

Department of Electrical and Electronics Engineering

Laboratory Manual

Microcontrollers

BEE403

Academic Year: 2024-25

Semester: IV

 Compiled by Verified by Approved by

ATME College of Engineering

13th km Stone, Mysuru-Kanakapura-Bengaluru Road, Mysuru-570028

INSTITUTIONAL VISION AND MISSION

VISION:

Development of academically excellent, culturally vibrant, socially responsible and globally

competent human resources.

MISSION:

• To keep pace with advancements in knowledge and make the students competitive and

capable at the global level.

• To create an environment for the students to acquire the right physical, intellectual,

emotional and moral foundations and shine as torchbearers of tomorrow's society.

• To strive to attain ever-higher benchmarks of educational excellence

DEPARTMENT VISION AND MISSION

VISION:

To create Electrical and Electronics Engineers who excel to be technically competent and fulfill

the cultural and social aspirations of the society.

MISSION:

• To provide knowledge to students that builds a strong foundation in the basic principles

of electrical engineering, problem solving abilities, analytical skills, soft skills and

communication skills for their overall development.

• To offer outcome based technical education.

• To encourage faculty in training & development and to offer consultancy through

research & industry interaction.

PROGRAMME OUTCOMES:

Engineering Graduates will be able to:

PO1. Engineering knowledge: Apply the knowledge of mathematics, science, engineering

fundamentals, and an engineering specialization to the solution of complex engineering problems.

PO2. Problem analysis: Identify, formulate, review research literature, and analyze complex

engineering problems reaching substantiated conclusions using first principles of mathematics,

natural sciences, and engineering sciences.

PO3. Design/development of solutions: Design solutions for complex engineering problems and

design system components or processes that meet the specified needs with appropriate

consideration for the public health and safety, and the cultural, societal, and environmental

considerations.

PO4. Conduct investigations of complex problems: Use research-based knowledge and research

methods including design of EXPERIMENTs, analysis and interpretation of data, and synthesis of

the information to provide valid conclusions.

PO5. Modern tool usage: Create, select, and apply appropriate techniques, resources, and modern

engineering and IT tools including prediction and modeling to complex engineering activities with

an understanding of the limitations.

PO6. The engineer and society: Apply reasoning informed by the contextual knowledge to assess

societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the

professional engineering practice.

PO7. Environment and sustainability: Understand the impact of the professional engineering

solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for

sustainable development.

PO8. Ethics: Apply ethical principles and commit to professional ethics and responsibilities and

norms of the engineering practice.

PO9. Individual and team work: Function effectively as an individual, and as a member or leader

in diverse teams, and in multidisciplinary settings.

PO10. Communication: Communicate effectively on complex engineering activities with the

engineering community and with society at large, such as, being able to comprehend and write

effective reports and design documentation, make effective presentations, and give and receive

clear instructions.

PO11. Project management and finance: Demonstrate knowledge and understanding of the

engineering and management principles and apply these to one’s own work, as a member and

leader in a team, to manage projects and in multidisciplinary environments.

PO12. Life-long learning: Recognize the need for, and have the preparation and ability to engage

in independent and life-long learning in the broadest context of technological change.

Program Specific Outcomes (PSOs)

At the end of graduation, the student will be able,

PSO1: Apply the concepts of Electrical & Electronics Engineering to evaluate the performance of

power systems and also to control Industrial drives using power electronics.

PSO2: Demonstrate the concepts of process control for Industrial Automation, design models for

environmental and social concerns and also exhibit continuous self- learning.

Program Educational Objectives (PEOs)

PEO1: To produce competent and Ethical Electrical and Electronics Engineers who will exhibit

the necessary technical and managerial skills to perform their duties in society.

PEO2: To make Graduates continuously acquire and enhance their technical and socio-eco-

nomic skills.

PEO3: To aspire Graduates on R&D activities leading to offering solutions and excel in various

career paths.

PEO4: To produce quality engineers who have the capability to work in teams and contribute to

real time projects.

LIST OF EXPERIMENTS

CYCLE-I

Sl.

No

Experiment Name COs BTL

1 Data Transfer – Block move, Exchange, Sorting, Finding largest element in an

array.

CO1/CO2 L5

2 Arithmetic Instructions – Addition/subtraction, multiplication and division,

square, Cube – (16 bits Arithmetic operations – bit addressable).

CO1/CO2 L5

3 Up/Down BCD/ Binary Counters CO3 L5

4 Boolean & Logical Instructions (Bit manipulations). CO2/CO3 L5

5 Code conversion: BCD – ASCII; ASCII – Decimal; Decimal - ASCII; HEX -

Decimal and Decimal –HEX.

CO3 L5

6 Programs to generate delay, Programs using serial port and on-Chip timer /

counter.

CO3/CO4 L5

CYCLE-II

Note: Single chip solution for interfacing 8051 is to be with C Programs for the following experiments.

Sl. No Experiment Name COs BTL
7 Stepper motor interface for direction and speed control CO5 L5

8 Simulate and Test a PWM controlled DC Motor CO5 L5

9 Alphanumerical LCD panel interface. CO5 L5

10 Generate different waveforms: Sine, Square, Triangular, Ramp using DAC

interface

 CO5 L5

REFERENCE BOOK:

1. “The 8051 Microcontroller and Embedded Systems – using assembly and C”- Muhammad Ali Mazidi and Janice

Gillespie -,PHI,2006/pearson,2006

2. “The 8051 Microcontroller”, V.Udayashankar and Mallikarjuna Swamy, TMH,2009

3. “MSP430 Microcontroller Basics”, John Davies, Elsevier, 2008

4. http://www.magzter.com/IN/EFY-Enterprises-Pvt-Ltd/Micro-Controller-Based-Projects-2nd-

Edition/Technology/22026

http://www.magzter.com/IN/EFY-Enterprises-Pvt-Ltd/Micro-Controller-Based-Projects-2nd-Edition/Technology/22026
http://www.magzter.com/IN/EFY-Enterprises-Pvt-Ltd/Micro-Controller-Based-Projects-2nd-Edition/Technology/22026

COURSE OUTCOMES

At the end of the course the student will be able to:

CO-1: Outline the 8051 architecture, registers, internal memory organization, addressing modes

CO-2: Discuss 8051 addressing modes, instruction set of 8051, accessing data and I/O port programming.

CO-3: Develop 8051C programs for time delay, I/O operations, I/O bit manipulation, logic and

arithmetic operations, data conversion and timer/counter programming.

CO-4: Summarize the basics of serial communication and interrupts, also develop 8051 programs for

serial data communication and interrupt programming

CO-5: Program 8051to work with external devices for ADC, DAC, Stepper motor control, DC motor

control.

The Correlation of Course Outcomes (CO’s) and PO’s and PSOs

Course

Code:
BEE403

Title: Microcontrollers

Course

Outcomes

Program Outcomes PSOs

PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 PSO1 PSO2

CO-1 2 2 - - 3 - - - 2 2 - 2 - 3

CO-2 2 3 2 2 3 - - - 3 2 - 2 - 3

CO-3 2 3 2 2 3 - - - 3 2 - 2 - 3

CO-4 2 3 2 2 3 - - - 3 2 - 2 - 3

CO-5 2 3 2 2 3 - - - 3 2 - 2 - 3

Note: 3 = Strong Contribution 2 = Average Contribution 1 = Weak Contribution “-“ = No Contribution

TABLE OF CONTENTS

SL. No Experiment Name Pg.No.

 Software

1 Data Transfer – Block move, Exchange, Sorting, Finding largest element in an array. 30

2 Arithmetic Instructions – Addition/subtraction, multiplication and division, square,

Cube – (16 bits Arithmetic operations – bit addressable).

42

3 Up/Down BCD/ Binary Counters 60

4 Boolean & Logical Instructions (Bit manipulations). 64

5 Code conversion: BCD – ASCII; ASCII – Decimal; Decimal - ASCII; HEX - Decimal

and Decimal –HEX.

66

6 Programs to generate delay, Programs using serial port and on-Chip timer / counter. 73

 Interfacing

7 Stepper motor interface for direction and speed control

99

8 Simulate and Test a PWM controlled DC Motor

97

9 Alphanumerical LCD panel interface.

102

10 Generate different waveforms: Sine, Square, Triangular, Ramp using DAC interface 110

 Content Beyond syllabus

1 Conditional CAL 111

2 Elevator interface to 8051. 112

3 External ADC and Temperature control interface 114

VTU Syllabus

I. PROGRAMMING

1. Data Transfer – Block move, Exchange, Sorting, Finding largest element in an array.

2. Arithmetic Instructions – Addition/subtraction, multiplication and division, square, Cube – (16 bits

Arithmetic operations – bit addressable).

3. Up/Down BCD/ Binary Counters.

4. Boolean & Logical Instructions (Bit manipulations).

5. Code conversion: BCD – ASCII; ASCII – BCD; ASCII-Decimal, Decimal - ASCII; HEX - Decimal

and Decimal –HEX.

6. Programs to generate delay, Programs using serial port and on-Chip timer / counter.

Note: Single chip solution for interfacing 8051 is to be with C Programs for the following

experiments.

II. INTERFACING:

Write C programs to interface 8051 chip to Interfacing modules to develop single chip solutions.

7. Stepper motor interface for direction and speed control

8. Simulate and Test a PWM controlled DC Motor

9. Alphanumerical LCD panel interface.

10. Generate different waveforms: Sine, Square, Triangular, Ramp using DAC interface.

Microcontrollers Lab Manual (BEE403):2024-2025

2

Department of EEE, ATMECE, Mysuru

INTRODUCTION

Fig 1: Block diagram of 8051

The 8051 PIN DIAGRAM

 Fig 2: 8051 PIN DIAGRAM

P1.0 Port 1 Bit 0

P1.1 Port 1 Bit 1

P1.2 Port 1 Bit 2

P1.3 Port 1 Bit 3

P1.4 Port 1 Bit 4

P1.5 Port 1 Bit 5

P1.6 Port 1 Bit 6

P1.7 Port 1 Bit 7

Port 3 Bit 0 (Receive data)

Port 3 Bit 1 (XMIT Data)

Port 3 Bit 2 (Interrupt 0)

Port 3 Bit 3(Interrupt 1)

Port 3 Bit 4(Timer 0 Input)

Port 3 Bit 5(Timer 1 input)

Port 3 Bit 6(Write Strobe)

Port 3 Bit 7(Read Strobe)

Port 0 Bit 0(Address/data 0)

Port 0 Bit 1(Address/data 1)

Port 0 Bit 2(Address/data 2)

Port 0 Bit 3(Address/data 3)

Port 0 Bit 4(Address/data 4)

Port 0 Bit 5(Address/data 5)

Port 0 Bit 6(Address/data 6)

Port 0 Bit 7(Address/data 7)

Port 2 Bit 7 (Address 15)

Port 2 Bit 6 (Address 14)

Port 2 Bit 5 (Address 13)

Port 2 Bit 4 (Address 12)

Port 2 Bit 3 (Address 11)

Port 2 Bit 2 (Address 10)

Port 2 Bit 1 (Address 9)

Port 2 Bit 0 (Address 8)

EA:-External Enable (EPROM

Programming voltage)

ALE:-Address latch Enable

PSEN:-Program store Enable

Crystal Input 2

Crystal Input 1

Microcontrollers Lab Manual (BEE403):2024-2025

Microcontrollers Lab Manual (BEE403):2024-2025

3

Department of EEE, ATMECE, Mysuru

PINOUT DESCRIPTION

Pins 1-8: Port 1 Each of these pins can be configured as an input or an output.

Pin 9: RS A logic one on this pin disables the microcontroller and clears the contents of most

registers. In other words, the positive voltage on this pin resets the microcontroller. By applying

logic zero to this pin, the program starts execution from the beginning.

Pins10-17: Port 3 Similar to port 1, each of these pins can serve as general input or output.

Besides, all of them have alternative functions:

Pin 10: RXD Serial asynchronous communication input or Serial synchronous communication

output.

Pin 11: TXD Serial asynchronous communication output or Serial synchronous

communication clock output.

Pin 12: INT0 Interrupt 0 inputs.

Pin 13: INT1 Interrupt 1 input.

Pin 14: T0 Counter 0 clock input.

Pin 15: T1 Counter 1 clock input.

Pin 16: WR Write to external (additional) RAM.

Pin 17: RD Read from external RAM.

Pin 18, 19:X2 X1 Internal oscillator input and output. A quartz crystal which specifies

operating frequency is usually connected to these pins. Instead of it, miniature ceramics

resonators can also be used for frequency stability. Later versions of microcontrollers operate

at a frequency of 0 Hz up to over 50 Hz.

Pin 20: GND Ground.

Pin 21-28: Port 2 If there is no intention to use external memory then these port pins are

configured as general inputs/outputs. In case external memory is used, the higher address byte,

i.e. addresses A8-A15 will appear on this port. Even though memory with capacity of 64Kb is

not used, which means that not all eight port bits are used for its addressing, the rest of them

are not available as inputs/outputs.

Pin 29: PSEN If external ROM is used for storing program then a logic zero (0) appears on it

every time the microcontroller reads a byte from memory.

Pin 30: ALE Prior to reading from external memory, the microcontroller puts the lower address

byte (A0-A7) on P0 and activates the ALE output. After receiving signal from the ALE pin,

the external register (usually 74HCT373 or 74HCT375 add-on chip) memorizes the state of P0

Microcontrollers Lab Manual (BEE403):2024-2025

4

Department of EEE, ATMECE, Mysuru

and uses it as a memory chip address. Immediately after that, the ALU pin is returned its

previous logic state and P0 is now used as a Data Bus. As seen, port data multiplexing is

performed by means of only one additional (and cheap) integrated circuit. In other words, this

port is used for both data and address transmission.

Pin 31: EA By applying logic zero to this pin, P2 and P3 are used for data and address

transmission with no regard to whether there is internal memory or not. It means that even there

is a program written to the microcontroller, it will not be executed. Instead, the program written

to external ROM will be executed. By applying logic one to the EA pin, the microcontroller

will use both memories, first internal then external (if exists).

Pin 32-39: Port 0 Similar to P2, if external memory is not used, these pins can be used as

general inputs/outputs. Otherwise, P0 is configured as address output (A0-A7) when the ALE

pin is driven high (1) or as data output (Data Bus) when the ALE pin is driven low (0).

Pin 40: VCC +5V power supply.

Microcontrollers Lab Manual (BEE403):2024-2025

5

Department of EEE, ATMECE, Mysuru

The 8051 Architecture

Fig 3 :8051 Architecture

8051 SPECIFIC FEATURES

 The 8051 architecture provides many functions (CPU, RAM, ROM, I/O, interrupt logic,

timer, etc.) in a single package

 8-bit ALU, Accumulator and 8-bit Registers; hence it is an 8-bitmicrocontroller

 8-bit data bus – It can access 8 bits of data in one operation

 16-bit address bus – It can access 216 memory locations – 64 KB (65536 locations) each

of RAM and ROM

 On-chip RAM – 128 bytes (data memory)

 On-chip ROM – 4 Kbyte (program memory)

 Four byte bi-directional input/output port

 UART (serial port)

 Two 16-bit Counter/timers

 Two-level interrupt priority and Power saving mode (on some derivatives)

http://en.wikipedia.org/wiki/Central_processing_unit
http://en.wikipedia.org/wiki/Random_access_memory
http://en.wikipedia.org/wiki/Read-only_memory
http://en.wikipedia.org/wiki/Input/output
http://en.wikipedia.org/wiki/Interrupt
http://en.wikipedia.org/wiki/Timer
http://en.wikipedia.org/wiki/Integrated_circuit_packaging
http://en.wikipedia.org/wiki/Arithmetic_logic_unit
http://en.wikipedia.org/wiki/8-bit
http://en.wikipedia.org/wiki/8-bit
http://en.wikipedia.org/wiki/Data_bus
http://en.wikipedia.org/wiki/Address_bus
http://en.wikipedia.org/wiki/Kilobyte
http://en.wikipedia.org/wiki/Bytes
http://en.wikipedia.org/wiki/Byte
http://en.wikipedia.org/wiki/Input/output
http://en.wikipedia.org/wiki/Serial_port
http://en.wikipedia.org/wiki/Timer
http://en.wikipedia.org/wiki/Interrupt
http://en.wikipedia.org/wiki/Power_management

Microcontrollers Lab Manual (BEE403):2024-2025

6

Department of EEE, ATMECE, Mysuru

The 8051 Programming Model

Fig 4:8051 Programming Model

Microcontrollers Lab Manual (BEE403):2024-2025

7

Department of EEE, ATMECE, Mysuru

8051 Microcontroller Instruction Set

Table 1.1: Instructions that Affect Flag Settings

Instruction Flag Instruction Flag

C OV AC C OV AC

ADD X X X CLR C O

ADDC X X X CPL C X

SUBB X X X ANL C,bit X

MUL O X ANL C,/bit X

DIV O X ORL C,bit X

DA X ORL C,/bit X

RRC X MOV C,bit X

RLC X CJNE X

SETB C 1

Note: 1. Operations on SFR byte address 208 or bit addresses 209-215 (that is, the PSW or
bits in the PSW) also affect flag settings.

Table 1.2The Instruction Set and Addressing Modes

Rn Register R7-R0 of the currently selected Register Bank.

direct 8-bit internal data location’s address. This could be an Internal Data RAM location (0-127)

or a SFR [i.e., I/O

port, control register, status register, etc. (128-255)]. @Ri 8-bit internal data RAM location (0-255) addressed indirectly through register R1or R0.

#data 8-bit constant included in instruction.

#data 16 16-bit constant included in instruction.

addr 16 16-bit destination address. Used by LCALL and LJMP. A branch can be anywhere within

the 64K byte Program

Memory address space. addr 11 11-bit destination address. Used by ACALL and AJMP. The branch will be within the same

2K byte page ofprogram memory as the first byte of the following instruction.

Rel Signed (two’s complement) 8-bit offset byte. Used by SJMP and all conditional jumps.

Range is -128 to +127

bytes relative to first byte of the following instruction. Bit Direct Addressed bit in Internal Data RAM or Special Function Register.

Microcontrollers Lab Manual (BEE403):2024-2025

8

Department of EEE, ATMECE, Mysuru

Table 1.3:Instruction Set Summary

 0 1 2 3 4 5 6 7

0 NOP JBC
bit,rel

[3B, 2C]

JB
bit, rel

[3B, 2C]

JNB
bit, rel

[3B, 2C]

JC
rel

[2B, 2C]

JNC
rel

[2B, 2C]

JZ
rel

[2B, 2C]

JNZ
rel

[2B, 2C]

1 AJMP
(P0)

[2B, 2C]

ACALL
(P0)

[2B, 2C]

AJMP
(P1)

[2B, 2C]

ACALL
(P1)

[2B, 2C]

AJMP
(P2)

[2B, 2C]

ACALL
(P2)

[2B, 2C]

AJMP
(P3)

[2B, 2C]

ACALL
(P3)

[2B, 2C]

2 LJMP
addr16
[3B, 2C]

LCALL
addr16
[3B, 2C]

RET
[2C]

RETI
[2C]

ORL
dir, A
[2B]

ANL
dir, A
[2B]

XRL
dir, a
[2B]

ORL
C, bit

[2B, 2C]

3 RR
A

RRC
A

RL
A

RLC
A

ORL
dir, #data
[3B, 2C]

ANL
dir, #data
[3B, 2C]

XRL
dir, #data
[3B, 2C]

JMP
@A + DPTR

[2C]

4 INC
A

DEC
A

ADD
A, #data

[2B]

ADDC
A, #data

[2B]

ORL
A, #data

[2B]

ANL
A, #data

[2B]

XRL
A, #data

[2B]

MOV
A, #data

[2B]

5 INC
dir

[2B]

DEC
dir

[2B]

ADD
A, dir
[2B]

ADDC
A, dir
[2B]

ORL
A, dir
[2B]

ANL
A, dir
[2B]

XRL
A, dir
[2B]

MOV
dir, #data
[3B, 2C]

6 INC
@R0

DEC
@R0

ADD
A, @R0

ADDC
A, @R0

ORL
A, @R0

ANL
A, @R0

XRL
A, @R0

MOV
@R0, @data

[2B]

7 INC
@R1

DEC
@R1

ADD
A, @R1

ADDC
A, @R1

ORL
A, @R1

ANL
A, @R1

XRL
A, @R1

MOV
@R1, #data

[2B]

8 INC
R0

DEC
R0

ADD
A, R0

ADDC
A, R0

ORL
A, R0

ANL
A, R0

XRL
A, R0

MOV
R0, #data

[2B]

9 INC
R1

DEC
R1

ADD
A, R1

ADDC
A, R1

ORL
A, R1

ANL
A, R1

XRL
A, R1

MOV
R1, #data

[2B]

A INC
R2

DEC
R2

ADD
A, R2

ADDC
A, R2

ORL
A, R2

ANL
A, R2

XRL
A, R2

MOV
R2, #data

[2B]

B INC
R3

DEC
R3

ADD
A, R3

ADDC
A, R3

ORL
A, R3

ANL
A, R3

XRL
A, R3

MOV
R3, #data

[2B]

C INC
R4

DEC
R4

ADD
A, R4

ADDC
A, R4

ORL
A, R4

ANL
A, R4

XRL
A, R4

MOV
R4, #data

[2B]

D INC
R5

DEC
R5

ADD
A, R5

ADDC
A, R5

ORL
A, R5

ANL
A, R5

XRL
A, R5

MOV
R5, #data

[2B]

E INC
R6

DEC
R6

ADD
A, R6

ADDC
A, R6

ORL
A, R6

ANL
A, R6

XRL
A, R6

MOV
R6, #data

[2B]

F INC
R7

DEC
R7

ADD
A, R7

ADDC
A, R7

ORL
A, R7

ANL
A, R7

XRL
A, R7

MOV
R7, #data

[2B]

Note: Key: [2B] = 2 Byte, [3B] = 3 Byte, [2C] = 2 Cycle, [4C] = 4 Cycle, Blank = 1 byte/1 cycle

Microcontrollers Lab Manual (BEE403):2024-2025

9

Department of EEE, ATMECE, Mysuru

Table 1.3. Instruction Set Summary (Continued)

 8 9 A B C D E F

0 SJMP

REL

[2B, 2C]

MOV

DPTR,#

data 16

[3B, 2C]

ORL

C, /bit

[2B, 2C]

ANL

C, /bit

[2B, 2C]

PUSH

dir

[2B, 2C]

POP

dir

[2B, 2C]

MOVX A,

@DPTR

[2C]

MOVX

@DPTR, A

[2C]

1 AJMP

(P4)

[2B, 2C]

ACALL

(P4)

[2B, 2C]

AJMP

(P5)

[2B, 2C]

ACALL

(P5)

[2B, 2C]

AJMP

(P6)

[2B, 2C]

ACALL

(P6)

[2B, 2C]

AJMP

(P7)

[2B, 2C]

ACALL

(P7)

[2B, 2C]

2 ANL

C, bit

[2B, 2C]

MOV

bit, C

[2B, 2C]

MOV

C, bit

[2B]

CPL

bit

[2B]

CLR

bit

[2B]

SETB

bit

[2B]

MOVX

A, @R0

[2C]

MOVX

wR0, A

[2C]

3 MOVC A,

@A + PC

[2C]

MOVC A,

@A + DPTR

[2C]

INC

DPTR

[2C]

CPL

C

CLR

C

SETB

C

MOVX

A, @RI

[2C]

MOVX

@RI, A

[2C]

4 DIV

AB

[2B, 4C]

SUBB

A, #data

[2B]

MUL

AB

[4C]

CJNE A,

#data, rel

[3B, 2C]

SWAP

A

DA

A

CLR

A

CPL

A

5 MOV

dir, dir

[3B, 2C]

SUBB

A, dir

[2B]

CJNE

A, dir, rel

[3B, 2C]

XCH

A, dir

[2B]

DJNZ

dir, rel

[3B, 2C]

MOV

A, dir

[2B]

MOV

dir, A

[2B]

6 MOV

dir, @R0

[2B, 2C]

SUBB

A, @R0

MOV

@R0, dir

[2B, 2C]

CJNE

@R0, #data, rel

[3B, 2C]

XCH

A, @R0

XCHD

A, @R0

MOV

A, @R0

MOV

@R0, A

7 MOV

dir, @R1

[2B, 2C]

SUBB

A, @R1

MOV

@R1, dir

[2B, 2C]

CJNE

@R1, #data, rel

[3B, 2C]

XCH

A, @R1

XCHD

A, @R1

MOV

A, @R1

MOV

@R1, A

8 MOV

dir, R0

[2B, 2C]

SUBB

A, R0

MOV

R0, dir

[2B, 2C]

CJNE

R0, #data, rel

[3B, 2C]

XCH

A, R0

DJNZ

R0, rel

[2B, 2C]

MOV

A, R0

MOV

R0, A

9 MOV

dir, R1

[2B, 2C]

SUBB

A, R1

MOV

R1, dir

[2B, 2C]

CJNE

R1, #data, rel

[3B, 2C]

XCH

A, R1

DJNZ

R1, rel

[2B, 2C]

MOV

A, R1

MOV

R1, A

A MOV

dir, R2

[2B, 2C]

SUBB

A, R2

MOV

R2, dir

[2B, 2C]

CJNE

R2, #data, rel

[3B, 2C]

XCH

A, R2

DJNZ

R2, rel

[2B, 2C]

MOV

A, R2

MOV

R2, A

B MOV

dir, R3

[2B, 2C]

SUBB

A, R3

MOV

R3, dir

[2B, 2C]

CJNE

R3, #data, rel

[3B, 2C]

XCH

A, R3

DJNZ

R3, rel

[2B, 2C]

MOV

A, R3

MOV

R3, A

C MOV

dir, R4

[2B, 2C]

SUBB

A, R4

MOV

R4, dir

[2B, 2C]

CJNE

R4, #data, rel

[3B, 2C]

XCH

A, R4

DJNZ

R4, rel

[2B, 2C]

MOV

A, R4

MOV

R4, A

D MOV

dir, R5

[2B, 2C]

SUBB

A, R5

MOV

R5, dir

[2B, 2C]

CJNE

R5, #data, rel

[3B, 2C]

XCH

A, R5

DJNZ

R5, rel

[2B, 2C]

MOV

A, R5

MOV

R5, A

E MOV

dir, R6

[2B, 2C]

SUBB

A, R6

MOV

R6, dir

[2B, 2C]

CJNE

R6, #data, rel

[3B, 2C]

XCH

A, R6

DJNZ

R6, rel

[2B, 2C]

MOV

A, R6

MOV

R6. A

F MOV

dir, R7

[2B, 2C]

SUBB

A, R7

MOV

R7, dir

[2B, 2C]

CJNE

R7, #data, rel

[3B, 2C]

XCH

A, R7

DJNZ

R7, rel

[2B, 2C]

MOV

A, R7

MOV

R7, A

Note: Key: [2B] = 2 Byte, [3B] = 3 Byte, [2C] = 2 Cycle, [4C] = 4 Cycle, Blank = 1 byte/1 cycle

Microcontrollers Lab Manual (BEE403):2024-2025

10

Department of EEE, ATMECE, Mysuru

Table 1.4:AT89 Instruction Set Summary

Mnemonic Description Byte
Oscillator

Period

ARITHMETIC OPERATIONS

ADD A,Rn Add register to Accumulator 1 12

ADD A,direct Add direct byte to Accumulator 2 12

ADD A,@Ri Add indirect RAM to Accumulator 1 12

ADD A,#data Add immediate data to Accumulator 2 12

ADDC A,Rn Add register to Accumulator with Carry 1 12

ADDC A,direct Add direct byte to Accumulator with Carry 2 12

ADDC A,@Ri Add indirect RAM to Accumulator with Carry 1 12

ADDC A,#data Add immediate data to Acc with Carry 2 12

SUBB A,Rn Subtract Register from Acc with borrow 1 12

SUBB A,direct Subtract direct byte from Acc with borrow 2 12

SUBB A,@Ri Subtract indirect RAM from ACC with borrow 1 12

SUBB A,#data Subtract immediate data from Acc with borrow 2 12

INC A Increment Accumulator 1 12

INC Rn Increment register 1 12

INC direct Increment direct byte 2 12

INC @Ri Increment direct RAM 1 12

DEC A Decrement Accumulator 1 12

DEC Rn Decrement Register 1 12

DEC direct Decrement direct byte 2 12

DEC @Ri Decrement indirect RAM 1 12

INC DPTR Increment Data Pointer 1 24

MUL AB Multiply A & B 1 48

DIV AB Divide A by B 1 48

DA A Decimal Adjust Accumulator 1 12

Microcontrollers Lab Manual (BEE403):2024-2025

11

Department of EEE, ATMECE, Mysuru

Mnemonic Description Byte
Oscillator

Period

LOGICAL OPERATIONS

ANL A,Rn AND Register to Accumulator 1 12

ANL A,direct AND direct byte to Accumulator 2 12

ANL A,@Ri AND indirect RAM to Accumulator 1 12

ANL A,#data AND immediate data to Accumulator 2 12

ANL direct,A AND Accumulator to direct byte 2 12

ANL direct,#data AND immediate data to direct byte 3 24

ORL A,Rn OR register to Accumulator 1 12

ORL A,direct OR direct byte to Accumulator 2 12

ORL A,@Ri OR indirect RAM to Accumulator 1 12

ORL A,#data OR immediate data to Accumulator 2 12

ORL direct,A OR Accumulator to direct byte 2 12

ORL direct,#data OR immediate data to direct byte 3 24

XRL A,Rn Exclusive-OR register to Accumulator 1 12

XRL A,direct Exclusive-OR direct byte to Accumulator 2 12

XRL A,@Ri Exclusive-OR indirect RAM to Accumulator 1 12

XRL A,#data Exclusive-OR immediate data to Accumulator 2 12

XRL direct,A Exclusive-OR Accumulator to direct byte 2 12

XRL direct,#data Exclusive-OR immediate data to direct byte 3 24

CLR A Clear Accumulator 1 12

CPL A Complement Accumulator 1 12

RL A Rotate Accumulator Left 1 12

RLC A Rotate Accumulator Left through the Carry 1 12

RR A Right Rotate Accumulator 1 12

RRC A Rotate Accumulator Right through the Carry 1 12

SWAP A Swap nibbles within the Accumulator 1 12

Microcontrollers Lab Manual (BEE403):2024-2025

12

Department of EEE, ATMECE, Mysuru

Mnemonic Description Byte
Oscillator

Period

DATA TRANSFER

MOV A,Rn Move register to Accumulator 1 12

MOV A,direct Move direct byte to Accumulator 2 12

MOV A,@Ri Move indirect RAM to Accumulator 1 12

MOV A,#data Move immediate data to Accumulator 2 12

MOV Rn,A Move Accumulator to register 1 12

MOV Rn,direct Move direct byte to register 2 24

MOV Rn,#data Move immediate data to register 2 12

MOV direct,A Move Accumulator to direct byte 2 12

MOV direct,Rn Move register to direct byte 2 24

MOV direct,direct Move direct byte to direct 3 24

MOV direct,@Ri Move indirect RAM to direct byte 2 24

MOV direct,#data Move immediate data to direct byte 3 24

MOV @Ri,A Move Accumulator to indirect RAM 1 12

MOV @Ri,direct Move direct byte to indirect RAM 2 24

MOV @Ri,#data Move immediate data to indirect RAM 2 12

MOV DPTR,#data16 Load Data Pointer with a16-bit constant 3 24

MOVC A,@A+DPTR Move Code byte relative to DPTR to Acc 1 24

MOVC A,@A+PC Move Code byte relative to PC to Acc 1 24

MOVX A,@Ri Move External RAM (8-bit addr) to Acc 1 24

MOVX A,@DPTR Move External RAM (16-bit addr) to Acc 1 24

MOVX @Ri,A Move Acc to External RAM (8-bit addr) 1 24

MOVX @DPTR,A Move Acc to External RAM (16-bit addr) 1 24

PUSH direct stack Push direct byte onto 2 24

POP direct stack Pop direct byte from 2 24

XCH A,Rn Exchange register with Accumulator 1 12

XCH A,direct Exchange direct byte with Accumulator 2 12

XCH A,@Ri Exchange indirect RAM with Acc 1 12

XCHD A,@Ri
Exchange low-order Digit indirect RAM

with Acc
1 12

Microcontrollers Lab Manual (BEE403):2024-2025

13

Department of EEE, ATMECE, Mysuru

BOOLEAN VARIABLE MANIPULATION

CLR C Clear Carry 1 12

CLR bit Clear direct bit 2 12

SETB C Set Carry 1 12

SETB bit Set direct bit 2 12

CPL C Complement Carry 1 12

CPL bit Complement direct bit 2 12

ANL C,bit AND direct bit to CARRY 2 24

ANL C,/bit AND complement of direct bit to Carry 2 24

ORL C,bit OR direct bit to Carry 2 24

ORL C,/bit OR complement of direct bit to Carry 2 24

MOV C,bit Move direct bit to Carry 2 12

MOV bit,C Move Carry to direct bit 2 24

JC rel Jump if Carry is set 2 24

JNC rel Jump if Carry not set 2 24

JB bit,rel Jump if direct Bit is set 3 24

JNB bit,rel Jump if direct Bit is Not set 3 24

JBC bit,rel Jump if direct Bit is set & clear bit 3 24

PROGRAM BRANCHING

ACAL L addr11 Absolute Subroutine Call 2 24

LCALL addr16 Long Subroutine Call 3 24

RET Return from Subroutine 1 24

RETI Return from interrupt 1 24

AJMP addr11 Absolute Jump 2 24

LJMP addr16 Long Jump 3 24

SJMP rel Short Jump (relative addr) 2 24

JMP @A+DPTR Jump indirect relative to the DPTR 1 24

JZ rel Jump if Accumulator is Zero 2 24

JNZ rel Jump if Accumulator is Not Zero 2 24

CJNE A,direct,rel

Compare direct byte to Acc and Jump if

Not Equal
3 24

Microcontrollers Lab Manual (BEE403):2024-2025

14

Department of EEE, ATMECE, Mysuru

CJNE A,#data,rel

Compare immediate to Acc and Jump if

Not Equal
3 24

CJNE Rn,#data,rel

Compare immediate to register and Jump

if Not Equal
3 24

CJNE @Ri,#data,rel

Compare immediate to indirect and Jump

if Not Equal
3 24

DJNZ Rn,rel Decrement register and Jump if Not Zero 2 24

DJNZ direct,rel

Decrement direct byte and Jump if Not

Zero
3 24

NOP No Operation 1 12

Microcontrollers Lab Manual (BEE403):2024-2025

15

Department of EEE, ATMECE, Mysuru

Software Programs

Microcontrollers Lab Manual (BEE403):2024-2025

16

Department of EEE, ATMECE, Mysuru

MICRO VISION COMPILER AND SIMULATOR

STEPS FOR EXECUTING THE SOFTWARE PROGRAM:

STEP 1: Select the “Kiel µVision 3” software.

STEP 2: Select “Project” then “New µVision Project”.

Microcontrollers Lab Manual (BEE403):2024-2025

17

Department of EEE, ATMECE, Mysuru

STEP 3: Create new project by entering your “File name” and then “Save” your file

STEP 4: Choose “Atmel” microcontroller from the database

Microcontrollers Lab Manual (BEE403):2024-2025

18

Department of EEE, ATMECE, Mysuru

STEP 5: Select “AT89C51” µC and click “OK” and then “YES”

Microcontrollers Lab Manual (BEE403):2024-2025

19

Department of EEE, ATMECE, Mysuru

STEP 6: Make sure that “STARTUP.A51” file is added to the target.

STEP 7: Go to “File” and select “New” for text (program) Editing Window.

Microcontrollers Lab Manual (BEE403):2024-2025

20

Department of EEE, ATMECE, Mysuru

STEP 8: Type your program in the editing window.

STEP 9: Save your program by going to “File” then “Save” option

Microcontrollers Lab Manual (BEE403):2024-2025

21

Department of EEE, ATMECE, Mysuru

STEP 10:

 “Save in” your project folder.

 Give file name with “*.asm” “extension”.

 And then click on “Save” option

STEP 11:

 Right click on “Source Group1”

 Select “Add Files to “Group Source Group 1”.

Microcontrollers Lab Manual (BEE403):2024-2025

22

Department of EEE, ATMECE, Mysuru

STEP 12:

 Select to your Project folder

 Select “Files of type” as “ASM source file” if your program is written in assembly

level language or else select “C file” if your program is in C language

STEP 13:

 Select your program file and then click on “Add” to add the file to your source group.

 Notice that your file is added to the Source group

Microcontrollers Lab Manual (BEE403):2024-2025

23

Department of EEE, ATMECE, Mysuru

STEP 14: Build the target.

 Go to “Project”.

 Select “Build Target” or press “F7” key.

Important: After building the target check for the error(s). If there is any error(s) go back to

your program, correct the error(s). The output window shows the line where error is found.

After correcting the error go back to Step 14 and repeat the processes until there is zero error

Microcontrollers Lab Manual (BEE403):2024-2025

24

Department of EEE, ATMECE, Mysuru

STEP 15: Debugging.

 Go to “Debug”.

 Select “Start/ Stop Debug Session” or press “Ctrl+F5” key.

Select “OK”.

STEP 15: Selecting Output Window.

 Choose appropriate Output window (Memory/serial/logic analyzer) according to your

program output.

 Type in the input parameters (memory address/ port address/ timer) according to your

program.

Microcontrollers Lab Manual (BEE403)2024-2025

25

Department of EEE, ATMECE, Mysuru

STEP 16: Execution.

 Go to “Debug”, Select “Run” or press “F5” key for one time execution.

 For single step execution Press “F11”.

Outcome:

Before Execution

After Execution

Address Data

0x8100 0x12

0x8101 0x24

0x8102 0x56

0x8103 0xFF

0x8104 0xEE

0x8105 0xAB

0x8106 0x10

0x8107 0x03

Address Data

0x8200 0x00

0x8201 0x00

0x8202 0x00

0x8203 0x00

0x8204 0x00

0x8205 0x00

0x8206 0x00

0x8207 0x00

Address Data

0x8200 0x12

0x8201 0x24

0x8202 0x56

0x8203 0xFF

0x8204 0xEE

0x8205 0xAB

0x8206 0x10

0x8207 0x03

Address Data

0x8100 0x12

0x8101 0x24

0x8102 0x56

0x8103 0XFF

0x8104 0xEE

0x8105 0xAB

0x8106 0x10

0x8107 0x03

Microcontrollers Lab Manual (BEE403):2024-2025

26

Department of EEE, ATMECE, Mysuru

1.Data Transfer – Block move, Exchange, Sorting, Finding largest element

in an Array

Program no 1: Data Transfer - Block move, Exchange

Objective: To transfer 8 bytes of data from external memory location starting from 8100h to

external memory location starting from 8200h

Software: Keil µVision 3

MOV R0, #08H ; initialize the count

 MOV R1, #81H ; initialize the source memory location higher byte

 MOV R2, #82H ; initialize the destination memory location higher byte

 MOV R3, #00H ; initialize the destn& source location lower byte

BACK: MOV DPH, R1 ; get the source memory location address to DPTR

 MOV DPL, R3

 MOVX A, @DPTR ; get the data from source memory to Accumulator

 MOV DPH, R2 ; get the destination memory location address to DPTR

 MOVX @DPTR, A ; copy the accumulator content to destination memory

 INC R3 ; increment to next source and destination memory

 DJNZ R0, BACK ; decrement count. If count! =0 go to label “BACK”

 SJMP $

 END

Algorithm

1. Initialize registers to hold count data & also the source & destination addresses.

2. Get data from source location into accumulator and transfer to the destination location.

3. Decrement the count register and repeat step till count is zero.

Note: For data transfer with overlap start transferring data from the last location of

Source array to the last location of the destination array.

Microcontrollers Lab Manual (BEE403):2024-2025

27

Department of EEE, ATMECE, Mysuru

Outcome:

At the end of the program

1. Students will be able to program for data movement

Result: At the end of the Program execution, block of data is transferred from source memory to

destination memory

Address Data

0x8100 0x12

0x8101 0x24

0x8102 0x56

0x8103 0XFF

0x8104 0xEE

0x8105 0xAB

0x8106 0x10

0x8107 0x03

Before exec

Address Data

0x8200 0x12

0x8201 0x24

0x8202 0x56

0x8203 0xFF

0x8204 0xEE

0x8205 0xAB

0x8206 0x10

0x8207 0x03

After Exe

Microcontrollers Lab Manual (BEE403):2024-2025

28

Department of EEE, ATMECE, Mysuru

Program no:2

Objective: To exchange 8 bytes of data between external memories location starting from 8100h

and external memory location starting from 8200h

 ORG 0000H

MOV R0, #08H ; initialize the count

MOV R1, #81H ; initialize the memory1 location higher byte

 MOV R2, #82H ; initialize the memory2 location higher byte

 MOV R3, #00H ; initialize the memory1&memory2 location lower byte

BACK: MOV DPH, R1 ; get the memory1 location address to DPTR

 MOV DPL, R3

 MOVX A, @DPTR ; get the data from memory1 to Accumulator

MOV B,A ; copy the accumulator content to B register

MOV DPH, R2 ; get the memory2 location address to DPTR

MOVX A,@DPTR ; get the data from memory2 to Accumulator

XCH A,B ; exchange the accumulator and B register content

MOVX @DPTR,A ; copy the accumulator content to memory2

MOV A,B ; get the B register content to accumulator

MOV DPH,R1 ; get the memory1 location address to DPTR

MOVX @DPTR, A ; copy the accumulator content to memory1

INC R3 ; increment to next source and destination memory

 DJNZ R0, BACK ; decrement count. If count! =0 go to label “BACK”

 SJMP $

 END

Algorithm
1. Initialize registers to hold count data (array size) & also the source & destination addresses.

2. Get data from source location into accumulator and save in a register.

3. Get data from the destination location into accumulator.

4. Exchange the data at the two memory locations.

5. Decrement the count register and repeat steps till count is zero.

Microcontrollers Lab Manual (BEE403):2024-2025

29

Department of EEE, ATMECE, Mysuru

Outcome: Program No: 2

Before Execution

After Execution

At the end of the program

Students will be able to program for data exchange between two external memory locations

Result

After execution data stored in 8 memory location of both 8100h-8107h and 8200h-8207h gets

interchanged.

OUTCOME

Address Data

0x8100 0x12

0x8101 0x24

0x8102 0x56

0x8103 0xFF

0x8104 0xEE

0x8105 0xAB

0x8106 0x10

0x8107 0x03

Address Data

0x8200 0x32

0x8201 0xFF

0x8202 0xAD

0x8203 0xDA

0x8204 0x88

0x8205 0x99

0x8206 0x56

0x8207 0x55

OUTCOME

Address Data

0x8100 0x32

0x8101 0xFF

0x8102 0xAD

0x8103 0xDA

0x8104 0x88

0x8105 0x99

0x8106 0x56

0x8107 0x55

Address Data

0x8200 0x12

0x8201 0x24

0x8202 0x56

0x8203 0xFF

0x8204 0xEE

0x8205 0xAB

0x8206 0x10

0x8207 0x03

Microcontrollers Lab Manual (BEE403):2024-2025

30

Department of EEE, ATMECE, Mysuru

Data Transfer – Largest/Smallest element in an Array

Program no: 3

Objective: To find the largest number in a given array of size 5 starting from 5100h external memory

location. The largest number has to be stored in 8100h external memory location

ORG 0000H

MOV R1,#04H ; initialize the count

MOV DPTR, #5100H ; initialize the external memory location

MOVX A,@DPTR ; get the data from memory to accumulator

 BACK: MOV B,A ; move the content from accumulator to B register

INC DPTR ; increment the external memory location

MOVX A,@DPTR ; get the data from memory to accumulator

CJNE A,B,NEXT ; compare accumulator content and B register content, if not
 equal Jump to label ‘NEXT’

DJNZ R1,BACK ; if A & B are equal, then decrement count, if count! =0

 Jump to label ‘BACK’

SJMP LAST ; If count=0, then short jump to label’ LAST’

NEXT: JNC L2 ; If A & B are not equal, then check CY=1(A<B)
 ; If CY! =1(A>B) jump to label ‘L2’

 XCH A,B ; If CY=1, Exchange A & B

L2: DJNZ R1, BACK ; Decrement count, if count! =0, jump to label,’ BACK’

LAST: MOV DPTR, #8100H ; Initialize new memory location for storing largest data

MOVX @DPTR,A ; move the largest data from accumulator to new memory

 Location.

SJMP $

END

Microcontrollers Lab Manual (BEE403): 2024-2025

31

Department of EEE, ATMECE, Mysuru

Outcome: Program No: 3

At the end of the program

Students will be able to program for determining the largest number in an given array

Result:

At the end of the program, the largest number in a given array of size 5 starting from 5100h external

memory location is entered & the largest number has to be stored in 8100h external memory location

Before execution After execution

Address Data

0x5100 0x12

0x5101 0x24

0x5102 0x56

0x5103 0xFF

0x5104 0xEE

Address Data

0x8100 0xFF

For

largest

Microcontrollers Lab Manual (BEE403):2024-2025

32

Department of EEE, ATMECE, Mysuru

Program no: 4

Objective: To find the smallest number in a given array of size 5 starting from 5100h external memory

location. The largest number has to be stored in 8100h external memory location

ORG 0000H

MOV R1,#04H ; initialize the count

MOV DPTR, #5100H ; initialize the external memory location

MOVX A,@DPTR ; get the data from memory to accumulator

 BACK: MOV B,A ;move the content from accumulator to B register

INC DPTR ;increment the external memory location

MOVX A,@DPTR ; get the data from memory to accumulator

CJNE A,B, NEXT ; compare accumulator content and B register content, if not
 equal Jump to label ‘NEXT’

DJNZ R1,BACK ;if A & B are equal, then decrement count, if count! =0

 Jump to label ‘BACK’

SJMP LAST ;if count=0, then short jump to label’ LAST’

NEXT: JC L2 ; If A& B are not equal, then check CY=1(A<B)
 If CY=1jump to label ‘L2’

XCH A,B ;If CY! =1, Exchange A & B

L2: DJNZ R1, BACK ; Decrement count, if count! =0, jump to label,’ BACK’

LAST: MOV DPTR, #8100H ; Initialize new memory location for storing smallest data

MOVX @DPTR, A ; move the smallest data from accumulator to new memory

 Location

SJMP $

END

Microcontrollers Lab Manual (BEE403):2024-2025

33

Department of EEE, ATMECE, Mysuru

Outcome: Program no: 4

At the end of the program

Students will be able to program for determining the smallest number in an given array

Result:

At the end of the program, the smallest number in a given array of size 5 starting from 5100h external
memory location is entered & the smallest number has to be stored in 8100h external memory location

Before Execution

Note: Replace JNC by JC to find

smallest number in a given array.

 Address Data

0x5100 0x12

0x5101 0x24

0x5102 0x56

0x5103 0xFF

0x5104 0xEE

After Execution

For smallest

Address Data

0x8100 0x12

Microcontrollers Lab Manual (BEE403): 2024-2025

34

Department of EEE, ATMECE, Mysuru

Data Transfer –Sorting

Program no: 5

Objective: The array of data which has to be arranged in the ascending order starts from 5100h external

memory location. The array contains 5 data’s. Rearrange the data in the ascending order

ORG 0000H

 MOV R1, #04H ; initialize the step count

 L1: MOV A, R1 ; move the count to accumulator

 MOV R2, A ; move accumulator content to R2 (comparison)

 MOV DPTR, #5100H ; Initialize the external memory location

 L2: MOVX A,@DPTR ; get the data from memory to accumulator

 MOV B,A ; move the accumulator content to B register

 INC DPTR ; increment the external memory location.

 MOVX A, @DPTR ; get the data from memory to accumulator

CJNE A, B, L3 ; compare accumulator content and B register content, if not
 equal Jump to label ‘L3’

 SJMP L5 ; short jump to label L5

 L3: JC L4 ; If A& B are not equal, then check CY! =1(A<B)
 If CY =1(A>B) jump to label ‘L4’

SJMP L5 ; short jump to label L5

 L4: XCH A,B ;Exchange A & B

 MOVX @DPTR, A ; move accumulator content to external memory

 INC DPTR ; increment the external memory location

L5: DJNZ R2, L2 ; decrement comparison count, if count! =0 then jump to

 ; label L2’.

DJNZ R1, L1 ; decrement step count, if count! =0 then jump to label ‘L1’

 SJMP $

 END

Microcontrollers Lab Manual (BEE403):2024-2025

35

Department of EEE, ATMECE, Mysuru

Outcome: Program no: 5

At the end of the program

Students will be able to program to sort number in an given array in ascending order.

Result

After execution, The array of data which has to be arranged in the ascending order starts from 5100h

external memory location and the array contains 5 data rearranged in the ascending order

Before Execution

Address Data

0x5100 0x1F

0x5101 0xD4

0x5102 0x56

0x5103 0xFF

0x5104 0x01

before

After Execution-Ascending

Address Data

0x5100 0x01

0x5101 0x1F

0x5102 0x56

0x5103 0XD4

0x5104 0xFF

Microcontrollers Lab Manual (BEE403):2024-2025

36

Department of EEE, ATMECE, Mysuru

Program no: 6

Objective: The array of data which has to be arranged in the descending order starts from 5100h

external memory location. The array contains 5 data’s. Rearrange the data in the ascending

order

ORG 0000H

 MOV R1, #04H ; initialize the step count

 L1: MOV A,R1 ; move the count to accumulator

 MOV R2, A ; move accumulator content to R2 (comparison)

 MOV DPTR, #5100H ; Initialize external memory location

 L2: MOVX A,@DPTR ; get the data from memory to accumulator

 MOV B,A ; move the accumulator content to B register.

 INC DPTR ; increment the external memory location.

 MOVX A, @DPTR ; get the data from memory to accumulator

CJNE A,B,L3 ;compare accumulator content and B register content, if not
 equal Jump to label ‘L3’

 SJMP L5 ; short jump to label L5

 L3: JNC L4 ;If A& B are not equal, then check CY=1(A<B)
 ; If CY! =1(A>B) jump to label ‘L4’

SJMP L5 ; short jump to label L5

L4: XCH A,B ;If CY! =1, Exchange A & B

 MOVX @DPTR,A ; move the data from accumulator to external memory

 DEC DPL ; decrement the lower byte of external memory

 XCH A,B ;Exchange A & B

 MOVX @DPTR, A ; move accumulator content to external memory

 INC DPTR ; increment the external memory location

L5: DJNZ R2, L2 ; decrement comparison count, if count! =0 then jump to

 ; label’ L2’.

DJNZ R1, L1 ; decrement step count, if count! =0 then jump to label ‘L1’

 SJMP $

 END

Microcontrollers Lab Manual (BEE403):2024-2025

37

Department of EEE, ATMECE, Mysuru

Outcome: Program no: 6

At the end of the program

Students will be able to program to sort number in an given array in descending order.

Result

After execution, the array of data which has to be arranged in the descending order starts from 5100h

external memory location and the array contains 5 data rearranged in the descending order

Before Execution

Note: Replace JNC by JC for arranging

the given data in ascending order.

Address Data

0x5100 0x1F

0x5101 0xD4

0x5102 0x56

0x5103 0xFF

0x5104 0x01

before

After Execution

 Descending

Address Data

0x5100 0xFF

0x5101 0xD4

0x5102 0x56

0x5103 0X1f

0x5104 0x01

Microcontrollers Lab Manual (BEE403):2024-2025

38

Department of EEE, ATMECE, Mysuru

2. Arithmetic Instructions – Addition, Subtraction, Multiplication and

Division, Square, Cube – (16 Bits Arithmetic Operations – Bit Addressable)

Program no: 7

Objective: To add two 8 bit numbers placed in 8100h and 8101h external memory location. The

Outcome has to be stored in 8200h and 8201h external memory location.

ORG 0000H

MOV DPTR, #8100H ; initialize external memory location

MOVX A,@DPTR ; get the data from memory to accumulator

MOV B, A ; move the content from accumulator to B register

INC DPTR ; increment the memory location

MOVX A, @DPTR ; get the data from memory to accumulator

ADD A, B ; add the content of A and B

MOV DPTR, #8201H ; initialize new memory location

MOVX @DPTR, A ; move the content from accumulator to memory

MOV A, #00H ; move the value ‘00’ to accumulator

ADDC A, #00H ; add accumulator data with carry

DEC DPL ; decrement lower byte of memory

MOVX @DPTR, A ; move the accumulator content to memory

SJMP $

END

Outcome:

At the end of the program

Students will be able to understand practical utilization of 8 bit Addition

Result: Addition of two 8 bit numbers placed in 8100h and 8101h external memory location is

performed and the Outcome is stored in 8200h and 8201h external memory location.

Before Execution After Execution

Address Data

0x8100 0xFF

0x8101 0xFF

Address Data

0x8200 0x01

0x8201 0xFE

Microcontrollers Lab Manual (BEE403):2024-2025

39

Department of EEE, ATMECE, Mysuru

Program no: 8

Objective: To add two 16 bit numbers, first 16 bit number placed in 8100h and 8101h external

memory location and second 16 bit number placed in 8200h and 8201h external memory

location. The Outcome has to be stored in 8300h, 8301h and 8302h external memory

location.

ORG 0000H

MOV DPTR,#8101H ; initialize the external memory location

MOVX A,@DPTR ; get the 1st LSB data from memory to accumulator

MOV B,A ; move the content from accumulator to B register

MOV DPTR,#8201H ; initialize new memory location

MOVX A,@DPTR ; get the 2nd LSB data from memory to accumulator

ADD A,B ; add the content of A and B

MOV DPTR,#8302H ; initialize new memory location

MOVX @DPTR,A ; move the accumulator content to memory

MOV DPTR,#8100H ; initialize new memory location

MOVX A,@DPTR ; get the 1st MSB data from memory to accumulator

MOV B,A ; move the content from accumulator to B register

MOV DPTR,#8200H ; initialize new memory location

MOVX A,@DPTR ; get the 2nd MSB data from memory to accumulator

ADDC A,B ; add the content of A and B with carry

MOV DPTR,#8301H ; initialize new memory location

MOVX @DPTR,A ; move the accumulator content to memory

MOV A,#00H ; move the value ‘00’ to accumulator

ADDC A,#00H ; add accumulator data with carry

DEC DPL ; decrement lower byte of memory

MOVX @DPTR,A ; move the accumulator content to memory

SJMP $

END

Microcontrollers Lab Manual (BEE403):2024-2025

40

Department of EEE, ATMECE, Mysuru

Outcome Program No: 8

At the end of the program

Students will be able to understand practical utilization of 16 bit Addition

Result

 Addition of two 16 bit numbers is performed, first 16 bit number placed in 8100h and 8101h

external memory location and second 16 bit number placed in 8200h and 8201h external memory

location. The Outcome is stored in 8300h, 8301h and 8302h external memory location.

Before Execution After Execution

Before execution

Address Data

0x8100 0xFF

0x8101 0xFF

Before execution

0x8200 0xFF

0x8201 0xFF

Before execution

0x8300 0x00

0x8301 0x00

0x8301 0x00

 Address Data

0x8300 0x01

0x8301 0xFF

0x8301 0xFE

Microcontrollers Lab Manual (BEE403):2024-2025

41

Department of EEE, ATMECE, Mysuru

Program no: 9

Objective: To subtract two 8 bit numbers placed in 8100h and 8101h external memory location. The

Outcome has to be stored in 8200h and 8201h external memory location. The 8200h

memory location indicates the sign of the Outcome.

ORG 0000H

MOV DPTR, #8100H ; initialize external memory location

MOVX A,@DPTR ; get the data from memory to accumulator

MOV B,A ; move the content from accumulator to B register

INC DPTR ; increment the memory location

MOVX A,@DPTR

SUBB A, B ; Subtract the content of B from Accumulator with borrow

MOV DPTR, #8201H ; initialize new memory location

MOVX @DPTR, A ; move the content from accumulator to memory

MOV A, #00H ; move the value ‘00’ to accumulator

SUBB A, #00H ; subtract ‘00’ from A with borrow

DEC DPL ; decrement lower byte of memory location

MOVX @DPTR, A ; move the accumulator content to memory location

SJMP $

END

Outcome:

CASE 1:

Negative Outcome

Before Execution

Address Data

0x8100 0x02

0x8101 0x01

0x8200 0x00

0x8201 0x00

After Execution

Address Data

0x8100 0x02

0x8101 0x01

0x8200 0xFF

0x8201 0xFF

CASE 2:

Positive Outcome

Before Execution

Address Data

0x8100 0x01

0x8101 0x02

0x8200 0x00

0x8201 0x00

After Execution

Address Data

0x8100 0x02

0x8101 0x01

0x8200 0x00

0x8201 0x01

Microcontrollers Lab Manual (BEE403):2024-2025

42

Department of EEE, ATMECE, Mysuru

At the end of the program

Students will be able to understand subtraction of two 8 bit numbers

Result

 Subtraction of two 8 bit numbers placed in 8100h and 8101h external memory location is

performed and the Outcome is stored in 8200h and 8201h external memory location.

Microcontrollers Lab Manual (BEE403):2024-2025

43

Department of EEE, ATMECE, Mysuru

Program no: 10

Objective: To subtract two 16 bit numbers, first 16 bit number placed in 8100h and 8101h external

memory location and second 16 bit number placed in 8200h and 8201h external memory

location. The Outcome has to be stored in 8300h, 8301h and 8302h external memory

location. The 8300h memory location indicates the sign of the Outcome.

ORG 0000H

MOV DPTR,#8101H ; initialize the external memory location

MOVX A,@DPTR ; get the 1st LSB data from memory to accumulator

MOV B,A ; move the content from accumulator to B register

MOV DPTR,#8201H ; initialize new memory location

MOVX A,@DPTR ; get the 2nd LSB data from memory to accumulator

SUBB A,B ; Subtract the content of B from Accumulator with
borrow

MOV DPTR,#8302H ; initialize new memory location

MOVX @DPTR,A ; move the accumulator content to memory

MOV DPTR,#8100H ; initialize new memory location

MOVX A,@DPTR ; get the 1st MSB data from memory to accumulator

MOV B,A ; move the content from accumulator to B register

MOV DPTR,#8200H ; initialize new memory location

MOVX A,@DPTR ; get the 2nd MSB data from memory to accumulator

SUBB A,B ; Subtract the content of B from Accumulator with
borrow

MOV DPTR,#8301H ; initialize new memory location

MOVX @DPTR,A ; move the accumulator content to memory

MOV A,#00H ; move the value ‘00’ to accumulator

SUBB A,#00H ; subtract ‘00’ from A with borrow

DEC DPL ; decrement lower byte of memory location

MOVX @DPTR,A ; move the accumulator content to memory

SJMP $

END

Microcontrollers Lab Manual (BEE403):2024-2025

44

Department of EEE, ATMECE, Mysuru

Outcome Program no: 10

At the end of the program

Students will be able to understand 16 bit subtraction of positive and negative outcome.

Result

 Subtraction of two 16 bit numbers is performed, first 16 bit number placed in 8100h and

8101h external memory location and second 16 bit number placed in 8200h and 8201h external memory

location. The Outcome is stored in 8300h, 8301h and 8302h external memory location.

CASE 1:

Negative Outcome

Before

execution

Address Data

0x8100 0x23

0x8101 0x12

0x8200 0x12

0x8201 0x45

0x8300 0x00

0x8301 0x00

0x8302 0x00

Before

execution

Address Data

0x8300 0XFF

0x8301 0XEF

0x8302 0x33

CASE 2:

Positive Outcome

Before execution

Address Data

0x8100 0x12

0x8101 0x45

0x8200 0x23

0x8201 0x12

0x8300 0x00

0x8301 0x00

0x8302 0x00

Before execution

Address Data

0x8300 0X00

0x8301 0X10

0x8302 0xCD

Microcontrollers Lab Manual (BEE403): 2024-2025

45

Department of EEE, ATMECE, Mysuru

Program no: 11

Objective: To multiply two 8 bit numbers placed in external memory location 8100h and 8101h. The

Outcome will be stored in external memory location 8200h and 8201h.

ORG 0000H

MOV DPTR, #8100H ; initialize the external memory location

MOVX A,@DPTR ; get the data from memory to accumulator

MOV B,A ; move the content from accumulator to B register

INC DPTR ; increment the memory location

MOVX A,@DPTR ; get the data from memory to accumulator

MUL AB ; Multiply the content of A and B

MOV DPTR,#8201H ;initialize the new memory location

MOVX @DPTR,A ; move the accumulator content (LSB of multiplied

 ; ans.) To memory location 8201h

MOV A,B ; Move B content (MSB of multiplied ans.) To A

DEC DPL ; decrement lower byte of memory location

MOVX @DPTR,A ; move the accumulator content to memory location

SJMP $

END

Outcome Program no: 11

At the end of the program

Students will be able to understand 8 bit multiplication.

Result At the end of the execution two 8 bit numbers are placed in external memory location 8100h

and 8101h and the multiplication Outcome is stored in external memory location 8200h and 8201h

Before Execution

 Address Data

0x8100 0xFF

0x8101 0xFF

After Execution

Address Data

0x8200 0xFE

0x8201 0x01

Microcontrollers Lab Manual (BEE403):2024-2025

46

Department of EEE, ATMECE, Mysuru

Program no: 12

Objective: To multiply 8 bit number placed in external memory location 8100h with the 16 bit

number placed in external memory location 8200h and 8201h .The Outcome will be stored
in external memory location 8300h, 8301h and 8302h.

ORG 0000H

MOV DPTR,#8100H ; initialize the external memory location

MOVX A,@DPTR ; get the data from memory to accumulator

MOV B,A ; move the content from accumulator to B register

MOV R0,A ; get the multiplier to R0 register

MOV DPTR,#8201H ; get the lower byte of multiplicand to accumulator

MOVX A,@DPTR

MUL AB ; multiply multiply*lower byte multiplicand

MOV DPTR, #8302H ;store the lower byte Outcome in Outcome+2 memory

MOVX @DPTR,A

MOV R1,B ; move the upper byte Outcome in R1

MOV DPTR,#8200H ; get the upper byte of multiplicand to accumulator

MOVX A,@DPTR

MOV B,R0 ; get the multiplier to B register

MUL AB ; multiply multiply*upper byte multiplicand

ADDC A,R1 ;Add lower byte Outcome with R1 (upper byte
Outcome of lower multiplicand multiplication)

MOV DPTR,#8301H ; store the Outcome in Outcome memory+1 location

MOVX @DPTR,A

MOV A,B ; get the upper byte Outcome of upper multiplicand

ADDC A,#00H ; add the carry to upper multiplicand Outcome

DEC DPL

MOVX @DPTR,A ; store the Outcome in Outcome memory location

SJMP $

END

Microcontrollers Lab Manual (BEE403):2024-2025

47

Department of EEE, ATMECE, Mysuru

Outcome: Program no:12

At the end of the program

Students will be able to understand Program to multiply 8bit number with 16 bit number.

Result

At the end of the execution, 8 bit number placed in external memory location 8100h is multiplied

with the 16 bit number placed in external memory location 8200h and 8201h .The Outcome is stored

in external memory location 8300h, 8301h and 8302h.

Before Execution

Address Data

0x8100 0xFF

Address Data

0x8300 0x00

0x8301 0x00

0x8302 0x00

Address Data

0x8200 0xFF

0x8201 0xFF

After Execution

Address Data

0x8100 0xFF

Address Data

0x8300 0xFE

0x8301 0xFF

0x8302 0x01

Address Data

0x8200 0xFF

0x8201 0xFF

Microcontrollers Lab Manual (BEE403):2024-2025

48

Department of EEE, ATMECE, Mysuru

Program no: 13

Objective: To multiply 16 bit numbers placed in internal memory location 30h and 31h with the

16 bit number placed internal memory location 40h and 41h .The Outcome will be stored

in internal memory location 50h, 51h, 52h and 53h.

ORG 0000H

MOV R2,#00H ; clear R2 register

MOV B,31H ; get lower byte of input1 to register B

MOV A,41H ; get lower byte of input2 to register A

MUL AB ; multiply two inputs

MOV 53H,A ; store the lower byte Outcome+3 memory location

MOV R0,B ; save the partial Outcome1 in R0

MOV B,31H ; get lower byte of input1 to register B

MOV A,40H ; get upper byte of input2 to register A

MUL AB ; multiply two inputs

MOV R1,B ; store the partial Outcome2 in register R1

ADD A,R0 ; add the partial Outcome1 with lower byte Outcome

JNC L1 ; after addition if carry=0, jump to label “L1”

INC R1 ; if carry! = 0, increment partial Outcome2

L1: MOV R0,A ; store the partial Outcome3 in R0

MOV B,30H ; get upper byte of input1 to register B

MOV A,41H ; get lower byte of input2 to register A

MUL AB ; multiply two inputs

ADD A,R0 ; add partial Outcome3 with lower byte of the multiplied Outcome

JNC L2 ; after addition if carry=0, jump to label “L1”

INC R1 ; if carry! = 0, increment partial Outcome2

L2: MOV 52H,A ; store the partial Outcome3 in Outcome+2 memory location

MOV A,B ; get the upper byte of the Outcome to accumulator

ADD A,R1 ; add partial Outcome2 with the accumulator content

JNC L3 ; after addition if carry=0, jump to label “L1”

Microcontrollers Lab Manual (BEE403):2024-2025

49

Department of EEE, ATMECE, Mysuru

INC R2 ; if carry! = 0, increment register R2

 L3:MOV R1,A ; store the partial Outcome2 to register R1

MOV B,30H ; get upper byte of input1 to register B

MOV A,40H ; get upper byte of input2 to register A

MUL AB ; multiply two inputs

ADD A,R1 ; add partial Outcome2 with the accumulator content

JNC L4 ; after addition if carry=0, jump to label “L1”

INC R2 ; if carry! = 0, increment register R2

L4:MOV 51H,A ; store the lower byte Outcome+1 memory location

MOV A,B ; get the upper byte Outcome of the multiplication

ADD A,R2 ; add the accumulator content with R2 content

MOV 50H,A ; store the upper byte Outcome in Outcome+0 memory location

SJMP $

END

Outcome:

Before Execution

Address Data

0x0030 0xFF

0x0031 0xFF

Address Data

0x0050 0x00

0x0051 0x00

0x0052 0x00

0x0053 0x00

Address Data

0x0040 0xFF

0x0041 0xFF

After Execution

Address Data

0x0030 0xFF

0x0031 0xFF

 Address Data

0x0050 0XFF

0x0051 0XFE

0x0052 0x00

0x0053 0x01

Address Data

0x0040 0xFF

0x0041 0xFF

Microcontrollers Lab Manual (BEE403):2024-2025

50

Department of EEE, ATMECE, Mysuru

At the end of the program

Students will be able to understand Program to multiply two 16 bit numbers.

Result

At the end of the execution, 16 bit numbers placed in internal memory location 30h and 31h is

multiplied with the 16 bit number placed internal memory location 40h and 41h .The Outcome is stored

in internal memory location 50h, 51h, 52h and 53h.

Microcontrollers Lab Manual (BEE403):2024-2025

51

Department of EEE, ATMECE, Mysuru

Program no: 14

Objective: To perform 8 bit / 8bit division. Dividend is placed in external memory location 8200h,

and divisor is placed in the external memory 8100h, the Outcome will be placed in the

memory location 8300h (quotient) and 8301h (remainder)

ORG 0000H

MOV DPTR, #8100H ; get the divisor data address

MOVX A, @DPTR ; get the divisor to accumulator

MOV B, A ; save the divisor in the register B

MOV DPTR, #8200H ; get the dividend data address

MOVX A, @DPTR ; get the dividend to accumulator

DIV AB ; divide A/B

MOV DPTR, #8300H ;get the quotient memory address to DPTR

MOVX @DPTR, A ; store the quotient in 8300h memory location

MOV A,B ; get the remainder to accumulator

INC DPTR ; get the next address to store the remainder

MOVX @DPTR,A ; store the remainder in 8301h memory location

SJMP $

END

Outcome:

At the end of the program

Students will be able to understand Program 8 bit / 8bit division.

Result : At the end of the execution, Dividend is placed in external memory location 8200h, and divisor

is placed in the external memory 8100h, the Outcome is placed in the memory location 8300h (quotient)

and 8301h (remainder).

Before Execution

Address Data

0x8100 0x13

0x8200 0x45

 After Execution

Address Data

0x8300 0x03

0x8301 0x0C

Microcontrollers Lab Manual (BEE403):2024-2025

52

Department of EEE, ATMECE, Mysuru

Program no: 15

Objective: To find square of given number, input is placed in external memory location 8100h,

and Outcome is placed in the external memory 8101h and 8102h.

ORG 0000H

MOV DPTR,#8100H ; get the source address

MOVX A,@DPTR ; get the input data to accumulator

MOV B, A ; move the input data to B register

MUL AB ; get the square of the number

INC DPTR ; get the Outcome+1 address to store the square Outcome

INC DPTR

MOVX @DPTR, A ; save the lower byte of the Outcome

DEC DPL ; get the Outcome memory location

MOV A, B ; get the upper byte of the Outcome to the Accumulator

MOVX @DPTR, A ; store the upper byte of the Outcome to memory location

SJMP $

END

Outcome:

At the end of the program

Students will be able to understand Program find square of a given numbers.

Result

At the end of the execution, input is placed in external memory location 8100h, and Outcome is placed

in the external memory 8101h and 8102h

Before Execution

Address Data

0x8100 0xFF

After Execution

Address Data

0x8101 0xFE

0x8102 0x01

Microcontrollers Lab Manual (BEE403):2024-2025

53

Department of EEE, ATMECE, Mysuru

Program no: 16

Objective: To find cube of given number, input is placed in external memory location 8100h, and

Outcome is placed in the external memory 8200h, 8201h and 8202h

ORG 0000H

MOV DPTR,#8100H ; get the source address

MOVX A,@DPTR ; get the input data to accumulator

MOV B, A ; move the input data to B register

MOV R0,A ; copy the input data to the register R0

MUL AB ; get the square of the input number

MOV R1,B ; copy the upper byte of the square Outcome in the R1 register

MOV B,R0 ; get the input data to register B

MUL AB ; get the lower byte of the cube Outcome

MOV DPTR,#8202H ; get the Outcome+2 memory location

MOVX @DPTR,A ; store the lower byte of cube output in Outcome+2 memory

MOV R2,B ; store the upper byte partial Outcome in R2

MOV B,R1 ; get the previous partial Outcome to register B

MOV A,R0 ; get the input to accumulator

MUL AB ; get the second upper byte partial Outcome

ADDC A,R2 ; add the input data to the partial Outcome with the previous carry

DEC DPL ; get the Outcome+1 memory location

MOVX @DPTR,A ; store the 2nd byte of cube output in Outcome+1 memory

MOV A,B ; get the upper byte of the multiplied output to accumulator

ADDC A,#00H ; add with the previous carry

DEC DPL ; get the Outcome memory location

MOVX @DPTR, A store the 3rd byte of cube output in Outcome memory

SJMP $

END

Microcontrollers Lab Manual (BEE403):2024-2025

54

Department of EEE, ATMECE, Mysuru

Outcome Program no: 16

At the end of the program

Students will be able to understand Program to find cube of a given numbers.

Result

At the end of the execution, input is placed in external memory location 8100h, and Outcome

is placed in the external memory 8200h, 8201h and 8202h

Before Execution
Address Data

0x8200 0X00

0x8201 0X00

0x8202 0x00

Address Data

0x8100 0xFF

After Execution

Address Data

0x8200 0XFD

0x8201 0X02

0x8202 0xFF

Address Data

0x8100 0xFF

Microcontrollers Lab Manual (BEE403):2024-2025

55

Department of EEE, ATMECE, Mysuru

Program no: 17

Objective: To check the given number placed in external memory location 8100h is odd or even, If

the given number is odd store FFh in R1 register else if even store 11h in R1 register.

ORG 0000H

MOV DPTR,#8100H ; get the input data from source memory location

MOVX A,@DPTR

RRC A ; get the 0th bit of input data to carry flag

JC ODD ; if 0th bit=1, input number is odd

MOV R1, #11H ; store “11” in R1 to indicate even number

SJMP LAST

ODD: MOV R1,#0FFH ; store “FF” in R1 to indicate odd number

LAST: SJMP $

END

Outcome:

At the end of the program

Students will be able to understand Program to find the given number is odd or even.

Result

At the end of the execution, the given number placed in external memory location 8100h is

verified and if the given number is odd FFh is stored in R1 register else if even 11h is stored in R1

register

Before

Address Data

0x8100 0xFF

R1 0x00

Case 1: Odd Number

After

Address Data

0x8100 0xFF

R1 0xFF

Indicate Odd Number

Before

Address Data

0x8100 0xFE

R1 0x00

Case 2: Even Number

After

Address Data

0x8100 0xFF

R1 0x11

Indicate Even Number

Microcontrollers Lab Manual (BEE403):2024-2025

56

Department of EEE, ATMECE, Mysuru

Program no: 18

Objective: To check the given number placed in external memory location 8100h is Positive or

Negative., If the given number is Negative store FFh in R1 register else if Positive store

11h in R1 register.

ORG 0000H

MOV DPTR,#8100H ; get the input data from source memory location

MOVX A,@DPTR

RLC A ; get the 0th bit of input data to carry flag

JC negative ; if 0th bit=1, input number is negative

MOV R1, #11H ; store “11” in R1 to indicate positive number

SJMP LAST

Negative: MOV R1, #0FFH ; store “FF” in R1 to indicate negative number

LAST: SJMP $

END

Outcome:

Note: “RRC A” instruction is used to find odd or even. If we replace it by “RLC A” and change the

loop name from ODD to +ve, we can find the given number is positive or negative.

At the end of the program

Students will be able to understand Program to find the given number is Positive or Negative.

Result

At the end of the execution, the given number placed in external memory location 8100h is

verified and if the given number is Positive FFh is stored in R1 register else if Negative. 11h is stored

in R1 register.

Before

Address Data

0x8100 0xFF

R1 0x00

Case 1: Odd Number

After

Address Data

0x8100 0xFF

R1 0xFF

Indicates Negative Number

Before

Address Data

0x8100 0xFE

R1 0x00

Case 2: Even Number

After

Address Data

0x8100 0xFF

R1 0x11

Indicates Positive Number

Microcontrollers Lab Manual (BEE403):2024-2025

57

Department of EEE, ATMECE, Mysuru

Program no: 19

Objective: To check the number of logical zeroes and ones in the given number placed in the external

memory location 8100h. The number of logical ones is indicated in the R2 register and the number of

logical zeroes is indicated in the register R3.

ORG 0000H

MOV DPTR,#8100H ;get the input data from source memory location

MOVX A,@DPTR

MOV R1,#08H ; keep the count in R1 to check 8 bits of input data

MOV R2,#00H ; counter for logical ones

MOV R3,#00H ; counter for logical zeroes

NEXTBIT: RRC A ; get the LSB bit to carry flag

JC ONES ; If bit is one jump to label ONES

INC R3 ; if no carry increment zero counter

SJMP LAST

ONES: INC R2 ; if no carry increment ones counter

LAST: DJNZ R1, NEXTBIT ; if all the 8 bits are not checked, go back to label NEXTBIT

SJMP $

END

Outcome:

At the end of the program

Students will be able to understand Program to find the logical ones and zeroes in the given number.

Result

At the end of the execution, the given number placed in the external memory location 8100h. The number

of logical ones is indicated in the R2 register and the number of logical zeroes is indicated in the register

R3.

 Before execution

Address Data

0x8100 0x72

R2 0x00

R3 0x00

After execution

Address Data

R2 0x04

R3 0x04

 Logical ones

 Logical zeros

Microcontrollers Lab Manual (BEE403):2024-2025

58

Department of EEE, ATMECE, Mysuru

Program no: 20

Objective: To generate the ten Fibonacci numbers. It should be stored in external memory location

starting from 9400h

ORG 0000H
MOV R0,#09H ; Set Counter to generate 10 Fibonacci numbers

MOV DPTR,#9400H ; initialize the memory location to store the Fibonacci series

MOV R1,#00H ; get the first number to R1

MOV A,R1 ; get the first number to accumulator

MOVX @DPTR,A ; store the first Fibonacci number in memory.

MOV A,#01H ; get the second data to accumulator

BACK: INC DPTR

MOVX @DPTR,A ; store the next data in memory+1 location

 MOV R2,A ; store the present number inR2 register

ADD A,R1 ; get the previous data to present data in accumulator

DA A ; decimal adjust the Outcome

MOV R1,02H ; get the R2 content to R1 register

DJNZ R0, BACK ; loop back until count is zero

STOP: SJMP STOP

END

Outcome:

Address Data

0x9400 0x00

0x9401 0x00

0x9402 0x00

0x9403 0x00

0x9404 0x00

0x9405 0x00

0x9406 0x00

0x9407 0x00

0x9408 0x00

0x9409 0x00

 Before Execution

Address Data

0x9400 0x00

0x9401 0x01

0x9402 0x01

0x9403 0x02

0x9404 0x03

0x9405 0x05

0x9406 0x08

0x9407 0x13

0x9408 0x21

0x9409 0x34

After Execution

Microcontrollers Lab Manual (BEE403):2024-2025

59

Department of EEE, ATMECE, Mysuru

At the end of the program

Students will be able to understand Program to find working of Fibonacci series.

Result

At the end of the execution, ten Fibonacci is stored in external memory location starting from

9400h.

Microcontrollers Lab Manual (BEE403):2024-2025

60

Department of EEE, ATMECE, Mysuru

3. Up/Down BCD/ Binary Counters

Program no: 21

Objective: To display BCD up count (00 to 99) continuously in Port1. The delay between two

counts should be 1 second. Configure TMOD register in Timer0 Mode1 configuration.

ORG 0000H

MOV A,#00H ; A=00H

L1: MOV P1,A ; A=00H---P1=00H

ADD A,#01H ; A=00H + 01H =01HA

DA A ; 00 01 02 03 04 05 06 07 08 09 10

LCALL DELAY ;

SJMP L1 ;

DELAY: MOV TMOD,#01H ; configure timer0 in mode1

MOV R0, #1FH ; get the count for repetition of timer register count

BACK: MOV TL0, #00H ; set the initial count for 1sec

MOV TH0, #00H

SETB TR0 ; start the timer

REPEAT: JNB TF0, REPEAT ; wait until timer overflows

 CLR TR0 ; halt the timer

 CLR TF0 ; clear the timer0 overflow interrupt

DJNZ R0, BACK ; if repetition count!= 0, go to label back

RET ; return to the main program

END

Outcome: Program no: 21

Observe the BCD up count operation in Port1.

Microcontrollers Lab Manual (BEE403): 2024-2025

61

Department of EEE, ATMECE, Mysuru

Sample view:

At the end of the program

1. Students will be able to understand the way in which subroutines are called and returns made

in counters.

2. Analyze the calls and subroutines made in the program

Result

At the end of the execution, BCD up count is displayed continuously in Port1.

TR0 bit controls the running of the timer

TR0=1; Timer0 will be in running state

TR0=0;Timer0 will be in halt state

TMOD register is configured to work as:

 Timer 0 in Timer mode

 To work in mode 1 (16 bit timer)

Timer 0 working in mode1 in Timer

mode

Microcontrollers Lab Manual (BEE403):2024-2025

62

Department of EEE, ATMECE, Mysuru

Program no: 22

Objective: To display BCD down count (99 to 00) continuously in Port1. The delay between two

counts should be 1 second. Configure TMOD register in Timer0 Mode1 configuration.

ORG 0000H

MOV A, #99H ; get the first BCD value to accumulator

L1: MOV P1, A ; display the count in P1

ADD A, #99H ; get the next BCD down count value

DA A ; decimal adjust the count

LCALL DELAY ; call the delay of 1sec

SJMP L1 ; repeat forever

DELAY: MOV TMOD, #01H ; configure timer0 in mode1

MOV R0, #1FH ; get the count for repetition of timer register count

BACK: MOV TL0, #00H ; set the initial count for 1sec

MOV TH0, #00H

SETB TR0 ; start the timer

REPEAT: JNB TF0, REPEAT ; wait until timer overflows

 CLR TR0 ; halt the timer

 CLR TF0 ; clear the timer0 overflow interrupt

DJNZ R0, BACK ; if repetition count!= 0, go to label back

RET ; return to the main program

END

Microcontrollers Lab Manual (BEE403):2024-2025

63

Department of EEE, ATMECE, Mysuru

Outcome: Program no: 22

Observe the BCD down count operation in Port1.

Sample view:

At the end of the program

1. Students will be able to understand the way in which subroutines are called and returns made

in counters.

2. Analyze the calls and subroutines made in the program

Result

At the end of the execution, BCD down count is displayed continuously in Port1.

TR0 bit controls the running of the timer

TR0=1; Timer0 will be in running state

TR0=0;Timer0 will be in halt state

TMOD register is configured to work as:

 Timer 0 in Timer mode

 To work in mode 1 (16 bit timer)

Timer 0 working in mode1 in Timer

mode

Microcontrollers Lab Manual (BEE403):2024-2025

64

Department of EEE, ATMECE, Mysuru

4. Boolean & Logical Instructions (Bit manipulations)

Program no: 23

Objective: To relies the Boolean expression 𝐴̅BD+A𝐵̅𝐷+AB𝐷̅. And A=1, B=1, D=0. Store the input

in the 00h, 01h and 02h bit memory location. Store the Outcome of 𝐴̅BD in 03h bit memory

location and store the Outcome of A𝐵̅𝐷 in 04h bit memory location. Store the final Outcome

in 08h bit memory location.

ORG 0000H

SETB 00H ; initialize input A=1

SETB 01H ; initialize input B=1

CLR 02H ;initialize input D=00

MOV C,01H ; get B input to carry flag

ANL C,02H ; AND D with B

ANL C,/00H ; get the expression 𝐴̅BD

MOV 03H,C ; store it in 03h bit memory location

MOV C,00H ; get A input to carry flag

ANL C,02H ; AND D with A

ANL C,/01H ; get the expression A𝐵̅𝐷

MOV 04H,C ; store it in 04h bit memory location

MOV C,00H ; get A input to carry flag

ANL C,01H ; AND B with A

ANL C,/02H ; get the expression AB𝐷̅

ORL C,03H ;AB𝐷̅ + 𝐴̅BD

ORL C, 04H ;AB𝐷̅ + 𝐴̅BD + A𝐵̅𝐷

MOV 08H,C ; store the Outcome in the internal bit memory 08h

SJMP $

END

Microcontrollers Lab Manual (BEE403):2024-2025

65

Department of EEE, ATMECE, Mysuru

Outcome Program no: 23

Before Execution:

After Execution:

At the end of the program

 Students will be able to write program to realize boolean expression.

.

Result

At the end of the execution, Boolean expression 𝐴̅BD+A𝐵̅𝐷+AB𝐷̅ is realized and the Outcome

of 𝐴̅BD in 03h bit memory location and the Outcome of A𝐵̅𝐷 in 04h bit memory location. The final

Outcome in 08h bit memory location.

07 06 05 04 03 02 01 00

0 0 0 0 0 0 0 0

0F 0E 0D 0C 0B 0A 09 08

0 0 0 0 0 0 0 0

07h 06h 05h 04h 03h 02h 01h 00h

0 0 0 0 0 0 1 1

0Fh 0Eh 0Dh 0Ch 0Bh 0Ah 09h 08h

0 0 0 0 0 0 0 1

Bit addresses

A B D 𝐴̅BD A𝐵̅𝐷

20 byte address

Bit addresses

𝐴̅BD+A𝐵̅𝐷+AB𝐷̅.

21 byte address

Bit addresses

A B D 𝐴̅BD A𝐵̅𝐷

20 byte address

Bit addresses

𝐴̅BD+A𝐵̅𝐷+AB𝐷̅.

21 byte address

Microcontrollers Lab Manual (BEE403):2024-2025

66

Department of EEE, ATMECE, Mysuru

5. Code Conversion: BCD – ASCII; ASCII – Decimal; Decimal – ASCII;

HEX – Decimal and Decimal - HEX

Program no: 24

Objective: To convert ASCII (30-39) number placed in internal memory location 20h to its

equivalent unpacked BCD number (00-09). The Outcome as to be stored in internal memory

location 40h.

ORG 0000H

MOV R0, #20H ; get the source memory address in R0

MOV R1, #40H ; get the destination memory address in R1

MOV A,@R0 ; @20H=33----A=33H

XRL A, #30H ; A=33H X-0R 30H =03H ----A=03H

MOV @R1, A ; A=03H------@40H=03H

SJMP $

END

Outcome:

Before Execution

After Execution

At the end of the program

Students will be able to understand program to convert ASCII number to its equivalent

unpacked BCD number

Result

At the end of the execution, ASCII (30-39) numbers placed in internal memory location 20h is

converted to its equivalent unpacked BCD number (00-09). The Outcome is stored in internal memory

location 40h.

Address Data

0x0020 0x36

Address Data

0x0040 0x00

Address Data

0x0020 0x36

Address Data

0x0040 0x06

Microcontrollers Lab Manual (BEE403):2024-2025

67

Department of EEE, ATMECE, Mysuru

Program no: 25

Objective: To convert unpacked BCD number (00-09) placed in internal memory location 20h to its

equivalent ASCII number (30-39). The Outcome as to be stored in internal memory location

40h.

ORG 0000H

MOV R0, #20H ; get the source memory address in R0

MOV R1, #40H ; get the destination memory address in R1

MOV A,@R0 ; get the BCD data from source memory to accumulator

ORL A, #30H ; convert to ASCII by adding 30h to input BCD data

MOV @R1, A ; store the ASCII Outcome in destination memory

SJMP $

END

Outcome:

At the end of the program

Students will be able to understand program to convert ASCII number to its equivalent

unpacked BCD number

Result

At the end of the execution, ASCII (30-39) numbers placed in internal memory location 20h is

converted to its equivalent unpacked BCD number (00-09). The Outcome is stored in internal memory

location 40h.

Before Execution

Address Data

0x0020 0x06

0x0040 0x00

After Execution

Address Data

0x0040 0x36

Microcontrollers Lab Manual (BEE403):2024-2025

68

Department of EEE, ATMECE, Mysuru

Program no: 26

Objective: To convert unpacked BCD number (00-99) placed in internal memory location 20h to

its equivalent ASCII number (30-39). The Outcome as to be stored in internal memory

location 40h and 41h. 54 35 34

ORG 0000H

MOV R0,#20H ; get the source memory address in R0 76

MOV R1,#40H ; get the destination memory address in R1

MOV A,@R0 ; get the input data to accumulator

ANL A,#0F0H ; mask off the lower nibble 01110110 AND 11110000 = O/P= 70

SWAP A ; exchange upper and lower nibble A=07

ORL A,#30H ; convert upper nibble to ASCII 07 OR30 0111 OR 00110000

MOV @R1,A ; send the ASCII data to destination memory a=37

MOV A,@R0 ; get the input data to accumulator

ANL A,#0FH ; mask off the upper nibble

ORL A,#30H ; convert lower nibble to ASCII

INC R1 ; increment the destination memory location

MOV @R1,A ; send the ASCII data to destination memory

SJMP $

END

Outcome:

At the end of the program

Students will be able to understand code conversion program from packed BCD number to its

equivalent ASCII number.

Result

At the end of the execution, unpacked BCD number (00-99) placed in internal memory location

20h is converted to its equivalent ASCII number (30-39). The Outcome is stored in internal memory

location 40h and 41h.

Before Execution

Address Data

0x0020 0x76

0x0040 0x00

0x0041 0x00

After Execution

Address Data

0x0020 0x76

0x0040 0x37

0x0041 0x36

Microcontrollers Lab Manual (BEE403):2024-2025

69

Department of EEE, ATMECE, Mysuru

Program no: 27

Objective: To convert ASCII (30-39) number placed in internal memory location 20h and 21h to its

equivalent packed BCD number (00-99). The Outcome as to be stored in internal memory

location 40h

ORG 0000H

MOV R0,#20H ; get the source memory address in R0

MOV R1,#40H ; get the destination memory address in R1

MOV A,@R0 ; get the ASCII input data to accumulator

ANL A,#0FH ; mask off the upper nibble (convert to unpacked BCD)

SWAP A ; exchange upper and lower nibble

MOV R2,A ; save the accumulator content in R2 register

INC R0 ; get the second input memory location

MOV A,@R0 ; get the second data to accumulator

ANL A,#0FH ; mask off the upper nibble (convert to unpacked BCD)

ORL A, R2 ; convert the two unpacked BCD data to packed data

MOV @R1,A ; store in Outcome memory location

SJMP $

END

Outcome:

At the end of the program

Students will be able to understand code conversion program from ASCII number to its

equivalent packed BCD number.

Result

At the end of the execution, ASCII (30-39) number placed in internal memory location 20h and

21h is converted to its equivalent packed BCD number (00-99). The Outcome is stored in internal

memory location 40h.

After execution

Address Data

0x0020 0x34

0x0040 0x33

0x0041 0x43

Before execution

Address Data

0x0020 0x34

0x0021 0x33

0x0040 0x00

Microcontrollers Lab Manual (BEE403):2024-2025

70

Department of EEE, ATMECE, Mysuru

Program no: 28

Objective: To convert the hexadecimal number placed in the external memory location 8100h to

decimal number and store the Outcome in the external memory location 8200h and 8201h.

ORG 0000H

MOV DPTR,#8100H ; get the input data (hex number) memory location

MOVX A,@DPTR ; get the input data to accumulator

MOV B,#0AH ; get the divisor to B register

DIV AB ; divide input data by 10d

MOV R1,B ; store the remainder in register in R1

MOV B,#0AH ; get the divisor to B register

DIV AB ; divide the quotient of previous division by 10d

MOV R0,A ; move the quotient to R0 register

MOV A,B ; get the remainder to accumulator

SWAP A ; interchange upper and lower nibble

ORL A,R1 ; concatenate units and tens place

MOV DPTR,#8201H ; get the Outcome+1 memory location

MOVX @DPTR,A ; store the tens and units(accumulator) place Outcome

DEC DPL ; get the Outcome+0 memory address

MOV A,R0 ; get the hundreds place value of the output to accumulator

MOVX @DPTR,A ; store the Outcome.

SJMP $

END

Microcontrollers Lab Manual (BEE403):2024-2025

71

Department of EEE, ATMECE, Mysuru

Outcome: Program no: 28

At the end of the program

Students will be able to understand code conversion program from hexadecimal number to

decimal number.

Result

At the end of the execution, hexadecimal number placed in the external memory location 8100h

is converted to decimal number and the Outcome is stored in the external memory location 8200h and

8201h.

Before Execution After Execution

Address Data

0x8200 0x02

0x8201 0x55

Address Data

0x8100 0xFF

0x8200 0x00

0x8201 0x00

Microcontrollers Lab Manual (BEE403):2024-2025

72

Department of EEE, ATMECE, Mysuru

Program no: 29

Objective: To convert the decimal number placed in the external memory location 8100h to

hexadecimal number and store the Outcome in the external memory location 8101h

ORG 0000H

MOV DPTR,#8100H ; get the input data (decimal number) memory location

MOVX A,@DPTR ; get the input data (decimal number) to accumulator

MOV B,A ; get the data to register B

ANL A,#0FH ; mask off the upper nibble of the input data

MOV R1,A ; save the accumulator data in register R1

MOV A,B ; get the input data to accumulator

ANL A,#0F0H ; mask off the lower nibble

SWAP A ; interchange the upper and lower nibble

MOV B,#0AH ; get the multiplier to register B

MUL AB ; multiply upper nibble of input data with 0Ah

ADD A,R1 ; add multiplied data with input data’s lower nibble value

INC DPTR ; get the Outcome memory location address to DPTR

MOVX @DPTR,A ; store the hex decimal value in the Outcome memory location

SJMP $

END

Outcome:

At the end of the program

Students will be able to understand code conversion decimal number to hexadecimal number.

Result

At the end of the execution, decimal number is placed in the external memory location 8100h

and the converted result is stored in the external memory location 8101h

 Before Execution After execution

Address Data

0x8100 0x63

0x8101 0x3F

Address Data

0x8100 0x63

0x8101 0x00

0x8201 0x00

Microcontrollers Lab Manual (BEE403):2024-2025

73

Department of EEE, ATMECE, Mysuru

6.Programs to generate delay, Programs using serial port and on-Chip

timer / counter
Program no: 30

Objective: To generate the square wave in P1 with the 50% duty cycle and the time delay of 10ms

using timer. Assume the crystal frequency of 24 MHz Configure the timer in Timer0 mode1.

 ORG 0000H

 MOV P1, #0FFH ; initialize P1

BACK: XRL 90H, #0FFH ; generate square wave signal

 ACALL DELAY ; call 10ms delay

 SJMP BACK ; repeat forever

DELAY: MOV TMOD, #01H ; configure the timer0 in mode1

 MOV TL0, #0E0H ; set the initial value in timer register for 10ms

 MOV TH0, #0B1H

 SETB TR0 ; start the timer

REPEAT: JNB TF0, REPEAT ; wait until timer overflows

 CLR TR0 ; halt the timer

 CLR TF0 ; clear the timer0 overflow interrupt

 RET ; ret to the main program

 END

Outcome: Program no: 30

Observed the 50% duty cycle square wave in P1 and measured the time delay of 10ms.

At the end of the program

Students will be able to program generating delays using timers and serial programming

Result

At the end of the execution, square wave is generated in P1 with the 50% duty cycle and the

time delay of 10ms using timer.

Microcontrollers Lab Manual (BEE403):2024-2025

74

Department of EEE, ATMECE, Mysuru

Sample view:

Fig 5: Screenshot of waveform in Logic analyzer window

After entering the

output parameter close

the window

Enter the output

parameter here.

Use the insert button to

enter the output

parameter.

Note down

the time

delay

Hold the

cursor

here

Place the

marker

here

Microcontrollers Lab Manual (BEE403):2024-2025

75

Department of EEE, ATMECE, Mysuru

Program no: 31

Objective: To generate the square wave with the on time delay of 6ms and off time delay of

4msec.Configure the timer in Timer0 mode1. Assume the crystal frequency of 24 MHz

 ORG 0000H

BACK: MOV P1, #00H ; generate OFF time through P1

 ACALL DELAY ; Call 2ms delay subroutine twice to get 4ms

 ACALL DELAY

 MOV P1, #0FFH ; generate ON time through P1

 ACALL DELAY ; Call 2ms delay subroutine thrice to get 6ms

 ACALL DELAY

 ACALL DELAY

 SJMP BACK ; repeat the processes forever

DELAY: MOV TMOD, #01H ; configure the timer0 in mode1

 MOV TL0, #060H ; set the initial value in timer register for 2ms

 MOV TH0, #0F0H

 SETB TR0 ; start the timer

REPEAT: JNB TF0, REPEAT ; wait until timer overflows

 CLR TR0 ; halt the timer

 CLR TF0 ; clear the timer0 overflow interrupt

 RET ; ret to the main program

 END

Outcome Program no: 31

At the end of the program

 Students will be able to program generating delays using timers.

Result

At the end of the execution, square wave is generated in P1 with 6msec on time and 4msec off

time delay.

Microcontrollers Lab Manual (BEE403):2024-2025

76

Department of EEE, ATMECE, Mysuru

Sample view:

OFF Time measure:

 Fig 6: Screenshot of waveform in Logic analyzer window for OFF Time measure

After entering the output

parameter close the

window

Enter the output parameter

here.

Use the insert button to enter

the output parameter.

Note down

the time delay

Hold the

cursor here

Place the

marker

here

Microcontrollers Lab Manual (BEE403):2024-2025

77

Department of EEE, ATMECE, Mysuru

ON Time measure:

Fig 7: Screenshot of waveform in Logic analyzer window for ON Time measure

Note down

the time

delay

Hold the

cursor

here

Place the

marker

here

Microcontrollers Lab Manual (BEE403):2024-2025

78

Department of EEE, ATMECE, Mysuru

Program no: 32

Objective: To send the letter ‘J’ serially using the UART at the baud rate of 9600. Configure SCON

register in mode 1. Assume the crystal frequency of 11.0592 MHz

ORG 0000H

BACK: MOV TMOD, #20H ; configure the timer1 in mode2

 MOV TH1, #-3 ; count for the baud rate of 9600

 MOV SCON, #50H ; configure SCON to mode1

 SETB TR1 ; start the timer

 MOV SBUF, #'J' ; send the letter ‘J’ through SBUF register

HERE: JNB TI, HERE ; wait until ‘J’ character is sent (8bits are transferred)

 CLR TI ; clear serial interrupt for next character to be sent

 SJMP BACK ; repeat the processes

 SJMP $

 END

Outcome:

Transmitted the letter ‘J’ serially using UART at the baud rate of 9600.

Microcontrollers Lab Manual (BEE403):2024-2025

79

Department of EEE, ATMECE, Mysuru

At the end of the program

 Students will be able to write program for serial programming.

Result

At the end of the execution, letter ‘J’ is transmitted serially using the UART at the baud rate of

9600.

Microcontrollers Lab Manual (BEE403):2024-2025

80

Department of EEE, ATMECE, Mysuru

Program no: 33

Objective: To find the GCD and LCM of the given two numbers, which are placed in the external

memory location 9400h and 9401h. The GCD of the two given numbers as to be stored in

external memory location 9402h and the LCM as to be stored in the external memory

location 9403h and 9404h.

ORG 0000H

MOV DPTR,#9400H ; get the source memory address

MOVX A,@DPTR ; get the first value to Accumulator

MOV R1,A ; store the first input value in R1 register

MOV R3,A ; store the first input value in R3 register

INC DPTR ; get the source memory+1 address

MOVX A,@DPTR ; get the second value to accumulator

MOV R2, A ; store the second input value to register R2

MOV R4, A ; store the second input value to register R4

AGAIN: MOV A, R1 ; get the first input value back to accumulator

CJNE A, 02H, CHECK ; if input1! = input2 jump to label “CHECK”

SJMP OVER ; if two inputs are equal jump to label “OVER”

CHECK: JNC GCD ; if input1 > input2, jump to label “GCD”

XCH A,R2 ; if input2 > input1, exchange both the inputs

MOV R1,A

GCD: CLR C ; clear carry flag

SUBB A,R2 ; subtract first number from second number

MOV R1,A ; get the Outcome of subtraction to register R1

SJMP AGAIN ; go back to label “AGAIN”

OVER: INC DPTR ; get the Outcome memory address

MOVX @DPTR, A ; store the GCD of two input numbers in Outcome memory.

MOV B, A ; get the GCD output to B register

MOV A, R3 ; get the first input to Accumulator

DIV AB ; divide second input number by GCD value

MOV B, R4 ; get the second number to register B

MUL AB ; multiply second number with previous division’s quotient

Microcontrollers Lab Manual (BEE403):2024-2025

81

Department of EEE, ATMECE, Mysuru

INC DPTR

INC DPTR ;get the Outcome+2 memory address

MOVX @DPTR,A ; store the lower byte of LCM output to Outcome+2 memory

MOV A,B ; get the upper byte of LCM value to register A

DEC DPL ; get the Outcome+1 memory address

MOVX @DPTR,A ; store the upper byte of LCM output to Outcome+1 memory

SJMP $

END

Outcome:

At the end of the program

Students will be able to program GCD and LCM of the given two numbers.

Result

At the end of the execution, GCD and LCM of the given two numbers is placed in the external

memory location 9400h and 9401h. The result is stored in external memory location 9402h and the

LCM as to be stored in the external memory location 9403h and 9404h.

Address Data

0x9402 0x00

0x9403 0x00

0x9404 0x00

Before Execution

Address Data

0x9400 0x05

0x9401 0x06

After Execution

Address Data

0x9400 0x05

0x9401 0x06

Address Data

0x9402 0x01

0x9403 0x00

0x9404 0x1E

Microcontrollers Lab Manual (BEE403):2024-2025

82

Department of EEE, ATMECE, Mysuru

Program no: 34

Objective: To find the factorial of the given number placed in the external memory location 8300h.

The Outcome as to be stored in the memory location 8400h and 84001h

ORG 0000H

MOV DPTR, #8300H ; get the input memory address

MOVX A, @DPTR ; get the input number to accumulator

MOV B, #00H ; clear register B

CJNE A, #00H, NEXT ; if input number is! = 00 jump to label “NEXT”

MOV A, #01H ; if input number is = 00 store factorial as 01 in accumulator

SJMP L2 ; jump to label “L2”

NEXT: CJNE A, #01H, FACTO ; if input number is! = 01 jump to label “FACTO”

 SJMP L2 ; jump to label “L2”

FACTO: MOV R1, #01H ; Initialize register R1 with 01

 MOV R2, #01H ; Initialize register R2 with 01

 MOV R0, A ; copy the input data to register R0

REPEAT: MOV A, R2 ; get the R2 register content to accumulator

 INC R1 ; increment the register R1 content

 MOV B, R1 ; get the R1 register content to register B

 MUL AB ; multiply the accumulator and B register content

 MOV R2, A ; store the lower byte of Outcome to register R2

 MOV A, R0 ; get the input number to accumulator

 CJNE A, 01H, REPEAT ; if input number! = register R1 content, jump to “REPEAT”

 MOV A, R2 ; if equal, get lower byte of factorial output to accumulator

 L2: MOV DPTR, #8401H ; get the Outcome+1 memory address

 MOVX @DPTR, A ; store the lower byte of Outcome in Outcome+1 memory

 DEC DPL ; get the Outcome memory address

 MOV A, B ; get the upper byte of factorial Outcome to accumulator

 MOVX @DPTR, A ; store the upper byte of Outcome in Outcome memory

 SJMP $

 END

Microcontrollers Lab Manual (BEE403):2024-2025

83

Department of EEE, ATMECE, Mysuru

Outcome Program no: 34

At the end of the program

Students will be able to program factorial of the given number

Result

At the end of the execution, factorial of the given number is placed in the external memory

location 8300h. The Outcome is stored in the memory location 8400h and 84001h

Before execution

 Address Data

0x8300 0x06

Address Data

0x8400 0x00

0x8401 0x00

After execution

Address Data

0x8400 0x02

0x8401 0xD0

Microcontrollers Lab Manual (BEE403):2024-2025

84

Department of EEE, ATMECE, Mysuru

Hardware Programs

Microcontrollers Lab Manual (BEE403):2024-2025

85

Department of EEE, ATMECE, Mysuru

Fig 1..: AT89C51 Development Board

RS232 Female

Connector
RS232 Male

Connector

16 X 2 LCD

Reset

IDE Female

Connector

ATMEL AT89C51ED2 MICROCONTROLLER BOARD

Microcontrollers Lab Manual (BEE403):2024-2025

86

Department of EEE, ATMECE, Mysuru

 Fig 2..: Components for Interfacing

Regulated Power Supply

IDE Female Connector

Cable to connect Power
supply

RS232 Male and Female
Connector

DB 9 Pin

Microcontrollers Lab Manual (BEE403):2024-2025

87

Department of EEE, ATMECE, Mysuru

II. INTERFACING:

Hardware Programs

7. Generate different waveforms: Sine, Square, Triangular, Ramp using DAC interface.

Objective: Write a C program to generate square wave on Port1 and display the ramp

wave in CRO using DAC interface.

Components: AT89C51ED2 Development board, DAC interface, RS 232 Cable, DC Power

 supply Vcc: +5V, 1.5A, Vdd:+/-12V,0.1A, CRO, probes

Block Diagram of DAC Interface:

Fig 1.1.: Interfacing diagram of DAC

Program

#include <at89c51xd2.h>

void delay(void);

void main ()

{

 while(1)

 {

P1 = 0x0; ;To get a square wavewith 0V as initial point, minimum 8 bit

 bit value 0x0 is provided.

delay(); ;delay is provided to control thje frequency of the wave.

 P1 = 0xff; ;To get a square wave 0f 5V, maximum 8 bit value FF

is provided.

Microcontrollers Lab Manual (BEE403):2024-2025

88

Department of EEE, ATMECE, Mysuru

 delay();

 }

}

void delay(void)

{

 int i;

 for(i=0;i<=300;i++);

}

1) To Generate a Square Wave:

 #include <Reg 51h> - This is to use the registers of 8051 microcontroller for

programming.

 Reg 51.h is a reader file which contains all the registers of 8051 microcontroller.

 For getting a square wave of 5V (maximum output that can be obtained using the kit)

we have to provide the maximum 8 bit number that is 0FFH and to get 0V we have to

give 00H.

 So first give 00H as the digital input to DAC and then provide some delay. This delay

is used to control the frequency of square wave.

 Then again provide FFH to get 5V output. The loop should be repeated continuously to

get a square waveform.

Delay Function:

void delay (unsigned int x)

{

for (;x>0;x--);

}

Void means the function does not return any delay is the function name and the parameter

passed to the function is of integer data type (that is it can hold 16 bit data). So whatever value

is passed to the delay function the variable ‘x’ takes that value.

Therefore loop is defined without initialization. Then the x value is decremented until it

becomes zero. So the delay can be obtained. For different x value we will get different delay.

Microcontrollers Lab Manual (BEE403)2024-2025

89

Department of EEE, ATMECE, Mysuru

In the main program

main ()

Unsigned character ON = 0 X 45, it means ‘ON’ is a variable of data type unsigned character

(i.e., 8 bit) and is initialized with 0 X 45. Similarly for ‘OFF’

P0=0 X 00; This is to configure P0 as output port. To configure as output port 00 should be

given and to configure as input port FF should be given to the corresponding port special

function register.

while (1): - This statement is used to repeat the loop infinite times. So that we will get a

continuous waveform.

Then give the value required for ON and OFF condition

For 0V – 00H

 5V – FFH

Therefore for getting 1V at the output the digital value should be
𝐹𝐹

5
𝐻.

Then for 2V -
𝐹𝐹

5
 𝑋 2𝐻 and so n.

Similarly for changing the frequency, change the value that is passed to the delay function.

Delay (1) if we are giving and we will get the wave shown in figure 1.1b

Microcontrollers Lab Manual (BEE403):2024-2025

90

Department of EEE, ATMECE, Mysuru

Fig 1.2.: Waveform of Square wave

Outcome

At the end of the program

 The exercise shall make the students competent in using DAC interface to 8051 and change

the frequency and amplitude

.

Result

At the end of the execution, C program to generate square wave on Port1 is written and the

waveform is displayed in CRO using DAC interface.

Microcontrollers Lab Manual (BEE403):2024-2025

91

Department of EEE, ATMECE, Mysuru

Objective: Write a C program to generate triangular wave on Port1 and display the

triangular wave in CRO using DAC interface.

Components: AT89C51ED2 Development board, DAC interface, RS 232 Cable, DC Power

 supply Vcc: +5V,1.5A,Vdd:+/-12V,0.1A, CRO, probes

Program

#include <at89c51xd2.h>

idata unsigned char count; //unsigned char-8 bit data type count

void main ()

{

 while(1)

 {

 for(count=0;count!=0xff;count++)

 {

 P1=count;

 }

 for(count=0xff; count>0;count--)

 {

 P1=count;

 }

 }

}

Fig 1.2.: Waveform of triangular wave

FF-5V

0V

Microcontrollers Lab Manual (BEE403):2024-2025

92

Department of EEE, ATMECE, Mysuru

2) To generate Triangular waveform:

To get a triangular waveform, the variable value is invreased from 00H to the required

amplitude value (max FFH) and after reaching the value the variable is decremented

continuously to 00H. So two for loops are used for getting a triangular wave. By changing the

delay function value the slope of triangular wave form can be controlled.

Outcome

At the end of the program

 The exercise shall make the students competent in using DAC interface to 8051 and change

the frequency and amplitude

.

Result

At the end of the execution, C program to generate triangular wave on Port1 is written and the

waveform is displayed in CRO using DAC interface.

Microcontrollers Lab Manual (BEE403):2024-2025

93

Department of EEE, ATMECE, Mysuru

Objective: Write a C program to generate Sine wave on Port1 and display the Sine wave

in CRO using DAC interface.

Components: AT89C51ED2 Development board, DAC interface, RS 232 Cable, DC Power

 supply Vcc: +5V,1.5A,Vdd:+/-12V,0.1A, CRO, probes

Program

#include <at89c51xd2.h>

xdata unsigned char sine_tab[49]={

0x80,0x90,0xA1,0xB1,0xC0,0xCD,0xDA,0xE5,0xEE,0xF6,0xFB,0xFE,0xFF,0xFE,0

xFB,0xF6,0xEE,0xE5,0xDA,0xCD,0xC0,0xB1,0xA1,0x90,0x80,0x70,0x5F,0x4F,0x

40,0x33,0x26,0x1B,0x12,0x0A,0x05,0x02,0x00,0x02,0x05,0x0A,0x12,0x1B,0x26,0x

33,0x40,0x4F,0x5F,0x70,0x80};

// V=128+128sin𝜃

idataint count;

void main ()

{

 while (1)

 {

 for(count=0;count<49;count++)

 {

 P1 = sine_tab [count];

 }

 }

 }

Calculation:

128+128 sin 𝜃

𝜃 = 0, 128+128 sin0 = 0 x 80

𝜃 = 7.5 = 128+128 sin7.5 = 0 x 90

Take 𝜃 value 7.5 and calculate for the 49 hex values in the program

Microcontrollers Lab Manual (BEE403):2024-2025

94

Department of EEE, ATMECE, Mysuru

3) To generate Sine wave:

The equation for Sine wave is V0 = 128(1 + sin θ)

V0 = 128 + 128 sin θ

By giving different values for θ, different amplitude of the Sine wave can be obtained.

When θ = 0, V0 = 128 because sin 0 = 0

When θ = 7.5, V0 = 128 + 128 sin 7.5

When θ = 350, V0 = 128 + 128 sin 350,

So θ value is increased from 00 to 3500 and the corresponding output voltages are arranged in

an array.

The each value is given to port 0 to get the sine wave at the output.

To get 5V Sine wave V0 = 128 + 128 sin θ

To get 2.5V Sine wave V0 = 128 + 128 sin θ and so on.

Fig 1.3.: Waveform of Sine wave

Outcome

At the end of the program

 The exercise shall make the students competent in using DAC interface to 8051 and change

the frequency and amplitude

.

Result

At the end of the execution, C program to generate sine wave on Port1 is written and the

waveform is displayed in CRO using DAC interface.

Microcontrollers Lab Manual (BEE403):2024-2025

95

Department of EEE, ATMECE, Mysuru

Objective: Write a C program to generate ramp wave on Port1 and display the Ramp

wave in CRO using DAC interface.

Components: AT89C51ED2 Development board, DAC interface, RS 232 Cable, DC Power

 supply Vcc: +5V,1.5A,Vdd:+/-12V,0.1A, CRO, probes

Program

#include <at89c51xd2.h>

idata unsigned char count;

void main ()

{

 count = 0x0;

 while(1)

 {

 P1 = count;

 count++;

 }

}

00H----------------------------------FFH

0V--------------------------------------5V

Fig 1.4.: Waveform of Sine wave

Microcontrollers Lab Manual (BEE403):2024-2025

96

Department of EEE, ATMECE, Mysuru

4) To Generate Ramp wave:

To get a ramp waveform at the output, a variable is increased from 00H to FFH and

then after ready FFH, then again the variable value is increased from 00H to FFH.

This loop repeats continuously to generate Ramp waveform.

So inside for loop the value of variable is increased from 00H to FFH.

By changing the delay function value the slope of the Ramp waveform (frequency)

can be controlled.

For 00H – 0V

 FFH – 5V

 7FH – 2.5V etc.

Outcome

At the end of the program

 The exercise shall make the students competent in using DAC interface to 8051 and change

the frequency and amplitude

Result

At the end of the execution, C program to generate ramp wave on Port1 is written and the

waveform is displayed in CRO using DAC interface.

Microcontrollers Lab Manual (BEE403):2024-2025

97

Department of EEE, ATMECE, Mysuru

 8. DC Motor Interface to 8051

Objective: Write C program to interface DC motor to AT89C51ED2 µC to control the

speed of DC motor with different duty cycle.

Components: AT89C51ED2 Development board, DC Motor interface, RS 232 Cable,

 DC Power supply: 5V

Fig 1.5.: Block diagram DC Motor

Program

#include <at89c51xd2.h>

// off time : variable to hold value for 30 milliseconds

// on time: variable to hold value for 10 milliseconds

sbit P24= P2^4; Port 2 bit 4 , Input

idata unsigned char off_time,on_time;

idata unsigned char ii;

void main ()

{

 TCON = 0;

 TMOD = 0x01; //select mode 1, timer 0

 off_time = 30;

 on_time = 10;

 while(1)

P2.4
I/P

Motor

Microcontrollers Lab Manual (BEE403):2024-2025

98

Department of EEE, ATMECE, Mysuru

 {

 P24 = 1; // make P2.4 high

 for(ii=0;ii<on_time;ii++)

 {

 TL0 = 0x66; //timer count set

 TH0 = 0xFC; // load timer high and low registers

 TR0 =1; // start timer 0

 // each time the timer overflfow occurs at 1 milli second

 while(!TF0) // till timer does not overflow

{

 TF0 = 0; // reset timeroverflow flag

 TR0=0; // stop timer 0

 }

 P24 = 0; // reset P2.4

 for(ii=0;ii<off_time;ii++)

 {

 TL0 = 0x66; //timer count set for

 TH0 = 0xFC; // load timer high and low registers

 TR0 =1; // start timer 0

 while(!TF0)

 {

 }

 TF0 = 0; // reset timer overflow flag

 TR0=0; // stop timer 0

 }

 }

}

Outcome

1. The exercise shall make the students competent in utilising DC motor for various

applications

Result

At the end of the execution, C program to interface DC motor to AT89C51ED2 µC to control

the speed of DC motor with different duty cycle is performed.

Microcontrollers Lab Manual (BEE403):2024-2025

99

Department of EEE, ATMECE, Mysuru

9. Stepper Motor Interface to 8051

Objective: Write C program to rotate stepper motor clockwise.

Components: AT89C51ED2 Development board, Stepper Motor interface, RS 232 Cable,

DC Power Supply: 5V

Program

Stepper Motor Clockwise. Rotate Stepper Motor Anticlockwise

#include <at89c51xd2.h>

Void delay (void);

 Void main (void)

{

while(1)

{

 P2=0x07; // output 0x07 to port P2

 delay(); // generate delay

 P2=0x0b; // output 0x0b to port P2

 delay(); // generate delay

 P2=0x0d; // output 0x0d to port P2

 delay(); // generate delay

 P2=0x0e; // output 0x0e to port P2

 delay(); // generate delay

}

}

void delay(void)

 {

 int i;

 for (i=0;i<=30000;i++);

 }

#include <at89c51xd2.h>

void delay(void);

void main(void)

{

while(1)

{

 P2=0x0e; // output 0x0e to portP2

 delay(); // generate delay

 P2=0x0d; // output 0x0d to port P2

delay(); // generate delay

 P2=0x0b; // output 0x0b to portP2

 delay(); // generate delay

 P2=0x07; // output 0x07 to portP2

 delay(); // generate delay

}

}

void delay(void)

{

 int i;

 for(i=0;i<=30000;i++);

 }

Microcontrollers Lab Manual (BEE403):2024-2025

100

Department of EEE, ATMECE, Mysuru

Objective: Write C program to rotate stepper motor N rotation clockwise. (Where N=1,

2, 3…n).

Components: AT89C51ED2 Development board, Stepper Motor interface, RS 232 Cable,

DC Power Supply: 5V

Fig 1.6.: Block diagram StepperMotor

Program

#include <at89c51xd2.h>

void delay(void);

void main()

{

unsigned char i, j, k=0;

int value [] = {0x0b, 0x07, 0x0e, 0x0d}; // for anticlockwise { , , , ,}

unsigned char count1 = 3; //N=3

unsigned char count = 200;

for (j=0;j<count1;j++)//count number of rotations

{

for(i=0;i<count; i++)//count for number of steps

{

 P2=value[k];

 k=k+1;

 if(k>3)

 k=0;

 delay();

 }

 }

 while(1);

Microcontrollers Lab Manual (BEE403):2024-2025

101

Department of EEE, ATMECE, Mysuru

 }

void delay(void)

{

unsigned int i;

for(i=0;i<10000;i++);

}

Outcome:

At the end of the program, Students will be able to analyze interfacing of stepper motor.

Result

At the end of the execution, C program to interface Stepper motor to AT89C51ED2 µC is

performed and step control is observed.

Hobby Project Circuit:

https://www.electronicshub.org/interfacing-dc-motor-8051-microcontroller/

https://www.electronicshub.org/automatic-railway-gate-controller/

Microcontrollers Lab Manual (BEE403):2024-2025

102

Department of EEE, ATMECE, Mysuru

10. Alphanumeric LCD Interface

Alphanumeric LCD panel and Hex keypad input interface to 8051

Objective: Write a 8051 C Program to send ‘A’, ‘T’, ‘M’, ‘E’, ‘ ’, ‘M’, ‘Y’, ‘S’, ‘O’, ‘R’,

‘E’, to LCD display.

Components: AT89C51ED2 Development board, LCD panel interface, RS 232 Cable, DC

Power Supply: +5V

Fig 1.6.: Block diagram LCD and Keypad interface

Program

#include <at89c51xd2.h>

sfr ldata = 0x80;

sbit rs=P2^4;

sbit rw=P2^5;

sbit en=P2^6;

void lcddata(unsigned char value);

void lcdcmd(unsigned char value);

void MSDelay(unsigned int itime);

void main()

{

 lcdcmd(0x38); 5X7 matrix

 MSDelay(250);

 lcdcmd(0x0e); Display on, cursor blinking

 MSDelay(250);

 lcdcmd(0x01); Clear display screen

 MSDelay(250);

 lcdcmd(0x06); Increment cursor (shift cursor to right)

 MSDelay(250);

Microcontrollers Lab Manual (BEE403):2024-2025

103

Department of EEE, ATMECE, Mysuru

 lcdcmd(0x80); //Force cursor to the beginning of first line

 MSDelay(250);

 lcddata('A');

 MSDelay(250);

 lcddata('T');

 MSDelay(250);

 lcddata('M');

 MSDelay(250);

 lcddata('E');

 MSDelay(250);

 lcddata(' ');

 MSDelay(250);

 lcddata('M');

 MSDelay(250);

 lcddata('Y');

 MSDelay(250);

 lcddata('S');

 lcdcmd(0xC0);

 MSDelay(250);

 lcddata('O');

 MSDelay(250);

 lcddata('R');

 MSDelay(250);

 lcddata('E');

 here: goto here;

}

void lcdcmd(unsigned char value)

{

 ldata = value;

 rs=0;

 rw=0;

 en=1;

 MSDelay(1);

 en=0;

 return;

}

void lcddata(unsigned char value)

{

 ldata = value;

 rs=1;

 rw=0;

 en=1;

 MSDelay(1);

Microcontrollers Lab Manual (BEE403):2024-2025

104

Department of EEE, ATMECE, Mysuru

 en=0;

 return;

}

void MSDelay(unsigned int itime)

{

 unsigned int i,j;

 for(i=0;i<itime;i++)

 for(j=0;j<1275;j++);

}

Outcome:

The above exercise shall make the students competent in using LCD for various

applications.

Result

At the end of the execution, C program is written for LCD interfacing and the Characters are

observed.

Hobby Project circuit:
https://www.electronicshub.org/interfacing16x2-lcd-with-pic-microcontroller/
https://www.electronicshub.org/interfacing-16x2-lcd-avr-microcontroller/

Microcontrollers Lab Manual (BEE403):2024-2025

105

Department of EEE, ATMECE, Mysuru

Objective: Write an 8051 C Program to interface HEX Keypad to AT89C51ED2 µC to

display the key pressed.

Components: AT89C51ED2 Development board, HEX Keypad interface, RS 232 Cable, DC

Power Supply: 5V

Program

#include <at89c51xd2.h>

void lcd_init(void);

void clr_disp(void);

void lcd_com(unsigned char);

void lcd_data(unsigned char);

void scan(void);

void get_key(void);

void display(void);

void delay(char);

idata unsigned char row,col,key;

code unsigned char scan_code[16]={ 0xEE, 0xDE,0xBE,0x7E,

0xED, 0xDD, 0xBD, 0x7D,

0xEB, 0xDB, 0xBB, 0x7B,

0xE7, 0xD7, 0xB7, 0x77};

code unsigned char ASCII_CODE[16]= {'0','4','8','C',

 '1','5','9','D',

 '2','6','A','E',

 '3','7','B','F'};

idata unsigned char temp,temp2,temp3,res1,flag, Outcome;

sbit enable=P2^6;

sbit rw=P2^5;

sbit rs=P2^4;

void main ()

{

 lcd_init();

Microcontrollers Lab Manual (BEE403):2024-2025

106

Department of EEE, ATMECE, Mysuru

 delay(5);

 P2=0x0f;

 while(1)

 {

 get_key();

 display();

 delay(100);

 }

} //end of main()

void get_key(void)

{

 unsigned char i;

 flag = 0x00;

 while(1)

 {

 for(row=0;row<4;row++) //check for row depending on bit

 //assign value to temp3

 {

 if(row == 0)

 temp3=0xfe;

 else if(row == 1)

 temp3=0xfd;

 else if(row == 2)

 temp3=0xfb;

 else if(row == 3)

 temp3=0xf7;

 P1 = temp3;

 scan();

 delay(10);

 if(flag == 0xff)

 break;

Microcontrollers Lab Manual (BEE403):2024-2025

107

Department of EEE, ATMECE, Mysuru

 } // end of for

 if(flag == 0xff)

 break;

 } // end of while

 for(i=0;i<16;i++)

 {

 if(scan_code[i] == res1) //equate the scan_code with res1

 {

 Outcome = ASCII_CODE[i]; //same position value of

ascii code

 break;

 }

 }

}

void scan(void)

{

 unsigned char t;

temp2 = P2;

 temp2 = temp2 & 0x0f; //read port2 ,mask with 0x0fh

 if(temp2 != 0x0f) //is any change in temp2

 {

 delay(30); //give debounce delay check again

 delay(30);

 temp2 = P2;

 temp2 = temp2 & 0x0f;

 do

 {

 flag = 0xff;

 res1 = temp2; // store the value in res1

 t = (temp3 << 4) & 0xf0;

 res1 = res1 | t;

 temp2 = P2;

Microcontrollers Lab Manual (BEE403):2024-2025

108

Department of EEE, ATMECE, Mysuru

 temp2 = temp2 & 0x0f;

 }

 while(temp2 != 0x0f);

 }

 else

 {

 flag = 0x00;

 }

} // end of scan()

void display(void)

{

 lcd_com(0x80); //display address for key value

 delay(5);

 lcd_data(Outcome);

 delay(5);

}

void lcd_init(void)

{

 lcd_com(0x38); //display value for count

 delay(5);

 lcd_com(0x38);

 delay(5);

 lcd_com(0x0f); // display on ; cursor on

 delay(5);

 lcd_com(0x06); // shift cursor right

 delay(5);

 clr_disp();

}

Microcontrollers Lab Manual (BEE403):2024-2025

109

Department of EEE, ATMECE, Mysuru

void clr_disp(void)

{

 lcd_com(0x01);

 delay(5);

}

void lcd_com(unsigned char temp)

{

P0 = temp;

rs = 0;

 rw = 0;

 enable=1;

 delay(5);

 enable=0;

 }

void lcd_data(unsigned char temp)

{

 P0 = temp;

rs=1;

 rw=0;

 enable = 1;

 delay(5);

 enable = 0;

}

void delay(char r)

{

 int r1;

 for(r1=0;r1<r;r++);

}

Microcontrollers Lab Manual (BEE403):2024-2025

110

Department of EEE, ATMECE, Mysuru

Outcome:

The above exercise shall make the students competent in using HEX Keypad interface

for various applications.

Result

At the end of the execution, C program is written for Hex Keypad interface and the typed

Characters are observed.

Microcontrollers Lab Manual (BEE403):2024-2025

111

Department of EEE, ATMECE, Mysuru

Content beyond Syllabus

Conditional CALL, Subroutine, Return instructions

Program no: 1

Objective: To display hexadecimal up/down count (00h to FFh and FFh to 00h) continuously in

Port1. The delay between two counts should be 1 second. Configure TMOD register in

Timer0 Mode1 configuration.

ORG 0000H

MOV A,#00H ; get the first BCD value to accumulator

L1: MOV P1,A ; display the count in P1

INC A ; increment the count

LCALL DELAY ; call the delay of 1sec

CJNE A,#0FFH,L1 ; check count has reached FFh, if not continue up count

L2: MOV P1,A ; display the count in P1

LCALL DELAY ; call the delay of 1sec

DEC A ; decrement the count

CJNE A,#00H,L2 ; check count has reached 00h, if not continue down count

SJMP L1 ; repeat forever

DELAY: MOV TMOD,#01H ; configure timer0 in mode1

 MOV R0,#1FH ; get the count for repetition of timer register count

BACK: MOV TL0,#00H ; set the initial count for 1sec

 MOV TH0,#00H

 SETB TR0 ; start the timer

REPEAT: JNB TF0, REPEAT ; wait until timer overflows

 CLR TR0 ; halt the timer

 CLR TF0 ; clear the timer0 overflow interrupt

 DJNZ R0, BACK ; if repetition count!= 0, go to label back

 RET ; return to the main program

 END

Microcontrollers Lab Manual (BEE403):2024-2025

112

Department of EEE, ATMECE, Mysuru

Outcome Program no: 1

Observe the hexadecimal up/down count operation in Port1.

Sample view:

At the end of the program

1. Students will be able to understand the way in which subroutines are called and returns made

in counters.

2. Analyze the calls and subroutines made in the program

Result

At the end of the execution, hexadecimal up/down count (00h to FFh and FFh to 00h) is

displayed continuously in Port1.

TR0 bit controls the running of the timer

TR0=1; Timer0 will be in running state

TR0=0;Timer0 will be in halt state

TMOD register is configured to work as:

 Timer 0 in Timer mode

 To work in mode 1 (16 bit timer)

Timer 0 working in mode1 in Timer

mode

Microcontrollers Lab Manual (BEE403):2024-2025

113

Department of EEE, ATMECE, Mysuru

Elevator Interface to 8051.

Objective: Write a C program to understand the functioning of an elevator.

Components: AT89C51ED2 Development board, elevator interface, RS 232 Cable, DC Power

Supply: 5V

Fig 1.7.: Block diagram elevator interface

Program

#include <at89c51xd2.h>

void delay(unsigned int);

main()

{

 unsigned char xdataFlr[9] = {0xff,0x00,0x03,0xff,0x06,0xff,0xff,0xff,0x09};

 unsigned char xdataFClr[9] = {0xff,0xE0,0xD3,0xff,0xB6,0xff,0xff,0xff,0x79};

 unsigned char ReqFlr,CurFlr = 0x01,i,j;

 P0 = 0x00;

 P0 = 0x0f0;

 while(1)

 {

 P1 = 0x0f;

 ReqFlr = P1 | 0x0f0;

 while(ReqFlr == 0x0ff)

 ReqFlr = P1 | 0x0f0;

 ReqFlr = ~ReqFlr;

 if(CurFlr == ReqFlr)

Microcontrollers Lab Manual (BEE403):2024-2025

114

Department of EEE, ATMECE, Mysuru

 {

 P0 = FClr[CurFlr];

 }

 else if(CurFlr>ReqFlr)

 {

 i = Flr[CurFlr] - Flr[ReqFlr];

 j = Flr[CurFlr];

 for(;i>0;i--)

 {

 P0 = 0x0f0|j;

 j--;

 delay(50000);

 }

 }

 else

 {

 i = Flr[ReqFlr] - Flr[CurFlr];

 j = Flr[CurFlr];

 for(;i>0;i--)

 {

 P0 = 0x0f0 | j;

 j++;

 delay(50000);

 }

 }

CurFlr = ReqFlr;

 P0 = FClr [CurFlr];

 }

}

void delay (unsigned int x)

{

 for (;x>0;x--);

}

Microcontrollers Lab Manual (BEE403):2024-2025

115

Department of EEE, ATMECE, Mysuru

Outcome:

At the end of the program

Students will be able to understand the functioning of an elevator.

Result

At the end of the execution, C program is written for interface elevator to 8051 microcontroller

and the result are observed.

Microcontrollers Lab Manual (BEE403):2024-2025

116

Department of EEE, ATMECE, Mysuru

External ADC and Temperature Control Interface.

Objective: Write a C Program to interface temperature sensor.

BLOCK DIAGRAM

Fig 1.8.: Block diagram of Temperature Interface to 8051

PROGRAM

#include < reg51Xd2.h>

 sbit cmpout = P3^4;

 sbit rel_on = P0^0;

#define dac_data P1

 void delay ()

 {

 Int l;

for (l=0; l < 10 ; l ++) ;

 }

 void main ()

 {

 unsigned char dacip;

 unpout = ‘1 ‘;

dac_data = 0X00 ;

P0 = 0X00 ;

while (1)

 {

Microcontrollers Lab Manual (BEE403):2024-2025

117

Department of EEE, ATMECE, Mysuru

 dacip = 0Xff;

 d0;

 {

 dacip ++ ;

 Dac_data = dacip;

 delay ();

 }

while (cmpout);

 If (dacip > 0X20)

 Rel_on = 1;

 else

 rel_on = 0;

 }

}

Outcome:

At the end of the program

The students will be able to interface temperature sensor and analyze its output

Result

At the end of the execution, C program is written for temperature sensor and the result are

observed.

Hobby Project Circuit:
https://www.electronicshub.org/temperature-controlled-dc-fan-using-microcontroller/

https://www.electronicshub.org/digital-temperature-sensor-circuit/

Microcontrollers Lab Manual (BEE403): 2024-2025

 Department of EEE, ATMECE, Mysuru 118

PROGRAM FOR BLOCK MOVE USING EXCHANGE MNEMONIC

SIZE OF BLOCK = 05
SOURCE DATA: FROM 40H TO 44H INTERNAL RAM (data view)
DESTINATION: FROM 50H TO 54H INTERNAL RAM (data view)

 Org 0000h
 mov r3, #05h ; r3 is counter
 mov r0, #40h ; r0 is source pointer
 mov r1, #50h ; r1 is destination pointer
 back: mov a, @r0 ; a  [[r0]]
 xch a, @r1 ; swap a & [[r1]]
 mov @r0, a ; [[r0]]a
 inc r0 ; increment r0 & r1 to point
 inc r1 next memory location
 djnz r3, back ; jump on not zero to back
 end

PROGRAM TO SEARCH ELEMENT IN THE ARRAY OF BYTES IN EXTERNAL RAM

VALUES ARE STORED IN EXTERNAL RAM USING XDATA VIEW STARTING FROM 9000H
ML.
 org 8000h
 mov r0,#03h ; array size
 mov r1,#10h ; array element
 mov r2,#00h ; counter to know search element
 mov dptr ,#9000h
 loop: movx a,@dptr
 clr c
 subb a,r1 ; to check element is present or not
 inc dptr
 jnz skip
 inc r2
 skip: djnz r0,loop
 end

Microcontrollers Lab Manual (BEE403): 2024-2025

 Department of EEE, ATMECE, Mysuru 118

PROGRAM TO FIND SQUARE & CUBE OF A NUMBER

SQUARE:

 Org 0000h
 mov r0, #06h ; r0 = 06h
 mov a, r0 ; a = 06
 mov 0f0h, r0 ; b = 06
 mul ab ; a = 24h, b=00h
 end

CUBE:

 org 0000h
 mov r0, #0ah ; r0 = #10h
 mov a, r0 ; a = 10h
 mov 0f0h, r0 ; b = 10h
 mul ab ; a = 64h, b=00
 mov 0f0h, r0 ; b = 10h
 mul ab ; a = e8, b=03
 end

Microcontrollers Lab Manual (BEE403):2024-2025

118

Department of EEE, ATMECE, Mysuru

Viva Questions

 1. What do you mean by Embedded System? Give examples.

2. Why are embedded Systems useful?

3. What are the segments of Embedded System?

 4. What is Embedded Controller? 5. What is Microcontroller?

6. List out the differences between Microcontroller and Microprocessor.

7. How are Microcontrollers more suitable than Microprocessor for Real Time Applications?

 8. What are the General Features of Microcontroller? 9. Explain briefly the classification of

Microcontroller. 10. Explain briefly the Embedded Tools. 11. Explain the general features of

8051 Microcontroller.

12. How many pin the 8051 has? 13. Differentiate between Program Memory and Data

Memory.

14. What is the size of the Program and Data memory?

15. Write a note on internal RAM. What is the necessity of register banks? Explain.

 16. How many address lines are required to address 4K of memory? Show the necessary

calculations.

 17. What is the function of accumulator?

 18. What are SFR’s? Explain briefly.

19. What is the program counter? What is its use?

 20. What is the size of the PC?

21. What is a stack pointer (SP)?

22. What is the size of SP?

23. What is the PSW? And briefly describe the function of its fields.

 24. What is the difference between PC and DPTR?

 25. What is the difference between PC and SP?

 26. What is ALE? Explain the functions of the ALE in 8051.

27. Describe the 8051 oscillator and clock.

 28. What are the disadvantages of the ceramic resonator?

Microcontrollers Lab Manual (BEE403):2024-2025

119

Department of EEE, ATMECE, Mysuru

 29. What is the function of the capacitors in the oscillator circuit?

 30. Show with an example, how the time taken to execute an instruction can be calculated.

 31. What is the Data Pointer register? What is its use in the 8051?

32. Explain how the 8051 implement the Harvard Architecture?

 33. Explain briefly the difference between the Von Neumann and the Harvard Architecture.

 34. Describe in detail how the register banks are organized.

35. What are the bit addressable registers and what is the need?

36. What is the need for the general purpose RAM area?

 37. Write a note on the Stack and the Stack Pointer.

 38. Why should the stack be placed high in internal RAM?

 39. Explain briefly how internal and external ROM gets accessed.

 40. What are the different addressing modes supported by 8051 Microcontroller ?

 41. Explain the Immediate Addressing Mode.

42. Explain the Register Addressing Mode.

43. Explain the Direct Addressing Mode.

44. Explain the Indirect Addressing Mode.

45. Explain the Code Addressing Mode.

 46. Explain in detail the Functional Classification of 8051 Instruction set

47. What are the instructions used to operate stack?

48. What are Accumulator specific transfer instructions?

 49. What is the difference between INC and ADD instructions?

 50. What is the difference between DEC and SUBB instructions?

51. What is the use of OV flag in MUL and DIV instructions?

52. What are single and two operand instructions?

 53. Explain Unconditional and Conditional JMP and CALL instructions.

 54. Explain the different types of RETURN instructions.

55. What is a software delay?

Microcontrollers Lab Manual (BEE403):2024-2025

120

Department of EEE, ATMECE, Mysuru

56. What are the factors to be considered while deciding a software delay?

 57. What is a Machine cycle?

 58. What is a State?

 59. Explain the need for Hardware Timers and Counters?

60. Give a brief introduction on Timers/Counter.

61. What is the difference between Timer and Counter operation?

62. How many Timers are there in 8051?

 63. What are the three functions of Timers?

 64. What are the different modes of operation of timer/counter?

65. Give a brief introduction on the various Modes.

 66. What is the count rate of timer operation?

 67. What is the difference between mode 0 and mode 1?

68. What is the difference Modes 0,1,2 and 3?

69. How do you differentiate between Timers and Counters?

70. Explain the function of the TMOD register and its various fields?

71. How do you control the timer/counter operation?

72. What is the function of TF0/TF1 bit

 73. Explain the function of the TCON register and its various fields?

 74. Explain how the Timer/Counter Interrupts work.

75. Explain how the 8051 counts using Timers and Counters.

 76. Explain Counting operation in detail in the 8051.

77. Explain why there is limit to the maximum external frequency that can be counted.

78. What’s the benefit of the auto-reload mode?

 79. Write a short note on Serial and Parallel communication and highlight their advantages

and disadvantages.

80. Explain Synchronous Serial Data Communication.

81. Explain Asynchronous Serial Data Communication.

Microcontrollers Lab Manual (BEE403):2024-2025

121

Department of EEE, ATMECE, Mysuru

82. Explain Simplex data transmission with examples.

83. Explain Half Duplex data transmission with examples.

 84. Explain Full Duplex data transmission with examples.

 85. What is Baud rate?

 86. What is a Modem?

87. What are the various registers and pins in the 8051 required for Serial communication?

Explain briefly. 88. Explain SCON register and the various fields.

 89. Explain serial communication in general (synchronous and asynchronous). Also explain

the use of the parity bit.

90. Explain the function of the PCON register during serial data communication.

91. How the Serial data interrupts are generated?

92. How is data transmitted serially in the 8051? Explain briefly.

93. How is data received serially in the 8051? Explain briefly.

94. What are the various modes of Serial Data Transmission? Explain each mode briefly.

 95. Explain with a timing diagram the shift register mode in the 8051.

 96. What is the use of the serial communication mode 0 in the 8051?

97. Explain in detail the Serial Data Mode 1 in the 8051.

98. Explain how the Baud rate is calculated for the Serial Data Mode 1.

 99. How is the Baud rate for the Multiprocessor communication Mode calculated?

100. Explain in detail the Multiprocessor communication Mode in the 8051.

 101. Explain the significance of the 9th bit in the Multiprocessor communication Mode.

102. Explain the Serial data mode 3 in the 8051.

103. What are interrupts and how are they useful in Real Time Programming?

104. Briefly describe the Interrupt structure in the 8051.

105. Explain about vectored and non-vectored interrupts in general.

106. What are the five interrupts provided in the 8051?

 107. What are the three registers that control and operate the interrupts in 8051?

108. Describe the Interrupt Enable (IE) special function register and its various bits.

Microcontrollers Lab Manual (BEE403):2024-2025

122

Department of EEE, ATMECE, Mysuru

 109. Describe the Interrupt Priority (IP) special function register and its need.

110. Explain in detail how the Timer Flag interrupts are generated.

111. Explain in detail how the Serial Flag interrupt is generated.

112. Explain in detail how the External Flag interrupts are generated.

 113. What happens when a high logic is applied on the Reset pin?

 114. Why the Reset interrupt is called a non-maskable interrupt?

115. Why do we require a reset pin?

 116. How can you enable/disable some or all the interrupts?

 117. Explain how interrupt priorities are set? And how interrupts that occur simultaneously

are handled. 118. What Events can trigger interrupts, and where do they go after getting

triggered?

 119. What are the actions taken when an Interrupt Occurs?

 110. What are Software generated interrupts and how are they generated?

 111. What is RS232 and MAX232?

112. What is the function of RS and E pins in an LCD?

113. What is the use of R/W pin in an LCD?

114. What is the significance of DA instruction?

 115. What is packed and unpacked BCD?

 116. What is the difference between CY and OV flag?

 117. When will the OV flag be set?

118. What is an ASCII code?

Microcontrollers Lab Manual (BEE403):2024-2025

123

Department of EEE, ATMECE, Mysuru

MICROCONTROLLER - LAB QUESTION BANK

1. a) Write an ALP to move a Block of N-data starting at location X to location Y using

8051/MSP430 b) Write a C program to interface stepper motor to 8051.

2. a) Write an ALP to find cube of given 8-bit data using 8051 /MSP430. b) Write a C program

to interface stepper motor to 8051.

 3. a) Write an ALP to implement a binary/decimal up/down counter using 8051 /MSP430. b)

Write a C program to interface stepper motor to 8051.

4. a) Write an ALP to find the largest / smallest element in an array using 8051. b) Write a C

program to interface stepper motor to 8051.

 5. a) Write an ALP to exchange two blocks of data present at location X and Y respectively

using 8051/MSP430 b) Write a C program to generate Sine waveform using DAC. Display the

waveform on CRO.

 6. a) Write an ALP to arrange a set of N 8-bit numbers starting at location X in

ascending/descending order using 8051 /MSP430. b) Write a C program to generate triangular

wave of amp = ____ (1V-5V) using DAC. Display the waveform on CRO

 7. a) Write an ALP to perform 16-bit multiplication using 8051 /MSP430. b) Write a C

program to generate Ramp wave of amp = ____ (1V-5V) using DAC. Display the waveform

on CRO.

8. a) Write an ALP to convert two digit BCD number to its equivalent ASCII value using 8051

/MSP430. b) Write a C program to generate square wave of amp = ____ (1V-5V) using DAC.

Display the waveform on CRO.

 9. a) Write an ALP to find whether the given number is palindrome or not using 8051. b) Write

a C program to generate Sine waveform using DAC. Display the waveform on CRO.

Microcontrollers Lab Manual (BEE403):2024-2025

124

Department of EEE, ATMECE, Mysuru

Hobby Project Circuits

Quiz Buzzer Circuit using 8051 Microcontroller

Table of Contents:

 Principle Behind the Quiz Buzzer Circuit
 Circuit Diagram of 8 Player Quiz Buzzer using Microcontroller

 Components Required

 Design Process
 Quiz Buzzer Circuit Design

 CODE

 How Quiz Buzzer Circuit Works?
 Applications of Quiz Buzzer Circuit

1. Principle behind the Quiz Buzzer Circuit

The 8 Channel Quiz Buzzer Circuit using Microcontroller is a simple embedded system

with a set of 8 push buttons being the input devices, a microcontroller as the main controller

and the output devices being a buzzer and a display.

The whole operation is carried out by a microcontroller through a program written in C

language and dumped inside the microcontroller. When one of the buttons is pressed, the

buzzer starts ringing and the corresponding number is displayed on the 7 segment display.

2. Circuit Diagram of 8 Player Quiz Buzzer using Microcontroller

https://www.electronicshub.org/8-channel-quiz-buzzer-circuit-using-microcontroller/#Principle_Behind_the_Quiz_Buzzer_Circuit
https://www.electronicshub.org/8-channel-quiz-buzzer-circuit-using-microcontroller/#Circuit_Diagram_of_8_Player_Quiz_Buzzer_using_Microcontroller
https://www.electronicshub.org/8-channel-quiz-buzzer-circuit-using-microcontroller/#Components_Required
https://www.electronicshub.org/8-channel-quiz-buzzer-circuit-using-microcontroller/#Design_Process
https://www.electronicshub.org/8-channel-quiz-buzzer-circuit-using-microcontroller/#Quiz_Buzzer_Circuit_Design
https://www.electronicshub.org/8-channel-quiz-buzzer-circuit-using-microcontroller/#CODE
https://www.electronicshub.org/8-channel-quiz-buzzer-circuit-using-microcontroller/#How_Quiz_Buzzer_Circuit_Works
https://www.electronicshub.org/8-channel-quiz-buzzer-circuit-using-microcontroller/#Applications_of_Quiz_Buzzer_Circuit

Microcontrollers Lab Manual (BEE403):2024-2025

125

Department of EEE, ATMECE, Mysuru

3. Components Required

 AT89C51 (8051 Microcontroller)

 7 Segment Display (Common Anode is used in this project)

 Push Buttons – 10

 10KΩ Resistors – 2

 100Ω Resistors – 8

 470Ω Resistors – 2

 2N2222 NPN Transistors – 2

 5V Buzzer

 1N4007 Diode

 10μF Capacitor

 33pF Capacitors – 2

 11.0592 MHz Crystal

 8051 Programmer

 5V Power Supply

4. Design Process

The whole design process involves five steps.

1. First step is designing the circuit.

2. The second step is drawing the schematic using any software.

3. Third step involves writing the code using high level language like C or assembly

language and then compiling it on a software platform like Keil μVision.

4. Fourth step is programming the microcontroller with the code.

5. Finally, the fifth step is testing the circuit.

5. Quiz Buzzer Circuit Design

The circuit involves using five major components – 8051 Microcontroller, SPST Push Buttons,

a buzzer and a common anode 7 segment display. The microcontroller used in this case is

AT89C51, an 8 bit microcontroller manufactured by Atmel (now Microchip).

a. Reset Circuit Design: The reset resistor is selected such that the voltage at the reset

pin, across this resistor is at minimum of 1.2V and the width of the pulse applied to this

pin is greater than 100 ms. Here we select a resistor of 10KΩ and a capacitor of 10μF.

b. Oscillator Circuit Design: The oscillator circuit is designed using a crystal oscillator

of 11.0592 Mhz and two ceramic capacitors each 33pF. The crystal is connected

between pins 18 and 19 of the microcontroller

c. Microcontroller Interfacing Design: The set of 8 push buttons are interfaced to port

P1 of the microcontroller and a buzzer is interfaced to the port pin P3.3. The 7 segment

display is interfaced to the microcontroller such that all the input pins are connected to

port P2.

Microcontrollers Lab Manual (BEE403):2024-2025

126

Department of EEE, ATMECE, Mysuru

6. Microcontroller Code: The code can be written using C language or assembly

language. Here, I have written the program in C language using Keil μVision software.

This is accomplished by the following steps:

1. Create a new project on Keil window and select the target (microcontroller).

2. Create a new file under the project and write the code.

3. Save the code with .c extension and add the file to the source group folder under the target

folder.

4. Compile the code and create the hex file.

Once the code is compiled and a hex file is created, next step is to dump the code into the

microcontroller. This can be done with an 8051 Microcontroller Programmer.

CODE

For code: visit the Link

https://www.electronicshub.org/8-channel-quiz-buzzer-circuit-using-microcontroller/

7. How Quiz Buzzer Circuit Works?

Once the circuit is powered, the compiler will initialize the stack pointer and the variables

having the non-zero initial values and perform other initialization process and then calls the

main function. It then checks if any of the buttons is pressed.

In other words the microcontroller scans for any of its input pins at port P1 to be zero or at

logic low level. In case a button is pressed, the display function is called by passing the

corresponding number. The microcontroller then sends the relevant signals to the port

connected to the 7 segment display.

The microcontroller will turn on the buzzer for a second and turns it off but the number will be

continously displayed on the 7 segment display until the RST button is pressed.

8. Applications of Quiz Buzzer Circuit

1. This circuit can be used at quiz competitions organized at schools, colleges and other

institutions.

2. It can be also used for other games shows.

3. It can be used as at public places like banks, restaurants as a digital token display system.

For More Circuits Visit :
https://www.electronicshub.org/microcontroller-based-mini-projects-ideas/

https://www.electronicshub.org/8-channel-quiz-buzzer-circuit-using-microcontroller/
https://www.electronicshub.org/microcontroller-based-mini-projects-ideas/

	Fig 1: Block diagram of 8051
	The 8051 PIN DIAGRAM
	Fig 2: 8051 PIN DIAGRAM
	PINOUT DESCRIPTION

	The 8051 Architecture
	8051 SPECIFIC FEATURES

	The 8051 Programming Model
	MICRO VISION COMPILER AND SIMULATOR
	STEPS FOR EXECUTING THE SOFTWARE PROGRAM:
	STEP 1: Select the “Kiel µVision 3” software.
	STEP 2: Select “Project” then “New µVision Project”.
	STEP 3: Create new project by entering your “File name” and then “Save” your file
	STEP 4: Choose “Atmel” microcontroller from the database
	STEP 5: Select “AT89C51” µC and click “OK” and then “YES”
	STEP 6: Make sure that “STARTUP.A51” file is added to the target.
	STEP 7: Go to “File” and select “New” for text (program) Editing Window.
	STEP 8: Type your program in the editing window.
	STEP 9: Save your program by going to “File” then “Save” option
	STEP 10:
	STEP 11:
	STEP 13:
	STEP 14: Build the target.
	Program no 1: Data Transfer - Block move, Exchange
	Objective: To transfer 8 bytes of data from external memory location starting from 8100h to external memory location starting from 8200h

	Software: Keil µVision 3
	Result: At the end of the Program execution, block of data is transferred from source memory to destination memory
	1. Principle behind the Quiz Buzzer Circuit
	3. Components Required
	4. Design Process
	5. Quiz Buzzer Circuit Design
	7. How Quiz Buzzer Circuit Works?
	8. Applications of Quiz Buzzer Circuit

