17EC64 — COMPUTER COMMUNICATION NETWORKS

MODULE 5

1) What are the different services provided by the transport layer?

1 Process-to-Process Communication

The first duty of a transport-layer protocol is to provide process-to-process
communication. A process is an application-layer entity (running program) that
uses the services of the transport layer. The network layer is responsible for
communication at the computer level (host-to-host communication). A network-
layer protocol can deliver the message only to the destination computer. However,
this is an incomplete delivery. The message still needs to be handed to the correct
process. This is where a transport-layer protocol takes over. A transport-layer
protocol is responsible for delivery of the message to the appropriate process.
Figure shows the domains of a network layer and a transport layer.

Figure 1: Network layer versus transport layer
2 Encapsulation and Decapsulation

Processes Processes

K?_\ Client Server B :
N - s | .
< T == Al \

| o ‘___.——"" y \

|

|

|

|

|

|

|

S S :
| Internet |
{ |
)\ S |
B == I
n ol network-laver protogcs |
' I
|
ol transport-iay protocol

To send a message from one process to another, the transport-layer protocol
encapsulates and decapsulates messages (Figure 2). Encapsulation happens at
the sender site. When a process has a message to send, it passes the message
to the transport layer along with a pair of socket addresses and some other
pieces of information, which depend on the transport-layer protocol. The
transport layer receives the data and adds the transport-layer header. The packets
at the transport layer in the Internet are called user datagrams, segments, or
packets, depending on what transport-layer protocol we use. In general,
transport-layer payloads are called as packets.

Department of ECE, ATMECE Page 1



17EC64 — COMPUTER COMMUNICATION NETWORKS

Decapsulation happens at the receiver site. When the message ar ives at the
destination transport layer, the header is dropped and the transport layer delivers
the message to the process running at the application layer. The sender socket
address is passed to the process in case it needs to respond to the message
received.

Figure 2: Encapsulation and decapsulation

Client Server

Application | Process D Process D Application

layer layer

Transport | [ WESITTE > Transport
layer Packet Looi Packet layer

’ Jogical channel acke )
Header N Header

a. Encapsulation b. Decapsulation

3 Multiplexing and Demultiplexing
Whenever an entity accepts items from more than one source, this is
referred to as multiplexing (many to one); whenever an entity delivers items to
more than one source, this is referred to as Demultiplexing (one to many). The
transport layer at the source performs multiplexing; the transport layer at the
destination performs Demultiplexing
Figure 3 shows communication between a client and two servers.
Three client processes are running at the client site, P1, P2, and P3. The
processes P1 and P3 need to send requests to the corresponding server
process running in a server. The client process P2 needs to send a request to the
corresponding server process running at another server. The transport layer at
the client site accepts three messages from the three processes and creates
three packets. It acts as a multiplexer. The packets 1 and 3 use the same logical
channel to reach the transport layer of the first server. When they arrive at the
server, the transport layer does the job of a demultiplexer and distributes the
messages to two different processes. The transport layer at the second server
receives packet 2 and delivers it to the corresponding process. Note that we still

Department of ECE, ATMECE Page 2



17EC64 — COMPUTER COMMUNICATION NETWORKS

have Demultiplexing although there is only one message.

.‘ Server
Pl P3 ‘
Application
layer
4
Client Messages

Demultiplexer

Transpont
Application Packet | 1] layer
layer Packet3 C1T—]
Messages [ml ]
Transport | Packet 1 T Server
layer Packet 2
Packet 3 O] P2
Application
' layer
I.egend
~ ~ Message
mi: Message
Pi: Process
S Demultiplexer
Transport
layer
Packet 2T

Figure 3: Multiplexing and demultiplexing

4 Flow Control

Whenever an entity produces items and another entity consumes them, there
should be a balance between production and consumption rates. If the items are
produced faster than they can be consumed, the consumer can be
overwhelmed and may need to discard some items. If the items are produced
more slowly than they can be consumed, the consumer must wait, and the
system becomes less efficient. Flow control is related to the first issue. We
need to prevent losing the data items at theconsumer site.
Pushing or Pulling
Delivery of items from a producer to a consumer can occur in one of two
ways: pushing or pulling. If the sender delivers items whenever they are
produced without a prior request from the consumer the delivery is refer ed to
as pushing. If the producer delivers the items after the consumer has requested
them, the delivery is refer ed to as pulling. Figure 4 shows these two types of
delivery.

Department of ECE, ATMECE Page 3



17EC64 — COMPUTER COMMUNICATION NETWORKS

+ Flow control l {""""i{_cl]u'&f""""?
Producer o Consumer Producer e Consumer
Delivery Delivery

a. Pushing b. Pulling

Figure 4: Pushing or pulling
Flow Control at Transport Layer

In communication at the transport layer, we are dealing with four entities:
sender process, sender transport layer, receiver transport layer, and receiver
process. The sending process at the application layer is only a producer. It
produces message chunks and pushes them to the transport layer.

The sending transport layer has a double role: It is both a consumer and a
producer. It consumes the messages pushed by the producer. It encapsulates the
messages in packets and pushes them to the receiving transport layer. The
receiving transport layer also has a double role: it is the consumer for the packets
received from the sender and the producer that decapsulates the messages and
delivers them to the application layer. The last delivery, however, is normally a
pulling delivery; the transport layer waits until the application-layer process asks for
messages.

Figure 5 shows that we need at least two cases of flow control: from the
sending transport layer to the sending application layer and from the receiving
transport layer to the sending transport layer.

Sender Receiver
Application Application
PP ) | Producer | Consumer | | 2PPHC
layer layer
Messages Flow Requests | Messages
arc pushed ontrol o are pulled
3 I ¥
Transport Consumer I Producer Transport
N Packets are pushed -
layer Producer I I Consumer layer

Figure 5: Flow control at the transport layer

5 Error Control
In the Internet, since the underlying network layer (IP) is unreliable, we need to

Department of ECE, ATMECE Page 4



17EC64 — COMPUTER COMMUNICATION NETWORKS

make the transport layer reliable if the application requires reliability. Reliability
can be achieved to add error control services to the transport layer. Error
control atthe transport layer is responsible for

1. Detecting and discarding corruptedpackets.

2. Keeping track of lost and discarded packets and resending them.

3. Recognizing duplicate packets and discarding them.

4. Buffering out-of-order packets until the missing packets arrive.

Error control, unlike flow control, involves only the sending and receiving
transport layers. Assume that the message chunks exchanged between the
application and transport layers are error free. Figure 6 shows the error control
between the sending and receiving transport layers. As with the case of flow
control, the receiving transport layer manages error control, most of the time,
by informing the sending transport layer about the problems.

Sender Receiver
Transport Packets Transport
layer layer

t Error control

Figure 6: Error control at the transport layer

Sequence Numbers

Error control requires that the sending transport layer knows which packet is
to be resent and the receiving transport layer knows which packet is a duplicate, or
which packet has arrived out of order. This can be done if the packets are
numbered. We can add a field to the transport-layer packet to hold the sequence
number of the packet. When a packet is corrupted or lost, the receiving transport
layer can somehow inform the sending transport layer to resend that packet using
the sequence number. The receiving transport layer can also detect duplicate
packets if two received packets have the same sequence number. The out-of-order
packets can be recognized by observing gaps in the sequence numbers. Packets
are numbered sequentially. However, because we need to include the sequence
number of each packet in the header, we need to set a limit. If the header of the
packet allows m bits for the sequence number, the sequence numbers range from O
to2™-1.

Department of ECE, ATMECE Page 5



17EC64 — COMPUTER COMMUNICATION NETWORKS

For example, if m is 4, the only sequence numbers are 0 through 15, inclusive.
However, we
Can wrap around the sequence. So the sequence numbers in this case are

0,1,2,3.4,5,6,7,8,9,10, 11, 12.| 13,14,15,0,1,2,3,4,5,6,7,8,9,10, 11, ...

In other words, the sequence numbers are modulo 2™.
Acknowledgment

The receiver side can send an acknowledgment (ACK) for each of a
collection of packets that have arrived safe and sound. The receiver can simply
discard the corrupted packets. The sender can detect lost packets if it uses a
timer. When a packet is sent, the sender starts a timer. If an ACK does not arrive
before the timer expires, the sender resends the packet. Duplicate packets can be
silently discarded by the receiver. Out-of-order packets can be either discarded (to
be treated as lost packets by the sender), or stored until the missing one arrives.

6 Congestion Control

Congestion in a network may occur if the load on the network—the number of
packets sent to the network is greater than the capacity of the network, the number
of packets a network can handle. Congestion control refers to the mechanisms and
techniques that control the congestionand keep the load below the capacity.

Congestion happens in any system that involves waiting. For example,

congestion happens on a freeway because any abnormality in the flow, such as
an accident during rush hour, creates blockage. Congestion in a network or
internetwork occurs because routers and switches have queues—buffers that hold
the packets before and after processing. A router, for example, has an input queue
and an output queue for each interface. If a router cannot process the packets at
the same rate at which they arrive, the queues become overloaded and
congestion occurs. Congestion at the transport layer is actually the result of
congestion at the network layer, which manifests itself at the transport layer.

2) Explain the concept of sliding window with a neatdiagram.
Sliding Window
Since the sequence numbers use modulo 2™, a circle can represent the
sequence numbers from 0 to 2™ — 1 (Figure 7). The buffer is represented as a set
of slices, called the sliding window that occupies part of the circle atany

Department of ECE, ATMECE Page 6



17EC64 — COMPUTER COMMUNICATION NETWORKS

time. At the sender site, when a packet is sent, the corresponding slice is
marked. When all the slices are marked, it means that the buffer is full and no
further messages can be accepted from the application layer.

When an acknowledgment arrives, the corresponding slice is unmarked. If
some consecutive slices from the beginning of the window are unmarked, the
window slides over the range of the corresponding sequence numbers to allow
more free slices at the end of the window. Figure 7 shows the sliding window at
the sender. The sequence numbers are in modulo 16 (m = 4) and the size of the
window is 7. The sliding window is just an abstraction: the actual situation uses
computer variables to hold the sequence numbers of the next packet to be sent
and the lastpacket sent.

Figure 7: Sliding window in circular format

8 7

c. Seven packets have been sent: d. Packet O has been acknowledged:
window is full. window slides.
Most protocols show the sliding window using linear representation. The ideais
the same, but it normally takes less space on paper. Figure 8 shows this
representation.

Department of ECE, ATMECE Page 7



17EC64 — COMPUTER COMMUNICATION NETWORKS

EEIH || DHOEOOCTREEEEETE |- - B0ECRDD

19010i11] 20i3liahisfo 1] 2] 3] a]s]e6]7] s olol]
¢. Seven packets have been sent; d. Packet O has been acknowledged:
window is full. window slides.

Figure 8: Sliding window in linear format

3 Write outline and explain send window and receive window for Go back N protocol/
selective repeat protocol.

Go-Back N protocol

To improve the efficiency of transmission (to fill the pipe), multiple packets
must be in transition while the sender is waiting for acknowledgment. In other
words, we need to let more than one packet be outstanding to keep the channel
busy while the sender is waiting for acknowledgment. One of the protocols is
called Go-Back-N (GBN). The key to Go-back-N is that we can send several
packets before receiving acknowledgments, but the receiver can only buffer
one packet. We keep a copy of the sent packets until the acknowledgments
arrive. Figure 9 shows the outline ofthe protocol.

Sender Packet ACK Receiver
Application Application
PP — ackNo checksum ackNo checksum | == PP
*——» [ = o o e
Transport Transport
Logical channels
ScFirst 5, Next o R, Next .
‘ outstanding ‘ to send @T'm” to receive
SCEIR N D Y RTE o
| PR -—--d laew- -l
Send window Receive window

Department of ECE, ATMECE Page 8



17EC64 — COMPUTER COMMUNICATION NETWORKS

Figure 9: Go-Back-N protocol

Send Window

The send window is an imaginary box covering the sequence numbers of the
data packets that can be in transit or can be sent. In each window position, some
of the sequence numbers define the packets that have been sent; others define
those that can be sent. The maximum size of the window is 2™ - 1, we let the size
be fixed and set to the maximum value, Figure 10 shows a sliding window of size
7 (m= 3) for the Go-Back-N protocol.

First Next
S z
; outstanding ’% to send
cee S T R 2 5 [ 6|70 iees
Sent, Outstanding Can be sent Cannot be
acknowledged, (sent, but not when accepted accepted
and purged acknowledged) from process from process

S.ize = Send window size

Figure 10: Send window for Go-Back-N

The send window at any time divides the possible sequence numbers into
four regions. The first region, left of the window, defines the sequence numbers
belonging to packets that are already acknowledged. The sender does not work y
about these packets and keeps no copies of them. The second region, colored,
defines the range of sequence numbers belonging to the packets that have been
sent, but have an unknown status. The sender needs to wait to find out if these
packets have been received or were lost. These are called as outstanding packets.
The third range, white in the figure, defines the range of sequence numbers for
packets that can be sent; however, the corresponding data have not yet been
received from the application layer. Finally, the fourth region, right of the window,
defines sequence numbers that cannot be used until the window slides.

Department of ECE, ATMECE Page 9



17EC64 — COMPUTER COMMUNICATION NETWORKS

First . . Next
outstanding + to send
023 [aTsTeJ7Jo a3 456
a. Window before sliding
First Next
outstanding " o send
OIS eI o T T [o 3456 ]

b. Window after sliding (an ACK with ackNo = 6 has arrived)

Figure 11: Sliding the sendwindow
Figure 11 shows how a send window can slide one or more slots to the
right when an acknowledgment arrives from the other end. In the figure, an
acknowledgment with ack
No = 6 has arrived. This means that the receiver is waiting for packets with
sequence no 6.

Receive Window

The receive window makes sure that the correct data packets are received
and that the correct acknowledgments are sent. In Go-Back-N, the size of the
receive window is always 1. The receiver is always looking for the arrival of a
specific packet. Any packet arriving out of order is discarded and needs to be
resent. Figure 12 shows the receive window. It needs only one variable, R (receive
window, next packet expected), to define this abstraction. The sequence numbers to
the left of the window belong to the packets already received and acknowledged;
the sequence numbers to the right of this window define the packets that cannot be
received. Any received packet with a sequence number in these two regions is
discarded. Only a packet with a sequence number matching the value of R is
accepted and acknowledged. The receive window also slides, but only one slot at
a time. Whena correct packet is received, the windowslides, R = (R+1) modulo 2™.

Department of ECE, ATMECE Page 10



17EC64 — COMPUTER COMMUNICATION NETWORKS

1 Next
J' expected
cee O 23 AT S 6 1T 0T e

and acknowledged received

Already received ‘ ‘ Cannot be

Figure 12: Receive window for Go-Back-N

FSMs

Figure 13 shows the FSMs for the GBN protocol.

Sender

The sender starts in the ready state, but thereafter it can be in one of the two states:
ready or blocking. The two variables are normally initialized to O (So = Son = 0).

> Ready state. Four events may occur when the sender is inready state.

a. If a request comes from the application layer, the sender creates a packet with
the sequence number set to Sn. A copy of the packet is stored, and the packet
is sent. The sender also starts the only timer if it is not running. The value of Sn
is now incremented, (Sn = Sn + 1) modulo 2™. If the window is full, Sn = (Sf +
Ssize) modulo 2™, the sender goes tothe blocking state.

b. If an error-free ACK arrives with ack No related to one of the outstanding
packets, the sender slides the window (set Sf = ack No), and if all outstanding
packets are acknowledged (ack No = Sn), then the timer is stopped. If all
outstanding packets are not acknowledged, the timer is restarted.

c. If a corrupted ACK or an error-free ACK with ack number not related to the
outstanding packet arrives, it is discarded.

d. If a time-out occurs, the sender resends all outstanding packets and restarts the
timer.

» Blocking state. Three events may occurring this case:

a. If an er or-free ACK arrives with ack No related to one of the outstanding
packets, the sender slides the window (set ST = ack No) and if all outstanding
packets are acknowledged (ack No = Sn), then the timer is stopped. If all
outstanding packets

Department of ECE, ATMECE Page 11



17EC64 — COMPUTER COMMUNICATION NETWORKS

are not acknowledged, the timer is restarted. The sender then moves to the ready

state.

If a corrupted ACK or an error-free ACK with the ack
outstanding packets arrives, the ACK is discarded.

c¢. If a time-out occurs, the sender sends all outstanding

b.

No not related to the

packets and restarts the

timer.

Sender
/\uh': \

All arithmetic equations Request from process camg

are in modulo 2™ Make a packc[ (geqNo = S" & Time-out

Store a copy and send the packet. Resend all outstanding
Start the timer if it is not running. Window full packets.

e Sp=Sp+ 1. | ®n =5 +Ssize)? | Restart the timer.

Resend all outstanding [true]

packets. [false]

Restart the timer. L

Start = == Ready l Blocking
H
)
[]
L} ror i » A \ With rreale N
rror- ACK with ackNo :1_- ol fopstos Sl Sonkishd rror-free ACK with ack?
side window arrived Slide window (S = ackNo). esrpo ol e e

Discard it. If ackNo equals S, stop the timer. -
\_ If ackNo < §,,. restart the timer. Discard it. »,

Receiver
/.\nte: Error-free packet with \

A 3 5 SN P At ]
All arithmetic equations seqNo = R, arrived.

are in modulo 2.

Deliver message.
Slide window (R, =R, + 1).
Send ACK (ackNo = R;)).

Error-free packet
with seqNo # R,, arrived.

Start —> F
Corrupted packet arrived. L Ready
= -
Discard packet. I i

.

Discard packet.
Send an ACK (ackNo =R))).

-

Figure 13 FSMs forthe Go-Back-N

Receiver
The receiver is always in the ready state. The only varial
Three events may occur:

protocol

ble, Rn, is initialized to O.

a. If an er or-free packet with seq No = Rn ar ives, the message in the packet is

delivered

Department of ECE, ATMECE



17EC64 — COMPUTER COMMUNICATION NETWORKS

to the application layer. The window then slides, Rn = (Rn + 1) modulo 2m.
Finally an ACK is sent with ack No = Rn.
b. If an er or-free packet with seq No outside the window arrives, the packet is
discarded,
but an ACK with ack No = Rn is sent.

¢ Ifacorrupted packet arrives, it is discarded.

Send Window Size

The size of the send window must be less than 2™ is because for example,
choose m = 2, which means the size of the window can be 2™ - 1, or 3. Figure 14
compares a window size of 3 against a window size of 4. If the size of the
window is 3 (less than 2™) and all three acknowledgments are lost, the only timer
expires and all three packets are resent. The receiver is now expecting packet 3, not
packet O, so the duplicate packet is correctly discarded. On the other hand, if the
size of the window is 4 (equal to 22) and all acknowledgments are lost, the sender
will send a duplicate of packet 0. However, this time the window of the receiver
expects to receive packet 0 (in the next cycle), so it accepts packet O, not as a
duplicate, but as the first packet in the next cycle. This is an er or. This shows that
the size of the send windowmust be less than2™.

Figure 14 Send window size for Go-Back-N

Sender Receiver Sender Receiver
] ] ] ]
S¢S ' ' S-S ' '
Start " & b . R, Start L ! ' 3 : R,
ci acket () 5 _ fr—- acket) 4
® [ol1]2[31i———=i5T303 @ [o]1]2[3]0} i——<20,% o m5isa
=ia 0 011)213] bt -} =~110112/3,0,
t K| P CACK )
= ! Packer| & —— v Packet]
}'I‘Mbl ————— - 0 22 | et | t=y= -=r=a
' 7 3! 213| 0 t=———.t A “a
— O A Q2310 =1 i3i1[2) 30
' ACKZ . ' X"ﬁ :
- s Packer2 - v Packero
2 | o < -—y== by | et [t el o
O % i O o i~ 5735
' ACK3 @ ' Tﬁ: T
@ [of1[2]3; i—Dckero_; | Corretl ONPE R —
- "'V Resent >l arded =~ 1 10111213
Time-out; . . s Ldiscardes ' CACKO ¢ -
restart Y o Y : P'u';\eru : ]
ime ime 72l ' —— Erroneously
Time Time @ ,(_): ; Rc.\cm *;-.» ace ‘_'E”‘ d and
‘ . . Time-out; . delivered as
a. Send window of size < 2™ restart Time « Time new data
b. Send window of size = 2™
Example 1

Department of ECE, ATMECE Page 13



17EC64 — COMPUTER COMMUNICATION NETWORKS

Figure 15 shows an example of Go-Back-N. This is an example of a case where
the forward channel is reliable, but the reverse is not. No data packets are lost, but
some ACKs are delayed and one is lost. The example also shows how cumulative
acknowledgments can help if acknowledgments are delayed or lost.

Sender Receiver
Transport Transport
5 S, Initial Ia') s st Rln Initial
1 —————— - -
i 0/1,2/314]516/7,0;1.2!
N AN ESE S L SRR L AR NE L
]
Start :_I’;:L‘kL-r ] R,
timer —— -
ACK | > -~ [0[12 545 6701 T2
S[UP _ ‘;l;\.-[l_ /
timer o
R
Start n
timer M
---= 012134 [5767j0/1]2!

n

R

---v“_rr_f__'_.‘_E«.a 0T

Events:

Req: Request from process
pArr: Packet arrival

Restart ID

Stop o
timer

]

aArr: ACK arrival

Figurel5: Flow diagram for Example 1
After initialization, there are some sender events. Request events are
triggered by message chunks from the application layer; arrival events are triggered
by ACKSs received from the network layer. There is no time-out event here because
all outstanding packets are acknowledged before the timer expires. Although ACK
2 is lost, ACK 3 is cumulative and serves as both ACK 2 and ACK 3. There are
four events at the receiversite.

Example 2

Figure 16 shows what happens when a packet is lost. Packets O, 1, 2, and 3 are sent.
However, packet 1 is lost. The receiver receives packets 2 and 3, but they are
discarded because they are received out of order (packet 1 is expected). When the
receiver receives packets 2 and 3, it sends ACK1 to show that it expects to receive
packet 1. However, these ACKSs are not useful for the sender because the ack No
is equal to ST , not greater than Sf. So the sender discards them. When the time-out

Department of ECE, ATMECE Page 14



17EC64 — COMPUTER COMMUNICATION NETWORKS

occurs, the sender resends packets 1, 2, and 3, which are acknowledged.

Go-Back-N versus Stop-and-Wait

The Stop-and-Wait protocol is actually a Go-Back-N protocol in which there are only
two sequence numbers and the send windowsize is 1. In otherwords, m= 1 and 2™
— 1 =1. In Go-Back-N, we said that the arithmetic is modulo 2™; in Stop-and-Wait it

is modulo 2, which is the same as 2™ whenm =1.

Sender Receiver
Transpont Transport
layer layer
R, [niual
,|||~|1|}J|5|4,|7_:
Start R,
tmer S s
a2 7!
DO[112)314151617,
\".\\;‘ :_\IT-
Start (b

Packet discarded

Packet discarded
aArr

ACK discarded <«---

aArr

ACK discarded <---

&l
r-r \|1-77r1fﬁ
L2 -B.*J.—‘J."J

2 o

"

TR BRI 17!
'“J.IJ t_"J-J."J__'

Packet | (reseny)

Time-out C

2 e o

Restan
Restant Req: Request from process
' : pArr: Packet arnval
\ FrSa aArr: ACK amval
Stop -'_'I-'-’ T4 :_\_"_ Time-out: Timer expiration
timer RRTEIE l.lillll ;
Time

Department of ECE, ATMECE Page 15



17EC64 — COMPUTER COMMUNICATION NETWORKS

Figure 16: Flowdiagram for Example 2

Selective-Repeat Protocol

The Go-Back-N protocol simplifies the process at the receiver. The receiver
keeps track of only one variable, and there is no need to buffer out-of-order
packets; they are simply discarded. However, this protocol is inefficient if the
underlying network protocol loses a lot of packets. Each time a single packet is
lost or corrupted, the sender resends all outstanding packets, even though some
of these packets may have been received safe and sound but out of order. If the
network layer is losing many packets because of congestion in the network, the
resending of all of these outstanding packets makes the congestion worse, and
eventually more packets are lost. This has an avalanche effect that may result in the
total collapse of the network.

Another protocol, called the Selective-Repeat (SR) protocol, has been
devised, which, as the name implies, resends only selective packets, those that are
actually lost.

The outline of this protocol is shown in Figure 17.

Sender Packet ACK Receiver
Application —— seqNo j E checksum  ackNo m checksum ? Application
Y o e g R e— s SR e S Y
o - [ rm— ] i [ Dovmm— | A7 s—
Transport Transport
Cmm o~ = e = —
Logical channels

[:] Sent. but not acknowledged -
@ Tmer

[: Acknowledged out of order |:] Packet received out of order

First Next R, Next

outstanding ‘ to send ‘ ‘ Lo receive

Tt :-__m___: e A :-__m-—_:.'.
Send window Receive window

Figure 17: Outline of Selective-Repeat
Windows
The Selective-Repeat protocol also uses two windows: a send window and a
receive window. However, there are differences between the windows in this

Department of ECE, ATMECE Page 16



17EC64 — COMPUTER COMMUNICATION NETWORKS

protocol and the ones in Go-Back-N. First, the maximum size of the send window is
much smaller; it is 2™-1. The reason for this will be discussed later. Second, the
receive window is the same size as the send window.

The send window maximum size can be 2™-1. For example, if m = 4, the
sequence numbers go from O to 15, but the maximum size of the window is just 8
(itis 15 in the Go-Back-N Protocol). The Selective-Repeat send window in Figure

18.1 to emphasize the size.

The receive window in Selective-Repeat is totally different from the one in Go

-Back-N. The size of the receive window is the same as the size of the send
window (max 2™M-1). The Selective-Repeat protocol allows as many packets as the
size of the receive window to ar ive out of order and be kept until there is a set of
consecutive packets to be delivered to the application layer. Because the sizes of
the send window and receive window are the same, all the packets in the send
packet can ar ive out of order and be stored until they can be delivered. To
emphasize that in a reliable protocol the receiver never delivers packets out of
orderto the application layer.
Figure 18.2 shows the receive window in Selective-Repeat. Those slots inside the
window that are shaded define packets that have ar ived out of order and are
waiting for the earlier transmitted packet to ar ive before delivery to the application
layer.

First outstanding Next to send

1
I .

- Outstanding packet.
I:I not acknowledged
Packets already | Outstanding packets. Packets that can Packets that I:l Packet acknowledged

acknowledged | some acknowledged be sent cannot be sent out of order

>

— ~m=]

Figure 18.1: Send window for Selective-Repeat protocol

Department of ECE, ATMECE Page 17



17EC64 — COMPUTER COMMUNICATION NETWORKS

Receive window,
‘ next packet expected

Packets that can be received l:| Packet received
Packets already and stored for later delivery: Packets that out of order
received shaded boxes, already received cannot be received
—m-I
Figure 18.2: Receive window for Selective-Repeat
protocol
Example 3

Assume a sender sends 6 packets: packets 0, 1, 2, 3, 4, and 5. The sender receives
an ACK withack No = 3. What is the interpretation if the system is using GBN or SR?

Solution

If the system is using GBN, it means that packets O, 1, and 2 have been received
uncorrupted and the receiver is expecting packet 3. If the system is using SR, it
means that packet 3 has been received uncorrupted; the ACK does not say anything
about other packets.

FSMs

Figure 19 shows the FSMs for the Selective-Repeat protocol. It is similar to
the ones for the GBN, but there are some differences.

Sender

The sender starts in the ready state, but later it can be in one of the two states:
ready or blocking. The following shows the events and the corresponding actions
in each state.

» Ready state. Four events may occurring this case:

a. If a request comes from the application layer, the sender creates a packet with
the sequence number set to Sn. A copy of the packet is stored, and the packet
is sent. If the timer is not running, the sender starts the timer. The value of Sn is
now incremented, Sn = (Sn + 1) modulo 2m. If the window is full, Sn = (ST + S
size) modulo 2m, the sender goes to the blockingstate.

b. If an error-free ACK arrives with ack No related to one of the outstanding packets,

Department of ECE, ATMECE Page 18



17EC64 — COMPUTER COMMUNICATION NETWORKS

That packet is marked as acknowledged. If the ack No = Sf, the window slides
to the right until the Sf points to the first unacknowledged packet (all
consecutive acknowledged packets are now outside the window). If there are
outstanding packets, the timer is restarted; otherwise, the timer is stopped.

c¢. Ifa corrupted ACK or an error-free ACK with ack No not related to an
outstanding packet arrives, it isdiscarded.

d. If a time-out occurs, the sender resends all unacknowledged packets in the
window and restarts the timer.

> Blocking state. Three events may occurring this case:

a. If an er or-free ACK arrives with ack No related to one of the outstanding
packets, that packet is marked as acknowledged. In addition, if the ack No = Sf,
the window is slid to the right until the ST points to the first unacknowledged
packet (all consecutive acknowledged packets are now outside the window). If
the window
has slid, the sender moves to the ready state.

b. If a corrupted ACK or an error-free ACK with the ack No not related to
outstanding packets arrives, the ACK isdiscarded.

c. If a time-out occurs, the sender resends all unacknowledged packets in the
window and restarts the timer.

Department of ECE, ATMECE Page 19



17EC64 —- COMPUTER COMMUNICATION NETWORKS

Sender
‘ Request came from process \
1me-out
ch;n Tall Make a packet (seqNo = Sj).
3 . Store a copy and send the packet.
outstanding packets " =
ey Start the timer for this packet. Wimkow (il -
. SetS,=5,+1. (S =S5+ Ssize)’ Time-out
Reset the timer. n=n 1me-ol
5 Resend all
v [true] outstanding packets
[false] in window.
Reset the timer.

— )
Starl ===»-|  Ready [true] Blocking
= ..-"‘[fal.\c] - A corrupted ACK of
A an ACK about a non
I | Window slides? outstanding packet

]
: rmved
orrupted ACK or L T . .
\,. \tl hx | Yout vl}-\ n- i Discard it.
RO baogis  An error-free A K arrived that
utstanding packet acknowledges one of the outstanding
arrvec packets. ; 3
Rised Mark the corresponding packet.
If ackNo = S(. slide the window over Note:
all consecutive acknowledged packets. All arithmetic equations
If there are outstanding packets, il ddilo 2
restart the timer. Otherwise, stop the ’
\ timer. J
Receiver
K Error-free packet with seqNo Note:
inside window arrived All arithmetic equations
If duplicate, discard; otherwise, are in modulo 2™
store the packet.
Send an ACK with ackNo = seqNo.
If seqNo = Ry, deliver the packet and
all consecutive previously arrived
and stored packets to application,
and slide window.
— —
| Ready
Corrupted packet arrived Error-free packet with segNo
. outside window boundaries arrived
Discard the packet. 1 t . ine W .
Start Discard the packet.
Send an ACK with ackNo = R,.

o P

Receiver
The receiveris always in the ready state. Three events may occur:

a. If an error-free packet with seq No in the window arrives, the packet is stored
and an ACK with ack No = seq No is sent. In addition, if the seq No = Rn, then
the packet and all previously arrived consecutive packets are delivered to the
application layer and the window slides so that the Rn points to the first empty
slot.

Department of ECE, ATMECE

Page 20



17EC64 — COMPUTER COMMUNICATION NETWORKS

b. If an error-free packet with seq No outside the window arrives, the packet is
discarded, butan ACK withack No = Rnis returned to the sender. This is needed
to let the sender slide its window if some ACKS related to packets with seq No
< Rn werelost.

c. If a corrupted packet arrives, the packet is

discarded. Example 4

This example is similar to Example 2 (Figure 16) in which packet 1 is lost. Selective-

Repeat behaviorism shown in this case. Figure 19 shows the situation.

FEyvent

(" Req: Request from process )
p Arr: Packet arrival

aArr: ACK amival Sender Receiver
\_T-Out: Time-out . Transport Transport
layer layer
S;qr S, Initial i R, Initial
R i —
o[1[2[3[451670; | 0[1]2[3]4}5}6)7]
S; S, i
Start (k) - > >13[47561 710" i _ Packer () g
€ OIERISIT: e | o b
. [y —— e Ra B,

— :A/“,‘_‘:L—’/ .
s  p—______ QAT Data delivered
Stop () 0] 1[2]3[4]S16)7101=— to application
Reg LLLs
surt @ 3=l Tt L Packerd
Surt @ > RERET0! b

Req 7 <. ' - R
...... 01112(3]14|5'6'7'0 p—CKC \
gl |- EICIETAI B s [} 51 £ Y3
s, S ACK 2 - -
s e aA
e DDA
S S i
RCL[ = -
...... L i

' Y s , R,

HE1E1 R —— P Bl TeT
S, Sy 4/\:/‘\// ® i)
] CE NI 7\ ;i

e DT

>

'\'Y |
T-Out =-- S i e H Packet | (rece Rc
Restart () == I”ﬁ“'h':'n' . (TESCTR) [
estan '\b > n... A AL A S S TR IE] n

S, S i ACK
Stop (1) MYSEBIE] = aArr : > Data delivered
Sop Y 19313233 el > to application
Y —
Y Y
Time Time

Figure 19: Flow diagram for Example 4
At the sender, packet O is transmitted and acknowledged. Packet 1 is lost.
Packets 2 and 3 arrive out of order and are acknowledged. When the timer times
out, packet 1 (the only unacknowledged packet) is resent and is acknowledged.
The send window then slides.
At the receiver site we need to distinguish between the acceptance of a
packet and its delivery to the application layer. At the second ar ival, packet 2

Department of ECE, ATMECE Page 21



17EC64 — COMPUTER COMMUNICATION NETWORKS

arrives and is stored and marked (shaded slot), but it cannot be delivered
because packet 1 is missing. At the next arrival, packet 3 arrives and is marked
and stored, but still none of the packets can be delivered. Only at the last ar ival,
when finally a copy of packet 1 arrives, can packets 1, 2, and 3 be delivered to
the application layer. There are two conditions for the delivery of packets to the
application layer: First, a set of consecutive packets must have arrived. Second,
the set starts from the beginning of the window. After the first arrival, there was
only one packet and it started from the beginning of the window. After the last
arrival, there are three packets and the first one starts from the beginning of the
window. The key is that a reliable transport layer promises to deliver packets in
order.

Window Sizes

We can now show why the size of the sender and receiver windows can be
at most one-half of 2™. For an example, we choose m = 2, which means the size
of the window is 2™/ 2 or 2™ = 2. Figure 23.36 compares a window size of 2
with a window size of 3. If the size of the window is 2 and all acknowledgments
are lost, the timer for packet O expires and packet O is resent. However, the window
of the receiver is now expecting packet 2, not packet O, so this duplicate
packet is correctly discarded (the sequence number O is not in the window). When
the size of the window is 3 and all acknowledgments are lost, the sender sends a
duplicate of packet 0. However, this time, the window of the receiver expects to
receive packet O (O is part of the window), so it accepts packet O, not as a
duplicate, but as a packet inthe next cycle. This is clearly an error.

4 Whatare the services provided by UDP? Mention any four typical applications of
UDP.

Process-to-Process Communication

UDP provides process-to-process communication using socket addresses, a

combination of IP addresses and port numbers.

Connectionless Services

UDP provides a connectionless service. This means that each user datagram sent

by UDP is an independent datagram. There is no relationship between the different

user datagrams even if they are coming from the same source process and going

to the same destination program. The user datagrams are not numbered. Also,

Department of ECE, ATMECE Page 22



17EC64 — COMPUTER COMMUNICATION NETWORKS

unlike TCP, there is no connection establishment and no connection termination.
This means that each user datagram can travel on a different path. One of the
ramifications of being connectionless is that the process that uses UDP cannot
send a stream of data to UDP and expect UDP to chop them into different, related
user datagrams. Instead each request must be small enough to fit into one user
datagram. Only those processes sending short messages, messages less than
65,507 bytes (65,535 minus 8 bytes for the UDP header and minus 20 bytes for the
IP header), canuse UDP.

Flow Control

UDP is a very simple protocol. There is no flow control, and hence no window
mechanism. The receiver may overflow with incoming messages. The lack of
flow control means that the process using UDP should provide forth is service, if
needed. Error Control

There is no error control mechanism in UDP except for the checksum. This means
that the sender does not know if a message has been lost or duplicated. When the
receiver detects an error through the checksum, the user datagram is silently
discarded. The lack of error control means that the process using UDP should
provide for this service, if needed.

Checksum

UDP checksum calculation includes three sections: a pseudo header, the UDP
header, and the data coming from the application layer. The pseudo header is the
part of the header of the IP packet in which the user datagram is to be
encapsulated with some fields filled with Os (see Figure 20).

32-bit source IP address

32-bit destination IP address

Pseudoheader

8-bit protocol 16-bit UDP total length

Source port add Destination port address
16 bits 16 bits
UDRP total length
16 bits

Header

Data
(Padding must be added to make
the data a multiple of 16 bits)

Figure 20: Pseudoheaderforchecksumcalculation

Department of ECE, ATMECE Page 23



17EC64 — COMPUTER COMMUNICATION NETWORKS

If the checksum does not include the pseudo header, a user datagram may
arrive safe and sound. However, if the IP header is corrupted, it may be delivered
to the wrong host. The protocol field is added to ensure that the packet belongs to
UDP, and notto TCP. We will see laterthat if a process can use either UDP or TCP,
the destination port number can be the same. The value of the protocol field for
UDP is 17. If this value is changed during transmission, the checksum calculation
at the receiver will detect it and UDP drops the packet. It is not delivered to the
wrong protocol.

Congestion Control

Since UDP is a connectionless protocol, it does not provide congestion control.
UDP assumes that the packets sent are small and sporadic and cannot create
congestion in the network. This assumption may or may not be true today, when
UDRP is used for interactive real-time transfer of audio and video.

Encapsulation and Decapsulation

To send a message from one process to another, the UDP protocol encapsulates
and decapsulates messages.

Queuing

In UDP, queues are associated with ports. At the client site, when a process starts,
it requests a port number from the operating system. Some implementations create
both an incoming and an outgoing queue associated with each process. Other
implementations create only an incoming queue associated with each process.
Multiplexing and Demultiplexing

In a host running a TCP/ IP protocol suite, there is only one UDP but possibly several
processes that may want to use the services of UDP. To handle this situation, UDP
multiplexes and demultiplexes.

Typical Applications

The following shows some typical applications that can benefit more from the
services of UDP than from those of TCP.

UDP is suitable for a process that requires simple request-response
communication with little concern for flow and error control. It is not usually
used for a process such as FTP that needs to send bulk data.

UDRP is suitable for a process with internal flow- and error-control mechanisms.
For example, the Trivial File Transfer Protocol (TFTP) process includes flow
and

Department of ECE, ATMECE Page 24



17EC64 — COMPUTER COMMUNICATION NETWORKS

Error control. It can easily use UDP.

UDP is a suitable transport protocol for multicasting. Multicasting capability is
embedded in the UDP software but not in the TCP software.

UDP is used for management processes such as SNMP.

UDP is used for some route updating protocols such as Routing Information
Protocol (RIP).

UDP is normally used for interactive real-time applications that cannot tolerate
uneven delay between sections of a received message.

5 What are the different TCP services and features? Explainthem

» Process-to-Process Communication

TCP provides process-to-process communication using port numbers.

» Stream Delivery Service

TCP, unlike UDP, is a stream-oriented protocol. In UDP, a process sends messages
with predefined boundaries to UDP fordelivery. UDP adds its own headerto each of
these messages and delivers it to IP for transmission. Each message from the
process is called a user datagram, and becomes, eventually, one IP datagram.
Neither IP nor UDP recognizes any relationship between the datagrams.

TCP, on the other hand, allows the sending process to deliver data as a
stream of bytes and allows the receiving process to obtain data as a stream of
bytes. TCP creates an environment in which the two processes seem to be
connected by an imaginary “tube” that car ies their bytes across the Internet. This
imaginary environment is depicted in Figure 21. The sending process produces
(writes to) the stream and the receiving process consumes (reads from)it.

Sending Receiving
process process
| Stream of byles | A
TCP 8 yte: )J TCP
— ) I :

Figure 21: Stream delivery
> Sending and Receiving Buffers
One way to implement a buffer is to use a circular ar ay of 1-byte locations

Department of ECE, ATMECE Page 25



Department of ECE, ATMECE

17EC64 — COMPUTER COMMUNICATION NETWORKS

as shown in Figure 22. For simplicity, it is shown as two buffers of 20 bytes each;
normally the buffers are hundreds or thousands of bytes, depending on the
implementation. We also show the buffers as the same size, which is not always
the case. The figure shows the movement of the data in one direction. At the
sender, the buffer has three types of chambers. The white section contains empty
chambers that can be filled by the sending process (producer). The colored area
holds bytes that have been sent but not yet acknowledged. The TCP sender keeps
these bytes in the buffer until it receives an acknowledgment. The shaded area
contains bytes to be sent by the sending TCP. However, as we will see later in this
chapter, TCP may be able to send only part of this shaded section. This could be
due to the slowness of the receiving process or to congestion in the network. Also
note that, after the bytes in the colored chambers are acknowledged, the chambers
are recycled and available for use by the sending process.

The operation of the buffer at the receiver is simpler. The circular buffer
is divided into two areas (shown as white and colored). The white area contains
empty chambers to be filled by bytes received from the network. The colored
sections contain received bytes that can be read by the receiving process. When
a byte is read by the receiving process, the chamber is recycled and added to the

pool of empty chambers.
Receiving .
process

Sending [B
process

TCP A TCP
Next Next
byte to byte to
write read

Received, but &

Written, but not read

Sent not sent

Stream of bytes

Next byte

Next byte
to receive

to send

Figure 22: Sending and receiving buffers

> Segments
Although buffering handles the disparity between the speed of the producing and
consuming processes, we need one more step before we can send data. The
network layer, as a service provider for TCP, needs to send data in packets, not as a
stream of bytes. At the transport layer, TCP groups a number of bytes together
into a packet called a segment.

TCP adds a header to each segment (for control purposes) and delivers the

Page 26



17EC64 — COMPUTER COMMUNICATION NETWORKS

segment to the network layer for transmission. The segments are encapsulated in
an IP datagram and transmitted. This entire operation is transparent to the receiving
process. Segments may be received out of order, lost or corrupted, and resent. All
of these are handled by the TCP receiver with the receiving application process
unaware of TCP’s activities. Figure 23 shows how segments are created from the
bytes in the buffers.

Segments are not necessarily all the same size. In the figure, for simplicity,
it is shown one segment carrying 3 bytes and the other carrying 5 bytes. In reality,
segments car y hundreds, if not thousands, of bytes.

Sending Receiving |1
process process
] ]
TCP TCP

Next byte Next byte
to write to read

Received,
Written, but but not read
not sent Seement N

Sent Secsment |

Next byte Next byte
o seynd HDDDDD e mm to receiyve

Figure 23: TCP segments
> Full-Duplex Communication
TCP offers full-duplex service, where data can flow in both directions at the same
time. Each TCP endpoint then has its own sending and receiving buffer, and
segments move in both directions.
> Multiplexing and Demultiplexing
Like UDP, TCP performs multiplexing at the sender and demultiplexing at the
receiver. However, since TCP is a connection-oriented protocol, a connection
needs to be established for each pair of processes.
» Connection-Oriented Service
TCP, unlike UDP, is a connection-oriented protocol. When a process at site A wants
to send to and receive data from another process at site B, the following three
phases occur:
1. The two TCP’s establish a logical connection between them.
2. Data are exchanged in both directions.
3. The connection is terminated.

Department of ECE, ATMECE Page 27



17EC64 — COMPUTER COMMUNICATION NETWORKS

This is a logical connection, not a physical connection. The TCP segment is
encapsulated in an IP datagram and can be sent out of order, or lost or corrupted,
and then resent. Each may be routed over a different path to reach the destination.
There is no physical connection. TCP creates a stream-oriented environment in
which it accepts the responsibility of delivering the bytes in order to the other site.
» Reliable Service

TCP is a reliable transport protocol. It uses an acknowledgment mechanism to
check the safe and sound arrival of data.

TCP Features

Numbering System

Although the TCP software keeps track of the segments being transmitted or
received, there is no field for a segment number value in the segment header.
Instead, there are two fields, called the sequence number and the acknowledgment
number. These two fields refer to a byte number and not a segment number.

Byte Number

TCP numbers all data bytes (octets) that are transmitted in a connection.

Numbering is independent in each direction. When TCP receives bytes of data from

a process, TCP stores them in the sending buffer and numbers them. The

numbering does not necessarily start from 0. Instead, TCP chooses an arbitrary

number between 0 and 23 - 1 for the number of the first byte. For example, if the

number happens to be 1057 and the total data to be sent is 6000 bytes, the bytes

are numbered from 1057 to 7056. We will see that byte numbering is used for flow

and error control.

Sequence Number

After the bytes have been numbered, TCP assigns a sequence number to each

segment that is being sent. The sequence number, in each direction, is defined as

follows:

1. The sequence number of the first segment is the ISN (initial sequence number),
which is a randomnumber.

2. The sequence number of any other segment is the sequence number of the
previous segment plus the number of bytes (real or imaginary) carried by the
previous segment.

Acknowledgment Number

Communication in TCP is full duplex; when a connection is established, both parties
can send and receive data at the same time. Each party numbers the bytes, usually
with a different starting byte number. The sequence number in each direction shows
the number of the first byte car ied by the segment. Each party also uses an

Department of ECE, ATMECE Page 28



17EC64 — COMPUTER COMMUNICATION NETWORKS

acknowledgment number to confirm the bytes it has received. However, the
acknowledgment number defines the number of the next byte that the party expects
to receive. In addition, the acknowledgment number is cumulative, which means that
the party takes the number of the last byte that it has received, safe and sound, adds
1 to it, and announces this sum as the acknowledgment number. The term
cumulative here means that if a party uses 5643 as an acknowledgment number, it
has received all bytes from the beginning up to 5642. Note that this does not mean
that the party has received 5642 bytes, because the first byte number does not have
to beO.

6. With a neat diagram explain TCP segment format

Segment

A packet in TCP is called a segment.

Format

The format of a segment is shown in Figure 23.1. The segment consists of a
header of 20 to 60 bytes, followed by data from the application program. The
header is 20 bytes if there are no options and up to 60 bytes if it contains options.

Department of ECE, ATMECE Page 29



17EC64 — COMPUTER COMMUNICATION NETWORKS

| 20 to 60 bytes |

a. Segment

1 16 31

Source port address Destination port address
16 bits 16 bits
Sequence number
32 bits
Acknowledgment number
32 bits
HLEN serve UTATPIRISTE Window size
4 bits e S B 16 bits
Checksum Urgent pointer
16 bits 16 bits

Options and padding
(up to 40 bytes)

b. Header

Figure 23.1: TCP segment format
Source port address: This is a 16-bit field that defines the port number of the
application program in the host that is sending the segment.
Destination port address: This is a 16-bit field that defines the port number of
the application program in the host that is receiving the segment.
Sequence number: This 32-bit field defines the number assigned to the first
byte of data contained in this segment. As we said before, TCP is a stream
transport protocol. To ensure connectivity, each byte to be transmitted is
numbered. The sequence number tells the destination which byte in this
sequence is the first byte in the segment. During connection establishment, each
party uses a random number generator to create an initial sequence number
(ISN), which is usually different in eachdirection.
Acknowledgment number: This 32-bit field defines the byte number that the
receiver of the segment is expecting to receive from the other party. If the
receiver of the segment has successfully received byte number x from the other
party, it returns X + 1 as the acknowledgment number. Acknowledgment and data
canbe piggybacked together.
Header length: This 4-bit field indicates the number of 4-byte words in the TCP
header. The length of the header can be between 20 and 60 bytes. Therefore,
the value of this field is always between 5 (5 x 4 = 20) and 15 (15 x 4 = 60).

Control: This field defines 6 different control bits or flags, as shown in Figure
24.8. One or more of these bits can be set at a time. These bits enable flow

Department of ECE, ATMECE Page 30



17EC64 — COMPUTER COMMUNICATION NETWORKS

control, connection establishment and termination, connection abortion, and the
mode of data transfer in TCP. A brief description of each bit is shown in the
figure. 24

Figure 24 Control field
* Bl URG: Urgent pointer is valid
URG ﬂ PSH | RST ACK: Acknowledgment is valid
PSH : Request for push
6 bits ‘ RST : Reset the connection
~1 SYN: Synchronize sequence numbers
FIN : Terminate the connection

Window size: This field defines the window size of the sending TCP in bytes.
Note that the length of this field is 16 bits, which means that the maximum size
of the window is 65,535 bytes. This value is normally referred to as the receiving
window (rwnd) and is determined by the receiver. The sender must obey the
dictation of the receiver in this case.

Checksum: This 16-bit field contains the checksum. The calculation of the
checksum for TCP follows the same procedure as the one described for UDP.
However, the use of the checksum in the UDP datagram is optional, whereas the
use of the checksum for TCP is mandatory.

Urgent pointer: This 16-bit field, which is valid only if the urgent flag is set, is
used when the segment contains urgent data. It defines a value that must be
added to the sequence number to obtain the number of the last urgent byte in
the data section of the segment.

Options: There can be up to 40 bytes of optional information in the TCP header.

Encapsulation

A TCP segment encapsulates the data received from the application layer. The TCP
segment is encapsulated in an IP datagram, which in turn is encapsulated in a
frame at the data-linklayer.

Department of ECE, ATMECE Page 31



