
 MODULE –III NOTES

 Page 1

SQL : Advanced Queries

This Module describes more advanced features of the SQL language standard for relational databases.

5.1 More Complex SQL Retrieval Queries

we described some basic types of retrieval queries in SQL. Because of the generality and expressive power of the

language, there are many additional features that allow users to specify more complex retrievals from the database.

5.1.1 Comparisons Involving NULL and Three-Valued Logic

SQL has various rules for dealing with NULL values. NULL is used to represent a missing value, but that it usually

has one of three different interpretations—value unknown (exists but is not known),value not available (exists but is

purposely withheld),or value not applicable (the attribute is undefined for this tuple).

Consider the following examples to illustrate each of the meanings of NULL.

1. Unknown value. A person’s date of birth is not known, so it is represented by NULL in the database.

2. Unavailable or withheld value. A person has a home phone but does not want it to be listed, so it is withheld

and represented as NULL in the database.

3. Not applicable attribute. An attribute Last College Degree would be NULL for a person who has no college

degrees because it does not apply to that person.

It is often not possible to determine which of the meanings is intended; for example, a NULL for the home
phone of a person can have any of the three meanings. Hence, SQL does not distinguish between the different
meanings of NULL.

In general, each individual NULL value is considered to be different from every other NULL value in the

various database records. When a NULL is involved in a comparison operation, the result is considered to be

UNKNOWN (it may be TRUE or it may be FALSE). Hence, SQL uses a three-valued logic with values TRUE,

FALSE, and UNKNOWN instead of the standard two-valued (Boolean) logic with values TRUE or FALSE. It is

therefore necessary to define the results (or truth values) of three-valued logical expressions when the logical

connectives AND, OR, and NOT are used. Table 5.1 shows the resulting values.

In Tables 5.1(a) and 5.1(b),the rows and columns represent the values of the results of comparison conditions,

which would typically appear in the WHERE clause of an SQL query. Each expression result would have a value of

TRUE, FALSE, or UNKNOWN. The result of combining the two values using the AND logical connective is shown

by the entries in Table 5.1(a).Table 5.1(b)shows the result of using the OR logical connective. For example, the result

 MODULE –III NOTES

 Page 2

of

(FALSE AND UNKNOWN) is FALSE, whereas the result of (FALSE OR UNKNOWN) is UNKNOWN. Table 5.1(c)

shows the result of the NOT logical operation. Notice that in standard Boolean logic, only TRUE or FALSE values

are permitted; there is no UNKNOWN value.

SQL allows queries that check whether an attribute value is NULL. Rather than using = or <> to compare an

attribute value to NULL,SQL uses the comparison operators IS or IS NOT. This is because SQL considers each NULL

value as being distinct from every other NULL value, so equality comparison is not appropriate. Query 18. Retrieve

the names of all employees who do not have supervisors. SELECT Fname, Lname

FROM EMPLOYEE WHERE Super_ssnIS NULL;

5.1.2 Nested Queries, Tuples, and Set/Multiset Comparisons

Some queries require that existing values in the database be fetched and then used in a comparison condition.

Such queries can be conveniently formulated by using nested queries, which are complete select-from- where blocks

within the WHERE clause of another query. That other query is called the outer query.

IN operator: which is a comparison operator that compares a value v with a set (or multiset) of values V and evaluates

to TRUE if v is one of the elements in V.

ex: Query 17. Retrieve the Social Security numbers of all employees who work on project numbers

1,2,or 3.

SELECT DISTINCTEssn

FROM WORKS_ON WHEREPnoIN (1, 2, 3);

SQL allows the use of tuples of values in comparisons by placing them within parentheses. To illustrate this,

consider the following query:

SELECT DISTINCT Essn

FROM WORKS_ON WHERE (Pno, Hours) IN(SELECTPno, Hours FROM WORKS_ON

WHERE Essn=‘123456789’);

This query will select the Essns of all employees who work the same (project,hours) combination on some

project that employee ‘John Smith’ (whose Ssn = ‘123456789’) works on. In this example, the IN operator compares

the subtuple of values in parentheses (Pno, Hours) within each tuple in WORKS_ON with the set of type- compatible

tuples produced by the nested query.

In addition to the IN operator, a number of other comparison operators can be used to compare a single value

v (typically an attribute name) to a set or multiset v (typically a nested query).The = ANY (or = SOME) operator

returns TRUE if the value v is equal to some value in the set V and is hence equivalent to IN. The two keywords ANY

and SOME have the same effect. Other operators that can be combined with ANY (or SOME) include >, >=, <, <=,

and <>. The keyword ALL can also be combined with each of these operators. For example, the comparison condition

(v>ALL V) returns TRUE if the value vis greater than all the values in the set (or multiset) V.

An example is the following query, which returns the names of employees whose salary is greater than the

salary of all the employees in department 5:

SELECT Lname, Fname

FROM EMPLOYEE WHERE Salary > ALL(SELECT Salary FROM EMPLOYEE WHERE

Dno=5);

 MODULE –III NOTES

 Page 3

5.1.3 Correlated Nested Queries

Whenever a condition in the WHERE clause of a nested query references some attribute of a relation declared

in the outer query, the two queries are said to be correlated. We can understand a correlated query better by

considering that the nested query is evaluated once for each tuple (or combination of tuples) in the outer query.

Example for Correlated Nested Querie:

Retrieve the name of each employee who has a dependent with the same first name and is the same sex as

the employee.

Q16: SELECT E.Fname, E.Lname FROM EMPLOYEE AS E

WHERE E.Ssn IN (SELECTEssn FROM DEPENDENT AS D WHERE

E.Fname=D.Dependent_name AND E.Sex=D.Sex);

For example, we can think of Q16 as follows: For each EMPLOYEE tuple, evaluate the nested query, which

retrieves the Essn values for all DEPENDENT tuples with the same sex and name as that EMPLOYEEtuple; if the

Ssn value of the EMPLOYEEtuple is in the result of the nested query,then select that EMPLOYEEtuple.

In generala query written with nested select-from-where blocks and using the = or INcomparison operators

can always be expressed as a single block query.For example,Q16 may be written as in Q16A:

Q16A:SELECT E.Fname, E.Lname

FROM EMPLOYEE AS E, DEPENDENT AS D

WHERE E.Ssn=D.Essn AND E.Sex=D.Sex AND E.Fname=D.Dependent_name;

 MODULE –III NOTES

 Page 4

5.1.4 The EXISTS and UNIQUE Functions in SQL

EXISTS and NOT EXISTS are typically used in conjunction with a correlated nested query. In Q16B,the

nested query references the Ssn, Fname, and Sex attributes of the EMPLOYEE relation from the outer query. We can

think of Q16Bas follows: For each EMPLOYEE tuple, evaluate the nested query, which retrieves all DEPENDENT

tuples with the same Essn,Sex,and Dependent_name as the EMPLOYEE tuple; if at least one tuple EXISTS in the

result of the nested query, then select that EMPLOYEE tuple.

In general, EXISTS(Q) returns TRUE if there is at least one tuple in the result of the nested query Q, and it

returns FALSE otherwise.

On the other hand, NOT EXISTS(Q) returns TRUE if there are no tuples in the result of nested query Q, and

it returns FALSE otherwise. Next, we illustrate the use of NOT EXISTS.

Query 6.Retrieve the names of employees who have no

dependents. SELECT Fname, Lname FROM EMPLOYEE

WHERE NOT EXISTS (SELECT * FROM DEPENDENT WHERE

Ssn=Essn);

In Q6, the correlated nested query retrieves all DEPENDENT tuples related to a particular EMPLOYEE tuple.

If none exist, the EMPLOYEE tuple is selected because the WHERE-clause condition will evaluate to TRUE in this

case. We can explain Q6 as follows: For each EMPLOYEE tuple, the correlated nested query selects all DEPENDENT

tuples whose Essn value matches the EMPLOYEE Ssn; if the result is empty, no dependents are related to the

employee, so we select that EMPLOYEE tuple and retrieve its Fname and Lname.

5.1.5 Explicit Sets and Renaming of Attributes in SQL

Explicit Sets
We have seen several queries with a nested query in the WHERE clause. It is also possible to use an explicit

set of values in the WHERE clause, rather than a nested query. Such a set is enclosed in parentheses in SQL.
Query 17.Retrieve the Social Security numbers of all employees who work on project numbers 1,2,or

3.

SELECT DISTINCT Essn FROM WORKS_ON WHERE Pno IN (1, 2, 3);

 MODULE –III NOTES

 Page 5

Renaming of Attributes
In SQL, it is possible to rename any attribute that appears in the result of a query by adding the qualifier AS

followed by the desired new name. Hence, the AS construct can be used to alias both attribute and relation names,
and it can be used in both the SELECT and FROM clauses.

For example, to retrieve the last name of each employee and his or her supervisor, while renaming the

resulting attribute names as Employee_name and Supervisor_name.The new names will appear as column headers

in the query result.

SELECT E.Lname AS Employee_name, S.Lname AS Supervisor_name

FROM EMPLOYEE AS E, EMPLOYEE AS S

WHERE E.Super_ssn=S.Ssn;

5.1.6 Joined Tables in SQL and Outer Joins

The concept of a joined table (or joined relation) was incorporated into SQL to permit users to specify a table

resulting from a join operation in the FROM clause of a query. This construct may be easier to comprehend than

mixing together all the select and join conditions in the WHERE clause.

For example, consider query Q1, which retrieves the name and address of every employee who works for the

‘Research’ department. It may be easier to specify the join of the EMPLOYEE and DEPARTMENT relations first,

and then to select the desired tuples and attributes. This can be written in SQL as in Q1A:

Q1A: SELECT Fname,Lname, Address

FROM (EMPLOYEE JOIN DEPARTMENT ON Dno=Dnumber)

WHEREDname=‘Research’;

TheFROMclause in Q1Acontains a single joined table.The attributes of such a table are all the attributes of

the first table, EMPLOYEE, followed by all the attributes of the second table,DEPARTMENT.

The concept of a joined table also allows the user to specify different types of join, such as NATURAL JOIN

and various types of OUTER JOIN.

In a NATURAL JOIN on two relations RandS,no join condition is specified;an implicit EQUIJOIN

condition for each pair of attributes with the same name from R and S is created. Each such pair of attributes is

included only once in the resulting relation.

If the names of the join attributes are not the same in the base relations, it is possible to rename the attributes

so that they match,and then to apply NATURAL JOIN.In this case, the AS construct can be used to rename a relation

and all its attributes in the FROM clause. This is illustrated in Q1B, where the DEPARTMENT relation is renamed as

DEPT and its attributes are renamed as Dname, Dno (to match the name of the desired join attribute Dno in the

EMPLOYEE table), Mssn, and Msdate. The implied join condition for this NATURAL JOIN is

EMPLOYEE.Dno=DEPT.Dno, because this is the only pair of attributes with the same name after renaming:

Q1B: SELECT Fname, Lname, Address FROM

(EMPLOYEE NATURAL JOIN (DEPARTMENT AS DEPT (Dname, Dno, Mssn,Msdate))) WHERE

Dname=‘Research’;

The default type of join in a joined table is called an inner join, where a tuple is included in the result only if

a matching tuple exists in the other relation

There are a variety of outer join operations.

1) LEFT OUTER JOIN (every tuple in the left table must appear in the result;if it does not have a

matching tuple,it is padded with NULLvalues for the attributes of the right table).

2) RIGHT OUTER JOIN (every tuple in the right table must appear in the result;if it does not have

a matching tuple,it is padded with NULLvalues for the attributes of the left table).

3) FULL OUTER JOIN :It is a combination of left and right outer joins .

 MODULE –III NOTES

 Page 6

In the

latter three options, the keyword OUTER may be omitted. If the join attributes have the same name, one can

also specify the natural join variation of outer joins by using the keyword NATURAL before the operation

(for example, NATURAL LEFT OUTER JOIN).

The keyword CROSS JOIN is used to specify the CARTESIAN PRODUCT operation although this should

be used only with the utmost care because it generates all possible tuple combinations.

It is also possible to nest join specifications; that is, one of the tables in a join may itself be a joined table.

This allows the specification of the join of three or more tables as a single joined table, which is called a multiway

join.

EX: SELECT Pnumber, Dnum, Lname, Address, Bdate

FROM ((PROJECT JOIN DEPARTMENT ON Dnum=Dnumber)

JOIN EMPLOYEE ON Mgr_ssn=Ssn) WHERE Plocation=‘Stafford’;

Not all SQL implementations have implemented the new syntax of joined tables. In some systems, a different syntax

was used to specify outer joins by using the comparison operators +=, =+, and +=+ for left, right, and full outer join,

respectively, when specifying the join condition. For example, this syntax is available in Oracle. To specify the left

outer join using this syntax, we could write the query as follows:

SELECT E.Lname, S.Lname

FROM EMPLOYEE E, EMPLOYEE S

WHERE E.Super_ssn +=S.Ssn;

5.1.7 Aggregate Functions in SQL

Aggregate functions are used to summarize information from multiple tuples into a single-tuple summary. Grouping

is used to create subgroups of tuples before summarization. Grouping and aggregation are required in many database

applications, and we will introduce their use in SQL through examples.

A number of built-in aggregate functions exist: COUNT, SUM, MAX, MIN, and AVG. The COUNT

function returns the number of tuples or values as specified in aquery. The functions SUM,MAX,MIN,and AVG can

be applied to a set or multiset of numeric values and return, respectively, the sum, maximum value, minimum value,

and average (mean) of those values.

Query 19. Find the sum of the salaries of all employees ,the maximum salary, the minimum salary,

and the average salary.

SELECT SUM (Salary), MAX (Salary), MIN (Salary), AVG (Salary) FROM

EMPLOYEE;

If we want to get the preceding function values for employees of a specific department—say, the ‘Research’

department—we can write Query 20, where the EMPLOYEE tuples are restricted by the WHERE clause to those

employees who work for the ‘Research’department.

Query 20. Find the sum of the salaries of all employees of the ‘Research’ department, as well as the

maximum salary,the minimum salary,and the average salary in this department.

SELECT SUM (Salary), MAX (Salary), MIN (Salary), AVG (Salary)

FROM (EMPLOYEE JOIN DEPARTMENT ON Dno=Dnumber)

WHERE Dname=‘Research’;

Queries 21 and 22. Retrieve the total number of employees in the company (Q21) and the number of

employees in the ‘Research’department (Q22).

 MODULE –III NOTES

 Page 7

 will not be counted. In general, NULL values are discarded when aggregate functions are applied to a particular

column (attribute).

5.1.8 Grouping: The GROUP BY and HAVING Clauses

GROUP BY clause

SQL has a GROUP BY clause . The GROUP BYclause specifies the grouping attributes, which should also

appear in the SELECT clause, so that the value resulting from applying each aggregate function to a group of tuples

appears along with the value of the grouping attribute(s).

In many cases we want to apply the aggregate functions to subgroups of tuples in a relation, where the

subgroups are based on some attribute values. For example, we may want to find the average salary of employees in

each department or the number of employees who work on each project. In these cases we need to partition the relation

into nonoverlapping subsets (or groups) of tuples. Each group (partition) will consist of the tuples that have the same

value of some attribute(s), called the grouping attribute(s). We can then apply the function to each such group

independently to produce summary information about each group.

 MODULE –III NOTES

 Page 8

HAVING clause

SQL provides a HAVING clause, which can appear in conjunction with a GROUP BY clause. HAVING provides a

condition on the summary information regarding the group of tuples associated with each value of the grouping

attributes. Only the groups that satisfy the condition are retrieved in the result of the query. This is illustrated by Query

26.

 MODULE –III NOTES

 Page 9

5.1.9 Discussion and Summary of SQL Queries

In order to formulate queries correctly, it is useful to consider the steps that define the meaning or semantics of each

query. A query is evaluated conceptually by first applying the FROM clause (to identify all tables involved in the

query or to materialize any joined tables), followed by the WHERE clause to select and join tuples, and then by

GROUP BY and HAVING. Conceptually, ORDER BY is applied at the end to sort the query result.

 MODULE –III NOTES

 Page 10

5.2 Specifying Constraints as Assertions and Actions as Triggers
In this section, we introduce two additional features of SQL: the CREATE ASSERTION statement and the

CREATE TRIGGER statement.

CREATE ASSERTION, which can be used to specify additional types of constraints that are outside the scope

of the built-in relational model constraints (primary and unique keys, entity integrity, and referential integrity) that we

presented early.

CREATE TRIGGER, which can be used to specify automatic actions that the database system will perform

when certain events and conditions occur. This type of functionality is generally referred to as active databases.

5.2.1 Specifying General Constraints as Assertions in SQL

ASSERTIONS

In SQL,users can specify general constraints—those that do not fall into any of the categories described via declarative

assertions, using the CREATE ASSERTION statement of the DDL. Each assertion is given a constraint name and is

specified via a condition similar to the WHERE clause of an SQL query.

The basic technique for writing such assertions is to specify a query that selects any tuples that violate the desired

condition. By including this query inside a NOT EXISTSclause, the assertion will specify that the result of this query

must be empty so that the condition will always be TRUE. Thus, the assertion is violated if the result of the query is

not empty. In the preceding example, the query selects all employees whose salaries are greater than the salary of the

manager of their department. If the result of the query is not empty, the assertion is violated.

5.2.2 Introduction to Triggers in SQL

Another important statement in SQL is CREATE TRIGGER. In many cases it is convenient to specify the type of

action to be taken when certain events occur and when certain conditions are satisfied. For example, it may be useful

 MODULE –III NOTES

 Page 11

to

specify a condition that, if violated, causes some user to be informed of the violation. The CREATE TRIGGER

statement is used to implement such actions in SQL.

A typical trigger has three components:

▪ Event: When this event happens, the trigger is activated

▪ Condition (optional): If the condition is true, the trigger executes, otherwise skipped

▪ Action: The actions performed by the trigger

➢ The action is to be executed automatically if the condition is satisfied when event occurs.

 Trigger: Events

Three event types

● Insert

● Update

● Delete

Two triggering times

● Before the event

● After the event

Two granularities

 ● Execute for each row

 Execute for each statement

 MODULE –III NOTES

 Page 12

Trigger:
 Condition

 MODULE –III NOTES

 Page 13

Example 2

Trigger:
 Action

Example 1

 MODULE –III NOTES

 Page 14

5.3 Views (virtual table) in SQL

 1.1 Concept of a View in SQL

➢ A view is a single table that is derived from one or more base tables or other views

➢ Views neither exist physically nor contain data itself, it depends on the base tables for its existence

➢ A view contains rows and columns, just like a real table. The fields in a view are fields from one or more real

tables in the database.

1.2 Specification of Views in SQL Syntax:

 CREATEVIEWview_nameAS

 SELECTcolumn_name(s)

 FROMtable_name

WHEREcondition

Example

CREATE VIEW WORKS_ON1

AS SELECT Fname, Lname, Pname, Hours

 FROM EMPLOYEE, PROJECT, WORKS_ON

WHERE Ssn=Essn ANDPno=Pnumber ;

➢ We can specify SQL queries on view Example #

➢ Retrieve the Last name and First name of all employees who work on ‘ProductX’

SELECT Fname, Lname

FROM WORKS_ON1

WHERE Pname=‘ProductX’ ;

➢ A view always shows up-to-date

➢ If we modify the tuples in the base tables on which the view is defined, the view must automatically reflect

these changes

➢ If we do not need a view any more, we can use the DROP VIEW command

DROP VIEW WORKS_ON1;

 1.3 View Implementation and View Update

 MODULE –III NOTES

 Page 15

View

Implementation

➢ The problem of efficiently implementing a view for quering is complex Two main approaches have been

suggested

 Query Modification

➢ Modifying the view query into a query on the underlying base tables

➢ Disadvantage: inefficient for views defined via complex queries that are time-consuming to execute ,

especially if multiple queries are applied to the view within a short period of time.

Example

❖ The query example# would be automatically modified to the following query by the DBMS

SELECT Fname, Lname

 FROM EMPLOYEE, PROJECT, WORKS_ON

WHERE Ssn=Essn ANDPno=Pnumber

AND Pname=”ProductX’;

 View Materialization

➢ Physically create a temporary view table when the view is first queried

➢ Keep that table on the assumption that other queries on the view will follow

➢ Requires efficient strategy for automatically updating the view table when the base tables are updated, that is

Incremental Update

➢ Incremental Update determines what new tuples must be inserted, deleted, or modified in a materialized

view table when a change is applied to one of the defining base table

View Update

➢ Updating of views is complicated and can be ambiguous

➢ An update on view defined on a single table without any aggregate functions can be mapped to an update on

the underlying base table under certain conditions.

➢ View involving joins, an update operation may be mapped to update operations on the underlying base

relations in multiple ways. Example

❖ Update the Pname attribute of ‘john smith’ from ‘ProductX’ to ‘ProductY’

UPDATE WORKS_ON1

 SET Pname= ‘ProductY’

WHERE Lname=‘smith’ ANDFname=‘john’

AND Pname= ‘ProductX’

❖ This query can be mapped into several updates on the base relations to give the desired effect on the view.

❖ Two possible updates (a) and (b) on the base relations corresponding to above query .

 (a) UPDATE WORKS_ON

 SET Pno= (SELECT Pnumber

 FROM PROJECT

WHERE Pname= ‘ProductY’)

WHERE Essn IN (SELECT

Ssn

FROM EMPLOYEE

WHERE Lname=‘smith’ ANDFname=‘john’) AND

 Pno= (SELECT Pnumber

FROM PROJECT

 MODULE –III NOTES

 Page 16

WHERE Pname=‘ProductX’);

(b) UPDATE PROJECT

SET Pname=‘ProductY’

WHERE Pname= ‘ProductX’ ;

➢ Update (a) relates ‘john smith’ to the ‘ProductY’ PROJECT tuple in place of the ‘ProductX’ PROJECT tuple

and is the most likely update.

➢ Update (b) would also give the desired update effect on the view, but it accomplishes this by changing the

name of the ‘ProductX’ tuple in the PROJECT relation to ‘ProductY’

OBSERVATIONS ON VIEWS

❑ A view with a single defining table is updatable if the view attributes contain the primary key of the base

relation, as well as all attributes with the NOT NULL constraint that do not have default values specified

❑ Views defined on multiple tables using joins are generally not updatable

❑ Views defined using grouping and aggregate functions are not updatable

❖ In SQL, the clause WITH HECK OPTION must be added at the end of the view definition if a view is to be

updated.

Advantages of Views

➢ Data independence

➢ Currency

➢ Improved security

➢ Reduced complexity

➢ Convenience

➢ Customization ➢ Data integrity

5.4 Schema Change Statements in SQL

In this section,we give an overview of the schema evolution commands available in SQL, which can be used to alter

a schema by adding or dropping tables, attributes, constraints, and other schema elements. This can be done while the

database is operational and does not require recompilation of the database schema. Certain checks must be done by

the DBMS to ensure that the changes do not affect the rest of the database and make it inconsistent.

5,4.1The DROP Command

The DROP command can be used to drop named schema elements, such as tables, domains, or constraints.

One can also drop a schema. For example, if a whole schema is no longer needed, the DROP SCHEMA

command can be used. There are two drop behavior options: CASCADE and RESTRICT. For example, to remove

the COMPANY database schema and all its tables, domains, and other elements, the CASCADE option is used as

follows:

DROPSCHEMA COMPANY CASCADE;

If the RESTRICToption is chosen in place of CASCADE, the schema is dropped only if it has no elements in it;

otherwise, the DROP command will not be executed. To use the RESTRICT option, the user must first individually

drop each element in the schema, then drop the schema itself.

DROP TABLE COMMAND :

 MODULE –III NOTES

 Page 17

If a

base relation within a schema is no longer needed, the relation and its definition can be deleted by using the DROP

TABLE command. For example, if we no longer wish to keep track of dependents of employees in the COMPANY

.we can get rid of the DEPENDENT relation by issuing the following command:

DROP TABLE DEPENDENT CASCADE;

If the RESTRICT option is chosen instead of CASCADE, a table is dropped only if it is not referenced in any

constraints (for example, by foreign key definitions in another relation) or views or by any other elements. With the

CASCADE option, all such constraints, views, and other elements that reference the table being dropped are also

dropped automatically from the schema, along with the table itself.

Notice that the DROP TABLE command not only deletes all the records in the table if successful, but also removes

the table definition from the catalog.

5.4.2 The ALTER Command

The definition of a base table or of other named schema elements can be changed by using the ALTER

command. For base tables, the possible alter table actions include adding or dropping a column (attribute),changing a

column definition, and adding or dropping table constraints.

For example, to add an attribute for keeping track of jobs of employees to the EMPLOYEE base relation in the

COMPANY schema ,we can use the command.

ALTER TABLE COMPANY.EMPLOYEE ADD COLUMN Job VARCHAR(12);

We must still enter a value for the new attribute Job for each individual EMPLOYEE tuple. This can be done either

by specifying a default clause or by using the UPDATE command individually on each tuple. If no default clause is

specified, the new attribute will have NULLs in all the tuples of the relation immediately after the command is

executed; hence, the NOT NULL constraint is not allowed in this case.

 MODULE –III NOTES

 Page 18

 MODULE –III NOTES

 Page 19

Database Application Development
Applications that rely on the DBMS to manage data run as separate processes that connect to the DBMS to

interact with it. Once a connection is established, SQL commands can be used to insert, delete, and modify

data. SQL queries can be used to retrieve desired data. but we need to bridge an important difference in how

a database system sees data and how an application program in a language like Java or C sees data: The

result of a database query is a set (ormultiset) or records, hut Java has no set or multiset data type. This

mismatch his resolved through additional SQL constructs that allow applications to obtain a handle on a

collection and iterate over the records one at a time.

ACCESSING DATABASES FROM APPLICATIONS

In this section, we cover how SQL commands can be executed from within a program in a host language
such as C or Java. The use of SQL commands within a host language program is called Embedded

SQL. Details of Embedded SQL also depend on the host language. Although similar capabilities are
supported for a variety of host languages, the syntax sometimes varies.

Embedded SQL

Conceptually, embedding SQL commands in a host language program is straightforward. SQL

statements (i.e., not declarations) can be used wherever a statement in the host language is allowed (with a

few restrictions). SQL statements must be clearly marked so that a preprocessor can deal with them before

invoking the compiler for the host language. Also, any host language variables used to pass arguments into

an SQL command must be declared in SQL. In particular, some special host language variables must be

declared in SQL (so that, for example, any error conditions arising during SQL execution can be

communicated back to the main application program in the host language).

There are, however, two complications to bear in mind. First, the data types recognized by SQL

may not be recognized by the host language and vice versa. This mismatch is typically addressed by casting

data values appropriately before passing them to or from SQL commands. The second complication has to

do with SQL being set-oriented, and is addressed using cursors.

Declaring Variables and Exceptions

SQL statements can refer to variables defined in the host program. Such host language variables

must be prefixed by a colon (:) in SQL statements and be declared between the commands EXEC SQL

BEGIN DECLARE SECTION and EXEC SQL END DECLARE SECTION. The declarations are similar

to how they would look in a C program and, as usual in C. are separated by semicolons. For example. we

can declare variables c-sname, c_sid, c_mt'ing, and cage (with the initial c used as a naming convention to

emphasize that these are host language variables) as follows:

EXEC SQL BEGIN DECLARE SECTION

charc_sname[20]; longcsid;

 MODULE –III NOTES

 Page 20

short crating; float

cage;

EXEC SQL END DECLARE SECTION

The SQL-92 standard defines a correspondence between the host language types and SQL types

for a number of host languages. In our example, c_snamc has the type CHARACTER(20) when referred to

in an SQL statement, csid has the type INTEGER, crating has the type SMALLINT, and cage has the type

REAL.

The SQL-92 standard recognizes two special variables for reporting errors, SQLCODE and SQLSTATE.

Embedding SQL Statements

All SQL staternents embedded within a host program must be clearly marked, with the details dependent

on the host language; in C, SQL statements must be prefixed by EXEC SQL.

As a simple example, the following EmbeddedSQL statement inserts a row, whose column values

are based on the values of the host language variables contained in it, into the Sailors relation:

EXEC SQL

INSERT INTO Sailors VALUES (:c_sname, :csid, :crating, :cage);

The SQLSTATE variable should be checked for errors and exceptions after each Embedded SQL statement.

SQL provides the WHENEVER command to simplify this tedious task:

EXEC SQL WHENEVER [SQLERROR IF NOT FOUND] [CONTINUE I GOTO stmt] The intent

is that the value of SQLSTATE should bechecked after each Embedded SQL statement is executed. If

SQLERROR is specified and the value of SQLSTATE indicates an exception, control is transferred to stmt,

which is presumably responsible for error and exception handling. Control is also transferred to stmt if NOT

FOUND is specified and the value of SQLSTATE is 02000, which denotes NO DATA.

Cursors

A major problem in embedding SQL statements in a host language like C is that an impedance

mismatch occurs because SQL operates on set of records, whereas languages like C do not cleanly support

a set-of-records abstraction. The solution is to essentially provide a mechanism that allows us to retrieve

rows one at a time from a relation. This mechanism is called a cursor.

We can declare a cursor on any relation or on any SQL query (because every query returns a set of

rows). Once a cursor is declared, we can open it (which positions the cursor just before the first row); fetch

the next row; move the cursor (to the next row, to the row after the next n, to the first row, or to the previous

row, etc., by specifying additional parameters for the FETCH command); or close the cursor. Thus, a cursor

essentially allows us to retrieve the rows in a table by positioning the cursor at a particular row and reading

its contents.

Basic Cursor Definition and Usage cursors enable us to examine, in the host language program, a
collection of rows computed by an Embedded SQL statement:

We usually need to open a cursor if the embedded statement is a SELECT query. However, we can

avoid opening a cursor if the answer contains a single row.

INSERT, DELETE, and UPDATE statements typically require no cursor, although some variants of

DELETE and UPDATE use a cursor.

As an example, we can find the name and age of a sailor, specified by assigning a value to the

host variable c_sid, declared earlier, as follows:

EXEC SQL

SELECTS.sname, S.age

 MODULE –III NOTES

 Page 21

INTO

:c_sname, :c_age

FROM Sailors S WHERES.sid = :c_sid;

The INTO clause allows us to assign the columns of the single answer row to the host variables c_sname

and c_age. Therefore, we do not need a cursor to embed this query in a host language program.

But what about the following query, which computes the names and ages of all sailors with a rating greater than

the current value of the host variable c_minrating?

SELECT S.sname, S.age

FROM Sailors S

WHERE S.rating> :c_minrating

A cursor can be thought of as 'pointing' to a row in the collection of answers to the query associated

with it. When a cursor is opened, it is positioned just before the first row. We can use the FETCH command

to read the first row of cursor sinfo into host language variables:

FETCH sinfoINTO :c_sname, :c_age;

When the FETCH statement is executed, the cursor is positioned to point at the next row (which is

the first row in the table when FETCH is executed for the first time after opening the cursor) and the column

values in the row are copied into the corresponding host variables. By repeatedly executing this FETCH

statement (say, in a while-loop in the C program), we can read all the rows computed by the query, one row

at a time. Additional parameters to the FETCH command allow us to position a cursor in very flexible ways.

How do we know when we have looked at all the rows associated with the cursor? By looking at

the special variables SQLCODE or SQLSTATE, of course. SQLSTATE, for example, is set to the value

02000, which denotes NO DATA, to indicate that there are no more rows ifthe FETCH statement positions

the cursor after the last row.

 MODULE –III NOTES

 Page 22

When

we are done with a cursor, we can close it:

CLOSE sinfo;

It can be opened again if neededand the value of :c_minrating in the SQL query associated with the

cursor would be the value of the host variable c_minrating at that time.

DELETE commands allow us to update or delete the row on which the cursor is positioned. If the keyword

SCROLL is specified, the cursor is scrollable, which means that variants of the FETCH command can be

used to position the cursor in very flexible ways; If the keyword INSENSITIVE is specified, the cursor

behaves as if it is ranging over a private copy of the collection of answer rows. A holdable cursor is specified

using the WITH HOLD clause, and is not closed when the transaction is committed. Finally, in what order

do FETCH commands retrieve rows? In general this order is unspecified, but the optional ORDER BY

clause can be used to specify a sort order. Note that columns mentioned in the ORDER BY clause cannot

be updated through the cursor!

Dynamic SQL

 MODULE –III NOTES

 Page 23

The first statement declares the C variable c_sqlstring and initializes its value to the string representation of

an SQL command. The second statement results in this string being parsed and compiled as an SQL

command, with the resulting executable bound to the SQL variable ready to go. (Since ready to go is an

SQL variable, just like a cursor name, it is not prefixed by a colon.) The third statement executes the

command.

6.2 AN INTRODUCTION TO JDBC

ODBC and JDBC, short for Open Data Base Connectivity and Java Data Base Connectivity, also

enable the integration of SQL with a general-purpose programming language. Both ODBC and JDBC

expose database capabilities in a standardized way to the application programmer through an application

programming interface (API).

An application that interacts with a data source through ODBC or JDBC selects a data source, dynamically

loads the corresponding driver, and establishes a connection with the data source.

6.2.1 JDBC Architecture
The architecture of JDBC has four main components: the application, the driver manager, several

data source specific drivers, and the corresponding data Sources.

The application initiates and terminates the connection with a data source. It sets transaction

boundaries, submits SQL statements, and retrieves the results all through a well-defined interface as

specified by the JDBC API.

The primary goal of the driver manager is to load JDBC drivers and pass JDBC function calls from the

application to the correct driver.

The driver establishes the connection with the data source.

The data source processes commands from the driver and returns the results.

Drivers in JDBC are classified into four types depending on the architectural relationship between the application

and the data source:

 MODULE –III NOTES

 Page 24

JDBC CLASSES AND INTERFACES

 MODULE –III NOTES

 Page 25

JDBC is a collection of Java classes and interfaces that enables database access from programs

written in the Java language. It contains methods for connecting to a remote data source, executing SQL

statements, examining sets of results from SQL statements, transaction management, and exception

handling. The classes and interfaces are part of the java.sql package. Thus, all code fragments in the

remainder of this section should include the statement import java. sql .* at the beginning of the code;

JDBC Driver Management
In JDBC, data source drivers are managed by the Drivermanager class, which maintains a list of all

currently loaded drivers. The Drivermanager class hasmethods registerDriver, deregisterDriver, and

getDrivers to enable dynamic addition and deletion of drivers.

The first step in connecting to a data source is to load the corresponding JDBC driver. This is

accomplished by using the Java mechanism for dynamically loading classes. The static method forName in

the Class class returns the Java class as specified in the argument string and executes its static constructor.

The static constructor of the dynamically loaded class loads an instance of the Driver class, and this Driver

object registers itself with the DriverManager class.

The following Java example code explicitly loads a JDBC driver:

Class.forName("oracle/jdbc.driver.OracleDriver");

Connections

A session with a data source is started through creation of a Connection object; A connection identifies a

logical session with a data source; multiple connections within the same Java program can refer to different

data sources or the same data source. Connections are specified through a JDBC URL, a URL that uses the

jdbc protocol. Such a URL has the form jdbc:<subprotocol>:<otherParameters>

The code example shown in Figure 6.2 establishes a connection to an Oracle database assuming that the strings

userld and password are set to valid values.

 MODULE –III NOTES

 Page 26

Establishing a connection to a data source is a costly operation since it involves several steps, such as

establishing a network connection to the data source, authentication, and allocation of resources such as

memory. In case an application establishes many different connections from different parties (such as a Web

server), connections are often pooled to avoid this overhead. A connection pool is a set of established

connections to a data source. Whenever a new connection is needed, one of the connections from the pool

is used, instead of creating a new connection to the data source.

Executing SQL Statements

We now discuss how to create and execute SQL statements using JDBC. In the JDBC code examples in this

section, we assume that we have a Connection object named con. JDBC supports three different ways of

executing statements: Statement, Prepared Statement, and Callable Statement. The Statement class is the

base class for the other two statement classes. It allows us to query the data source with any static or

dynamically generated SQL query.

The Prepared Statement class is dynamically generates precompiled SQL statements that can be

used several times; these SQL statements can have parameters, but their structure is fixed when the Prepared

Statement object (representing the SQL statement) is created.

Consider the sample code using a Prepared Statment object shown in Figure 6.3. The SQL query

specifies the query string, but uses ''?' for the values of the parameters, which are set later using methods

setString, setFloat, and setlnt. The ''?' placeholders can be used anywhere in SQL statements where they can

be replaced with a value. Examples of places where they can appear include the WHERE clause (e.g.,

'WHERE author=?'), or in SQL UPDATE and INSERT statements, as in Figure 6.3.

The method setString is one wayto set a parameter value; analogous methods are available for int,

float, and date. It is good style to always use clearParameters() before setting parameter values in order to

remove any old data.

The execute Update method returns an integer indicating the number of rows the SQL statement modified;

it returns 0 for successful execution without modifying any rows.

The execute Query method is used if the SQL statement returns data, such &"l in a regular SELECT

query. JDBC has its own cursor mechanism in the form of a Result Set object, which we discuss next. The

execute method is more general than execute Query and execute Update.

 MODULE –III NOTES

 Page 27

ResultSets

The statement execute Query returns a, Result Set object, which is similar to a cursor. Result Set

cursors in JDBC 2.0 are very powerful; they allow forward and reverse scrolling and in-place editing and

insertions.

In its most basic form, the Result Set object allows us to read one row of the output of the query at

a time. Initially, the ResultSet is positioned before the first row, and we have to retrieve the first row with

an explicit call to the next0 method. The next method returns false if there are no more rows in the query

answer, and true other\vise. The code fragment shown in Figure 6.4 illustrates the basic usage of a ResultSet

object.

Matching Java and SQL Data Types

JDBC provides special data types and specifies their relationship to corresponding SQL data types.

Figure 6.5 shows the accessor methods in a ResultSet object for the most common SQL datatypes. With

these accessor methods, we can retrieve values from the current row of the query result referenced by the

ResultSet object. There are two forms for each accessor method: One method retrieves values by column

index, starting at one, and the other retrieves values by column name. The following example shows how

to access fields of the current ResultSet row using accesssor methods.

 MODULE –III NOTES

 Page 28

An SQL Warning is a subclass of SQLException. Warnings are not severe as errors and the program can
usually proceed without special handling of warnings. Warnings are not thrown like other exceptions, and
they are not caught as part of the try"-catch block around a java.sql statement. We Heed to specifically test
whether warnings exist. Connection, Statement, and ResultSet objects all have a getWarnings 0 method
with which we can retrieve SQL warnings if they exist. Statement objects clear warnings automatically on
execution of the next statement; ResultSet objects clear warnings every time a new tuple is accessed.

Exceptions and Warnings
Similar to the SQLSTATE variable, most of the methods in java.sql can throw an exception of the type

SQLException if an error occurs. The information includes SQLState, a string that describes the error

(e.g., whether the statement contained an SQL syntax error). In addition to the standard getMessage 0

method inherited from Throwable, SQLException has two additional methods that provide further

information, and a method to get (or chain) additional exceptions:

 MODULE –III NOTES

 Page 29

we can use theDatabaseMetaData object to obtain information about the database system itself, as well as

information from the database catalog. For example, the following code fragment shows how to obtain the

name and driver version of the JDBC driver:

DatabaseMetaData md = con.getMetaD<Lta(): System.out.println("Driver

Information:");

System.out.println("Name:" + md.getDriverNameO + "; version:" + mcl.getDriverVersion()); The

DatabaseMetaData object has many more methods.we list some methods here:

1) publicResultSet getCatalogs0 throws SqLException. This function returns a ResultSet that can be
used to iterate over all the catalog relations. The functions getIndexInfo0 and getTables0 work
analogously.

2) publicintgetMaxConnections0 throws SqLException. This function returns the ma.ximum number of
connections possible.

Examining Database Metadata

 MODULE –III NOTES

 Page 30

We will conclude our discussion of JDBC with an example code fragment that examines all database metadata

shown in Figure 6.7.

SQLJ

SQLJ was developed by the SQLJ Group, a group of database vendors and Sun. SQLJ was

developed to complement the dynamic way of creating queries in JDBC with a static model. It is therefore

very close to Embedded SQL. Unlike JDBC, having semi-static SQL queries allows the compiler to perform

SQL syntax checks, strong type checks of the compatibility of the host variables with the respective SQL

attributes, and consistency of the query with the database schema-tables, attributes, views, and stored

procedures--all at compilation time. For example, in both SQLJ and Embedded SQL, variables in the host

language always are bound statically to the same arguments, whereas in JDBC, we need separate statements

to bind each variable to an argument and to retrieve the

result. For example, the following SQLJ statement binds host language variables title, price, and author to the

return values of the cursor books.

 MODULE –III NOTES

 Page 31

#sql

books = { SELECT title, price INTO :title, :price

FROM Books WHERE author = :author

};

In JDBC, we can dynamically decide which host language variables will hold the query result. In the

following example, we read the title of the book into variable ftitle if the book was written by Feynman,

and into variable otitle otherwise:

/ / assume we have a ResultSet cursor rs

author = rs.getString(3); if

(author=="Feynman")

{ ftitle = rs.getString(2):

}

else { otitle = rs.getString(2); }

When writing SQLJ applications, we just write regular Java code and embed SQL statements according to

a set of rules. SQLJ applications are pre-processed through an SQLJ translation program that replaces the

embedded SQLJ code with calls to an SQLJ Java library. The modified program code can then be compiled

by any Java compiler. Usually the SQLJ Java library makes calls to a JDBC driver, which handles the

connection to the database system.

Writing SQLJ Code

We will introduce SQLJ by means of examples. Let us start with an SQLJ code fragment that selects records from

the Books table that match a given author.

The corresponding JDBC code fragment looks as follows (assuming we also declared price, name, and author:

 MODULE –III NOTES

 Page 32

System.out.println(rs.getString(l) + ", " + rs.getFloat(2)); }

Comparing the JDBC and SQLJ code, we see that the SQLJ code is much easier to read than the JDBC code.

Thus, SQLJ reduces software development and maintenance costs.

Let us consider the individual components of the SQLJ code in more detail. All SQLJ statements

have the special prefix #sql. In SQLJ, we retrieve the results of SQL queries with iterator objects, which are

basically cursors. An iterator is an instance of an iterator class. Usage of an iterator in SQLJ goes through

five steps:

There are two types of iterator classes: named iterators and positional iterators. For named iterators, we

specify both the variable type and the name of each column of the iterator. This allows us to retrieve

individual columns by name as in our previous example where we could retrieve the title colunm from the

Books table using the expression books.titIe(). For positional iterators, we need to specifY only the variable

type for each column of the iterator. To access the individual columns of the iterator, we use a FETCH ...

INTO construct, similar to Embedded SQL. Both iterator types have the same performance; which iterator

to use depends on the programmer's taste.

 MODULE –III NOTES

 Page 33

6.5 STORED PROCEDURES

It is often important to execute some parts of the application logic directly in the process space of

the database system. Running application logic directly at the database has the advantage that the amount

of data that is transferred between the database server and the client issuing the SQL statement can be

minimized, while at the same time utilizing the full power of the databa.se server.

When SQL statements are issued from a remote application, the records in the result of the query

need to be transferred from the database system back to the application. If we use a cursor to remotely

access the results of an SQL statement, the DBMS has resources such as locks and memory tied up while

the application is processing the records retrieved through the cursor.

In contrast, a stored procedure is a program that is executed through a single SQL statement that

can be locally executed and completed within the process space of the database server. The results can be

packaged into one big result and returned to the application, or the application logic can be performed

directly at the server, without having to transmit the results to the client at all.

Once a stored procedure is registered with the database server, different users can re-use the stored

procedure, eliminating duplication of efforts in writing SQL queries or application logic, and making code

maintenance ea."lY. In addition, application programmers do not need to know the the databa.se schema if

we encapsulate all databa.'3e access into stored procedures.

Although theyare called stored procedur'es, they do not have to be procedures in a programming

language sense; they can be functions.

6.5.1 Creating a Simple Stored Procedure
Let us look at the example stored procedure written in SQL shown in Figure (i.S. vVe see that stored

procedures must have a name; this stored procedurehas the name 'ShowNumberOfOrders.' Otherwise, it

just contains an SQL statement that is precompiled and stored at the server.

Let us look at an example of a stored procedure with arguments. The stored procedure shown in Figure
6.9 has two arguments: book_isbn and addedQty. It updates the available number of copies of a book with
the quantity from a new shipment.

 MODULE –III NOTES

 Page 34

Stored procedures do not have to be written in SQL; they can be written in any host language. As an

example, the stored procedure shown in Figure 6.10 is a Java function that is dynamically executed by the

database server whenever it is called by the client:

CREATE PROCEDURE RallkCustomers(IN number INTEGER)

LANGUAGE Java

EXTERNAL NAME 'file:// /c:/storedProcedures/rank.jar'

Figure 6.10 A Stored Procedure in Java

Calling Stored Procedures
Stored procedures can be called in interactive SQL with the CALL statement:

CALL storedProcedureName(argumentl, argument2, ... , argumentN);

Calling Stored Procedures from JDBC

 MODULE –III NOTES

 Page 35

Calling Stored Procedures from SQLJ

SQL/PSM

All major database systems provide ways for users to write stored procedures in a simple, general
purpose language closely aligned with SQL. In this section, we briefly discuss the SQL/PSM standard,
which is representative of most vendor specific languages. In PSM, we define modules, which are
collections of stored procedures, temporary relations, and other declarations.

 MODULE –III NOTES

 Page 36

Each parameter is a triple consisting of the mode (IN, OUT, or INOUT as discussed in the previous section),

the parameter name, and the SQL datatype of the parameter.

We start out with an example of a SQL/PSM function that illustrates the main SQL/PSM
constructs. The function takes as input a customer identified by her cid and a year. The function returns
the rating of the customer, which is defined a...'3 follows: Customers who have bought more than ten
books during the year are rated 'two'; customer who have purchased between 5 and 10 books are rated
'one', otherwise the customer is rated 'zero'. The following SQL/PSM code computes the rating for a given
customer and year.

CREATE PROCEDURE RateCustomer(IN custId INTEGER, IN year INTEGER)

RETURNS INTEGER

DECLARE rating INTEGER;

DECLARE numOrders INTEGER;

SET numOrders = (SELECT COUNT(*) FROM Orders 0 WHERE O.tid = custId); IF

(numOrders>10) THEN rating=2;

ELSEIF (numOrders>5) THEN rating=1; ELSE

rating=O;

END IF;

RETURN rating;

Let us use this example to give a short overview of some SQL/PSM constructs:

 MODULE –III NOTES

 Page 37

6.6 CASE STUDY: THE INTERNET BOOK SHOP

DBDudes finished logical database design, as discussed in Section 3.8, and now consider the
queries that they have to support. They expect that the application logic will be implemented in Java, and
so they consider JDBC and SQLJ as possible candidates for interfacing the database system with
application code.

Recall that DBDudes settled on the following schema:

Books(isbn: CHAR(10), title: CHAR(8), author: CHAR(80), qty_in_stock: INTEGER, price:

REAL, year_published: INTEGER)

Customers(cid: INTEGER, cname: CHAR(80), address: CHAR(200))

Orders(ordernum: INTEGER, isbn: CHAR(lO), cid: INTEGER, cardnum: CHAR(l6), qty:

INTEGER, order_date: DATE, ship_date: DATE)

 MODULE –III NOTES

 Page 38

CREATE PROCEDURE SearchByISBN (IN book.isbn CHAR (10))

SELECT B.title, B.author, B.qty_in_stock,B.price, B.yeaLpublished

FROM Books B

WHERE B.isbn = book.isbn

Placing an order involves inserting one or more records into the Orders table. Since DBDudes has not yet

chosen the Java-based technology to program the application logic, they assume for now that the individual

books in the order are stored at the application layer in a Java array. To finalize the order, they write the

following JDBC code shown in Figure 6.11, which inserts the elements from the array into the Orders table.

Note that this code fragment assumes several Java variables have been set beforehand.

MODULE –III NOTES

DBDudes writes other JDBC code and stored procedures for all of the remaining tasks. They use code

similar to some of the fragments that we have seen in this chapter.

DBDudcs takes care to make the application robust by processing exceptions and warnings, as

shown in Figure 6.6.

DBDudes also decide to write a trigger, which is shown in Figure 6.12. Whenever a new order is

entered into the Orders table, it is inserted with ship~date set to NULL. The trigger processes each row in

the order and calls the stored procedure 'UpdateShipDate'. This stored procedure (whose code is not shown

here) updates the (anticipated) ship_date of the new order to 'tomorrow', in case qtyjlLstock of the

corresponding book in the Books table is greater than zero. Otherwise, the stored procedme sets the

ship_date to two weeks.

Page 48

