atme] College of Engineering

BEE403:MICROCONTROLLER

MODULE - 3:
8051 programming in C_ 8051 Timer programming in Assembly and C

College of Engineering Syl I ab US

* 8051 programming In C: Data types and time delay in 8051C, 10
programming In 8051C, Logic operations in 8051 C, Data conversion
program In 8051 C, Accessing code ROM space in 8051C, Data
serialization using 8051C

* 8051 Timer programming Iin Assembly and C: Programming 8051
timers, Counter programming, Programming timers 0 and 1 in 8051 C.

L2 — Understanding, L3 —Applying, L4 —Analyzing, L5 — Evaluating.

A T \ A D
[‘e"t ﬂ xm"v” E f J

College of Engineering

Cepartment of EEE

atme

CO5: Evaluate software delays, timer delays and timer programming using both
Assembly and C language. [L5, MODULE 3]

U1
19 B xTAL1 P0.0/ADO :—;‘g
PO.1AD1 |2
s PO.2/AD2 | 3L
18 1 x7aL2 PO.3/AD3 | =32
PO4/AD4 | =32
PO5/ADS |32
ou PO.GIADE | o ~
%1 st P0.7/AD7 | —22 - S
P2.0/A8 (=21 |
P21/A9 (=2
P2.2/A10 =22 e —
2 psEN P2UAIN |2 -
2 ae P24/A12 (=28
AT ER P2.5/A13 | 225 -
P26ia14 (=2
P2.7/A15
1m 10
—a| P10 P3.0/RXD [——== B
2 P P3.ADD (=10
Tam| P1.2 P3.2/INTO =13
= P13 P3/INTT |12
= P P340 |14
== P15 P3.ST1 =12
= ris P36WR (=12
LN P3.7/RD | 1L

ATB9C51

A R \ A »
[‘e"t ﬂ xm"v” E f J

atine) College of Engineering

3.1 Data types in 8051C

Why program the 8051 in C?

Compilers produce hex files that we download into the ROM of the
microcontroller. The size of the hex file produced by the compiler is one of
the main concerns of microcontroller programmers, for two reasons:

1. Microcontrollers have limited on-chip ROM.
2. The code space for the 8051 is limited to 64K bytes.

AT M E

¢ College of Engineering

Following are some of the major reasons for writing programs in C instead
of Assembly:

1. It is easier and less time consuming to write in C than Assembly.
2. C Is easler to modify and update.
3. You can use code available in function libraries.

4.C code Is portable to other microcontrollers with little or no
modification

2tme) College of Engineering

C data types for the 8051

1. Unsigned char

A. Since the 8051 is an 8-bit microcontroller, the character data type is the
most natural choice for many applications.

The unsigned char is an 8-bit data type that takes a value in the range of Q
— 255 (00 — FFH).

It Is one of the most widely used data types for the 8051. In many
situations, such as setting a counter value.

2tme) College of Engineering

B. Where there 1s ngo need for signed data we should use the unsigned
har In f the sian har.

Remember that C compilers use the signed char as the default if we do not

put the keyword unsigned in front of the char

« We can also use the unsigned char data type for a string of ASCII
characters

atine) College of Engineering

C. In declaring variables, we must pay careful attention to the size of the
data and try to use unsigned char in fintif 1ble,

» Because the 8051 has a limited number of registers and data RAM
locations, using the int in place of the char data type can lead to a larger
size hex file.

ATM E

College of Engineering

Example 1-1

‘Write an 8051 C program to send values 00 - FFtonae

Solution:
#include <regSl.h>

void main(void)

{

unsigned char z;
for(z=0;z<=255;2++)
Pl=2z;

}

Run the above program on your simulator to see how P1 displays values 00 - FFH in
binary.

A 1 M E

atine] College of Engineering

Example 1-2

* Write an 8051 C program to send hex values of 0,1,2,3,4,5,A,B,C
and D to port P1.

A R \ A »
[‘e"t ﬂ xm"v” E f J

J College of Engineering

Solution
#include<reg51.h>

void main (void)

{

Unsigned char mynum]]
Unsigned char z;
For(z=0;z<=10;z++)
P1=mynum(z);

}

“OD 1 9293 9495?A9B9C9D’,;

atine) College of Engineering

Signed char

 The signed char Is an 8-bit data type that uses the most significant bit
(D7 of D7 — DO) to represent the — or + value. As a result, we have
only 7 bits for the magnitude of the signed number, giving us values

from =128 to +127.

* In situations where + and — are needed to represent a given quantity
such as temperature, the use of the signed char data type Is a must.

« Again notice that If we do not use the keyword unsigned, the
default i1s the signed value. For that reason we should stick with the
unsigned char unless the data needs to be represented as signed
numbers.

ATM E

College of Engineering

Example 1-4

Write an 8051 C program to send values of -4 to +4 to port P1.

Solution:
//sign numbers
#include <regSl.h>
void main(void)
{

char mynum()= .¢',~1,+2,-2,+3,-3,44,-4};

unsigned char 2;

for(z=0;z<=8;z++)

Pl=mynum [z];

2tme) College of Engineering

3. Unsigned Int

1.The unsigned Int Is a 16-bit data type that takes a value In the range of
0000 to 65535 (0000 — FFFFH). In the 8051, unsigned int is used to define
16-bit variables such as memory addresses. It Is also used to set counter
values of more than 256.

2.Since the 8051 is an 8-bit microcontroller and the Int data type takes two
bytes of RAM, we must not use the int data type unless we have to.

2tme) College of Engineering

3.Since registers and memory accesses are In 8-bit chunks, the misuse of
Int variables will result in a larger hex file. Such misuse Is not a big deal In
PCs with 256 megabytes of memory, 32-bit Pentium registers and memory
accesses, and a bus speed of 133 MHz.

4.However, for 8051 programming do not use unsigned int in places where
unsigned char will do the job. Of course the compiler will not generate an
error for this misuse, but the overhead in hex file size is noticeable.

atme) College of Engineering

4. Signed Int

Signed Int Is a 16-bit data type that uses the most significant bit (015 of
D15 — DO) to represent the — or + value.

As a result, we have only 15 bits for the magnitude of the number, or
values from -32,768 to +32,767.

atmel College of Engineering

5 Sbit (single bit)

The sbit keyword i1s a widely used 8051 C data type designed
specifically to access single-bit addressable registers. It allows access to
the single bits of the SFR registers.

AT M E

atimne] College of Engineering

Example 1-5

* Write an 8051 C program to toggle bit DO of the port P1 (PI1.0) 50,000
times.

[JA T M E

] College of Engineering

Solution:
#include <regSl.h>
sbit MYBIT = P170; //notice that sbit is

//declared outside of main
void main{void)

{
unsigned int z;
for (z=0; 2z<=50000; z++)
{
MYBIT = 0;
MYBIT = 1;

}

AT M E

“”“ College of Engineering

Some Widely Used Data Types for 8051 C

Data Ty Size in Bits Data Range/Usage

unsiged char __8-bit 0 to 255

(signed) char 8-bit —128 to +127

unsigned int 16-bit 0 to 65535

(signd) int 1 6-bit -32,768 to +32,767

sbit 1-bit SFR bit-addressable only

bit | -bit RAM bit-addressable only
- [, . 3-bit ____RAM addresses 80 - FFH only

AT M E

§ College of Engineering

Time delay In C

A 1 M E

atimne] College of Engineering

Time delay In C

There are two ways to create a time delay in 8051 C:
1. Using a simple for loop
2. Using the 8051 timers

In either case, when we write a time delay we must use the oscilloscope
to measure the duration of our time delay.

et College of Engineering

ot s ope

In reating a time delay using a for loop, we must be mindful of

three factors that can affect the accuracy of the delay.

1. The 8051 design. Since the original 8051 was designed in 1980, both the fields of IC
technolog%/ and microprocessor architectural design have seen great advancements.
The number of machine cycles and the number of clock periods per machine cycle

vary among different versions of the 8051/52 microcontroller.

2.While the original 8051/52 design used 12 FI%%k pgrigg% per m%ghing cvcle, many of
the newer generations of the 8051 use fewer clocks per machine cycle.

For example, the DS5000 uses 4 clock periods per machine cycle, while the DS89C420
uses only one clock per machine cycle.

3.The crystal frequency connected to the XI — X2 iniout pins. The duration of the clock
period for the machine cycle is a function of this crystal frequency.

2tme) College of Engineering

4. Compiler choice: The third factor that affects the time delay is the
compiler used to compile the C program.

When we program Iin Assembly language, we can control the exact

Instructions and their sequences used in the delay sub routine.

In the case of C programs, it I1s the C compiler that converts the C
statements and functions to Assembly language instructions. As a result,
different compilers produce different code.

In other words, If we compile a given 8051 C programs with different
compilers, each compiler produces different hex code.

Example 1-6

Write an 8051 C program to toggle bits of P1 continuously forever with
some delay

Solution:
// Toggle P1 forever with some delay in between “on” and “oft”,

atime] College of Engineering

#include <reg51.h>

void main(void)

{

unsigned int x;
for(;;)

{

//repeat forever

Pl=0x55;

for{x=0;%x<40000;x++); //delay size unknown
Pl:OXAA;

for(x=0;x<40000;x++) ;

AT M E

= College of Engineering

Example 1-7

Write an 8051 C program to toggle the bits of P1 port continuously with a
250 ms delay.

Solution:

| #include <regSl.h>
void MSDelay(unsigned int);
g void main(void)

{

while(l) //repeat forever

{

P1=0x55;
MSDelay (250) ;
Pl=0xAA;
MSDelay{(250) ;

w224 MSDelay({unsigned int itime)
unsigned int i, j;
forfi=0;icitime;i++)
for(3=0;3<1275;j++);

Write a 8051 C program to toggle all the bits of PO and P2 continuously with a 250 ms

1 delay.

tme | ¢ Solution:

W [//This program is tested for the DS895C420 with XTAL = 11.0592 MHz
#include <regSl.h>

void MSDelay(unsigned int);

void main(void)

{

while(1l) //another way to do it forever
{
P0=0x55; -
P2=0x55;
MSDelay (250} ;
PO=0xAA;
92=0XAA;
MSDelay (250} ;
}
}
void MSDelay(unsigned int itime)
{
unsigned int i, 95;
for(i=0;icitime;i++)
for(j3=0;3<1275;j++) ;

aline] College of Engineering

|O programming in 8051C
Byte size 1/0

ports PO — P3 are byte-accessible. We use the PO — P3 labels as defined
In the 8051/52 C header file.

ATME

College of Engineering

Example 1-9

LEDs are connected to bits P1 and P2. Write an 8051 C program that shows
the count from 0 to FFH (0000 0000 to 1111 1111 in binary) on the LEDs.

Solution: #include <regSl.h>
#define LED P2 //notice how we can define P2
void main(veid)

{

P1=00; //clear Pl
LED=0; //clear P2
for(;;) //repeat forever
{
Pl++; //increment Pl
LED++; //increment P2

)

’

A& 1T M E

atimne] College of Engineering

Do

Write an 8051 C program to get a byte of data from PI, walit 1/2 second,
and then send it to P2.

Solution:

[JA T M E

atie] College of Engineering

Cepartment of EEE
w Emetng Eite Erergy

VOia mainivoiaQ)

(

unsigned char mybyte;-

P1=0XFF; //make Pl an input port
while (1)
{
mybyte=P1l; //get a byte from Pl
MSDelay (500) ;
P2=mybyte; //send it to P2

\
I

wz13 MSDelay(unsigned int itime)

wnsigned int: iI; I;

i=0;icitime;i++)
Zcrii=0;3<1275;3+4+);

A 1 M E

atimne] College of Engineering

Write an 8051 C program to get a byte of data from PO. If it Is less than
100, send it to P1; otherwise, send it to P2.

Solution:

atime] College of Engineering

#include <regS1.h>
void main{veid)
{
unsigned char mybyte;
PO0=0XFF;
while (1)
{
mybyte=P0;
if (mybyte<100)
Pl=mybyte;
else
P2=mybyte;

//make PO an

//get a byte
//send it to

//send it to

input port

from PO
Pl 1f less than 100

P2 1if more than 100

atine) College of Engineering

~Logic operations in 8051 C

Bit-wise operators in C

1.While every C programmer Is familiar with the logical operators
AND (&&), OR (||), and NOT (!), many C programmers are less
familiar with the bitwise operators AND (&), OR (|), EX-OR (),
Inverter (=), Shift Right (»), and Shift Left («).

2.These bit-wise operators are widely used in software engineering for
embedded systems and control; consequently, understanding and

mastery of them are critical in microprocessor-based system design and
Interfacing.

AT M E

2] College of Engineering

Table : Bit-wise Logic Operators for C

AND OR EX-OR Inverter

A B A&B ~_A|B A"B Y=-B

0 0 0 0 0 |

0 | 0 I I 0

| 0 0 | i

1 | | 1 0

The following shows some examples using the C logical operators.

. 0x35 & OxOF = 0x05 /* ANDing */ |
2. 0x04 | 0x68 = 0x6C /* ORing: */
3. 0x54 * (0x78 = 0x2C /* XORing */

4. ~0x55 = OxAA /* Inverting 55H */

On to the leading edge
www.atme.in

— Runthe.following program on your{&y
simulator and examine the results
o | 1 | o | 1 | 0 [1 | 0 | 0

0 0 1 0 1 1 0 0

Solution:

#include <reg51.h>
void main (void)

{

PO = 0x35 & OxO0F; //ANDing

Pl = 004 | 0x68; //ORing | N N S A A A e
P2= 0x54 * 0x78; //xORing | NI NEN IS I I W T
PO=-0x55; //inversing

Pl= 0x9A» 3; //shifting right 3 times

P2= 0x77 » 4; [/shifting right 4 times

PO= 0x6 « 4; //shifting left 4 times

¥

atine] College of Engineering

Write an 8051 C program to toggle all the bits of PO and P2
continuously with a 250 ms delay. Use the inverting operator.

Solution:

The program below is tested for the DS89C420 with XTAL = 11.0592
MHz.

L]

atme

#include <regS5l.h>
void MSDelay(unsigned int);

e void main(void)

{
P0=0x5S;
P2=0x55;
while{1)
{
PO=~P0;
P2=~P2;
MSDelay (250} ;
J
}
void MSDelay{unsigned int itime)
{

unsigned int i, j;
for(i=0;i<itime;i++)
for(j=0;3<1275;3++);

AT M E

= College of Engineering

Bit-wise shift operation in C
1. There are two bit-wise shift operators in C:
(1) shift right (»), and (2) shift left («).

Their format in C Is as follows:

2. data » number of bits to be shifted right
3. data « number of bits to be shifted left

The following shows some examples of shift operators in C.
l. 0x9A >> 3= (0x13 /* shifting right 3 times */
2. 0x77 >> 4 = (0x07 /* shifting right 4 times */
3. 0x6 << 4 = 0x60 /* shifting left 4 times */

A B \ A »
[‘e"t ﬂ xm"v” E f J

2Lne] College of Engineering

Write an 8051 C program to toggle all the bits of PO, P1, and P2
continuously with a 250 ms delay. Use the ExX-OR operator.

Solution:

A/\l
UKAS L 5
Cepartment of EEE
o Emetng Eite Erergy

:I The program below is tested for the DS89C420 with XTAL = 11.0592 MHz.
#include <regSl.h>
e void MSDelay (unsigned int);
void main({void)
{
PC=0x55;
P1=0x55;
P2=0x55;
while (1)
{
P0=P0" 0XFF;
P1=P1"0xFF;
P2=P2"0XFF;
MSDelay (250} ;

}

void MSDelay{unsigned int itime)
{
unsigned int i, j;
for(i=0;icitime;i++)
for(j=0;3<1275;3++);

AT M E
2 C] College of Engineering

Write an 8051 C program to get bit P1.0 and send It to P2. 7

after inverting It.

#include <regS51l.h>

sbit inbit=P1%0;
sbit outbit=P2"7; //sbit is used declare port (SFR) bits

bit membit; //noctice this is bit-addressable memory
void main{void) '

{

while(l)

{

membit=inbit; //get a bit from P1.0
outbit=~membit ; //invert it and send it to P2.7

j

A 1T M L

College of Engineering

Write an 8051 C program to read the P1.0 and P1.1 bits and
Issue an ASCII character to PO according to the following table.

Pl1.1 Pl1.0

0 0 send ‘0’ to PO
0 1 send ‘1’ to PO
| 0 send ‘2" to PO
I

] send ‘3" to PO
Solution:

#include <reg51.h>
veoid main{void)

{
unsigned char z;
z=P1; //read P1
Z=2&0%3; //mask the unused bits
switch(z) //make decision
{
case(0) :
{
P0='0"'; //issue ASCII 0
break;

}

AT M E

atiel College of Engineering

case(l):

{

PO='1l"';

break;

)

case(2) :

{

PO='2";

break;

}

case(3):

{
PO='3";
break;

'

//issue ASCII 1

//issue ASCII 2

//issue ASCII 3

A& 1T M E

2one] College of Engineering

Data conversion program in 8051 C

A 1 M E

=] College of Engineering

L)ata conversion program in ocUol L
ASCII Code for Digits 0 -9

Kev ASCIH !h_f.j:_s.} Binary BCD {unpacked) .
0 011 D000 Q000 (00

] 3l 011 0001 D00 (R |

2 iz 011 G010 QOO0 ()10

30033 0110011 0000 (011

4 34 011 0100 0000 0100

5 35 _ 011 0101 0000 0101

& 36 011 Q10 0000 0110

7 37 011 0111 I
3 33 011 1000 0000 1000

9 39 011 10431 OO0 100

AT M E

o College of Engineering

Packed BCD to ASCII conversmn

Packed BCD Unpacked BCD ASCII
Ox29 0x02, 0x09 0x32, 0x39
00101001 0000010, 00001001 00110010,00111001

ASCII to packed BCD conversion

Key ASCII Unpacked BCD Packed BCD
4 34 00000100
7 37 00000111 01000111 or 47H

I_‘Write an 8051 C program to convert packed BCD 0x29 to ASCII and displayﬂt'he bytes '
s on P1 and P2. \

Solution:

#include <reg51.h>
void main(void)

{
unsigned char x, vy, 2z;
unsigned char mybyte = 0x29;
x = mybyte & O0xO0F; //mask lower 4 bits
Pl = x | 0x30; //make it ASCII
y = mybyte & O0xFO; //magk upper 4 Dbits
Y =Y > 4; //shift it to lower 4 bits
P2 = y | 0x30; //make it ASCII

1

1

1

0

0

0

0

—
_1
_

A

s O/

K
.
-~ HE
.
_ _aw

o | o0 | 1 | 0o | 1 | 0o | 0 | 1

A T M E

atm(, College of Engineering

" Write an 8051 C program to convert ASCII digits of ‘4’ and ‘7" to packed BCD and dis-
play them on PI.

Solution:

#include <regS51.h>
void main(void)
{
unsigned char bcdbyte;
unsigned char w='4';
unsigned char z='7';
w = w & OxOF; //mask 3
W =W << 4; //shift left to make upper BCD digit
z = z & OxOF; //mask 3
bcdbyte = w | z; //combine to make packed BCD
P1 = bcdbyte;

atine) College of Engineering

Checksum byte iIn ROM

1. To ensure the integrity of ROM contents, every system must perform the
checksum calculation.
2.The process of checksum will detect any corruption of the contents of

ROM. One of the causes of ROM corruption is current surge, either when
the system is turned on or during operation.

3.To ensure data integrity in ROM, the checksum process uses what is
called a checksum byte.

' ‘ 1 College of Engineering

4 The checksum byte Is an extra byte that is tagged to the end of a series

of bytes of data. To calculate the checksum byte of a series of bytes of data,
the following steps can be taken.

1. Add the bytes together and drop the carries.

2. Take the 2's complement of the total sum. This Is the checksum byte,
which becomes the last byte of the series.

3. To perform the checksum operation, add all the bytes, including the
checksum byte. The result must be zero. If it Is not zero, one or more
bytes of data have been changed (corrupted).

Find the checksum byte.

25H
+ 62H
+ 3FH
+ S52H

118H (Dropping carry of 1 and taking the 2's complement, we get ESH.)

(b) Perform the checksum operation to ensure data integrity.

25SH
+ 62H
+ 3FH
+ B52H
+ ESH

200H (Dropping the carries we get 00, which means data is not corrupted.)

(¢) If the second byte 62H has been changed to 22H, show how checksum detects

the error.
25SH
+ 22H
+ 3FH
+ B52H
+ ESH

1COH (Dropping the carry, we get COH, which means data is corrupted.)

| JA T M E
s College of Engineering

VVTITE an 5USL L Program to CAICUIAte Te CNecKSUMm DyTe TOr e gata
given

#include <regS5l1l.h>
void main(void)
{
unsigned char mydatal[] = {0x25,0x62,0x3F,0x52};
unsigned char sum=0;
unsigned char Xx;
unsigned char chksumbyte;
for(x=0;X<d;x++)

{

P2=mydata [x] ; //issue each byte to P2
sum=sum+mydata [x] ; //add them together
Pl=sum; //issue the sum to Pl
}
chksumbyte=~sum+1; //make 2's complement

Pl=chksumbyte; //show the checksum byte

2tme) College of Engineering

Binary (hex) to decimal and ASCI |
conversion in 8051 C

* Write an 8051 C program to convert 11111101 (FD hex) to decimal
and display the digits on PO, P1, and P2.

[JA T M E

atie] College of Engineering

#include <regS51.h>
void main{void)

{

unsigned char x, binbyte, di, d2, d3;

binbyte = OxFD;
x = binbyte / 10;

dl = binbyte % 10;
d2 = x % 10;

d’3 = x / 10;

PO = dl;

Pl = d42;

P2 = d43;

//binary(hex) byte

//divide by 10

//find remainder (LSD)
//middle digit

//most significant digit (MSD)

Quotient Remainder
FD/OA 19 3 (low digit) LSD
19/0A 2 5 (middle digit)

2 (high digit) (MSD)

Oepartment of EEE
Emetng Eite Erergy

atine) College of Engineering

) Accessing code ROM space in 8051C

RAM data space v. code data space

In the 8051 we have three spaces in which to store data. They are as
follows:

1.The 128 bytes of RAM space with address range 00 — 7FH. (In the
8052, It Is 256 bytes.) We can read (from) or write (into) this RAM
space directly or indirectly using the RO and RI registers.

2.The 64K bytes of code (program) space with addresses of 0000 —
~FFFH. This 64K bytes of on-chip ROM space Is used for storing
programs (opcodes) and therefore Is directly under the control of the
program counter (PC).

41‘\] College of Engineering

e are are TWO problems with using tnis coue
space for data.

a) First, since it is ROM memory, we can burn our predefined data and tables
Into It. But we cannot write into it during the execution of the program.

b)The second problem is that the more of this code space we use for data, the
less is left for our program code.

For example, If we have an 8051 chip such as DS89C420 with only 16K bytes of
on-chip ROM, and we use 4K bytes of it to store some look-up table, only 12K
bytes is left for the code program. For some applications this can be a problem.
For this reason Intel created another memory space called external memory
especially for data.

AT M E

sooe] College of Engineering

Compile and single-step the following program on your 8051 simulator.
Examine the contents of the 128-byte RAM space to locate the ASCII
values.

Solution:
#include <regSl.h>
void main(void)
{
unsigned char mynum(]= "ABCDEF"; //This uses RAM space
//to store data
unsigned char z;
for (z=0;2<=6;2++)
Pl=mynum [(z];

' 8

AT M E

aline] College of Engineering

ompare and contrast the following programs and
discuss the advantages and disadvantages of each one.

(a)
#include <regSl.h>
void main(void)
{

Pl="H";
Pl='E’;
Pl="'L";
Pl='L";
Pl='0"';

#include <reg51.h>
void main(void)

{

unsigned char mydata([]="HELLO";
unsigned char z;
for{z=0;z<=5;z++)

Pl=mydatalz] ;

(¢)
fiinclude <regS51.h>
void main(void)

{

//Notice Keyword code
code unsigned char mydata(] ="HELLO";
unsigned char z;
for(z=0;z<=5;zZ++)
Pl=mydata(z];

atine) College of Engineering

* The first one Is short and simple, but the individual characters are
embedded into the program. If we change the characters, the whole
program changes. It also mixes the code and data together.

. The second one uses the RAM data space to store array elements,
therefore the size of the array is limited.

 The third one uses a separate area of the code space for data. This allows
the size of the array to be as long as you want if you have the on-chip
ROM.

atine) College of Engineering

Data serialization using 8051C

1. Using the serial port. When using the serial port, the programmer has
very limited control over the sequence of data transfer.

2_.Th ocond method of serializina data is to transfer data one bit &

time and control the sequence of data and spaces in between them.

In many new generations of devices such as LCD, ADC, and ROM the
serial versions are becoming popular since they take less space on a printed
circuit board.

atme College of Engineering

Write a C program to send out the value 44H serially
one bit at a time via Pl.0. The LSB should go out
first

Cepartment o‘ll!
Emetng Eite Ererg

atime] College of Engineering

Solution:
J/SERIALIZING DATA VIA P1.90O {(SHIFTING RIGHT)

#include <regS1.h>
spbit P1lbC = P170;
sbit regALSB = ACC"0;
void main (void)
{
unsigned char conbyte = 0x44;
unsigned char x:;
ACC = conbyte;

£ {x=0; <8; ++)
o R E ACC.0 -Pl.o
PlbC = regALSB;

ACC = ACC >> 1;

;
Conbyte=0x44 - RegA= Accumulator

0o |/ 1 0o | 0o | | |

A& 1T M E

College of Engineering

Write a C program to send out the value 44H serially one bit at a time via
P1.O. The MSB should go out first.

Solution: /
//SERIALIZING DATA VIA P1.0 (SHIFTING LEFT) \ l
#include <reg51.h> AsA e
sbit Plb0 = P170;
sbit regAMSB = ACC"7;
void main(veid)
{

unsigned char conbyte = 0x44;

unsigned char x;

ACC = conbyte;

for(x=0; x<8; X++) ACC.7 -PlO
{ :

Plb0 = regAMSB;
ACC = ACC << 1;

ACC.7 ACC.6 « ACC.1 ACC.0

A 1 M E

aline] College of Engineering

Write a C program to bring in a byte of data serially one
bit at a time via P1 .0. The LSB should come in first.

ZASolution:
//BRINGING IN DATA VIA P1.0 (SHIFTING RIGHT)
] CC #include <regS51.h>
sbit P1b0 = P170;
sbit ACCMSB = ACC"7;
void main{void)

{

unsigned char conbyte = 0x44;
unsigned char Xx;
for(x=0; x<8; X++)

{

ACCMSB = P1lb0O;
ACC = ACC >> 1;

}

P2=ACC;

)
PIN

D e]

D7 DO

atine) College of Engineering

Programming 8051 timers

1. The 8051 has two timers: Timer O and Timer 1. They can be used
either as timers or as even nters.

2. Basic registers of the timer

Both Timer 0 and Timer 1 are 16 bits wide. Since the 8051 has an
8-bit architecture, each 16-bit timer Is accessed as two separate registers
of low byte and high byte

atine) College of Engineering

“Timer 0 registers

1.The 16-bit register of Timer O |s accessed as low byte and hlgh byte. The low byte
register is called TLO (Timer he high [is referr

THO (Timer 0 high byte).

2.These registers can be accessed like any other register, such as A, B, RO, RI, R2, etc.
For example, the instruction “MOV TLO , #FH” moves the value 4FH into TLO, the

low byte of Timer O.

3. These registers can also be read like any other register. For example, “MOV R5 ,
THO” saves THO (high byte of Timer 0) in R5.

| THGO I TLO |

mslnl-ﬂlmslmz DI mnﬂm‘ns D7 nﬁlnﬂlm m'm]mlm

aline] College of Engineering

“Timer 1 registers

Timer 1 i1s also 16 bits, and its 16-bit register is split into two bytes,
referred to as TLI (Timer | low byte) and TH1 (Timer 1 high bvte).

These registers are accessible in the same way as the registers of Timer
0.

THI1

|

D5

Dig

DI31DL2

E11

DH}I Dulnsﬂmlnﬁ|nslm

F D3

D2

D1

D0

atmel College of Engineering

TMOD (timer mode) register

1. Both timers 0 and 1 use the same register, called TMOD, to set the
various timer operation modes.

2. TMOD Is an 8-bit reagister in which the lower 4 bits are set aside for

Timer 0 and the upper 4 bits for Timer 1.
In each case, the lower 2 bits are used to set the timer mode and the

upper 2 bits to specify the operation.

3.

A 1 wmse (LSB)

College GATE | CT | Ml MO [GATE] CT [M MO
Timer | Timer 0

atme

GATE Gating control when set. The timer/counter is enabled only while the INTx pin
is high and the TRx control pin is set. When cleared, the timer is enabled
whenever the TRx control bit is set.

C/T Timer or counter selected cleared for timer operation (input from internal

system clock). Set for counter operation (input from Tx input pin).
Mi Mode bit |

MO Mode bit 0

Ml MO Mode Operating Mode

0 0 0 13-bit timer mode
‘8-bit timer/counter THx with TLx as 5-bit prescaler
0] 1 16-bit timer mode
[6-bit imer/counters THx and TLx are cascaded; there is
no prescaler

| 0 2 8-bit auto reload
8-bit auto reload nimer/counter: THx holds a value that is
to be reloaded into TLx each time it overflows.

| I 3 Split timer mode

atine) College of Engineering

Example 1-37
Indicate which mode and which timer are selected for each of the
following.
(a) MOV TMOD,#01H (b) MOV TMOD,#20H (c) MOV TMOD#12H
Solution:
We convert the values from hex to binary.
1. TMOD = 00000001, mode 1 of Timer O Is selected.
2. TMOD = 00100000, mode 2 of Timer 1 is selected.

3. TMOD = 00010010, mode 2 of Timer 0, and mode 1 of Timer 1 are
selected.

Find the timer’s clock frequency and its period for various 8051-based systems. with the
| following crystal frequencies.

atwe (a) 12 MHz
(b) 16 MHz
(¢) 11.0592 MHz

Solution:

XTAL |— = 12
oscillator

(a) 1/12 x 12 MHz

i

1 MHz and T = 1/1 MHz = 1 us

(b) 1/12 x 16 MHz = 1.333 MHz and T = 1/1.333 MHz = .75 us

(¢) 1/12 x 11.0592 MHz = 921.6 kHz;
T = 1/921.6 kHz = 1.085 ps

2tme) College of Engineering

Mode 1 programming

The following are the characteristics and operations of mode 1:

1. It 1s a 16-bit timer; therefore, it allows values of FEEFEH I IN
he timer’s reqisters TL and TH.

2. After TH and TL are loaded with a 16-bit initial value, the timer must be start ed. This
IS done by “SETB TRQ” for Timer 0 and “SETB TR1” for Timer 1.

3.After the timer is started, It starts to count up. It counts up until it reaches its limit of
FFFFH. When it rolls over from FFFFH to 0000, it sets high a flag bit called TF (timer
flag). This timer flag can be monitored. When this timer flag is raised, one option would
be to stop the timer with the instructions “CLR TRO” or “CLR TR1", for Timer 0 and
Timer 1, respectively. Again, it must be noted that each timer has its own timer flag:
TFO for Timer 0, and TF1 for Timer 1.

4.After the timer reaches its limit and rolls over, in order to repeat the process the
registers TH and TL must be reloaded with the original value, and TF must be reset to 0.

T I
+ik »

TR TF goes high overflow
CIT=0 when FFFF =0 flag

XTAL
oscillator

Timer Block Diagram

Oscillatg ‘
= Timer Count
Ext Clock| \ 22
JUUUL

Timer Disabled Interrupt Enable
ClockSource Osc/Ext

ExploreEmbedded

atine) College of Engineering

Steps to program in mode 1

;I'(l)(generate a time delay, using the timer’s mode 1, the following steps are
aken.

1.Load the TMOD value register indicating which timer (Timer O or Timer 1)
IS to be used and which timer mode (0 or 1) is selected.

2. Load registers TL and TH with initial count values.
3. Start the timer.

4.Keep monitoring the timer flag (TF) with the “JNB TFx, target” Instruction
to see If it Is raised. Get out of the loop when TF becomes high.

5. Stop the timer.
6. Clear the TF flag for the next round.
7. Go back to Step 2 to load TH and TL agalin.

r<‘<-.
it
i

atine) College of Engineering

To calculate the exact time delay and the square wave frequency generated on pin P1 .5, we need to know
the XTAL frequency.

(a) in hex

(FFFF — YYXX + 1) X 1.085 us where YY XX are TH, TL initial values respectively. Notice that values
YYXX are in hex.

(b) in decimal

Convert YY XX values of the TH, TL register to decimal to get a NNNNN decimal number, then (65536 —
NNNNN) x 1.085 mircosec

Timer Delay Calculation for XTAL = 11.0592 MHz

r<‘<-.
il
i

atine) College of Engineering

Example

In the following program, we are creating a square wave of 50% duty
cycle (with equal portions high and low) on the P1.5 bit. Timer O is used

to generate the time delay. Analyze the program.

[JA T M E

atime] College of Engineering

MOV TMCD, 01 ;Timer 0, mode 1(16-bit mode)
HERE: MOV TLO, #0F2H ;TLO = F2H, the Low byte
MOV THO, #0FFH ;THC = FFH, the High byte
CPL P1L.5 ;toggle P1.5
ACALL DELAY
SJMP HERE ;load TH, TL again
; delay using Timer O
DELAY:
SETRE TRO ;start Timer O
AGAIN: JNB TFO, AGAIN ;monitor Timer O flag until
;it rolls over
CLR TRO ;stop Timer 0O
CLR TFO ;clear Timer 0 flag

RET

atine) College of Engineering

Solution:

In the above program notice the following steps.

1. TMOD is loaded.

2. FFF2H is loaded into THO — TLO.

3. P1.5 1s toggled for the high and low portions of the pulse.

4. The DELAY subroutine using the timer is called.

5.In the DELAY subroutine, Timer 0 Is started by the “SETB
TRO” Instruction.

UKAS
Department of EEE
Emetng Eite Erergy

[JA T M E

atime] College of Engineering

Programs

atine) College of Engineering

Calculate the amount of time delay in the DELAY subroutine
generated by the timer. Assume that XTAL = 11.0592 MHz.

Solution:

1. The timer works with a clock frequency of 1/12 of the XTAL
frequency; therefore, we have 11.0592 MHz / 12 = 921.6 kHz as the

timer frequency.

2. As aresult, each clock has a period of T=1/921.6 kHz = 1.085 (is.
In other words, Timer O counts up each 1.085 us resulting in delay =
number of counts x 1.085 us)

atine) College of Engineering

UKAS
Department of EEE
Emetng Eite Erergy

. The number of counts for the rollover is FFFFH — FFF2H = ODH (13
decimal).

However, we add one to 13 because of the extra clock needed when it
rolls over from FFFF to O and raises the TF flag.

. This gives 14 x 1.085 us = 15.19 us for half the pulse.

. For the entire period T = 2 x 15.19 (as = 30.38 ps gives us the time
delay generated by the timer.

Find the delay generated by Timer O in the following code, using both of

the methods. Do not include the overhead due to instructions.

HERE:

AGAIN:

Solution:

CLR
MOV
MOV
MOV
SETB
SETB
JNB
CLR
CLR

CLR

P2.3
TMOD, #01
TLO, #3EH
THO, #0B8H
P2.3

TRC
TFO,AGAIN
TRO

TFO

P2.3

;cleaxr P2.3

;Timer 0, mode 1(16-bit mode)
;TLO = 3EH, Low byte

;THO = B8H, High byte

;SET high P2.3

;start Timer 0

;monitor Timer 0 flag

;stop Tamer 0

;Clear Timer 0 flag for

;next round

2t C) College of Engineering

1. (FFFF-B83E + 1) = 47/C2H= 18370 In decimal and 18370 x 1.085 us=
19.93145ms.

2. Since TH — TL = B83EH = 47166 (in decimal) we have 65536 — 47166 =
18370. This means that the timer counts from B83EH to FFFFH.. This plus
rolling over to 0 goes through a total of 18370 clock cycles, where each
clock is 1.085us in duration. Therefore, we have 18370 x 1.085 ps =
19.93145 ms as the width of the pulse.

AT M E

College of Engineering

 The following program generates a square wave on pin P1.5 continuously using Timer
1 for a time delay. Find the frequency of the square wave iIf XTAL =11.0592 MHz. In
your calculation do not include the overhead due to instructions in the loop.

MOV TMOL, #10H ;Timer 1, mode 1{(16-bit)
AGAIN: MOV TL1, #34H ;TL1 = 34H, Low byte

MCV TEl,#76H ;THL = 76H, High bvyte

; (7634H = timer value)

SETB TR1 ;start Timer 1
BACK: JNE TF1,BACK ;stay until timer rolls over

CLR TR1 ;stop Timer 1

CPL P1.5 ;comp. P1.5 to get hi, lo

CLR TF1 ;clear Timer 1 flag

SIJMP AGAIN ;reload timer since Mode 1

;is not auto-reload

Solution:

1.

atine) College of Engineering

In the above program notice the target of SIMP. In mode 1, the program
must reload the TH, TL register every time iIf we want to have a
continuous wave.

Now the calculation. Since FFFFH — 7634H = 89CBH + 1 = 89CCH
and 89CCH = 35276 clock count. 35276 x 1.085 ps = 38.274 ms for
half of the square wave.

The entire square wave length Is 38.274 x 2 = 76.548 ms and has a
frequency = 13.064 Hz.

2tme) College of Engineering

Assume that XTAL = 11.0592 MHz. What value do we need to load into
the timer’s registers If we want to have a time delay of 5 ms (milliseconds)?
Show the program for Timer O to create a pulse width of 5 ms on P2.3.

Solution:

1. Since XTAL = 11.0592 MHz, the counter counts up every 1.085 us.

2. This means that out of many 1.085 us intervals we must make a 5 ms
pulse.

3. To get that, we divide one by the other. We need 5 ms /1 .085 us = 4608
clocks.

4. To achieve that we need to load into TL and TH the value 65536 — 4608 =
60928 = EEOOH. Therefore, we have TH = EE and tt = 00

ATME

atine] College of Engineering

CLR P2.3 jclear P2.3

MOV TMOD, 401 ;Timer 0, mode 1 (16-bit mode)
HERE: MOV TLO,#0 i'TLO = 0, Low byte

MOV THO,#OEEH ;THO = EE(hex), High byte

SETB P2.3 ;SET P2.3 high

SETB TRO rstart Timer 0
AGAIN: JNB TFQ,AGAIN ;monitor Timer 0 flag

suntil 1t rolls over
CLR P2.3 ;clear P2.3
CLR TR0 ;8top Timer 0

CLR TFO iclear Timer 0 flag

atine) College of Engineering

Assuming that XTAL = 11.0592 MHz, write a program to generate a square
wave of 2 kHz frequency on pin P1 .5.

Solution:

Look at the following steps.

1. T=1/f=1/2kHz =500 pus the period of the square wave.
2. 1/2 of it for the high and low portions of the pulse iIs 250 ps.

3. 250 us / 1.085 us = 230 and 65536 — 230 = 65306. which In hex is
FF1AH.

4. TL =1AH and TH = FFH. all in hex.

ATME

atine] College of Engineering

MOV TMOD, #10H ;Timer 1, mode 1(16-bit)
AGAIN: MOV TL1,%#1AH ;TL1=1AH, Low byte
MOV TH1, #0FFH ;TH1=FFH, High byte
SETE TR1 ;start Timer 1
BACK: JNB TF1,BACK ;stay until timer rolls over
CLR TRl ;stop Timer 1
CPL P1.5 ;complement P1.5 to get hi, lo
CLR TF1 ;clear Timer 1 flag
SJMF AGAIN ;reload timer since mode 1

:18 not auto-reload

atine) College of Engineering

Assuming XTAL = 11.0592 MHz, write a program to generate a square
wave of 50 Hz frequency on pin P2.3.

Solution:

ook at the following steps.

1. T—1/50 Hz = 20 ms, the period of the square wave.

2. 1/2 of it for the high and low portions of the pulse = 10 ms

3. 10 ms/ 1.085 us = 9216 and 65536 — 9216 = 56320 in decimal, and In
hex 1t 1s DCOOH.

4. TL=00and TH = DC (hex)

2tme) College of Engineering

“Assuming XTAL = 11.0592 MHz, write a
program to generate a square wave of 5kHz
frequency on pin P2.3.

1. Solve steps
2. Write the program

[JA T M E

atime] College of Engineering

The program follows.

MOV TMOD, #10H ;Timer 1, mode 1 (lé6-bit)
AGAIN: MOV TL1,#00 ;TL1 = 00, Low byte
MOV TH1, #CDCH iTH1 = DCH, High byte
SETBE TR1 ;start Timer 1
BACK: JNB TF1,BACK ;stay until timer rolls over
CLR TR1 ;stop Timer 1
CPL P2.3 ;comp. P2.3 to get hi, lo
CLR TFl ;clear Timer 1 flag
SIJMP AGAIN ;reload timer since mode 1

;18 not auto-reload

e ormaneenne VIODE 2 programming

o

XTAL |[—] +12 _}— TL TF ;;:;;’"OW
oscillator I |
CT=0 1% TH when FF =0

Steps to program in mode 2

To generate a time delay using the timer’s mode 2, take the following steps.

1.Load the TMOD value register indicating which timer (Timer O or Timer 1) Is to be
used, and select the timer mode (mode 2).

2. Load the TH registers with the initial count value.

3. Start the timer.

4. Keep monitoring the timer flag (TF) with the “JNB TFX, target” instruction to see
whether it is raised. Get out of the loop when TF goes high.

5. Clear the TF flag.

6. Go back to Step 4, since mode 2 Is auto-reload.

AT M E

o] College of Engineering

Assuming that XTAL = 11.0592 MHz. find (a) the frequency of the square
wave generated on pin P 1.0 in the following program, and (b) the smallest
frequency achievable in this program, and the TH value to do that.

MOV TMOD, #20H ;Tl/mode 2/8-bit/auto-reload
MOV TH1, #S ;TH1L = S
SETB TR1 ;start Timer 1

BACK: JNB TF1,BACK ;stay until timer rolls over
CPLL Pl1l.0O ;comp. P1.0 to get hi, lo
CLR TF!} ;clear Timer 1 flag

SJMP BACK ;mode 2 1s auto-reload

atine) College of Engineering

Solution:

First notice the target address of SIMP. In mode 2 we do not need to reload
TH since It Is auto-reload.

Now (256 — 05) x 1.085 us = 251 x 1.085 us = 272.33 ps Is the high portion
of the pulse.

Since It 1s a 50% duty cycle square wave, the period T Is twice that; as a
result T =2 x 272.33 us = 544.67 us and the frequency = 1.83597 kHz.

1.To get the smallest frequency, we need the largest T and that is achieved
when TH = 00.

2.In that case, we have T = 2 x 256 x 1.085 us = 555.52 us and the
frequency = 1.8kHz.

[JA T M E

atime] College of Engineering

Oepartment of EEE
w Emetng Eite Erergy

Find the frequency of a square wave generated on pin P1.0.

Solution:
MOV TMOD, #2H ;Timer 0, mode 2
; (8-bit, auto-reload)
MOV THC, #0 ;THO=0
AGAIN: MOV RS, #250 ;jcount for multiple delay
ACALL DELAY
CPL P1.0 ;toggle P1.0
SIJMP AGAIN ;Yepeat
DELAY : SETB TRO ;start Timer 0
BACK: JNB TFO,BACK ;stay until timer rolls over
CLR TRO ;8top Timer 0
CLR TFO ;iclear TF for next round
DJIJNZ RS5,DELAY
RET

T=2(250 x 256 x 1.085 ps)= 138.88 ms, and frequency = 72 Hz.

A 1T M E

College of Engineering

Assuming that we are programming the timers for mode 2, find the value
(in hex) loaded into TH for each of the following cases

(a) MOV TH1, #-200 (b) MOV THO, #-60
(¢) MOV TH1, #-3 (d) MoV TH1,#-12
(e) MOV THO, #-48
Solution:
Decimal 2’s complement (TH value)
-200 38H
-60 C4H
-3 FDH
-12 F4H

-48 DOH

atine) College of Engineering

Counter programming

C/T bit in TMOD register

1. Recall from the last section that the C/T bit in the TMOD register
decides the source of the clock for the timer.

If C/T =0, the timer gets pulses from the crystal.

2.1n contrast, when C/T = 1, the timer Is used as a counter and gets Its
pulses from outside the 8051.

Therefore, when C/T = 1, the counter counts up as pulses are fed
from pins 14 and 15.

[JA T M E

é tlm College of Engineering

Pin Port Pin Function Description

14 P34 T0 Timer/ C ounter 0 external input
15 P3.5 Tl Tnmer/CounterLgxtﬁal input
(MSB) (LSB)

GATE | C/T M1 MO | GATE | COT Ml MO
Timer | Timer 0

—_— S —

[JA T M E

é tlm College of Engineering

0 0 MODEO 13BIT TH TL
01 MODE1 16BIT THTL
1 0 MODE2 8BITAR THO=-60
1 1 MODE 3 8 BIT THO

| (e 9T | M1 MO
0 0 0 0 0 1 1 0

atine) College of Engineering

Assuming that clock pulses are fed into pin T1, write

a program for counter 1 In mode 2 to count the
pulses and display the state of the TL1 count on P2.

[JA T M E

atime] College of Engineering

Oepartment of EEE
Emetng Eite Erergy

MOV TMOD, #01100000B ;counter 1, mode 2,C/T=1
;external pulses
MOV TH1, %0 , ;clear TH1
SETB P3.5 ;make Tl input
AGAIN: SETE TR1 ;start the counter
BACK: MOV A,TL1 ;get copy of count TL1
MOV P2,A ;display it on port 2
JNB TF1,BACK ;keep doing it if TF=0
CLR TRl ;8top the counter 1
CLR TF1 ;make TF=0
SJMP AGAIN ;keep doing it

Notice in the above program the role of the instruction “SETB P3.5". Since
ports are set.up for output when the 8051 is powered up, we make P3.5 an input port by
making it high. In other words, we must configure (set high) the T1 pin (pin P3.5) to
allow pulses to be fed into it.

8051
N

o
LEDs

P2 is connected to 8 LEDs P2
and input T1 to pulse.

P3.5
TI A

[TITTTTI

atme) College of Engineering

Assume that a 1-Hz frequency pulse is connected to Input pin
3.4.

Write a program to display counter 0 on an LCD. Set the Initial
value of THO to -60

Solution:

To display the TL count on an LCD, we must convert 8-bit binary
data to ASCI|I

AGAIN:
BACK:

MOV
MOV
SETB
SETB
MOV
ACALL
ACALL

CLR
CLR
SIMP

TMOD, #00000110B ;: counter 0,mode 2,C/T=1

TEO,#-60 ;ocounting 60 pulses
P3.4 ;make TO as input

TRO ;starts the counter
A,TLO ;get copy of count TLO
CONV ;convert in R2, R32, R4
DISPLAY ;display on LCD

TFC, BACK ;1oop if TF0=0

TRC ;stop the counter 0
TFO ;make TFO=0

AGAIN i kKeep doing it

P2.0

- ..

P2.2

College of Engineering
MOV B, %10
DIV AB
MOV R2,B
MOV B,#10
DIV AB
ORL A, #30H
MOV R4,A
MOV A,B
CRL A,%30H
MOV R3,A
MOV A,R2
ORL A,%30H
MOV R2,A
RET '

;divide by 10

; Save

low digit

;divide by 10 once more

;make
; save

;make
; 8ave

;make
; Save

it ASCII
MSD

2nd digit an ASCII
it

3rd digit an ASCII
the ASCII

8051

| Hz clock

TO

P34

Pl

[TITTTT

o
LCD

ATM E

College of Engineering

JLI overflow flag JLI overflow flag
Timer 0 —F) [Timer 1| ——) ‘
external TLO TFO external [_‘ T?Iij-— TF]
input input
pin 3.4 TRO [~ reload pin 3.5 TRI eliid
THO THI
CT=1 TFO goes high CT=1 TF1 goes high
when FF =0 when FF =0

AT M E

=] College of Engineering

quwalent Instructions for the Timer Control Reg|ster
(TCO N) For Timer 0

SETB TR0 = SETB TCON.4
CLR TR0 = CLR TCON.4
SETB TFO = SETB TCON.S
CLR TF0 = CLR TCON.5
__F_orTimer I_
SETB TRI = SETB TCON.6
CLR TRl = CLR TCON.6
SETB TFI = SETB TCON.7
CLR TFl = CLR TCON.7

TCON: Timer/Counter Control Register

TEI | TRI T TF0] TRO J IEI ITT | 1E0 |

ATM E

mm College of Engineering

TCON register

The case of GATE=11n TMOD

XTAL | ol s
OSCILLATOR I om0

I CiT =1
TO IN
Pin 3.2)
Timer/Counter 0
TRO R,
1
Gate {>= _D__

IN_T-O Pin
Pin 3.2

2tme) College of Engineering

1. All discussion so far has assumed that GATE = 0. When GATE = 0, the
timer 1s started with instructions “SETB TRO” and “SETB TR1”, for

Timers 0 and 1, respectively.

2.\What happens If the GATE bit in TMOD is set to 1.i1f GATE = 1, the start
and stop of the timer are done externally through pins P3.2 and P3.3 for
Timers 0 and 1, respectively.

DIATME

dtm(‘ College of Engineering

Cepartment of EEE
Emetng Ebte Erergy

XTAL | o
OSCILLATOR 2 | CF=0

CM=1
TIN
Pin 3.5
TR1
A
Gate —‘-D'-—D_

ITW-T-i Pin
Pin33

Timer/Counter 1

atine) College of Engineering

Programming timers O and 1 In 8051 C

Accessing timer registers in C

In 8051 C we can access the timer registers TH, TL, and TMOD directly
using the reg51 .h header file.

Example 1-56

Write a 8051 C program to toggle all the bits of port P1 continuously
with some delay In between. Use Timer 0, 16-bit mode to generate the

delay.

AT M E

§ College of Engineering

/\A

Oepartment of EEE
Emetng Eite Erergy

FFFFH - 3500H = CAFFH = 51967 + | = 51968

51968 x 1.085 ps = 56.384 ms is the approximate delay.

8051

PO LEDs

I_‘A T #include <regS1.h>

%l void TODelay{veoid) ;

atmel College of 1void main{veid)

e {

while (1)

{

P1=0x55%;
TODelay () ;
P1l=0xAA;
TODelay () ;

}

}

void TODelay ()
{

TMOD=0x01;
TLO=0x00;
THO=0x35;
TRO=1;
while (TF0==0) ;
TRO=0;
TFO0=0;

//repeat forever

//toggle all bits of Pl
//delay size unknown
//toggle all bits of Pl

//Timer O, Mode 1

//load TLO

//load THO

//turn on TO

//wait for TFO0 to roll over
//turn off TO

//clear TFO

atine) College of Engineering

Write an 8051 C program to toggle only bit P1.5 continuously
every 50 ms.

Use Timer 0, mode 1 (16-bit) to create the delay.
Test the program (a) on the AT89C51 and (b) on the DS89C420.

Solution:

#include <reg5l1.h>
‘void TOM1Delay (void) ;
sbhit mybit=P175;
void main{veid)

{

while(l)
{
mybit=-mybit; //toggle P1.5
TOM1Delay() ; //Timer 0, mode 1{16-bit)
}

}
(a) Tested for AT89CS51, XTAL=11.0592 MHz, using the Proview32 compiler

void TOMlDelay (void)

{
TMOD=0x01; //Timer 0, mode 1(16-bit)
TLO=0xFD; //load TLO
THO=0x4B; //1oad THO
TRO=1; //turn on TO
while (TF0==0) ; //wait for TF0 to roll over
TRO=0; //turn off TO

TFO=0; //cleaxr TFO

[JA T M E

atime] College of Engineering

cq tmert am

(b) Tested tor DS89C420. XTAL=11.0592 MHz, using the Proview32 compiler

void TOMlDelay (void)

{

TMOD=0x01; //Timer 0, mode l1{16-bit}
TLO=0xFD; //load TLO

THO=0x4B; //load THO

TRO=1; //turn on TO

while (TF0==0) ; //wait for TFO0 to roll over
TRO=0; //curn off TO

TF0=0; //clear TFO

}

FFFFH - 4BFDH = B402H = 46082 + 1 = 46083

Timer delay = 46083 x 1.085 ps = 50 ms

AT M E

— College of Engineering

Programs Continued

2tme) College of Engineering

Write an 8051 C program to toggle only bit P1.5 continuously every
50 ms. Use Timer 0, mode 1 (16-bit) to create the delay.

Test the program
(a) on the AT89C51 and
(b) on the DS89C420.

Solution:

[JA T M E

atime] College of Engineering

#include <reg5l1l.h>
void TOM1Delay (void) ;
sbit mybit=P175;
void main{veid)

{

while(1l)
{
mybit=-mybit; //toggle Pl1.S
TOM1Delay() ; //Timer ¢, mode 1{16-bit)
}
}

[JA T M E

atime] College of Engineering

{(a) Tested for AT89CS51, XTAL=11.0592 MHz, using the Proview32 compiler

void TOMlDelay (void)

{
TMOD=0x01; //Timer 0, mode 1(1é6-bit)
TLO=0xFD; //load TLO
THU=0x4E; //1ocad THO
TRO=1; //turn on TO
while (TF0==0) ; //wait for TF0 to roll over
TRO=0; //turn off TO
TFO=0; //cleaxr TFO

[JA T M E

atime] College of Engineering

cq tmert am

(b) Tested tor DS89C420. XTAL=11.0592 MHz, using the Proview32 compiler

void TOMlDelay (veid)

{

TMOD=0x01; //Timer 0, mode 1{(l16-bit)
TLO=CxFD; //load TLO

THO=0x4B; //load THO

TRO=1; //turn on TO

while (TF0==0) ; //wait for TFO to roll over
TRO=0; //ecurn off TO

TF0=0; //clear TFO

}

FFFFH - 4BFDH = B402H = 46082 + 1 = 46083

Timer delay = 46083 x 1.085 pus = 50 ms

A 1T M E

o] College of Engineering

Write an 8051 C program to toggle all bits of P2 continuously every 500
ms. Use Timer 1. mode 1 to create the delay.

Solution:

ASFEH = 42494 n decimal
65536 — 42494 = 23042

23042 x 1.085 ps = 25 ms and 20 X 25 ms = 500 ms

[JA T M E

atime] College of Engineering

/ftested for DS89C420, XTAL = 11.0592 MHz, using the Proview32 compiler

#include <regSl.h>
void T1M1Delay (void) ;
void main(void)
{
unsigned char X;
P2=0x55;
while (1)

{

P2=~P2; //toggle all bits of P2
fOor(X=0;%<20;x++)
TiMlDelay () ;

[JA T M E

atime] College of Engineering

void T1IM1Delay(void)

{
TMCD=0x10; //Timer 1, mode 1(16-bit)
TL1=0xFE; //1load TL1
TH1=0xAS5; //load TH1
TR1=1; //turn on Tl
while (TF1==0) ; //wait for TF1 to roll over
TR1=0; //turn off T1
TF1=0; //clear TF1
}

ASFEH = 42494 in decimal
65536 — 42494 = 23042

23042 x 1.085 pus = 25 ms and 20 X 25 ms = 500 ms

4 rr -} A ' |
£ \«4 Il JIAY"- ;: II} ;.
L A I 1LV] A

4 College of Engineering

A switch is connected to pin P1.7.

Write an 8051 C program to monitor SW and create the following
frequencies on pin P1.5:

SW=0: 500 Hz
SW=1: 750 Hz
Use Timer 0, mode 1 for both of them.

Solution: FC67H = 64615
65536 — 64615 =921
921 x 1.085 ps = 999.285 us
I /(999.285 ps x 2) = 500 Hz

[JA T M E

atime] College of Engineering

cq tmert um

/tested for AT89CS51/52, XTAL = 11.0592 MHz, using the Proview32 compiler
ffinclude <regSl.h>

sbit mybit=P175;

shbit SW=P1"7;

void TOM1Delay(unsiged char);

void main{void)

{

SW=1; //make P1.7 an input
while(1l)
{
mybit=-mybit; //toggle P1.5
if (SW==0) //check switch
TOM1lDelay(0) ;
else

TOMlDelay (1) ;

atme

AT M E

College of Engineering

void TOM1Delay(unsigned char c)

{

TMOD=0x01;
if (c==0)
{
TLO=0x67;
THO=0XFC;

TLO=0xSA;
THO=0XFD;
}
TRO=1;
while (TFC==0) ;
TRO=0;
TFC=0;

//FC67

/ /FDSA

2tme) College of Engineering

C Programming of timers 0 and 1 as
counters

A timer can be used as a counter if we provide pulses from outside the

chip instead of using the frequency of the crystal oscillator as the clock
source.

By feeding pulses to the TO (P3.4) and Tl (P3.5) pins, we turn Timer O
and Timer 1 into counter 0 and counter 1, respectively

Assume that a 1-Hz external clock is being fed into pin TO (P3.4). Write a
C program for counter O in mode -1 (16-bit) to count the pulses and display

the THO and TLO registers on P2 and P1, respectively.

Solution:

8051

| Hz clock

TO

Pl

P3.4

HHEETT

Pl and
P2 1o
LEDs

[JA T M E

atie] College of Engineering

{

TO=1;

' TMOD=0x05;

TLO=0;
THO=0;

while (1)

{

do
{
TRO=1;
P1=TLO;
P2=THO;
!
while (TF0==0) ;
TRO=0;
TF0=0;

}

//make TO an input

//
//set count to 0

//set count to 0

//repeat forever

//start timer
//place value on pins
[/

//wait here
//stop timer

AT M E
atine] College of Engineering
Assume that a 60-Hz external clock 1S being fed Into pin TO (P3.4). Write a C

program for counter O in mode 2 (8-bit auto-reload) to display the seconds and
minutes on Pl and P2, respectively.

Solution:

8051
P
Pll— Pl and
LS P2 10
r_l r_l P34 P2 P LEDs
60 Hz clock TO R

By using 60 Hz, we can generate seconds. minutes, hours.

[JA T M E

atime] College of Engineering

Oepartment of EEE
Emetng Ebte Erergy

#include <regS51l.h>

void ToTime (unsigned char);

voﬁd main ()}
unsigned char val;
TO=1;
TMOD=0x06€ ; //TO0, mode 2, counter
THO=-60; //sec = 60 pulses
while (1)

{
do

{

TRO=1;
sec=TLO;

} ToTime (val) ;
while (TF0==0) H
TRO=0;

TFO=0;

}

[JA T M E

. = A . Department of ¢
atime] College of Engineering e .L

void ToTime (unsigned char val)
{
unsigned char sec, min;
min = value / 60;
sec = value % 60;
Pl = sec;
P2 min;

L]

atme

AT M E

College of Engineering

Thank You

	Slide 1: BEE403:MICROCONTROLLERS
	Slide 2: Syllabus
	Slide 3: CO5: Evaluate software delays, timer delays and timer programming using both Assembly and C language. [L5, MODULE 3]
	Slide 4: 3.1 Data types in 8051C
	Slide 5
	Slide 6: C data types for the 8051
	Slide 7
	Slide 8
	Slide 9: Example 1-1
	Slide 10: Example 1-2
	Slide 11
	Slide 12: 2. Signed char
	Slide 13: Example 1-4
	Slide 14: 3. Unsigned int
	Slide 15
	Slide 16: 4. Signed int
	Slide 17: 5. Sbit (single bit)
	Slide 18: Example 1-5
	Slide 19
	Slide 20: Some Widely Used Data Types for 8051 C
	Slide 21: Time delay in C
	Slide 22: Time delay in C
	Slide 23: In creating a time delay using a for loop, we must be mindful of three factors that can affect the accuracy of the delay.
	Slide 24
	Slide 25
	Slide 26: #include <reg51.h>
	Slide 27
	Slide 28
	Slide 29
	Slide 30: 3.2 IO programming in 8051C
	Slide 31
	Slide 32: Write an 8051 C program to get a byte of data from PI, wait 1/2 second, and then send it to P2. Solution:
	Slide 33
	Slide 34: Write an 8051 C program to get a byte of data from PO. If it is less than 100, send it to P1; otherwise, send it to P2. Solution:
	Slide 35
	Slide 36: Logic operations in 8051 C
	Slide 37: Table : Bit-wise Logic Operators for C
	Slide 38: Run the following program on your simulator and examine the results
	Slide 39
	Slide 40
	Slide 41: Bit-wise shift operation in C
	Slide 42: Write an 8051 C program to toggle all the bits of PO, P1, and P2 continuously with a 250 ms delay. Use the Ex-OR operator. Solution:
	Slide 43
	Slide 44: Write an 8051 C program to get bit Pl.0 and send it to P2.7 after inverting it.
	Slide 45: Write an 8051 C program to read the P1.0 and P1.1 bits and issue an ASCII character to P0 according to the following table.
	Slide 46
	Slide 47: Data conversion program in 8051 C
	Slide 48: Data conversion program in 8051 C ASCII Code for Digits 0 – 9
	Slide 49: Packed BCD to ASCII conversion
	Slide 50
	Slide 51
	Slide 52
	Slide 53: Checksum byte in ROM
	Slide 54
	Slide 55
	Slide 56: Write an 8051 C program to calculate the checksum byte for the data given
	Slide 57: Binary (hex) to decimal and ASCII conversion in 8051 C
	Slide 58
	Slide 59: Accessing code ROM space in 8051C
	Slide 60: There are two problems with using this code space for data.
	Slide 61: Compile and single-step the following program on your 8051 simulator. Examine the contents of the 128-byte RAM space to locate the ASCII values.
	Slide 62: Compare and contrast the following programs and discuss the advantages and disadvantages of each one.
	Slide 63
	Slide 64
	Slide 65: Data serialization using 8051C
	Slide 66: Write a C program to send out the value 44H serially one bit at a time via Pl.0. The LSB should go out first
	Slide 67
	Slide 68: Write a C program to send out the value 44H serially one bit at a time via Pl.O. The MSB should go out first.
	Slide 69
	Slide 70: Write a C program to bring in a byte of data serially one bit at a time via P1 .0. The LSB should come in first.
	Slide 71
	Slide 72: Programming 8051 timers
	Slide 73: Timer 0 registers
	Slide 74: Timer 1 registers
	Slide 75: TMOD (timer mode) register
	Slide 76
	Slide 77: Example 1-37
	Slide 78
	Slide 79: Mode 1 programming
	Slide 80
	Slide 81: Steps to program in mode 1
	Slide 82
	Slide 83
	Slide 84
	Slide 85
	Slide 86: Programs
	Slide 87: Calculate the amount of time delay in the DELAY subroutine generated by the timer. Assume that XTAL = 11.0592 MHz.
	Slide 88
	Slide 89: Find the delay generated by Timer 0 in the following code, using both of the methods. Do not include the overhead due to instructions.
	Slide 90
	Slide 91
	Slide 92
	Slide 93
	Slide 94
	Slide 95
	Slide 96
	Slide 97
	Slide 98
	Slide 99
	Slide 100: Mode 2 programming
	Slide 101: Assuming that XTAL = 11.0592 MHz. find (a) the frequency of the square wave generated on pin P 1.0 in the following program, and (b) the smallest frequency achievable in this program, and the TH value to do that.
	Slide 102
	Slide 103
	Slide 104: Assuming that we are programming the timers for mode 2, find the value (in hex) loaded into TH for each of the following cases
	Slide 105: Counter programming
	Slide 106
	Slide 107
	Slide 108: Assuming that clock pulses are fed into pin Tl, write a program for counter 1 in mode 2 to count the pulses and display the state of the TL1 count on P2.
	Slide 109
	Slide 110
	Slide 111
	Slide 112
	Slide 113
	Slide 114: Equivalent Instructions for the Timer Control Register (TCON)
	Slide 115: TCON register The case of GATE = 1 in TMOD
	Slide 116
	Slide 117
	Slide 118: Programming timers 0 and 1 in 8051 C
	Slide 119
	Slide 120
	Slide 121: Write an 8051 C program to toggle only bit P1.5 continuously every 50 ms. Use Timer 0, mode 1 (16-bit) to create the delay.
	Slide 122
	Slide 123
	Slide 124: Programs Continued
	Slide 125
	Slide 126
	Slide 127
	Slide 128
	Slide 129: Write an 8051 C program to toggle all bits of P2 continuously every 500 ms. Use Timer 1. mode 1 to create the delay.
	Slide 130
	Slide 131
	Slide 132: A switch is connected to pin P1.7.
	Slide 133
	Slide 134
	Slide 135: C Programming of timers 0 and 1 as counters
	Slide 136: Assume that a 1-Hz external clock is being fed into pin TO (P3.4). Write a C program for counter 0 in mode -1 (16-bit) to count the pulses and display the THO and TLO registers on P2 and P1, respectively.
	Slide 137
	Slide 138: Assume that a 60-Hz external clock is being fed into pin TO (P3.4). Write a C program for counter 0 in mode 2 (8-bit auto-reload) to display the seconds and minutes on PI and P2, respectively.
	Slide 139
	Slide 140
	Slide 141: Thank You

