MODULE 3

Extended Surface Heat Transfer

3.1 Introduction:

Convection: Heat transfer between a solid surface and a moving fluid is governed by the
Newton’s cooling law: q = hA(Ts-T.,), where Ts is the surface temperature and T, is the fluid
temperature. Therefore, to increase the convective heat transfer, one can

 Increase the temperature difference (Ts-T.,) between the surface and the fluid.

» Increase the convection coefficient h. This can be accomplished by increasing the
fluid flow over the surface since h is a function of the flow velocity and the higher the
velocity, the higher the h. Example: a cooling fan.

* Increase the contact surface area A. Example: a heat sink with fins.

Many times, when the first option is not in our control and the second option (i.e. increasing
h) is already stretched to its limit, we are left with the only alternative of increasing the
effective surface area by using fins or extended surfaces. Fins are protrusions from the base
surface into the cooling fluid, so that the extra surface of the protrusions is also in contact
with the fluid. Most of you have encountered cooling fins on air-cooled engines (motorcycles,
portable generators, etc.), electronic equipment (CPUs), automobile radiators, air
conditioning equipment (condensers) and elsewhere.

3.2 Extended surface analysis:

In this module, consideration will be limited to steady state analysis of rectangular or pin fins
of constant cross sectional area. Annular fins or fins involving a tapered cross section may be
analyzed by similar methods, but will involve solution of more complicated equations which
result. Numerical methods of integration or computer programs can be used to advantage in
such cases.

We start with the General Conduction Equation:

14T :va+§ (1)

a dr system

After making the assumptions of Steady State, One-Dimensional Conduction, this equation
reduces to the form:
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This is a second order, ordinary differential equation and will require 2 boundary conditions
to evaluate the two constants of integration that will arise.



Consider the cooling fin shown below:
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The fin is situated on the surface of a hot surface at T; and surrounded by a coolant at
temperature T, which cools with convective coefficient, h. The fin has a cross sectional
area, A., (This is the area through with heat is conducted.) and an overall length, L.

Note that as energy is conducted down the length of the fin, some portion is lost, by
convection, from the sides. Thus the heat flow varies along the length of the fin.

We further note that the arrows indicating the direction of heat flow point in both the x and y
directions. This is an indication that this is truly a two- or three-dimensional heat flow,
depending on the geometry of the fin. However, quite often, it is convenient to analyse a fin
by examining an equivalent one—dimensional system. The equivalent system will involve the
introduction of heat sinks (negative heat sources), which remove an amount of energy
equivalent to what would be lost through the sides by convection.

Consider a differential length of the fin.
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Across this segment the heat loss will be h-(P-Ax)-(T-T.), where P is the perimeter around the
fin. The equivalent heat sink would be &J(A : Ax).



Equating the heat source to the convective loss:

~h-P-(T-T,)
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Substitute this value into the General Conduction Equation as simplified for One-Dimension,
Steady State Conduction with Sources:

h-P
e —m'(T—Tw)z 0 (4)

which is the equation for a fin with a constant cross sectional area. This is the Second Order
Differential Equation that we will solve for each fin analysis. Prior to solving, a couple of
simplifications should be noted. First, we see that h, P, k and A, are all independent of x in
the defined system (They may not be constant if a more general analysis is desired.). We
replace this ratio with a constant. Let

, hP

m = - ()
then:
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Next we notice that the equation is non-homogeneous (due to the T, term). Recall that non-
homogeneous differential equations require both a general and a particular solution. We can
make this equation homogeneous by introducing the temperature relative to the surroundings:

0=T-Ts (7)
Differentiating this equation we find:
dg dT
- dx +0 (8)
Differentiate a second time:
d’¢ d’T
dx>  dx’ ©)
Substitute into the Fin Equation:
d’o
e m’-4=0 (10)

This equation is a Second Order, Homogeneous Differential Equation.

3.3 Solution of the Fin Equation



We apply a standard technique for solving a second order homogeneous linear differential
equation.

Try 6 = ¢™™. Differentiate this expression twice:
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We now have two solutions to the equation. The general solution to the above differential
equation will be a linear combination of each of the independent solutions.

Then:
0=Ae""+B-e™* (15)

where A and B are arbitrary constants which need to be determined from the boundary
conditions. Note that it is a 2" order differential equation, and hence we need two boundary
conditions to determine the two constants of integration.

An alternative solution can be obtained as follows: Note that the hyperbolic sin, sinh, the
hyperbolic cosine, cosh, are defined as:

_ e,m.x emvx 5 e—m-x

sinh(m- X) = cosh(m-x) = > (16)

We may write:

_ e" +e ™ e"-e™ C+D _  C-D
C:-cosh(m-x)+ D-sinh(m-x)=C- > +D- 5 =7 ™+ > " (17)

We see that if (C+D)/2 replaces A and (C-D)/2 replaces B then the two solutions are
equivalent.

6 = C-cosh(m-x)+ D-sinh(m- X) (18)

Generally the exponential solution is used for very long fins, the hyperbolic solutions for
other cases.



Boundary Conditions:

Since the solution results in 2 constants of integration we require 2 boundary conditions. The
first one is obvious, as one end of the fin will be attached to a hot surface and will come into
thermal equilibrium with that surface. Hence, at the fin base,

0(0) =Ty - T = 09 (19)

The second boundary condition depends on the condition imposed at the other end of the fin.
There are various possibilities, as described below.

Very long fins:

For very long fins, the end located a long distance from the heat source will approach the
temperature of the surroundings. Hence,

B(c0) = 0 (20)

Substitute the second condition into the exponential solution of the fin equation:

o 0
B(0)=0= A-em?f%- B- 672 (21)

The first exponential term is infinite and the second is equal to zero. The only way that this
equation can be valid is if A = 0. Now apply the second boundary condition.

0(0)= 8p=B- ™" = B =6, (22)
The general temperature profile for a very long fin is then:

0(x)= 0 -e™* (23)

If we wish to find the heat flow through the fin, we may apply Fourier Law:

dT dé
= _k-A —=-k-A.— 24
q A ik X (24)
Differentiate the temperature profile:
de
= __p.me™ 25
™ 6 -m-e (25)
So that:
h-p
q=k-A -0, m ™ =,h-P.-k-A-e™.§ =Mge™ (26)

where M = ,/hPKA, .

Often we wish to know the total heat flow through the fin, i.e. the heat flow entering at the
base (x=0).



q=+/h-P-k-A -4, = M6, 27)

The insulated tip fin
Assume that the tip is insulated and hence there is no heat transfer:

a9 =0 (28)
dx|,_,
The solution to the fin equation is known to be:
0 = C-cosh(m-x)+ D-sinh(m- x) (29)
Differentiate this expression.
de .
&=C‘m'smh(m-x)+ D-m-cosh(m- x) (30)

Apply the first boundary condition at the base:
0 1
0(0) = 8, = C sinh(m /{1 D cosh(m }yf (31)

So that D = 0p. Now apply the second boundary condition at the tip to find the value of C:

(Z—Q(L) =0=Cmsinh(m-L)+6,mcosh(m-L) (32)
X
which requires that
C--0, Cf)Sh(mL) (33)
sinh(mL)

This leads to the general temperature profile:

coshm(L —x)

o0 =6, cosh(mL)

(34)

We may find the heat flow at any value of x by differentiating the temperature profile and
substituting it into the Fourier Law:

dT dé
q:_k.AC.&:_k.AC.& (35)



So that the energy flowing through the base of the fin is:
q = {/hPKA, 9, tanh(mL) = Mg, tanh(mL) (36)

If we compare this result with that for the very long fin, we see that the primary difference in
form is in the hyperbolic tangent term. That term, which always results in a number equal to
or less than one, represents the reduced heat loss due to the shortening of the fin.

Other tip conditions:

We have already seen two tip conditions, one being the long fin and the other being the
insulated tip. Two other possibilities are usually considered for fin analysis: (i) a tip subjected
to convective heat transfer, and (ii) a tip with a prescribed temperature. The expressions for
temperature distribution and fin heat transfer for all the four cases are summarized in the
table below.

Table 3.1
Case | Tip Condition Temp. Distribution Fin heat transfer
A | Convection heat coshm(L—x)+ (17 )sinhm(L - x) sinhmL + (7 )coshmlL
transfer: m Ma, m
hO(L)=-k(d6/dx ).t coshml+ (D7 )sinhmL coshml+ (D7 )sinhmL
B Adiabatic coshm(L —x) M@, tanh mL
(d6/dx)x=1=0 coshmL
C | Given temperature: (% )sinhm(L - x) + sinhm(L - X) (coshmL % )
9(L)= oL b Mé b
sinhmL °  sinhmL
D Infinitely long fin g ™ M 6,
0(L)=0

3.4 Fin Effectiveness

How effective a fin can enhance heat transfer is characterized by the fin effectiveness, ¢,

which is as the ratio of fin heat transfer and the heat transfer without the fin. For an adiabatic

fin:

g oo G JNPKA tanh(ml) kP Ll (37)
q hA(T,-T,) hA. hA

If the fin is long enough, mL.>2, tanh(mL)— 1, and hence it can be considered as infinite fin

(case D in Table 3.1). Hence, for long fins,
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In order to enhance heat transfer, ¢, should be greater than 1 (In case & <1, the fin would

have no purpose as it would serve as an insulator instead). However &; >2 is considered

unjustifiable because of diminishing returns as fin length increases.

To increase &, , the fin’s material should have higher thermal conductivity, k. It seems to be
counterintuitive that the lower convection coefficient, h, the higher &,. Well, if h is very

high, it is not necessary to enhance heat transfer by adding heat fins. Therefore, heat fins are
more effective if h is low.
Observations:
e If fins are to be used on surfaces separating gas and liquid, fins are usually placed on
the gas side. (Why?)
e P/A( should be as high as possible. Use a square fin with a dimension of W by W as
an example: P=4W, AC:W7-, P/AC=(4/W). The smaller the W, the higher is the
P/A(C, and the higher the &, .Conclusion: It is preferred to use thin and closely spaced

(to increase the total number) fins.

The effectiveness of a fin can also be characterized by

T,-T,)/R R
(C,‘f :q_f_ qf _( b oo) t,f — t,h (39)

q hA(T,-T,) (T,-T.)/R, R

It is a ratio of the thermal resistance due to convection to the thermal resistance of a

fin. In order to enhance heat transfer, the fin’s resistance should be lower than the

resistance due only to convection.

3.5 Fin Efficiency

The fin efficiency is defined as the ratio of the energy transferred through a real fin to that
transferred through an ideal fin. An ideal fin is thought to be one made of a perfect or infinite
conductor material. A perfect conductor has an infinite thermal conductivity so that the
entire fin is at the base material temperature.

0., N P-k-A-0 tanh(m-L)

_qideal h'(P'L)"gL

(40)
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Simplifying equation (40):

~ [K-A 6, -tanh(m-L) tanh(m- L)
"“Vhp Le = mL ‘4D

The heat transfer through any fin can now be written as:

q{n.hl.A } =(T-T, (42)

The above equation provides us with the concept of fin thermal resistance (using electrical
analogy) as

1
R = 43
YT 43)
Overall Fin Efficiency:
Overall fin efficiency for an array of fins
qs

Define terms: Ap: base area exposed to coolant
Af: surface area of a single fin
At: total area including base area and total finned surface, A;=Ap+NAf

N: total number of fins

Heat Transfer from a Fin Array:



g =0, +Ng, =hA (T, -T, )+ NnhA (T, -T,)
=h[(A =NA)+Nn AT, -T,)=h[A -NA(1-n)]IT,-T,)

NA
=hA[l- Af (A=n)I(T, = T,) =nohA(T, - T,)
. NA,
Define overall fin efficiency: 77, =1- A (I-n¢)
T, -T 1
=hAn, (T, -T, )=-—">2—= wh R.o =
a; 7o (T, ) Rt,o where R, o hAtﬂo
Compare to heat transfer without fins
1
q=hA(T,-T,)=h(A, + NA, (T, -T,) = hA

where A, is the base area (unexposed) for the fin
To enhance heat transfer An, >> A

That is, to increase the effective area 7, A,.

Thermal Resistance Concept:
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MODULE 7
HEAT EXCHANGERS

7.1 What are heat exchangers?

Heat exchangers are devices used to transfer heat energy from one fluid to
another. Typical heat exchangers experienced by us in our daily lives include
condensers and evaporators used in air conditioning units and refrigerators.
Boilers and condensers in thermal power plants are examples of large industrial
heat exchangers. There are heat exchangers in our automobiles in the form of
radiators and oil coolers. Heat exchangers are also abundant in chemical and
process industries.

There is a wide variety of heat exchangers for diverse kinds of uses, hence the
construction also would differ widely. However, in spite of the variety, most
heat exchangers can be classified into some common types based on some
fundamental design concepts. We will consider only the more common types
here for discussing some analysis and design methodologies.

7.2 Heat Transfer Considerations

The energy flow between hot and cold streams, with hot stream in the
bigger diameter tube, is as shown in Figure 7.1. Heat transfer mode is by
convection on the inside as well as outside of the inner tube and by conduction
across the tube. Since the heat transfer occurs across the smaller tube, it is this
internal surface which controls the heat transfer process. By convention, it is
the outer surface, termed A,, of this central tube which is referred to in
describing heat exchanger area. Applying the principles of thermal resistance,

Figure 7.1: End view of a tubular heat exchanger
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If we define overall the heat transfer coefficient, U, as:
1

c = m
Substituting the value of the thermal resistance R yields:

1 _i+roln(%) A

+
U, h, k h A

U

Standard convective correlations are available in text books and handbooks for
the convective coefficients, hy and h;. The thermal conductivity, k, corresponds
to that for the material of the internal tube. To evaluate the thermal resistances,
geometrical quantities (areas and radii) are determined from the internal tube
dimensions available.

7.3 Fouling

Material deposits on the surfaces of the heat exchanger tubes may add
more thermal resistances to heat transfer. Such deposits, which are detrimental
to the heat exchange process, are known as fouling. Fouling can be caused by a
variety of reasons and may significantly affect heat exchanger performance.
With the addition of fouling resistance, the overall heat transfer coefficient, U,
may be modified as:

where R” is the fouling resistance.
Fouling can be caused by the following sources:

1) Scaling is the most common form of fouling and is associated with
inverse solubility salts. Examples of such salts are CaCO;, CaSQO,,
Ca3(PO4)2, CaSiO3, Ca(OH)z, Mg(OH)z, MgSlO3, Nast4, LISO4, and
Li1,COs.

2) Corrosion fouling is caused by chemical reaction of some fluid
constituents with the heat exchanger tube material.

3) Chemical reaction fouling involves chemical reactions in the process
stream which results in deposition of material on the heat exchanger
tubes. This commonly occurs in food processing industries.



4) Freezing fouling is occurs when a portion of the hot stream is cooled to
near the freezing point for one of its components. This commonly occurs
in refineries where paraffin frequently solidifies from petroleum products
at various stages in the refining process. , obstructing both flow and heat
transfer.

5) Biological fouling is common where untreated water from natural
resources such as rivers and lakes is used as a coolant. Biological micro-
organisms such as algae or other microbes can grow inside the heat
exchanger and hinder heat transfer.

6) Particulate fouling results from the presence of microscale sized particles
in solution. When such particles accumulate on a heat exchanger surface
they sometimes fuse and harden. Like scale these deposits are difficult to
remove.

With fouling, the expression for overall heat transfer coefficient
becomes:

7.4 Basic Heat Exchanger Flow Arrangements

Two basic flow arrangements are as shown in Figure 7.2. Parallel and
counter flow provide alternative arrangements for certain specialized
applications. In parallel flow both the hot and cold streams enter the heat
exchanger at the same end and travel to the opposite end in parallel streams.
Energy is transferred along the length from the hot to the cold fluid so the outlet
temperatures asymptotically approach each other. In a counter flow
arrangement, the two streams enter at opposite ends of the heat exchanger and
flow in parallel but opposite directions. Temperatures within the two streams
tend to approach one another in a nearly linearly fashion resulting in a much
more uniform heating pattern. Shown below the heat exchangers are
representations of the axial temperature profiles for each. Parallel flow results
in rapid initial rates of heat exchange near the entrance, but heat transfer rates
rapidly decrease as the temperatures of the two streams approach one another.
This leads to higher exergy loss during heat exchange. Counter flow provides
for relatively uniform temperature differences and, consequently, lead toward
relatively uniform heat rates throughout the length of the unit.
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Fig. 7.2 Basic Flow Arrangements for Tubular Heat Exchangers.

7.5 Log Mean Temperature Differences

Heat flows between the hot and cold streams due to the temperature
difference across the tube acting as a driving force. As seen in the Figure 7.3,
the temperature difference will vary along the length of the HX, and this must
be taken into account in the analysis.

Counter Flow Parallel Flow
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Fig. 7.3 Temperature Differences Between Hot and Cold Process Streams

From the heat exchanger equations shown earlier, it can be shown that the
integrated average temperature difference for either parallel or counter flow
may be written as:

91 — ‘92
ln(‘g'j
0,
The effective temperature difference calculated from this equation is known as

the log mean temperature difference, frequently abbreviated as LMTD, based on
the type of mathematical average that it describes. While the equation applies

A@ =LMTD =



to either parallel or counter flow, it can be shown that AB.; will always be
greater in the counter flow arrangement.

Another interesting observation from the above Figure is that counter
flow is more appropriate for maximum energy recovery. In a number of
industrial applications there will be considerable energy available within a hot
waste stream which may be recovered before the stream is discharged. This is
done by recovering energy into a fresh cold stream. Note in the Figures shown
above that the hot stream may be cooled to t; for counter flow, but may only be
cooled to t, for parallel flow. Counter flow allows for a greater degree of
energy recovery. Similar arguments may be made to show the advantage of
counter flow for energy recovery from refrigerated cold streams.

7.6 Applications for Counter and Parallel Flows

We have seen two advantages for counter flow, (a) larger effective
LMTD and (b) greater potential energy recovery. The advantage of the larger
LMTD, as seen from the heat exchanger equation, is that a larger LMTD
permits a smaller heat exchanger area, A,, for a given heat transfer, Q. This
would normally be expected to result in smaller, less expensive equipment for a
given application.

Sometimes, however, parallel flows are desirable (a) where the high
initial heating rate may be used to advantage and (b) where it is required the
temperatures developed at the tube walls are moderate. In heating very viscous
fluids, parallel flow provides for rapid initial heating and consequent decrease in
fluid viscosity and reduction in pumping requirement. In applications where
moderation of tube wall temperatures is required, parallel flow results in cooler
walls. This is especially beneficial in cases where the tubes are sensitive to
fouling effects which are aggravated by high temperature.

7.7 Multipass Flow Arrangements

In order to increase the surface area for convection relative to the fluid volume,
it is common to design for multiple tubes within a single heat exchanger. With
multiple tubes it is possible to arrange to flow so that one region will be in
parallel and another portion in counter flow. An arrangement where the tube
side fluid passes through once in parallel and once in counter flow is shown in
the Figure 7.4. Normal terminology would refer to this arrangement as a 1-2
pass heat exchanger, indicating that the shell side fluid passes through the unit
once, the tube side twice. By convention the number of shell side passes is
always listed first.



Fig. 7.4 Multipass flow arrangement

The primary reason for using multipass designs is to increase the average tube
side fluid velocity in a given arrangement. In a two pass arrangement the fluid
flows through only half the tubes and any one point, so that the Reynold’s
number is effectively doubled. Increasing the Reynolds’s number results in
increased turbulence, increased Nusselt numbers and, finally, in increased
convection coefficients. Even though the parallel portion of the flow results in a
lower effective AT, the increase in overall heat transfer coefficient will
frequently compensate so that the overall heat exchanger size will be smaller for
a specific service. The improvement achievable with multipass heat exchangers
is substantialy large. Accordingly, it is a more accepted practice in modern
industries compared to conventional true parallel or counter flow designs.

The LMTD formulas developed earlier are no longer adequate for
multipass heat exchangers. Normal practice is to calculate the LMTD for
counter flow, LMTD,y, and to apply a correction factor, Fr, such that

AO, = F; - LMTDg

The correction factors, Fr, can be found theoretically and presented in analytical
form. The equation given below has been shown to be accurate for any
arrangement having 2, 4, 6, .....,2n tube passes per shell pass to within 2%.

R2+lln[ I-P }
I-R-P

2—P(R+1—x/R2+1)
2—P(R+1+\/R2+1)

(R-1)In

where the capacity ratio, R, is defined as:
R = T1 — Tz
tz - tl



The effectiveness may be given by the equation:

1= X YNsten
- R — X VNsnen
provided that R#1. In the case that R=1, the effectiveness is given by:
P= R
Nshell - Po '(Nsheu - 1)
where
P — tz _tl
° Tl - tl
and
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7.8 Effectiveness-NTU Method:

Quite often, heat exchanger analysts are faced with the situation that only the
inlet temperatures are known and the heat transfer characteristics (UA value) are
known, but the outlet temperatures have to be calculated. Clearly, LMTH
method will not be applicable here. In this regard, an alternative method known

as the e-NTU method is used.

Before we introduce this method, let us ask ourselves following question:
How will existing Heat Exchange perform for giveninlet conditions?

Define effectiveness : The effectiveness, ¢, is the ratio of the energy recovered

in a HX to that recoverable in an ideal HX.

[éactual

£ = (§L— , where éfnaxis for an infinitely long H.Ex.

One fluid AT - AT, =T, ~T..

and since &= (e, )AT, = (8¢, )AT, =C, AT, =C,AT,

h,in

then only the fluid with lesser of C, , C,, heat capacity rate can have AT__

ic. =C, ., AT de= ¢
1. (§§an minD I max A0A & Cmin(Th-in _Tc.in)

or, (§L: 6Cmin (Th.in _Tc.in )
We want expression for £ which does not contain outlet T's.
Substitute back into &=UA(LMTD) .........

-UA C..
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Fig. 7.5 Calculation of effectiveness-NTU
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Charts for each Configuration

Procedure:
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*  NTUnax can be obtained from figures in textbooks/handbooks
First, however, we must determine which fluid has Cmin.



MODULE I
BASICS OF HEAT TRANSFER

While teaching heat transfer, one of the first questions students commonly ask is the difference
between heat and temperature. Another common question concerns the difference between the
subjects of heat transfer and thermodynamics. Let me begin this chapter by trying to address these
two questions.

1.1 Difference between heat and temperature

In heat transfer problems, we often interchangeably use the terms heat and temperature. Actually,
there is a distinct difference between the two. Temperature is a measure of the amount of energy
possessed by the molecules of a substance. It manifests itself as a degree of hotness, and can be used
to predict the direction of heat transfer. The usual symbol for temperature is 7. The scales for
measuring temperature in SI units are the Celsius and Kelvin temperature scales. Heat, on the other
hand, is energy in transit. Spontaneously, heat flows from a hotter body to a colder one. The usual
symbol for heat is Q. In the SI system, common units for measuring heat are the Joule and calorie.

1.2 Difference between thermodynamics and heat transfer
Thermodynamics tells us:

*  how much heat is transferred (6Q)

*  how much work is done (6W)

» final state of the system
Heat transfer tells us:

*  how (with what modes) 5Q is transferred

» at what rate 6Q is transferred

» temperature distribution inside the body

A

Heat transfer complementary Thermodynamics

1.3 Modes of Heat Transfer

o Conduction: An energy transfer across a system boundary due to a temperature difference
by the mechanism of inter-molecular interactions. Conduction needs matter and does not
require any bulk motion of matter.

—

A
T




Conduction rate equation is described by the Fourier Law:

§=—kAVT
where: q = heat flow vector, (W)
k = thermal conductivity, a thermodynamic property of the material.

(W/m K)
A = Cross sectional area in direction of heat flow. (m?)

VT = Gradient of temperature (K/m)
=0T/ox i+ 0T/0y j+ 0T/ozk
Note: Since this is a vector equation, it is often convenient to work with one

component of the vector. For example, in the x direction:

gx = - k A dT/dx

In circular coordinates it may convenient to work in the radial direction:
qr=-k A, dT/dr

Convection: An energy transfer across a system boundary due to a temperature difference
by the combined mechanisms of intermolecular interactions and bulk transport. Convection

needs fluid matter.

moving fluid T. T>To
q
e
ﬁ TS
Newton’s Law of Cooling:
q=h A AT
where: q = heat flow from surface, a scalar, (W)

h = heat transfer coefficient (which is not a thermodynamic property of

the material, but may depend on geometry of surface, flow
characteristics, thermodynamic properties of the fluid, etc. (W/m” K)

A, = Surface area from which convection is occurring. (m?)
AT = T, - T, =Temperature Difference between surface and coolant. (K)

Free or natural convection ~

/ (induced by buoyancy forces) May occur
with phase
Convection change
> (boiling,
condensation)
Forced convection (induced by
-

external means)



Table 1. Typical values of h (W/m?K)

Free convection gases: 2 - 25
liquid: 50— 100

Forced convection gases: 25 - 250
liquid: 50 -20,000

Boiling/Condensation 2500 -100,000

Radiation: Radiation heat transfer involves the transfer of heat by electromagnetic radiation
that arises due to the temperature of the body. Radiation does not need matter.

Emissive power of a surface:
E=ceT,* (W/ m?)

where: € = emissivity, which is a surface property (¢ = 1 is black body)
o = Steffan Boltzman constant = 5.67 x 10® W/m* K*.
Ts = Absolute temperature of the surface (K)

The above equation is derived from Stefan Boltzman law, which describes a gross heat
emission rather than heat transfer. The expression for the actual radiation heat transfer rate
between surfaces having arbitrary orientations can be quite complex, and will be dealt with in
Module 9. However, the rate of radiation heat exchange between a small surface and a large
surrounding is given by the following expression:

q=¢e0A(Ts — Teu')

where: ¢ = Surface Emissivity
A= Surface Area
Ts = Absolute temperature of surface. (K)
Ter = Absolute temperature of surroundings.(K)



1.4 Thermal Conductivity, k

As noted previously, thermal conductivity is a thermodynamic property of a material. From the
State Postulate given in thermodynamics, it may be recalled that thermodynamic properties of pure
substances are functions of two independent thermodynamic intensive properties, say temperature
and pressure. Thermal conductivity of real gases is largely independent of pressure and may be
considered a function of temperature alone. For solids and liquids, properties are largely
independent of pressure and depend on temperature alone.

k=k (T)

Table 2 gives the values of thermal conductivity for a variety of materials.

Table 2. Thermal Conductivities of Selected Materials at Room Temnerature.

Material Thermal Conductivity, W/m K
Copper 401
Silver 429
Gold 317
Aluminum 237
Steel 60.5
Limestone 2.15
Bakelite 1.4
Water 0.613
Air 0.0263

Let us try to gain an insight into the basic concept of thermal conductivity for various materials. The
fundamental concept comes from the molecular or atomic scale activities. Molecules/atoms of
various materials gain energy through different mechanisms. Gases, in which molecules are free to
move with a mean free path sufficiently large compared to their diameters, possess energy in the
form of kinetic energy of the molecules. Energy is gained or lost through collisions/interactions of
gas molecules.

-

Kinetic energy transfer
between gas molecules.

Lattice vibration may be transferred
between molecules as nuclei
attract/repel each other.



Solids, on the other hand, have atoms/molecules which are more closely packed which cannot
move as freely as in gases. Hence, they cannot effectively transfer energy through these same
mechanisms. Instead, solids may exhibit energy through vibration or rotation of the nucleus. Hence,
the energy transfer is typically through lattice vibrations.

Another important mechanism in which materials maintain energy is by shifting electrons into
higher orbital rings. In the case of electrical conductors the electrons are weakly bonded to the
molecule and can drift from one molecule to another, transporting their energy in the process.
Hence, flow of electrons, which is commonly observed in metals, is an effective transport
mechanism, resulting in a correlation that materials which are excellent electrical conductors are
usually excellent thermal conductors.



MODULE 2

ONE DIMENSIONAL STEADY STATE
HEAT CONDUCTION

2.1 Objectives of conduction analysis:

The primary objective is to determine the temperature field, T(x,y,z,t), in a body (i.e. how
temperature varies with position within the body)
T(x,y,z,t) depends on:

- Boundary conditions

- Initial condition

- Material properties (k, cp, p)

- Geometry of the body (shape, size)

Why we need T (x, y, z, t)?
- To compute heat flux at any location (using Fourier’s eqn.)
- Compute thermal stresses, expansion, deflection due to temp. Etc.
- Design insulation thickness
- Chip temperature calculation
- Heat treatment of metals

2.2 General Conduction Equation
Recognize that heat transfer involves an energy transfer across a system boundary. The
analysis for such process begins from the 1* Law of Thermodynamics for a closed system:

dE
= @%_Vé)cut

system

dt

The above equation essentially represents Conservation of Energy. The sign convention on
work is such that negative work out is positive work in.

dE _ Wk

dt system

The work in term could describe an electric current flow across the system boundary and
through a resistance inside the system. Alternatively it could describe a shaft turning across
the system boundary and overcoming friction within the system. The net effect in either case
would cause the internal energy of the system to rise. In heat transfer we generalize all such
terms as “heat sources”.

dE
dt
The energy of the system will in general include internal energy, U, potential energy, 2 mgz,

or kinetic energy, % mv”. In case of heat transfer problems, the latter two terms could often
be neglected. In this case,

E:U:m.u: me(T_T

ref

=&+ &

system

)=pvoc,(T-T,)



where T, is the reference temperature at which the energy of the system is defined as zero.
When we differentiate the above expression with respect to time, the reference temperature,
being constant, disappears:

=&+ &,

system

Consider the differential control element shown below. Heat is assumed to flow through the
element in the positive directions as shown by the 6 heat vectors.

qz+Az
Jx

e / ] Qy+ay
|

Z qz

In the equation above we substitute the 6 heat inflows/outflows using the appropriate sign:

dT
p.Cp (AXAyAZ)E = qx - qx+Ax + qy - qy+Ay + qz - qz+Az + @en
system

Substitute for each of the conduction terms using the Fourier Law:

o ={—k.(Ay.Az)~g—1—[—k~(Ay'Az)c%+a—ax(—k-(Ay-Az)-ﬂ)-Ax}}

¢ (AX-AV-AZ)-Z—
pcp(xyz)ét OX

system

+{—k'(AX‘AZ)'%—I:—k'(AX‘AZ)'%-i'%[—k'(AX'AZ)‘%j -Ay”

+{_k.(AX‘Ay)-%+ [—k'(Ax-Ay)-%+ %(—k.(Ax-Ay)-%j -Az”
+$c(Ax~Ay-Az)

where &is defined as the internal heat generation per unit volume.
The above equation reduces to:

dt




Hfoomngho]

+ﬂ%(_k.(Ax-Ay)-%) -AZH + &(Ax-Ay-A2)

Dividing by the volume (Ax-Ay-Az),

225 ) S

Cc
P g
which is the general conduction equation in three dimensions.

In the case where k is independent of x, y and z then

pC d_T ﬂZT 0”2T o°T @
k dt system W ﬁzz k
Define the thermodynamic property, o, the thermal diffusivity:
k
a=——
p-C,
Then
1 dT é’zT 0’ T o°T @
a dt system W 0’)22 k
or, :
1 dT
L e, X
a dt system k

The vector form of this equation is quite compact and is the most general form. However, we
often find it convenient to expand the spatial derivative in specific coordinate systems:

Cartesian Coordinates

1 6T oT oT oT q
—.—= bt
a or oxx oy oz2 Kk

Circular Coordinates




_l’_
r: 09> o0z2 Kk

lﬂ_lﬁ[rﬂj 1OT T
a or ror or

Spherical Coordinates

1aT 10

oT 1 T 1 af(. . oT) g
— = — |+ - . +———-—|sinf - — |+—
a or r2or or) r2-sin2@ 0¢? r2sinf 060 oz) k

In each equation the dependent variable, T, is a function of 4 independent variables, (X,y,z,7);
(r,0,z,7); (1,0,0,7) and is a 2" order, partial differential equation. The solution of such
equations will normally require a numerical solution. For the present, we shall simply look at
the simplifications that can be made to the equations to describe specific problems.

e Steady State: Steady state solutions imply that the system conditions are not changing
with time. Thus 0T /07 =0.

e One dimensional: If heat is flowing in only one coordinate direction, then it follows
that there is no temperature gradient in the other two directions. Thus the two partials
associated with these directions are equal to zero.

e Two dimensional: If heat is flowing in only two coordinate directions, then it follows
that there is no temperature gradient in the third direction. Thus, the partial derivative
associated with this third direction is equal to zero.

e No Sources: If there are no volumetric heat sources within the system then the term,

A
q=0.
Note that the equation is 2" order in each coordinate direction so that integration will result

in 2 constants of integration. To evaluate these constants two boundary conditions will be
required for each coordinate direction.

2.3 Boundary and Initial Conditions

» The objective of deriving the heat diffusion equation is to determine the temperature
distribution within the conducting body.



*  We have set up a differential equation, with T as the dependent variable. The solution
will give us T(x,y,z). Solution depends on boundary conditions (BC) and initial
conditions (IC).

*  How many BC’s and IC’s ?

- Heat equation is second order in spatial coordinate. Hence, 2 BC’s needed
for each coordinate.

* 1D problem: 2 BC in x-direction

* 2D problem: 2 BC in x-direction, 2 in y-direction

* 3D problem: 2 in x-dir., 2 in y-dir., and 2 in z-dir.
- Heat equation is first order in time. Hence one IC needed.

2.4 Heat Diffusion Equation for a One Dimensional System

—L

Consider the system shown above. The top, bottom, front and back of the cube are insulated,
so that heat can be conducted through the cube only in the x direction. The internal heat
generation per unit volume is & (W/m?).

Consider the heat flow through a differential element of the cube.

qx qx—&-AX




From the 1% Law we write for the element:

(B — Bu) + Ben = B 2.1)

oE
qx - qx+Ax + AX(AX)(&V’: E (22)
oT
= —kA -
ax * o
(2.3)
aq
=(, + —AX
qX+AX qX ax (2'4)
- kA or + kA oT + Aa—(k iij + AAXde= p Ac AX ot
0 X 0 X 0 X 0 X ot
(2.5)

a_(kaLJ+ (ﬁ(’: pCAXaL

/ 0 X 0 X \ ot \
Longitudinal Internal heat

conduction generation Thermal inertia 2.6)

2
Ifk is a constant, then 0 -l; L &_pcoT 10T
OX k k ot «a ot 2.7

» For T to rise, LHS must be positive (heat input is positive)
» For a fixed heat input, T rises faster for higher a

* In this special case, heat flow is 1D. If sides were not insulated, heat flow could be
2D, 3D.

2.5 One Dimensional Steady State Heat Conduction

The plane wall:

Cold
fluid




The differential equation governing heat diffusion is: di[k d—Tj =0
X

dx

With constant k, the above equation may be integrated twice to obtain the general solution:
T(x)=C,x+C,
where C; and C; are constants of integration. To obtain the constants of integration, we apply
the boundary conditions at X = 0 and X = L, in which case
T0)=T,, and  T(L)=T,,

Once the constants of integration are substituted into the general equation, the temperature
distribution is obtained:

X
T(X) = (Ts,z _Ts,l )E +Ts,1

The heat flow rate across the wall is given by:
dT kA

Y NLIN. a7 S 5 T
q i L(l 2)

Ts,l —Ts,2
L/kA

Thermal resistance (electrical analogy):

Physical systems are said to be analogous if that obey the same mathematical equation. The
above relations can be put into the form of Ohm’s law:

V=1Relec
Raolec
w1 w2
—_—

T V1i>v2

Using this terminology it is common to speak of a thermal resistance:

AT = thherm
R therm
T1 T2
e
o T1>TZ2

A thermal resistance may also be associated with heat transfer by convection at a surface.
From Newton’s law of cooling,

q=hAT,-T,)
the thermal resistance for convection is then
CT-T, 1

Applying thermal resistance concept to the plane wall, the equivalent thermal circuit for the
plane wall with convection boundary conditions is shown in the figure below

R



The heat transfer rate may be determined from separate consideration of each element in the
network. Since (y is constant throughout the network, it follows that
Too,l _Ts,l Ts,l _Ts,z T,-T

s,2
qX = = =

1/h,A L/KA  1/h,A

0,2

In terms of the overall temperature difference T,..-T.,» and the total thermal resistance Ryqt,

the heat transfer rate may also be expressed as

qx — Too,l _Tw,Z
Rtot
Since the resistance are in series, it follows that
Rtot — th :L+£+L
h,A kA h,A

Composite walls:

Thermal Resistances in Series:

Consider three blocks, A, B and C, as shown. They are insulated on top, bottom, front and
back. Since the energy will flow first through block A and then through blocks B and C, we
say that these blocks are thermally in a series arrangement.

The steady state heat flow rate through the walls is given by:



q _ Tao,l _Too,Z _ TDO,I _TOC,Z _ UAAT
" ZRt L_ﬁ.i_i_i.ki
hA Kk, Kk, ke

1
h, A

where U = is the overall heat transfer coefficient. In the above case, U is expressed as
tot
1
R R I T B
hl kA kB kC h2
Series-parallel arrangement:
A B D AgFAEAL=A)
Ky Ly=L
T| T2 B —C
K & C K 1]
L
L i 2 1 .i
—-1 kypA
T ‘ r
L A

The following assumptions are made with regard to the above thermal resistance model:
1) Face between B and C is insulated.
2) Uniform temperature at any face normal to X.

1-D radial conduction through a cylinder:

One frequently encountered problem is that of heat flow through the walls of a pipe or
through the insulation placed around a pipe. Consider the cylinder shown. The pipe is either
insulated on the ends or is of sufficient length, L, that heat losses through the ends is
negligible. Assume no heat sources within the wall of the tube. If T;>T,, heat will flow
outward, radially, from the inside radius, R;, to the outside radius, R,. The process will be
described by the Fourier Law.




The differential equation governing heat diffusion is: %%[rz—:j =0

With constant k, the solution is

The heat flow rate across the wall is given by:

AP LILCA Y R 0 P Ll L
dx L L/kA
Hence, the thermal resistance in this case can be expressed as: 27zk?zl_
Composite cylindrical walls:
hl
To
Tao,Z - Tac,l
4=
2R
LR T,
1 P oA |
(h) ) 27r L) \ (hy)(27r, L)
In - _
- In =
27lk .
2rlk ,

Critical Insulation Thickness :

” o In() 1
Rt = —t
27kL  (2ar,L)h

Insulation thickness : ro-T;



Objective : decrease q , increase R, ,

Varyr, ;asrt, increases, first term increases, second term decreases.

This is a maximum — minimum problem. The point of extrema can be found by setting
dR

tot _ 0
dr,

1 1

or, — =0
27kr,L  2zhLr}

or, r=—

In order to determine if it is a maxima or a minima, we make the second derivative zero:

2 k
IRa o at h=-r
dr] h
d’R, -1 1| h?
2 o T = 7 )0
dr?  27krlL o arZhi| « 27k
"h

Minimum q at r, =(k/h) = r,, (critical radius)

R tot .
good for df .
. T
electrical good for steam pipes etc.
cables
R ”=kx"|1
Iy B ——

1-D radial conduction in a sphere:




%i(krzd—szo
r-dr dr

S T(r) =Ter-{Te —Ts,z}{ 1-(r “)}

1—(r|/r2)
el AT
dr (1/r,—1/r,)
RN thond :M
’ 4k

2.6 Summary of Electrical Analogy

System Current Resistance Potential Difference
Electrical | R AV
Cartesian L
Conduction q KA AT
Cylindrical In V
Conduction q n AT

27kL
Conduction 1/r, -1/r,
through sphere q  4rk AT
Convection 1
q ﬁ AT

2.7 One-Dimensional Steady State Conduction with Internal Heat
Generation

Applications:  current carrying conductor, chemically reacting systems, nuclear reactors.
Energy generated per unit volume is given by &= v

Plane wall with heat source: Assumptions: 1D, steady state, constant k, uniform e




2
dT+(& 0

dx*  k

Boundary cond.: x=-L, T = Ts’l
x=+L, T=T,,
Solution: T = —ELX2 +Cx+C,
2k

Use boundary conditions to find C, and C,

2 2
Final solution: T = ﬁ l—x—2 +
2k L
Heat flux : qr =k dar
dx

Ts,2 _Ts,l 1 n Ts,z +Ts,1

2 L 2

Note: From the above expressions, it may be observed that the solution for temperature is no
longer linear. As an exercise, show that the expression for heat flux is no longer independent
of x. Hence thermal resistance concept is not correct to use when there is internal heat

generation.

Cylinder with heat source: Assumptions: 1D, steady state, constant k, uniform &

Start with 1D heat equation in cylindrical co-ordinates

T. h

q

Exercise: Ts may not be known.
and h.

li(r dT}LE& 0

rdr E k
Boundary cond.: r=r, T=T,
r=0, d_T=O
dr
2
Solution: T(r):i‘ro2 l—r—2 +T
4k r,

Instead, T., and h may be specified. Eliminate T, using T,



MODULE I
RADIATION HEAT TRANSFER

Radiation

Definition

Radiation, energy transfer across a system boundary due to a
AT, by the mechanism of photon emission or electromagnetic
wave emission.

Because the mechanism of transmission is photon emission, unlike
conduction and convection, there need be no intermediate matter to enable
transmission.

vig —
1@5 — = ‘

The significance of this is that radiation will be the only mechanism for
heat transfer whenever a vacuum is present.

Electromagnetic Phenomena.

We are well acquainted with a wide range of electromagnetic phenomena in
modern life. These phenomena are sometimes thought of as wave
phenomena and are, consequently, often described in terms of
electromagnetic wave length, A. Examples are given in terms of the wave
distribution shown below:



::UV

>

> Thermal
. = Radiation|::> Microwave
radiation

<::| X Rayq:hv

[ [ [ [ [
10° 10* 10°® 102 10! 10° 10* 102 10° 10* 10°

Wavelength, A, pm

One aspect of electromagnetic radiation is that the related topics are more
closely associated with optics and electronics than with those normally
found in mechanical engineering courses. Nevertheless, these are widely
encountered topics and the student is familiar with them through every day
life experiences.

From a viewpoint of previously studied topics students, particularly those
with a background in mechanical or chemical engineering, will find the
subject of Radiation Heat Transfer a little unusual. The physics
background differs fundamentally from that found in the areas of
continuum mechanics. Much of the related material is found in courses
more closely identified with quantum physics or electrical engineering, 1.e.
Fields and Waves. At this point, it is important for us to recognize that
since the subject arises from a different area of physics, it will be important
that we study these concepts with extra care.



Stefan-Boltzman Law

Both Stefan and Boltzman were physicists; any student taking a course
in quantum physics will become well acquainted with Boltzman’s work as
he made a number of important contributions to the field. Both were
contemporaries of Einstein so we see that the subject is of fairly recent
vintage. (Recall that the basic equation for convection heat transfer is
attributed to Newton.)

_ 4
Eb - cS'Tabs

where: E, = Emissive Power, the gross energy emitted from an
ideal surface per unit area, time.

o = Stefan Boltzman constant, 5.67- 10° W/m*-K*
Tans = Absolute temperature of the emitting surface, K.

Take particular note of the fact that absolute temperatures are used in
Radiation. It is suggested, as a matter of good practice, to convert all
temperatures to the absolute scale as an initial step in all radiation
problems.

You will notice that the equation does not include any heat flux term, q”.
Instead we have a term the emissive power. The relationship between these
terms is as follows. Consider two infinite plane surfaces, both facing one
another. Both surfaces are ideal surfaces. One surface is found to be at
temperature, Ty, the other at temperature, T,. Since both temperatures are
at temperatures above absolute zero, both will radiate energy as described
by the Stefan-Boltzman law. The heat flux will be the net radiant flow as
given by:

q"=Ey - Ep =0T - T,

Plank’s Law

While the Stefan-Boltzman law is useful for studying overall energy
emissions, it does not allow us to treat those interactions, which deal
specifically with wavelength, A. This problem was overcome by another of
the modern physicists, Max Plank, who developed a relationship for wave-
based emissions.



Ep, = f(A)

We plot a suitable functional relationship below:

be, W/ mz- Hwm

Wavelength, A, um

We haven’t yet defined the Monochromatic Emissive Power, E,. An
implicit definition is provided by the following equation:

E, = J(:OEM -dA

We may view this equation graphically as follows:

Ew., W/m2-um

Area of the
curve = E,

Wavelength, A, pm

A definition of monochromatic Emissive Power would be obtained by
differentiating the integral equation:



o _dE,
bl T d/1

The actual form of Plank’s law is:

E G
" A -[ec%'T - 1]
where: C,=2-mhc,”= 3.742-10° W-pm*/m*

C, =h-cy/k =1.439-10" pm-K

Where: h, c,, k are all parameters from quantum physics. We need
not worry about their precise definition here.

This equation may be solved at any T, A to give the value of the
monochromatic emissivity at that condition. Alternatively, the function

may be substituted into the integral E, =], E,,-dito find the Emissive
power for any temperature. While performing this integral by hand is
difficult, students may readily evaluate the integral through one of several
computer programs, i.e. MathCad, Maple, Mathmatica, etc.

E=|E, di=0c-T

Emission Over Specific Wave Length Bands

Consider the problem of designing a tanning machine. As a part of the
machine, we will need to design a very powerful incandescent light source.
We may wish to know how much energy is being emitted over the

ultraviolet band (10™ to 0.4 um), known to be particularly dangerous.

E (00001 04)= [ " E .dA

0.001-zam b2



With a computer available, evaluation of this integral is rather trivial.
Alternatively, the text books provide a table of integrals. The format used is
as follows:

Eb(0.001—> 0.4) B j(;)goim;;n Ebi -dA a L;HW Ebi -d] _ .[(?.IOOOIW EM -dA

Eb i -[(TEM -dA i -[owEM -dA -[(:OEM -dA

= F(0~ 04)- F(0— 0.0001)

Referring to such tables, we see the last two functions listed in the second
column. In the first column is a parameter, A-T. This is found by taking the
product of the absolute temperature of the emitting surface, T, and the
upper limit wave length, A. In our example, suppose that the incandescent
bulb is designed to operate at a temperature of 2000K. Reading from the
table:

0.0001 2000 0.2 0
0.4 2000 600 0.000014
F(0.4—0.0001um) = F(0—-0.4um)- F(0—0.0001m) 0.000014

This 1s the fraction of the total energy emitted which falls within the IR
band. To find the absolute energy emitted multiply this value times the
total energy emitted:

Eur = F(0.4—0.0001 um)-6-T* = 0.000014-5.67-10°-2000" = 12.7 W/m’

Solar Radiation

The magnitude of the energy leaving the Sun varies with time and is closely
associated with such factors as solar flares and sunspots. Nevertheless, we
often choose to work with an average value. The energy leaving the sun is
emitted outward in all directions so that at any particular distance from the
Sun we may imagine the energy being dispersed over an imaginary
spherical area. Because this area increases with the distance squared, the
solar flux also decreases with the distance squared. At the average distance
between Earth and Sun this heat flux is 1353 W/m®, so that the average heat
flux on any object in Earth orbit is found as:



G0 = Scf-cos 0

Where S. = Solar Constant, 1353 W/m?
f = correction factor for eccentricity in Earth Orbit,
(0.97<£<1.03)
0 = Angle of surface from normal to Sun.

Because of reflection and absorption in the Earth’s atmosphere, this number
is significantly reduced at ground level. Nevertheless, this value gives us
some opportunity to estimate the potential for using solar energy, such as in
photovoltaic cells.

Some Definitions

In the previous section we introduced the Stefan-Boltzman Equation to
describe radiation from an ideal surface.

. 4
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This equation provides a method of determining the total energy leaving a
surface, but gives no indication of the direction in which it travels. As we
continue our study, we will want to be able to calculate how heat is
distributed among various objects.

For this purpose, we will introduce the radiation intensity, I, defined as the
energy emitted per unit area, per unit time, per unit solid angle. Before
writing an equation for this new property, we will need to define some of
the terms we will be using.

Angles and Arc Length

We are well accustomed to ;
thinking of an angle as a two L
dimensional object. It may be
used to find an arc length:



Solid Angle

We generalize the idea of an
angle and an arc length to three
dimensions and define a solid
angle, Q, which like the standard
angle has no dimensions. The :
solid angle, when multiplied by *—r —  *

the radius squared will have

dimensions of length squared, or area, and will have the magnitude of the

encompassed arca.

A =r>dQ

Projected Area

The area, dA;, as seen from the
prospective of a viewer, situated at an N

angle 0 from the normal to the dA|_~"t - - dAjcosb
surface, will appear somewhat —~—%—-—4—- 2

smaller, as cos 0:dA;. This smaller
area 1s termed the projected area.

Aprojected = COS eVAnormal
Intensity

The ideal intensity, I,, may now be defined as the energy emitted from an
ideal body, per unit projected area, per unit time, per unit solid angle.

|
cos @-dA, -dQ




Spherical Geometry

Since any surface will emit radiation outward in all directions above the
surface, the spherical coordinate system provides a convenient tool for
analysis. The three basic

coordinates shown are R, ¢, and 0, R-sin 6
representing the radial, azimuthal
and zenith directions.

In general dA; will correspond to
the emitting surface or the source.
The surface dA, will correspond to
the receiving surface or the target.
Note that the area proscribed on the
hemisphere, dA,, may be written as:

d4, =[(R-sin0)-dp]-[R-dO]
or, more simply as:
dA, =R’ -sin@-dop-do]
Recalling the definition of the solid angle,
dA =R*dQ

we find that:
dQ = R*sin 6-d0-do

Real Surfaces

Thus far we have spoken of ideal surfaces, i.e. those that emit energy
according to the Stefan-Boltzman law:

. 4
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Real surfaces have emissive powers, E, which are somewhat less than that
obtained theoretically by Boltzman. To account for this reduction, we

introduce the emissivity, €.

£
Eb

g

so that the emissive power from any real surface is given by:

4
E = S'G’Tabs ‘

Receiving Properties

Targets receive radiation in
one of three ways; they
absorption, reflection or
transmission. To account for
these characteristics, we
introduce three additional
properties:

e Absorptivity, o, the
fraction of 1ncident
radiation absorbed.

Reflected Incident

Radiation \ / Iéadlatlon,

Absorbed
Radiation

\ Transmitted
Radiation

o Reflectivity, p, the fraction of incident radiation reflected.

e Transmissivity, T, the fraction of incident radiation transmitted.

We see, from Conservation of Energy, that:

atptt =1

In this course, we will deal with only opaque surfaces, T = 0, so that:

at+tp=1 Opaque Surfaces



Relationship Between Absorptivity,a, and Emissivity,e

Consider two flat, infinite planes, surface A and

surface B, both emitting radiation toward one < o
another. Surface B is assumed to be an ideal < |-~ =
emitter, 1.e. eg = 1.0. Surface A will emit Y - Y
radiation according to the Stefan-Boltzman law £ &
as: 7 7

Ex=ex0 Tyt
and will receive radiation as:
Gy = OLA'G‘TB4
The net heat flow from surface A will be:
q’ = en'0To' - ap0 Ts

Now suppose that the two surfaces are at exactly the same temperature.
The heat flow must be zero according to the 2™ law. If follows then that:

Oa = €A

Because of this close relation between emissivity, €, and absorptivity, a,
only one property is normally measured and this value may be used
alternatively for either property.

Let’s not lose sight of the fact that, as thermodynamic properties of the
material, o and € may depend on temperature. In general, this will be the
case as radiative properties will depend on wavelength, . The wave length
of radiation will, in turn, depend on the temperature of the source of
radiation.

The emissivity, €, of surface A will depend on the material of which surface
A 1s composed, i.e. aluminum, brass, steel, etc. and on the temperature of
surface A.



The absorptivity, a, of surface A will depend on the material of which
surface A is composed, i.e. aluminum, brass, steel, etc. and on the
temperature of surface B.

In the design of solar collectors, engineers have long sought a material
which would absorb all solar radiation, (a0 = 1, Ty, ~ 5600K) but would not
re-radiate energy as it came to temperature (¢ << 1, Tcopector ~ 400K).
NASA developed an anodized chrome, commonly called “black chrome” as
a result of this research.

Black Surfaces

Within the visual band of radiation, any material, which absorbs all visible
light, appears as black. Extending this concept to the much broader thermal
band, we speak of surfaces with o = 1 as also being “black™ or “thermally
black™. It follows that for such a surface, € = 1 and the surface will behave
as an ideal emitter. The terms ideal surface and black surface are used
interchangeably.

Lambert’s Cosine Law:

A surface is said to obey Lambert’s cosine law if the intensity, I, is uniform
in all directions. This is an idealization of real surfaces as seen by the
emissivity at different zenith angles:

024 6 8 024 6 8

1.0 1.0
Dependence of Emissivity on Dependence of Emissivity on

Zenith Angle, Typical Metal. Zenith Angle, Typical Non-Metal.



The sketches shown are intended to show is that metals typically have a
very low emissivity, €, which also remain nearly constant, expect at very
high zenith angles, 6. Conversely, non-metals will have a relatively high
emissivity, €, except at very high zenith angles. Treating the emissivity as a
constant over all angles is generally a good approximation and greatly
simplifies engineering calculations.

Relationship Between Emissive Power and Intensity

By definition of the two terms, emissive power for an ideal surface, E;, and
intensity for an ideal surface, I,

E, = Ilb -cos @ -dQ

hemisphere

Replacing the solid angle by its equivalent in spherical angles:
E, = joz'ﬁjo%]b -cos@-sin@-db-do
Integrate once, holding I, constant:
E,=2-7-1, -jo%cose-sine-de
Integrate a second time. (Note that the derivative of sin 0 is cos 0-d6.)
7

.2
Eb=2-7r-1b-sm 0

=r-1,

0

‘ Eb = T['Ib ‘




Radiation Exchange

During the previous lecture we introduced the intensity, I, to describe
radiation within a particular solid angle.

=%
cos 8 -d4, - dS2

This will now be used to determine the fraction of radiation leaving a given
surface and striking a second surface.

Rearranging the above equation to express the heat radiated:
dgq =1-cos@-d4, -dQ2

Next we will project the receiving surface onto the hemisphere surrounding
the source. First find the projected area of surface dA,, dA,-cos 0,. (0, is
the angle between the normal to surface 2 and the position vector, R.)
Then find the solid angle, Q, which encompasses this area. dA,

dA,-cos 0, \/

Substituting into the heat flow
equation above:

[-cos 6,-dA, -cosB,dA,

dq

To obtain the entire heat transferred
from a finite area, dA;, to a finite
area, dA,, we integrate over both
surfaces:

B I-cos 0, -dA, -cosb,dA,
qd5> = J.Az Ll R?

To express the total energy emitted from surface 1, we recall the relation
between emissive power, E, and intensity, 1.



Qemitted = E1A1 =ml1"Ay
View Factors-Integral Method

Define the view factor, Fy.,, as the fraction of energy emitted from surface
1, which directly strikes surface 2.

I-coso, - dA -cos 0,dA,
912 J.Ale

F =
1-2 q 7Z']A

emitted

after algebraic simplification this becomes:

1—>2 -

B cos 6, -cos B, -dA, - dA,
yii}

- R?

Example Consider a diffuse
circular disk of diameter D and
area A; and a plane diffuse
surface of area A; << A;. The
surfaces are parallel, and A; is
located at a distance L from the
center of A, Obtain an
expression for the view factor Fj;.




The view factor may be obtained from:

l—>2

7-R?
Since dA; is a differential area

cosd, -cosb, -dA
E—QZLI 17z'-R22 1

Substituting for the cosines and the differential area:

(42)2 277 -dr

1—>2 1 - Rz
After simplifying:
L 2-r-dr
Fi—>2 - I 4 R4

Let p°=L>+1r* =R’ Then 2-p-dp=21dr.

L2 -p-dp
Fi—)Z = .[A 4
! P
After integrating,
-2
4 TP

2

cos 8, -cos B, -dA, -dA,
oLl



Substituting the upper & lower limits

A 2
Lz.[ 4 1} D

F  =— _ —
s 4.-'+D> |, 4L+D’°

This is but one example of how the view factor may be evaluated using the

integral method. The approach used here is conceptually quite straight

forward; evaluating the integrals and algebraically simplifying the resulting

equations can be quite lengthy.

Enclosures

In order that we might apply conservation of energy to the radiation
process, we must account for all energy leaving a surface. We imagine that
the surrounding surfaces act as an enclosure about the heat source which
receive all emitted energy. Should there be an opening in this enclosure
through which energy might be lost, we place an imaginary surface across
this opening to intercept this portion of the emitted energy. For an N
surfaced enclosure, we can then see that:

This relationship is

N
Z F, ;= 1 known as the
. ’ “Conservation Rule”.

J=1

Example: Consider the previous problem of a small disk radiating to a
larger disk placed directly above at a distance L.

The view factor was shown to be
) given by the relationship:
/'/ D2

// F =
12
@ >t 4.0+D’
g Here, in order to provide an

enclosure, we will define an
@O imaginary surface 3, a truncated
cone intersecting circles 1 and 2.
From our conservation rule we have:




N
Z ij 11"‘F12+E3

J=1
Since surface 1 1s not convex F, ; = 0. Then:

DZ

=1-
4.1’ + D

F

1-3

Reciprocity

We may write the view factor from surface 1 to surface j as:

0.-cos@.-dA. -dA.
:J-.[coslcc:,.;32 ;-dA,

Similarly, between surfaces j and 1:

cos &, -cosb,-dA; -d4,
Fri=1,1, —

Comparing the integrals we see that they are identical so that:

A-F_ . = A F._, This relationship
7 ’ 1s known as

“Reciprocity”.



Example: Consider two concentric spheres shown to the
right. All radiation leaving the outside of surface 1

will strike surface 2. Part of the radiant energy leaving 2
the inside surface of object 2 will strike surface 1, part

will return to surface 2. To find the fraction of energy

leaving surface 2 which strikes surface 1, we apply reciprocity:

A D
Az'Fz,l :Al'Fl,z :>F2,1 :_I'FLZ =—1=_1
A2 D,

Associative Rule

Consider the set of surfaces shown to the right: Clearly,
from conservation of energy, the fraction of energy
leaving surface 1 and striking the combined surface j+k
will equal the fraction of energy emitted from 1 and .
striking j plus the fraction leaving surface 1 and ]

striking k. / k /

This relationship is

known as the
“Associative Rule”.

Radiosity

We have developed the concept of intensity, I, which let to the concept of
the view factor. We have discussed various methods of finding view
factors. There remains one additional concept to introduce before we can
consider the solution of radiation problems.

Radiosity, J, is defined as the total energy leaving a surface per unit area
and per unit time. This may initially sound much like the definition of
emissive power, but the sketch below will help to clarify the concept.



J=¢E,+pG | a\ ke

Net Exchange Between Surfaces

Consider the two surfaces shown. Radiation will travel from surface 1 to
surface j and will also travel from j to 1.

Qimj = Jir Ay Fioj Ji

likewise, T

Aj—i = Iy Ay Fioj Ji

The net heat transfer is then:

Qi (neny = Jir A Fisj - Iy Ay Fig
From reciprocity we note that F1_,-A; = F,_,;"A, so that

Qj—i men = JirAi" Fij - Jim Ay Fij = Ay Fi (Ji = Jp)

Net Energy Leaving a Surface

The net energy leaving a surface will be  ¢.g, p-G G
the difference between the energy leaving \ o

a surface and the energy received by a \
surface: \ ./

Ji—»~= [S'Eb — (I'G]'Al
Combine this relationship with the definition of Radiosity to eliminate G.

J=eE,+pG=> G=[J-¢E)]/p



Qi = {eEy —a[J - eEp)/p}-Ay

Assume opaque surfaces so that o+ p =1 =2 p =1 — a, and substitute for p.
Qi = {eEy—a[J - eE /(1 —a)}-A,

Put the equation over a common denominator:

g z[(l—a)-e-Eb—a-J+a-8-Eb]Al :[E-Eb—a-J]Al
|- |-

If we assume that o = ¢ then the equation reduces to:

= ZEE L] S (5,

l-¢ l-¢

Electrical Analogy for Radiation

We may develop an electrical analogy for radiation, similar to that
produced for conduction. The two analogies should not be mixed: they
have different dimensions on the potential differences, resistance and
current flows.

Equivalent Equivalent Potential
Current Resistance Difference
Ohms Law I R AV
Net Energy 1—¢
: . — Ey-J
Leaving Surface di oA b
Net Exchange 1
Between Qi =1
- A, - F,
Surfaces -2




Alternate Procedure for Developing Networks

e Count the number of surfaces. (A surface must be at a “uniform”
temperature and have uniform properties, i.e. €, a, p.)

e Draw a radiosity node for each surface.

e Connect the Radiosity nodes using view factor resistances, 1/A;'Fi_,;.

e Connect each Radiosity node to a grounded battery, through a surface

resistance, [1_%, AJ-

This procedure should lead to exactly the same circuit as we obtain
previously.

Simplifications to the Electrical Network

e Insulated surfaces. In steady state heat transfer, a surface cannot
receive net energy if it
is insulated. Because
the energy cannot be
stored by a surface in

1-¢,
=
steady state, all energy ]

R3 {
must be re-radiated
back into the enclosure. -
Insulated surfaces are

often termed as re-
radiating surfaces.

Electrically cannot flow
through a battery if it is not grounded.

Surface 3 is not grounded so that the battery and surface
resistance serve no purpose and are removed from the drawing.

e Black surfaces: A black, or ideal surface, will have no surface
resistance:



I—el_|1=1)_,
g-A 1-4
In this case the nodal Radiosity and emissive power will be equal.

This result gives some insight into the physical meaning of a black
surface. Ideal surfaces radiate at the maximum possible level. Non-
black surfaces will have a reduced potential, somewhat like a battery
with a corroded terminal. They therefore have a reduced potential to
cause heat/current flow.

e Large surfaces: Surfaces having a large surface area will behave as
black surfaces, irrespective of the actual surface properties:

[1__(1 _ [1—_8} 0

g-A £ -0

Physically, this corresponds to the characteristic of large surfaces that as
they reflect energy, there is very little chance that energy will strike the
smaller surfaces; most of the energy is reflected back to another part of

the same large surface. After several partial absorptions most of the
energy received is absorbed.

Solution of Analogous Electrical Circuits.

e Large Enclosures

Consider the case of an object, 1, placed inside a large enclosure, 2.
The system will consist of two objects, so we proceed to construct a
circuit with two radiosity nodes.

1/(A-Fi_»)
J2

—AA—

Now we ground both Radiosity nodes through a surface
resistance.

Ji

1/(A-Fi_»)
J2

—AA—

Ji



(1-e)/(er-Ay) (1-8,)/(g2-A)

— A\ —

4
o T ]R1 R12 R2 Fun

Since A, is large, R, = 0. The view factor, F;_,, =1

(1-e1)/(e1-Ay) 1/(A-Fi2,)

Sum the series resistances:
Rseries = (1-€1)/(€1°A) + 1/A; = 1/(e1-Ay)
Ohm’s law:

1=AV/R
or by analogy:
q= AE‘*b/I{Series = 8l'lAl'G'(Tlét - T24)

Y ou may recall this result from Thermo I, where it was
introduced to solve this type of radiation problem.
e Networks with Multiple Potentials



Systems with 3 or more
grounded potentials
will require a slightly
different solution, but
one which students
have previously
encountered in the
Circuits course. — —

The procedure will be to —
apply Kirchoff’s law to each —
of the Radiosity junctions. —

In this example there are three junctions, so we will obtain three
equations. This will allow us to solve for three unknowns.

Radiation problems will generally be presented on one of two ways:

O The surface net heat flow is given and the surface temperature is
to be found.

O The surface temperature is given and the net heat flow is to be
found.

Returning for a moment to the coal grate furnace, let us assume that
we know (a) the total heat being produced by the coal bed, (b) the
temperatures of the water walls and (c) the temperature of the super
heater sections.

Apply Kirchoff’s law about node 1, for the coal bed:

']2_']1 J3_J1
q, Y49, Y495, =49, + + =0
R, R,

Similarly, for node 2:



Ebz_Jz +J1_J2 +J3_J2 —

9, 4,5, 7495, =
R, R, R,

0

(Note how node 1, with a specified heat input, 1s handled differently
than node 2, with a specified temperature.

And for node 3:

4314, 5314, 5=

The three equations must be solved simultaneously. Since they
are each linear in J, matrix methods may be used:

RS s ] ]
R, R; R, R J, -4,
RS NS S e AT
L=
R12 RZ RIZ R13 R23 J R2
ne B NS S B Ly
L R13 R23 R3 R13 R23 L R3 |

The matrix may be solved for the individual Radiosity. Once
these are known, we return to the electrical analogy to find the
temperature of surface 1, and the heat flows to surfaces 2 and 3.

Surface 1: Find the coal bed temperature, given the heat flow:

q, = R, = R,

0.25
E, -J, O'-T]4—J1:>T_|:q1-R1+J1}
= L

o)

Surface 2: Find the water wall heat input, given the water wall
temperature:



Surface 3: (Similar to surface 2) Find the water wall heat input,
given the water wall temperature:

E,;—J, _ O"T34_Js
R, R,

q; =



MODULE 5
UNSTEADY STATE HEAT CONDUCTION

5.1 Introduction

To this point, we have considered conductive heat transfer problems in which the
temperatures are independent of time. In many applications, however, the temperatures are
varying with time, and we require the understanding of the complete time history of the
temperature variation. For example, in metallurgy, the heat treating process can be controlled
to directly affect the characteristics of the processed materials. Annealing (slow cool) can
soften metals and improve ductility. On the other hand, quenching (rapid cool) can harden
the strain boundary and increase strength. In order to characterize this transient behavior, the
full unsteady equation is needed:

A
2 2 2
gttt

where @ = — is the thermal diffusivity. Without any heat generation and considering spatial
pc

variation of temperature only in x-direction, the above equation reduces to:

1ot _o
a 0r oOx’

(5.2)

For the solution of equation (5.2), we need two boundary conditions in x-direction and one
initial condition. Boundary conditions, as the name implies, are frequently specified along the
physical boundary of an object; they can, however, also be internal — e.g. a known
temperature gradient at an internal line of symmetry.

5.2 Biot and Fourier numbers

In some transient problems, the internal temperature gradients in the body may be quite small
and insignificant. Yet the temperature at a given location, or the average temperature of the
object, may be changing quite rapidly with time. From eq. (5.1) we can note that such could
be the case for large thermal diffusivity « .

A more meaningful approach is to consider the general problem of transient cooling of an
object, such as the hollow cylinder shown in figure 5.1.

S >T,
I e ‘ Lo
—

— Fig. 5.1



For very large 1;, the heat transfer rate by conduction through the cylinder wall is
approximately

g~ —k(27z7fol)(TS 7 j = k(2727fol)(Ti ZT s J (5.3)
r

where / is the length of the cylinder and L is the material thickness. The rate of heat transfer
away from the outer surface by convection is

q=hQm,I\T,-T,) (5.4)

where % is the average heat transfer coefficient for convection from the entire surface.
Equating (5.3) and (5.4) gives

T.-T. h
L =h—L= Biot number (5.5)
T -T, k

The Biot number is dimensionless, and it can be thought of as the ratio

_ resistance to internal heat flow
resistance to external heat flow

Bi

Whenever the Biot number is small, the internal temperature gradients are also small and a
transient problem can be treated by the “lumped thermal capacity” approach. The lumped
capacity assumption implies that the object for analysis is considered to have a single mass-
averaged temperature.

In the derivation shown above, the significant object dimension was the conduction path
length, L =7, —r. In general, a characteristic length scale may be obtained by dividing the

volume of the solid by its surface area:

L:—] 5.6
S (5.6)

Using this method to determine the characteristic length scale, the corresponding Biot
number may be evaluated for objects of any shape, for example a plate, a cylinder, or a
sphere. As a thumb rule, if the Biot number turns out to be less than 0.1, lumped capacity
assumption is applied.

In this context, a dimensionless time, known as the Fourier number, can be obtained by

multiplying the dimensional time by the thermal diffusivity and dividing by the square of the
characteristic length:

dimensionless time = 1;[ =Fo (5.7)
L



5.3 Lumped thermal capacity analysis

The simplest situation in an unsteady heat transfer process is to use the lumped capacity
assumption, wherein we neglect the temperature distribution inside the solid and only deal
with the heat transfer between the solid and the ambient fluids. In other words, we are
assuming that the temperature inside the solid is constant and is equal to the surface
temperature.

q=hA(T-T,)

Fig. 5.2

The solid object shown in figure 5.2 is a metal piece which is being cooled in air after hot
forming. Thermal energy is leaving the object from all elements of the surface, and this is
shown for simplicity by a single arrow. The first law of thermodynamics applied to this
problem is

(heat out of object J (decrease of internal thermal j

during time dt energy of object during time dt

Now, if Biot number is small and temperature of the object can be considered to be uniform,
this equation can be written as

hA T (t)-T, Jdt = —pcVdT (5.8)

dr hA.
, =y 5.9
> (r-1.) per® 62

Integrating and applying the initial condition 7'(0) =7,
T(t)-T. hA
TO-T, __h

1 t (5.10)
I,-T, pcV
Taking the exponents of both sides and rearranging,
I()-T, —e™ (5.11)
T,-T,

where
b= hA, (1/s) (5.12)
pcV




Note: In eq. 5.12, b is a positive quantity having dimension (time)'. The
reciprocal of b is usually called time constant, which has the dimension of
time.

Question: What is the significance of 5?

Answer: According to eq. 5.11, the temperature of a body approaches the
ambient temperature 7 exponentially. In other words, the temperature

changes rapidly in the beginning, and then slowly. A larger value of b
indicates that the body will approach the surrounding temperature in a shorter
time. You can visualize this if you note the variables in the numerator and
denominator of the expression for . As an exercise, plot 7 vs. ¢ for various
values of b and note the behaviour.

Rate of convection heat transfer at any given time t:

) =hA[T()-T,]

Total amount of heat transfer between the body and the surrounding from t=0 to t:
Q=me [T(1)-T]
Maximum heat transfer (limit reached when body temperature equals that of the

surrounding):
Q=me [T, ~T}]

5.4 Numerical methods in transient heat transfer: The Finite Volume Method

Consider, now, unsteady state diffusion in the context of heat transfer, in which the
temperature, 7, is the scalar. The corresponding partial differential equation is:

w2l 2,0, 15

The term on the left hand side of eq. (5.13) is the storage term, arising out of
accumulation/depletion of heat in the domain under consideration. Note that eq. (5.13) is a
partial differential equation as a result of an extra independent variable, time (t). The

corresponding grid system is shown in fig. 5.3.
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Fig. 5.3: Grid system of an unsteady one-dimensional computational domain

In order to obtain a discretized equation at the nodal point P of the control volume,
integration of the governing eq. (5.13) is required to be performed with respect to time as
well as space. Integration over the control volume and over a time interval gives

f( j ( ‘ZT jdVJdt = f( j aax (kaa—i]dVsz +f( j SdVJdt (5.14)

t

Rewritten,

j (tTtPC%—TerdV f[(’“ ) 5 jd””ft@”)d’ 1)

x ), x

If the temperature at a node is assumed to prevail over the whole control volume, applying
the central differencing scheme, one obtains:

pelT s — 70 WY = j ([k ATaT ] (k 4 &w Dm [(say ar (5.16)

X,

Now, an assumption is made about the variation of 7p, T and T, with time. By generalizing

the approach by means of a weighting parameter /* between 0 and 1:

t+At
dt At _ new old t
[t =g <[ -1 1) b 51

Repeating the same operation for points E and W,

T]:lew Told Tnew _ Tnew Tnew _ Tnew

Ay S e A By S I A s
pc( At j f|:( éke ] ( ! éxvv j:|

(5.18)

old _ rpold old __ rpold _
[P AN AT
ox ox,

e w



Upon re-arranging, dropping the superscript “new”, and casting the equation into the standard

form:
old old 0 old

a,Ty = ay [T, + (1= NT |+ a [T, + 0= NT2 4l A= ay A= fa  Jre +b
(5.19)

where

Ax k k =

=0a, +a,)+ay; ap,=pc—:; =, =—¢; b=SAx 5.20
dp (aW aE) ap, dp pcAt Ay S dg &, (5.20)

The time integration scheme would depend on the choice of the parameter f. When /= 0, the
resulting scheme is “explicit”; when 0 < £ < 1, the resulting scheme is “implicit”; when f= 1,
the resulting scheme is “fully implicit”, when f = 1/2, the resulting scheme is “Crank-
Nicolson” (Crank and Nicolson, 1947). The variation of 7 within the time interval At for the

different schemes is shown in fig. 5.4.

{+AL >

t

Fig. 5.4: Variation of T within the time interval At for different schemes

Explicit scheme

Linearizing the source term as b=S,+S,T p”ld and setting /= 0 in eq. (5.19), the explicit

discretisation becomes:

a,T, = a, T +a, T2 +|al — (@, +ap) |+, (5.21)
where
0 0 Ax k, k
ap=4dap; ap,=pc—; a =—*; a, =—= 5.22
p=dp P 'OcAt w S E S ( )

The above scheme is based on backward differencing and its Taylor series truncation error
accuracy is first-order with respect to time. For stability, all coefficients must be positive in

the discretized equation. Hence,

a,—(a, +a,—S,)>0



Ak, Kk
, per _(Lwy Teys
o PN (5xw &

or Ax > 2k
PN T A
(Ax)’
or, At< pc—— 5.23
pe— (5.23)
The above limitation on time step suggests that the explicit scheme becomes very expensive
to improve spatial accuracy. Hence, this method is generally not recommended for general

transient problems. Nevertheless, provided that the time step size is chosen with care, the

explicit scheme described above is efficient for simple conduction calculations.

Crank-Nicolson scheme

Setting f= 0.5 in eq. (5.19), the Crank-Nicolson discretisation becomes:

T, +T7" T, + T a, a
T — ETE |4 wIW |4l gt S EE 2w AT L 5.24
aplp aE( > j aw( > ap > o |'r (5.24)
where
1 0 1 . 0 Ax . kw . ke . 1 old
apza(aE+aW)+aP—5SP, aP:ch,aWzg,aE= ,b=Su+5Spr (525)

The above method is implicit and simultaneous equations for all node points need to be
solved at each time step. For stability, all coefficient must be positive in the discretized
equation, requiring

a,+a
a’ >%

(Ax)®

or, At< ch (5.26)
The Crank-Nicolson scheme only slightly less restrictive than the explicit method. It is based

on central differencing and hence it is second-order accurate in time.

The fully implicit scheme

Setting /=1 in eq. (5.19), the fully implicit discretisation becomes:

a,T,=a,T, +a,T, +a,T" (5.27)

where a, =a)+a, +a, —S,; ap=pe—i dy = vooq, = (5.28)
t



A system of algebraic equations must be solved at each time level. The accuracy of the
scheme is first-order in time. The time marching procedure starts with a given initial field of
the scalar ¢°. The system is solved after selecting time step At. For the implicit scheme, all
coefficients are positive, which makes it unconditionally stable for any size of time step.
Hence, the implicit method is recommended for general purpose transient calculations

because of its robustness and unconditional stability.



MODULE 8
BOILING AND CONDENSATION

8.1 Boiling: General considerations

» Boiling is associated with transformation of liquid to vapor at a
solid/liquid interface due to convection heat transfer from the
solid.

o Agitation of fluid by wvapor bubbles provides for Ilarge
convection coefficients and hence large heat fluxes at low-to-
moderate surface-to-fluid temperature differences

e Special form of Newton’s law of cooling:
q;’ = h(Ts _Tsat) = hATe

where T, is the saturation temperature of the liquid, and a1, =71, -T_,)
IS the excess temperature.

8.2 Special cases

» Pool Boiling:Liquid motion is due to natural convection and
bubble-induced mixing.

» Forced Convection Boiling:Fluid motion is induced by external
means, as well as by bubble-induced mixing.

» Saturated Boiling:Liquid temperature is slightly larger than
saturation temperature

» Subcooled Boiling:Liquid temperature is less than saturation
temperature

8.3 The boiling curve

The boiling curve reveals range of conditions associated with
saturated pool boiling ona q’ vs. AT, plot.



Water at Atmospheric Pressure
A

q (W/m2)
Pool boiling regimes:
107 = A-B: Pure convectionwith liquud
rising to surface for evaporation
B-C: Nucleate boiling with bubbles
condensimg i liqurd

(C-D: Nucleate botling with bubbles
rising to surface

D: Peak temperature

D-E: Partial nucleate boiling and
unstable film boiling

E: Film botling 1s stabilized

E-F: Radiation becomes a

A dominant mechanism for heat

transfer
3 .
10 ] I ] —

1 10 102 103 104
ATsat(K)

106 — C
105_

104 —

Free Convection Boiling (aT,<5°C)

» Little vapor formation.

» Liquid motion is due principally to single-phase natural
convection.

Onset of Nucleate Boiling — ONB (aT, ~5°C)

Nucleate boiling (5°C <aT,<30°C)
» Isolated Vapor Bubbles (5°C <aT,<10°C)

Liquid motion is strongly influenced by nucleation
of bubbles at the surface.

h and g’ rise sharply with increasing AT,

Heat transfer is principally due to contact of liquid
with the surface (single-phase convection) and not
to vaporization

» Jets and Columns (10°C <aT,<30°C)



Increasing number of nucleation sites causes

bubble interactions and coalescence into

jets and slugs.

Liquid/surface contact is impaired.

g’ continues to increase with a1, while h begins to decrease

Critical Heat Flux - CHF, (AT, ~30°C)
» Maximum attainable heat flux in nucleate boiling.

Potential Burnout for Power-Controlled Heating
» An increase in g’ beyond q’, causes the surface to be

max

blanketed by vapor and its temperature to spontaneously achieve
a value that can exceed its melting point

» If the surface survives the temperature shock, conditions are
characterized by film boiling

Film Boiling
» Heat transfer is by conduction and radiation across the vapor
blanket
» Areductionin q’ follows the cooling the cooling

curve continuously to the Leidenfrost point corresponding to the
minimum heat flux q7,, for film boiling.

» A reduction in g’ below g, causes an abrupt reduction in

min

surface temperature to the nucleate boiling regime

Transition Boiling for Temperature-Controlled Heating

» Characterised by continuous decay of q. (from g/, to q.)
with increasing AT,



> Surface conditions oscillate between nucleate and film
boiling, but portion of surface experiencing film boiling
increases with AT,

» Also termed unstable or partial film boiling.

8.4 Pool boiling correlations
Nucleate Boiling
» Rohsenow Correlation, clean surfaces only, £100% errors

3
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n — Surface/Fluid Combination
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Critical heat flux:
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Film Boiling
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Geometry C
Cylinder(Hor.) 0.62

Sphere 0.67




8.5 Condensation: General considerations

« Condensation occurs when the temperature of a vapour is
reduced below its saturation temperature

» Condensation heat transfer
Film condensation

T, T,

g sat

Film Vapour

Dropwise condensation

Ts' ) Tsat

Vapour

— Drop

» Heat transfer rates in dropwise condensation may be as much as
10 times higher than in film condensation



8.6 Laminar film condensation on a vertical wall
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MODULE 6
CONVECTION

6.1 Objectives of convection analysis:

Main purpose of convective heat transfer analysis is to determine:
- flow field
- temperature field in fluid

- heat transfer coefficient, h

How do we determine h ?
Consider the process of convective cooling, as we pass a cool fluid past a heated wall. This
process is described by Newton’s law of Cooling:

q:h'A'(TS'TOO)
U
—
—

Near any wall a fluid is subject to the no slip condition; that is, there is a stagnant sub layer.
Since there is no fluid motion in this layer, heat transfer is by conduction in this region.
Above the sub layer is a region where viscous forces retard fluid motion; in this region some
convection may occur, but conduction may well predominate. A careful analysis of this
region allows us to use our conductive analysis in analyzing heat transfer. This is the basis of
our convective theory.

At the wall, the convective heat transfer rate can be expressed as the heat flux.

oT
q(’:lonv =-k _j = h(Ts _Too
o), )

U. Y Te
. T(y)



But ﬂj depends on the whole fluid motion, and both fluid flow and heat transfer
y=0

equations are needed

The expression shows that in order to determine h, we must first determine the temperature
distribution in the thin fluid layer that coats the wall.

2.2 Classes of Convective Flows

Free or natural convection ~N
(induced by buoyancy forces) May occur
with phase
Convection change
> (boiling,

condensation)
Forced convection (induced by
external means) J

» extremely diverse

» several parameters involved (fluid properties, geometry, nature of flow, phases etc)

e systematic approach required

» classify flows into certain types, based on certain parameters

» identify parameters governing the flow, and group them into meaningful non-
dimensional numbers

» need to understand the physics behind each phenomenon

Common classifications:
A. Based on geometry:
External flow / Internal flow
B. Based on driving mechanism
Natural convection / forced convection / mixed convection
C. Based on number of phases
Single phase / multiple phase
D. Based on nature of flow
Laminar / turbulent



Table 6.1. Typical values of h (W/m?K)

Free convection gases: 2 - 25
liquid: 50 -100
Forced convection gases: 25 - 250

liquid: 50 - 20,000

Boiling/Condensation 2500 -100,000

2.3 How to solve a convection problem ?

» Solve governing equations along with boundary conditions

»  Governing equations include
1. conservation of mass
2. conservation of momentum
3. conservation of energy

* In Conduction problems, only (3) is needed to be solved. Hence, only few parameters
are involved

* In Convection, all the governing equations need to be solved.
= large number of parameters can be involved

2.4 FORCED CONVECTION: external flow (over flat plate)

An internal flow is surrounded by solid boundaries that can restrict the development of its
boundary layer, for example, a pipe flow. An external flow, on the other hand, are flows over
bodies immersed in an unbounded fluid so that the flow boundary layer can grow freely in
one direction. Examples include the flows over airfoils, ship hulls, turbine blades, etc

U U

U<U,

R

* Fluid particle adjacent to the solid surface is at rest
» These particles act to retard the motion of adjoining layers
* = boundary layer effect

Inside the boundary layer, we can apply the following conservation principles:
Momentum balance: inertia forces, pressure gradient, viscous forces, body forces
Energy balance: convective flux, diffusive flux, heat generation, energy storage



2.5 Forced Convection Correlations

Since the heat transfer coefficient is a direct function of the temperature gradient next to the
wall, the physical variables on which it depends can be expressed as follows:

h=f(fluid properties, velocity field ,geometry,temperature etc.)

As the function is dependent on several parameters, the heat transfer coefficient is usually
expressed in terms of correlations involving pertinent non-dimensional numbers.

Forced convection: Non-dimensional groupings

* Nusselt No. Nu = hx/k = (convection heat transfer strength)/
(conduction heat transfer strength)
* Prandtl No. Pr=v/a =(momentum diffusivity)/ (thermal diffusivity)
* Reynolds No. Re = U x / v = (inertia force)/(viscous force)
Viscous force provides the dampening effect for disturbances in the fluid. If dampening is
strong enough = laminar flow
Otherwise, instability = turbulent flow = critical Reynolds number

For forced convection, the heat transfer correlation can be expressed as
Nu=f (Re, Pr)

The convective correlation for laminar flow across a flat plate heated to a constant wall
temperature is:

Nuy = 0.323-Re, - Pr'®

where
Nuy = h-x/k

Rey = (UpX-p)/u
Pr=cp-i/k

Physical Interpretation of Convective Correlation



The Reynolds number is a familiar term to all of us, but we may benefit by considering what
the ratio tells us. Recall that the thickness of the dynamic boundary layer, 9, is proportional
to the distance along the plate, x.

Rex = (Uwx-p)lp oc (Uwdp)li = (p-U)( -Uold)

The numerator is a mass flow per unit area times a velocity; i.e. a momentum flow per unit
area. The denominator is a viscous stress, i.e. a viscous force per unit area. The ratio
represents the ratio of momentum to viscous forces. If viscous forces dominate, the flow will
be laminar; if momentum dominates, the flow will be turbulent.

Physical Meaning of Prandtl Number

The Prandtl number was introduced earlier.

If we multiply and divide the equation by the fluid density, p, we obtain:
Pr= (Wp)/(kip-cp) = v/a

The Prandtl number may be seen to be a ratio reflecting the ratio of the rate that viscous
forces penetrate the material to the rate that thermal energy penetrates the material. As a
consequence the Prandtl number is proportional to the rate of growth of the two boundary
layers:

518, = Pri’®

Physical Meaning of Nusselt Number
The Nusselt number may be physically described as well.
Nuy = h-x/k

If we recall that the thickness of the boundary layer at any point along the surface, 9§, is also a
function of x then

Nuy oc h-8/k oc (5/k-A)/(1/h-A)

We see that the Nusselt may be viewed as the ratio of the conduction resistance of a material
to the convection resistance of the same material.

Students, recalling the Biot number, may wish to compare the two so that they may
distinguish the two.

NUX = h‘X/kquid le = h'X/kgond

The denominator of the Nusselt number involves the thermal conductivity of the fluid at the
solid-fluid convective interface; The denominator of the Biot number involves the thermal
conductivity of the solid at the solid-fluid convective interface.

Local Nature of Convective Correlation

Consider again the correlation that we have developed for laminar flow over a flat plate at
constant wall temperature

Nuy = 0.323-Re, - Pr'®



To put this back into dimensional form, we replace the Nusselt number by its equivalent, hx/k
and take the x/k to the other side:

h = 0.323-(kix)-Rex" - Pr'®
Now expand the Reynolds number
h = 0.323-(k/X)-[(Uw-Xx-p)/u] - prl/3
We proceed to combine the x terms:
h = 0.323-k-[(Un-p)/( X-p)]% - Pr?

And see that the convective coefficient decreases with x”.

i Thermal Boundary
Convection
Coefficient, h. \ Layer, &

v
X

Hydrodynamic
Boundary Layer, o

We see that as the boundary layer thickens, the convection coefficient decreases. Some
designers will introduce a series of “trip wires”, i.e. devices to disrupt the boundary layer, so
that the buildup of the insulating layer must begin anew. This will result in regular
“thinning” of the boundary layer so that the convection coefficient will remain high.

Averaged Correlations
If one were interested in the total heat loss from a surface, rather than the temperature at a
point, then they may well want to know something about average convective coefficients.

Average Convection
Coefficient, h.

I > X Local Convection
Coefficient, hy.




The desire is to find a correlation that provides an overall heat transfer rate:
L
Q=heA[Twar-Te] = .[ hx '[Tvvall - Tao]' dA :-[0 hx '[Twan B Tao]' dx

where hy and hy, refer to local and average convective coefficients, respectively.

Compare the second and fourth equations where the area is assumed to be equal to A = (1-L):

he-L-[Twan-Too] = ,[OL hx '[Twall - TOO] -dx

Since the temperature difference is constant, it may be taken outside of the integral and
cancelled:

hL.L: J.OL hx . dX

This is a general definition of an integrated average.

Proceed to substitute the correlation for the local coefficient.

k[Uw-X-p

0.5
he-L= [,0.323.—. ] - Pr¥2.dx
X u

Take the constant terms from outside the integral, and divide both sides by k.

05 05
U, 1

h-L/k = 0323 [w—p] . Prvs. Io{_} - dx
H X

Integrate the right side.

05|t

U p 0.5 X
Lk= 0323.| == Prc.2—
oLk { ) ] 05],

The left side is defined as the average Nusselt number, Nu,_. Algebraically rearrange the right
side.

0.5 1 0.5 1
Nu, = 0323 U P | pps. 105 —ppap.| Y=t P | prs
0.5 y7, Y7,

The term in the brackets may be recognized as the Reynolds number, evaluated at the end of
the convective section. Finally,



Nu_ = 0.646-Re}® Pr/s

This is our average correlation for laminar flow over a flat plate with constant wall
temperature.

Reynolds Analogy

In the development of the boundary layer theory, one may notice the strong relationship
between the dynamic boundary layer and the thermal boundary layer. Reynold’s noted the
strong correlation and found that fluid friction and convection coefficient could be related.
This is known as the Reynolds Analogy.

Conclusion from Reynold’s analogy: Knowing the frictional drag, we know the Nusselt
Number. If the drag coefficient is increased, say through increased wall roughness, then the
convective coefficient will also increase.

Turbulent Flow

We could develop a turbulent heat transfer correlation in a manner similar to the von Karman

analysis. It is probably easier, having developed the Reynolds analogy, to follow that course.

The local fluid friction factor, Cy, associated with turbulent flow over a flat plate is given as:
Cr = 0.0592/Re,’?

Substitute into the Reynolds analogy:
(0.0592/Re,*?)/2 = Nuy/Re,Pr'?

Rearrange to find

05 13 Local Correlation
Nuy = 0.0296-Re,*-Pr Turbulent Flow Flat Plate.

In order to develop an average correlation, one would evaluate an integral along the plate
similar to that used in a laminar flow:

Laminar Region Turbulent region

h-L =, hdx=["h .dx+ ] h dx

x,laminar crit X turbulent

Note: The critical Reynolds number for flow over a flat plate is 5-10°; the critical Reynolds
number for flow through a round tube is 2000.

The result of the above integration is:



Nuy = 0.037-(Re,X® — 871)-Pr?®

Note: Fluid properties should be evaluated at the average temperature in the boundary layer,
i.e. at an average between the wall and free stream temperature.

Tprop = 0.5 (Twant Tw)



2.6 Free convection
Free convection is sometimes defined as a convective process in which fluid motion is caused
by buoyancy effects.

TW Too < Tboundry. layer < TW

Poo < Phboundry. layer
Heated boundary

layer

Velocity Profiles

Compare the velocity profiles for forced and natural convection shown below:

Forced Convection Free Convection

Coefficient of Volumetric Expansion
The thermodynamic property which describes the change in density leading to buoyancy in

the Coefficient of Volumetric Expansion, p.

'0 P=Const.
Evaluation of

e Liquids and Solids: f is a thermodynamic property and should be found from
Property Tables. Values of  are found for a number of engineering fluids in Tables
given in Handbooks and Text Books.

e Ideal Gases: We may develop a general expression for 3 for an ideal gas from the
ideal gas law:




Then,
p=PIRT

Differentiating while holding P constant:

dp P pR-T

dT ~ RT* RT

P=Const.

__P
=

Substitute into the definition of

Ideal Gas

P =

1
Tabs

Grashof Number

Because U, is always zero, the Reynolds number, [p-U,-D]/u, is also zero and is no longer
suitable to describe the flow in the system. Instead, we introduce a new parameter for natural
convection, the Grashof Number. Here we will be most concerned with flow across a vertical
surface, so that we use the vertical distance, z or L, as the characteristic length.

3
o OFATL
14

Just as we have looked at the Reynolds number for a physical meaning, we may consider the
Grashof number:

p-g B-AT L , ( Buoyant Force) ( Momentum)
GrEpz.g.ﬂ.AT.U:( E )'(P'Umax): Area Area
s > Una (Viscous Force) ’
fop Area

Free Convection Heat Transfer Correlations

The standard form for free, or natural, convection correlations will appear much like those for
forced convection except that (1) the Reynolds number is replaced with a Grashof number
and (2) the exponent on Prandtl number is not generally 1/3 (The von Karman boundary layer
analysis from which we developed the 1/3 exponent was for forced convection flows):

Nuy = C-Gry"-Pr" Local Correlation
Nu_ = C-Gr,"-Pr" Average Correlation

Quite often experimentalists find that the exponent on the Grashof and Prandtl numbers are
equal so that the general correlations may be written in the form:



Nuy = C-[Gry-Pr]" Local Correlation
Nup = C-[Gr.-Pr]™ Average Correlation
This leads to the introduction of the new, dimensionless parameter, the Rayleigh number, Ra:
Ray = Gry-Pr
Ra_ = Gr.-Pr

So that the general correlation for free convection becomes:

Nu, = C-Ra,"™ Local Correlation

Nu_ = C-Ra" Average Correlation

Laminar to Turbulent Transition

Just as for forced convection, a boundary layer will form for free convection. The boundary
layer, which acts as a thermal resistance, will be relatively thin toward the leading edge of the
surface resulting in a relatively high convection coefficient. At a Rayleigh number of about
10° the flow over a flat plate will become transitional and finally become turbulent. The
increased turbulence inside the boundary layer will enhance heat transfer leading to relative
high convection coefficients because of better mixing.

Turbulent
Flow

Laminar Flow

Ra<10° Laminar flow. [Vertical Flat Plate]

Ra>10° Turbulent flow. [Vertical Flat Plate]



Generally the characteristic length used in the correlation relates to the distance over which
the boundary layer is allowed to grow. In the case of a vertical flat plate this will be x or L,
in the case of a vertical cylinder this will also be x or L; in the case of a horizontal cylinder,
the length will be d.

Critical Rayleigh Number

Consider the flow between two surfaces, each at different temperatures. Under developed
flow conditions, the interstitial fluid will reach a temperature between the temperatures of the
two surfaces and will develop free convection flow patterns. The fluid will be heated by one
surface, resulting in an upward buoyant flow, and will be cooled by the other, resulting in a
downward flow.

Note that for enclosures it is
customary to develop
correlations which describe the
overall (both heated and cooled

(@ o surfaces) within a single
— ——] correlation.
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Free Convection Inside an Enclosure
(boundary layer limit)

If the surfaces are placed closer together, the flow patterns will begin to interfere:
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Free Convection Inside an

Free Convection Inside an Enclosure With Complete Flow
Enclosure With Partial Flow Interference (Channel flow

Interference limit)




In the case of complete flow interference, the upward and downward forces will cancel,
canceling circulation forces. This case would be treated as a pure convection problem since
no bulk transport occurs.

The transition in enclosures from convection heat transfer to conduction heat transfer occurs
at what is termed the “Critical Rayleigh Number”. Note that this terminology is in clear
contrast to forced convection where the critical Reynolds number refers to the transition from
laminar to turbulent flow.

Ragrit = 1000 (Enclosures With Horizontal Heat Flow)
Ragit= 1728 (Enclosures With Vertical Heat Flow)

The existence of a Critical Rayleigh number suggests that there are now three flow regimes:
(1) No flow, (2) Laminar Flow and (3) Turbulent Flow. In all enclosure problems the
Rayleigh number will be calculated to determine the proper flow regime before a correlation
is chosen.
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