
BEE403:MICROCONTROLLER

S

u

MODULE – 4:

8051 Serial Communication_ 8051 Interrupt programming in assembly and C

OUTLINE

• 4.1 Basics of serial communication

• 4.2 8051 connection to RS242

• 4.3 8051 serial port programming in

assembly

• 4.4 Serial port programming in 8051 C

OUTLINE
• 8051 Interrupt programming in assembly and C:

• 4.5 8051 interrupts

• 4.6 Programming timer

• 4.7 External hardware

• 4.8serial communication interrupt

• 4.9 Interrupt priority in 8051/52

• 4.10 Interrupt programming in C

4.1

4.1 Basics of serial communication

• When a microprocessor communicates with the outside world, it
provides the data in byte-sized chunks.

• In some cases, such as printers, the information is simply grabbed
from the 8-bit data bus and presented to the 8-bit data bus of the
printer.

4.1 Basics of serial communication

• This can work only if the cable is not too long, since long cables
diminish and even distort signals.

• Furthermore, an 8-bit data path is expensive. For these reasons, serial
communication is used for transferring data between two systems
located at distances of hundreds of feet to millions of miles apart.

4.1 Basics of serial communication

• For serial data communication to work, the byte of data must be
converted to serial bits using a parallel-in-serial-out shift register;
then it can be transmitted over a single data line.

• This also means that at the receiving end there must be a serial-in-
parallel-out shift register to receive the serial data and pack them
into a byte.

4.1 Basics of serial communication
• Serial data communication uses two methods, asynchronous and

synchronous.

• The synchronous method transfers a block of data (characters) at a time,
while the asynchronous method transfers a single byte at a time

4.1 Basics of serial communication

• It is possible to write software to use either of these methods, but the
programs can be tedious and long.

• For this reason, there are special 1C chips made by many manufacturers
for serial data communications.

• These chips are commonly referred to as UART (universal
asynchronous receiver-transmitter) and USART (universal
synchronous-asynchronous receiver-transmitter).

Serial versus Parallel Data Transfer

Simplex, Half-, and Full-Duplex Transfers

a) Half- and full-duplex transmission

• In data transmission if the data can be transmitted and received, it is a
duplex transmission. This is in contrast to simplex transmissions
such as with printers, in which the computer only sends data.

• Duplex transmissions can be half or full duplex, depending on whether
or not the data transfer can be simultaneous. If data is transmitted one
way at a time, it is referred to as half duplex.

• If the data can go both ways at the same time, it is full duplex

b)Asynchronous serial communication and
data framing
• 1. The data coming in at the receiving end of the data line in a serial

data transfer is all 0s and 1s;

• 2. It is difficult to make sense of the data unless the sender and
receiver agree on a set of rules, a protocol, on how the data is packed,
how many bits constitute a character, and when the data begins and
ends.

Start and stop bits
• 1. Asynchronous serial data communication is widely used for

character-oriented transmissions, while block-oriented data transfers
use the synchronous method.

• 2. In the asynchronous method, each character is placed between start
and stop bits.

• In data framing for asynchronous communications, the data, such as
ASCII characters, are packed between a start bit and a stop bit.

• 3. The start bit is always one bit, but the stop bit can be one or two bits.
The start bit is always a 0 (low) and the stop bit(s) is 1 (high).

Framing ASCII “A” (41H)

The rate of data transfer in serial data communication is stated in

bps (bits per second). Another widely used terminology for bps is

baud rate

4.1.1 RS232 standards

• 1. To allow compatibility among data communication equipment made
by various manufacturers, an interfacing standard called RS232 was
set by the Electronics Industries Association (EIA) in 1960. In 1963 it
was modified and called RS232A.

• 2. RS232B and RS232C were issued in 1965 and 1969, respectively.
In this book we refer to it simply as RS232.

• Today, RS232 is the most widely used serial I/O interfacing standard.
This standard is used in PCs and numerous types of equipment.

• However, since the standard was set long before the advent of the TTL
logic family, its input and output voltage levels are not TTL compatible.
In RS232, a 1 is represented by -3 to -25 V, while a 0 bit is +3 to +25 V,
making -3 to +3 undefined.

RS232 pins

RS232

DB-9 Pin connection

Step 1: DTR (data terminal ready). When a terminal

(or a PC COM port) is turned on, after going through a

self-test, it sends out signal DTR to indicate that it is

ready for communication.

If there is something wrong with the COM port, this

signal will not be activated.

This is an active-low signal and can be used to inform

the •modem that the computer is alive and kicking.

This is an output pin from DTE (PC COM port) and an

input to the modem.

Step 2: DSR (data set ready). When DCE (modem) is turned on and has gone through

the self-test, it asserts DSR to indicate that it is ready to communicate. Thus, it is an

output from the modem (DCE) and input to the PC (DTE).

This is an active- low signal. If for any reason the modem cannot make a connection to

the telephone, this signal remains inactive, indicating to the PC (or terminal) that it

cannot accept or send data.

Step 3: RTS (request to send). When the DTE device (such as a PC) has a byte to

transmit, it asserts RTS to signal the modem that it has a byte of data to transmit. RTS is

an active-low output from the DTE and an input to the modem.

Step 4:

CTS (clear to send). In response to RTS, when the modem has room for storing the data

it is to receive, it sends out signal CTS to the DTE (PC) to indicate that it can receive the

data now. This input signal to the DTE is used by the DTE to start transmission.

Step 5:

DCD (carrier detect, or DCD, data carrier detect). The modem asserts signal DCD to

inform the DTE (PC) that a valid carrier has been detected and that contact between it

and the other modem is established. Therefore, DCD is an output from the modern and

an input to the PC (DTE).
Step 6:

RI (ring indicator). An output from the modem (DCE) and an input to a PC (DTE)

indicates that the telephone is ringing. It goes on and off in synchronization with the

ringing sound.

8051 connection to RS232
• a) RxD and TxD pins in the 8051

• 1. The 8051 has two pins that are used specifically for transferring and
receiving data serially.

• 2. These two pins are called TxD and RxD and are part of the port 3
group (P3.0 and P3.1).

• Pin 11 of the 8051 (P3.1) is assigned to TxD and pin 10 (P3.0) is
designated as RxD.

• These pins are TTL compatible; therefore, they require a line driver to
make them RS232 compatible. One such line driver is the MAX232
chip.

MAX232

• Since the RS232 is not compatible with today’s microprocessors and
microcontrollers, we need a line driver (voltage converter) to convert
the RS232′s signals to TTL voltage levels that will be acceptable to the
8051 ‘s TxD and RxD pins.

MAX232

• One example of such a converter is MAX232 from Maxim Corp.
(www.maxim-ic.com).

• The MAX232 converts from RS232 voltage levels to TTL voltage levels,
and vice versa.

• One advantage of the MAX232 chip is that it uses a +5 V power source
which, is the same as the source voltage for the 8051.

(a) Inside MAX232 and (b) its Connection to the 8051 (Null Modem)

4.3 8051 serial port programming in assembly
• Baud rate in the 8051

• 8051 divides the crystal frequency by 12 to get the machine cycle
frequency.

• In the case of XTAL = 11.0592 MHz, the machine cycle frequency is
921.6 kHz (11.0592 MHz / 12 = 921.6 kHz).

• The 8051 serial communication UART circuitry divides the machine
cycle frequency of 921.6 kHz by 32 once more before it is used by Timer
1 to set the baud rate.

• Therefore, 921.6 kHz divided by 32 gives 28,800 Hz.

With XTAL = 11.0592 MHz, find the TH1 value needed to have the following

baud rates.

(a) 9600 (b) 2400 (c) 1200

Solution:

With XTAL = 11.0592 MHz, we have:

The machine cycle frequency of the 8051 = 11.0592 MHz / 12 = 921.6 kHz, and 921.6

kHz / 32 = 28,800 Hz is the frequency provided by UART to Timer 1 to set baud rate.

4.3.1 SBUF register

• SBUF is an 8-bit register used solely for serial communication in the
8051. For a byte of data to be transferred via the TxD line, it must be
placed in the SBUF register. Similarly, SBUF holds the byte of data
when it is received by the 8051 ‘s RxD line.

SCON register

SCON register

• The SCON register is an 8-bit register used to program the start bit, stop
bit, and data bits of data framing, among other things

• a) SM0, SM1

• SM0 and SMI are D7 and D6 of the SCON register, respectively. These
two bits determine the framing of data by specifying the number of bits
per character, and the start and stop bits. They take the following
combinations.

• c) REN

• The REN (receive enable), bit is D4 of the SCON register. The REN bit is
also referred to as SCON.4 since SCON is a bit-addressable register.

• When the REN bit is high, it allows the 8051 to receive data on the
RxD pin of the 8051.

• As a result if we want the 8051 to both transfer and receive data, REN
must be set to 1.

• By making REN = 0, the receiver is disabled.

REN — 1 or REN = 0 can

be achieved by the instructions “SETB SCON. 4″ and “CLR SCON. 4″,

respectively

d) TBS

TBS (transfer bit 8) is bit D3 of SCON. It is used for serial modes 2
and 3. We make TBS = 0 since it is not used in our applications.

e) RB8

RB8 (receive bit 8) is bit D2 of the SCON register. In serial

mode 1, this bit gets a copy of the stop bit when an 8-bit data is

received. This bit (as is the case for TBS) is rarely used

anymore

• f) TI

• TI (transmit interrupt) is bit Dl of the SCON register. This is an
extremely important flag bit in the SCON register.

• When the 8051 finishes the transfer of the 8-bit character, it raises the TI
flag to indicate that it is ready to transfer another byte.

• The TI bit is raised at the beginning of the stop bit

• g) RI

• RI (receive interrupt) is the D0 bit of the SCON register. This is
another extremely important flag bit in the SCON register.

• When the 8051 receives data serially via RxD, it gets rid of the start and
stop bits and places the byte in the SBUF register.

• Then it raises the RI flag bit to indicate that a byte has been received

and should be picked up before it is lost.

4.3.3 Programming the 8051 to transfer
data serially

• In programming the 8051 to transfer character bytes serially, the
following steps must be taken.

1.The TMOD register is loaded with the value 20H, indicating the use
of Timer 1 in mode 2 (8-bit auto-reload) to set the baud rate.

2.The TH1 is loaded with one of the values to set the baud rate for
serial data transfer (assuming XTAL = 11.0592 MHz).

3.The SCON register is loaded with the value 50H, indicating serial
mode 1, where an 8-bit data is framed with start and stop bits.

4.3.3 Programming the 8051 to transfer data
serially
1. TR1 is set to 1 to start Timer 1.

2. TI is cleared by the “CLR TI” instruction.

3.The character byte to be transferred serially is written into the SBUF
register.

4.The TI flag bit is monitored with the use of the instruction

JNB TI, xx to see if the character has been transferred completely.

5.To transfer the next character, Repeat

SMO SM1 REN TI RI

0 1 1 0 0

• STEP 1: START TIMER (TIMER 1)

• STEP 2: BACK: MOV SBUF,# ‘A’

SETB TR1

• STEP 3: HERE: JNB

• STEP 4:CLR TI

• STEP 5:SJMP BACK

TI, HERE

A=41H

0 1 0 0 0 0 0 1

Write a program to transfer the message “YES” serially at 9600 baud, 8-bit data,
1Start bit and 1 stop bit. Do this continuously.

Program the 8051 to receive bytes of data serially, and put
them in PI. Set the baud rate at 4800, 8-bit data, and 1 stop
bit.

8051 serial port programming in assembly

Importance of the Tl flag

• To understand the importance of the role of TI, look at the following
sequence of steps that the 8051 goes through in transmitting a
character via TxD.

1. The byte character to be transmitted is written into the SBUF register.

2. The start bit is transferred.

3. The 8-bit character is transferred one bit at a time.

4. The stop bit is transferred. It is during the transfer of the stop bit that
the 8051 raises the TI flag (TI =1), indicating that the last character
was transmitted and it is ready to transfer the next character.

5. By monitoring the TI flag, we make sure that we are not overloading
the SBUF register. If we write another byte into the SBUF register
before TI is raised, the un transmitted portion of the previous byte will
be lost. In other words, when the 8051 finishes

6. After SBUF is loaded with a new byte, the TI flag bit must be forced to
0 by the “CLR TI” instruction in order for this new byte to be
transferred.

Program the 8051 to receive bytes of data serially, and put them in P1. Set the baud
rate at 4800, 8-bit data, and 1 stop bit.

0 1 0 0 0 0 0 1

Importance of RI flag

• In receiving bits via its RxD pin, the 8051 goes through the following
steps.

• 1. It receives the start bit indicating that the next bit is the first bit of
the character byte it is about to receive.

• 2. The 8-bit character is received one bit at time. When the last bit is
received, a byte is formed and placed in SBUF.

• 3. The stop bit is received. When receiving the stop bit the 8051 makes RI

= 1, indicating that an entire character byte has been received and must be
picked up before it gets overwritten by an incoming character.

• 4. By checking the RI flag bit when it is raised, we know that a
character has been received and is sitting in the SBUF register. We copy
the SBUF contents to a safe place in some other register or memory
before it is lost.

• 5. After the SBUF contents are copied into a safe place, the RI flag bit
must be forced to 0 by the “CLR RI” instruction in order to allow the
next received character byte to be placed in SBUF. Failure to do this
causes loss of the received character.

Doubling the baud rate in the 8051

1 0 0 0 0 0 0 0

• To see how the baud rate is doubled with this method, we show the role of
the SMOD bit (D7 bit of the PCON register), which can be 0 or 1.

• Baud rates for SMOD = 0

• 1. When SMOD = 0, the 8051 divides 1/12 of the crystal frequency by 32
and uses that frequency for Timer 1 to set the baud rate. In the case of
XTAL = 11.0592 MHz we have:

• Machine cycle freq. = 11.0592 MHz / 12 = 921.6 kHz

• And 921.6 kHz / 32 = 28,800 Hz since SMOD = 0

• This is the frequency used by Timer 1 to set the baud rate. This has been
the basis of all the examples so far since it is the default when the 8051 is
powered up.

• Baud rates for SMOD = 1

• With the fixed crystal frequency, we can double the baud rate by making
SMOD – 1. When the SMOD bit (D7 of the PCON register) is set to 1,
1/12 of XTAL is divided by 16 (instead of 32) and that is the frequency
used by Timer 1 to set the baud rate. In the case of XTAL = 11.0592
MHz, we have:

• Machine cycle freq. = 11.0592 MHz / 12 = 921.6 kHz

• And 921.6 kHz / 16 = 57,600 Hz since SMOD = 1

• This is the frequency used by Timer 1 to set the baud rate

Baud Rate Comparison for SMOD = 0 and SMOD = 1

Assuming that XTAL = 11.0592 MHz for the following program, state
(a) what this program does, (b) compute the frequency used by Timer 1 to set the
baud rate, and (c) find the baud rate of the data transfer.

Solution

1. This program transfers ASCII letter B (01000010 binary) continuously.

2.With XTAL = 11.0592 MHz and SMOD = 1 in the above program, we
have:

11.0592 MHz / 12 = 921.6 kHz machine cycle frequency

921.6 kHz /16 = 57,600 Hz frequency used by Timer 1 to set the baud rate

57,600 Hz / 3 = 19,200 baud rate

Find the TH1 value (in both decimal and hex) to set the baud rate to
each of the following. (a) 9600 (b) 4800 if SMOD = 1 Assume that
XTAL– 11.0592 MHz.

• With XTAL = 11.0592 MHz and SMOD = 1, we have Tinier 1
frequency = 57,600 Hz.

• 57,600 / 9600 = 6; therefore, TH1 = -6 or TH1 = FAH.

• 57,600 / 4800 = 12; therefore, TH1 = -12 or TH1 = F4H.

Serial port programming in 8051 C

Header File

Main Function

TI==1;

TI=0;

C Programs continued

#include<reg51.h>

Void SerTx(Unsigned char);

Void Main()

{

TMOD=0X20;

TH1=0XFD;

SCON=0X50;

TR1=1;

While(1)

{

SerTx(‘Y’);

SerTx(‘E’);

SerTx(‘S’);

}

Void SerTx (unsigned char x)

{

SBUF=x;

While(TI==0);

TI=0;

}

Write an 8051 C program to send two different strings to the serial
port. Assuming that

SW is connected to pin P2.0, monitor its status and make a decision as
follows:

SW = 0: send your first name

SW = 1: send your last name

Assume XTAL = 11.0592 MHz, baud rate of 9600, 8-bit data, 1 stop bit.

• For(z=0; z<3;z++) z++ ++z

• Fname[]= ‘ALI’

• Step 1: Z=1

• Step 2: Z=2

• Step 3: Z=3

SBUF=Z

SBUF=Z

SBUF=Z

8051 C compilers and the second serial port

• Since many C compilers do not support the second serial port of the
DS89C4xO chip, we have to declare the byte addresses of the new
SFR registers using the sfr keyword.

•Write a C program for the DS89C4xO to transfer letter
“A” serially at 4800 baud continuously. Use the second
serial port with 8-bit data and 1 stop bit. We can only use
Timer 1 to set the baud rate.

• Program the DS89C4xO in C to receive bytes of data serially via
the second serial port and put them in PI. Set the baud rate at
9600, 8-bit data, and 1 stop bit. Use Timer 1 for baud rate
generation.

8051 interrupts
• Interrupts vs. polling

• In the interrupt method, whenever any device needs its service, the
device notifies the microcontroller by sending it an interrupt signal.
Upon receiving an interrupt signal, the microcontroller interrupts
whatever it is doing and serves the device.

• The program associated with the interrupt is called the interrupt
service routine (ISR) or interrupt handler.

• In polling, the microcontroller continuously monitors the status of a given
device; when the status condition is met, it performs the service.

• After that, it moves on to monitor the next device until each one is

serviced.

• The advantage of interrupts is that the microcontroller can serve many
devices (not all at the same time, of course); each device can get the
attention of the microcontroller based on the priority assigned to it.

• The polling method cannot assign priority since it checks all devices in a

round-robin fashion.

Interrupt service routine
• When an interrupt is invoked, the microcontroller runs the interrupt

service routine.

• For every interrupt, there is a fixed location in memory that holds the
address of its ISR.

• The group of memory locations set aside to hold the addresses of ISRs
is called the interrupt vector table.

Six interrupts in the 8051

SMO SM1 SM2 REN TB8 RB8 TI RI

HERE:JNB TF0, HERE ; CLR TF0

Enabling and disabling an interrupt
• Steps in enabling an interrupt

• 1. To enable an interrupt, we take the following steps: . Bit D7 of the
IE register (EA) must be set to high to allow the rest of register to
take effect.

• 2. If EA = 1, interrupts are enabled and will be responded to if their
corresponding bits in IE are high. If EA = 0, no interrupt will be
responded to, even if the associated bit in the IE register is high.

Programming timer

• Roll-over timer flag and interrupt

• 1. Timer flag (TF) is raised when the timer rolls over. In that chapter,
we also showed how to monitor TF with the instruction “JNB TF,
target”. In polling TF, we have to wait until the TF is raised.

• 2. The problem with this method is that the microcontroller is tied down
while waiting for TF to be raised, and cannot do any thing else. Using
interrupts solves this problem and avoids tying down the controller.

• 3. If the timer interrupt in the IE register is enabled, whenever the timer
rolls over, TF is raised, and the microcontroller is interrupted in whatever
it is doing, and jumps to the interrupt vector table to service the ISR.

• Write a program that continuously gets 8-bit data from PO and sends it
to PI while simultaneously creating a square wave of 200 (as period on
pin P2.1. Use Timer 0 to create the square wave. Assume that XTAL
=11.0592 MHz.

• The following program generates a square wave on pin P1.5
continuously using timer 1 for a time delay. Find the frequency of
the square wave if XTAL =11.0592 MHz. In your calculation do not
include the overhead due to instructions in the loop

MOV TMOD, #10H

AGAIN: MOV TL1, #34H

MOV TH1, #76H

SETB TR1

BACK: JNB TF1, BACK

CLR TR1

CPL P1.5

CLR TF1

SJMPAGAIN

1. (FFFF-7634+1) = 89CC (hex) = 35276 (dec)

2. 35276 * 1.085 = 38.274ms

3. 1/38.274ms= 26.127 Hz

TL1,#05H

TH1,# FDH

Assume that XTAL=11.0592MHz, write a program to generate a square
wave of 2kHz frequency on pin P1.5

T=1/f =1/2KHz = 500us

500us/2 = 250 us

250us/1.085us = 230 =n 65536 –230 =65306 = FF1A (hex)

TH = FF, TL=1A

• Write a program to generate a square wave of 50 Hz frequency on pin
P1 .2. Use Timer 0. Assume that XTAL = 11.0592MHz

External hardware interrupts
• The 8051 has two external hardware interrupts. Pins 12 (P3.2) and pin

13 (P3.3) of the 8051, designated as INTO and INT1, are used as
external hardware interrupts.

• Upon activation of these pins, the 8051 gets interrupted in whatever it
is doing and jumps to the vector table to perform the interrupt service
routine.

Activation of INTO and INT1

• a) External interrupts INTO and INT1

• There are only two external hardware interrupts in the 8051: INTO
and INT1. They are located on pins P3.2 and P3.3 of port 3,
respectively. The interrupt vector table locations 0003H and 0013H are
set aside for INTO and INT1, respectively.

• There are two types of activation for the external hardware interrupts:

• (1) level triggered, and

• (2) edge triggered

• Level-triggered interrupt

• In the level-triggered mode, INTO and INT1 pins are normally high (just
like all I/O port pins) and if a low-level signal is applied to them, it
triggers the interrupt. Then the microcontroller stops whatever it is doing
and jumps to the interrupt vector table to service that interrupt. This is
called a level-triggered or level-activated interrupt and is the default
mode upon reset of the 8051.

• Assume that the INT1 pin is connected to a switch that is normally high.
Whenever it goes low, it should turn on an LED. The LED is connected to
PI .3 and is normally off. When it is turned on it should stay on for a
fraction of a second. As long as the switch is pressed low, the LED should
stay on.

Sampling the low level-triggered interrupt

• Pins P3.2 and P3.3 are used for normal I/O unless the INTO and
INT1 bits in the IE registers are enabled.

• After the hardware interrupts in the IE register are enabled, the
controller keeps sampling the INT« pin for a low-level signal once
each machine cycle.

• According to one manufacturer’s data sheet “the pin must be held in a
low state until the start of the execution of ISR.

Minimum Duration of the Low Level-Triggered Interrupt (XTAL =

11.0592 MHz)

10
8

Thank You

	Slide 1: BEE403:MICROCONTROLLERS
	Slide 2: OUTLINE
	Slide 3: OUTLINE
	Slide 4
	Slide 5
	Slide 6: 4.1 Basics of serial communication
	Slide 7: 4.1 Basics of serial communication
	Slide 8: 4.1 Basics of serial communication
	Slide 9: 4.1 Basics of serial communication
	Slide 10: 4.1 Basics of serial communication
	Slide 11
	Slide 12
	Slide 13: a) Half- and full-duplex transmission
	Slide 14
	Slide 15: b)Asynchronous serial communication and data framing
	Slide 16: Start and stop bits
	Slide 17
	Slide 18: Framing ASCII “A” (41H)
	Slide 19: 4.1.1 RS232 standards
	Slide 20
	Slide 21: RS232 pins
	Slide 22: RS232
	Slide 23
	Slide 24
	Slide 25: DB-9 Pin connection
	Slide 26
	Slide 27
	Slide 28
	Slide 29: Step 4: CTS (clear to send). In response to RTS, when the modem has room for storing the data it is to receive, it sends out signal CTS to the DTE (PC) to indicate that it can receive the data now. This input signal to the DTE is used by the D
	Slide 30: 8051 connection to RS232
	Slide 31: MAX232
	Slide 32: MAX232
	Slide 33
	Slide 34
	Slide 35
	Slide 36: 4.3 8051 serial port programming in assembly
	Slide 37
	Slide 38
	Slide 39: 4.3.1 SBUF register
	Slide 40: SCON register
	Slide 41: SCON register
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47: 4.3.3 Programming the 8051 to transfer data serially
	Slide 48: 4.3.3 Programming the 8051 to transfer data serially
	Slide 49
	Slide 50
	Slide 51: Write a program to transfer the message “YES” serially at 9600 baud, 8-bit data, 1Start bit and 1 stop bit. Do this continuously.
	Slide 52: Program the 8051 to receive bytes of data serially, and put them in PI. Set the baud rate at 4800, 8-bit data, and 1 stop bit.
	Slide 53: 8051 serial port programming in assembly
	Slide 54: Importance of the Tl flag
	Slide 55
	Slide 56: Program the 8051 to receive bytes of data serially, and put them in P1. Set the baud rate at 4800, 8-bit data, and 1 stop bit.
	Slide 57: Importance of RI flag
	Slide 58
	Slide 59: Doubling the baud rate in the 8051
	Slide 60
	Slide 61
	Slide 62: Baud Rate Comparison for SMOD = 0 and SMOD = 1
	Slide 63
	Slide 64: Solution
	Slide 65
	Slide 66: Serial port programming in 8051 C
	Slide 67: Header File Main Function
	Slide 68
	Slide 69
	Slide 70: C Programs continued
	Slide 71
	Slide 72: #include<reg51.h> Void SerTx(Unsigned char); Void Main()
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78: 8051 C compilers and the second serial port
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83: 8051 interrupts
	Slide 84
	Slide 85
	Slide 86: Interrupt service routine
	Slide 87: Six interrupts in the 8051
	Slide 88: Enabling and disabling an interrupt
	Slide 89
	Slide 90
	Slide 91: Programming timer
	Slide 92
	Slide 93
	Slide 94
	Slide 95
	Slide 96
	Slide 97: Assume that XTAL=11.0592MHz, write a program to generate a square wave of 2kHz frequency on pin P1.5
	Slide 98
	Slide 99
	Slide 100: External hardware interrupts
	Slide 101: Activation of INTO and INT1
	Slide 102
	Slide 103
	Slide 104
	Slide 105
	Slide 106
	Slide 107: Sampling the low level-triggered interrupt
	Slide 108
	Slide 109
	Slide 110: Thank You

