 /MSP430. b)
Write a C program to interface stepper motor to 8051.

4. a) Write an ALP to find the largest / smallest element in an array using 8051. b) Write a C
program to interface stepper motor to 8051.

5. a) Write an ALP to exchange two blocks of data present at location X and Y respectively
using 8051/MSP430 b) Write a C program to generate Sine waveform using DAC. Display the
waveform on CRO.

6. a) Write an ALP to arrange a set of N 8-bit numbers starting at location X in
ascending/descending order using 8051 /MSP430. b) Write a C program to generate triangular
wave of amp = (1V-5V) using DAC. Display the waveform on CRO

7. a) Write an ALP to perform 16-bit multiplication using 8051 /MSP430. b) Write a C
program to generate Ramp wave of amp = (1V-5V) using DAC. Display the waveform
on CRO.

8. a) Write an ALP to convert two digit BCD number to its equivalent ASCII value using 8051
IMSP430. b) Write a C program to generate square wave of amp = (1V-5V) using DAC.
Display the waveform on CRO.

9. a) Write an ALP to find whether the given number is palindrome or not using 8051. b) Write
a C program to generate Sine waveform using DAC. Display the waveform on CRO.

123
Department of EEE, ATMECE, Mysuru

Microcontrollers Lab Manual (BEE403):2024-2025

Hobby Project Circuits
Quiz Buzzer Circuit using 8051 Microcontroller
Table of Contents:

e Principle Behind the Quiz Buzzer Circuit

e Circuit Diagram of 8 Player Quiz Buzzer using Microcontroller
e Components Required

e Design Process

e Quiz Buzzer Circuit Design

e CODE

e How Quiz Buzzer Circuit Works?

o Applications of Quiz Buzzer Circuit

1. Principle behind the Quiz Buzzer Circuit

The 8 Channel Quiz Buzzer Circuit using Microcontroller is a simple embedded system
with a set of 8 push buttons being the input devices, a microcontroller as the main controller
and the output devices being a buzzer and a display.

The whole operation is carried out by a microcontroller through a program written in C
language and dumped inside the microcontroller. When one of the buttons is pressed, the
buzzer starts ringing and the corresponding number is displayed on the 7 segment display.

2. Circuit Diagram of 8 Player Quiz Buzzer using Microcontroller

+5V

+ Common Anode type

Reset 7-Segment Display

10uF/116v

+
VCCTB%'

10KQ =
. - NICS
: RST PO.O/ADO |52
PO.1/AD1 ===
1 I } 19 1 xraut P0.2/AD2 —%
= &= PO.3/AD3 |—2>
33pF 11.0592MHz PO.4/AD4 —gﬁ
] POS/ADS [—==
r PO.6/ADS [~ 5
ye I ‘“l - PO.7IADT === 211000
¥V T i 25 A2 Z— AW
PSEN P2.0/A8 |—=
‘f 33pF 21 AE P2.1/A9 [—2—AMN, 15
AW EA P22IA10 —22—AANN, g
P2.3/A11 f—22—AAAA :
10KQ P2.4/A12 [—S—AN/ ;
Buttons 1-8 _p=—— P2 5/A13 TW o Bt
I] w7
0 O
— I 1 {prom P3.0RXD |2 Ww
o o £— P1.1T2EX P3.A/TXD (= =
1 = 4 Rkl _% — RST Button 2N2222
O_I:LC 4 1p13 P3.3/INTT" [0
oy P3.4/T0 2
o-l:LC = s 1pis P35SM1 (=2 — 470Q T
L1pis o P3EWR f—= : ’
O—D—c P17 % P3.7/RD' MWW
a1
"QC
&6 AT89C51 g Mzl
O O

124
Department of EEE, ATMECE, Mysuru

https://www.electronicshub.org/8-channel-quiz-buzzer-circuit-using-microcontroller/#Principle_Behind_the_Quiz_Buzzer_Circuit
https://www.electronicshub.org/8-channel-quiz-buzzer-circuit-using-microcontroller/#Circuit_Diagram_of_8_Player_Quiz_Buzzer_using_Microcontroller
https://www.electronicshub.org/8-channel-quiz-buzzer-circuit-using-microcontroller/#Components_Required
https://www.electronicshub.org/8-channel-quiz-buzzer-circuit-using-microcontroller/#Design_Process
https://www.electronicshub.org/8-channel-quiz-buzzer-circuit-using-microcontroller/#Quiz_Buzzer_Circuit_Design
https://www.electronicshub.org/8-channel-quiz-buzzer-circuit-using-microcontroller/#CODE
https://www.electronicshub.org/8-channel-quiz-buzzer-circuit-using-microcontroller/#How_Quiz_Buzzer_Circuit_Works
https://www.electronicshub.org/8-channel-quiz-buzzer-circuit-using-microcontroller/#Applications_of_Quiz_Buzzer_Circuit

Microcontrollers Lab Manual (BEE403):2024-2025

3. Components Required

ATB89C51 (8051 Microcontroller)
7 Segment Display (Common Anode is used in this project)
Push Buttons — 10

10KQ Resistors — 2

1002 Resistors — 8

470Q Resistors — 2

2N2222 NPN Transistors — 2

S5V Buzzer

1N4007 Diode

10uF Capacitor

33pF Capacitors — 2

11.0592 MHz Crystal

8051 Programmer

5V Power Supply

4. Design Process

The whole design process involves five steps.

1. First step is designing the circuit.

The second step is drawing the schematic using any software.

3. Third step involves writing the code using high level language like C or assembly
language and then compiling it on a software platform like Keil pVision.

4. Fourth step is programming the microcontroller with the code.

Finally, the fifth step is testing the circuit.

no

o

5. Quiz Buzzer Circuit Design

The circuit involves using five major components — 8051 Microcontroller, SPST Push Buttons,
a buzzer and a common anode 7 segment display. The microcontroller used in this case is
AT89C51, an 8 bit microcontroller manufactured by Atmel (now Microchip).

a. Reset Circuit Design: The reset resistor is selected such that the voltage at the reset
pin, across this resistor is at minimum of 1.2V and the width of the pulse applied to this
pin is greater than 100 ms. Here we select a resistor of 10KQ and a capacitor of 10uF.

b. Oscillator Circuit Design: The oscillator circuit is designed using a crystal oscillator
of 11.0592 Mhz and two ceramic capacitors each 33pF. The crystal is connected
between pins 18 and 19 of the microcontroller

c. Microcontroller Interfacing Design: The set of 8 push buttons are interfaced to port
P1 of the microcontroller and a buzzer is interfaced to the port pin P3.3. The 7 segment
display is interfaced to the microcontroller such that all the input pins are connected to
port P2,

125
Department of EEE, ATMECE, Mysuru

Microcontrollers Lab Manual (BEE403):2024-2025

6. Microcontroller Code: The code can be written using C language or assembly
language. Here, I have written the program in C language using Keil pVision software.
This is accomplished by the following steps:

1. Create a new project on Keil window and select the target (microcontroller).

Create a new file under the project and write the code.

3. Save the code with .c extension and add the file to the source group folder under the target
folder.

4. Compile the code and create the hex file.

no

Once the code is compiled and a hex file is created, next step is to dump the code into the
microcontroller. This can be done with an 8051 Microcontroller Programmer.

CODE

For code: visit the Link
https://www.electronicshub.org/8-channel-quiz-buzzer-circuit-using-microcontroller/

7. How Quiz Buzzer Circuit Works?

Once the circuit is powered, the compiler will initialize the stack pointer and the variables
having the non-zero initial values and perform other initialization process and then calls the
main function. It then checks if any of the buttons is pressed.

In other words the microcontroller scans for any of its input pins at port P1 to be zero or at
logic low level. In case a button is pressed, the display function is called by passing the
corresponding number. The microcontroller then sends the relevant signals to the port
connected to the 7 segment display.

The microcontroller will turn on the buzzer for a second and turns it off but the number will be
continously displayed on the 7 segment display until the RST button is pressed.

8. Applications of Quiz Buzzer Circuit

1. This circuit can be used at quiz competitions organized at schools, colleges and other
institutions.

2. It can be also used for other games shows.

3. Itcan be used as at public places like banks, restaurants as a digital token display system.

For More Circuits Visit :
https://www.electronicshub.org/microcontroller-based-mini-projects-ideas/

126
Department of EEE, ATMECE, Mysuru

https://www.electronicshub.org/8-channel-quiz-buzzer-circuit-using-microcontroller/
https://www.electronicshub.org/microcontroller-based-mini-projects-ideas/

	Fig 1: Block diagram of 8051
	The 8051 PIN DIAGRAM
	Fig 2: 8051 PIN DIAGRAM
	PINOUT DESCRIPTION

	The 8051 Architecture
	8051 SPECIFIC FEATURES

	The 8051 Programming Model
	MICRO VISION COMPILER AND SIMULATOR
	STEPS FOR EXECUTING THE SOFTWARE PROGRAM:
	STEP 1: Select the “Kiel µVision 3” software.
	STEP 2: Select “Project” then “New µVision Project”.
	STEP 3: Create new project by entering your “File name” and then “Save” your file
	STEP 4: Choose “Atmel” microcontroller from the database
	STEP 5: Select “AT89C51” µC and click “OK” and then “YES”
	STEP 6: Make sure that “STARTUP.A51” file is added to the target.
	STEP 7: Go to “File” and select “New” for text (program) Editing Window.
	STEP 8: Type your program in the editing window.
	STEP 9: Save your program by going to “File” then “Save” option
	STEP 10:
	STEP 11:
	STEP 13:
	STEP 14: Build the target.
	Program no 1: Data Transfer - Block move, Exchange
	Objective: To transfer 8 bytes of data from external memory location starting from 8100h to external memory location starting from 8200h

	Software: Keil µVision 3
	Result: At the end of the Program execution, block of data is transferred from source memory to destination memory
	1. Principle behind the Quiz Buzzer Circuit
	3. Components Required
	4. Design Process
	5. Quiz Buzzer Circuit Design
	7. How Quiz Buzzer Circuit Works?
	8. Applications of Quiz Buzzer Circuit

