
BEE403:MICROCONTROLLERS

1

MODULE – 2:Assembly programming and Instructions of 8051

OUTLINE
➢Introduction to 8051 Assembly Programming

➢Assembling and running an 8051 program

➢Data types and Assembler directives

➢Arithmetic instructions and programs

➢logic instructions and programs

➢Jump instructions, loop and Call instructions

➢IO port programming, Programs

➢Additional Programs on Jump, loop ,call and Port programming

➢Additional Programs on Arithmetic Instructions

Introduction to 8051 Assembly Programming

Programming in the sense of Microcontrollers (or any computer)
means writing a sequence of instructions that are executed by the
processor in a particular order to perform a predefined task.

Programming also involves debugging and troubleshooting of
instructions and instruction sequence to make sure that the desired task
is performed.

What is a Programming Language?

There are three types or levels of Programming Languages for 8051
Microcontroller.

• The three levels of Programming Languages are:

1. Machine Language

2. Assembly Language

3. High-level Language

Machine language
• In Machine language or Machine Code, the instructions are written in

binary bit patterns i.e. combination of binary digits 1 and 0, which
are stored as HIGH and LOW Voltage Levels.

• This is the lowest level of programming languages and is the
language that a Microcontroller or Microprocessor actually
understands.

High Level language

• The name High-level language means that you need not worry about
the architecture or other internal details of a microcontroller and they
use words and statements that are easily understood by humans.

• Few examples of High-level Languages are BASIC, C Pascal, C++
and Java.

• A program called Compiler will convert the Programs written in

High-level languages to Machine Code.

Assembly language

• Since Machine Language or Code involves all the instructions in 1’s
and 0’s, it is very difficult for humans to program using it.

• Assembly Language is a pseudo-English representation of the
Machine Language. The 8051 Microcontroller Assembly Language is
a combination of English like words called Mnemonics and
Hexadecimal codes.

• It is also a low level language and requires extensive understanding of
the architecture of the Microcontroller.

Why Assembly language??

• Although High-level languages are easy to work with, the following reasons
point out the advantage of Assembly Language

1. The Programs written in Assembly gets executed faster and they
occupy less memory.

2. With the help of Assembly Language, you can directly exploit all the

features of a Microcontroller.

3. Using Assembly Language, you can have direct and accurate control of
all the Microcontroller’s resources like I/O Ports, RAM, SFRs, etc.

4. Compared to High-level Languages,Assembly Language has less rules
and restrictions.

11

Introduction to 8051 Programming in
Assembly Language

• Even though there are many high-level languages that are currently in
demand, assembly programming language is popularly used in many
applications.

• It can be used for direct hardware manipulations.

• It is also used to write the 8051 programming code efficiently with
less number of clock cycles by consuming less memory compared to
the other high-level languages.

Introduction to 8051 Programming inAssembly Language

Introduction to 8051 Programming in Assembly
Language

• Assembly programming language is developed by various compilers
and the “keiluvison” is best suitable
for microcontroller programming development.

• An assembler converts the assembly language to binary language,
and then stores it in the microcontroller memory to perform the
specific task.

ASSEMBLING AND RUNNING AN 8051
PROGRAM

Steps to Create a Program

STEP 1: First we use an editor to type in a program similar to Program A widely used

editor is the MS-DOS EDIT program (or Notepad in Windows), which comes with all

Microsoft operating systems. Notice that the editor must be able to produce an ASCII

file.

STEP 2: The “asm” extension for the source file is used by an assembler in the next

step. The “asm” source file containing the program code created in step 1 is fed to an

8051 assembler machine code.

The assembler will produce an object file and a list file. The extension for the object

file is “.obj” while the extension for the list file is “.lst”.

ASSEMBLING AND RUNNING AN
8051 PROGRAM

Steps to Create a Program

STEP 3: Assemblers require a third step called linking. The link program takes one or

more object files and produces an absolute object file with the extension “abs”

This abs file is used by 8051 trainers that have a monitor program.

STEP 4:Next, the “abs” file is fed into a program called “OH” (object to hex convert

er), which creates a file with extension “hex” that is ready to burn into ROM.

This program comes with all 8051 assemblers.

8051 DATA TYPES AND DIRECTIVES

1. The 8051 microcontroller has only one data type.

2. It is 8 bits, and the size of each register is also 8 bits.

3. It is the job of the programmer to break down data larger than

8 bits (00 to FFH, or 0 to 255 in decimal) to be processed by

the CPU.

4. The data types used by the 8051 can be positive or negative

8051 data type and directives

Assembler directives

1. DB (define byte)

1. The DB directive is the most widely used data directive in the

assembler.

2. It is used to define the 8-bit data

3. When DB is used to define data, the numbers can be in decimal,

binary, hex, orASCII formats

4. For decimal, the “D” after the decimal number is optional, but using

“B” (binary) and “H” (hexadecimal) for the others is required.

5. Regardless of which is used, the assembler will convert the numbers

into hex.

DB (define byte)

DB Example

1. The ORG directive is used to indicate the beginning of the address.

2. The number that comes after ORG can be either in hex or in decimal.

If the number is not followed by H, it is decimal and the assembler will

convert it to hex.

3. Some assemblers use “. ORG” (notice the dot) instead of “ORG” for the

origin directive.

NOTE: Check your assembler.

Example

ORG 0000H

ORG (origin)

1. This is used to define a constant without occupying a memory

location.

2. The EQU directive does not set aside storage for a data item

but associates a constant value with a data label so that when

the label appears in the program, its constant value will be

substituted for the label.

3. The following uses EQU for the counter constant and then the

constant is used to load the R3 register.

EQU (equate)

EQU Example

When executing the instruction

“MOV R3, #COUNT”, the register R3 will be loaded with the value 25 (notice the #

sign).

What is the advantage of using EQU?

By the use of EQU, the programmer can change it once and the assembler will

change* all of its occurrences, rather than search the entire program trying to find

every occurrence.

END directive

1. Another important pseudocode is the END directive. This indicates

to the assembler the end of the source (asm) file.

2. The END directive is the last line of an 8051 program, meaning that

in the source code anything after the END directive is ignored by the

assembler.

3. Some assemblers use “. END” (notice the dot) instead

of “END”.

QUIZ

1. Which is not an assembler directive?

• END

• ORG

• EQU

• INT

2. ORG directive is used to indicate?

• End of the address

• Beginning of the Address

• Address Loop

• Constant

3. DB is used to define data, the numbers can

be in ?

• DECIMAL

• BINARY

• HEX

• ALL THE ABOVE

8051 Instructions The instructions of 8051 can

be broadly classified under the following

headings.

1. Data transfer instructions

2. Arithmetic instructions

3. Logical instructions

4. Branch instructions

5. Subroutine instructions

6. Bit manipulation instructions

1. Data transfer instructions

In this group, the instructions perform data transfer operations of the

following types.

a. Move the contents of a register Rn to A

i. MOVA,R2

ii. MOVA,R7

b. Move the contents of a registerA to Rn

i. MOV R4,A

ii. MOV R1,A

1. Data transfer instructions

c. Move an immediate 8 bit data to registerA or to Rn or to a

memory location (direct or indirect)

i. MOVA, #45H

ii. MOV R6, #51H

iii. MOV 30H, #44H

iv. MOV @R0, #0E8H

v. MOV DPTR, #F5A2H

vi. MOV DPTR, #5467H

1. Data transfer instructions

d. Move the contents of a memory location to A orA to a memory location

using direct and indirect addressing

i. MOVA, 65H

ii. MOVA, @R0

iii. MOV 45H, A

iv. MOV @R1, A

e. Move the contents of a memory location to Rn or Rn to a memory location

using direct addressing

i. MOV R3, 65H

ii. MOV 45H, R2

1. Data transfer instructions

f. Move the contents of memory location to another memory location

using direct and indirect addressing

MOV R0, 45H

MOV 54H, @R0

g. Move the contents of an external memory to A or A to an external

memory

i. MOVX A, @R1

ii. MOVX @R0,A

iii. MOVX A,@DPTR

iv. MOVX@DPTR,A

@45H 54H

F6H F6H

1. Data transfer instructions

h. Move the contents of program memory to A
i. MOVC A, @A+PC

ii. MOVC A, @A+DPTR

1. Data transfer instructions

Arithmetic instructions

The 8051 can perform addition, subtraction. Multiplication and division operations

on 8 bit numbers:

a) Addition:

In this group, we have instructions to

i. Add the contents of A with immediate data with or without carry.

i. ADD A, #45H ; A= 0AH + 45H →A=

ii. ADDC A, #B4H ; CY=01 + A= +B4H=

ii. Add the contents of A with register Rn with or without carry.

Example:

MOV R5, #45H

MOVA,#05H

ADD A,R5

Arithmetic instructions

iii. Add the contents of A with contents of memory with or without carry using

direct and indirect addressing

i. ADD A, 51H

ii. ADDC A, 75H

iii. ADD A, @R1

iv. ADDC A, @R0

CYAC and OV flags will be affected by this operation

MOV R1,45H

ADD A=05H +@ R1=0AH =

Arithmetic instructions

Signed Addition

-23H

2’s Complement

00100011

11011100

+ 1

11011101

UnSigned Addition

+

+

b) Subtraction:

SUBB A, #45 ; Function:

Subtract with borrow

Description: SUBB subtracts the indicated variable and the carry flag together

from the Accumulator, leaving the result in the Accumulator.

In this group, we have instructions to

i. Subtract the contents of A with immediate data with or without carry.
i. SUBB A, #45H

ii. SUBBA, #B4H

ii. Subtract the contents of A with register Rn with or without carry.

i. SUBBA, R5

ii.SUBB A, R2

MOV R5,#05H

MOVA ,#0AH

SUBB A,R5 ; A-R5 =0A-05

b) Subtraction:

SUBB A, <src-byte>

Function: Subtract with borrow

iii. Subtract the contents of A with contents of memory with or without

carry using direct and indirect addressing
i. SUBB A, 51H

ii. SUBB A, 75H

iii. SUBB A, @R1

iv. SUBB A, @R0

CYAC and OV flags will be affected by this operation.

c) Multiplication

MUL AB: This instruction multiplies two 8 bit unsigned numbers

which are stored in A and B register.

After multiplication the lower byte of the result will be stored in

accumulator and higher byte of result will be stored in B register.

Eg. MOVA,#45H ; [A]=45H

MOV B, A

MOVA, #0AH

MULAB ; AXB = 02B2H

d) Division:

DIV AB. This instruction divides the 8 bit unsigned number which is

stored in A by the 8 bit unsigned number which is stored in B

register.

After division the result will be stored in accumulator and remainder

will be stored in B register.

Eg. MOVA,#02H ; [A]=02H

MOV B, A

MOVA, #0AH

DIVAB; A/B 0A/02= 05-→Q=A 00-→R=B

Write a program to add two 16 bit numbers and store result in
R1 AND R2
FC45H and 02ECH
ORG 0000H

CLR C ; CY=0

MOV A,#45H

ADD A,#ECH

MOV R1,A

MOV A,#02H

ADDC A,#FCH

MOV R2, A

; CY=01 +02+FC=FFH

01 ADD

FC 45

02 EC

ADDC 31

O/P

R1=31H R2=FFH

Write a program to add two 16 bit numbers
8100 and 8101 H FC45H and 8200H and 8201H 02ECH and

store the result in 8300 8301 8302

1

FC 8100 45 8101

02 8200 EC 8201

FF 31

BCD Addition
• BCD : Binary Coded Decimal

• Binary Representation: 0 to 9

• The 8051 performs addition in pure binary –this may

lead to errors when performing BCD addition

1. Unpacked BCD

Packed BCD

07 06 01 03 08 09

77 96 84 45

BCD Addition
Example

49 BCD 01001001 BCD

38 BCD 00111000 BCD

87 BCD 10000001 (81BCD)

Decimal Adjust
The result must be adjusted to yield the correct BCD result

1. DAA (decimal adjust instruction)

2. The carry flag is set if the adjusted number exceeds 99 BCD

MOVA, #25H

MOV B, A

MOVA,#47H

ADD A,B ;

DAA; UP COUNTER /DOWN

72H----→47+25=72
DA instruction works only on A

MOV A, #09H
ADD A, #11H;A = 1AH (expecting 20H if these are BCD
numbers)
DA A;

DAA works as follows:

• If lower nibble is greater than 9 or auxiliary carry is 1, 6 is added to lower

nibble

• If upper nibble is greater than 9 or carry is 1, 6 is added to upper nibble.

Increment: Increments the operand by one
INC increments the value of source by 1.

If the initial value of register is FFh, incrementing the value will

cause it to reset to 0.

In the case of "INC DPTR", the value two-byte unsigned integer

value of DPTR is incremented.

If the initial value of DPTR is FFFFh, incrementing the value will

cause it to reset to 0.

Increment: Increments the operand by one

Eg: INC A ; A=07

INC R4 ;R4=09

INC 54H ; 55H

INC @Ri @R3=05

INC DPTR ;8101

Decrement: decrements the operand by one
• DEC decrements the value of source by 1.

• If the initial value of is 0, decrementing the value will

cause it to reset to FFh.

• The Carry Flag is not set when the value "rolls over"

from 00 to FFh Eg: DEC DPL

DEC DPH

DEC DPTR

Show how the following numbers are represented in the 8051
a. -7

Solution:

1. Write the number in binary form

2. Complement each bit

3. Add 1

27 26 25 24 23 22 21 20

0 0 0 0 0 1 1 1

1 1 1 1 1 0 0 0

1

Show how the following numbers are represented
in the 8051

b. -56

Solution: 27 26 25 24 23 22 21 20

0 0 1 1 1 0 0 0

1 1 0 0 0 1 1 1

1

1 1 0 0 1 0 0 0

Show how the following numbers are represented
in the 8051

C. - 128

Solution:

Logical instructions

Logical Instructions

a) LogicalAND

ANL destination, source: ANL does a bitwise "AND" operation between source and

destination, leaving the resulting value in destination. The value in source is not affected.

"AND" instruction logicallyAND the bits of source and destination

ANLA,#FF

EXAMPLE

A= 05 , 0 0 0 0 0 1 0 1

1 1 1 1 1 1 1 1

0 0 0 0 0 1 0 1

Logical Instructions

b) Logical OR

ORL destination, source: ORL does a bitwise "OR" operation between source and destination,

leaving the resulting value in destination. The value in source is not affected. " OR " instruction

logically OR the bits of source and destination.

EXAMPLE

MOVA ,#FAH

ORLA,#FFH

11111010

11111111

11111111 FFH

Logical Instructions

c) Logical Ex-OR

XRL destination, source: XRL does a bitwise "EX-OR" operation between

source and destination, leaving the resulting value in destination. The value in

source is not affected. " XRL " instruction logically EX-OR the bits of source

and destination.
MOVA ,#FAH

XRLA,#FFH

11111010

11111111

00000101 05H

Logical Instructions

d)Logical NOT

CPL complements operand, leaving the result in operand. If

operand is a single bit then the state of the bit will be reversed. If

operand is the Accumulator then all the bits in the Accumulator will

be reversed.; A=08

CPLA = 00001000 -→ 11110111

CPL C ;CY=0 -→CY=1

CPL bit address CPL P1.0 ;P1.0=0 P1.0=1

Logical Instructions

SWAPA ;A=08 80 F0 0F FC CF A1 1A
Swap the upper nibble and lower nibble of A

Function: Swap nibbles within the Accumulator

Description: SWAP A interchanges the low- and high-order nibbles

(four-bit fields) of the Accumulator (bits 3 through 0 and bits 7

through 4). The operation can also be thought of as a 4- bit rotate

instruction. No flags are affected.

Example: The Accumulator holds the value C5H (11000101B). The

instruction, SWAP A leaves the Accumulator holding the value 5CH

(01011100B)

Logical Instructions

XCH A,<byte>

Function: Exchange Accumulator with byte variable Description:

XCH loads the Accumulator with the contents of the indicated

variable, at the same time writing the original Accumulator contents

to the indicated variable. The source/destination operand can use

register, direct, or register-indirect addressing.

Example: XCH A,@R0 // A=08 , @R0=AA

A=AA @R0=08

Logical Instructions

CPLA

Function: Complement Accumulator

Description: CPLA logically complements each bit of the

Accumulator (one’s complement). Bits which previously contained

a 1 are changed to a 0 and vice-versa. No flags are affected.

Example: The Accumulator contains 5CH (01011100B). The

following instruction, CPL A leaves the Accumulator set to A3H

(10100011B).

Logical Instructions
Clear

–CLR A

–Clears each bit of the A register

Rotate Instructions
1. RR A

2.RLA

3.RRC A

4. RLC A

Rotate Instructions
• RR A

• This instruction is rotate right the accumulator. Its operation is
illustrated below. Each bit is shifted one location to the right, with bit
0 going to bit 7.

• RL A

• Rotate left the accumulator. Each bit is shifted one location to the left,
with bit 7 going to bit 0

Example: The Accumulator holds the value 0C5H (11000101B). The following

instruction,

RL A leaves the Accumulator holding the value 8BH (10001011B) with the carry

unaffected.

• RRC A

• Rotate right through the carry. Each bit is shifted one location to the right,
with bit 0 going into the carry bit in the PSW, while the carry was at goes
into bit 7

Example: The Accumulator holds the value 0C5H (11000101B), the carry is zero.

The following instruction, RRC A leaves the Accumulator holding the value 62

(01100010B) with the carry set.

• RLC A

• Rotate left through the carry. Each bit is shifted one location to the left,
with bit 7 going into the carry bit in the PSW, while the carry goes into bit
0.

Example: The Accumulator holds the value 0C5H(11000101B), and the carry is

zero. The following instruction, RLC A leaves the Accumulator holding the value

8BH (10001010B) with the carry set.

Show how 8051 does the following
calculations
• A) ADD +37 and -115 = -78

Solution:

+37

-115

-78

0010 0101

10001101

10110010

27 26 25 24 23 22 21 20

128 64 32 16 8 4 2 1

0 0 1 0 0 1 0 1

27 26 25 24 23 22 21 20

128 64 32 16 8 4 2 1

0 1 1 1 0 0 1 1

1 0 0 0 1 1 0 0

1

1 0 0 0 1 1 0 1

Show how 8051 does the following
calculations
• MOV A,#-43

• MOV R2,#-78

• ADD A,R2

• Solution:

• 11010101

• 10110010

1 10000111

27 26 25 24 23 22 21 20

128 64 32 16 8 4 2 1

0 0 1 0 1 0 1 1

1 1 0 1 0 1 0 0

1

1 1 0 1 0 1 0 1

Observe and notice the role of overflow
flag

MOVA,#-128

MOV R4,#-2

ADD A,R4

Solution:

-128

-2

-130

10000000

11111110

01111110 OV=1

Observe and notice the role of overflow
flag

MOVA,#-2

MOV R4,#-5

ADD A,R4

Solution:

-02 11111110

-05 11111011

-07 11111001 OV=0

Show the results of the following
• MOV A,#54H

• XRL A,#78H

• Solution

•54 X-OR 78

01010100

01111000

00101100

I/P I/P O/P

0 0 0

0 1 1

1 0 1

1 1 0

Show the results of the following
MOV A,#25H

MOV B,#65H

MUL AB

• Solution

• 25H*65H=0E99H

• A=? 99

• B=? 0E

Show the results of the following
MOV A,#78H

SWAP A

Solution:

A=87H

Which instructions are illegal
1. MOV R3,#50

2. MOV R1,#500

3. MOV R7,#00

4. MOV R2,R3

Solution:

Which are the two 16 bit registers

Solution:

DPTR

PC

R0=25H, A=35H What is O/P of the
following code?

ADD A,R0 ; 25+35= 5A

MOV R0,A; A=5A--→R0=5A

ADD A,R0; A=5A +5A =B4H

Solution:

A= B4H

What is the status of CY,AC and P Flags
MOVA,#9CH

ADD A,#64H

Solution:

9C 10011100

64 01100100

CY=1 AC=1 P=1

What type of Addressing mode is this
instruction

1. MOVA,#45H

2. MOVC A,@A+DPTR

3. MOVA,@R1

Solution:

JUMP,LOOP AND CALL INSTRUCTIONS

Branch (JUMP) Instructions

Jump and Call Program Range There are 3 types of jump instructions.

They are:-

1. Relative Jump

2. Short Absolute Jump

3. Long Absolute Jump

1. Relative Jump

• Jump that replaces the PC (program counter) content with a
new address that is greater than (the address following the
jump instruction by 127 or less) or less than (the address
following the jump by 128 or less) is called a relative jump.
Schematically, the relative jump can be shown as follows: -

Advantage

Only 1 byte of jump address needs to be

specified in the 2's complement form, ie.

For jumping ahead, the range is 0 to 127

and for jumping back, the range is -1 to -

128.

Disadvantages of the absolute jump: -

1. Short jump range (-128 to 127 from the

instruction following the jump instruction)

1. Relative Jump
ORG 0000H

MOVA,#FFH

ADD A,# FFH ; 01 FEH

JC HERE ; JUMP IF CARRY IS GENERATED

NOP

HERE: DB CARRY IS GENERATED

END

SJMP
• Operation: SJMP Function

• Short Jump Syntax: SJMP 0500

• Description: SJMP jumps unconditionally to the address specified
reladdr.

• Reladdr must be within -128 or +127 bytes of the instruction that
follows the SJMP instruction

• MOV A,#45H ;2

MOV R0,#00
BACK: NOP
DJNZ RO,BACK

Absolute Jump

In this case only 11bits of the absolute jump address are needed. The absolute

jump address is calculated in the following manner.

In 8051, 64 kbyte of program memory space is divided into 32 pages of 2 kbyte

each.

The hexadecimal addresses of the pages are given

as follows:-

ADRESS DB BLUE

LJMP

• Long Absolute Jump/Call

• Applications that need to access the entire program memory from
0000H to FFFFH use long absolute jump.

• Since the absolute address has to be specified in the op-code, the
instruction length is 3 bytes (except for JMP @ A+DPTR). This jump
is not re-locatable.

Operation: LJMP

Function: Long Jump

Syntax: LJMP code address.

Description: LJMP jumps unconditionally to

the specified code address.

Conditional Jump instructions.

All conditional jumps are short jumps.

• Operation: JNC

• Function: Jump if Carry Not Set

• Syntax: JNC reladdr

• Description: JNC branches to the address indicated by reladdr if the carry
bit is not set. If the carry bit is set program execution continues with the
instruction following the JNB instruction

• Operation: JC

• Function: Jump if Carry Set

• Syntax: JC reladdr

• Description: JC will branch to the address indicated by reladdr if the Carry Bit is set.
If the Carry Bit is not set program execution continues with the instruction following
the JC instruction.

• MOVA,#FFH

• ADD A,#FFH; 01 FEH

• JC HERE

• HERE: DB INDIA

Operation: JNB

• Function: Jump if Bit Not Set

• Syntax: JNB bit addr, reladdr

• Description: JNB will branch to the address indicated by reladdress if the
indicated bit is not set. If the bit is set program execution continues with
the instruction following the JNB instruction.

P1.0 =0

SUBMER
SIBLE
PUMP

RELAY

SENSOR

TANK

• Operation: JB

• Function: Jump if Bit Set

• Syntax: JB bit addr, reladdr

• Description: JB branches to the address indicated by reladdr if the bit
indicated by bit addr is set. If the bit is not set program execution
continues with the instruction following the JB instruction.

• Operation: JNZ

• Function: Jump if Accumulator Not Zero

• Syntax: JNZ reladdr

• Description: JNZ will branch to the address indicated by reladdr if the
Accumulator contains any value except 0. If the value of the Accumulator
is zero program execution continues with the instruction following the
JNZ instruction.

• Operation: JZ

• Function: Jump if Accumulator Zero

• Syntax: JNZ reladdr

• Description: JZ branches to the address indicated by reladdr if the
Accumulator contains the value 0. If the value of theAccumulator is non-
zero program execution continues with the instruction following the JNZ
instruction.

• Operation: DJNZ

• Function: Decrement and Jump if Not Zero

• Syntax: DJNZ register, reladdr

• Description: DJNZ decrements the value of register by 1. If the initial
value of register is 0, decrementing the value will cause it to reset to 255
(0xFF Hex). If the new value of register is not 0 the program will branch
to the address indicated by relative addr. If the new value of register is 0
program flow continues with the instruction following the DJNZ
instruction

• Operation: CJNE

• Function: Compare and Jump If Not Equal

• Syntax: CJNE operand1,operand2,reladdr

• Description: CJNE compares the value of operand1 and operand2 and
branches to the indicated relative address if operand1 and operand2 are
not equal. If the two operands are equal program flow continues with the
instruction following the CJNE instruction. The Carry bit (C) is set if
operand1 is less than operand2, otherwise it is cleared.

10
3

2.5. 1 Bit level jump instructions

• Bit level JUMP instructions will check the conditions of the bit and if
condition is true, it jumps to the address specified in the instruction.

• All the bit jumps are relative jumps.

Subroutine CALL and RETURN Instructions
• Subroutines are handled by CALL and RET instructions There are two

types of CALL instructions

• Call instructions may be included explicitly in the program as
mnemonics or implicitly included using hardware interrupts.

• Subroutine: Subroutine is a standalone program or small program in a
main program

• “A Subroutine is a program that may be used many times in the
execution of a larger program.The subroutine could be written into the
body of the main program everywhere it is needed resulting in the
fastest possible code execution.”

LCALL address (16 bit)
• This is long call instruction which unconditionally calls the subroutine located at the indicated 16 bit

address.

• This is a 3 byte instruction.

0510: MOV A, #45H

0511: ADD A,#FFH

0512 :ACALL

0514: DB INDIA IS A SECULAR COUNTRY

109

PC

STACK

SP
09

05

SP
08

14

SP
07

ACALL address (11 bit)

RET instruction

• RET instruction pops top two contents from the stack and load it to
PC.

MOV R0,#07 ; R0=08H

BACK:MOV R1,#45H

MOVA,#0AH

ADD A, R1 ; 45H+0AH

RET

I O port programming
• 1. I/O Port pins, Ports and Circuits: One major feature of a

microcontroller is versatility built into the I/O circuits that connect the
8051 to the outside world.

• 2. Out of 40 pins 24 pins may each be used for one of two entirely
different functions yielding a total pin configuration of 64.

• 3. But the port pins have been multiplexed to perform different functions
to make 8051 as 40 Pin IC

• The port pin circuitry

Port-0

PROGRAMS
MAKE PO.2 AS I/P PORT

SETB P0.2 ; P0.2=1 [I/P PORT]

ECG Sensor

A/D
Converter

Signal
AmplificationSigna

l Conditioning

P0.2=1

PROGRAMS

Port 1 is configured as an input port.

Toggle the port 55H 01010101 =10101010 AAH

Toggle all bits of continuously

MOV A,#55 H;01010101
BACK: MOV P1,A ;55H-→P1=55H

;55H--→AAHCPL A

SJMP BACK

MC
RPS
+5V

Get a byte and place it in P2 and P1

MOV A, # FFH ; FF=11111111 1 BYTE

MOV P2, A ; A=FFH---→P2=FFH

MOV P1, A; A=FFH----→P1=FFH

A P2 A

Write a program to configure port 1 as I/P port. Then
data is received from the port and saved in R5,R6,R7

Toggle the bit of P1.2 continuously
Method 1:

Method 2:

PROGRAMS CONTINUED

Write a program to configure port 1 as I/P port. Then data is received
from the port and saved in R5,R6,R7

Solution:

MOVA ,#FFH

MOV P1,A

MOVA,P1

MOV R7,A

ACALL DELAY

MOVA,P1

MOV R6,A

ACALL DELAY

MOVA,P1

MOV R5,A

P1=data

8051 MC

A=FFH

I=0.1mA

Toggle the bit of P1.2 continuously
Method 1:

Method 2:

BACK: SETB P1.2 ; P1.2=1

ACALL DELAY

CLR P1.2 ;P1.2=0

ACALL DELAY

SJMP BACK

1

0

SW P1.7 P2 Y /N

AGAIN: MOV C, P1.2 ; P1.7=0-→C=0

JC OVER ; CY=0

MOV P2,#‘N’

SJMPAGAIN

OVER: MOV P2,# ‘Y’

SJMPAGAIN

PROGRAMS ON ARITHMETIC
INSTRUCTIONS

Two numbers are stored in registers R0 and R1.
Verify if their sum is greater than FFH send Y to P1

MOVA,R0 ; R0=05H

; 05H+07H= 0CHADD A,R1 ;R1=07H

JC MESSAGE

SJMP NEXT

MESSAGE: MOVA,# ‘Y’

MOV P1, A

NEXT: NOP

END

Analyze the following program

CLR C

MOVA,#4CH

SUBB A,#6EH

JNC NEXT

CPLA

NEXT:MOV R1,A

Analyze the following program
Solution:

4C 0100 1100 01001100

- 6E 01101110 2’s Complement 10010010

- 22 0 11011110

CY=1 Since the result is negative in 2’s complement

Assume that P1 is an input port connected to a temperature
sensor.Write a program to read the temperature and test it for the
value 75.Place the temperature value into the registers indicated by the
following

If T=75

If T<75

If T>75

Solution:

MOV P1,#FFH ;P1=I/P

MOV A,P1 ; A=65

CJNE A,#75,OVER

MOV R0, A ;R0=75

SJMP EXIT

OVER: JNC NEXT
MOV R1,A; R1=65

SJMP EXIT

NEXT: MOV R2,A ;R2=85

EXIT: NOP

P1T=85
T=85

P1.3 Toggle Continuously

BACK :SETB P1.3; P1.3=1

ACALL DELAY

CLR P1.3

ACALL DELAY

SJMP BACK

Programs Continued

Write a program to transfer value 41H serially(one bit at a time)

via P2.1.Put two highs at the start and end of the data. Send the

byte LSB first

Solution:

MOV A,#41H

SETB P2.1

SETB P2.1

MOV R5,#00

HERE: RRC A

MOV P2.1,C

DJNZ R5,HERE

SETB P2.1 ;High

SETB P2.1 ; High

REG A

D7 D0

CY P2.1

0 1 0 0 0 0 0 1 CY=0

0 1 0 0 0 0 0 1
CY=1

P2.1=0

P2.1=1

Write a program to bring in data in serial form and send it out in

parallel form

Solution

MOV R0,#08

SETB P0.0

BACK: MOV C,P0.0

RRC A

DJNZ R0,BACK

MOV P1,A

END

P0.0
P1

0 0 0 0 0 0 0 0
CY=1

0 1 0 0 0 0 0 1
CY=1

CY=1
1 0 1 0 0 0 0 0

A= A0H

0 1 0 1 0 0 0 0
CY=0

A= A0H

Method 1:

P1.0=1

P1.0=0

½ =50

2/3= 66.6

Method 2:

Assume that bit P2.3 is an input and represents the condition of
an oven. If it goes high, it means that the oven is hot.
Monitor the bit continuously. Whenever it goes high, send a
high-to-low pulse to port P1.5 to turn on a buzzer

A switch is connected to pin P1 .0 and an LED to pin P2.7.
Write a program to get the status of the switch and send it to
the LED.

Solution:

SETB P1.0

AGAIN: MOV C,P1.0

MOV P2.7,C

SJMP AGAIN SW

P2.7

P1.0 8051 MC

Thank You

	Slide 1: BEE403:MICROCONTROLLERS
	Slide 2: OUTLINE
	Slide 3: Introduction to 8051 Assembly Programming
	Slide 4: What is a Programming Language?
	Slide 5
	Slide 6
	Slide 7: Machine language
	Slide 8: High Level language
	Slide 9: Assembly language
	Slide 10: Why Assembly language??
	Slide 11: Introduction to 8051 Programming in Assembly Language
	Slide 12
	Slide 13
	Slide 14: Steps to Create a Program
	Slide 15: 8051 PROGRAM
	Slide 16
	Slide 17
	Slide 18: 8051 DATA TYPES AND DIRECTIVES
	Slide 19: 8051 data type and directives
	Slide 20: Assembler directives
	Slide 21: DB Example
	Slide 22: ORG (origin)
	Slide 23
	Slide 24: EQU (equate)
	Slide 25: EQU Example
	Slide 26
	Slide 27: END directive
	Slide 28: QUIZ
	Slide 29
	Slide 30
	Slide 31
	Slide 32: 8051 Instructions The instructions of 8051 can be broadly classified under the following headings.
	Slide 33: 1. Data transfer instructions
	Slide 34: 1. Data transfer instructions
	Slide 35: 1. Data transfer instructions
	Slide 36: 1. Data transfer instructions
	Slide 37: 1. Data transfer instructions
	Slide 38: 1. Data transfer instructions
	Slide 39: Arithmetic instructions
	Slide 40: Arithmetic instructions
	Slide 41: Arithmetic instructions
	Slide 42: b) Subtraction: SUBB A, #45 ; Function:
	Slide 43: b) Subtraction:
	Slide 44
	Slide 45
	Slide 46: Write a program to add two 16 bit numbers and store result in R1 AND R2
	Slide 47
	Slide 48: BCD Addition
	Slide 49: BCD Addition
	Slide 50: Decimal Adjust
	Slide 51
	Slide 52: Increment: Increments the operand by one INC increments the value of source by 1.
	Slide 53
	Slide 54: Decrement: decrements the operand by one
	Slide 55: Show how the following numbers are represented in the 8051
	Slide 56: Show how the following numbers are represented in the 8051 b. -56
	Slide 57: Show how the following numbers are represented in the 8051 C. - 128
	Slide 58: Logical instructions
	Slide 59: Logical Instructions
	Slide 60: Logical Instructions
	Slide 61: Logical Instructions
	Slide 62: Logical Instructions
	Slide 63: Logical Instructions
	Slide 64: Logical Instructions
	Slide 65: Logical Instructions
	Slide 66: Logical Instructions
	Slide 67: Rotate Instructions
	Slide 68: Rotate Instructions
	Slide 69
	Slide 70
	Slide 71
	Slide 72: Show how 8051 does the following calculations
	Slide 73: Show how 8051 does the following
	Slide 74: Observe and notice the role of overflow flag
	Slide 75: Observe and notice the role of overflow flag
	Slide 76: Show the results of the following
	Slide 77: Show the results of the following
	Slide 78: Show the results of the following MOV A,#78H SWAP A
	Slide 79: Which instructions are illegal
	Slide 80: Which are the two 16 bit registers
	Slide 81: R0=25H, A=35H What is O/P of the following code?
	Slide 82: What is the status of CY,AC and P Flags
	Slide 83: What type of Addressing mode is this instruction
	Slide 84: JUMP,LOOP AND CALL INSTRUCTIONS
	Slide 85: Branch (JUMP) Instructions
	Slide 86: 1. Relative Jump
	Slide 87
	Slide 88: 1. Relative Jump
	Slide 89: SJMP
	Slide 90
	Slide 91: Absolute Jump In this case only 11bits of the absolute jump address are needed. The absolute
	Slide 92: LJMP
	Slide 93
	Slide 94: Conditional Jump instructions.
	Slide 95
	Slide 96
	Slide 97: Operation: JNB
	Slide 98
	Slide 99
	Slide 100
	Slide 101
	Slide 102
	Slide 103
	Slide 104: 2.5. 1 Bit level jump instructions
	Slide 105
	Slide 106
	Slide 107: Subroutine CALL and RETURN Instructions
	Slide 108: LCALL address (16 bit)
	Slide 109: 0510: MOV A, #45H 0511: ADD A,#FFH
	Slide 110: ACALL address (11 bit)
	Slide 111: RET instruction
	Slide 112: I O port programming
	Slide 113: Port-0
	Slide 114: PROGRAMS MAKE PO.2 AS I/P PORT
	Slide 115: PROGRAMS
	Slide 116: Get a byte and place it in P2 and P1 MOV A, # FFH ; FF=11111111 1 BYTE MOV P2, A ; A=FFH---P2=FFH MOV P1, A; A=FFH----P1=FFH
	Slide 117: Write a program to configure port 1 as I/P port. Then data is received from the port and saved in R5,R6,R7
	Slide 118: Toggle the bit of P1.2 continuously Method 1:
	Slide 119
	Slide 120: PROGRAMS CONTINUED
	Slide 121: Write a program to configure port 1 as I/P port. Then data is received
	Slide 122: Toggle the bit of P1.2 continuously
	Slide 123: BACK: SETB P1.2 ; P1.2=1 ACALL DELAY
	Slide 124
	Slide 125
	Slide 126: PROGRAMS ON ARITHMETIC INSTRUCTIONS
	Slide 127: Two numbers are stored in registers R0 and R1. Verify if their sum is greater than FFH send Y to P1
	Slide 128: Analyze the following program
	Slide 129: Analyze the following program Solution:
	Slide 130
	Slide 131: MOV P1,#FFH ;P1=I/P MOV A,P1 ; A=65 CJNE A,#75,OVER MOV R0, A ;R0=75
	Slide 132
	Slide 133: Programs Continued
	Slide 134: Solution: MOV A,#41H SETB P2.1 SETB P2.1 MOV R5,#00 HERE: RRC A MOV P2.1,C DJNZ R5,HERE
	Slide 135: Write a program to bring in data in serial form and send it out in parallel form
	Slide 136
	Slide 137
	Slide 138
	Slide 139: Method 2:
	Slide 140
	Slide 141
	Slide 142: Assume that bit P2.3 is an input and represents the condition of an oven. If it goes high, it means that the oven is hot. Monitor the bit continuously. Whenever it goes high, send a high-to-low pulse to port P1.5 to turn on a buzzer
	Slide 143
	Slide 144: A switch is connected to pin P1 .0 and an LED to pin P2.7. Write a program to get the status of the switch and send it to the LED.
	Slide 145: Thank You

