

Department of Electrical and Electronics Engineering

COURSE MODULES OF THE COURSE TAUGHT FOR THE ODD SESSION AUG-DEC 2024-25

Course Syllabi with CO's

Faculty Name	Academic Year: 2024-25											
Department: Electrical & Electronics Engineering												
Course Code	Course Title	Core/Elective	Prerequisite			Cont	act Ho	Total Hrs/				
	Course Title	Cole/Elective	Trerequisite		L	T	P	S	Sessions			
BEE 306A	Digital Logic Circuits	Elective	Basic Elect	ronics	3	-	-	-	40 Hr Theory			
Objectives	To illustrate simplification of algebraic equations using Karnaugh Maps and Quine-McClusky methods To design decoders, encoders, digital multiplexer, adders, subtractors and binary comparators To explain latches and flip-flops, registers and counters To analyze Melay and Moore Models To develop state diagrams synchronous sequential circuits To understand the applications of sequential circuits											

Topics Covered as per Syllabus

Module-1: 8 hours

Principles of Combinational Logic: Definition of combinational logic, canonical forms, Generation of switching equations from truth tables, Karnaugh maps-3,4,5 variables, Incompletely specified functions (Don't care terms) Simplifying Max term equations, Quine-Mc Cluskey minimization technique, Quine-Mc Cluskey using don't care terms, Reduced prime implicants Tables.

Module-2: 8 hours

Analysis and Design of Combinational logic: General approach to combinational logic design, Decoders, BCD decoders, Encoders, digital multiplexers, Using multiplexers as Boolean function generators, Adders and subtractors, Cascading full adders, Look ahead carry, Binary comparators.

Module-3: 8 hours

Flip-Flops: Basic Bistable elements, Latches, Timing considerations, The master-slave flip-flops (pulse triggered flip-flops):SR flip-flops, JK flip-flops, Edge triggered flip- flops, Characteristic equations

Module -4: 8 hours

Flip-Flops Applications: Registers, binary ripple counters, synchronous binary counters, Counters based on shift registers, Design of a synchronous counter, Design of a synchronous mod-n counter using clocked T, JK, D and SR flip-flops.

Module-5: 8 hours

Sequential Circuit Design: Mealy and Moore models, State machine notation, Synchronous Sequential circuit analysis, Construction of state diagrams, counter design.

Memories: Read only and Read/Write Memories, Programmable ROM, EPROM, Flash memory.

List of Text Books and Reference Books

Text Books:

- (1) John M Yarbrough, Digital logic applications and design, Thomson Learning, 2001.
- (2) Donald D Givone, Digital Principles and design, MC Graw Hill 2002.
- (3) Charles H Roth Jr, Larry L Kinney, Fundamentals of logic design, Cengage Learning, 7th Edition.

Reference Books:

- (1) D.P.Kothari and J S Dhillon, -Digital circuits and design, Pearson, 2016.
- (2) Morris Mano, Digital Design, PHI, 3rd edition.
- (3) K.A. Navas, Electronics Lab Manual, Vol.1, PHI 5th edition, 2015.

ATME COLLEGE OF ENGINEERING

Department of Electrical and Electronics Engineering

List of URLs, Text Books, Notes, Multimedia Content, etc

- 1. https://onlinecourses.nptel.ac.in/noc20_ee32/preview
- 2. YouTube videos on digital electronics
- 3. National Instruments: https://education.ni.com/teach/resources/1104/digital-electronics

At the end of the course the students will be able to:

- 1. **Explain** the concept of combinational and sequential logic circuits. [L2]
- 2. Analyse and **design** combinational circuits. [L3]
- 3. **Describe** and characterize flip flops and its applications. [L3]

Course Outcomes

- 4. **Design** the sequential circuits using SR, JK, D and T flip-flops and Melay and Moore applications. [L3]
- 5. **Design** applications of combinational and sequential circuits. [L3]
- 6. **Employ** the digital circuits for different applications. [L3]

Internal Assessment Marks: 50 (2 Theory Tests of 25Marks each + 2 Assignments of 10 Marks each are conducted during thesemester and marks allotted based on average all the performances).

The Correlation of Course Outcomes (CO's) and Program Outcomes (PO's)

Course Code:	BEE3	06A	TITLE: Digital Logic Circuits Program Outcomes				Faculty Name:		Mrs. Swathi C A					
List of		r rogram Outcomes												
Course	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
Outcomes														
CO-1	3	2	2	-	2	-	-	-	-	-	-	-	2	-
CO-2	3	3	2	-	2	-	-	-	-	-	-	ı	2	-
CO-3	2	2	2	-	-	-	-	-	-	-	1	-	2	-
CO-4	2	2	2	-	-	-	-	-	-	-	-	ı	2	-
CO-5	3	3	2	-	-	-	-	-	-	-		-	2	-
CO-6	2	-	-	-	_	-	-	-	-	-	-	1	2	-

Note: 3 = Strong Contribution 2 = Average Contribution 1 = Weak Contribution '-'= No Contribution

Course Coordinator Vertical Head HoD