BEE403:MICROCONTROLLER

MODULE - 4:
8051 Serial Communication_ 8051 Interrupt programming in assembly and C

AT M E

] College of Engineering

OUTLINE

e 4.1 Basics of serial communication

* 4.2 8051 connection to RS242
4,3 8051 serial port programming In

assembly
4.4 Serial port programming in 8051 C

AT M E

4 College of Engineering

OUTLINE

» 8051 Interrupt programming in assembly and C:

* 4.5 8051 interrupts TN W
* 4.6 Programming timer — Q\%W%/r\ ‘
4.7 External hardware :
» 4.8serial communication interrupt
* 4.9 Interrupt priority in 8051/52

* 4.10 Interrupt programming in C

AT M E

atne] College of Engineering

Oepartment of EEE

Emesng Exte Erengy

| |

U1
19 byralq P0.0/ADO
P0.1/AD1
i P0.2/AD2
18 | xtaL2 P0.3/AD3
PO.4/AD4
P0.5/AD5
o PO.6/ADB
RST PO.7/AD7
P2.0/A8
P2.1/A9
P2.2/A10
23| PSEN P2.3/AT
- {ae P2.4/A12
EA P2.5/A13
P2.6/A14
P2.7/A15
;: P1.0 P3.0/RXD
2 P P3.1/TXD
21 P12 P3 2/INTO
e ILE P3.3/NTT
2= P14 P3.4/T0
iP5 P35I
eis P3 6/WR
P17 P3.7/RD

AT89CH1

[JA T M E

atimel College of Engineering

[Well, I need your help to de\bu‘g—!_]

Hey small micro, what's up?

Receiver

FIENEN : 3
= =]
jm [Y
U5ooooo DS
Sender registers Receiver registers

110011001 === =11001

Oepartment of EEE
Emetng Elte Erergy

For example: We want to transmit a word 10011101
using serial communication between two computers.

Top (|) ﬁ];»ﬁ]-» SIE 207 %1

atine) College of Engineering

4.1 Basics of serial communication

 When a microprocessor communicates with the outside world, it
provides the data in byte-sized chunks.

* In some cases, such as printers, the information is simply grabbed

from the 8-bit data bus and presented to the 8-bit data bus of the
printer.

atine) College of Engineering

4.1 Basics of serial communication

* This can work only if the cable Is not too long, since long cables
diminish and even distort signals.

 Furthermore, an 8-bit data path Is expensive. For these reasons, serial
communication I1s used for transferring data between two systems
located at distan f hundr ff millions of mil

4.1 Basics of serial communication

* For serial data communication to work, the byte of data must be
converted to serial bits using a parallel-in-serial-out shift reqister:

hen | N ransmi ver a sinal line.

* This also means that at the receiving end there must be a serial-in-

parallel-out shift reqgister to receive the serial data and pack them
Into a byte.

atine] College of Engineering

4.1 Basics of serial communication

e Serial data communication uses two methods, asynchronous and
synchronous.

* The synchronous method transfers a block of data (characters) at a time,
while the asynchronous method transfers a single byte at a time

Serial interfaces—one bit at a time
MSBE LSB

00101111

Serial bit stream

Serialintarface || 1L LI

11110100

atine) College of Engineering

4.1 Basics of serial communication

* It Is possible to write software to use either of these methods, but the
programs can be tedious and long.

* For this reason, there are special 1C chips made by many manufacturers
for serial data communications.

 These chips are commonly referred to as UART (universal
asynchronous receiver-transmitter) and USART (universal
nchronous-asvnchron recejver-transmitter).

AT M E

4 College of Engineering

Serial Transfer

Sender

-

Parallei Transfer

Receiver

Sender IDD:: Receiver
T

Figure 4-1. Serial versus Parallel Data Transfer

Serial versus Parallel Data Transfer

Cepartment of EEE
Emetng Eite Erergy

AT M E

2C] College of Engineering

Simplex Transmitter |- ‘ —s-| Receiver

Half Duplex Transmitter

Receiver

Full Dupiex Transmitter

Receiver

Receiver

-.—-| Transmitter

Simplex, Half-, and Full-Duplex Transfers

/\

Oepartment of EEE
me=ng Eite freng

UKAS
Cepartment of EEE
Emetng Eite Erergy

2tme) College of Engineering

a) Half- and full-duplex transmission

* In data transmission If the data can be transmitted and received, it is a
duplex transmission. This Is In contrast to simplex transmissions
such as with printers, in which the computer only sends data.

2tme) College of Engineering

 Duplex transmissions can be half or full duplex, depending on whether
or not the data transfer can be simultaneous. If data Is transmitted one
way at a time, it Is referred to as palf duplex.

* If the data can go both ways at the same time, it is full duplex

atine) College of Engineering

b)Asynchronous serial communication and
data framing

« 1. The data coming in at the receiving end of the data line in a serial
data transfer is all Qs and 1s;

« 2. It 1s difficult to make sense of the data unless the sender and
recelver agree on a set of rules, a protocol, on how the data is packed,
how many bits constitute a character, and when the data begins and

ends.

2tme) College of Engineering

Start and stop bits

* 1. Asynchronous serial data communication Is widely used for
character-oriented transmissions, while block-oriented data transfers
use the synchronous method.

* 2. In the asynchronous method, each character is placed between start
and stop bits.

* In data framing for asynchronous communications, the data, such as
ASCII characters, are packed between a start bit and a stop bit.

A 1 M E

J College of Engineering

« 3. The start bit is always one bit, but the stop bit can be one or two bits.
The start bit is always a 0 (low) and the stop bit(s) is 1 (high).

Framing ASCII “A” (41H)

ke s;zplo[1 0 ;0 ;0 io

goes out last D7 D0 goes out first

The rate of data transfer in serial data communication is stated In
bps (bits per second). Another widely used terminology for bps is

aud rate

atine) College of Engineering

4.1.1 RS232 standards

1. To allow compatibility among data communication equipment made
by various manufacturers, an interfacing standard called RS232 was
set by the Electronics Industries Association (EIA) in 1960. In 1963 it
was modified and called RS232A.

« 2. RS232B and RS232C were issued In 1965 and 1969, respectively.
In this book we refer to it simply as RS232.

atine) College of Engineering

» Today, RS232 is the most widely used serial 1/0O interfacing standard.
This standard is used in PCs and numerous types of equipment.

« However, since the standard was set long before the advent of the TTL
logic family, its input and output voltage levels are not TTL compatible.
In RS232, a 1 1s represented by -3 to -25 V, while a 0 bit is +3 to +25 V,
making -3 to +3 undefined.

atmel College of Engineering

RS232 pins

13

B E wwr lrn:f WW .
-_:'J’.‘J 3%; '.:',

Pin Descmion

| Protective ground

2 Transmitted data (TxD)

3 Received data (RxD)

4 Request to send (RTS)

5 Clear to send (CTS)

6 Data set ready (DSR)

7 Signal ground (GND)

8 Data carrier detect (DCD)
9/10 Reserved for data testing

11 Unassigned

12 Secondary data carrier detect
13 Secondary clear to send

4 Secondary transmatted data

15 Transmit signal element timing
16 Secondary received data

17 Receive signal element timing
18 Unassigned

19 Secondary request to send

20 Data terminal ready (DTR)

21 Signal quality detector

22 Ring indicator

23 Data signal rate select

24 Transmit signal element timing
25 Unassigned

[JATME

s College of Engineering

RS232

Department of EEE
w Emetng Elte Erergy

[JA T M E

19 College of Engineering

Dedicated Ethernet
switch
of Company net

Dedicated server of
technologist programs

Ethernet switch

of Company net /

l Virtual serial
ports RS232
Technologist
workstation /
/ / 7

ADA-13110 <* ADA-13110 L ADA-13110 <* ADA-13110 V?Q

| N ‘ra
N : /
RS-232 RS-232 RS-232 A -232

QCNC machine g CNC machine H CNC machine QCNC machine
nr. 1 nr. 2 nr.3 nr.n

[JAT M E

atime] College of Engineering

)

Send all
datato B

AT M E

2] College of Engineering

DB-9 Pin connection
Pin Dlegtion

I Data carrier detect (DCD)

2 Received data (RxD
3 Transmitted data (TxD)

4 Data terminal ready (DTR)
5 Signal ground (GND)

6 Data set ready (DSR) 1 L7 =, 5
7 Request to send (RTS) <\~~ 4
8 Clear to send (CTS) O ' o'o.o.o.o O
9 Ring indicator (RI) ‘(/ s ‘X

Y 9

[JATM E

ame College of Engineering

DB-9 Female

Straight cable connection
GND
-
X
<
RX

DB-9 Male

DB-9 Female

Null modem connection

GND
RX
—9
X X
PN
RX

GND

Department of EEE

@y Emetng Elte Erergy
DB-9 Male

atine) College of Engineering

s Eme Step 1: DTR (data terminal ready). When a terminal
E / e \ Kb (or a PC COM port) is turned on, after going through a
——— EE e T N self-test, it sends out signal DTR to indicate that it is

DT DCE ready for communication.
- i - If there is something wrong with the COM port, this

signal will not be activated.
. OTE DTE

TxD TxD This is an active-low signal and can be used to inform
RyD X RYD the emodem that the computer is alive and kicking.

This is an output pin from DTE (PC COM port) and an
— Input to the modem.

atine) College of Engineering

Step 2: DSR (data set ready). When DCE (modem) is turned on and has gone through
the self-test, it asserts DSR to indicate that it is ready to communicate. Thus, it Is an
output from the modem (DCE) and input to the PC (DTE).

This Is an active- low signal. If for any reason the modem cannot make a connection to

the telephone, this signal remains inactive, [ndicating to the PC (or terminal) that it

an sén

Step 3: RTS (request to send). When the DTE device (such as a PC) has a byte to
transmit, it asserts RTS to signal the modem that it has a byte of data to transmit. RTS is
an active-low output from the DTE and an input to the modem.

atine) College of Engineering

Step 4:

CTS (clear to send). In response to RTS, when the modem has room for storing the data
It IS to receive, it sends out signal CTS to the DTE (PC) to indicate that it can receive the
data now. This input signal to the DTE iIs used by the DTE to start transmission.

Step 5:

DCD (carrier detect, or DCD, data carrier detect). The modem asserts signal DCD to
Inform the DTE (PC) that a valid carrier has been detected and that contact between it
and the other modem is established. Therefore, DCD is an output from the modern and

an input to the PC (DTE).

Step 6:

RI (ring indicator). An output from the modem (DCE) and an input to a PC (DTE)
Indicates that the telephone is ringing. It goes on and off in synchronization with the

ringing sound.

atine) College of Engineering

8051 connection to RS232

* a) RxD and TxD pins in the 8051

1. The 8051 has two pins that are used specifically for transferring and
receivin rially.

2. These two pins are called TxXD and RxD and are part of the port 3
group (P3.0 and P3.1).

* Pin 11 of the 8051 (P3.1) Is assigned to TxD and pin 10 (P3.0) Is
designated as RxD.
* These pins are TTL compatible; therefore, they require a line driver to

make them RS232 compatible. One such line driver 1s the MAX232
chip.

atine) College of Engineering

MAX232

* Since the RS232 Is not compatible with today’s microprocessors and
microcontrollers, we need a line driver (voltage converter) to convert
the RS232's signals to TTL voltage levels that will be acceptable to the
8051 ‘s TxD and RxD pins.

atmel College of Engineering

* One example of such a converter is MAX232 from Maxim Corp.
(Wwww.maxim-ic.com).

* The MAX232 converts from RS232 voltage levels to TTL voltage levels,
and vice versa.

* One advantage of the MAX232 chip is that It uses a +5 V power source
which, Is the same as the source voltage for the 8051.

[JA T M E

atime] College of Engineering

Cepartment of EEE

Emetng Ebte Erergy

MAX232 Basic Circuit
+5V

** All Capacitors are of 1uF.

[ATAL],

™ RX
Microcontroller

AT M E

atime] College of Engineering

Oepartment of EEE
w Emetng Eite Erergy

O 0 0 O
(W s ()|DB-9 Port

O

Microcontroller

www.microcontroller-project.com

MakeAGIF.com

Vee J, c3
) 1 2| T "
C1E11 MAX232 E
+ 4 C4
c2l5 E I *
Tour
1 il 1I>¢ 14
R1our R1in
125 13
T2in T2ouT
10 ' Dc 7
R2our R2mn
9 -0} 8
TiLside 15 | RS232side

AT M E

4 College of Engineering

8051

TXDC (P3.1) |

RxDO (P3.0)

11

10

11

12

MAX232

14

13

OB-9

(a) Inside MAX232 and (b) its Connection to the 8051 (Null Modem)

2tme) College of Engineering

4.3 8051 serial port programming in assembly
« Baud rate in the 8051

« 8051 divides the crystal frequency by 12 to get the machine cycle
frequency.
* In the case of XTAL = 11.0592 MHz, the machine cycle frequency Is

921.6 kHz (11.0592 MHz / 12 = 921.6 kHz).

* The 8051 serial communication UART circuitry divides the machine
cycle frequency of 921.6 kHz 2_once more before it is used by Timer
1 to set the baud rate.

* Therefore, 921.6 kHz divided by 32 gives 28.800 Hz,

2tme) College of Engineering

Baud Rate _ _T_HI gl_)_fqiqyal! THI1 gHﬂ:!
-3

2600 - — F _
4500) FA
2400 12 Fd
1200 24 ES

With XTAL = 11.0592 MHz, find the TH1 value needed to have the following
baud rates.

(a) 9600 (b) 2400 (c) 1200

Solution:

With XTAL = 11.0592 MHz, we have:

The machine cycle frequency of the 8051 = 11.0592 MHz / 12 = 921.6 kHz, and 921.6
kHz / 32 = 28,800 Hz is the frequency provided by UART to Timer 1 to set baud rate.

[JA T M E

] College of Engineering

oscillator

XTAL |——

Machine cycle freq.

921.6 kHz

~p—

+:32
by UART

28,300 Hz

-
To Timer | to

set the baud
rate

r<‘<-.
il
i

atme] College of Engineering

4.3.1 SBUF register

« SBUF Is an 8-bit register used solely for serial communication in the
8051. For a byte of data to be transferred via the TxD line, it must be

placed in the SBUF register. Similarly, SBUF holds the byte of data
when 1t Is received by the 8051 ‘s RxD line.

MOV SBUF,#'D! :load SBUF=44H, ASCII for 'D!
MOV SBUF,A ;copy accumulator into SBUF
MOV A, SBUF ;jcopy SBUF into accumulator

AT M E

208} College of Engineering

SCON register

alIic Collegé -of Engineering S C O N reg iSte r

* The SCON register is an 8-bit register used to program the start bit, stop
bit, and data bits of data framing, among other things

SMO [SMI [sM2 [REN [TBS [RB8 | TI | RI

SM0 SCON.7 Serial port mode specifier

SM1 SCON.6 Serial port mode specifier

SM2 SCON.S Used for multiprocessor communication. (Make it 0.)

REN SCON.4 Set/cleared by software to enable/disable reception.

TB8 SCON.3 Not widely used.

RB8 SCON.2 Not widely used.

TI SCON.] Transmit interrupt flag. Set by hardware at the beginning of
the stop bit in mode 1. Must be cleared by software.

RI SCON.O Receive interrupt flag. Set by hardware halfway through the

stop bit time in mode 1. Must be cleared by software.

\INote: Make SM2, TBS, and RB8 = 0.

2tme) College of Engineering

« a) SMO, SM1

« SMO and SMI are D7 and D6 of the SCON register, respectively. These
two bits determine the framing of data by specifying the number of bits

per character, and the start and stop bits. They take the following
combinations.

SM(SMI

) 0 Serial Mode 0

0 I Serial Mode 1, 8-bit data, | stop bit, | start bit
l 0 Serial Mode 2

l I Serial Mode 3

College of Engineering
- ¢) REN

* The REN (receive enable), bit is D4 of the SCON register. The REN bit is
also referred to as SCON.4 since SCON is a bit-addressable register.

* When the REN Dbit is high. it allows the 8051 to receive data on the
RxD pin of the 8051,

 As a result If we want the 8051 to both transfer and receive data, REN
must be setto 1.

* By making REN = 0, the recejver is disabled.

REN — 1 or REN =0 can
be achieved by the instructions “SETB N. 4" and “CLR N. 4"

respectively

atine) College of Engineering

d) TBS

TBS (transfer bit 8) i1s bit D3 of SCON. It Is used for serial modes 2
and 3. We make TBS = 0 since it Is not used in our applications.

e) RB8

RB8 (receive bit 8) is bit D2 of the SCON register. In serial
mode 1, this bit gets a copy of the stop bit when an 8-bit data Is
received. This Dbit IS_th for TBS) Is rarel

anvmore

2tme) College of Engineering

) TI
e T1 (transmit interrupt) is bit DI of the SCON register. This Is an
extremely important flag bit in the SCON register.

* When the 8051 finishes the transfer of the 8-bit character, It raises the T1
flag to indicate that it Is ready to transfer another byte.

* The TI bit Is raised at the peginning of the stop bit

atine) College of Engineering

* g) RI
RI (receive interrupt) is the DO bit of the SCON register. This Is
another extremely important flag bit in the SCON register.

* When the 8051 receives data serially via RXD, it gets rid of the start and
stop bits and places the byte in the SBUF register.

* Then it raises the RI flag bit to indicate that a byte has been received

and should be picked up before it Is lost.

C()“LDL of Engineering

4.3.3 Programming the 8051 to transfer
data serially

* In programming the 8051 to transfer character bytes serially, the
following steps must be taken.

1.The TMOD reqister is loaded with the value 20H, indicating the use
of Timer 1 in mode 2 (8-bit auto-reload) to set the baud rate.

2.The TH1 i1s loaded with one of the values to set the baud rate for
serial data transfer (assuming XTAL = 11.0592 MHz).

3.The SCON reqister is loaded with the value 50H, indicating serial
mode 1, where an 8-bit data is framed with start and stop bits.

2tme) College of Engineering

4.3.3 Programming the 8051 to transfer data

serially
1. TR1 is setto 1 to start Timer 1.
2. 11 is cleared by the “CLR TI” instruction.

3.The character byte to be transferred serially is written into the SBUFE
redister.

4.The TI flag bit Is monitored with the use of the instruction
JINB T1. xx to see if the character has been transferred completely.

5.To transfer the next character, Repeat

IA T M E

§ College of Engineering

Write a program for the 8051 to transfer letter “A™ serially at 4800 baud, continuously.

Solution:
MOV TMOD,#20H ;Timer 1, mode 2{auto-reload)
MOV THl,#-6 ;4800 baud rate
MOV SCON,#50H ;8-bit, 1 stop, REN enabled
SETB TRl ;start Timer 1
AGAIN: MOV SBUF, #"A" ;letter "A" to be transferred
HERE: JNB TI,HERE ;wait for the last bit
CLR TI ;clear TI for next char
SIJMP AGAIN ;keep sending A
SMO | SM1 REN Tl Rl
0 1 1 0 0

CjJA T M E

2l College of Engineering

« STEP 1: STARTTIMER (TIMER 1) SETBTR1
« STEP2: BACK: MOV SBUF# ‘A’

« STEP3: HERE: JNB TI, HERE

« STEP4:CLR TI

« STEP 5:SIMP BACK

17727

0 0 0 1

AT M E

=] College of Engineering

| rlte a program to transter the message Y ES” serially at 9bUU paud, 8-DbIt data,
1Start bit and 1 stop bit. Do this continuously.

Solution:
MOV TMOD, #20H ;Timer 1, mode 2 <(mmmm
MOV TH1,#-3 ;9600 baud CE—
MOV SCON, #SOH ;8-bit, 1 stop bit, REN enabled (s
SETB TRl ;start Timer 1 (e
AGAIN: MOV A, #"Y" ;transfer "Y' (S (e
ACALL TRANS

MOV A, #"E" ;transfer "E" (U
ACALL TRANS o

MOV A, #"s" ;transfer “s* (———
ACALL TRANS CE—
SJMP AGAIN ;keep doing it <—

jmm——- gerial data transfer subroutine

TRANS : MOV SBUF,A ;load Spyf ¢mmm Geeessm <
HERE: JNB TI,HERE ;wait for last bit to transfer am— —
CLR TI ;get ready for next byte (ammmm < —

RET _— <:|

j M E

S Program the 8051 to receive bytes of data serially, and put
them In PI. Set the baud rate at 4800, 8-bit data, and 1 stop
bit.

Solution:
MOV TMOD, #20H ;Timer 1, mode 2{auto-reload)
MCV TH1,#-6 ;4800 baud
MOV SCON,#50H ;8-bit, 1 stop, REN enabled
SETBE TR1 ;start Timer 1
HERE: JNB RI,HERE ;walt for char to come in
MOV A,SBUF ;Save 1ncoming byte in A
MOV P1,A ;send to port 1
CLR RI ;get ready to receive next byte

SJMP HERE ;keep getting data

A B \ A »
[‘e"t ﬂ xm"v” E f J

2Une] College of Engineering

8051 serial port programming in assembly

atine) College of Engineering

Importance of the Tl flag

* To understand the importance of the role of TI, look at the following
sequence of steps that the 8051 goes through in transmitting a

character via TxD.

atine) College of Engineering

ne byte character to be transmitted Is written into the SBUFE reqister.

ne start bit 1s transferred.
he 8-bit character is transferred gne bit at a time.

. The stop bit Is transferred. It i1s during the transfer of the stop bit that
the 8051 raises the T1 flag (T1 =1). indicating that the last character
was transmitted and it is ready to transfer the next character.

. By monitoring the T1 flag, we make sure that we are not overloading

the SBUF reqister. If we write another byte into the SBUF register
before TI is raised, the un transmitted portion of the previous byte will
be lost. In other words, when the 8051 finishes

. After SBUF Is loaded with a new byte, the TI flag bit must be forced to

0 by the “CLR T1” instruction in order for this new byte to be
transferred.

A T M E

-] College of Engineering

Program the 8051 to receive bytes of data serially, and put '_thgm 1IN Pl‘"“S’et the baud
rate at 4800, 8-bit data, and 1 stop bit.

;Timer 1, mode 2 (auto-reload) (s
;8-bit, 1 stop, REN enabled ‘s

;wait for char to come in (=

;get ready to receive next byte (amm

Solution:

MOV TMOD, #20H

MOV TH1,#-6 ;4800 baud ¢

MOV SCON, #50H

SETE TR1 istart Timer 1 (s
HERE: JNB RI,HERE

MOV A,SBUF ;save 1ncoming byte in A (s

MOV P1,A ;send to port 1 <¢=mmmm

CLR RI

SIJMP HERE ;keep getting data ¢
0 1 0 0 0 0 0 1

2tme) College of Engineering

Importance of RI flag

* In receiving bits via its RxD pin, the 8051 goes through the following
steps.

1. It recelves the start bit indicating that the next bit is the first bit of
the character byvte it is about to recejve,

e 2. The 8-bit character Is received one bit at time. When the last bit 1s
recelved, a byte Is formed and placed in SBUFE,

—_1, Indicating that an entlre character byte has been received and must be
picked up before It gets overwritten by an incoming character.

« 4. By checking the RI flag bit when it Is raised, we know that a
character has been received and is sitting in the SBUF register. We copy
the SBUF contents to a safe place in some other register or memory
before it is lost.

« 5. After the SBUF contents are copied into a safe place, the Rl flag bit
must be forced to 0 by the “CLR RI” instruction in order to allow the
next received character byte to be placed in SBUF. Failure to do this
causes loss of the received character.

[JA T M E

LLine College of Engineering

Doubling the baud rate in the 8051

i Jo _Jo _Jo _Jo _Jo o 0o

MOV A, PCON ;jplace a copy of PCON in ACC <(ummmmm
SETB ACC.7 ;make D7=1 (e
MOV PCON,A ;now SMOD=1 without s

;changing any other bits

2Lne } College of Engineering

* To see how the baud rate 1s doubled with this method, we show the role of
the SMOD bit (D7 bit of the PCON register), which can be 0 or 1.

e Baud rates for SMOD =0

* 1. When SMOD = 0, the 8051 divides 1/12 of the crystal frequency by 32
and uses that frequency for Timer 1 to set the baud rate. In the case of
XTAL = 11.0592 MHz we have:

* Machine cycle freq. = 11.0592 MHz / 12 = 921.6 kHz
« And 921.6 kHz /32 = 28.800 Hz since SMOD =0

* This Is the frequency used by Timer 1 to set the baud rate. This has been
the basis of all the examples so far since it is the default when the 8051 is
powered up.

2tme) College of Engineering

 Baud rates for SMOD =1

« With the fixed crystal frequency, we can double the baud rate by making
SMOD - 1. When the SMOD bit (D7 of the PCON register) is set to 1,
1/12 of XTAL is divided by 16 (instead of 32) and that Is the frequency

used by Timer 1 to set the baud rate. In the case of XTAL = 11.0592
MHz, we have:

* Machine cycle freq. = 11.0592 MHz / 12 = 921.6 kHz

« And 9216 kHz /16 = 57.600 Hz since SMOD =1
* This Is the frequency used by Timer 1 to set the baud rate

AT M E

o] College of Engineering

Baud Rate Comparison for SMOD =0 and SMOD =1

TH1 (Decimal) (Hex SMOD=0 SMOD = I
3 FD 9,600 19,200
-6 FA 4,800 9,600
-12 F4 2,400 4,800

~24 ER 1,200 2,400

A 1 M E

atne] College of Engineering

ssuming that XTAL =
(a) what this program does, (b) compute the frequency used by Timer 1 to set the

baud rate, and (c) find the baud rate of the data transfer.

MOV A, PCON ;A = PCON
SETB ACC.7 ;make D7 = 1
MOV PCON, A ;SMOD = 1, double baud rate

;jwith same XTAL freq.

MOV TMCD, #20H ;Timer 1, mode 2{auto-reload)

MOV TH1, -3 ;19200 (57,600 / 32 = 19200 baud rate
;Since SMOD=1)

MOV SCON,#50H ;8-bit data,l stop bit, RI enabled

SETB TR1 ;start Timer 1
MOV A,#"B" ;transfer letter B
Al: CLR TI ;make sure TI=0
MOV SBUF,A ;transfer it
H1l: JNB TI H_1 ;stay here until the last bit is gone

SJMP A 1 ;keep sending "B" again and again

2tme) College of Engineering

Solution

1. This program transfers ASCII letter B (01000010 binary) continuously.

2.With XTAL = 11.0592 MHz and SMOD =1 in the above program, we
have:

11.0592 MHz / 12 = 921.6 kHz machine cycle frequency
921.6 kHz /16 = 57,600 Hz frequency used by Timer 1 to set the baud rate

57,600 Hz / 3 = 19,200 baud rate

] College of Engineering .
Flnd the TH1 value (In both decimal and hex) to set the baud rate to

each of the following. (a) 9600 (b) 4800 if SMOD = 1 Assume that
XTAL —11.0592 MHz.

 With XTAL = 11.0592 MHz and SMOD =1, we have Tinier 1
frequency = 57,600 Hz.

e 57,600 /9600 = 6; therefore, TH1 = -6 or TH1 = FAH.
e« 57,600/4800 = 12: therefore, TH1 =-12 or TH1 = F4H.

SMOD = |
11.0592 MHz =
+16 |57.600Hz To
Machine cycle freq. — Timer |
AMAE =t #12 - to set
oscillator 921.6 kHz 28800 Hz baud
B2 rate

SMOD =0

A1 M E

s College of Engineering

Serial port programming in 8051 C

Write a C program for the 8051 to transfer the letter “A™ serially at 4800 baud continu-
ously. Use B-bit data and | stop bit. '

On to

Solution:

finclude <regSl.h> <« Header File
> void main(void) 4 Main Function

— |

TMOD=0x20; //use Timer 1,8-BIT auto-reload
TH1=0XFA; / /4800 baud rate
SCON=0x50;
TR1=1;
while (1)
—
SBUF="A"'; //place value in buffer
while (TI==0); Tl==1;
TI=0; T1=0;

—— 1

—)

Write an 8051 C program to transfer the message “YES” serially at 9600 baud, 8-bit

A data, 1 stop bit. Do this continuously. | /
tme| Coll Solution: ? \

#include <regS1l.h> m
void SerTx(unsigned char);
void main (void)

{

TMOD=0x20; //use Timer 1,8-BIT auto-reload
TH1=0xFD; //9600 baud rate
SCON=0x50;
TR1=1; //start timer
while (1)
{

SerTx('Y');
SerTx('E');

SexrTx('S");
}
}
void SerTx(unsigned char x)
{
SBUF=x; //place value in buffer
while (TI==0); //wait until transmitted

TI=0;

}

" Program the 8051 in C to receive bytes of data serially and put them in P1. Set the baud
- rate at 4800, 8-bit data, and 1 stop bit.
= Selution:

#include <reg51.h>

void main ({(void)
{

s

unsigned char mybyte;

TMOD=0x20; //use Timer 1,8-BIT auto-reload
TH1=0xFA; //4800 baud rate
SCCN=0x50;
TRI=1; //start timer
while’l! //repeat forever
{
while (RI==0); //wait to receive
mybyte=SBUF; //save value
Pl=mybyte; //write value to port
RI=0;
}

AT M E

§ College of Engineering

C Programs continued

Write an 8051 C program to transfer the message “YES™ serially at 9600 baud, 8-bit
data, 1 stop bit. Do this continuously.

- Solution:

#include <regSli.h>

void SerTx{unsigned char) ;

void main (void)

{

TMOD=0x20; //use Timer 1,8-BIT auto-reload
TH1=0xFD; / /9600 baud rate

SCON=0x50;

TR1=1; //start timer

while (1)

{

SerTx('Y"');
SexrTx('E');
SexrTx('S"');

}
}
void SerTx (unsigned char x)
{
SBUF=x; //place value in buffer
while (TI==0); //wait until transmitted
TL=03;

ﬁ%lu&<rg\é[51.ﬁf> ﬁ;

el O Se TR{UASIgNned ¢
Void Main()
{
TMOD=0X20;
TH1=0XFD;
SCON=0X50;
\-I/-VF\r)ulIZ(ll) E/Oid SerTx (unsigned char x)
{ SBUF=X;
SerTx(‘Y?); While(T1==0):
SerTx(‘E’); TI=0;
SerTx(‘S’); }

|= Program the 8051 in C to receive bytes of data serially and put them in P1. Set the baud
- rate at 4800, 8-bit data, and 1 stop bit.
m==) ginclude <reg5l.h>
mmm) vOid main (void)
)

mmm) unsigned char mybyte;
mmm) TMOD=0x20; //use Timer 1,8-BIT auto-reload
mem) TH1=0xFA; //4800 baud rate
mmm) SCCON=0x50;
mem) TRI=1; //start timerxr
mee) whilefl! //repeat forever
—> {
mem) while(RI==0); //wait to receive
mmm) Wybyte=SBUF; //save value
=) Pl=mybyte; //write wvalue to port
mmm) RI=0;
-}

2tme) College of Engineering

Write an 8051 C program to send two different strings to the serial
port. Assuming that

SW is connected to pin P2.0, monitor its status and make a decision as
follows:

SW = 0: send your first name
SW = 1: send your last name
Assume XTAL = 11.0592 MHz, baud rate of 9600, 8-bit data, 1 stop bit.

Solution:

#include <regSl.h> ¢

sbit MYSW=p2°(,; <¢=mm //input switch
void main{void) < am
{

ungigned char z; ¢
unsigned char fname([)="ALI"; <=
unsigned char lname(]="SMITH", ===

TMOD=0x%20; //use Timer 1,8-BIT auto-reload <¢=mm
TH1=0xFD; //9600 baud rate <=
SCON=0Xx50; <=
TR1i=1; //start timer <umm
if (MYSW==0) //check switch <
{ ¢
for(z=0;z<3;z++) //write name ¢umm
{ <=
SBUF=fname [z] ; //place value in buffer <=mm
while (TI==0); //wait for transmit ¢=mm
TI=0; ==
} =

AT M E

o] College of Engineering

* For(z=0; z<3;z++) z++ ++z
* Fname|[|= ALl

e Step 1: Z=1 SBUF=Z
» Step 2: Z=2 SBUF=Z
e Step 3:Z=3 SBUF=Z

[JA T M E

e College of Engineering

else ¢
{ =
for(z=0:2<5:2z++) //write name ¢
{ L
SBUF=1name(z]; //place value in buffer <=
while (TI==0); //wait for transmit <=
TI=0; —
} P
} -

b

2tme) College of Engineering

8051 C compilers and the second serial port

 Since many C compilers do not support the second serial port of the
DS89C4x0O chip, we have to declare the byte addresses of the new

SER reqisters using the sfr kevword.

DS89C4x0

TxDO (P3.1)
RxDO (P3.0)

TxD1 (P1.3)
RxD1 (P1.2)

11

11

MAX232

10

12

10

N I N
Wil

4
3

Jo

e)
wi I~

P
Senal #1 Serial #0

28 College of Engineering

* Write a C program for the DS89C4xO to trar
“A” serially at 4800 baud continuously. Use t
serial port with 8-bit data and 1 stop bit. We ca
Timer 1 to set the baud rate.

sfer letter
ne second

n only use

[JA T M E

atime] College of Engineering

#include <reg51.h>
sfr SBUF1=0xC1l;
sfr SCON1=0xC0;
sbit TI1=0xC1l;
vo%d main{void)
TMCD=0x20;
TH1=0XFA;
SCON1ls0XxX50;
TR1=1;
while (1)
{
SBUF1="'A"';
while (TI1l==0) ;
TIl=0;

}

//use Timer 1 for 2nd serial port

/ /4800 baud rate
//use 2nd serial port SCON1l register

//start timer

//use 2nd serial port SBUF1l register
//wait for transmit

atine) College of Engineering

* Program the DS89C4x0O iIn C to receive bytes of data serially via
the second serial port and put them in Pl. Set the baud rate at
9600, 8-bit data, and 1 stop bit. Use Timer 1 for baud rate
generation.

[JA T M E

atime] College of Engineering

Solution:
#include <regSl.h>
sfr SBUF1=0xC1l;
sfyxy SCON1l=0xCO0;
sbit RI1=0xCO0;
vo?d main(void)}
unsigned char mybyte;
T™OD=0x20;
THi1i=0XFD;
SCON1=0x50;
TR1l=1;
while(l)
while(RI1l==0) ;
mybyte=SBUF1;
P2=mybyte;
RI1=0;

//use Timer 1,8-BIT autc-reload
/ /9600 |
//use SCON1 cof 2nd serial port

//monitor RI1 of 2nd serial port
//use SBUF1 of 2nd serial port
//place value on port

atine] College of Engineering

8051 Interrupts

* Interrupts vs. polling

* In the Interrupt method, whenever any device needs Its service, the
device notifies the microcontroller by sending it an interrupt signal.
Upon receiving an interrupt signal, the microcontroller interrupts
whatever it Is doing and serves the device.

* The program associated with the interrupt iIs called the jnterrupt
rvice routine (ISR) or interrupt handler.

atine) College of Engineering

* In polling, the microcontroller continuously monitors the status of a given

device; when the status condition is met, It performs the service.

o After that, It moves on to monitor the next device until each one Is
rvi

atimel College of Engineering

* The advantage of interrupts is that the microcontroller can serve many
devices (not all at the same time, of course); each device can get the

attention of the microcontroller based on the priority assigned to It

 The polling method cannot assign priority since it checks all devices In a
round-robin fashion.

College of Engineering ’*
Interrupt service routine

* When an interrupt is invoked, the microcontroller runs the interrupt
service routine.

* For every interrupt, there is a fixed location in memory that holds the
address of its ISR.

 The group of memory locations set aside to hold the addresses of ISRs

Is called the jnterrupt vector table.

K 1T M E

College of Engineering

Six interrupts in the 8051

Interrupt ROM Location (Hex) Pin Flag Clearing
Reset . 0000 9 Auto

External hardware interrupt 0 (INTO) 0003 P3.2 (12) Auto

Timer O interrupt (TFO) 000B Auto

External hardware interrupt | (INT1) 0013 P3.3 (13) Auto -
Timer | interrupt (TF1) 001B Auto

Serial COM interrupt (RI and TI) 0023 Programmer

clears it.

HERE:JNB TFO, HERE ; CLRTFO

SMO_ SM1_SM2 REN | TBS | RBS |

atne] College of Engineering

Enablmg and disabling an interrupt

* Steps In enabling an interrupt

1. To enable an interrupt, we take the following steps: . Bit D7 of the

|IE register (EA) must be set to high to allow the rest of register to
take effect.

« 2. If EA =1, Interrupts are enabled and will be responded to if their
corresponding bits in IE are high. If EA = 0, no interrupt will be
responded to, even if the associated bit in the IE register is high.

D7

DO

EA | - T ET2 JES [ETI | EX1 | ET0 | EXO

EA

ET2

ES

ETI

EX1

ETO

EX0

IE.7

IE.6

[E.S

IE.4

IE.3

IE.2

IE.1

IE.0

Disables all interrupts. If EA = 0, no interrupt is acknowledged.

If EA = |, each interrupt source is individually enabled or disabled

by setting or clearing its enable bit.

Not implemented, reserved for future use.*

Enables or disables Timer 2 overflow or capture interrupt (8052 only).
Enables or disables the serial port.interrupt.

Enables or disables Timer 1 overflow interrupt.

Enables or disables external interrupt 1.

Enables or disables Timer O overflow interrupt.

Enables or disables external interrupt 0.

*User software should not write 1s to reserved bits. These bits may be used
in future flash microcontrollers to invoke new features.

|= Show the instructions to (a) enable the serial interrupt, Timer 0 interrupt, and external
hardware interrupt | (EX1), and (b) disable (mask) the Timer 0 interrupt, then (c) show |
~= how to disable all the interrupts with a single instruction.

Solution:

(a) MOV IE,#10010110B ;enable serial, Timer 0, EX1

Since IE is a bit-addressable register, we can use the following instructions to access
individual bits of the register.

(b) CLR IE.1 ;mask (disable) Timer 0 interrupt only
(c) CLR IE.7 ;disable all interrupts

Another way to perform the “MOV IE, #10010110B" instruction is by using single-
bit instructions as shown below.

SETB IE.7 ;EA=1, Global enable
SETB 1E.4 ;enable serial interrupt
SETB 1E.1 ;enable Timer 0 interrupt

SETB IE.2 ;enable EX1

“ {./\..
UKAS
Cepartment of EEE
© Emetng Eite Erergy

“1‘ College of Engineering P,
Frogramiming umer

 Roll-over timer flag and interrupt

« 1. Timer flag (TF) Is raised when the timer rolls over. In that chapter,
we also showed how to monitor TF with the instruction “JNB TF,
target”. In polling TF, we have to wait until the TF Is raised.

TEQ Timer 0 Interrupt Vector TF1 Timer 1 Interrupt Vector

| | == 000BH | | =——=[001BH
Jumps 1o jumps to

College of Engineering

2. The problem with this method is that the microcontroller is tied down
while waiting for TF ral n nn ny thing else. Using

Interrupts solves this problem and avoids tying down the controller.

« 3. If the timer interrupt In the IE reqister is enabled, whenever the timer
rolls over, TF is raised, and the microcontroller is interrupted in whatever

It 1S doind. and umps to the interrupt vector table to service the ISR.

atine) College of Engineering

 Write a program that continuously gets 8-bit data from PO and sends it
to Pl while simultaneously creating a square wave of 200 (as period on
pin P2.1. Use Timer 0 to create the square wave. Assume that XTAL
=11.0592 MHz.

Col

|“ A We will use Timer 0 in mode 2 (auto-reload). THO = 100/1.085 s = 92.
atme

;—-Upon wake-up go to main, avoid using memory space ;allocat-
ed to Interrupt Vector Table

ORG 0000H

LJMP MAIN ;bypass interrupt vector table

;—-ISR for Timer 0 to generate square wave

ORG 000BH ;Timer 0 interrupt vector table
CPL P2.1 ;toggle P2.1 pin
RETI ;return from ISR

;—-The main program for initialization
ORG 0030H ;after vector table space
MAIN: MOV TMOD,#02H ;Timer 0, mode 2(auto-reload)
MOV PO, #0FFH ;make PO an input port
MOV THO,$#-92 ;THO=A4H for -92
MOV IE,#82H ;IE=10000010(bin) enable Timer 0

SETB TRO ;Start Timer 0
BACK: MOV A,PO ;get data from PO

MOV Pl1,A ;issue it to P1

SIJMP BACK ;keep doing it

;loop unless interrupted by TFQ

atine) College of Engineering

* The following program generates a square wave on pin P15
continuously using timer 1 for a time delay.
If XTAL =11.0592 MHz. In your calculation do not
Include the overhead due to instructions in the loop

2tne] College of Engineering

I\/IOV TMOD, #10H
AGAIN: MOV TL1, #34H
MOV TH1, #/6H

SETB TR1

BACK: JNB TF1, BACK

C

C
CL

D

R TR1
L P1.5

R TF1

SIMPAGAIN

1. (FFFF-7634+1) = 89CC (hex) = 35276 (dec)

2. 35276 * 1.085 =38.274ms

3. 1/38.274ms= 26.127 Hz

TL1,#05H
TH1,# FDH

-

y]i A N A P,
I AVA d
A | V 3 j

atine) College of Engineering

Assume that XTAL=11.0592MHz, write a program to generate a square
wave of 2kHz frequency on pin P1.5

T=1/f =1/2KHz = 500us

500us/2 = 250 us

250us/1.085us = 230 =n 65536 —230 =65306 = FF1A (hex)
TH =FF TL=1A

AT M E

atimel College of Engineering

« Write a program to generate a square wave of 50 Hz frequency on pin
P1.2. Use Timer 0. Assume that XTAL = 11.0592MHz

[JA T M E

atime] College of Engineering

B,

Cepartment of EEE

«wy Emetng Eite Energy

ORG U0UO0BH ; ISR ror Taimer O
CPL Pl.2 ;jcomplement P1.2
MOV TLO, #00 ;relcad timer values
MOV THO, #0DCH
RETI ;return from interrupt
ORG 30H ;starting location for prog.
e m-- main program for initialization ‘
MAIN: MOV TMOD, #00000001B ;Timer 0, Mode 1 f
MOV TLO, #00
MOV THO, #0DCH
MOV IE,#82H ;enable Timer 0 interrupt
SETE TRO ;start timer
HERE: SJMP HERE ;stay here until interrupted
END
8051 v
Pl.2}— — W i

50 Hz square wave

atine) College of Engineering

External hardware mterrupts

* The 8051 has two external hardware interrupts. Pins 12 (P3.2) and pin

13 (P3.3) of the 8051, designated as INTO and INT1, are used as
external hardware interrupts.

 Upon activation of these pins, the 8051 gets interrupted In whatever it

IS doing and jumps to the vector table to perform the interrupt service
routine.

AT M E

College of Engineering

Activation of INTO and INT1

Level-triggered Do
INTO o ¥
(Pin 3.2) . *”'3' — - (003
Edge-triggered | § | JCTCON.D)
Level-mggered
INTI S Do
{Pin 3.3) — — i TR —= (13

(TCON.3)

Edge-rriggered |

atme) College of Engineering

 a) External interrupts INTO and INT1

* There are only two external hardware interrupts in the 8051: INTO
and INT1. They are located on pins P3.2 and P3.3 of port 3,
respectively. The interrupt vector table locations 0003H and 0013H are
set aside for INTO and INT1, respectively.

AT M E

College of Engineering

atme

* There are two types of activation for the external hardware interrupts:
* (1) level triggered, and
* (2) edge triggered

atine) College of Engineering

* Level-triggered interrupt

* In the level-triggered mode, INTO and INT1 pins are normally high (just
like all 1/O port pins) and if a low-level signal is applied to them, it
triggers the interrupt. Then the microcontroller stops whatever it is doing
and jumps to the interrupt vector table to service that interrupt. This Is
called a level-triggered or level-activated interrupt and is the default

mode upon reset of the 8051.

aline] College of Engineering

« Assume that the INT1 pin is connected to a switch that is normally high.
Whenever it goes low, it should turn on an LED. The LED Is connected to
Pl .3 and is normally off. When it is turned on it should stay on for a
fraction of a second. As long as the switch is pressed low, the LED should
stay on.

ORG 0000H

LJMP MAIN ;bypass interrupt vector table
i=-ISR for hardware interrupt INT1 to turn on the LED
ORG 0013H ; INT1 ISR
SETB P1.3 ;turn on LED
MOV R3,#255 ;load counter
BACK: DJIJNZ R3,BACK ;keep LED on for a while
CLR Pl1.3 ;turn off the LED
RETI ;return from ISR
; --MAIN program for initialization
ORG 30H
MAIN: MOV IE,#10000100B ;enable external INT1
HERE: SIJMP HERE ;stay here until interrupted
END

Pressing the switch will turn the LED on. If it is kept activated, the LED stays on.

PL3[—
\— INTI

LED

'fi* College of Engineering

Samplmg the low level-triggered mterrupt

* Pins P3.2 and P3.3 are used for normal 1/O unless the INTO and
INT1 bits in the IE reaisters are enabl

« After the hardware interrupts in the IE register are enabled, the
controller keeps sampling the INT« pin for a low-level signal once
each machine cycle.

 According to one manufacturer’s data sheet “the pin must be held in a
low state until the start of the execution of ISR.

ljﬂA T M E

atne] College of Engineering

1 MC
;..ES__., 4 machine cycles 10 INTO
083 ps or INT1 pins

4 > 1.085 us

Norte: Omn RESET, ITO (TCON.0O) and IT1 (TCON.2) are both low, making
external interrupts level-trniggered.

Minimum Duration of the Low Level-Triggered Interrupt (XTAL =

11.0592 MHz)

atime] College of Engineering

o°’a° OF 4 o
& 9(‘
) ;
¥ %
3 m :
< <]
= -
* * A A
Ton, ~ ¢ oy

Write a program to (a) load the accumulator with the value 55H, and (b) complement the ACC 700 times.

NEXT:
AGAIN:

MOV A, #55H

MOV R3,#10
MOV R2,#70
CPL A

DJINZ R2,AGAIN
DINZ R3,NEXT

Cepartment of EEE
Emetng Eite Erergy

& 1T M E

-] College of Engineering

Thank You

	Slide 1: BEE403:MICROCONTROLLERS
	Slide 2: OUTLINE
	Slide 3: OUTLINE
	Slide 4
	Slide 5
	Slide 6: 4.1 Basics of serial communication
	Slide 7: 4.1 Basics of serial communication
	Slide 8: 4.1 Basics of serial communication
	Slide 9: 4.1 Basics of serial communication
	Slide 10: 4.1 Basics of serial communication
	Slide 11
	Slide 12
	Slide 13: a) Half- and full-duplex transmission
	Slide 14
	Slide 15: b)Asynchronous serial communication and data framing
	Slide 16: Start and stop bits
	Slide 17
	Slide 18: Framing ASCII “A” (41H)
	Slide 19: 4.1.1 RS232 standards
	Slide 20
	Slide 21: RS232 pins
	Slide 22: RS232
	Slide 23
	Slide 24
	Slide 25: DB-9 Pin connection
	Slide 26
	Slide 27
	Slide 28
	Slide 29: Step 4: CTS (clear to send). In response to RTS, when the modem has room for storing the data it is to receive, it sends out signal CTS to the DTE (PC) to indicate that it can receive the data now. This input signal to the DTE is used by the D
	Slide 30: 8051 connection to RS232
	Slide 31: MAX232
	Slide 32: MAX232
	Slide 33
	Slide 34
	Slide 35
	Slide 36: 4.3 8051 serial port programming in assembly
	Slide 37
	Slide 38
	Slide 39: 4.3.1 SBUF register
	Slide 40: SCON register
	Slide 41: SCON register
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47: 4.3.3 Programming the 8051 to transfer data serially
	Slide 48: 4.3.3 Programming the 8051 to transfer data serially
	Slide 49
	Slide 50
	Slide 51: Write a program to transfer the message “YES” serially at 9600 baud, 8-bit data, 1Start bit and 1 stop bit. Do this continuously.
	Slide 52: Program the 8051 to receive bytes of data serially, and put them in PI. Set the baud rate at 4800, 8-bit data, and 1 stop bit.
	Slide 53: 8051 serial port programming in assembly
	Slide 54: Importance of the Tl flag
	Slide 55
	Slide 56: Program the 8051 to receive bytes of data serially, and put them in P1. Set the baud rate at 4800, 8-bit data, and 1 stop bit.
	Slide 57: Importance of RI flag
	Slide 58
	Slide 59: Doubling the baud rate in the 8051
	Slide 60
	Slide 61
	Slide 62: Baud Rate Comparison for SMOD = 0 and SMOD = 1
	Slide 63
	Slide 64: Solution
	Slide 65
	Slide 66: Serial port programming in 8051 C
	Slide 67: Header File Main Function
	Slide 68
	Slide 69
	Slide 70: C Programs continued
	Slide 71
	Slide 72: #include<reg51.h> Void SerTx(Unsigned char); Void Main()
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78: 8051 C compilers and the second serial port
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83: 8051 interrupts
	Slide 84
	Slide 85
	Slide 86: Interrupt service routine
	Slide 87: Six interrupts in the 8051
	Slide 88: Enabling and disabling an interrupt
	Slide 89
	Slide 90
	Slide 91: Programming timer
	Slide 92
	Slide 93
	Slide 94
	Slide 95
	Slide 96
	Slide 97: Assume that XTAL=11.0592MHz, write a program to generate a square wave of 2kHz frequency on pin P1.5
	Slide 98
	Slide 99
	Slide 100: External hardware interrupts
	Slide 101: Activation of INTO and INT1
	Slide 102
	Slide 103
	Slide 104
	Slide 105
	Slide 106
	Slide 107: Sampling the low level-triggered interrupt
	Slide 108
	Slide 109
	Slide 110: Thank You

