
MODULE 3 
 

Extended Surface Heat Transfer 
 

3.1 Introduction:  

Convection: Heat transfer between a solid surface and a moving fluid is governed by the 
Newton’s cooling law: q = hA(Ts-T), where Ts is the surface temperature and T is the fluid 
temperature.  Therefore, to increase the convective heat transfer, one can  

• Increase the temperature difference (Ts-T) between the surface and the fluid.    

•  Increase the convection coefficient h.  This can be accomplished by increasing the 
fluid flow over the surface since h is a function of the flow velocity and the higher the 
velocity, the higher the h.  Example: a cooling fan.  

•  Increase the contact surface area A.  Example: a heat sink with fins. 

Many times, when the first option is not in our control and the second option (i.e. increasing 
h) is already stretched to its limit, we are left with the only alternative of increasing the 
effective surface area by using fins or extended surfaces. Fins are protrusions from the base 
surface into the cooling fluid, so that the extra surface of the protrusions is also in contact 
with the fluid. Most of you have encountered cooling fins on air-cooled engines (motorcycles, 
portable generators, etc.), electronic equipment (CPUs), automobile radiators, air 
conditioning equipment (condensers) and elsewhere. 

 

3.2 Extended surface analysis:  

In this module, consideration will be limited to steady state analysis of rectangular or pin fins 
of constant cross sectional area.  Annular fins or fins involving a tapered cross section may be 
analyzed by similar methods, but will involve solution of more complicated equations which 
result. Numerical methods of integration or computer programs can be used to advantage in 
such cases. 
 

We start with the General Conduction Equation: 
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After making the assumptions of Steady State, One-Dimensional Conduction, this equation 
reduces to the form: 
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This is a second order, ordinary differential equation and will require 2 boundary conditions 
to evaluate the two constants of integration that will arise. 
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Consider the cooling fin shown below: 
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The fin is situated on the surface of a hot surface at Ts and surrounded by a coolant at 
temperature T, which cools with convective coefficient, h.  The fin has a cross sectional 
area, Ac,  (This is the area through with heat is conducted.) and an overall length, L.   
 
Note that as energy is conducted down the length of the fin, some portion is lost, by 
convection, from the sides.  Thus the heat flow varies along the length of the fin.   
 
We further note that the arrows indicating the direction of heat flow point in both the x and y 
directions.  This is an indication that this is truly a two- or three-dimensional heat flow, 
depending on the geometry of the fin.  However, quite often, it is convenient to analyse a fin 
by examining an equivalent one–dimensional system. The equivalent system will involve the 
introduction of heat sinks (negative heat sources), which remove an amount of energy 
equivalent to what would be lost through the sides by convection. 
 
Consider a differential length of the fin.  
 
 

x 
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Across this segment the heat loss will be h(Px)(T-T), where P is the perimeter around the 

fin.  The equivalent heat sink would be   q A xc   .  
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Equating the heat source to the convective loss: 
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Substitute this value into the General Conduction Equation as simplified for One-Dimension, 
Steady State Conduction with Sources: 
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which is the equation for a fin with a constant cross sectional area. This is the Second Order 
Differential Equation that we will solve for each fin analysis.  Prior to solving, a couple of 
simplifications should be noted.  First, we see that h, P, k and Ac are all independent of x in 
the defined system (They may not be constant if a more general analysis is desired.).  We 
replace this ratio with a constant.  Let 
 

m
h P

k Ac

2 



      (5) 

then: 
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Next we notice that the equation is non-homogeneous (due to the T term).  Recall that non-
homogeneous differential equations require both a general and a particular solution.  We can 
make this equation homogeneous by introducing the temperature relative to the surroundings: 
 

  T - T      (7) 
 

Differentiating this equation we find: 
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Differentiate a second time: 
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Substitute into the Fin Equation: 
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This equation is a Second Order, Homogeneous Differential Equation.   
 
 
3.3 Solution of the Fin Equation 
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  We apply a standard technique for solving a second order homogeneous linear differential 
equation.  
  
Try  = ex.  Differentiate this expression twice: 

d

dx
e x

         (11) 
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Substitute this trial solution into the differential equation: 
 

2ex  – m2ex = 0     (13) 
 

Equation (13) provides the following relation: 
 

 =   m      (14) 
 

We now have two solutions to the equation.  The general solution to the above differential 
equation will be a linear combination of each of the independent solutions. 
 
Then: 

 = Aemx + B e-mx     (15) 
 

where A and B are arbitrary constants which need to be determined from the boundary 
conditions.  Note that it is a 2nd order differential equation, and hence we need two boundary 
conditions to determine the two constants of integration.  
 
An alternative solution can be obtained as follows:  Note that the hyperbolic sin, sinh, the 
hyperbolic cosine, cosh, are defined as: 
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We may write: 
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We see that if (C+D)/2 replaces A and (C-D)/2 replaces B then the two solutions are 
equivalent. 
 

      C m x D mcosh( ) sinh( )x      (18) 
 

Generally the exponential solution is used for very long fins, the hyperbolic solutions for 
other cases. 
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Boundary Conditions: 
 
Since the solution results in 2 constants of integration we require 2 boundary conditions.  The 
first one is obvious, as one end of the fin will be attached to a hot surface and will come into 
thermal equilibrium with that surface.  Hence, at the fin base,  
 

(0) = T0 - T  0     (19) 
 
The second boundary condition depends on the condition imposed at the other end of the fin. 
There are various possibilities, as described below. 
 
Very long fins: 
For very long fins, the end located a long distance from the heat source will approach the 
temperature of the surroundings. Hence, 
 

    () = 0      (20) 
 
Substitute the second condition into the exponential solution of the fin equation: 
 

 
() = 0 = Aem + B e-m     (21) 

0 

 

 

The first exponential term is infinite and the second is equal to zero.  The only way that this 
equation can be valid is if A = 0.  Now apply the second boundary condition.   
 

(0) =  0 = B e-m0  B = 0     (22) 
The general temperature profile for a very long fin is then: 
 

(x) =  0  e-mx     (23) 
 

If we wish to find the heat flow through the fin, we may apply Fourier Law: 
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Differentiate the temperature profile: 
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where chPkAM  . 

 
Often we wish to know the total heat flow through the fin, i.e. the heat flow entering at the 
base (x=0). 
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q h P k Ac    0 0M      (27) 
 

 
The insulated tip fin  
Assume that the tip is insulated and hence there is no heat transfer: 
 

0
Lxdx

d
     (28) 

 
The solution to the fin equation is known to be: 
 

      C m x D mcosh( ) sinh( )x     (29) 
 

Differentiate this expression.  
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Apply the first boundary condition at the base:   
 

)0cosh(sinh()0( 0 )0  mDC m     (31) 

 

 
So that D = 0.  Now apply the second boundary condition at the tip to find the value of C: 
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which requires that  
 

)sinh(

)cosh(
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This leads to the general temperature profile: 
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x
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We may find the heat flow at any value of x by differentiating the temperature profile and 
substituting it into the Fourier Law: 
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     0    1 
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So that the energy flowing through the base of the fin is: 
 

)tanh()tanh( 00 mLMmLhPkAq c       (36) 

 
If we compare this result with that for the very long fin, we see that the primary difference in 
form is in the hyperbolic tangent term.  That term, which always results in a number equal to 
or less than one, represents the reduced heat loss due to the shortening of the fin. 
 
Other tip conditions: 
We have already seen two tip conditions, one being the long fin and the other being the 
insulated tip. Two other possibilities are usually considered for fin analysis: (i) a tip subjected 
to convective heat transfer, and (ii) a tip with a prescribed temperature. The expressions for 
temperature distribution and fin heat transfer for all the four cases are summarized in the 
table below. 
 

Table 3.1 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Case Tip Condition Temp. Distribution Fin heat transfer 
A Convection heat 

transfer: 
h(L)=-k(d/dx)x=L mLmk

hmL

xLmmk
hxLm

sinh)(cosh

)(sinh)()(cosh





 

M
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hmL
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o
sinh)(cosh

cosh)(sinh




  

B Adiabatic 
(d/dx)x=L=0 mL

xLm

cosh

)(cosh 
 

mLM tanh0  

C Given temperature: 
(L)=L 
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xLmxLm
b

L
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)(sinh)(sinh)( 
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mL
M b
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0


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D Infinitely long fin 
(L)=0 

mxe  M 0  

 

 
 
3.4 Fin Effectiveness  
 
How effective a fin can enhance heat transfer is characterized by the fin effectiveness, f , 

which is as the ratio of fin heat transfer and the heat transfer without the fin.  For an adiabatic 

fin:  

)tanh(
)tanh(
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mLhPkA

TThA

q

q

q

CC

C
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
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

    (37) 

If the fin is long enough, mL>2, tanh(mL)→1, and hence it can be considered as infinite fin 

(case D in Table 3.1). Hence, for long fins,  
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      (38) 

In order to enhance heat transfer, f should be greater than 1 (In case f <1, the fin would 

have no purpose as it would serve as an insulator instead). However f 2 is considered 

unjustifiable because of diminishing returns as fin length increases. 

 

To increase f , the fin’s material should have higher thermal conductivity, k. It seems to be 

counterintuitive that the lower convection coefficient, h, the higher f .  Well, if h is very 

high, it is not necessary to enhance heat transfer by adding heat fins.  Therefore, heat fins are 

more effective if h is low.   

Observations:  

 If fins are to be used on surfaces separating gas and liquid, fins are usually placed on 

the gas side. (Why?)  

 P/AC should be as high as possible.  Use a square fin with a dimension of W by W as 

an example: P=4W, AC=W2, P/AC=(4/W).  The smaller the W, the higher is the 

P/AC, and the higher the f .Conclusion: It is preferred to use thin and closely spaced 

(to increase the total number) fins.  

The effectiveness of a fin can also be characterized by  
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It is  a ratio of the thermal resistance due to convection to the thermal resistance of a 

fin. In order to enhance heat transfer, the fin’s resistance should be lower than the 

resistance due only to convection.  

 
 
3.5 Fin Efficiency 
 
The fin efficiency is defined as the ratio of the energy transferred through a real fin to that 
transferred through an ideal fin.  An ideal fin is thought to be one made of a perfect or infinite 
conductor material.  A perfect conductor has an infinite thermal conductivity so that the 
entire fin is at the base material temperature. 
 

 



 
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q

q
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    (40) 
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Simplifying equation (40): 
 


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The heat transfer through any fin can now be written as: 
 













TT

Ah
q

f

(
..

1
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     (42) 

 
The above equation provides us with the concept of fin thermal resistance (using electrical 
analogy) as  

    
f

ft Ah
R

..

1
, 
       (43) 

  
Overall Fin Efficiency: 
Overall fin efficiency for an array of fins 
 
 
 
 
 
 
 
 
 
 
 
 
Define terms: Ab: base area exposed to coolant 

Af: surface area of a single fin 

At: total area including base area and total finned surface, At=Ab+NAf 

N: total number of fins 

Heat Transfer from a Fin Array: 

qb 

qf 

Tb 

x 

Real situation 
x 

Tb 

Ideal situation 
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MODULE 7 
 

HEAT EXCHANGERS  
 
7.1 What are heat exchangers? 
 
Heat exchangers are devices used to transfer heat energy from one fluid to 
another.  Typical heat exchangers experienced by us in our daily lives include 
condensers and evaporators used in air conditioning units and refrigerators.  
Boilers and condensers in thermal power plants are examples of large industrial 
heat exchangers. There are heat exchangers in our automobiles in the form of 
radiators and oil coolers.  Heat exchangers are also abundant in chemical and 
process industries. 
 
There is a wide variety of heat exchangers for diverse kinds of uses, hence the 
construction also would differ widely. However, in spite of the variety, most 
heat exchangers can be classified into some common types based on some 
fundamental design concepts. We will consider only the more common types 
here for discussing some analysis and design methodologies.  
 
7.2 Heat Transfer Considerations 
 
 The energy flow between hot and cold streams, with hot stream in the 
bigger diameter tube, is as shown in Figure 7.1.  Heat transfer mode is by 
convection on the inside as well as outside of the inner tube and by conduction 
across the tube.  Since the heat transfer occurs across the smaller tube, it is this 
internal surface which controls the heat transfer process.  By convention, it is 
the outer surface, termed Ao, of this central tube which is referred to in 
describing heat exchanger area.  Applying the principles of thermal resistance,  
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Figure 7.1: End view of a tubular heat exchanger 
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If we define overall the heat transfer coefficient, Uc, as: 

U
RAc

o


1  

Substituting the value of the thermal resistance R yields: 
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Standard convective correlations are available in text books and handbooks for 
the convective coefficients, ho and hi. The thermal conductivity, k, corresponds 
to that for the material of the internal tube.  To evaluate the thermal resistances, 
geometrical quantities (areas and radii) are determined from the internal tube 
dimensions available.   
 
7.3 Fouling 
 Material deposits on the surfaces of the heat exchanger tubes may add 
more thermal resistances to heat transfer.  Such deposits, which are detrimental 
to the heat exchange process, are known as fouling. Fouling can be caused by a 
variety of reasons and may significantly affect heat exchanger performance.  
With the addition of fouling resistance, the overall heat transfer coefficient, Uc, 
may be modified as:   
 

1 1

U U
R

d c

  "  

where R” is the fouling resistance. 
 
Fouling can be caused by the following sources: 
 

1) Scaling is the most common form of fouling and is associated with 
inverse solubility salts.  Examples of such salts are CaCO3, CaSO4, 
Ca3(PO4)2, CaSiO3, Ca(OH)2, Mg(OH)2, MgSiO3, Na2SO4, LiSO4, and 
Li2CO3.   

2) Corrosion fouling is caused by chemical reaction of some fluid 
constituents with the heat exchanger tube material.   

3) Chemical reaction fouling involves chemical reactions in the process 
stream which results in deposition of material on the heat exchanger 
tubes. This commonly occurs in food processing industries. 



 

4) Freezing fouling is occurs when a portion of the hot stream is cooled to 
near the freezing point for one of its components.  This commonly occurs 
in refineries where paraffin frequently solidifies from petroleum products 
at various stages in the refining process. , obstructing both flow and heat 
transfer. 

5) Biological fouling is common where untreated water from natural 
resources such as rivers and lakes is used as a coolant.  Biological micro-
organisms such as algae or other microbes can grow inside the heat 
exchanger and hinder heat transfer.  

6) Particulate fouling results from the presence of microscale sized particles 
in solution.  When such particles accumulate on a heat exchanger surface 
they sometimes fuse and harden. Like scale these deposits are difficult to 
remove. 

 
 With fouling, the expression for overall heat transfer coefficient 
becomes: 
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7.4 Basic Heat Exchanger Flow Arrangements 
 Two basic flow arrangements are as shown in Figure 7.2.  Parallel and 
counter flow provide alternative arrangements for certain specialized 
applications.  In parallel flow both the hot and cold streams enter the heat 
exchanger at the same end and travel to the opposite end in parallel streams.  
Energy is transferred along the length from the hot to the cold fluid so the outlet 
temperatures asymptotically approach each other.  In a counter flow 
arrangement, the two streams enter at opposite ends of the heat exchanger and 
flow in parallel but opposite directions.  Temperatures within the two streams 
tend to approach one another in a nearly linearly fashion resulting in a much 
more uniform heating pattern.  Shown below the heat exchangers are 
representations of the axial temperature profiles for each.  Parallel flow results 
in rapid initial rates of heat exchange near the entrance, but heat transfer rates 
rapidly decrease as the temperatures of the two streams approach one another. 
This leads to higher exergy loss during heat exchange. Counter flow provides 
for relatively uniform temperature differences and, consequently, lead toward 
relatively uniform heat rates throughout the length of the unit.  
 

 
 



 

 
 

 Fig. 7.2 Basic Flow Arrangements for Tubular Heat Exchangers. 
 
 
7.5 Log Mean Temperature Differences 
 Heat flows between the hot and cold streams due to the temperature 
difference across the tube acting as a driving force.  As seen in the Figure 7.3, 
the temperature difference will vary along the length of the HX, and this must 
be taken into account in the analysis. 
 
  

 
Fig. 7.3 Temperature Differences Between Hot and Cold Process Streams 

 
 From the heat exchanger equations shown earlier, it can be shown that the 
integrated average temperature difference for either parallel or counter flow 
may be written as: 
 













2

1

21

ln


 LMTD  

 
The effective temperature difference calculated from this equation is known as 
the log mean temperature difference, frequently abbreviated as LMTD, based on 
the type of mathematical average that it describes.  While the equation applies 
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to either parallel or counter flow, it can be shown that eff will always be 
greater in the counter flow arrangement.   
 
 Another interesting observation from the above Figure is that counter 
flow is more appropriate for maximum energy recovery.  In a number of 
industrial applications there will be considerable energy available within a hot 
waste stream which may be recovered before the stream is discharged.  This is 
done by recovering energy into a fresh cold stream.  Note in the Figures shown 
above that the hot stream may be cooled to t1 for counter flow, but may only be 
cooled to t2 for parallel flow.  Counter flow allows for a greater degree of 
energy recovery.  Similar arguments may be made to show the advantage of 
counter flow for energy recovery from refrigerated cold streams. 
 
 
7.6 Applications for Counter and Parallel Flows 
 We have seen two advantages for counter flow, (a) larger effective 
LMTD and (b) greater potential energy recovery.  The advantage of the larger 
LMTD, as seen from the heat exchanger equation, is that a larger LMTD 
permits a smaller heat exchanger area, Ao, for a given heat transfer, Q.  This 
would normally be expected to result in smaller, less expensive equipment for a 
given application.   
 Sometimes, however, parallel flows are desirable (a) where the high 
initial heating rate may be used to advantage and (b) where it is required the 
temperatures developed at the tube walls are moderate.  In heating very viscous 
fluids, parallel flow provides for rapid initial heating and consequent decrease in 
fluid viscosity and reduction in pumping requirement.  In applications where 
moderation of tube wall temperatures is required, parallel flow results in cooler 
walls. This is especially beneficial in cases where the tubes are sensitive to 
fouling effects which are aggravated by high temperature. 
 
 
7.7 Multipass Flow Arrangements 
In order to increase the surface area for convection relative to the fluid volume, 
it is common to design for multiple tubes within a single heat exchanger.  With 
multiple tubes it is possible to arrange to flow so that one region will be in 
parallel and another portion in counter flow.  An arrangement where the tube 
side fluid passes through once in parallel and once in counter flow is shown in 
the Figure 7.4.  Normal terminology would refer to this arrangement as a 1-2 
pass heat exchanger, indicating that the shell side fluid passes through the unit 
once, the tube side twice.  By convention the number of shell side passes is 
always listed first. 
 
 



 

 
 
 
 
 
 
 
 
 
 

Fig. 7.4 Multipass flow arrangement  
 
The primary reason for using multipass designs is to increase the average tube 
side fluid velocity in a given arrangement.  In a two pass arrangement the fluid 
flows through only half the tubes and any one point, so that the Reynold’s 
number is effectively doubled.  Increasing the Reynolds’s number results in 
increased turbulence, increased Nusselt numbers and, finally, in increased 
convection coefficients.  Even though the parallel portion of the flow results in a 
lower effective T, the increase in overall heat transfer coefficient will 
frequently compensate so that the overall heat exchanger size will be smaller for 
a specific service.  The improvement achievable with multipass heat exchangers 
is substantialy large. Accordingly, it is a more accepted practice in modern 
industries compared to conventional  true parallel or counter flow designs. 
 The LMTD formulas developed earlier are no longer adequate for 
multipass heat exchangers.  Normal practice is to calculate the LMTD for 
counter flow, LMTDcf, and to apply a correction factor, FT, such that 
 

 eff T CFF LMTD   

 
The correction factors, FT, can be found theoretically and presented in analytical 
form.  The equation given below has been shown to be accurate for any 
arrangement having 2, 4, 6, .....,2n tube passes per shell pass to within 2%. 
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where the capacity ratio, R, is defined as: 
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The effectiveness may be given by the equation: 
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provided that R1.  In the case that R=1, the effectiveness is given by: 
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7.8 Effectiveness-NTU Method: 
Quite often, heat exchanger analysts are faced with the situation that only the 
inlet temperatures are known and the heat transfer characteristics (UA value) are 
known, but the outlet temperatures have to be calculated. Clearly, LMTH 
method will not be applicable here. In this regard, an alternative method known 
as the ε-NTU method is used.  

Before we introduce this method, let us ask ourselves following question: 
? conditionsinlet given for    perform  ExchangeHeat   existing    willHow  

:esseffectiven Define  The effectiveness, ε, is the ratio of the energy recovered 
in a HX to that recoverable in an ideal HX. 
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Fig. 7.5 Calculation of effectiveness-NTU 
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Charts for each Configuration 
 
Procedure: 
Determine Cmax, Cmin/Cmax  
Get UA/Cmin,    from chart 
 
 

 incinh TTCQ ..min  

 
 

U

CNTU
A

C

UA
NTU minmax

min
max 

 
 



 

• NTUmax can be obtained from figures in textbooks/handbooks 
   First, however, we must determine which fluid has Cmin.  
 



q 

T1 

T2 

k 

x 
A 

MODULE I 

BASICS OF HEAT TRANSFER 

While teaching heat transfer, one of the first questions students commonly ask is the difference 
between heat and temperature. Another common question concerns the difference between the 
subjects of heat transfer and thermodynamics. Let me begin this chapter by trying to address these 
two questions. 

1.1 Difference between heat and temperature 
In heat  transfer problems, we often  interchangeably use  the  terms heat  and  temperature. Actually, 
there  is  a distinct difference  between  the  two.  Temperature  is  a measure of  the  amount of  energy 
possessed by the molecules of a substance. It manifests itself as a degree of hotness, and can be used 
to  predict  the  direction  of  heat  transfer.  The  usual  symbol  for  temperature  is  T.  The  scales  for 
measuring temperature in SI units are the Celsius and Kelvin temperature scales. Heat, on the other 
hand,  is energy  in transit. Spontaneously, heat flows from a hotter body to a colder one. The usual 
symbol for heat is Q. In the SI system, common units for measuring heat are the Joule and calorie. 

1.2 Difference between thermodynamics and heat transfer 
Thermodynamics tells us: 

•  how much heat is transferred (δQ) 
•  how much work is done (δW) 
•  final state of the system 

Heat transfer tells us: 
•  how (with what modes) δQ is transferred 
•  at what rate δQ is transferred 
•  temperature distribution inside the body 

1.3 Modes of Heat Transfer 
•  Conduction:  An energy transfer across a system boundary due to a temperature difference 

by the mechanism of inter­molecular interactions. Conduction needs matter and does not 
require any bulk motion of matter. 

Thermodynamics Heat transfer  complementary



moving fluid  T∞ 

q 

Ts 

Ts>T∞ 

Conduction rate equation is described by the Fourier Law: 

T kA q ∇ − = 
ρ 

where:  q  = heat flow vector, (W) 
k  = thermal conductivity, a thermodynamic property of the material. 

(W/m K) 
A = Cross sectional area in direction of heat flow. (m 2 ) 
∇T = Gradient of temperature (K/m) 

= ∂T/∂x i + ∂T/∂y j + ∂T/∂z k 
Note:  Since this is a vector equation, it is often convenient to work with one 
component of the vector.  For example, in the x direction: 

qx = ­ k Ax dT/dx 

In circular coordinates it may convenient to work in the radial direction: 
qr = ­ k Ar dT/dr 

•  Convection:  An energy transfer across a system boundary due to a temperature difference 
by the combined mechanisms of intermolecular interactions and bulk transport. Convection 
needs fluid matter. 

Newton’s Law of Cooling: 
q = h As ∆T 

where:  q  = heat flow from surface, a scalar, (W) 
h  = heat transfer coefficient (which is not a thermodynamic property of 

the material, but may depend on geometry of surface, flow 
characteristics, thermodynamic properties of the fluid, etc. (W/m 2 K) 

As = Surface area from which convection is occurring. (m 2 ) 
∆T = = − ∞ T T S  Temperature Difference between surface and coolant. (K) 

Convection 

Free or natural convection 
(induced by buoyancy forces) 

Forced convection (induced by 
external means) 

May occur 
with phase 
change 
(boiling, 
condensation)



q”co n v. q”r a d. 
Ts u r 

Area = A Ts 

Table 1. Typical values of h (W/m 2 K) 

•  Radiation:  Radiation heat transfer involves the transfer of heat by electromagnetic radiation 
that arises due to the temperature of the body.  Radiation does not need matter. 

Emissive power of a surface: 
E=σεTs 

4 (W/ m 2 ) 

where: ε = emissivity, which is a surface property (ε = 1 is black body) 
σ = Steffan Boltzman constant = 5.67 x 10 ­8 W/m 2 K 4 . 
Ts  = Absolute temperature of the surface  (K) 

The above equation is derived from Stefan Boltzman law, which describes a gross heat 
emission rather than heat transfer.  The expression for the actual radiation heat transfer rate 
between surfaces having arbitrary orientations can be quite complex, and will be dealt with in 
Module 9.  However, the rate of radiation heat exchange between a small surface and a large 
surrounding is given by the following expression: 

q = ε∙σ∙A∙(Ts 
4 – Tsur 

4 ) 

where:  ε  = Surface Emissivity 
A= Surface Area 
Ts  = Absolute temperature of surface.  (K) 
Tsur  = Absolute temperature of surroundings.(K) 

Free convection  gases: 2 ­ 25 
liquid:   50 – 100 

Forced convection  gases: 25 ­ 250 
liquid:  50 ­ 20,000 

Boiling/Condensation  2500 ­100,000



1.4 Thermal Conductivity, k 

As noted previously, thermal conductivity is a thermodynamic property of a material.  From the 
State Postulate given in thermodynamics,  it may be recalled that  thermodynamic properties of pure 
substances  are  functions  of  two  independent  thermodynamic  intensive  properties,  say  temperature 
and  pressure.    Thermal  conductivity  of  real  gases  is  largely  independent  of  pressure  and may  be 
considered  a  function  of  temperature  alone.    For  solids  and  liquids,  properties  are  largely 
independent of pressure and depend on temperature alone. 

k = k (T) 

Table 2 gives the values of thermal conductivity for a variety of materials. 

Material  Thermal Conductivity, W/m K 
Copper  401 
Silver  429 
Gold  317 
Aluminum  237 
Steel  60.5 
Limestone  2.15 
Bakelite  1.4 
Water  0.613 
Air  0.0263 

Let us try to gain an insight into the basic concept of thermal conductivity for various materials.  The 
fundamental  concept  comes  from  the  molecular  or  atomic  scale  activities.    Molecules/atoms  of 
various materials gain energy through different mechanisms.  Gases, in which molecules are free to 
move with  a mean  free  path  sufficiently  large  compared  to  their diameters,  possess  energy in  the 
form of kinetic energy of the molecules.  Energy is gained or  lost through collisions/interactions of 
gas molecules. 

Lattice vibration may be transferred 
between molecules as nuclei 
attract/repel each other. 

Table 2. Thermal Conductivities of Selected Materials at Room Temperature. 

Kinetic energy transfer 
between gas molecules.



Solids,  on  the  other  hand,  have  atoms/molecules which  are more  closely packed which  cannot 
move  as  freely  as  in  gases.  Hence,  they  cannot  effectively  transfer  energy  through  these  same 
mechanisms.  Instead, solids may exhibit energy through vibration or rotation of the nucleus. Hence, 
the energy transfer is typically through lattice vibrations. 

Another  important mechanism  in which materials maintain  energy  is by  shifting  electrons  into 
higher  orbital  rings.    In  the  case  of  electrical  conductors  the  electrons  are weakly  bonded  to  the 
molecule  and  can  drift  from  one  molecule  to  another,  transporting  their  energy  in  the  process. 
Hence,  flow  of  electrons,  which  is  commonly  observed  in  metals,  is  an  effective  transport 
mechanism,  resulting  in  a  correlation  that materials  which  are  excellent  electrical  conductors  are 
usually excellent thermal conductors.



 

MODULE 2 
 

ONE DIMENSIONAL STEADY STATE 
HEAT CONDUCTION  

 
2.1 Objectives of conduction analysis: 
 
The primary objective is to determine the temperature field, T(x,y,z,t), in a body (i.e. how 
temperature varies with position within the body)  
T(x,y,z,t) depends on: 
 - Boundary conditions 
 - Initial condition 
 - Material properties (k, cp, ) 

- Geometry of the body (shape, size) 
 

Why we need T (x, y, z, t)? 
 - To compute heat flux at any location (using Fourier’s eqn.) 
 - Compute thermal stresses, expansion, deflection due to temp. Etc. 
 - Design insulation thickness 
 - Chip temperature calculation 
 - Heat treatment of metals 
 
 
2.2 General Conduction Equation 
     Recognize that heat transfer involves an energy transfer across a system boundary.  The 
analysis for such process begins from the 1st Law of Thermodynamics for a closed system: 

dE

dt
Q W

system

in out    

The above equation essentially represents Conservation of Energy. The sign convention on 
work is such that negative work out is positive work in. 

dE

dt
Q W

system

in in    

The work in term could describe an electric current flow across the system boundary and 
through a resistance inside the system.  Alternatively it could describe a shaft turning across 
the system boundary and overcoming friction within the system.  The net effect in either case 
would cause the internal energy of the system to rise.  In heat transfer we generalize all such 
terms as “heat sources”.  

dE

dt
Q Q

system

in gen    

The energy of the system will in general include internal energy, U, potential energy, ½ mgz, 
or kinetic energy, ½ mv2.  In case of heat transfer problems, the latter two terms could often 
be neglected.  In this case, 
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where Tref is the reference temperature at which the energy of the system is defined as zero.  
When we differentiate the above expression with respect to time, the reference temperature, 
being constant, disappears: 

     c V
dT

dt
Q Qp

system
in gen
   

 
Consider the differential control element shown below.  Heat is assumed to flow through the 
element in the positive directions as shown by the 6 heat vectors. 
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In the equation above we substitute the 6 heat inflows/outflows using the appropriate sign: 
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
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Substitute for each of the conduction terms using the Fourier Law: 
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where q is defined as the internal heat generation per unit volume. 
The above equation reduces to: 
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Dividing by the volume (xyz), 
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which is the general conduction equation in three dimensions.  
 
In the case where k is independent of x, y and z then 
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Define the thermodynamic property, , the thermal diffusivity: 
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The vector form of this equation is quite compact and is the most general form.  However, we 
often find it convenient to expand the spatial derivative in specific coordinate systems: 
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Circular Coordinates 
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Spherical Coordinates 
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In each equation the dependent variable, T, is a function of 4 independent variables, (x,y,z,τ); 
(r, ,z,τ); (r,φ,θ,τ) and is a 2nd order, partial differential equation.  The solution of such 
equations will normally require a numerical solution.  For the present, we shall simply look at 
the simplifications that can be made to the equations to describe specific problems. 
 

 Steady State:  Steady state solutions imply that the system conditions are not changing 
with time.  Thus 0/  T . 

 One dimensional:  If heat is flowing in only one coordinate direction, then it follows 
that there is no temperature gradient in the other two directions.  Thus the two partials 
associated with these directions are equal to zero. 

 Two dimensional:  If heat is flowing in only two coordinate directions, then it follows 
that there is no temperature gradient in the third direction.  Thus, the partial derivative 
associated with this third direction is equal to zero. 

 No Sources:  If there are no volumetric heat sources within the system then the term, 

0


q . 
 
Note that the equation is 2nd order in each coordinate direction so that integration will result 
in 2 constants of integration.  To evaluate these constants two boundary conditions will be 
required  for each coordinate direction.   
 
 
2.3 Boundary and Initial Conditions  
 

• The objective of deriving the heat diffusion equation is to determine the temperature 
distribution within the conducting body.  



 

•  We have set up a differential equation, with T as the dependent variable. The solution 
will give us T(x,y,z). Solution depends on boundary conditions (BC) and initial 
conditions (IC).  

•  How many BC’s and IC’s ? 

-  Heat equation is second order in spatial coordinate. Hence, 2 BC’s needed 
for each   coordinate.  

    * 1D problem: 2 BC in x-direction      

* 2D problem: 2 BC in x-direction, 2 in y-direction    

* 3D problem: 2 in x-dir., 2 in y-dir., and 2 in z-dir. 

    -  Heat equation is first order in time. Hence one IC needed.  

 
 
2.4 Heat Diffusion Equation for a One Dimensional System  
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Consider the system shown above.  The top, bottom, front and back of the cube are insulated, 
so that heat can be conducted through the cube only in the x direction.  The internal heat 
generation per unit volume is q (W/m3). 
 
Consider the heat flow through a differential element of the cube.   
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From the 1st Law we write for the element: 
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If k is a constant, then         
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• For T to rise, LHS must be positive (heat input is positive) 

•  For a fixed heat input, T rises faster for higher  

•  In this special case, heat flow is 1D. If sides were not insulated, heat flow could be 
2D, 3D. 

 

 

2.5 One Dimensional Steady State Heat Conduction  
 

The plane wall:  

 

 

 

 

 

 

 

 



 

The differential equation governing heat diffusion is:  0

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dx
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With constant k, the above equation may be integrated twice to obtain the general solution:  

21)( CxCxT   

where C1 and C2 are constants of integration. To obtain the constants of integration, we apply 
the boundary conditions at x = 0 and x = L, in which case 

1,)0( sTT   and 2,)( sTLT   

Once the constants of integration are substituted into the general equation, the temperature 
distribution is obtained: 
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The heat flow rate across the wall is given by: 
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Thermal resistance (electrical analogy): 

Physical systems are said to be analogous if that obey the same mathematical equation.  The 
above relations can be put into the form of Ohm’s law: 

V=IRelec 

 

 

 

 

 

Using this terminology it is common to speak of a thermal resistance: 

      thermqRT   

 

 

 

 

 

 

A thermal resistance may also be associated with heat transfer by convection at a surface. 
From Newton’s law of cooling, 
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the thermal resistance for convection is then  

hAq

TT
R s

convt

1
, 


   

Applying thermal resistance concept to the plane wall, the equivalent thermal circuit for the 
plane wall with convection boundary conditions is shown in the figure below 



 

 

 

 

 

 

 

 

 

 

 

 

The heat transfer rate may be determined from separate consideration of each element in the 
network. Since qx is constant throughout the network, it follows that 
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In terms of the overall temperature difference , and the total thermal resistance Rtot, 

the heat transfer rate may also be expressed as  
2,1,  TT

     
tot

x R

TT
q 2,1,  

  

Since the resistance are in series, it follows that 

 
AhkA

L

Ah
RR ttot

21

11
 

 

Composite walls:  

Thermal Resistances in Series: 
Consider three blocks, A, B and C, as shown.  They are insulated on top, bottom, front and 
back.  Since the energy will flow first through block A and then through blocks B and C, we 
say that these blocks are thermally in a series arrangement. 

 

 

 

 

 

 

 

 

 

 

The steady state heat flow rate through the walls is given by: 
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where 
AR

U
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1
  is the overall heat transfer coefficient. In the above case, U is expressed as 
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Series-parallel arrangement: 

 

 

 

 

 

 

 

 

 

 

 

 

The following assumptions are made with regard to the above thermal resistance model: 

1) Face between B and C is insulated. 

2) Uniform temperature at any face normal to X. 

 

1-D radial conduction through a cylinder:  

One frequently encountered problem is that of heat flow through the walls of a pipe or 
through the insulation placed around a pipe.  Consider the cylinder shown.  The pipe is either 
insulated on the ends or is of sufficient length, L, that heat losses through the ends is 
negligible.  Assume no heat sources within the wall of the tube.  If T1>T2, heat will flow 
outward, radially, from the inside radius, R1, to the outside radius, R2.  The process will be 
described by the Fourier Law. 
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The differential equation governing heat diffusion is:  0
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With constant k, the solution is  

 

The heat flow rate across the wall is given by: 
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Hence, the thermal resistance in this case can be expressed as:  
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Composite cylindrical walls: 

 

 

 

 

 

 

 
 
 
 
 
 
 

 

 

 

 

Critical Insulation Thickness : 
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Insulation thickness : ro-ri 



 

 

Objective :                  decrease q , increase   
totR

Vary ro  ; as ro  increases, first term increases, second term decreases. 

This is a maximum – minimum problem. The point of extrema can be found by setting 
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In order to determine if it is a maxima or a minima, we make the second derivative zero: 
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Minimum q at ro =(k/h) = rcr (critical radius) 

 

 

 

 

 

 

 

 

 

 

 

1-D radial conduction in a sphere: 
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2.6 Summary of Electrical Analogy 
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2.7 One-Dimensional Steady State Conduction with Internal Heat 
Generation 
 

Applications:      current carrying conductor, chemically reacting systems, nuclear reactors. 

Energy generated per unit volume is given by 
V

E
q


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Plane wall with heat source: Assumptions: 1D, steady state, constant k, uniform q 
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Note: From the above expressions, it may be observed that the solution for temperature is no 
longer linear. As an exercise, show that the expression for heat flux is no longer independent 
of x. Hence thermal resistance concept is not correct to use when there is internal heat 
generation.  

 

 

Cylinder with heat source: Assumptions: 1D, steady state, constant k, uniform q 

 

Start with 1D heat equation in cylindrical co-ordinates 
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Exercise:  Ts may not be known. Instead, T∞ and h may be specified. Eliminate Ts, using T∞ 
and h. 

 

 

 

 

 



 

MODULE I 
 

RADIATION HEAT TRANSFER 
Radiation 
 
Definition 
 

Radiation, energy transfer across a system boundary due to a 
T, by the mechanism of photon emission or electromagnetic 
wave emission. 
 

 
Because the mechanism of transmission is photon emission, unlike 
conduction and convection, there need be no intermediate matter to enable 
transmission. 
 
 
 
 
 
 
The significance of this is that radiation will be the only mechanism for 
heat transfer whenever a vacuum is present. 
 
Electromagnetic Phenomena. 
We are well acquainted with a wide range of electromagnetic phenomena in 
modern life.  These phenomena are sometimes thought of as wave 
phenomena and are, consequently, often described in terms of 
electromagnetic wave length, .  Examples are given in terms of the wave 
distribution shown below: 
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One aspect of electromagnetic radiation is that the related topics are more 
closely associated with optics and electronics than with those normally 
found in mechanical engineering courses.  Nevertheless, these are widely 
encountered topics and the student is familiar with them through every day 
life experiences. 
 
From a viewpoint of previously studied topics students, particularly those 
with a background in mechanical or chemical engineering, will find the 
subject of Radiation Heat Transfer a little unusual.  The physics 
background differs fundamentally from that found in the areas of 
continuum mechanics.  Much of the related material is found in courses 
more closely identified with quantum physics or electrical engineering, i.e. 
Fields and Waves.  At this point, it is important for us to recognize that 
since the subject arises from a different area of physics, it will be important 
that we study these concepts with extra care.    
 



 

Stefan-Boltzman Law 
     Both Stefan and Boltzman were physicists; any student taking a course 
in quantum physics will become well acquainted with Boltzman’s work as 
he made a number of important contributions to the field.  Both were 
contemporaries of Einstein so we see that the subject is of fairly recent 
vintage.  (Recall that the basic equation for convection heat transfer is 
attributed to Newton.) 
 

Eb = Tabs
4 

 
where: Eb = Emissive Power, the gross energy emitted from an 

ideal surface per unit area, time.  

  = Stefan Boltzman constant, 5.6710-8 W/m2K4 

 Tabs = Absolute temperature of the emitting surface, K. 
 

Take particular note of the fact that absolute temperatures are used in 
Radiation.  It is suggested, as a matter of good practice, to convert all 
temperatures to the absolute scale as an initial step in all radiation 
problems. 
 

You will notice that the equation does not include any heat flux term, q”.  
Instead we have a term the emissive power.  The relationship between these 
terms is as follows.  Consider two infinite plane surfaces, both facing one 
another.  Both surfaces are ideal surfaces.  One surface is found to be at 
temperature, T1, the other at temperature, T2.  Since both temperatures are 
at temperatures above absolute zero, both will radiate energy as described 
by the Stefan-Boltzman law.  The heat flux will be the net radiant flow as 
given by: 
 

q" = Eb1 - Eb2 = T1
4 - T2

4  
 

Plank’s Law 
 While the Stefan-Boltzman law is useful for studying overall energy 
emissions, it does not allow us to treat those interactions, which deal 
specifically with wavelength, .  This problem was overcome by another of 
the modern physicists, Max Plank, who developed a relationship for wave-
based emissions. 



 

Eb = () 
 

We plot a suitable functional relationship below: 
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We haven’t yet defined the Monochromatic Emissive Power, Eb. An 
implicit definition is provided by the following equation: 
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We may view this equation graphically as follows: 
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A definition of monochromatic Emissive Power would be obtained by 
differentiating the integral equation: 
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The actual form of Plank’s law is: 
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where: C1 = 2hco

2 =  3.742108 Wm4/m2 
  C2 = hco/k = 1.439104 mK 
   
Where: h, co, k are all parameters from quantum physics.  We need 

not worry about their precise definition here. 
 
This equation may be solved at any T,  to give the value of the 
monochromatic emissivity at that condition.  Alternatively, the function 
may be substituted into the integral to find the Emissive 
power for any temperature.  While performing this integral by hand is 
difficult, students may readily evaluate the integral through one of several 
computer programs, i.e. MathCad, Maple, Mathmatica, etc. 
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Emission Over Specific Wave Length Bands 
Consider the problem of designing a tanning machine.  As a part of the 
machine, we will need to design a very powerful incandescent light source.  
We may wish to know how much energy is being emitted over the 
ultraviolet band (10-4 to 0.4 m), known to be particularly dangerous. 
 
 

 E Eb bm

m
0 0001 0 4 0 001

0 4
. . .

.   





   
 



 

With a computer available, evaluation of this integral is rather trivial.  
Alternatively, the text books provide a table of integrals. The format used is 
as follows: 
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Referring to such tables, we see the last two functions listed in the second 
column.  In the first column is a parameter, T.  This is found by taking the 
product of the absolute temperature of the emitting surface, T, and the 
upper limit wave length, .  In our example, suppose that the incandescent 
bulb is designed to operate at a temperature of 2000K.  Reading from the 
table: 
 

., m T, K T, mK F(0) 
0.0001 2000 0.2 0 

0.4 2000 600 0.000014 
F(0.40.0001m) = F(00.4m)- F(00.0001m)  0.000014 
 
This is the fraction of the total energy emitted which falls within the IR 
band.  To find the absolute energy emitted multiply this value times the 
total energy emitted: 
 

EbIR = F(0.40.0001m)T4 = 0.0000145.6710-820004 = 12.7 W/m2 
 
 
Solar Radiation 
 
The magnitude of the energy leaving the Sun varies with time and is closely 
associated with such factors as solar flares and sunspots.  Nevertheless, we 
often choose to work with an average value.  The energy leaving the sun is 
emitted outward in all directions so that at any particular distance from the 
Sun we may imagine the energy being dispersed over an imaginary 
spherical area.  Because this area increases with the distance squared, the 
solar flux also decreases with the distance squared.  At the average distance 
between Earth and Sun this heat flux is 1353 W/m2, so that the average heat 
flux on any object in Earth orbit is found as: 



 

Gs,o = Sc·f·cos θ 
 

 Where Sc = Solar Constant, 1353 W/m2 
  f = correction factor for eccentricity in Earth Orbit, 

(0.97<f<1.03) 
  θ  = Angle of surface from normal to Sun. 
 
Because of reflection and absorption in the Earth’s atmosphere, this number 
is significantly reduced at ground level.  Nevertheless, this value gives us 
some opportunity to estimate the potential for using solar energy, such as in 
photovoltaic cells.  

 
 
Some Definitions 
 
In the previous section we introduced the Stefan-Boltzman Equation to 
describe radiation from an ideal surface. 
 

Eb = σ·Tabs
4 

 
This equation provides a method of determining the total energy leaving a 
surface, but gives no indication of the direction in which it travels.  As we 
continue our study, we will want to be able to calculate how heat is 
distributed among various objects. 
 
For this purpose, we will introduce the radiation intensity, I, defined as the 
energy emitted per unit area, per unit time, per unit solid angle. Before 
writing an equation for this new property, we will need to define some of 
the terms we will be using. 
 
Angles and Arc Length 
 
We are well accustomed to 
thinking of an angle as a two 
dimensional object.  It may be 
used to find an arc length: 

α 
L = r·α 

L 

 



 

 
 
Solid Angle 
 
We generalize the idea of an 
angle and an arc length to three 
dimensions and define a solid 
angle, Ω, which like the standard 
angle has no dimensions.  The 
solid angle, when multiplied by 
the radius squared will have 
dimensions of length squared, or area, and will have the magnitude of the 
encompassed area. 

A = r2·dΩ 

r 

 
Projected Area 
 
The area, dA1, as seen from the 
prospective of a viewer, situated at an 
angle θ from the normal to the 
surface, will appear somewhat 
smaller, as cos θ·dA1.  This smaller 
area is termed the projected area. 
 

Aprojected = cos θ·Anormal 
 
Intensity 
 
The ideal intensity, Ib, may now be defined as the energy emitted from an 
ideal body, per unit projected area, per unit time, per unit solid angle. 
 


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ddA

dq
I
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dA1·cos θ 

θ 

dA1  



 

Spherical Geometry 
 
Since any surface will emit radiation outward in all directions above the 
surface, the spherical coordinate system provides a convenient tool for 
analysis.  The three basic 
coordinates shown are R, φ, and θ, 
representing the radial, azimuthal 
and zenith directions.   
 
In general dA1 will correspond to 
the emitting surface or the source.  
The surface dA2 will correspond to 
the receiving surface or the target.  
Note that the area proscribed on the 
hemisphere, dA2, may be written as: φ 

R·sin θ 

R 
θ 

dA1 

dA2 

Δφ 
 

 
][])sin[(2  dRdRdA   

or, more simply as: 

]sin2
2  ddRdA   

Recalling the definition of the solid angle,  
 

dA = R2·dΩ 
we find that: 

dΩ = R2·sin θ·dθ·dφ 
 

Real Surfaces 
 
Thus far we have spoken of ideal surfaces, i.e. those that emit energy 
according to the Stefan-Boltzman law: 
 

Eb = σ·Tabs
4 



 

Real surfaces have emissive powers, E, which are somewhat less than that 
obtained theoretically by Boltzman.  To account for this reduction, we 
introduce the emissivity, ε. 
 

bE

E
   

so that the emissive power from any real surface is given by: 
 

E = ε·σ·Tabs
4 

 
 
Receiving Properties 
 
Targets receive radiation in 
one of three ways; they 
absorption, reflection or 
transmission.  To account for 
these characteristics, we 
introduce three additional 
properties: 
 

 Absorptivity, α,  the 
fraction of incident 
radiation absorbed. 

Transmitted 
Radiation 

Absorbed 
Radiation 

Incident 
Radiation, 
G 

Reflected 
Radiation 

 Reflectivity, ρ, the fraction of incident radiation reflected. 

 Transmissivity, τ, the fraction of incident radiation transmitted. 

 
We see, from Conservation of Energy, that: 

α + ρ + τ  = 1 

In this course, we will deal with only opaque surfaces, τ = 0, so that: 

Opaque Surfaces α + ρ = 1 



 

Relationship Between Absorptivity,α, and Emissivity,ε 

Consider two flat, infinite planes, surface A and 
surface B, both emitting radiation toward one 
another.  Surface B is assumed to be an ideal 
emitter, i.e. εB = 1.0.  Surface A will emit 
radiation according to the Stefan-Boltzman law 
as: 
 
 EA = εA·σ·TA

4     

and will receive radiation as: 

 GA  = αA·σ·TB
4

 

The net heat flow from surface A will be: 

q΄΄ = εA·σ·TA
4 - αA·σ·TB

4 

Now suppose that the two surfaces are at exactly the same temperature.  
The heat flow must be zero according to the 2nd law.  If follows then that: 
 

αA = εA 
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Because of this close relation between emissivity, ε, and absorptivity, α, 
only one property is normally measured and this value may be used 
alternatively for either property. 
 
Let’s not lose sight of the fact that, as thermodynamic properties of the 
material, α and ε may depend on temperature.  In general, this will be the 
case as radiative properties will depend on wavelength, λ.  The wave length 
of radiation will, in turn, depend on the temperature of the source of 
radiation.   
 
The emissivity, ε, of surface A will depend on the material of which surface 
A is composed, i.e. aluminum, brass, steel, etc. and on the temperature of 
surface A. 
 



 

The absorptivity, α, of surface A will depend on the material of which 
surface A is composed, i.e. aluminum, brass, steel, etc. and on the 
temperature of surface B. 
 
In the design of solar collectors, engineers have long sought a material 
which would absorb all solar radiation, (α = 1, Tsun ~ 5600K) but would not 
re-radiate energy as it came to temperature (ε << 1, Tcollector ~ 400K).  
NASA developed an anodized chrome, commonly called “black chrome” as 
a result of this research. 
 
Black Surfaces 
Within the visual band of radiation, any material, which absorbs all visible 
light, appears as black.  Extending this concept to the much broader thermal 
band, we speak of surfaces with α = 1 as also being “black” or “thermally 
black”.  It follows that for such a surface, ε = 1 and the surface will behave 
as an ideal emitter.  The terms ideal surface and black surface are used 
interchangeably. 
 
Lambert’s Cosine Law: 
A surface is said to obey Lambert’s cosine law if the intensity, I, is uniform 
in all directions.   This is an idealization of real surfaces as seen by the 
emissivity at different zenith angles: 
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Dependence of Emissivity on 
Zenith Angle, Typical Metal. 
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Dependence of Emissivity on 
Zenith Angle, Typical Non-Metal. 

 
 
 
 
 
 
 
 



 

The sketches shown are intended to show is that metals typically have a 
very low emissivity, ε, which also remain nearly constant, expect at very 
high zenith angles, θ.  Conversely, non-metals will have a relatively high 
emissivity, ε, except at very high zenith angles.  Treating the emissivity as a 
constant over all angles is generally a good approximation and greatly 
simplifies engineering calculations.  
 
Relationship Between Emissive Power and Intensity 
 
By definition of the two terms, emissive power for an ideal surface, Eb, and 
intensity for an ideal surface, Ib. 
 

 
hemisphere

bb dIE cos  

 
Replacing the solid angle by its equivalent in spherical angles: 
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Integrate once, holding Ib constant: 
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Integrate a second time.  (Note that the derivative of sin θ is cos θ·dθ.) 
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Eb = π·Ib 

 
 
 
 



 

Radiation Exchange 
 
During the previous lecture we introduced the intensity, I, to describe 
radiation within a particular solid angle. 
 




ddA

dq
I

1cos  

This will now be used to determine the fraction of radiation leaving a given 
surface and striking a second surface. 
 
Rearranging the above equation to express the heat radiated: 
 

 ddAIdq 1cos  
 

Next we will project the receiving surface onto the hemisphere surrounding 
the source.    First find the projected area of surface dA2, dA2·cos θ2.  (θ2 is 
the angle between the normal to surface 2 and the position vector, R.)   
Then find the solid angle, Ω, which encompasses this area. dA2 

 
Substituting into the heat flow 
equation above: 
 

2
2211 coscos

R

dAdAI
dq

 
  

 
To obtain the entire heat transferred 
from a finite area, dA1, to a finite 
area, dA2, we integrate over both 
surfaces: 

dA2·cos θ2 

R 
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To express the total energy emitted from surface 1, we recall the relation 
between emissive power, E, and intensity, I. 
 



 

qemitted =  E1·A1 = π·I1·A1 

 
View Factors-Integral Method 
 
Define the view factor, F1-2, as the fraction of energy emitted from surface 
1, which directly strikes surface 2. 
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after algebraic simplification this becomes: 
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Example Consider a diffuse 
circular disk of diameter D and 
area Aj and a plane diffuse 
surface of area Ai << Aj.  The 
surfaces are parallel, and Ai is 
located at a distance L from the 
center of Aj.  Obtain an 
expression for the view factor Fij. 

dr 
 
dAj 

dAi 

D 

dAi 

R
L 

R 
 θi 

θj 

 
Aj 

 



 

The view factor may be obtained from: 
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Since dAi is a differential area 
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Substituting for the cosines and the differential area: 
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After simplifying: 
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Let ρ2  L2 + r2 = R2.  Then 2·ρ·dρ = 2·r·dr. 
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After integrating, 
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Substituting the upper & lower limits 
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This is but one example of how the view factor may be evaluated using the 
integral method.  The approach used here is conceptually quite straight 
forward; evaluating the integrals and algebraically simplifying the resulting 
equations can be quite lengthy. 
 
Enclosures 
In order that we might apply conservation of energy to the radiation 
process, we must account for all energy leaving a surface.  We imagine that 
the surrounding surfaces act as an enclosure about the heat source which 
receive all emitted energy.  Should there be an opening in this enclosure 
through which energy might be lost, we place an imaginary surface across 
this opening to intercept this portion of the emitted energy.  For an N 
surfaced enclosure, we can then see that: 
 

1
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j
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This relationship is  
known as the 

“Conservation Rule”.

 
Example:  Consider the previous problem of a small disk radiating to a 
larger disk placed directly above at a distance L.      
 
 
 
 
 
 
 
 
 
From our conservation rule we have: 
 

The view factor was shown to be 
given by the relationship: 2 
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Here, in order to provide an 
enclosure, we will define an 
imaginary surface 3, a truncated 
cone intersecting circles 1 and 2. 
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Since surface 1 is not convex F1,1 = 0.  Then: 
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Reciprocity 
 
We may write the view factor from surface i to surface j as: 
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Similarly, between surfaces j and i: 
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Comparing the integrals we see that they are identical so that: 
 

ijjjii FAFA    
 
 

This relationship 
is known as 

“Reciprocity”.



 

Example:  Consider two concentric spheres shown to the 
right.  All  radiation leaving the outside of surface 1 
will strike surface 2.  Part of the radiant energy leaving 
the inside surface of object 2 will strike surface 1, part 
will return to surface 2.  To find the fraction of energy 
leaving surface 2 which strikes surface 1, we apply reciprocity: 
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Associative Rule 
 
Consider the set of surfaces shown to the right:  Clearly, 
from conservation of energy, the fraction of energy 
leaving surface i and striking the combined surface j+k 
will equal the fraction of energy emitted from i and 
striking j plus the fraction leaving surface i and 
striking k.   
 

kijikji FFF  )(  
 
 
 
Radiosity 
 
We have developed the concept of intensity, I, which let to the concept of 
the view factor.  We have discussed various methods of finding view 
factors.  There remains one additional concept to introduce before we can 
consider the solution of radiation problems. 
 
Radiosity, J, is defined as the total energy leaving a surface per unit area 
and per unit time.  This may initially sound much like the definition of 
emissive power, but the sketch below will help to clarify the concept. 
 
 
 
 

1           2 

    i 

       j     
 k 

This relationship is 
known as the 

“Associative Rule”.



 

   ε·Eb        ρ·G               G 
J ≡ ε·Eb + ρ·G 

 
 
 
Net Exchange Between Surfaces 
 
Consider the two surfaces shown.  Radiation will travel from surface i to 
surface j and will also travel from j to i.   
 

qi→j = Ji·Ai· Fi→j   Jj 
  

likewise,  
qj→i = Jj·Aj· Fj→j Ji 

 
The net heat transfer is then: 
 

qj→i (net) = Ji·Ai· Fi→j - Jj·Aj· Fj→j 
 

From reciprocity we note that F1→2·A1 = F2→1·A2 so that 
 

qj→i (net) = Ji·Ai· Fi→j - Jj· Ai· Fi→j = Ai· Fi→j·(Ji – Jj) 
 
 
Net Energy Leaving a Surface 
 
The net energy leaving a surface will be 
the difference between the energy leaving 
a surface and the energy received by a 
surface: 

  ε·Eb        ρ·G               G 

 
q1→ = [ε·Eb – α·G]·A1 

 
Combine this relationship with the definition of Radiosity to eliminate G. 
 

J ≡ ε·Eb + ρ·G   G = [J - ε·Eb]/ρ 
 



 

q1→ = {ε·Eb – α·[J - ε·Eb]/ρ}·A1 

 
Assume opaque surfaces so that α + ρ = 1  ρ = 1 – α, and substitute for ρ. 

q1→ = {ε·Eb – α·[J - ε·Eb]/(1 – α)}·A1 

 
Put the equation over a common denominator: 
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If we assume that α = ε then the equation reduces to: 
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Electrical Analogy for Radiation 
We may develop an electrical analogy for radiation, similar to that 
produced for conduction.  The two analogies should not be mixed:  they 
have different dimensions on the potential differences, resistance and 
current flows. 
 
 Equivalent 

Current 
Equivalent 
Resistance 

Potential 
Difference 

Ohms Law I R ΔV 
Net Energy 

Leaving Surface q1→ 








A
1

 Eb - J 

Net Exchange 
Between 
Surfaces 

qi→j 
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 Count the number of surfaces.  (A surface must be at a “uniform” 

 factor resistances, 1/Ai·Fi→j. 
 

Alternate Procedure for Developing Networks 
 

temperature and have uniform properties, i.e. ε, α, ρ.) 
 Draw a radiosity node for each surface. 
 Connect the Radiosity nodes using view
 Connect each Radiosity node to a grounded battery, through a surface

resistance,  A



1 . 

 
This procedure should lead to exactly the same circuit as we obtain 

implifications to the Electrical Network 

 Insulated surfaces.  In steady state heat transfer, a surface cannot 

lectrically cannot flow 
ot grounded. 

urface 3 is not grounded so that the battery and surface 
wing.   

 
 lack surfaces:  A black, or ideal surface, will have no surface 

previously.   
 
 
S
 

receive net energy if it 
is insulated.  Because 
the energy cannot be 
stored by a surface in 
steady state, all energy 
must be re-radiated 
back into the enclosure. 
Insulated surfaces are 
often termed as re-
radiating surfaces. 
 
E
through a battery if it is n

 
S
resistance serve no purpose and are removed from the dra

B
resistance: 
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In this case the nodal Radiosity and emissive power will be equal. 
 
This result gives some insight into the physical meaning of a black 
surface.  Ideal surfaces radiate at the maximum possible level.  Non-
black surfaces will have a reduced potential, somewhat like a battery 
with a corroded terminal.  They therefore have a reduced potential to 
cause heat/current flow. 
 

 Large surfaces:  Surfaces having a large surface area will behave as 
black surfaces, irrespective of the actual surface properties: 
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Physically, this corresponds to the characteristic of large surfaces that as 
they reflect energy, there is very little chance that energy will strike the 
smaller surfaces; most of the energy is reflected back to another part of 
the same large surface.  After several partial absorptions most of the 
energy received is absorbed. 

 
Solution of Analogous Electrical Circuits. 
 

 Large Enclosures 
 

Consider the case of an object, 1, placed inside a large enclosure, 2.  
The system will consist of two objects, so we proceed to construct a 
circuit with two radiosity nodes. 

 
 1/(A1F1→2) 
 J1                       J2     
 

Now we ground both Radiosity nodes through a surface 
resistance.  

 
1/(A1F1→2) 

J                       J1  2     



 

 
(1-1)/(1A1) (1-

 
 
 
 
 
 
 
 

Since A2 is large, R2 = 0.  The view factor, F1→2 = 1 
 
 
 
 
 
 
 
 
 
 
 
 
 

Sum the series resistances: 
 

RSeries = (1-1)/(1A1) + 1/A1 =  1/(1A1) 
 

Ohm’s law: 
 

i = V/R 
or by analogy: 

q =  Eb/RSeries = 1A1(T1
4 – T2

4) 
 

You may recall this result from Thermo I, where it was 
introduced to solve this type of radiation problem. 

 Networks with Multiple Potentials 
 

 

Eb1 T1
4 

 

Eb2 T2
4 

2)/( A2) 2

     R1                        R12                     R2 

(1-1)/(1A1) 1/(A1F1→2) 
J1                       J2     

  

Eb1 T1
4      R1                        R12     Eb2 T2

4 



 

Systems with 3 or more 
grounded potentials 
will require a slightly 
different solution, but 
one which students 
have previously 
encountered in the 
Circuits course. 

J2                                            J3 
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The procedure will be to 
apply Kirchoff’s law to each 
of the Radiosity junctions.   
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In this example there are three junctions, so we will obtain three 
equations.  This will allow us to solve for three unknowns. 

 
Radiation problems will generally be presented on one of two ways: 
 

o The surface net heat flow is given and the surface temperature is 
to be found. 

o The surface temperature is given and the net heat flow is to be 
found. 

 
Returning for a moment to the coal grate furnace, let us assume that 
we know (a) the total heat being produced by the coal bed, (b) the 
temperatures of the water walls and (c) the temperature of the super 
heater sections.   

 
Apply Kirchoff’s law about node 1, for the coal bed: 
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Similarly, for node 2: 

Eb1       
 

 

                    J1     

Eb3       
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(Note how node 1, with a specified heat input, is handled differently 
than node 2, with a specified temperature. 
 

And for node 3: 
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The three equations must be solved simultaneously.  Since they 
are each linear in J, matrix methods may be used: 
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The matrix may be solved for the individual Radiosity.  Once 
these are known, we return to the electrical analogy to find the 
temperature of surface 1, and the heat flows to surfaces 2 and 3. 

 
 
 

Surface 1:  Find the coal bed temperature, given the heat flow: 
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Surface 2:  Find the water wall heat input, given the water wall 
temperature: 
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Surface 3:  (Similar to surface 2) Find the water wall heat input, 
given the water wall temperature: 
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MODULE 5 
 

UNSTEADY STATE HEAT CONDUCTION  
 
5.1 Introduction 
To this point, we have considered conductive heat transfer problems in which the 
temperatures are independent of time. In many applications, however, the temperatures are 
varying with time, and we require the understanding of the complete time history of the 
temperature variation.  For example, in metallurgy, the heat treating process can be controlled 
to directly affect the characteristics of the processed materials.  Annealing (slow cool) can 
soften metals and improve ductility.  On the other hand, quenching (rapid cool) can harden 
the strain boundary and increase strength.  In order to characterize this transient behavior, the 
full unsteady equation is needed: 
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where 
c

k


   is the thermal diffusivity. Without any heat generation and considering spatial 

variation of temperature only in x-direction, the above equation reduces to: 
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       (5.2) 

 
For the solution of equation (5.2), we need two boundary conditions in x-direction and one 
initial condition. Boundary conditions, as the name implies, are frequently specified along the 
physical boundary of an object; they can, however, also be internal – e.g. a known 
temperature gradient at an internal line of symmetry.  

 
5.2 Biot and Fourier numbers 
In some transient problems, the internal temperature gradients in the body may be quite small 
and insignificant. Yet the temperature at a given location, or the average temperature of the 
object, may be changing quite rapidly with time. From eq. (5.1) we can note that such could 
be the case for large thermal diffusivity  .  
 
A more meaningful approach is to consider the general problem of transient cooling of an 
object, such as the hollow cylinder shown in figure 5.1.  
 
  TTs  
 
 
 
 
 
 

Fig. 5.1 
 



 

For very large ri, the heat transfer rate by conduction through the cylinder wall is 
approximately 
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where l is the length of the cylinder and L is the material thickness. The rate of heat transfer 
away from the outer surface by convection is 
 

))(2(  TTlrhq so        (5.4) 

 
where h  is the average heat transfer coefficient for convection from the entire surface. 
Equating (5.3) and (5.4) gives 
 

k

Lh

TT

TT

s

si 





= Biot number     (5.5) 

 
The Biot number is dimensionless, and it can be thought of as the ratio 
 

flow heat external to resistance

flow heat internal to resistance
Bi   

 
Whenever the Biot number is small, the internal temperature gradients are also small and a 
transient problem can be treated by the “lumped thermal capacity” approach. The lumped 
capacity assumption implies that the object for analysis is considered to have a single mass-
averaged temperature.  
 
In the derivation shown above, the significant object dimension was the conduction path 
length, . In general, a characteristic length scale may be obtained by dividing the 

volume of the solid by its surface area: 
io rrL 

sA

V
L        (5.6) 

 
Using this method to determine the characteristic length scale, the corresponding Biot 
number may be evaluated for objects of any shape, for example a plate, a cylinder, or a 
sphere. As a thumb rule, if the Biot number turns out to be less than 0.1, lumped capacity 
assumption is applied.  
 
In this context, a dimensionless time, known as the Fourier number, can be obtained by 
multiplying the dimensional time by the thermal diffusivity and dividing by the square of the 
characteristic length: 
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5.3 Lumped thermal capacity analysis 
The simplest situation in an unsteady heat transfer process is to use the lumped capacity 
assumption, wherein we neglect the temperature distribution inside the solid and only deal 
with the heat transfer between the solid and the ambient fluids.  In other words, we are 
assuming that the temperature inside the solid is constant and is equal to the surface 
temperature.   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The solid object shown in figure 5.2 is a metal piece which is being cooled in air after hot 
forming. Thermal energy is leaving the object from all elements of the surface, and this is 
shown for simplicity by a single arrow. The first law of thermodynamics applied to this 
problem is  
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Now, if Biot number is small and temperature of the object can be considered to be uniform, 
this equation can be written as 
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Integrating and applying the initial condition iTT )0( , 
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Taking the exponents of both sides and rearranging, 
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where  
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Note:  In eq. 5.12, b is a positive quantity having dimension (time)-1. The 
reciprocal of b is usually called time constant, which has the dimension of 
time.  

 
 

Question: What is the significance of b?  
Answer: According to eq. 5.11, the temperature of a body approaches the 
ambient temperature T  exponentially. In other words, the temperature 
changes rapidly in the beginning, and then slowly. A larger value of b 
indicates that the body will approach the surrounding temperature in a shorter 
time. You can visualize this if you note the variables in the numerator and 
denominator of the expression for b. As an exercise, plot T vs. t for various 
values of b and note the behaviour. 

 
 
 
 
 
 
 
 
 
 
 
Rate of convection heat transfer at any given time t: 

  TtThAtQ s )()(  

 
Total amount of heat transfer between the body and the surrounding from t=0 to t: 

 iTtTmcQ  )(  

Maximum heat transfer (limit reached when body temperature equals that of the 
surrounding): 

 iTTmcQ    

 
 
 
5.4 Numerical methods in transient heat transfer: The Finite Volume Method 
 
Consider, now, unsteady state diffusion in the context of heat transfer, in which the 

temperature, T, is the scalar. The corresponding partial differential equation is: 
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The term on the left hand side of eq. (5.13) is the storage term, arising out of 

accumulation/depletion of heat in the domain under consideration. Note that eq. (5.13) is a 

partial differential equation as a result of an extra independent variable, time (t). The 

corresponding grid system is shown in fig. 5.3. 

 



 

 

Fig. 5.3: Grid system of an unsteady one-dimensional computational domain 

 

In order to obtain a discretized equation at the nodal point P of the control volume, 

integration of the governing eq. (5.13) is required to be performed with respect to time as 

well as space. Integration over the control volume and over a time interval gives 
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Rewritten, 
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If the temperature at a node is assumed to prevail over the whole control volume, applying 

the central differencing scheme, one obtains: 
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Now, an assumption is made about the variation of TP, TE and Tw with time. By generalizing 

the approach by means of a weighting parameter f  between 0 and 1: 
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Repeating the same operation for points E and W, 
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Upon re-arranging, dropping the superscript “new”, and casting the equation into the standard 

form: 
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The time integration scheme would depend on the choice of the parameter f. When f = 0, the 

resulting scheme is “explicit”; when 0 < f ≤ 1, the resulting scheme is “implicit”; when f = 1, 

the resulting scheme is “fully implicit”, when f = 1/2, the resulting scheme is “Crank-

Nicolson” (Crank and Nicolson, 1947). The variation of T within the time interval ∆t for the 

different schemes is shown in fig. 5.4. 
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Fig. 5.4: Variation of T within the time interval ∆t for different schemes 

 

Explicit scheme 

Linearizing the source term as  and setting  f = 0 in eq. (5.19), the explicit 

discretisation becomes: 
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The above scheme is based on backward differencing and its Taylor series truncation error 

accuracy is first-order with respect to time. For stability, all coefficients must be positive in 

the discretized equation. Hence,  
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The above limitation on time step suggests that the explicit scheme becomes very expensive 

to improve spatial accuracy. Hence, this method is generally not recommended for general 

transient problems. Nevertheless, provided that the time step size is chosen with care, the 

explicit scheme described above is efficient for simple conduction calculations. 

 

Crank-Nicolson scheme 

Setting  f = 0.5 in eq. (5.19), the Crank-Nicolson discretisation becomes: 
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The above method is implicit and simultaneous equations for all node points need to be 

solved at each time step. For stability, all coefficient must be positive in the discretized 

equation, requiring 
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The Crank-Nicolson scheme only slightly less restrictive than the explicit method. It is based 

on central differencing and hence it is second-order accurate in time.  

 

The fully implicit scheme 

Setting  f = 1 in eq. (5.19), the fully implicit discretisation becomes: 
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A system of algebraic equations must be solved at each time level. The accuracy of the 

scheme is first-order in time. The time marching procedure starts with a given initial field of 

the scalar 0. The system is solved after selecting time step Δt. For the implicit scheme, all 

coefficients are positive, which makes it unconditionally stable for any size of time step. 

Hence, the implicit method is recommended for general purpose transient calculations 

because of its robustness and unconditional stability. 



 

MODULE 8 
 

BOILING AND CONDENSATION  
 
8.1 Boiling: General considerations 
 

• Boiling is associated with transformation of liquid to vapor at a 
solid/liquid interface due to convection heat transfer from the 
solid. 

• Agitation of fluid by vapor bubbles provides for large 
convection coefficients and hence large heat fluxes at low-to-
moderate surface-to-fluid temperature differences 

 

•   Special form of Newton’s law of cooling: 

esatss ThTThq  )(  

where  is the saturation temperature of the liquid, and satT )satse TTT   
is the excess temperature.  

 

8.2 Special cases 

 Pool Boiling:Liquid motion is due to natural convection and 
bubble-induced mixing. 

 Forced Convection Boiling:Fluid motion is induced by external 
means, as well as by bubble-induced mixing. 

 Saturated Boiling:Liquid temperature is slightly larger than 
saturation temperature 

 Subcooled Boiling:Liquid temperature is less than saturation 
temperature 

 

8.3 The boiling curve 

The boiling curve reveals range of conditions associated with 
saturated pool boiling on a  sq   vs. eT  plot. 

 

       

 



 

Water at Atmospheric Pressure 

 
 

Free Convection Boiling  ( <5ºC) eT

   Little vapor formation. 

   Liquid motion is due principally to single-phase natural 
convection. 

 

Onset of Nucleate Boiling – ONB ( eT 5ºC) 

 

Nucleate boiling (5ºC < <30ºC) eT

   Isolated Vapor Bubbles  (5ºC < eT <10ºC) 

 Liquid motion is strongly influenced by nucleation 

     of bubbles at the surface. 

 h and sq   rise sharply with increasing eT  

 Heat transfer is principally due to contact of liquid  

     with the surface  (single-phase convection) and not  

     to vaporization 

 

   Jets and Columns (10ºC < eT <30ºC) 



 

  Increasing number of nucleation sites causes 

     bubble interactions and coalescence into 

      jets and slugs. 

 Liquid/surface contact is impaired. 

  continues to increase with sq  eT  while h begins to decrease 

 

Critical Heat Flux  - CHF, ( eT 30ºC) 

   Maximum attainable heat flux in nucleate boiling. 

 2
max 1 MW/m  for water at atmospheric pressure.q 

 

Potential Burnout for Power-Controlled Heating 

   An increase in sq   beyond maxq   causes the surface to be 
blanketed by vapor and its temperature to spontaneously achieve 
a value that can exceed its melting point  

   If the surface survives the temperature shock, conditions are 
characterized by film boiling 

 

Film Boiling 

   Heat transfer is by conduction and radiation across the vapor 
blanket 

 A reduction in  sq     follows the cooling the cooling 

curve continuously to the Leidenfrost point corresponding to the 
minimum heat flux  minq   for film boiling. 

   A reduction in sq   below minq   causes an abrupt reduction in 
surface temperature to the nucleate boiling regime 

 

Transition Boiling for Temperature-Controlled Heating 

 Characterised by continuous decay of sq   (from maxq   to minq  ) 
with increasing eT  



 

 Surface conditions oscillate between nucleate and film 
boiling, but portion of surface experiencing film boiling 
increases with eT     

   Also termed unstable or partial film boiling. 

 

 

8.4 Pool boiling correlations 

Nucleate Boiling 

   Rohsenow Correlation, clean surfaces only, ±100% errors 
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 Critical heat flux: 

 

 

 

 

 

Film Boiling 
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8.5 Condensation: General considerations 

• Condensation occurs when the temperature of a vapour is 
reduced below its saturation temperature 

• Condensation heat transfer 

   Film condensation 

  

 

                               
     

    Dropwise condensation 

 

 

                               
 

•  Heat transfer rates in dropwise condensation may be as much as 
10 times higher than in film condensation 

 

 



 

8.6 Laminar film condensation on a vertical wall  
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MODULE 6 
 

CONVECTION  
 
6.1 Objectives of convection analysis: 
 
Main purpose of convective heat transfer analysis is to determine: 

- flow field 
- temperature field in fluid 

- heat transfer coefficient, h 
 

How do we determine h ? 
Consider the process of convective cooling, as we pass a cool fluid past a heated wall.  This 
process is described by Newton’s law of Cooling: 

q=h·A·(TS-T) 
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Near any wall a fluid is subject to the no slip condition; that is, there is a stagnant sub layer.  
Since there is no fluid motion in this layer, heat transfer is by conduction in this region.  
Above the sub layer is a region where viscous forces retard fluid motion; in this region some 
convection may occur, but conduction may well predominate.  A careful analysis of this 
region allows us to use our conductive analysis in analyzing heat transfer.  This is the basis of 
our convective theory. 
 
At the wall, the convective heat transfer rate can be expressed as the heat flux. 
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 depends on the whole fluid motion, and both fluid flow and heat transfer 

equations are needed 
 
 
The expression shows that in order to determine h, we must first determine the temperature 
distribution in the thin fluid layer that coats the wall. 
 
2.2 Classes of Convective Flows 
 

 
 

• extremely diverse 
•  several parameters involved (fluid properties, geometry, nature of flow, phases etc) 
•  systematic approach required 
•  classify flows into certain types, based on certain parameters 
•  identify parameters governing the flow, and group them into meaningful non-

dimensional numbers 
•  need to understand the physics behind each phenomenon 

 
Common classifications: 
A. Based on geometry: 
 External flow / Internal flow 
B. Based on driving mechanism 
 Natural convection / forced convection / mixed convection 
C. Based on number of phases 
 Single phase / multiple phase  
D.  Based on nature of flow 
 Laminar / turbulent 
 
 
 
 
 
 

Forced convection (induced by 
external means) 

Convection 

Free or natural convection 
(induced by buoyancy forces) May occur 

with phase 
change 
(boiling, 
condensation) 
 



 

Table 6.1. Typical values of h (W/m2K) 
 

Free convection  gases: 2 - 25 
    liquid:   50 – 100 
 
Forced convection  gases: 25 - 250 
    liquid:  50 - 20,000 
 
Boiling/Condensation  2500 -100,000 

 
 
 
 
 
 
 
 
 
 
 
 
2.3 How to solve a convection problem ? 

• Solve governing equations along with boundary conditions 
•  Governing equations include 

 1. conservation of mass 
 2. conservation of momentum 
 3. conservation of energy 

•  In Conduction problems, only (3) is needed to be solved. Hence, only few parameters 
are involved 

•  In Convection, all the governing equations need to be solved. 
  large number of parameters can be involved 
 
 
2.4 FORCED CONVECTION: external flow (over flat plate) 
 An internal flow is surrounded by solid boundaries that can restrict the development of its 
boundary layer, for example, a pipe flow.  An external flow, on the other hand, are flows over 
bodies immersed in an unbounded fluid so that the flow boundary layer can grow freely in 
one direction.  Examples include the flows over airfoils, ship hulls, turbine blades, etc 
 
 

U

U < U

U 

 
 
 
 

• Fluid particle adjacent to the solid surface is at rest 
• These particles act to retard the motion of adjoining layers 
•  boundary layer effect 

 
Inside the boundary layer, we can apply the following conservation principles: 
Momentum balance: inertia forces, pressure gradient, viscous forces, body forces 
Energy balance: convective flux, diffusive flux, heat generation, energy storage 
 
 
 



 

 
 
 
2.5 Forced Convection Correlations  
Since the heat transfer coefficient is a direct function of the temperature gradient next to the 
wall, the physical variables on which it depends can be expressed as follows: 
h=f(fluid properties, velocity field ,geometry,temperature etc.) 
 
As the function is dependent on several parameters, the heat transfer coefficient is usually 
expressed in terms of correlations involving pertinent non-dimensional numbers.  

 
Forced convection: Non-dimensional groupings 
 

• Nusselt No.  Nu = hx / k = (convection heat transfer strength)/                           
(conduction heat transfer strength) 

•  Prandtl No.   Pr = /  = (momentum diffusivity)/ (thermal diffusivity) 
•  Reynolds No. Re = U x /  = (inertia force)/(viscous force) 

Viscous force provides the dampening effect for disturbances in the fluid. If dampening is 
strong enough  laminar flow 
Otherwise, instability  turbulent flow  critical Reynolds number 
 
For forced convection, the heat transfer correlation can be expressed as  

Nu=f (Re, Pr) 
 

 
 
     The convective correlation for laminar flow across a flat plate heated to a constant wall 
temperature is: 

 
 
 
 
 
 
 

x 

U 

Nux = 0.323·Rex
½ · Pr1/3 

 
where  

Nux  hx/k 

Rex  (Ux)/ 

Pr  cP/k 

 
Physical Interpretation of Convective Correlation 



 

The Reynolds number is a familiar term to all of us, but we may benefit by considering what 
the ratio tells us.  Recall that the thickness of the dynamic boundary layer, , is proportional 
to the distance along the plate, x.  

Rex  (Ux)/    (U)/  =  (U
2)/( U/) 

The numerator is a mass flow per unit area times a velocity; i.e. a momentum flow per unit 
area.  The denominator is a viscous stress, i.e. a viscous force per unit area.  The ratio 
represents the ratio of momentum to viscous forces.  If viscous forces dominate, the flow will 
be laminar; if momentum dominates, the flow will be turbulent. 

 
Physical Meaning of Prandtl Number 
The Prandtl number was introduced earlier.   

If we multiply and divide the equation by the fluid density, , we obtain: 

Pr  (/)/(k/cP) = / 

The Prandtl number may be seen to be a ratio reflecting the ratio of the rate that viscous 
forces penetrate the material to the rate that thermal energy penetrates the material.  As a 
consequence the Prandtl number is proportional to the rate of growth of the two boundary 
layers: 

/t = Pr1/3 

  
Physical Meaning of Nusselt Number 
The Nusselt number may be physically described as well.   

Nux  hx/k 

If we recall that the thickness of the boundary layer at any point along the surface, , is also a 
function of x then 

Nux  h/k  (/kA)/(1/hA) 

We see that the Nusselt may be viewed as the ratio of the conduction resistance of a material 
to the convection resistance of the same material.   

 

Students, recalling the Biot number, may wish to compare the two so that they may 
distinguish the two.   

Nux  hx/kfluid   Bix  hx/ksolid 

The denominator of the Nusselt number involves the thermal conductivity of the fluid at the 
solid-fluid convective interface; The denominator of the Biot number involves the thermal 
conductivity of the solid at the solid-fluid convective interface. 

 
Local Nature of Convective Correlation 
Consider again the correlation that we have developed for laminar flow over a flat plate at 
constant wall temperature 
 

Nux = 0.323·Rex
½ · Pr1/3 



 

To put this back into dimensional form, we replace the Nusselt number by its equivalent, hx/k 
and take the x/k to the other side: 

h = 0.323·(k/x)Rex
½ · Pr1/3 

Now expand the Reynolds number 

h = 0.323·(k/x)[(Ux)/]½ · Pr1/3 

We proceed to combine the x terms: 

h = 0.323·k[(U)/( x)]½ · Pr1/3 

And see that the convective coefficient decreases with x½. 

 

 

 

 
 

 

 

 

 

 

 
We see that as the boundary layer thickens, the convection coefficient decreases.  Some 
designers will introduce a series of “trip wires”, i.e. devices to disrupt the boundary layer, so 
that the buildup of the insulating layer must begin anew.  This will result in regular 
“thinning” of the boundary layer so that the convection coefficient will remain high. 

 

 
Averaged Correlations 
If one were interested in the total heat loss from a surface, rather than the temperature at a 
point, then they may well want to know something about average convective coefficients.   
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Local Convection 
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The desire is to find a correlation that provides an overall heat transfer rate: 
 

Q = hLA[Twall-T] =   h T T dA h T T dxx wall x

L

wall        [ ] [ ]0

 
where hx and hL, refer to local and average convective coefficients, respectively. 
 
Compare the second and fourth equations where the area is assumed to be equal to A = (1L): 
 

hLL[Twall-T] =   h T T dxx

L

wall0   [ ]
 

Since the temperature difference is constant, it may be taken outside of the integral and 
cancelled: 
 

hLL=   h dxx

L

0 
 
 
This is a general definition of an integrated average. 
 
Proceed to substitute the correlation for the local coefficient. 
 

hLL=  0 3230

0

1/3. P

.5

 
 







  k

x

U x
dx

L 


r  

 
Take the constant terms from outside the integral, and divide both sides by k. 

hLL/k   =  0  323
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Integrate the right side. 
 

hLL/k =  0 323
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The left side is defined as the average Nusselt number, NuL.  Algebraically rearrange the right 
side. 
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The term in the brackets may be recognized as the Reynolds number, evaluated at the end of 
the convective section.  Finally, 
 



 

3
15.0 PrRe646.0  L  NuL =  

 
This is our average correlation for laminar flow over a flat plate with constant wall 
temperature.   

 
Reynolds Analogy 
In the development of the boundary layer theory, one may notice the strong relationship 
between the dynamic boundary layer and the thermal boundary layer.  Reynold’s noted the 
strong correlation and found that fluid friction and convection coefficient could be related.  
This is known as the Reynolds Analogy. 
 

 
Conclusion from Reynold’s analogy:  Knowing the frictional drag, we know the Nusselt 
Number.  If the drag coefficient is increased, say through increased wall roughness, then the 
convective coefficient will also increase.   
 
Turbulent Flow 
We could develop a turbulent heat transfer correlation in a manner similar to the von Karman 
analysis.  It is probably easier, having developed the Reynolds analogy, to follow that course.  
The local fluid friction factor, Cf, associated with turbulent flow over a flat plate is given as: 
 

Cf = 0.0592/Rex
0.2 

 
Substitute into the Reynolds analogy: 

(0.0592/Rex
0.2)/2 = Nux/RexPr1/3 

 
Rearrange to find 
 

Nux = 0.0296Rex
0.8Pr1/3 

 

Local Correlation 
Turbulent Flow Flat Plate. 

 
 
In order to develop an average correlation, one would evaluate an integral along the plate 
similar to that used in a laminar flow: 

 

 
         Laminar Region                 Turbulent region 

 
 
 
 

 

hLL =  h dx h dx h dxx

L

x la ar

L

x turbulentL
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crit0 0    , min ,

 
Note:  The critical Reynolds number for flow over a flat plate is 5105; the critical Reynolds 
number for flow through a round tube is 2000. 

 
The result of the above integration is: 



 

 
Nux = 0.037(Rex

0.8 – 871)Pr1/3 
 

Note:  Fluid properties should be evaluated at the average temperature in the boundary layer, 
i.e. at an average between the wall and free stream temperature.  
 

Tprop = 0.5(Twall+ T) 



 

2.6 Free convection 
Free convection is sometimes defined as a convective process in which fluid motion is caused 
by buoyancy effects.   

 
 

Heated boundary 
layer 

T < Tboundry. layer < Tw 
 
 < boundry. layer  

 
 

Tw  
 
 
 
 
 
Velocity Profiles 

 
Compare the velocity profiles for forced and natural convection shown below: 

      Forced Convection   Free Convection 

U = 0 
 U > 0 

 
 
 
 
 
 
 
 
 
 
Coefficient of Volumetric Expansion 
The thermodynamic property which describes the change in density leading to buoyancy in 
the Coefficient of Volumetric Expansion, . 
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Evaluation of  

 
 Liquids and Solids:   is a thermodynamic property and should be found from 

Property Tables.  Values of  are found for a number of engineering fluids in Tables 
given in Handbooks and Text Books. 

 Ideal Gases:  We may develop a general expression for  for an ideal gas from the 
ideal gas law: 



 

 
P = RT 

 Then, 
 = P/RT 

 
 Differentiating while holding P constant: 
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 Substitute into the definition of  
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Grashof Number 
Because U is always zero, the Reynolds number, [UD]/, is also zero and is no longer 
suitable to describe the flow in the system.  Instead, we introduce a new parameter for natural 
convection, the Grashof Number.  Here we will be most concerned with flow across a vertical 
surface, so that we use the vertical distance, z or L, as the characteristic length. 
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Just as we have looked at the Reynolds number for a physical meaning, we may consider the 
Grashof number: 

Ideal Gas 
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Free Convection Heat Transfer Correlations 
The standard form for free, or natural, convection correlations will appear much like those for 
forced convection except that (1) the Reynolds number is replaced with a Grashof number 
and (2) the exponent on Prandtl number is not generally 1/3 (The von Karman boundary layer 
analysis from which we developed the 1/3 exponent was for forced convection flows): 
 

Nux = CGrx
mPrn   Local Correlation 

 
   NuL = CGrL

mPrn   Average Correlation 

 
Quite often experimentalists find that the exponent on the Grashof and Prandtl numbers are 
equal so that the general correlations may be written in the form: 



 

 
Nux = C[GrxPr]m   Local Correlation 

 
   NuL = C[GrLPr]m   Average Correlation 

 
This leads to the introduction of the new, dimensionless parameter, the Rayleigh number, Ra: 
 
Rax = GrxPr 

 
RaL = GrLPr 

 
So that the general correlation for free convection becomes: 
 

Nux = CRax
m   Local Correlation 

 
   NuL = CRaL

m   Average Correlation 
 
 

 
Laminar to Turbulent Transition 

 
Just as for forced convection, a boundary layer will form for free convection.  The boundary 
layer, which acts as a thermal resistance, will be relatively thin toward the leading edge of the 
surface resulting in a relatively high convection coefficient.  At a Rayleigh number of about 
109 the flow over a flat plate will become transitional and finally become turbulent.  The 
increased turbulence inside the boundary layer will enhance heat transfer leading to relative 
high convection coefficients because of better mixing. 
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Ra < 109    Laminar flow. [Vertical Flat Plate] 
 
Ra > 109    Turbulent flow. [Vertical Flat Plate] 



 

 
Generally the characteristic length used in the correlation relates to the distance over which 
the boundary layer is allowed to grow.  In the case of a vertical flat plate this will be x or L, 
in the case of a vertical cylinder this will also be x or L; in the case of a horizontal cylinder, 
the length will be d. 

 
Critical Rayleigh Number 

Consider the flow between two surfaces, each at different temperatures.  Under developed 
flow conditions, the interstitial fluid will reach a temperature between the temperatures of the 
two surfaces and will develop free convection flow patterns.  The fluid will be heated by one 
surface, resulting in an upward buoyant flow, and will be cooled by the other, resulting in a 
downward flow. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
If the surfaces are placed closer together, the flow patterns will begin to interfere: 
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Free Convection Inside an 
Enclosure With Complete Flow 

Interference (Channel flow 
limit) 

Free Convection Inside an Enclosure 
(boundary layer limit) 

Note that for enclosures it is 
customary to develop 
correlations which describe the 
overall (both heated and cooled 
surfaces) within a single 
correlation. 

Free Convection Inside an 
Enclosure With Partial Flow 

Interference 

 
 



 

 
 
 
In the case of complete flow interference, the upward and downward forces will cancel, 
canceling circulation forces.  This case would be treated as a pure convection problem since 
no bulk transport occurs. 
The transition in enclosures from convection heat transfer to conduction heat transfer occurs 
at what is termed the “Critical Rayleigh Number”.  Note that this terminology is in clear 
contrast to forced convection where the critical Reynolds number refers to the transition from 
laminar to turbulent flow. 

Racrit = 1000  (Enclosures With Horizontal Heat Flow) 

Racrit = 1728  (Enclosures With Vertical Heat Flow) 

The existence of a Critical Rayleigh number suggests that there are now three flow regimes:  
(1) No flow, (2) Laminar Flow and (3) Turbulent Flow.  In all enclosure problems the 
Rayleigh number will be calculated to determine the proper flow regime before a correlation 
is chosen. 
 
 


	MODULE 3
	Boundary Conditions:
	Overall fin efficiency for an array of fins
	N: total number of fins


	MODULE 7
	MODULE 2
	MODULE I
	 Large Enclosures
	MODULE 5
	MODULE 8
	MODULE 6

