
BEE403:MICROCONTROLLER

S

1

MODULE – 3:

8051 programming in C_ 8051 Timer programming in Assembly and C

Syllabus

• 8051 programming in C: Data types and time delay in 8051C, IO
programming in 8051C, Logic operations in 8051 C, Data conversion
program in 8051 C, Accessing code ROM space in 8051C, Data
serialization using 8051C

• 8051 Timer programming in Assembly and C: Programming 8051
timers, Counter programming, Programming timers 0 and 1 in 8051 C.

• L2 – Understanding, L3 – Applying, L4 – Analyzing, L5 – Evaluating.

CO5: Evaluate software delays, timer delays and timer programming using both
Assembly and C language. [L5, MODULE 3]

3.1 Data types in 8051C

Why program the 8051 in C?

Compilers produce hex files that we download into the ROM of the
microcontroller. The size of the hex file produced by the compiler is one of
the main concerns of microcontroller programmers, for two reasons:

1. Microcontrollers have limited on-chip ROM.

2. The code space for the 8051 is limited to 64K bytes.

Following are some of the major reasons for writing programs in C instead
of Assembly:

1. It is easier and less time consuming to write in C than Assembly.

2. C is easier to modify and update.

3. You can use code available in function libraries.

4.C code is portable to other microcontrollers with little or no
modification

C data types for the 8051

1. Unsigned char

A. Since the 8051 is an 8-bit microcontroller, the character data type is the
most natural choice for many applications.

The unsigned char is an 8-bit data type that takes a value in the range of 0

– 255 (00 – FFH).

It is one of the most widely used data types for the 8051. In many
situations, such as setting a counter value.

B. Where there is no need for signed data we should use the unsigned
char instead of the signed char.

Remember that C compilers use the signed char as the default if we do not
put the keyword unsigned in front of the char

• We can also use the unsigned char data type for a string of ASCII
characters

C. In declaring variables, we must pay careful attention to the size of the
data and try to use unsigned char instead of int if possible.

• Because the 8051 has a limited number of registers and data RAM
locations, using the int in place of the char data type can lead to a larger
size hex file.

Example 1-1

Example 1-2

• Write an 8051 C program to send hex values of 0,1,2,3,4,5,A,B,C
and D to port P1.

Solution

#include<reg51.h>

void main (void)

{

Unsigned char mynum[] = “0,1,2,3,4,5,A,B,C,D”;

Unsigned char z;

For(z=0;z<=10;z++)

P1=mynum(z);

}

2. Signed char
• The signed char is an 8-bit data type that uses the most significant bit

(D7 of D7 – DO) to represent the – or + value. As a result, we have
only 7 bits for the magnitude of the signed number, giving us values
from -128 to +127.

• In situations where + and – are needed to represent a given quantity
such as temperature, the use of the signed char data type is a must.

• Again notice that if we do not use the keyword unsigned, the
default is the signed value. For that reason we should stick with the
unsigned char unless the data needs to be represented as signed
numbers.

Example 1-4

3. Unsigned int

1.The unsigned int is a 16-bit data type that takes a value in the range of
0000 to 65535 (0000 – FFFFH). In the 8051, unsigned int is used to define
16-bit variables such as memory addresses. It is also used to set counter
values of more than 256.

2.Since the 8051 is an 8-bit microcontroller and the int data type takes two
bytes of RAM, we must not use the int data type unless we have to.

3.Since registers and memory accesses are in 8-bit chunks, the misuse of
int variables will result in a larger hex file. Such misuse is not a big deal in
PCs with 256 megabytes of memory, 32-bit Pentium registers and memory
accesses, and a bus speed of 133 MHz.

4.However, for 8051 programming do not use unsigned int in places where
unsigned char will do the job. Of course the compiler will not generate an
error for this misuse, but the overhead in hex file size is noticeable.

4. Signed int
Signed int is a 16-bit data type that uses the most significant bit (015 of
D15 – DO) to represent the – or + value.

As a result, we have only 15 bits for the magnitude of the number, or
values from -32,768 to +32,767.

5. Sbit (single bit)

The sbit keyword is a widely used 8051 C data type designed
specifically to access single-bit addressable registers. It allows access to
the single bits of the SFR registers.

Example 1-5

• Write an 8051 C program to toggle bit DO of the port P1 (Pl.0) 50,000
times.

Some Widely Used Data Types for 8051 C

Time delay in C

Time delay in C
There are two ways to create a time delay in 8051 C:

1. Using a simple for loop

2. Using the 8051 timers

In either case, when we write a time delay we must use the oscilloscope
to measure the duration of our time delay.

In creating a time delay using a for loop, we must be mindful of
three factors that can affect the accuracy of the delay.

1. The 8051 design. Since the original 8051 was designed in 1980, both the fields of IC
technology and microprocessor architectural design have seen great advancements.
The number of machine cycles and the number of clock periods per machine cycle
vary among different versions of the 8051/52 microcontroller.

2.While the original 8051/52 design used 12 clock periods per machine cycle, many of
the newer generations of the 8051 use fewer clocks per machine cycle.

For example, the DS5000 uses 4 clock periods per machine cycle, while the DS89C420
uses only one clock per machine cycle.

3.The crystal frequency connected to the XI – X2 input pins. The duration of the clock
period for the machine cycle is a function of this crystal frequency.

4. Compiler choice: The third factor that affects the time delay is the
compiler used to compile the C program.

When we program in Assembly language, we can control the exact

instructions and their sequences used in the delay sub routine.

In the case of C programs, it is the C compiler that converts the C
statements and functions to Assembly language instructions. As a result,
different compilers produce different code.

In other words, if we compile a given 8051 C programs with different
compilers, each compiler produces different hex code.

Example 1-6

Write an 8051 C program to toggle bits of P1 continuously forever with
some delay

Solution:

// Toggle P1 forever with some delay in between “on” and “off”,

#include <reg51.h>

Example 1-7

Write an 8051 C program to toggle the bits of P1 port continuously with a
250 ms delay.

Solution:

3.2 IO programming in 8051C
Byte size I/O

ports PO – P3 are byte-accessible. We use the PO – P3 labels as defined
in the 8051/52 C header file.

Example 1-9

LEDs are connected to bits P1 and P2. Write an 8051 C program that shows
the count from 0 to FFH (0000 0000 to 1111 1111 in binary) on the LEDs.

Solution:

Write an 8051 C program to get a byte of data from PI, wait 1/2 second,
and then send it to P2.

Solution:

Write an 8051 C program to get a byte of data from PO. If it is less than
100, send it to P1; otherwise, send it to P2.

Solution:

Logic operations in 8051 C

Bit-wise operators in C

1.While every C programmer is familiar with the logical operators
AND (&&), OR (||), and NOT (!), many C programmers are less
familiar with the bitwise operators AND (&), OR (|), EX-OR (^),
Inverter (~), Shift Right (»), and Shift Left («).

2.These bit-wise operators are widely used in software engineering for
embedded systems and control; consequently, understanding and
mastery of them are critical in microprocessor-based system design and
interfacing.

Table : Bit-wise Logic Operators for C

Run the following program on your
simulator and examine the results
Solution:

#include <reg51.h>

void main (void)

{

P0 = 0×35 & 0x0F; //ANDing

Pl = 0×04 | 0×68; //ORing

P2= 0×54 * 0×78; //XORing

P0= -0×55; //inversing

Pl= 0x9A» 3; //shifting right 3 times

P2= 0×77 » 4; //shifting right 4 times

P0= 0×6 « 4; //shifting left 4 times

}

0 1 0 1 0 1 0 0

0 1 1 1 1 0 0 0

0 0 1 0 1 1 0 0

1 1 0 0 1 0 0 0

0 1 1 0 0 1 0 0

Write an 8051 C program to toggle all the bits of PO and P2
continuously with a 250 ms delay. Use the inverting operator.

Solution:

The program below is tested for the DS89C420 with XTAL = 11.0592
MHz.

Bit-wise shift operation in C

1. There are two bit-wise shift operators in C:

(1) shift right (»), and (2) shift left («).

Their format in C is as follows:

2. data » number of bits to be shifted right

3. data « number of bits to be shifted left

Write an 8051 C program to toggle all the bits of PO, P1, and P2
continuously with a 250 ms delay. Use the Ex-OR operator.

Solution:

Write an 8051 C program to get bit Pl.0 and send it to P2.7
after inverting it.

Write an 8051 C program to read the P1.0 and P1.1 bits and
issue an ASCII character to P0 according to the following table.

Data conversion program in 8051 C

Data conversion program in 8051 C
ASCII Code for Digits 0 – 9

Packed BCD to ASCII conversion

ASCII to packed BCD conversion

0 0 1 0 1 0 0 1

0 0 0 0 1 1 1 1

0 0 0 0 1 0 0 1

0 0 1 1 0 0 0 0

0 0 1 1 1 0 0 1

0 0 1 0 1 0 0 1

1 1 1 1 0 0 0 0

0 0 1 0 0 0 0 0

0 0 0 1 0 0 0 0

0 0 0 0 1 0 0 0

0 0 0 0 0 1 0 0

0 0 0 0 0 0 1 0

0 0 1 1 0 0 0 0

0 0 1 1 0 0 1 0

Checksum byte in ROM
1. To ensure the integrity of ROM contents, every system must perform the

checksum calculation.

2.The process of checksum will detect any corruption of the contents of
ROM. One of the causes of ROM corruption is current surge, either when
the system is turned on or during operation.

3.To ensure data integrity in ROM, the checksum process uses what is
called a checksum byte.

4. The checksum byte is an extra byte that is tagged to the end of a series
of bytes of data. To calculate the checksum byte of a series of bytes of data,
the following steps can be taken.

1. Add the bytes together and drop the carries.

2. Take the 2′s complement of the total sum. This is the checksum byte,
which becomes the last byte of the series.

3. To perform the checksum operation, add all the bytes, including the
checksum byte. The result must be zero. If it is not zero, one or more
bytes of data have been changed (corrupted).

Write an 8051 C program to calculate the checksum byte for the data
given

Binary (hex) to decimal and ASCII
conversion in 8051 C

• Write an 8051 C program to convert 11111101 (FD hex) to decimal
and display the digits on PO, P1, and P2.

Accessing code ROM space in 8051C
RAM data space v. code data space

In the 8051 we have three spaces in which to store data. They are as
follows:

1.The 128 bytes of RAM space with address range 00 – 7FH. (In the
8052, it is 256 bytes.) We can read (from) or write (into) this RAM
space directly or indirectly using the RO and Rl registers.

2.The 64K bytes of code (program) space with addresses of 0000 –
FFFFH. This 64K bytes of on-chip ROM space is used for storing
programs (opcodes) and therefore is directly under the control of the
program counter (PC).

There are two problems with using this code
space for data.

a) First, since it is ROM memory, we can burn our predefined data and tables
into it. But we cannot write into it during the execution of the program.

b)The second problem is that the more of this code space we use for data, the
less is left for our program code.

For example, if we have an 8051 chip such as DS89C420 with only 16K bytes of
on-chip ROM, and we use 4K bytes of it to store some look-up table, only 12K
bytes is left for the code program. For some applications this can be a problem.
For this reason Intel created another memory space called external memory
especially for data.

Compile and single-step the following program on your 8051 simulator.
Examine the contents of the 128-byte RAM space to locate the ASCII
values.

Compare and contrast the following programs and
discuss the advantages and disadvantages of each one.

• The first one is short and simple, but the individual characters are
embedded into the program. If we change the characters, the whole
program changes. It also mixes the code and data together.

• The second one uses the RAM data space to store array elements,
therefore the size of the array is limited.

• The third one uses a separate area of the code space for data. This allows
the size of the array to be as long as you want if you have the on-chip
ROM.

Data serialization using 8051C

1. Using the serial port. When using the serial port, the programmer has
very limited control over the sequence of data transfer.

2.The second method of serializing data is to transfer data one bit a
time and control the sequence of data and spaces in between them.

In many new generations of devices such as LCD, ADC, and ROM the
serial versions are becoming popular since they take less space on a printed
circuit board.

Write a C program to send out the value 44H serially
one bit at a time via Pl.0. The LSB should go out
first

0 1 0 0 0 1 0 0

RegA= Accumulator

ACC.0 P1.0

Conbyte=0x44

Write a C program to send out the value 44H serially one bit at a time via
Pl.O. The MSB should go out first.

0 1 0 0 0 1 0 0

ACC.7 P1.0

ACC.7 ACC.6 ACC.0ACC.1

Write a C program to bring in a byte of data serially one
bit at a time via P1 .0. The LSB should come in first.

Programming 8051 timers
1. The 8051 has two timers: Timer 0 and Timer 1. They can be used

either as timers or as event counters.

2. Basic registers of the timer

Both Timer 0 and Timer 1 are 16 bits wide. Since the 8051 has an
8-bit architecture, each 16-bit timer is accessed as two separate registers
of low byte and high byte

Timer 0 registers
1.The 16-bit register of Timer 0 is accessed as low byte and high byte. The low byte
register is called TLO (Timer 0 low byte) and the high byte register is referred to as
THO (Timer 0 high byte).

2.These registers can be accessed like any other register, such as A, B, RO, Rl, R2, etc.
For example, the instruction “MOV TLO , #4FH” moves the value 4FH into TLO, the
low byte of Timer 0.

3. These registers can also be read like any other register. For example, “MOV R5 ,
THO” saves THO (high byte of Timer 0) in R5.

Timer 1 registers
Timer 1 is also 16 bits, and its 16-bit register is split into two bytes,
referred to as TLl (Timer I low byte) and TH1 (Timer 1 high byte).

These registers are accessible in the same way as the registers of Timer
0.

TMOD (timer mode) register

1. Both timers 0 and 1 use the same register, called TMOD, to set the
various timer operation modes.

2. TMOD is an 8-bit register in which the lower 4 bits are set aside for
Timer 0 and the upper 4 bits for Timer 1.

3. In each case, the lower 2 bits are used to set the timer mode and the
upper 2 bits to specify the operation.

Example 1-37

Indicate which mode and which timer are selected for each of the
following.

(a) MOV TMOD,#01H (b) MOV TMOD,#20H (c) MOV TMOD,#12H

Solution:

We convert the values from hex to binary.

1. TMOD = 00000001, mode 1 of Timer 0 is selected.

2. TMOD = 00100000, mode 2 of Timer 1 is selected.

3.TMOD = 00010010, mode 2 of Timer 0, and mode 1 of Timer 1 are
selected.

Mode 1 programming
The following are the characteristics and operations of mode 1:

1. It is a 16-bit timer; therefore, it allows values of 0000 to FFFFH to be loaded into

the timer’s registers TL and TH.

2. After TH and TL are loaded with a 16-bit initial value, the timer must be start ed. This
is done by “SETB TRO” for Timer 0 and “SETB TR1″ for Timer 1.

3.After the timer is started, it starts to count up. It counts up until it reaches its limit of
FFFFH. When it rolls over from FFFFH to 0000, it sets high a flag bit called TF (timer
flag). This timer flag can be monitored. When this timer flag is raised, one option would
be to stop the timer with the instructions “CLR TRO” or “CLR TR1″, for Timer 0 and
Timer 1, respectively. Again, it must be noted that each timer has its own timer flag:
TFO for Timer 0, and TF1 for Timer 1.

4.After the timer reaches its limit and rolls over, in order to repeat the process the
registers TH and TL must be reloaded with the original value, and TF must be reset to 0.

Steps to program in mode 1
To generate a time delay, using the timer’s mode 1, the following steps are
taken.

1.Load the TMOD value register indicating which timer (Timer 0 or Timer 1)
is to be used and which timer mode (0 or 1) is selected.

2. Load registers TL and TH with initial count values.

3. Start the timer.

4.Keep monitoring the timer flag (TF) with the “JNB TFx, target” instruction
to see if it is raised. Get out of the loop when TF becomes high.

5. Stop the timer.

6. Clear the TF flag for the next round.

7. Go back to Step 2 to load TH and TL again.

To calculate the exact time delay and the square wave frequency generated on pin P1 .5, we need to know

the XTAL frequency.

(a) in hex

(FFFF – YYXX + 1) X 1.085 us where YYXX are TH, TL initial values respectively. Notice that values

YYXX are in hex.

(b) in decimal

Convert YYXX values of the TH,TL register to decimal to get a NNNNN decimal number, then (65536 –

NNNNN) x 1.085 mircosec

Timer Delay Calculation for XTAL= 11.0592 MHz

Example

In the following program, we are creating a square wave of 50% duty
cycle (with equal portions high and low) on the P1.5 bit. Timer 0 is used
to generate the time delay.Analyze the program.

Solution:

In the above program notice the following steps.

1. TMOD is loaded.

2. FFF2H is loaded into THO – TLO.

3. P1.5 is toggled for the high and low portions of the pulse.

4. The DELAY subroutine using the timer is called.

5.In the DELAY subroutine, Timer 0 is started by the “SETB

TRO” instruction.

Programs

Calculate the amount of time delay in the DELAY subroutine
generated by the timer. Assume that XTAL = 11.0592 MHz.

Solution:

1. The timer works with a clock frequency of 1/12 of the XTAL
frequency; therefore, we have 11.0592 MHz / 12 = 921.6 kHz as the
timer frequency.

2. As a result, each clock has a period of T = 1 / 921.6 kHz = 1.085 (is.
In other words, Timer 0 counts up each 1.085 us resulting in delay =
number of counts x 1.085 us)

1. The number of counts for the rollover is FFFFH – FFF2H = ODH (13
decimal).

2. However, we add one to 13 because of the extra clock needed when it
rolls over from FFFF to 0 and raises the TF flag.

3. This gives 14 x 1.085 us = 15.19 µs for half the pulse.

4. For the entire period T = 2 x 15.19 (as = 30.38 µs gives us the time
delay generated by the timer.

Find the delay generated by Timer 0 in the following code, using both of
the methods. Do not include the overhead due to instructions.

1. (FFFF-B83E + 1) = 47C2H= 18370 in decimal and 18370 x 1.085 μs=

19.93145ms.

2. Since TH – TL = B83EH = 47166 (in decimal) we have 65536 – 47166 =
18370. This means that the timer counts from B83EH to FFFFH.. This plus
rolling over to 0 goes through a total of 18370 clock cycles, where each
clock is 1.085μs in duration. Therefore, we have 18370 x 1.085 μs =
19.93145 ms as the width of the pulse.

• The following program generates a square wave on pin P1.5 continuously using Timer
1 for a time delay. Find the frequency of the square wave if XTAL =11.0592 MHz. In
your calculation do not include the overhead due to instructions in the loop.

1. In the above program notice the target of SJMP. In mode 1, the program
must reload the TH, TL register every time if we want to have a
continuous wave.

2. Now the calculation. Since FFFFH – 7634H = 89CBH + 1 = 89CCH
and 89CCH = 35276 clock count. 35276 x 1.085 µs = 38.274 ms for
half of the square wave.

3. The entire square wave length is 38.274 x 2 = 76.548 ms and has a
frequency = 13.064 Hz.

Assume that XTAL = 11.0592 MHz. What value do we need to load into
the timer’s registers if we want to have a time delay of 5 ms (milliseconds)?
Show the program for Timer 0 to create a pulse width of 5 ms on P2.3.

Solution:

1. Since XTAL = 11.0592 MHz, the counter counts up every 1.085 us.

2. This means that out of many 1.085 us intervals we must make a 5 ms

pulse.

3. To get that, we divide one by the other. We need 5 ms /1 .085 us = 4608

clocks.

4. To achieve that we need to load into TL and TH the value 65536 – 4608 =

60928 = EEOOH. Therefore, we have TH = EE and tt = 00

Assuming that XTAL = 11.0592 MHz, write a program to generate a square
wave of 2 kHz frequency on pin P1 .5.

Solution:

Look at the following steps.

1. T = 1 / f = 1 / 2 kHz = 500 μs the period of the square wave.

2. 1/2 of it for the high and low portions of the pulse is 250 μs.

3. 250 us / 1.085 us = 230 and 65536 – 230 = 65306. which in hex is
FF1AH.

4. TL = 1AH and TH = FFH. all in hex.

Assuming XTAL = 11.0592 MHz, write a program to generate a square
wave of 50 Hz frequency on pin P2.3.

Solution:

Look at the following steps.

1. T — 1 / 50 Hz = 20 ms, the period of the square wave.

2. 1/2 of it for the high and low portions of the pulse = 10 ms

3. 10 ms / 1.085 us = 9216 and 65536 – 9216 = 56320 in decimal, and in
hex it is DC00H.

4. TL = 00 and TH = DC (hex)

Assuming XTAL = 11.0592 MHz, write a
program to generate a square wave of 5kHz
frequency on pin P2.3.

1. Solve steps

2. Write the program

Mode 2 programming

Steps to program in mode 2

To generate a time delay using the timer’s mode 2, take the following steps.

1.Load the TMOD value register indicating which timer (Timer 0 or Timer 1) is to be

used, and select the timer mode (mode 2).

2. Load the TH registers with the initial count value.

3. Start the timer.

4. Keep monitoring the timer flag (TF) with the “JNB TFx, target” instruction to see

whether it is raised. Get out of the loop when TF goes high.

5. Clear the TF flag.

6. Go back to Step 4, since mode 2 is auto-reload.

Assuming that XTAL = 11.0592 MHz. find (a) the frequency of the square
wave generated on pin P 1.0 in the following program, and (b) the smallest
frequency achievable in this program, and the TH value to do that.

Solution:

First notice the target address of SJMP. In mode 2 we do not need to reload
TH since it is auto-reload.

Now (256 – 05) x 1.085 μs = 251 x 1.085 us = 272.33 μs is the high portion
of the pulse.

Since it is a 50% duty cycle square wave, the period T is twice that; as a
result T = 2 x 272.33 us = 544.67 us and the frequency = 1.83597 kHz.

1.To get the smallest frequency, we need the largest T and that is achieved
when TH = 00.

2.In that case, we have T = 2 x 256 x 1.085 μs = 555.52 μs and the
frequency = 1.8kHz.

Assuming that we are programming the timers for mode 2, find the value
(in hex) loaded into TH for each of the following cases

Counter programming

C/T bit in TMOD register

1. Recall from the last section that the C/T bit in the TMOD register
decides the source of the clock for the timer.

If C/T = 0, the timer gets pulses from the crystal.

2.In contrast, when C/T = 1, the timer is used as a counter and gets its
pulses from outside the 8051.

Therefore, when C/T = 1, the counter counts up as pulses are fed
from pins 14 and 15.

0 0 MODE 0 13 BIT

0 1 MODE 1 16 BIT

TH TL

TH TL

1 0 MODE 2 8 BIT AR

1 1 MODE 3 8 BIT

TH0= -60

TH0

GATE C/T M1 MO GATE C/T M1 MO

0 0 0 0 0 1 1 0

Assuming that clock pulses are fed into pin Tl, write
a program for counter 1 in mode 2 to count the
pulses and display the state of the TL1 count on P2.

Assume that a 1-Hz frequency pulse is connected to input pin
3.4.

Write a program to display counter 0 on an LCD. Set the initial
value of TH0 to -60

Solution:

To display the TL count on an LCD, we must convert 8-bit binary
data to ASCII

DATA
8051

P3.4
LCD

P1

P2.0

P2.1

P2.2

Equivalent Instructions for the Timer Control Register
(TCON)

TCON register
The case of GATE = 1 in TMOD

Timer/Counter 0

1. All discussion so far has assumed that GATE = 0. When GATE = 0, the
timer is started with instructions “SETB TRO” and “SETB TR1″, for
Timers 0 and 1, respectively.

2.What happens if the GATE bit in TMOD is set to 1.if GATE = 1, the start
and stop of the timer are done externally through pins P3.2 and P3.3 for
Timers 0 and 1, respectively.

Timer/Counter 1

Programming timers 0 and 1 in 8051 C

Accessing timer registers in C

In 8051 C we can access the timer registers TH, TL, and TMOD directly
using the reg51 .h header file.

Example 1-56

Write a 8051 C program to toggle all the bits of port P1 continuously
with some delay in between. Use Timer 0, 16-bit mode to generate the
delay.

Write an 8051 C program to toggle only bit P1.5 continuously
every 50 ms.

Use Timer 0, mode 1 (16-bit) to create the delay.

Test the program (a) on the AT89C51 and (b) on the DS89C420.

Solution:

Programs Continued

Write an 8051 C program to toggle only bit P1.5 continuously every
50 ms. Use Timer 0, mode 1 (16-bit) to create the delay.

Test the program

(a) on the AT89C51 and

(b) on the DS89C420.

Solution:

Write an 8051 C program to toggle all bits of P2 continuously every 500
ms. Use Timer 1. mode 1 to create the delay.

Solution:

A switch is connected to pin P1.7.

Write an 8051 C program to monitor SW and create the following
frequencies on pin P1.5:

SW=0: 500 Hz

SW=1: 750 Hz

Use Timer 0, mode 1 for both of them.

Solution:

C Programming of timers 0 and 1 as
counters
A timer can be used as a counter if we provide pulses from outside the
chip instead of using the frequency of the crystal oscillator as the clock
source.

By feeding pulses to the TO (P3.4) and Tl (P3.5) pins, we turn Timer 0
and Timer 1 into counter 0 and counter 1, respectively

Assume that a 1-Hz external clock is being fed into pin TO (P3.4). Write a
C program for counter 0 in mode -1 (16-bit) to count the pulses and display
the THO and TLO registers on P2 and P1, respectively.

Solution:

Gate C/T M1 M0 Gate C/T=1 M1 M0=1

TMODRegister

Assume that a 60-Hz external clock is being fed into pin TO (P3.4). Write a C

program for counter 0 in mode 2 (8-bit auto-reload) to display the seconds and

minutes on PI and P2, respectively.

Solution:

Thank You

14
3

	Slide 1: BEE403:MICROCONTROLLERS
	Slide 2: Syllabus
	Slide 3: CO5: Evaluate software delays, timer delays and timer programming using both Assembly and C language. [L5, MODULE 3]
	Slide 4: 3.1 Data types in 8051C
	Slide 5
	Slide 6: C data types for the 8051
	Slide 7
	Slide 8
	Slide 9: Example 1-1
	Slide 10: Example 1-2
	Slide 11
	Slide 12: 2. Signed char
	Slide 13: Example 1-4
	Slide 14: 3. Unsigned int
	Slide 15
	Slide 16: 4. Signed int
	Slide 17: 5. Sbit (single bit)
	Slide 18: Example 1-5
	Slide 19
	Slide 20: Some Widely Used Data Types for 8051 C
	Slide 21: Time delay in C
	Slide 22: Time delay in C
	Slide 23: In creating a time delay using a for loop, we must be mindful of three factors that can affect the accuracy of the delay.
	Slide 24
	Slide 25
	Slide 26: #include <reg51.h>
	Slide 27
	Slide 28
	Slide 29
	Slide 30: 3.2 IO programming in 8051C
	Slide 31
	Slide 32: Write an 8051 C program to get a byte of data from PI, wait 1/2 second, and then send it to P2. Solution:
	Slide 33
	Slide 34: Write an 8051 C program to get a byte of data from PO. If it is less than 100, send it to P1; otherwise, send it to P2. Solution:
	Slide 35
	Slide 36: Logic operations in 8051 C
	Slide 37: Table : Bit-wise Logic Operators for C
	Slide 38: Run the following program on your simulator and examine the results
	Slide 39
	Slide 40
	Slide 41: Bit-wise shift operation in C
	Slide 42: Write an 8051 C program to toggle all the bits of PO, P1, and P2 continuously with a 250 ms delay. Use the Ex-OR operator. Solution:
	Slide 43
	Slide 44: Write an 8051 C program to get bit Pl.0 and send it to P2.7 after inverting it.
	Slide 45: Write an 8051 C program to read the P1.0 and P1.1 bits and issue an ASCII character to P0 according to the following table.
	Slide 46
	Slide 47: Data conversion program in 8051 C
	Slide 48: Data conversion program in 8051 C ASCII Code for Digits 0 – 9
	Slide 49: Packed BCD to ASCII conversion
	Slide 50
	Slide 51
	Slide 52
	Slide 53: Checksum byte in ROM
	Slide 54
	Slide 55
	Slide 56: Write an 8051 C program to calculate the checksum byte for the data given
	Slide 57: Binary (hex) to decimal and ASCII conversion in 8051 C
	Slide 58
	Slide 59: Accessing code ROM space in 8051C
	Slide 60: There are two problems with using this code space for data.
	Slide 61: Compile and single-step the following program on your 8051 simulator. Examine the contents of the 128-byte RAM space to locate the ASCII values.
	Slide 62: Compare and contrast the following programs and discuss the advantages and disadvantages of each one.
	Slide 63
	Slide 64
	Slide 65: Data serialization using 8051C
	Slide 66: Write a C program to send out the value 44H serially one bit at a time via Pl.0. The LSB should go out first
	Slide 67
	Slide 68: Write a C program to send out the value 44H serially one bit at a time via Pl.O. The MSB should go out first.
	Slide 69
	Slide 70: Write a C program to bring in a byte of data serially one bit at a time via P1 .0. The LSB should come in first.
	Slide 71
	Slide 72: Programming 8051 timers
	Slide 73: Timer 0 registers
	Slide 74: Timer 1 registers
	Slide 75: TMOD (timer mode) register
	Slide 76
	Slide 77: Example 1-37
	Slide 78
	Slide 79: Mode 1 programming
	Slide 80
	Slide 81: Steps to program in mode 1
	Slide 82
	Slide 83
	Slide 84
	Slide 85
	Slide 86: Programs
	Slide 87: Calculate the amount of time delay in the DELAY subroutine generated by the timer. Assume that XTAL = 11.0592 MHz.
	Slide 88
	Slide 89: Find the delay generated by Timer 0 in the following code, using both of the methods. Do not include the overhead due to instructions.
	Slide 90
	Slide 91
	Slide 92
	Slide 93
	Slide 94
	Slide 95
	Slide 96
	Slide 97
	Slide 98
	Slide 99
	Slide 100: Mode 2 programming
	Slide 101: Assuming that XTAL = 11.0592 MHz. find (a) the frequency of the square wave generated on pin P 1.0 in the following program, and (b) the smallest frequency achievable in this program, and the TH value to do that.
	Slide 102
	Slide 103
	Slide 104: Assuming that we are programming the timers for mode 2, find the value (in hex) loaded into TH for each of the following cases
	Slide 105: Counter programming
	Slide 106
	Slide 107
	Slide 108: Assuming that clock pulses are fed into pin Tl, write a program for counter 1 in mode 2 to count the pulses and display the state of the TL1 count on P2.
	Slide 109
	Slide 110
	Slide 111
	Slide 112
	Slide 113
	Slide 114: Equivalent Instructions for the Timer Control Register (TCON)
	Slide 115: TCON register The case of GATE = 1 in TMOD
	Slide 116
	Slide 117
	Slide 118: Programming timers 0 and 1 in 8051 C
	Slide 119
	Slide 120
	Slide 121: Write an 8051 C program to toggle only bit P1.5 continuously every 50 ms. Use Timer 0, mode 1 (16-bit) to create the delay.
	Slide 122
	Slide 123
	Slide 124: Programs Continued
	Slide 125
	Slide 126
	Slide 127
	Slide 128
	Slide 129: Write an 8051 C program to toggle all bits of P2 continuously every 500 ms. Use Timer 1. mode 1 to create the delay.
	Slide 130
	Slide 131
	Slide 132: A switch is connected to pin P1.7.
	Slide 133
	Slide 134
	Slide 135: C Programming of timers 0 and 1 as counters
	Slide 136: Assume that a 1-Hz external clock is being fed into pin TO (P3.4). Write a C program for counter 0 in mode -1 (16-bit) to count the pulses and display the THO and TLO registers on P2 and P1, respectively.
	Slide 137
	Slide 138: Assume that a 60-Hz external clock is being fed into pin TO (P3.4). Write a C program for counter 0 in mode 2 (8-bit auto-reload) to display the seconds and minutes on PI and P2, respectively.
	Slide 139
	Slide 140
	Slide 141: Thank You

