g C!lege of Engincering

BEE403:MICROCONTROLLERS

MODULE - 2:Assembly programming and Instructions of 8051

Introduction to 8051 Assembly Programming
» Assembling and running an 8051 program
» Data types and Assembler directives
» Arithmetic Instructions and programs

> logic instructions and programs

»Jump Instructions, loop and Call instructions
> 10 port programming, Programs

» Additional Programs on Jump, loop ,call and Port programming
» Additional Programs on Arithmetic Instructions

College of Engineering

On to the leading edge
www.atme.in

U1
19 brarq P0.0/ADO
P0.1/AD1
i P0.2/AD2
18 1 xtaL2 P0.3/AD3
P0.4/AD4
P0.5/AD5
o P0.6/AD6
RST P0.7/ADT
P2.0/A8
P2.1/A9
P2.2/A10
29- | PSEN P2.3/AT1
B ae P2.4/A12
EA P2.5/A13
P2.6/A14
P2.7/A15
;: P1.0 P3.0/RXD
2 P11 P3.1/TXD
2] P12 P3.2/INTO
= P13 P3.3/INTT
21 P14 P3.4/T0
S-{ P15 P35T1
i pis P3.6AWR
P17 P3.7/RD

AT89C51

atmel College of Engineering

What is a Programming Language?

Programming in the sense of Microcontrollers (or any computer)
means writing a seguence of instructions that are executed by the
processor in a particular order to perform a predefined task.

Programming also Involves debudgaging and troubleshooting of
Instructions and Instruction sequence to make sure that the desired task
IS performed.

There are three types or levels of Programming Languages for 8051
Microcontroller.

* The three levels of Programming Languages are:
1- MaChine Language High-level Language ,t:i'::]p Z:||]|i|+1] Iﬂt’;F ::I*[r:ﬂ”

v[k+1] = temp; V(K+1)=TEMP
C/Java Compiler @ ﬂFnrtran Compiler
2. Assembly Language

. Assembly Language Iw $t1, 4(52)
3. High-level Language =

@ MIPS Assembler

0000 1001 1100 0110 1010 1111 0101 1000
1010 1111 0101 1000 0000 1001 1100 0110
1100 0110 1010 1111 0101 1000 0000 1001
0101 1000 0000 1001 1100 0110 1010 1111

Machine Language

Cepartment of EEE

Emetng Ebte Erergy

[JA T M E

atime] College of Engineering

High-level
Ease of L .
Implementation anguages @ Speed of Execution
® Flexibility Assembly @® Code Density
Language
® Portability — @® Machine Specific
Machine
Language

atine) College of Engineering

| Machine language
* In Machine language or Machine Code, the Instructions are written In

binary bit patterns i.e. combination of pinary digits 1 and 0, which
[I HIGH and L OW Vol _evels.

* This 1s the Jowest level of programming languages and is the
language that a Microcontroller or Microprocessor actually
understands.

atine) College of Engineering

High Level language

* The name High-level language means that you need not worry about
the architecture or other internal details of a microcontroller and they
use words and statements that are easily understood by humans.

* Few examples of High-level Languages are BASIC. C Pascal, C++
and Java.

* A program called Compiler will convert the Programs written in
High-level languages to Machine Code.

oF
-9 . . \ 0 Wy, 4¢
v é"’ "%' ;@
J < % N %
' 3 H
S8 College of Engineering RS

Assembly language ‘

 Since Machine Language or Code involves all the instructions in 1’s
and Q’s, it 1s very difficult for humans to program using It.

« Assembly Language is a -English _representation of th
Machine Language. The 8051 Microcontroller Assembly Language is
a combination of English like words called Mnpemonics and
Hex Imal

* It is also a Jow level languade and requires extensive understanding of
the architecture of the Microcontroller.

atiel College of Engineering

Why Assembly language??

 Although High-level languages are easy to work with, the following reasons
point out the advantage of Assembly Language

1. The Programs written in Assembly gets executed faster and th
occupy less memory.

2. With the help of Assembly Language, you can directly exploit all the
features of a Microcontroller.

3. Using Assembly Language, you can have direct and accurate control of

all the Microcontroller’s resources like /O Ports, RAM, SERSs, etc,

4. Compared to High-level Languages, Assembly Language has less rules
and restrictions.

atine) College of Engineering

INTroauction To 8U5S1 FProgramming in
Assembly Language

 Even though there are many high-level languages that are currently In
demand, assembly programming language is popularly used in many
applications.

* |t can be used for direct hardware manipulations.

* |t Is also used to write the 8051 programming code efficiently with
less number of clock cycles by consuming less memory compared to
the other high-level languages.

[JA T M E

atme

College of Engineering

Introduction to 8051 Programming in Assembly Language |

Assembly

ORG 0000H Code

MOV PO, #0H
DELAY

MOV PO, #FFH
DELAY

v

ASSEMBLER - s

| 0100001001001000

0001000001010111
1101000000101111
1000000100100101
001000100000001

Objective
Code

)/, B

Cepartment of EEE

Emetng Eite Erergy

atine) College of Engineering

Introduction to 8051 Programming in Assembly
Language

» Assembly programming language Is developed by various compilers

and the “kelluvison” IS best suitable
for microcontroller programming development.
« An assembler converts the mbly lan Inary lan ,

and then stores it in the microcontroller memory to perform the
specific task.

atine) College of Engineering

ASSEMBLING AND RUNNING AN 8051

Steps to Create a Program PROGRAM

STEP 1: First we use an editor to type in a program similar to Program A widely used
editor is the MS-DOS EDIT program (or Notepad in Windows), which comes with all
Microsoft operating systems. Notice that the editor must be able to produce an ASCII
file.

STEP 2: The “asm” extension for the source file is used by an assembler in the next
step. The “asm” source file containing the program code created in step 1 is fed to an
8051 assembler machine code.

The assembler will produce an object file and a list file. The extension for the object
file is “.obj” while the extension for the list file is “.Ist”.

alie] College of Engineering ASSEMBLING AND RUNNING AN
8051 PROGRAM

Steps to Create a Program

STEP 3: Assemblers require a third step called linking. The link program takes one or
more object files and produces an absolute object file with the extension “abs”

This abs file is used by 8051 trainers that have a monitor program.
STEP 4:Next, the “abs” file is fed into a program called “OH” (object to hex convert

er), which creates a file with extension “hex” that is ready to burn into ROM.
This program comes with all 8051 assemblers.

[JATME

19 College of Engineering

EDITOR
PROGRAM

Imyﬁk.m

ASSEMBLER
PROGRAM

myfile Ist QJ

myfile oby J‘_uhacb,ﬁlﬂ

LINKER
PROGRAM

(Source File.asm)

¥

Assembler

Linker

Executable
File

]

Department of EEE
w Emetng Eite Erergy

[JA T M E

19 College of Engineering

Assembly Programme Example

File 1s saved with extension .A51

Title Section .
™\ g C\Niallsystems architecture\code\EX1.A51

b\\ ;xtt#t*t*tttttt%tt#t#wtwrt*t?t#t*ttttttt#tttttt
;Niall 0'Keeffe
;879705

;Introduction to assembly language programming
:t‘t****tt%#‘k*t#***'8‘tﬁ"k*****t*t*t**t*t*tﬁtt*i*tt

label

e ORG OH
|*MAIN: MOV A, #10 ~__Code

MOV RO, #5) comment

ADD A, RO e el

JMP MAIN Jjump to start of program
» ERND

directive — B -
‘ 4 7

AT M E

ate] College of Engineering

8051 data type and directives

] College of Engineering

1. The 8051 microcontroller has only gne data tvpe.

2. Itis 8 bits, and the size of each register Is also 8 bits.
3. Itis the job of the programmer to break down data larger than

8 bits (00 to FFH, or 0 to 255 in decimal) to be processed by
the CPU.

4. The data types used by the 8051 can be positive or negative

Assembler directives

1. DB (define byte)

1. The DB directive is the most widely used data directive in the
assembler.

2. It is used to define the 8-bit data

3. When DB is used to define data, the numbers can be in decimal,

Inary. hex, or ASCII form

4. For decimal, the “D” after the decimal number is optional, but using
“B” (binary) and “H” (hexadecimal) for the others iIs required.

5. Regardless of which is used, the assembler will convert the numbers

1nto hex,

atme College of Engineering

DB (define byte)

DATA]L :
DATRAZ :
DATAZ :
DATAA4 :

DATAG :

ORG
DE
DB
DB
ORG
DB
ORG
DB

DB Example

\ VY ¢/

S00H

28 ;DECIMAL(1C in hex)
00110101E ;BINARY (35 in hex}
39H +HEX

S10H

n2591" ;ASCII NUMEERS
51EBH

"My name is Joe" ;ASCII CHARACTERS

s College of Engineering O RG (O r‘lg | n) {

1. The ORG directive Is used to indicate the beginning Qf the address.
2. The number that comes after ORG can be either in hex or i1n decimal.

If the number is not followed by H, it is decimal and the mbler will
convert it to hex,

3. Some assemblers use “. ORG” (notice the dot) instead of “ORG” for the
origin directive.

NOTE: Check your assembler.

Example

ORG 0000H

. H .

Cepartment of EEE
A A o Emetng Eite Erergy

atime] College of Engineering

s College of Engineering

EQU (equate)
1. This is used to define a constant without gccupying a memory

location.

2. The EQU directive does not set aside storage for a data item
but assoclates a_constant value with a data label so that when
the label appears In the program, its constant value will be
substituted for the label.

3. The following uses EQU for the counter constant and then the

constant Is used to load the R3 register.

atme) College of Engineering

EQU Exampl| COUNT EQU 25
MOV R3, #COUNT
When executing the instruction

“MOV R3, #COUNT?”, the register R3 will be loaded with the value 25 (notice the #
sign).

What is the advantage of using EQU?
By the use of EQU, the programmer can change it once and the assembler will

change* all of its occurrences, rather than search the entire program trying to find
gvery occurrence,

atmel College of Engineering

END directive

atine | College of Engineering

1. Another important pseudocode is the END directive. This indicates
to the assembler the end of the source (asm) file.

2. The END directive Is the last line of an 8051 program, meaning that
In the source code anything after the END directive iIs ignored by the
assembler.

3. Some assemblers use “. END” (notice the dot) Instead
of “END”.

[JA T M E

e College of Engineering

: Cepartment of EEE
A - s Emetng Eite Erergy

QUIZ

1 5 -
1)

A I
! il 1 \ |

2tme) College of Engineering

1. Which Is not an assembler dlreCtIV67

END
ORG
FQU
INT

atme] College of Engineering

2 ORG directive IS used to mdlcate?

End of the address
Beginning of the Address
Address Loop

Constant

atet College of Eng

3. DB IS used to define data, the numbers can
be in ?

« DECIMAL

* BINARY

« HEX

« ALLTHEABOVE

—.,..8051.dnstructions The instructions of 80%

P
o, £

be broadly classified under the followi
headings.

1. Data transfer instructions

2. Arithmetic instructions

3. Logical instructions

4. Branch instructions

5. Subroutine Instructions

6. Bit manipulation Instructions

Collese o Enaineerine 1+ D@tA transfer instructions

In this group, the instructions perform data transfer operations of the
following types.

a. Move the contents of a register Rn to A

. MOV A,R2

1. MOV A,R7

b. Move the contents of a register Ato Rn
. MOV R4 A
1. MOV R1,A

g C©'lccc of Engineering] gty transfer instructions

c. Move an immediate 8 bit data to register Aor to Rnorto a
memory location (direct or indirect)

1. MOV A, #45H

1. MOV R6, #51H

1. MOV 30H, #44H

Iv. MOV @RO, #0E8H

v. MOV DPTR, #F5A2H

vi. MOV DPTR, #5467H

s Colleze of Engineering 1 Data transfer instructions

d. Move the contents of a memory location to Aor Ato a memory location
using direct and indirect addressing

I. MOV A, 65H

Ii. MOVA, @RO

lii. MOV 45H, A

Iv. MOV @R1, A

e. Move the contents of a memory location to Rn or Rn to a memory location
using direct addressing

1. MOV R3, 65H

Il. MOV 45H, R2

1. Data transfer instructions

f. Move the contents of memory location to another memory location
using direct and indirect addressing

MOV 54H, @RO

F6H F6H
g. Move the contents of an external memory to A or A to an external
memory
. MOVXA, @R1
. MOVX @RO,A
1. MOVXA,@DPTR

Iv. MOVX@DPTR,A

(hjo:llegevof E;giﬁeeriﬁg . .
1. Data transfer instructions
h. Move the contents of program memory to A

. MOVCA, @A+PC
. MOVCA, @A+DPTR

AL M 1 Data transfer instructions

alne] College of Engineering

<

i 1l i Il

Instructions
MOV A, @Ri Internal
MOV A, Direct RAM

RO or R1 - External
RAM
MOVX A, @R Internal
] and
MOVX A, @DPTR External
DPTR > ROM

DPTR + A MOVC A, @A + DPTR

MOVC A, @A + PC
PC+A 29

Arithmetic instructions

e College of Engineering

The 8051 can perform addition, subtraction. Multiplication and division operations
on 8 bit numbers:
a) Addition:
In this group, we have instructions to
I. Add the contents of Awith immediate data with or without carry.
I.LADD A, #45H ; A= OAH +45H 2>A=
1. ADDC A, #B4H ; CY=01 +A= +B4H=

11. Add the contents of Awith register Rn with or without carry.
Example:

MOV R5, #45H

MOV A #05H

ADD A,R5

Arithmetic instructions

atmel College of Engineering

11l. Add the contents of Awith contents of memory with or without carry using
direct and indirect addressing

I. ADDA, 51H

1. ADDCA, 75H

li. ADD A, @R1

Iv. ADDCA, @RO

CYAC and OV flags will be affected by this operation

MOV R1,45H
ADD A=05H +@ R1=0AH =

_ Arithmetic instructions

atine l College of Engineering

Signed Addition UnSigned Addition
+

-23H +

2’s Complement

00100011

11011100

+ 1

11011101

— College of Eﬁgineering b) Su btraCtion:
SUBB A, #45 : Function:
Subtract with borrow

Description: SUBB subtracts the indicated variable and the carry flag together
from the Accumulator, leaving the result in the Accumulator.

In this group, we have instructions to

I. Subtract the contents of Awith immediate data with or without carry.
I. SUBB A, #45H

i. SUBBA, #B4H

Il. Subtract the contents of Awith register Rn with or without carry.

I. SUBBA, R5

i1.SUBB A, R2

MOV R5,#05H

MOV A #0AH

SUBB A,R5 ; A-R5 =0A-05

atmel College of Engineering

b) Subtraction:

SUBB A, <src-byte>

Function: Subtract with borrow

lii. Subtract the contents of A with contents of memory with or without

carry using direct and indirect addressing
i. SUBBA, 51H

Ii. SUBBA, 75H

1. SUBB A, @R1

Iv. SUBB A, @RO0

CYAC and OV flags will be affected by this operation.

T M E

¢) Multiplication
MUL AB: This instruction multiplies two 8 bit unsigned numbers
which are stored in Aand B register.

After multiplication the Jower byte of the result will be stored In

accumulator and higher f result will redin B r
Eg. MOV A #45H ; [A]=45H

MOV B, A

MOV A, #0AH

MULAB ;AXB = 02B2H

Liie) College of Engineering

d) Division:
DIV AB. This instruction divides the 8 bit unsigned number which is
stored in A by the 8 bit unsigned number which is stored in B

register.

After division the result will be stored in accumulator and remainder
will be stored in B register.

Eg. MOV A #02H : [A]=02H
MOV B, A

MOV A, #0AH

DIVAB: A/B 0A/02= 05->Q=A 00->R=B

j M E

d program {0 add two 1b bIt numbers and store result In
R1 AND R2
FC45H and 02ECH

ORG 0000H oo | AD
CLRC ;CY=0 FC 45

MOV A, #45H 02 EC

ADD A, #ECH

MOV R1 A ADDC 31

MOV A,#02H

ADDCAHFCH ; CY=01 +02+FC=FFH

MOV R2, A
o/P

R1=31H R2=FFH

AT M E
— College of Engineering
VVIITE a prograim to add two 160 DIt numpers

8100 and 8101 H FC45H and 8200H and 8201H 02ECH and
store the result in 8300 8301 8302

e
FC 8100 45 8101
02 8200 EC 8201

FF 31

atmel College of Engir

“*BCD Addition |
 BCD : Binary Coded Decimal

* Binary Representation: 0 to 9
» The 8051 performs addition in pure binary —this may
lead to errors when performing BCD addition

1. Unpacked BCD 07 0601030809
Packed BCD 77 96384 45

atine] College of Engineering

BCD Addition
Example
49 BCD 01001001 BCD
38 BCD 00111000 BCD
87 BCD 10000001 (81BCD)

et Dacimal Adjust

The result must be adjusted to yield the correct BCD result
1. DAA (decimal adjust instruction)

2. The carry flag is set if the adjusted number exceeds 99 BCD

MOV A, #25H

MOV B, A

MOV A #47H

ADDAB ;

DAA; UP COUNTER /DOWN

atme] College of Engineering

(2H----2>47+25=72
DA Instruction works only on A

MOV A, #09H

ADD A, #11H;A = 1AH (expecting 20H if these are BCD
numbers)
DA A;

DAAworks as follows:

e If lower nibble is greater than 9 or auxiliary carry is 1, 6 is added to lower
nibble

e |f upper nibble is greater than 9 or carry is 1, 6 is added to upper nibble.

et College of Engineering

Increment Increments the operand by one
INC increments the value of sour 1,

If the Initial value of register is FFh, incrementing the value will
cause It to reset to O.

In the case of "INC DPTR", the value two-byte unsigned integer
value of DPTR Is Incremented.

If the initial value of DPTR 1s FFFFh, incrementing the value will
cause It to reset to 0.

N College of Eng

INcrement: INCrements tne operand Dy one
Eg: INCA ; A=07

INC R4 ;R4=09

INC 54H ; 55H

INC @RI @R3=05

INC DPTR ;8101

atiiel College of Enginee

ecrement decrements the operand by one

» DEC decrements the value of source by 1.
* If the initial value of iIs 0, decrementing the value will

cause It to reset to FFh,
 The Carry Flag 1s not set when the value "rolls over"

from Q0 to FFh E9: DECDPL
DEC DPH

DEC DPTR

Show how the following numbers are represented In the 8051

l[Iﬂ(

AT

M

-
—q
-

4 College of Engineering

a. -/

Solution:

1. Write the number in binary form

2. Complement each bit

3. Addl
27 26 2° 24 23 22 21 20
0 0 0 0 0 1 1 1
1 1 1 1 1 0 0 0

A1 M E

atine) College of Engineering

Show how the tollowing numbers are represented
IN the 8051

Solution: 27 26 25 24 23 22 21 20
0 0 1 1 1 0 0 0

1 1 0 0 0 1 1 1

1

IA T M E

¢ College of Engineering

Show how the following numbers are represented

IN the 8051
C.-128

Solution:

AT M E

208} College of Engineering

(‘io‘nllege”of Eggiﬁeering L O g i Cal I n St r u Cti O n S

a) Logical AND
ANL destination, source: ANL does a bitwise "AND" operation between source and

destination, leaving the resulting value in destination. The value in source is not affected.

"AND" instruction logically AND the bits of source and destination
ANLA #FF
EXAMPLE

A=05, 00000101
11111111

00000101

Logical Instructions

atme]l College of Engineering

b) Logical OR

ORL destination, source: ORL does a bitwise "OR" operation between source and destination,
leaving the resulting value in destination. The value in source is not affected. " OR " instruction
logically OR the bits of source and destination.

EXAMPLE

MOV A #FAH

ORLA #FFH

11111010
11111111
111171111 EE

atme] College of Engineering L O g i Cal I n St r u Cti O n S

¢) Logical Ex-OR

XRL destination, source: XRL does a bitwise "EX-OR" operation between
source and destination, leaving the resulting value in destination. The value In
source is not affected. " XRL " instruction logically EX-OR the bits of source

and destination.
MOV A #FAH
XRLA #FFH

11111010
111171711
00000101 05H

d)Logical NOT

CPL complements operand, leaving the result in operand. If
operand Is a single bit then the state of the bit will be reversed. If
operand Is the Accumulator then all the bits in the Accumulator will
be reversed.; A=08

CPLA = 00001000 --» 11110111

CPLC :CY=0--CY=1
CPL bit address CPLP1.0 :P1.0=0 P1.0=1

e College of Engineering Log i Cal I nStru Cti O nS

SWAPA :A=08 80 - F F F Al 1A

Swap the upper nibble and lower nibble of A

Function: Swap nibbles within the Accumulator

Description: SWAP A interchanges the low- and high-order nibbles
(four-bit fields) of the Accumulator (bits 3 through O and bits 7
through 4). The operation can also be thought of as a 4- bit rotate

Instruction. No flags are affected.

Example: The Accumulator holds the value C5H (11000101B). The

Instruction, SWAP A leaves the Accumulator holding the value 5CH
(01011100B)

e, LOgiICAl INstructions

XCH A, <byte>
Function: Exchange Accumulator with byte variable Description:
XCH loads the Accumulator with the contents of the indicated
variable, at the same time writing the original Accumulator contents
to the Indicated variable. The source/destination operand can use
register, direct, or register-indirect addressing.
Example: XCHA,@RO //A=08 , @R0=AA

A=AA @R0=08

aline] College of Engineering LOg i Cal I nStru Cti O nS

CPLA

Function: Complement Accumulator

Description: CPLA logically complements each bit of the
Accumulator (one’s complement). Bits which previously contained
a 1 are changed to a 0 and vice-versa. No flags are affected.
Example: The Accumulator contains 5CH (01011100B). The
following instruction, CPL A leaves the Accumulator set to A3H
(10100011B).

AT M E

— <] College of Engineering

Clear Logical Instructions

—-CLRA
—Clears each bit of the A register

A a I N L
[‘e"t ﬂ xm"v” E f J

2U0e) College of Engineering

1. RRA
2.RLA

3.RRCA
4. RLCA

Rotate Instructions

A T N\ B
Ly \/1 f‘
L\ 1 LY A S

atine) College of Engineering

Rotate Instructions
* RRA

* This Instruction Is rotate right the accumulator. Its operation Is
Illustrated below. Each bit is shifted one location to the right, with bit
0 going to bit 7.

*RLA

e Rotate left the accumulator. Each bit is shifted one location to the left,

with bit 7 going to bit O

5

> ¢

4-94--

% -

4-4-

4 1

¢ }

6
ACC

5

4

-
2

S

]

0

Example: The Accumulator holds the value 0C5H (11000101B). The following

Instruction,

RL A leaves the Accumulator holding the value 8BH (10001011B) with the carry

unaffected.

College of Engineering
* RRCA
* Rotate right through the carry. Each bit Is shifted one location to the right,

with bit 0 going into the carry bit in the PSW, while the carry was at goes
Into bit 7

ACC

Example: The Accumulator holds the value 0C5H (11000101B), the carry is zero.
The following instruction, RRC A leaves the Accumulator holding the value 62
(01100010B) with the carry set.

atme] College of Engineering

* RLCA

* Rotate left through the carry. Each bit is shifted one location to the left,
with bit 7 going into the carry bit in the PSW, while the carry goes into bit
0.

¥ 1665 ¢ 32 140
ACC
Example: The Accumulator holds the value 0C5H(11000101B), and the carry is

zero. The following instruction, RLC A leaves the Accumulator holding the value
8BH (10001010B) with the carry set.

atine] College of Engineering

Show how 8051 does the following

calculations
« A)ADD +37 and -115 =
Solution:
+37 00100101
-115 10001101
-78 10110010

-78

[
—>

27 26 2° /s 23 22 21 20
128 | 64 32 16 8 4 2 1
0 0 1 0 0 1 0 1
2/ 2P 25 24 23 22 21 20
128 | 64 32 16 8 4 2 1
0 1 1 1 0 0 1 1
1 0 0 0 1 1 0 0
1

1 0 0 0 1 1 0 1

atine] College of Engineering

Show how 8051 does th

calculations
* MOV A,#-43

* MOV R2,#-78
 ADD A,R2

* Solution:

* 11010101

* 10110010
110000111

e following

27 26 25 24 23 22 21 20
128 | 64 32 16 8 4 2 1
0 1|0 1
1 0 1 0
1
1 0 1 1

— 2 & P
]' \/] |
1 1V

i

atine] College of Engineering

" Observe and notice the role of overflow
flag

MOV A #-128
MOV R4 #-2
ADD A R4

Solution:

-128 10000000

-2 11111110

-130 01111110 QV=1

atme) College of Engineering

Observe and notice the role of overflow
flag

MOV A #-2
MOV R4 #-5
ADD A R4

Solution:

-02 11111110

-05 11111011

-07 11111001 OV=0

AT M E

College of Engineering

Show the results of the following
* MOV A,#54H

« XRL A #78H

* Solution g ;’
*54 X-OR 78 1 0
01010100 1 1
01111000

00101100

0
1
1
0

atine] College of Engineering

Show the results of the following
MOV A,#25H

MOV B,#65H
MUL AB

* Solution

* 25H*65H=0E99H
* A=299

* B=? OE

! »/\l
UKAS
Cepartment of EEE
o Emetng Eite Erergy

A& 1T M E

aoae] College of Engineering

Show the results of the following

MOV A,#78H
SWAP A

Solution:
A=87H

AT M E

atine] College of Engineering

Which instructions are illegal

MOV R3,#50
MOV R1,#500
MOV R7,#00
MOV R2,R3

B W

Solution:

AT M E

2one] College of Engineering

Which are the two 16 bit registers

Solution:
DPTR

PC

atine] College of Engineering

R0O=25H, A=35H What i1s O/P of the

following code?
ADD A RO ; 25+35= 5A
MOV RO,A; A=5A--->R0=5A
ADD A,RO; A=5A +5A =B4H

Solution:
A= B4H

“ f.”/\‘n
UKAS
Cepartment of EEE
Emesng Eite Erergy

atme] College of Engineering

What IS the status of CY,AC and P Flags

MOV A #9CH
ADD A #64H

Solution:
oC 10011100
64 01100100

CY=1AC=1 P=1

atme - College of Engineering

What type of Addressing mode Is this

Instruction

1. MOV A #45H

2. MOVCA @A+DPTR
3. MOVA @R1

Solution:

! »AI
UKAS
Cepartment of EEE
w Emetng Eite Erergy

atine] College of Engineering

JUMP,LOOP AND CALL INSTRUCTIONS

atine) College of Engineering

Branch (JUMP) Instructions

Jump and Call Program Range There are 3 types of jump instructions.
They are:-

1. Relative Jump
2. Short Absolute Jump
3. Long Absolute Jump

2tme) College of Engineering

1 Relative Jump

« Jump that replaces the PC (program counter) content with a
new address that Is greater than (the address following the
jump instruction by 127 or less) or less than (the address
following the jump by 128 or less) Is called a relative jump.
Schematically, the relative jump can be shown as follows: -

A 1T M E

aoae] College of Engineering

Advantage

Only 1 _byte of jump address needs to be
specified in the 2's complement form, Ie.
For jumping ahead, the range is 0 to 127
and for jumping back, the range Is -1 to -
128.

Disadvantages of the absolute jump: -
1. Short jump range (-128 to 127 from the
Instruction following the jump instruction)

Relativé
Jump
range

128

J, Next
. Instruction

127

Jump instruction
XX XXX

1. Relative Jump

ORG 0000H
MOV A #FFH

ADDA#FFH ; 01 FEH
JC HERE ; JUMP IF CARRY IS GENERATED

NOP
RE: DB CARRY IS GENERATED

HE
) =ND

(=2
_

College of Engineering
SIMP
* Operation: SIMP Function

 Short Jump Syntax: SIMP 0500

 Description: SJIMP jumps unconditionally to the address specified
reladdr.

* Reladdr must be within -128 or +127 bytes of the instruction that
follows the SJIMP Instruction

* MOV A#45H ;2

@‘A T M E

JC <relative address>

JNC <relative address>
| B bit, <relative address>

JNB bit, <relative address>

]BC bit, <relative address>
C]NE <destination byte>, <source byte>, <relative address>

DJNZ <byte>, <relative address>
]Z <relative address>
JNZ <relative address>

MOV RO,#00
BACK: NOP
DJNZ RO,BACK

Absolute Jump R
In this case only 11bits of the absolute jump address are needed. The absolute
jump address iIs calculated in the following manner.

In 8051, 64 Kkbyte of program memory space is divided into 32 pages of 2 kbyte
each.

Page (Hex) Address (Hex)

The hexadecimal addresses of the pages are given

as follows:- 00 0000 - 07FF
01 0800 - OFFF
02 1000 - 17FF
03 1800 - 1FFF

ACALL <address 11>
AJMP <address 11>

] I F800- FFFT
1F F800 - FFFF

atine) College of Engineering

" LIMP

 Long Absolute Jump/Call

« Applications that need to access the entire program memory from
0000H to FFFFH use long absolute jump.

 Since the absolute address has to be specified in the op-code, the

Instruction length is 3 bytes (except for JIMP @ A+DPTR). This jump
IS not re-locatable.

A& 1T M E

atimne] College of Engineering

Operation: LIMP

Function: Long Jump

Syntax: LIMP code address.

Description: LIMP jumps unconditionally to
the specified code address.

LCALL <address 16>
LJMP <address 16>
JMP @A+DPTR

Do

LS College of Engineering

@\ T M

leading edge VUL Us\d \JAL Ls11 5 ANV L

E

Conditional Jump instructions.
|BC Jump if bit = 1 and clear bit

JNB Jump if bit = 0

|B Jump if bit = 1

JNC Jump if CY = 0

JC Jump if CY =1

CJNE reg,#data Jump if byte # #data

CJNE A,byte Jump if A # byte

DJNZ Decrement and Jump if A# 0
INZ JumpifA#0

|Z JumpifA =0

All conditional jumps are short jumps.

atimet College of Engineering

* Operation: JNC
 Function: Jump If Carry Not Set
 Syntax: JNC reladdr

* Description: JNC branches to the address indicated by reladdr if the carry
bit Is not set. If the carry bit Is set program execution continues with the
Instruction following the JNB instruction

e @ ‘\Q—

atme] College of Engineering

 Operation: JC
 Function: Jump if Carry Set
 Syntax: JC reladdr

* Description: JC will branch to the address indicated by reladdr if the Carry Bit Is set.
If the Carry Bit is not set program execution continues with the instruction following
the JC instruction.

* MOV A #FFH
« ADD A#FFH; 01 FEH
« JCHERE

« HERE: DB INDIA

ﬂ AT M E

atine) College of Engineering

Operation: JNB

 Function: Jump if Bit Not Set
 Syntax: JNB bit addr, reladdr

 Description: JNB will branch to the address indicated by reladdress if the
Indicated bit Is not set. If the bit Is set program execution continues with
the instruction following the JNB instruction.

SUBMER

SENSOR SIBLE
PUMP

atine) College of Engineering

* Operation: JB
 Function: Jump if Bit Set
 Syntax: JB bit addr, reladdr

 Description: JB branches to the address indicated by reladdr if the bit
Indicated by bit addr Is set. If the bit Is not set program execution
continues with the instruction following the JB instruction.

atine) College of Engineering

-Operatlon JNZ
 Function: Jump If Accumulator Not Zero
 Syntax: JNZ reladdr

 Description: JNZ will branch to the address indicated by reladdr if the
Accumulator contains any value except 0. If the value of the Accumulator
IS zero program execution continues with the instruction following the
JNZ instruction.

atine) College of Engineering

 Qperation: J£
 Function: Jump if Accumulator Zero
 Syntax: JNZ reladdr

* Description: JZ branches to the address indicated by reladdr if the
Accumulator contains the value 0. If the value of the Accumulator Is non-
Zero program execution continues with the instruction following the JNZ
Instruction.

atine) College of Engineering

"+ Operation: DINZ

 Function: Decrement and Jump if Not Zero
 Syntax: DJNZ register, reladdr

 Description: DIJNZ decrements the value of register by 1. If the initial
value of register is 0, decrementing the value will cause It to reset to 255
(OxFF Hex). If the new value of register is not 0 the program will branch
to the address indicated by relative addr. If the new value of register is 0

program flow continues with the instruction following the DJNZ
Instruction

atine) College of Engineering

. Operation: CINE
 Function: Compare and Jump If Not Equal
 Syntax: CJINE operandl,operand2,reladdr

* Description: CINE compares the value of operandl and operand2 and

branches to the indicated relative address if 0

perandl and operand?2 are

not equal. If the two operands are equal program flow continues with the

Instruction following the CINE instruction. T

ne Carry bit (C) Is set If

operandl Is less than operand2, otherwise it Is cleared.

Memory Address (HEX)

FFFF e e e e

-
LADD Limit |
|
I
I
|
|
I
Next Page e e e e e S il |
SADD Limit jl |
PC+127d | Relativelimit |-— s | l
B |
| e AIMP | LIMP
Jump Opcode | OINZ gy J [
| 2 sumps | |
INZ |
| | |
PC - 1284 | RelatweLimit _f——1 SimP | I
| l
- | |
Thils Page. | 2SNDD UM +—————— J I
|
I
I
I
. |
0000 LADD Limit s e e e .

atine) College of Engineering

2.5. 1 Bit level jJump Instructions

* Bit level JUMP instructions will check the conditions of the bit and if
condition Is true, it jumps to the address specified in the instruction.

« All the bit jumps are relative jumps.

AT M E
§ College of Engineering

Bit Jumps

Bit jumps all operate according to the status of the carry flag in the PSW or the status of

any bit-addressable location. All bit jumps are relative to the program counter.
Jump instructions that test for bit conditions are shown in the following table:

Mnemonic Operation

JC radd Jump relative if the carry flag is set to |
JNC radd Jump relative if the carry flag is reset to 0
JB b,radd Jump relative if addressable bit is set to |

JNB b,radd Jump relative if addressable bit is reset to 0
JBC b,radd Jump relative if addressable bit is set, and clear the addressable bit to 0

Note that no flags are affected unless the bit in JBC is a flag bit in the PSW. When the bit
used in a JBC instruction is a port bit, the SFR latch for that port is read, tested, and

altered.

Byte Jumps

Byte jumps—jump instructions that test bytes of data—behave as bit jumps. If the condi-

alic tion that is tested is frue, the jump is taken; if the condition is false,the instruction after
the jump is executed. All byte jumps are relative to the program counter.

The following table lists examples of byte jumps:

Mnemonic Operation

CJNE A ,add,radd Compare the contents of the A register with the contents of the
direct address; if they are not equal, then jump to the relative
address, set the carry flag to 1 if A is less than the contents
of the direct address; otherwise, set the carry flag to 0

CINE A, #n, radd Compare the contents of the A register with the immediate
number n; if they are not equal, then jump to the relative
address; set the carry flag to | if A is less than the number;
otherwise, set the carry flag to 0

CJNE Rn,#n,radd Compare the contents of register Rn with the immediate
number n; if they are not equal, then jump to the relative
address; set the carry flag to 1 if Rn is less than the number;
otherwise, set the carry flag 1o 0

CINE @Rp,#n,radd Compare the contents of the address contained in register Rp
to the number n; if they are not equal, then jump to the
relative address; set the carry flag to 1 if the contents of the
address in Rp are less than the number; otherwise, set the

carry flag to 0

41‘\] College of Engineering

Subroutme CALL and RETURN Instructlons

 Subroutines are handled by CALL and RET instructions There are two

types of CALL instructions

 Call iInstructions may be iIncluded explicitly in the program as

mnemonics or implicitly included using hardware interrupts.

* Subroutine: Subroutine Is a standalone program or small program in a

main program

« “A Subroutine Is a program that may be used many times in t
execution of a larger program.The subroutine could be written into t
body of the main program everywhere it IS needed resulting In t
fastest possible code execution.”

€
€

€

AT M E
2) College of Engineering

"LCALL address (16 bit)

e This is long call instruction which unconditionally calls the subroutine located at the indicated 16 bit
address.

e Thisisa 3 DVte Instruction.

a. During execution of LCALL, [PC] = [PC]+3; (if address where LCALL resides is say, 0x3?7 "
during execution of this instruction [PC] = 3254h + 3h = 3257h

b. [SP]=[SP]+1; (if SP contains default value 07, then SP incremente ~-
c. [[SP]] = [PC7.0]; (lower byte of PC content ie., 57 will b~

d. [SP]=[SP]+1; (SP increments again and [SP-

e. [SP]] = [PCIS-B]: (higher byte nf P~

With these the -~

£ ™

N

- -

AT M E

e=90510-MOV A, #45H=> 05 B

—0511: ADD A #FFH _ s 14 l
_, 0512 :ACALL s

07 |
— 0514 DB INDIA ISAS._\N._ﬁ RRCOTOTEIN §

— G —

AT M E |
atme] College of EngineerinA CA I_ I_ a d d re SS (1 1 b It)

a. During execution of SCALL, [PC] = [PC]+2; (if address where LCALL resides is say, 0x8549;
during execution of this instruction [PC] = 8549h + 2h = 854Bh

[SP]=[SP]+1; (if SP contains default value 07, then SP increments and [SP]=08

[[SP]] = [PC7.0]; (lower byte of PC content ie., 4B will be stored in memory location 08.

SP]=[SP]+1; (SP increments again and [SP]=09)

[SP]] = [PCis-g]; (higher byte of PC content ie., 85 will be stored in memory location 09.

©can o

With these the address (0x854B) which was in PC is stored in stack.

f. [PCio-0]=address (11 bit); the new address of subroutine is loaded to PC. No flags are
affected.

atine] College of Engineering

RET Instruction

« RET Instruction pops top two contents from the stack and load it to
PC.

MOV RO,#07 ; RO=08H
BACK:MOV R1,#45H

MOV A #0AH
ADDA, R1; 45H+0AH

RET

2tme) College of Engineering

| O port programming
1. 1/O Port pins, Ports and Circuits: One major feature of a
microcontroller Is versatility built into the I/O circuits that connect the

8051 to the outside world.

« 2. Out of 40 pins 24 pins may each be used for one of two entirely
different functions yielding a total pin configuration of 64.

« 3. But the port pins have been multiplexed to perform different functions
to make 8051 as 40 Pin IC

 The port pin circuitry

[JATME

atimel College of Engineering

Oepartment of EEE
Emetng Elte Erergy

Read T Ve
Latch Address Control
Data
Port-0 —
Y PO.x
iy Pin
Bus D pox @ L |
Write R Latch N |
latch f
Q fo)

[JA T M E
] College of Engineering

PROGRAMS

MAKE PO.2 AS I/P PORT

SETB P0.2 ; P0.2=1 [I/P PORT]

P0.2=1

A/D
Converter

Signa

AmplificationSigna

| Conditioning

ECG Sensor

IA T M E

e College of Engineering

Port 1 Is configured as an input port.
Toggle the port 55H 01010101 =10101010 AAH

Toggle all bits of continuously

MOV A,#55 H;01010101

BACK: MOV P1,A :55H->P1=55H ‘ ‘ “
CPL A ;35H--2 AAH
SIMP BACK

RPS

+5V —

MC

[JAT M E

e] College of Engineering

" Get a bvte and plagce it in P2 and P1
MOV A, # FFH ; FF=11111111 1 BYTE
MOV P2, A ; A=FFH--->P2=FFH
MOV P1, A; A=FFH---->P1=FFH

B - =) B -
_

AT M E

=] College of Engineering

rlte a program to configure port 1 as /P port. Then
data is received from the port and saved in R5,R6,R7

MOV A,#0FFH ;A=FF hex

MOV P1,A ;make Pl an input port
;by writing all 1s to it

MOV A,P1l ;get data from Pl

MOV R7,A ;save it in reg R7

ACALL DELAY ;wailt

MOV A, Pl ;get another data from Pl

MOV R6,A ;save 1t in reg Ré6

ACALL DELAY ;wait

MOV A,P1l ;get another data from Pl

MOV R5,A ;save 1t 1n reg RS

[JA T M E

atiae] College

Method 1:
BACK:

Method 2:

of Engineering

Toggle the bit of P1.2 continuously

CPL Pl.2
ACALL DELAY
SJMP BACK

;complement P1.2 only

:another variation of the above program follows

AGAIN:

SETB Pl.2
ACALL DELAY
CLR Pl.2

ACALL DELAY
SJMP AGAIN

;change only Pl.2=high

;change only Pl.2=low

o s N A L .

Example 4-6

A switch is connected to pin P1.7. Write a program to check the status of the switch and
perform the following:

(a) If switch = 0, send letter *N’ to P2.

(b) If switch = 1, send letter *Y " to P2.

an

Use the carry flag to check the switch status. This is a repeat of the last example.

Solution:
SETB Pl1.7 ;make P1.7 an input

AGAIN: MOV C,Pl1.2 ;read the SW status into CF
JC OVER ;jump if SW = 1
MOV P2,#'N' ;SW = 0, issue 'N' to P2
SJIJMP AGAIN ;keep monitoring

OVER: MOV P2,8%8'Y’ ;SW = 1, issue 'Y' to P2

SIJMP AGAIN ; keep monitoring

| JA T M E

s College of Engineering

PROGRAMS CONTINUED

AT M E

=] College of Engineering ;
VVIite a program to Conngure port 1L as I/F pPort. 1 nen aata IS Ireceived

frcgnILHe dport and saved in R5,R6,R7
MOV A #FFH A=FER

MOV P1A 1=0.1mA “
MOV A,P1

MOV R7.A 8051 MC
ACALL DELAY
MOV A,P1
MOV R6,A
ACALL DELAY
MOV A,P1
MOV R5,A

Pl=data

Method 1:
BACK :

Method 2:

Toggle the bit of P1.2 continuously

CPL Pl.2
ACALL DELAY
SJMP BACK

A
CCREDTED

;complement P1.2 only Q ‘

:another variation of the above program follows

AGAIN:

SETB Pl.2
ACALL DELAY
CLR Pl.2

ACALL DELAY
SJMP AGAIN

;change only Pl.2=high

;change only Pl.2=low

AT M E

2 C) College of Engineering

BACK: SETB P1.2 ; P1.2=1
ACALL DELAY

CLR P1.2 ;P1.2=0
ACALL DELAY .
SIMP BACK

Example 4-6

A switch is connected to pin P1.7. Write a program to check the status of the switch and
perform the following:

(a) If switch = 0, send letter *N’ to P2.

(b) If switch = 1, send letter *Y " to P2.

Use the carry flag to check the switch status. This is a repeat of the last example.

Y /N

v

AGAIN: MOV C, P1.2 ; P1.7=0--C=0
JOC OVER - CY=0
MOV P2#‘N’
SIMPAGAIN
OVER: MOV P2# ‘Y’
SIMPAGAIN

A R \ A »
[‘e"t ﬂ xm"v” E f J

atine) College of Engineering

PROGRAMS ON ARITHMETIC
INSTRUCTIONS

atine] College of Engineering

Two numbers are stored In registers RO and R1.
Verify if their sum is greater than FFH send Y to P1
MOV A,RO ; R0O=05H
ADD AR1;R1=07H : 05H+07H= OCH

JC MESSAGE

SIMP NEXT

MESSAGE: MOV A# ‘Y’
MOV P1, A

NEXT: NOP

END

atine] College of Engineering

Analyze the following program

CLRC
MOV A #4CH

SUBB A #6EH
JNC NEXT
CPLA

NEXT:MOV R1 A

-] College of Engineering

nalyze the following program

Solution:

4C 0100 1100 01001100
- 6E 01101110 2’s Complement 10010010
- 22 011011110

CY=1 Since the result is negative in 2’s complement

2tme) College of Engineering

Assume that P1 is an input port connected to a temperature
sensor.Write a program to read the temperature and test it for the

value 75.Place the temperature value into the registers indicated by the

following

If T=75
If T<75

1T

[>[5

T M E

Solution:
MOV P1#FFH -P1=|/P s Py -85
MOV A P1 : A=65) '

CINE A#75,0VER
MOV RO, A ;R0=75
SIMP EXIT

OVER: JNC NEXT
MOV R1,A; R1=65

SIMP EXIT
NEXT: MOV R2,A ;R2=85
EXIT: NOP

A 1T M E

aoae] College of Engineering

P1.3 Toggle Continuously

BACK :SETB P1.3; P1.3=1
ACALL DELAY

CLR P1.3

ACALL DELAY

SIMP BACK

r<‘<-.
it
i

atine) College of Engineering

Programs Continued

Write a program to transfer value 41H serially(one bit at a time)
via P2.1.Put two highs at the start and end of the data. Send the
byte LSB first

[JA T M E

atime] College of Engineering

Solution:
MOV A #41H
SETB P2.1
SETB P2.1

MOV R5,#00
HERE: RRC A
MOV P2.1,C
DIJNZ R5,HERE
SETB P2.1 ;High
SETB P2.1; High

Qgrgllgl erm

Solution
MOV RO0,#08
SETB P0.0

BACK: MOV C,P0.0
RRCA
DIJNZ RO,BACK

- P0.0

MOV P1 A
END

A=AO0OH

A=A0H

1

SRR

| Write a test program for the DS89C420/30 chip to toggle all the bits of PO, P1, and P2
every 1/4 of a second. Assume a crystal frequency of 11.0592 MHz. / \ I

Solution:

;Tested for the DS89C420/30 with XTAL = 11.0592 MHz.

CRG 0

BACK: MOV A, #55H
MOV PO,A <
MOV Pl1,A ‘
MOV P2,A

ACALL OQSDELAY «——Quarter of a second delay
MOV A, #0AAH ‘

MOV PO,A
MOV P1,A ‘
MOV P2,A

ACALL QSDELAY
SJMP BACK

A

Write the following programs.
(a) Create a square wave of 50% duty cycle on bit 0 of port 1.
(b) Create a square wave of 66% duty cycle on bit 3 of port 1.

P1.0=0

Solution:

(a) The 50% duty cycle means that the “on™ and “off™ states (or the high and low
portions of the pulse) hav~ the same length. Therefore, we toggle P1.0 with a
Methodirhé delay in between each state.

72 =50

HERE: SETE P1.0 ;set to high bit 0 of port 1
LCALL DELAY ;call the delay subroutine
CLR F1.0 ;PL.0=0 _
LCALL DELAY 2/3=66.6
SJMP HERE ;keep doing it

ﬂ ATME
s College of Engineering
Method 2:
Another way to write the above program is:
HERE: CPL P1.0 ;complement bit O of port 1
LCALL DELAY ;call the delay subroutine
SJMP HERE i keep doing 1t

_ —

ATM E

College of Engineering

(b) The 66% duty cycle means the “on™ state is twice the “off” state.

BACK: SETBE Pl1.3 ;set port 1 bit 3 high
LCALL DELAY :call the delay subroutine
LCALL DELAY ;call the delay subroutine again
CLE PFl.3 ;iclear bit 2 of port 1(Pl.3=low)
LCALL DELAY ;call the delay subroutine
EJMP BACK ;keep doing it
8051

ST m— 1

[JA T M E

atiel College of Engineering

Write a program to perform the following:

(a) keep monitoring the P1.2 bit until it becomes high

(B} when P1.2 becomes high, wnite value 45H to port 0
(¢) send a high-to-low (H-to-L) pulse to P2.3

Solution:
SETE F1.2
MOV A4, #45H
AGATIN: JNB P1.2,AGAIN
MOV PO.A
SETB P2.23

CLE P2.3

;jmake P1.2 an input
;A=45H

;get out when Pl.2=1
;issue A to PO

;make P2.3 high

rmake P2.3 low for H-to-L

A

atmel College of Engineering

Assume that bit P2.3 1s an input and represents the condition of

an oven. If | high, It means that the gven is hot.
Monitor the bit continuously. Whenever it goes high, send a

high-to-low pulse to port P1.5 to turn on a puzzer

VCC

Switch T
_l

4.7k

8051

P2.3

P1.5

Buzzer
| ‘
T4LS0O4 l

[JA T M E

atime] College of Engineering

Solution:
HERE: JNE PZ.3,HERE :keep monitoring for high
SETE Fl1.5 ;8et pbit Pl.5=1
CLR Pl.5 ;make high-to-low

SIJMP HERE ;keep repeating

A switch' is connected to pin P1 .0 and an LED “

atmel (o lﬁe of Engineering

rite a program to get the status of the switch and=sénd it

the LED.
Solution:

SETB P1.0
AGAIN: MOV C,P1.0

MOV P2.7,C
SIMP AGAIN

8051 MC

L]

atme

AT M E

College of Engineering

Thank You

	Slide 1: BEE403:MICROCONTROLLERS
	Slide 2: OUTLINE
	Slide 3: Introduction to 8051 Assembly Programming
	Slide 4: What is a Programming Language?
	Slide 5
	Slide 6
	Slide 7: Machine language
	Slide 8: High Level language
	Slide 9: Assembly language
	Slide 10: Why Assembly language??
	Slide 11: Introduction to 8051 Programming in Assembly Language
	Slide 12
	Slide 13
	Slide 14: Steps to Create a Program
	Slide 15: 8051 PROGRAM
	Slide 16
	Slide 17
	Slide 18: 8051 DATA TYPES AND DIRECTIVES
	Slide 19: 8051 data type and directives
	Slide 20: Assembler directives
	Slide 21: DB Example
	Slide 22: ORG (origin)
	Slide 23
	Slide 24: EQU (equate)
	Slide 25: EQU Example
	Slide 26
	Slide 27: END directive
	Slide 28: QUIZ
	Slide 29
	Slide 30
	Slide 31
	Slide 32: 8051 Instructions The instructions of 8051 can be broadly classified under the following headings.
	Slide 33: 1. Data transfer instructions
	Slide 34: 1. Data transfer instructions
	Slide 35: 1. Data transfer instructions
	Slide 36: 1. Data transfer instructions
	Slide 37: 1. Data transfer instructions
	Slide 38: 1. Data transfer instructions
	Slide 39: Arithmetic instructions
	Slide 40: Arithmetic instructions
	Slide 41: Arithmetic instructions
	Slide 42: b) Subtraction: SUBB A, #45 ; Function:
	Slide 43: b) Subtraction:
	Slide 44
	Slide 45
	Slide 46: Write a program to add two 16 bit numbers and store result in R1 AND R2
	Slide 47
	Slide 48: BCD Addition
	Slide 49: BCD Addition
	Slide 50: Decimal Adjust
	Slide 51
	Slide 52: Increment: Increments the operand by one INC increments the value of source by 1.
	Slide 53
	Slide 54: Decrement: decrements the operand by one
	Slide 55: Show how the following numbers are represented in the 8051
	Slide 56: Show how the following numbers are represented in the 8051 b. -56
	Slide 57: Show how the following numbers are represented in the 8051 C. - 128
	Slide 58: Logical instructions
	Slide 59: Logical Instructions
	Slide 60: Logical Instructions
	Slide 61: Logical Instructions
	Slide 62: Logical Instructions
	Slide 63: Logical Instructions
	Slide 64: Logical Instructions
	Slide 65: Logical Instructions
	Slide 66: Logical Instructions
	Slide 67: Rotate Instructions
	Slide 68: Rotate Instructions
	Slide 69
	Slide 70
	Slide 71
	Slide 72: Show how 8051 does the following calculations
	Slide 73: Show how 8051 does the following
	Slide 74: Observe and notice the role of overflow flag
	Slide 75: Observe and notice the role of overflow flag
	Slide 76: Show the results of the following
	Slide 77: Show the results of the following
	Slide 78: Show the results of the following MOV A,#78H SWAP A
	Slide 79: Which instructions are illegal
	Slide 80: Which are the two 16 bit registers
	Slide 81: R0=25H, A=35H What is O/P of the following code?
	Slide 82: What is the status of CY,AC and P Flags
	Slide 83: What type of Addressing mode is this instruction
	Slide 84: JUMP,LOOP AND CALL INSTRUCTIONS
	Slide 85: Branch (JUMP) Instructions
	Slide 86: 1. Relative Jump
	Slide 87
	Slide 88: 1. Relative Jump
	Slide 89: SJMP
	Slide 90
	Slide 91: Absolute Jump In this case only 11bits of the absolute jump address are needed. The absolute
	Slide 92: LJMP
	Slide 93
	Slide 94: Conditional Jump instructions.
	Slide 95
	Slide 96
	Slide 97: Operation: JNB
	Slide 98
	Slide 99
	Slide 100
	Slide 101
	Slide 102
	Slide 103
	Slide 104: 2.5. 1 Bit level jump instructions
	Slide 105
	Slide 106
	Slide 107: Subroutine CALL and RETURN Instructions
	Slide 108: LCALL address (16 bit)
	Slide 109: 0510: MOV A, #45H 0511: ADD A,#FFH
	Slide 110: ACALL address (11 bit)
	Slide 111: RET instruction
	Slide 112: I O port programming
	Slide 113: Port-0
	Slide 114: PROGRAMS MAKE PO.2 AS I/P PORT
	Slide 115: PROGRAMS
	Slide 116: Get a byte and place it in P2 and P1 MOV A, # FFH ; FF=11111111 1 BYTE MOV P2, A ; A=FFH---P2=FFH MOV P1, A; A=FFH----P1=FFH
	Slide 117: Write a program to configure port 1 as I/P port. Then data is received from the port and saved in R5,R6,R7
	Slide 118: Toggle the bit of P1.2 continuously Method 1:
	Slide 119
	Slide 120: PROGRAMS CONTINUED
	Slide 121: Write a program to configure port 1 as I/P port. Then data is received
	Slide 122: Toggle the bit of P1.2 continuously
	Slide 123: BACK: SETB P1.2 ; P1.2=1 ACALL DELAY
	Slide 124
	Slide 125
	Slide 126: PROGRAMS ON ARITHMETIC INSTRUCTIONS
	Slide 127: Two numbers are stored in registers R0 and R1. Verify if their sum is greater than FFH send Y to P1
	Slide 128: Analyze the following program
	Slide 129: Analyze the following program Solution:
	Slide 130
	Slide 131: MOV P1,#FFH ;P1=I/P MOV A,P1 ; A=65 CJNE A,#75,OVER MOV R0, A ;R0=75
	Slide 132
	Slide 133: Programs Continued
	Slide 134: Solution: MOV A,#41H SETB P2.1 SETB P2.1 MOV R5,#00 HERE: RRC A MOV P2.1,C DJNZ R5,HERE
	Slide 135: Write a program to bring in data in serial form and send it out in parallel form
	Slide 136
	Slide 137
	Slide 138
	Slide 139: Method 2:
	Slide 140
	Slide 141
	Slide 142: Assume that bit P2.3 is an input and represents the condition of an oven. If it goes high, it means that the oven is hot. Monitor the bit continuously. Whenever it goes high, send a high-to-low pulse to port P1.5 to turn on a buzzer
	Slide 143
	Slide 144: A switch is connected to pin P1 .0 and an LED to pin P2.7. Write a program to get the status of the switch and send it to the LED.
	Slide 145: Thank You

