

DEPARTMENT OF ELECTRICAL & ELECTRONICS

ENGINEERING

LABORATORY MANUAL

ARDUINO AND RASPBERRY PI BASED PROJECT

 BEEL456D

ACADEMIC YEAR 2024-25

SEMESTER: IV

Prepared by:

Mr. Shreeshayana R (Lab In-charge)

 Verified by:

 Approved by:

INSTITUTIONAL VISION AND MISSION

VISION:

Development of academically excellent, culturally vibrant, socially responsible and globally

competent human resources.

MISSION:

• To keep pace with advancements in knowledge and make the students competitive and

capable at the global level.

• To create an environment for the students to acquire the right physical, intellectual,

emotional and moral foundations and shine as torchbearers of tomorrow's society.

• To strive to attain ever-higher benchmarks of educational excellence

DEPARTMENT VISION AND MISSION

VISION:

To create Electrical and Electronics Engineers who excel to be technically competent and fulfill

the cultural and social aspirations of the society.

MISSION:

• To provide knowledge to students that builds a strong foundation in the basic principles

of electrical engineering, problem solving abilities, analytical skills, soft skills and

communication skills for their overall development.

• To offer outcome based technical education.

• To encourage faculty in training & development and to offer consultancy through

research & industry interaction.

PROGRAMME OUTCOMES:

Engineering Graduates will be able to:

PO1. Engineering knowledge: Apply the knowledge of mathematics, science, engineering

fundamentals, and an engineering specialization to the solution of complex engineering

problems.

PO2. Problem analysis: Identify, formulate, review research literature, and analyze complex

engineering problems reaching substantiated conclusions using first principles of mathematics,

natural sciences, and engineering sciences.

PO3. Design/development of solutions: Design solutions for complex engineering problems

and design system components or processes that meet the specified needs with appropriate

consideration for the public health and safety, and the cultural, societal, and environmental

considerations.

PO4. Conduct investigations of complex problems: Use research-based knowledge and

research methods including design of EXPERIMENTs, analysis and interpretation of data, and

synthesis of the information to provide valid conclusions.

PO5. Modern tool usage: Create, select, and apply appropriate techniques, resources, and

modern engineering and IT tools including prediction and modeling to complex engineering

activities with an understanding of the limitations.

PO6. The engineer and society: Apply reasoning informed by the contextual knowledge to

assess societal, health, safety, legal and cultural issues and the consequent responsibilities

relevant to the professional engineering practice.

PO7. Environment and sustainability: Understand the impact of the professional engineering

solutions in societal and environmental contexts, and demonstrate the knowledge of, and need

for sustainable development.

PO8. Ethics: Apply ethical principles and commit to professional ethics and responsibilities and

norms of the engineering practice.

PO9. Individual and team work: Function effectively as an individual, and as a member or

leader in diverse teams, and in multidisciplinary settings.

PO10. Communication: Communicate effectively on complex engineering activities with the

engineering community and with society at large, such as, being able to comprehend and write

effective reports and design documentation, make effective presentations, and give and receive

clear instructions.

PO11. Project management and finance: Demonstrate knowledge and understanding of the

engineering and management principles and apply these to one’s own work, as a member and

leader in a team, to manage projects and in multidisciplinary environments.

PO12. Life-long learning: Recognize the need for, and have the preparation and ability to

engage in independent and life-long learning in the broadest context of technological change.

Program Specific Outcomes (PSOs)

At the end of graduation, the student will be able,

PSO1: Apply the concepts of Electrical & Electronics Engineering to evaluate the performance

of power systems and also to control Industrial drives using power electronics.

PSO2: Demonstrate the concepts of process control for Industrial Automation, design models for

environmental and social concerns and also exhibit continuous self- learning.

Program Educational Objectives (PEOs)

PEO1: To produce competent and Ethical Electrical and Electronics Engineers who will exhibit

the necessary technical and managerial skills to perform their duties in society.

PEO2: To make graduates continuously acquire and enhance their technical and socio-economic

skills.

PEO3: To aspire graduates on R&D activities leading to offering solutions and excel in various

career paths.

PEO4: To produce quality engineers who have the capability to work in teams and contribute to

real time projects.

ARDUINO AND RASPBERRY PI BASED PROJECT

Course Code : BEEL456D CIE : 50

Hours/Week : 02 Exam Hours : 03

Credits : 01 SEE : 50

Examination

Type(SEE)

: Practical

Course objectives:

• To impart necessary and practical knowledge of components of Internet of Things

• To develop skills required to build real-life IoT based projects

LIST OF EXPERIMENTS

Expt.No.
Name of the Experiment

COs

1. i) To interface LED/Buzzer with Arduino/Raspberry Pi and write a program to ‘turn ON’

LED for 1 sec after every 2 seconds.

ii) To interface Push button/Digital sensor (IR/LDR) with Arduino/Raspberry Pi and

write a program to ‘turn ON’ LED when push button is pressed or at sensor detection.

CO1,

CO2,CO4

2. i) To interface DHT11 sensor with Arduino/Raspberry Pi and write a program to print

temperature and humidity readings.

ii) To interface OLED with Arduino/Raspberry Pi and write a program to print

temperature and

humidity readings on it.

CO1, CO2,

CO4

3. To interface motor using relay with Arduino/Raspberry Pi and write a program to ‘turn

ON’ motor when push button is pressed

CO2,CO4

4. To interface Bluetooth with Arduino/Raspberry Pi and write a program to send sensor

data to Smartphone using Bluetooth

CO2,CO4

5. To interface Bluetooth with Arduino/Raspberry Pi and write a program to turn LED

ON/OFF when '1'/'0' is received from Smartphone using Bluetooth

CO2,CO4

6. Write a program on Arduino/Raspberry Pi to upload temperature and humidity data to

thing speak cloud

CO4,CO4

7. Write a program on Arduino/Raspberry Pi to retrieve temperature and humidity data from

thing speak cloud.

CO3, CO4

8. Write a program on Arduino/Raspberry Pi to publish temperature data to MQTT broker CO3, CO4

9. Write a program to create UDP server on Arduino/Raspberry Pi and respond with

humidity data to UDP client when requested

CO3,CO4

10.
Write a program to create TCP server on Arduino/Raspberry Pi and respond with

humidity data to TCP client when requested.

CO3, CO4

11.
Write a program on Arduino/Raspberry Pi to subscribe to MQTT broker for temperature

data and print it.

CO3, CO4

REFERNCE BOOKS:

1. https://www.arduino.cc

2. https://www.raspberrypi.org/

3. Course in Internet of Things (IOT) Using Arduino - NIELIT Delhi Centre

4. Vijay Madisetti, Arshdeep Bahga, Internet of Things. "A Hands on Approach",

University Press

5. Dr. SRN Reddy, Rachit Thukral and Manasi Mishra, "Introduction to Internet of Things:

A practical Approach", ETI Labs

6. Pethuru Raj and Anupama C Raman, "The Internet of Things: Enabling Technologies,

Platforms, and Use Cases", CRC Press

7. Jeeva Jose, "Internet of Things", Khanna Publishing House, Delhi

8. Adrian McEwen, "Designing the Internet of Things", Wiley

9. Raj Kamal, "Internet of Things: Architecture and Design", McGraw Hill

COURSE OUTCOMES

At the end of the course the student will be able to:

COs Statement RBTL

CO-1 Explain the concepts of Internet of Things and its hardware and software components L2

CO-2 Evaluate Interfacing of I/O devices, sensors & communication modules. L5

CO-3 Evaluate Remotely monitoring data and control devices. L5

CO-4 Develop real life IoT based projects L5

Cycle of Experiments

CYCLE-1

Expt.

No.
Name of the Experiment

1. i) To interface LED/Buzzer with Arduino/Raspberry Pi and write a program to ‘turn ON’ LED for

1 sec after every 2 seconds.

ii) To interface Push button/Digital sensor (IR/LDR) with Arduino/Raspberry Pi and write a

program to ‘turn ON’ LED when push button is pressed or at sensor detection.

2. i) To interface DHT11 sensor with Arduino/Raspberry Pi and write a program to print

temperature and humidity readings.

ii) To interface OLED with Arduino/Raspberry Pi and write a program to print temperature and

humidity readings on it.

3. To interface Bluetooth with Arduino/Raspberry Pi and write a program to send sensor data to

Smartphone using Bluetooth

4. To interface Bluetooth with Arduino/Raspberry Pi and write a program to turn LED ON/OFF when

'1'/'0' is received from Smartphone using Bluetooth

5. To interface motor using relay with Arduino/Raspberry Pi and write a program to ‘turn ON’ motor

when push button is pressed

CYCLE-II

6. Write a program on Arduino/Raspberry Pi to upload temperature and humidity data to thing speak

cloud

7. Write a program on Arduino/Raspberry Pi to retrieve temperature and humidity data from

thing speak cloud.

8. Write a program on Arduino/Raspberry Pi to publish temperature data to MQTT broker

9. Write a program to create UDP server on Arduino/Raspberry Pi and respond with humidity

data to UDP client when requested

10.
Write a program to create TCP server on Arduino/Raspberry Pi and respond with humidity

data to TCP client when requested.

11.
Write a program on Arduino/Raspberry Pi to subscribe to MQTT broker for temperature

data and print it.

Table of Contents

Expt.

No.
Name of the Experiment

1. i) To interface LED/Buzzer with Arduino/Raspberry Pi and write a program to ‘turn

ON’ LED for 1 sec after every 2 seconds.

ii) To interface Push button/Digital sensor (IR/LDR) with Arduino/Raspberry Pi and

write a program to ‘turn ON’ LED when push button is pressed or at sensor detection.

2. i) To interface DHT11 sensor with Arduino/Raspberry Pi and write a program to print

temperature and humidity readings.

ii) To interface OLED with Arduino/Raspberry Pi and write a program to print

temperature and humidity readings on it.

3. To interface motor using relay with Arduino/Raspberry Pi and write a program to ‘turn

ON’ motor when push button is pressed

4. To interface Bluetooth with Arduino/Raspberry Pi and write a program to send sensor

data to Smartphone using Bluetooth

5. To interface Bluetooth with Arduino/Raspberry Pi and write a program to turn LED

ON/OFF when '1'/'0' is received from Smartphone using Bluetooth

6. Write a program on Arduino/Raspberry Pi to upload temperature and humidity data to

thing speak cloud

7. Write a program on Arduino/Raspberry Pi to retrieve temperature and humidity

data from thing speak cloud.

8. Write a program on Arduino/Raspberry Pi to publish temperature data to MQTT

broker

9. Write a program to create UDP server on Arduino/Raspberry Pi and respond

with humidity data to UDP client when requested

10. Write a program to create TCP server on Arduino/Raspberry Pi and respond

with humidity data to TCP client when requested.

11. Write a program on Arduino/Raspberry Pi to subscribe to MQTT broker for

temperature data and print it.

ARDUINO AND RASPBERRY PI BASED PROJECT BEEL456D

Department of EEE, ATMECE, Mysore Page 1

1. Arduino Uno

The Arduino Uno is an open-source microcontroller board based on the Microchip ATmega328P

microcontroller and developed by Arduino.cc. The board is equipped with sets of digital and analog

input/output (I/O) pins that may be interfaced to various expansion boards (shields) and other circuits.

The board has 14 digital I/O pins (six capable of PWM output), 6 analog I/O pins, and is

programmable with the Arduino IDE (Integrated Development Environment), via a type B USB cable.

It can be powered by the USB cable or by an external 9-volt battery, though it accepts voltages

between 7 and 20 volts. The word "uno" means "one" in Italian and was chosen to mark the initial release

of Arduino Software.

Figure-1: Arduino Uno Board

Here are the components that make up an Arduino board and what each of their functions are.

• Reset Button – This will restart any code that is loaded to the Arduino board

• AREF – Stands for “Analog Reference” and is used to set an external reference voltage

• Ground Pin – There are a few ground pins on the Arduino and they all work the same

• Digital Input/ Output – Pins 0-13 can be used for digital input or output

• PWM – The pins marked with the (~) symbol can simulate analog output

• USB Connection – Used for powering up your Arduino and uploading sketches

• TX/RX – Transmit and receive data indication LEDs

• ATmega Microcontroller – This is the brains and is where the programs are stored

• Power LED Indicator – This LED lights up anytime the board is plugged in a power source

• Voltage Regulator – This controls the amount of voltage going into the Arduino board

• DC Power Barrel Jack – This is used for powering your Arduino with a power supply

• 3.3V Pin – This pin supplies 3.3 volts of power to your projects

• 5V Pin – This pin supplies 5 volts of power to your projects

ARDUINO AND RASPBERRY PI BASED PROJECT BEEL456D

Department of EEE, ATMECE, Mysore Page 2

• Ground Pins – There are a few ground pins on the Arduino and they all work the same

• Analog Pins – These pins can read the signal from an analog sensor and convert it to digital.

1.1 Features of the Arduino

• Arduino boards are able to read analog or digital input signals from different sensors and turn

it into an output such as activating a motor, turning LED on/off, connect to the cloud and

many other actions.

• The board functions can be controlled by sending a set of instructions to the microcontroller

on the board via Arduino IDE.

• Arduino IDE uses a simplified version of C++, making it easier to learn to program.

• Arduino provides a standard form factor that breaks the functions of the micro- controller into

a more accessible package.

2. ARDUINO IDE (Integrated Development Environment)

2.1 Introduction:

The Arduino Software (IDE) is easy-to-use and is based on the Processing programming

environment. The Arduino Integrated Development Environment (IDE) is a cross-platform application

(for Windows, macOS, Linux) that is written in functions from C and C++.

The open-source Arduino Software (IDE) makes it easy to write code and upload it to the the

board. This software can be used with any Arduino board.

• The Arduino Software (IDE) – contains:

• A text editor for writing code

• A message area

• A text consoles

• A toolbar with buttons for common functions and a series of menus.

• It connects to the Arduino hardware to upload programs and communicate with them.

ARDUINO AND RASPBERRY PI BASED PROJECT BEEL456D

Department of EEE, ATMECE, Mysore Page 3

2.2 INSTALLATION OF ARDUINO SOFTWARE (IDE)

Step-1: Downloading

• To install the Arduino software, download this page: http://arduino.cc/en/Main/Software

and proceed with the installation by allowing the driver installation process. Or Download

page on the Arduino Official website.

Step-2: Directory Installation

• Choose the installation directory.

http://arduino.cc/en/Main/Software

ARDUINO AND RASPBERRY PI BASED PROJECT BEEL456D

Department of EEE, ATMECE, Mysore Page 4

Step-3: Extraction of Files

• The process will extract and install all the required files to execute properly the Arduino

Software (IDE)

Step 4: Connecting the board

• Connect the board to the computer using the USB cable. The green power LED (labelled

PWR) should go on.

Step 5: Working on the new project

• Open the Arduino IDE software on your computer. Coding in the Arduino language will

control your circuit.

• Open a new sketch File by clicking on New

ARDUINO AND RASPBERRY PI BASED PROJECT BEEL456D

Department of EEE, ATMECE, Mysore Page 5

Step-6: Select your Arduino board

• Go to Tools → Board and select your board

Step-7: Select your serial port

• Select the serial device of the Arduino board.

• Go to Tools → Serial Port menu. This is likely to be COM3 or higher (COM1 and

COM2 are usually reserved for hardware serial ports).

• To find out, you can disconnect your Arduino board and re-open the menu, the

entry that disappears should be of the Arduino board. Reconnect the board and

select that serial port

ARDUINO AND RASPBERRY PI BASED PROJECT BEEL456D

Department of EEE, ATMECE, Mysore Page 6

Step 8: Upload the program to your board

• Click the "Upload" button in the environment.

• Wait a few seconds; you will see the RX and TX LEDs on the board, flashing.

• If the upload is successful, the message "Done uploading" will appear in the status bar.

2.3 Arduino - Program Structure

Procedure for writing the program in Arduino software program:

Let us start with the Structure. Software structure consists of two main functions −

• Setup () function

• Loop () function

ARDUINO AND RASPBERRY PI BASED PROJECT BEEL456D

Department of EEE, ATMECE, Mysore Page 7

• Setup() function

The setup() function is called when a sketch starts. Use it to initialize the variables, pin

modes, start using libraries, etc. The setup function will only run once, after each power up

or reset of the Arduino board.

• Loop() function

After creating a setup() function, which initializes and sets the initial values, the loop()

function does precisely what its name suggests, and loops consecutively, allowing your

program to change and respond. Use it to actively control the Arduino board.

ARDUINO AND RASPBERRY PI BASED PROJECT BEEL456D

Department of EEE, ATMECE, Mysore Page 8

3. Raspberry Pi

3.1 Raspberry Pi Introduction:

The Raspberry Pi is a series of small single-board computers developed by the Raspberry Pi Foundation

in the UK. It was created to promote the teaching of basic computer science and programming in schools

and developing countries, but it has since gained popularity among hobbyists and professionals alike for a

wide range of projects.

3.2 Raspberry Pi Models:

Over the years, several models of the Raspberry Pi have been released, each offering different

specifications and capabilities. Some of the popular models include:

• Raspberry Pi 1 Model A/B/A+/B+

• Raspberry Pi 2 Model B

• Raspberry Pi 3 Model B/B+

• Raspberry Pi 4 Model B

• Raspberry Pi Zero/Zero W

ARDUINO AND RASPBERRY PI BASED PROJECT BEEL456D

Department of EEE, ATMECE, Mysore Page 9

3.3 Raspberry Pi Pin Description:

The Raspberry Pi features a GPIO (General-Purpose Input/Output) header that allows it to connect to

various components and peripherals. Here's a brief description of the GPIO pins on a Raspberry Pi:

A. Power Pins:

• 3.3V: Provides 3.3V power output.

• 5V: Provides 5V power output.

• GND (Ground): Ground pins.

B. GPIO Pins:

• The GPIO pins are used for digital input/output.

• GPIO pins are numbered from GPIO2 to GPIO27 on most models.

• Some pins have additional functions such as SPI, I2C, UART, etc.

C. Special Function Pins:

• I2C Pins (SDA, SCL): Used for I2C communication.

• SPI Pins (MOSI, MISO, SCLK, CE0, CE1): Used for SPI communication.

• UART Pins (TXD, RXD): Used for serial communication.

• PWM Pins: Pulse Width Modulation pins for analog-like output.

3.3 Raspberry Pi Features:

• Processor: The Raspberry Pi models come with different processors ranging from ARMv6 to

ARMv8 architectures.

• Memory: The RAM size varies between models, with some models having up to 8GB of RAM.

• Storage: Most Raspberry Pi models use microSD cards for storage, but the Raspberry Pi 4

supports USB boot and has an optional USB 3.0 port for faster storage options.

• Connectivity: Raspberry Pi boards come with built-in Ethernet, Wi-Fi, and Bluetooth options,

with the newer models offering faster and more reliable connectivity options.

• Operating System: The Raspberry Pi can run various operating systems, including Raspberry Pi

OS (formerly Raspbian), Ubuntu, and others.

• GPIO: The GPIO header allows the Raspberry Pi to connect to various sensors, LEDs, motors,

and other electronic components, making it suitable for a wide range of projects.

• Expansion: The Raspberry Pi features multiple USB ports, HDMI ports, audio jacks, and

camera/display interfaces, allowing for easy expansion and connectivity with peripherals.

ARDUINO AND RASPBERRY PI BASED PROJECT BEEL456D

Department of EEE, ATMECE, Mysore Page 10

4. SENSORS

The sensor can be defined as a device which can be used to sense/detect the physical quantity like

force, pressure, strain, light etc and then convert it into desired output like the electrical signal to measure

the applied physical quantity. In few cases, a sensor alone may not be sufficient to analyze the obtained

signal. In those cases, a signal conditioning unit is used in order to maintain sensor’s output voltage

levels in the desired range with respect to the end device that we use.

 Fig. : Sensor Block

In signal conditioning unit, the output of the sensor may be amplified, filtered or modified to the

desired output voltage. For example, if we consider a microphone it detects the audio signal and converts

to the output voltage (is in terms of millivolts) which becomes hard to drive an output circuit. So, a signal

conditioning unit (an amplifier) is used to increase the signal strength. But the signal conditioning may

not be necessary for all the sensors like photodiode, LDR etc.

Most of the sensors can’t work independently. So, sufficient input voltage should be applied to it.

Various sensors have different operating ranges which should be considered while working with it else

the sensor may get damaged permanently.

4.1 Types of Sensors:

Let us see the various different types of sensors that are available in the market and discuss their

functionality, working, applications etc. We will discuss various sensors like:

• Light Sensor

• IR Sensor (IR Transmitter / IR LED)

• Photodiode (IR Receiver)

• Light Dependent Resistor

• Temperature Sensor

• Thermistor

ARDUINO AND RASPBERRY PI BASED PROJECT BEEL456D

Department of EEE, ATMECE, Mysore Page 11

• Thermocouple

• Pressure/Force/Weight Sensor

• Strain Gauge (Pressure Sensor)

• Load Cells (Weight Sensor)

• Position Sensor

• Potentiometer

• Encoder

• Hall Sensor (Detect Magnetic Field)

• Flex Sensor

• Sound Sensor

• Microphone

• Ultrasonic Sensor

• Touch Sensor

• PIR Sensor

• Tilt Sensor

• Accelerometer

• Gas Sensor

3.1.1 IR LED:

It is also called as IR Transmitter. It is used to emit Infrared rays. The range of these

frequencies are greater than the microwave frequencies (i.e. >300GHz to few hundreds of THz). The rays

generated by an infrared LED can be sensed by Photodiode explained below. The pair of IR LED and

photodiode is called IR Sensor.

Fig.10: IR LED

ARDUINO AND RASPBERRY PI BASED PROJECT BEEL456D

Department of EEE, ATMECE, Mysore Page 12

3.1.2 Photo Diode (Light Sensor):

It is a semiconductor device which is used to detect the light rays and mostly used as IR

Receiver. Its construction is similar to the normal PN junction diode but the working principle differs

from it. As we know a PN junction allows small leakage currents when it is reverse biased so, this

property is used to detect the light rays. A photodiode is constructed such that light rays should fall on the

PN junction which makes the leakage current increase based on the intensity of the light that we have

applied. So, in this way, a photodiode can be used to sense the light rays and maintain the current

through the circuit.

Using a photodiode we can build a basic automatic street lamp which glows when the sunlight

intensity decreases. But the photodiode works even if a small amount of light falls on it so, care should be

taken.

Fig.11: Photo Diode

3.1.3 LDR (Light Dependent Resistor):

As the name itself specifies that the resistor that depends upon the light intensity. It works on the

principle of photoconductivity which means the conduction due to the light. It is generally made up of

Cadmium sulfide. When light falls on the LDR, its resistance decreases and acts similar to a conductor

and when no light falls on it, its resistance is almost in the range of MΩ or ideally it acts as an open

circuit. One note should be considered with LDR is that it won’t respond if the light is not exactly

focused on its surface.

https://circuitdigest.com/article/what-is-diode-types-working-pn-junction-theory

ARDUINO AND RASPBERRY PI BASED PROJECT BEEL456D

Department of EEE, ATMECE, Mysore Page 13

Fig.12: LDR

3.1.4 Thermistor (Temperature Sensor):

A thermistor can be used to detect the variation in temperature. It has a negative temperature

coefficient that means when the temperature increases the resistance decreases. So, the thermistor’s

resistance can be varied with the rise in temperature which causes more current flow through it. This

change in current flow can be used to determine the amount of change in temperature. An application for

thermistor is, it is used to detect the rise in temperature and control the leakage current in a transistor

circuit which helps in maintaining its stability.

3.1.5 Thermocouple (Temperature Sensor):

Another component that can detect the variation in temperature is a thermocouple. In its

construction, two different metals are joined together to form a junction. Its main principle is when the

junction of two different metals are heated or exposed to high temperatures a potential across their

terminals varies. So, the varying potential can be further used to measure the amount of change in

temperature.

Fig.13: Thermocouple Process

ARDUINO AND RASPBERRY PI BASED PROJECT BEEL456D

Department of EEE, ATMECE, Mysore Page 14

3.1.6 Strain Gauge (Pressure/Force Sensor):

A strain gauge is used to detect pressure when a load is applied. It works on the principle of

resistance, we know that the resistance is directly proportional to the length of the wire and is inversely

proportional to its cross-sectional area (R=ρl/a). The same principle can be used here to measure the load.

On a flexible board, a wire is arranged in a zig-zag manner as shown in the figure below. So, when the

pressure is applied to that particular board, it bends in a direction causing the change in overall length and

cross-sectional area of the wire. This leads to change in resistance of the wire. The resistance thus

obtained is very minute (few ohms) which can be determined with the help of the Wheatstone bridge. The

strain gauge is placed in one of the four arms in a bridge with the remaining values unchanged. Therefore,

when the pressure is applied to it as the resistance changes the current passing through the bridge varies

and pressure can be calculated.

Strain gauges are majorly used to calculate the amount of pressure that an airplane wing can

withstand and it is also used to measure the number of vehicles allowable on a particular road etc.

Fig.14: Strain Guage

3.1.7 Load Cell (Weight Sensor):

Load cells are similar to strain gauges which measure the physical quantity like force and give the

output in form of electrical signals. When some tension is applied on the load cell it structure varies

causing the change in resistance and finally, its value can be calibrated using a Wheatstone bridge.

https://circuitdigest.com/article/what-is-wheatstone-bridge

ARDUINO AND RASPBERRY PI BASED PROJECT BEEL456D

Department of EEE, ATMECE, Mysore Page 15

Fig.15: Load Cell

3.1.8 Potentiometer:

A potentiometer is used to detect the position. It generally has various ranges of resistors

connected to different poles of the switch. A potentiometer can be either rotary or linear type. In rotary

type, a wiper is connected to a long shaft which can be rotated. When the shaft has rotated the position of

the wiper alters such that the resultant resistance varies causing the change in the output voltage. Thus the

output can be calibrated to detect the change its position.

Fig.16: Potentiometer

3.1.9 Encoder:

To detect the change in the position an encoder can also be used. It has a circular rotatable disk-

like structure with specific openings in between such that when the IR rays or light rays pass through it

only a few light rays get detected. Further, these rays are encoded into a digital data (in terms of binary)

which represents the specific position.

ARDUINO AND RASPBERRY PI BASED PROJECT BEEL456D

Department of EEE, ATMECE, Mysore Page 16

Fig.17: Encoder

3.1.10 Hall Sensor:

The name itself states that it is the sensor which works on the Hall Effect. It can be defined as

when a magnetic field is brought close to the current carrying conductor (perpendicular to the direction of

the electric field) then a potential difference is developed across the given conductor. Using this property

a Hall sensor is used to detect the magnetic field and gives output in terms of voltage. Care should be

taken that the Hall sensor can detect only one pole of the magnet.

The hall sensor is used in few smartphones which are helpful in turning off the screen when the flap cover

(which has a magnet in it) is closed onto the screen.

3.1.11 Flex Sensor:

A FLEX sensor is a transducer which changes its resistance when its shape is changed or when it is

bent. A FLEX sensor is 2.2 inches long or of finger length. It is shown in the figure. Simply speaking the

sensor terminal resistance increases when it’s bent. This change in resistance can do no good unless we

can read them. The controller at hand can only read the changes in voltage and nothing less, for this, we

are going to use voltage divider circuit, with that we can derive the resistance change as a voltage change.

https://circuitdigest.com/calculators/voltage-divider-calculator

ARDUINO AND RASPBERRY PI BASED PROJECT BEEL456D

Department of EEE, ATMECE, Mysore Page 17

Fig.18: Flex Sensor

3.1.12 Microphone (Sound Sensor):

Microphone can be seen on all the smartphones or mobiles. It can detect the audio signal and

convert them into small voltage (mV) electrical signals. A microphone can be of many types like

condenser microphone, crystal microphone, carbon microphone etc. each type of microphone work on the

properties like capacitance, piezoelectric effect, resistance respectively. Let us see the operation of a

crystal microphone which works on the piezoelectric effect. A bimorph crystal is used which under

pressure or vibrations produces proportional alternating voltage. A diaphragm is connected to the crystal

through a drive pin such that when the sound signal hits the diaphragm it moves to and fro, this

movement changes the position of the drive pin which causes vibrations in the crystal thus an alternating

voltage is generated with respect to the applied sound signal. The obtained voltage is fed to

an amplifier in order to increase the overall strength of the signal.

Fig.19: Microphone

3.1.13 Ultrasonic sensor:

Ultrasonic means nothing but the range of the frequencies. Its range is greater than audible range

(>20 kHz) so even it is switched on we can’t sense these sound signals. Only specific speakers and

https://circuitdigest.com/electronic-circuits/lm386-audio-amplifier-circuit

ARDUINO AND RASPBERRY PI BASED PROJECT BEEL456D

Department of EEE, ATMECE, Mysore Page 18

receivers can sense those ultrasonic waves. This ultrasonic sensor is used to calculate the distance

between the ultrasonic transmitter and the target and also used to measure the velocity of the target.

Ultrasonic sensor HC-SR04 can be used to measure distance in the range of 2cm-400cm with an

accuracy of 3mm. Let’s see how this module works. The HCSR04 module generates a sound vibration in

ultrasonic range when we make the ‘Trigger’ pin high for about 10us which will send an 8 cycle sonic

burst at the speed of sound and after striking the object, it will be received by the Echo pin. Depending on

the time taken by sound vibration to get back, it provides the appropriate pulse output. We can calculate

the distance of the object based on the time taken by the ultrasonic wave to return back to the sensor

Fig.20: Ultrasonic Sensor

3.1.14 Touch Sensor:

There are two types of touch sensors resistive based and a capacitive based touch screens. Let’s

know about working of these sensors briefly.

The resistive touchscreen has a resistive sheet at the base and a conductive sheet under the screen

both of these are separated by an air gap with a small voltage applied to the sheets. When we press or

touch the screen the conductive sheet touches the resistive sheet at that point causing current flow at that

particular point, the software senses the location and relevant action is performed.

Whereas capacitive touch works on the electrostatic charge that is available on our body. The

screen is already charged with s the all electric field. When we touch the screen a close circuit forms due

to electrostatic charge that flow through our body. Further, software decides the location and the action to

be performed. We can observe that capacitive touch screen won’t work when wear hand gloves because

there won’t be conduction between the finger(s) and the screen.

ARDUINO AND RASPBERRY PI BASED PROJECT BEEL456D

Department of EEE, ATMECE, Mysore Page 19

Fig.21: Touch Sensor

3.1.15 PIR sensor:

PIR sensor stands for Passive Infrared sensor. These are used to detect the motion of humans,

animals or things. We know that infrared rays have a property of reflection. When an infrared ray hits an

object, depending upon the temperature of the target the infrared ray properties changes, this received

signal determines the motion of the objects or the living beings. Even if the shape of the object alters, the

properties of the reflected infrared rays can differentiate the objects precisely.

Fig.22: PIR Sensor

ARDUINO AND RASPBERRY PI BASED PROJECT BEEL456D

Department of EEE, ATMECE, Mysore Page 20

3.1.16 Accelerometer (Tilt Sensor):

An accelerometer sensor can sense the tilt or movement of it in a particular direction. It works

based on the acceleration force caused due to the earth’s gravity. The tiny internal parts of it are such

sensitive that those will react to a small external change in position. It has a piezoelectric crystal when

tilted causes disturbance in the crystal and generates potential which determines the exact position with

respect to X, Y and Z axis.

Fig.23: Accelerometer

3.1.17 Gas Sensor:

In industrial applications gas sensors plays a major role in detecting the gas leakage. If no such

device is installed in such areas it ultimately leads to an unbelievable disaster. These gas sensors are

classified into various types based on the type of gas that to be detected. Let’s see how this sensor works.

Underneath a metal sheet there exists a sensing element which is connected to the terminals where a

current is applied to it. When the gas particles hit the sensing element, it leads to a chemical reaction such

that the resistance of the elements varies and current through it also alters which finally can detect the gas.

ARDUINO AND RASPBERRY PI BASED PROJECT BEEL456D

Department of EEE, ATMECE, Mysore Page 21

Fig.24: Gas Sensor

Fig.25: Basic Sensors

ARDUINO AND RASPBERRY PI BASED PROJECT BEEL456D

Department of EEE, ATMECE, Mysore Page 22

Experiment No. 1

i) To interface LED/Buzzer with Arduino/Raspberry Pi and write a program to ‘turn ON’ LED for 1

sec after every 2 seconds.

ii) To interface Push button/Digital sensor (IR/LDR) with Arduino/Raspberry Pi and write a program

to ‘turn ON’ LED when push button is pressed or at sensor detection.

i) To interface LED/Buzzer with Arduino/Raspberry Pi and write a program to ‘turn ON’ LED for 1 sec

after every 2 seconds.

Objectives:

• To implement the basic principles of interfacing an LED and buzzer with

Arduino/Raspberry Pi and write a C program to turn ON the LED for 1 second after

every 2 seconds.

• To implement the concept of interfacing a push button and digital sensor (IR/LDR) with

Arduino/Raspberry Pi and write a C program to turn ON the LED when the push button

is pressed or sensor detection occurs.

Components Required:

• Arduino UNO

• LED/ Buzzer.

• Resistor (220Ω)

• Connecting cable or USB cable.

• Breadboard.

• Jumper wires

Circuit Diagram:

Figure-1.1 a): LED and Buzzer

ARDUINO AND RASPBERRY PI BASED PROJECT BEEL456D

Department of EEE, ATMECE, Mysore Page 23

Figure-1.1 b): LED interfacing with Arduino

Pin Connections:

• Arduino Digital Pin (e.g., pin 13) -> One end of 220Ω Resistor -> Anode (+, longer leg)

of LED/Positive (+) of Buzzer

• Cathode (-, shorter leg) of LED/Negative (-) of Buzzer -> GND Pin (Arduino)

Procedure:

• LED/Buzzer: For LED:

Anode (+, longer leg): Connect to one end of the 220Ω resistor.

Cathode (-, shorter leg): Connect to Arduino digital pin (e.g., pin 13).

For Buzzer:

Positive (+): Connect to one end of the 220Ω resistor.

Negative (-): Connect to Arduino digital pin (e.g., pin 13).

• Resistor (220Ω):

Connect one end of the resistor to the anode of the LED or positive terminal of the buzzer.

Connect the other end of the resistor to the digital pin of the Arduino (e.g., pin 13).

• Connecting Cable or USB Cable:

Connect one end to the Arduino UNO.

Connect the other end to your computer for power and programming.

• Breadboard:

Place the LED/Buzzer and resistor on the breadboard to ensure stability.

Connect the jumper wires to the appropriate pins on the LED/Buzzer, resistor, and Arduino.

• Jumper Wires:

Connect one end of the jumper wire from the digital pin (e.g., pin 13) of the Arduino to the other

end of the resistor and anode of the LED or positive terminal of the buzzer.

Connect another jumper wire from the cathode of the LED or negative terminal of the buzzer to

the GND pin of the Arduino.

ARDUINO AND RASPBERRY PI BASED PROJECT BEEL456D

Department of EEE, ATMECE, Mysore Page 24

Program:

Outcome:

1. Understand the basic principles of interfacing LEDs and buzzers with Arduino UNO

2. Write and Evaluate C program to control the LED and buzzer operations using Arduino

UNO

Result:

LED Status Duration in Seconds

ON

OFF

ARDUINO AND RASPBERRY PI BASED PROJECT BEEL456D

Department of EEE, ATMECE, Mysore Page 25

ii) To interface Push button/Digital sensor (IR/LDR) with Arduino/Raspberry Pi and write a

program to ‘turn ON’ LED when push button is pressed or at sensor detection.

Objective:

• To understand and implement the concept of interfacing a push button and digital sensor

(IR/LDR) with Arduino/Raspberry Pi

• Write a C program to turn ON the LED when the push button is pressed or sensor

detection occurs.

CASE -1: Using Push Button

Components Required:

• Arduino UNO.

• Push button.

• LED.

• Resistor (10KΩ)

• Connecting cable or USB cable.

• Breadboard.

• Jumper wires.

Circuit Diagram:

Figure-1.2: Push button interfacing with Arduino

ARDUINO AND RASPBERRY PI BASED PROJECT BEEL456D

Department of EEE, ATMECE, Mysore Page 26

Pin Connections:

• Arduino Digital Pin (e.g., pin 7) -> One pin of Push Button

• GND Pin -> Other pin of Push Button

• 5V or VCC -> One leg of 10KΩ Resistor -> Other leg of 10KΩ Resistor -> Digital Pin of Push

Button

• Arduino Digital Pin (e.g., pin 13) -> One end of 220Ω Resistor -> Anode (+, longer leg) of LED

• Cathode (-, shorter leg) of LED -> GND Pin (Arduino)

Procedure:

• Push Button:

Connect one pin of the push button to Arduino digital pin (e.g., pin 7).

Connect the other pin of the push button to GND.

If needed, connect a 10KΩ pull-down resistor between the digital pin 7 and GND.

• LED:

Anode (+, longer leg): Connect to one end of the 220Ω resistor.

Cathode (-, shorter leg): Connect to Arduino digital pin (e.g., pin 8).

• Resistor (10KΩ):

If your push button does not have a built-in resistor, connect an external 10KΩ pull-up resistor.

Connect one leg of the 10KΩ resistor to the digital pin of the push button that is connected to the

Arduino.

Connect the other leg of the 10KΩ resistor to 5V or VCC.

• Connecting Cable or USB Cable:

Connect one end to the Arduino UNO.

Connect the other end to your computer for power and programming.

• Breadboard:

Place the push button, LED, and resistor on the breadboard to ensure stability.

Connect the jumper wires to the appropriate pins on the push button, LED, resistor, and Arduino.

• Jumper Wires:

Connect one end of the jumper wire from the digital pin (e.g., pin 7) of the Arduino to one pin of

the push button.

Connect the other end of the jumper wire from the GND pin of the Arduino to the other pin of the

push button.

Connect another jumper wire from the digital pin (e.g., pin 8) of the Arduino to the anode of the

LED or positive terminal of the buzzer.

Connect another jumper wire from the cathode of the LED or negative terminal of the buzzer to

GND.

ARDUINO AND RASPBERRY PI BASED PROJECT BEEL456D

Department of EEE, ATMECE, Mysore Page 27

Program:

ARDUINO AND RASPBERRY PI BASED PROJECT BEEL456D

Department of EEE, ATMECE, Mysore Page 28

CASE -2: Using Infrared Sensor

Components Required:

• Arduino UNO.

• Infrared Sensor(IR)

• LED.

• Resistor (220Ω)

• Connecting cable or USB cable.

• Breadboard.

• Jumper wires.

Circuit Diagram:

Figure 1.3 a) : IR Sensor

Figure 1.3 b) : Interfacing of Digital Sensor (IR) with Arduino

ARDUINO AND RASPBERRY PI BASED PROJECT BEEL456D

Department of EEE, ATMECE, Mysore Page 29

Pin Connections:

• Arduino 5V -> IR Sensor VCC

• Arduino GND -> IR Sensor GND

• Arduino Digital Pin (e.g., pin 9) -> IR Sensor OUT

• Arduino Digital Pin (e.g., pin 13) -> One end of 220Ω Resistor -> Anode (+, longer

leg) of LED

• Cathode (-, shorter leg) of LED -> GND Pin (Arduino)

 Procedure:

• Infrared (IR) Sensor:

VCC: Connect to Arduino 5V pin.

GND: Connect to Arduino GND pin.

OUT: Connect to Arduino digital pin (e.g., pin 9).

• LED:

Anode (+, longer leg): Connect to one end of the 220Ω resistor.

Cathode (-, shorter leg): Connect to Arduino digital pin (e.g., pin 13).

• Resistor (220Ω):

Connect one end of the resistor to the anode of the LED.

Connect the other end of the resistor to the digital pin of the Arduino (e.g., pin 13).

• Connecting Cable or USB Cable:

Connect one end to the Arduino UNO.

Connect the other end to your computer for power and programming.

• Breadboard:

Place the IR sensor, LED, and resistor on the breadboard to ensure stability.

Connect the jumper wires to the appropriate pins on the IR sensor, LED, resistor,

and Arduino.

• Jumper Wires:

Connect one end of the jumper wire from the digital pin (e.g., pin 9) of the Arduino

to the OUT pin of the IR sensor.

Connect another jumper wire from the GND pin of the Arduino to the GND pin of

the IR sensor.

Connect another jumper wire from the digital pin (e.g., pin 13) of the Arduino to the

anode of the LED.

Connect another jumper wire from the cathode of the LED to GND.

ARDUINO AND RASPBERRY PI BASED PROJECT BEEL456D

Department of EEE, ATMECE, Mysore Page 30

Program:

Outcome:

• Understand the concept of interfacing push buttons and digital sensors (IR/LDR) with

Arduino

• Write and evaluate a C program to detect button press or sensor detection and control

LED operations using Arduino

Result:

Pushbutton LED Status (ON/OFF) IR Sensor

Detected

LED Status (ON/OFF)

ON YES

OFF NO

ARDUINO AND RASPBERRY PI BASED PROJECT BEEL456D

Department of EEE, ATMECE, Mysore Page 31

Experiment 2

i) To interface DHT11 sensor with Arduino/Raspberry Pi and write a program to print

temperature and humidity readings.

ii) To interface OLED with Arduino/Raspberry Pi and write a program to print temperature and

humidity readings on it.

i) To interface DHT11 sensor with Arduino/Raspberry Pi and write a program to print

temperature and humidity readings.

Objectives:

• To understand and implement the basic principles of interfacing a DHT11 sensor with

Arduino/Raspberry Pi.

• To write a program to read temperature and humidity data from the DHT11 sensor and print the

readings.

Components Required:

• Arduino UNO

• DHT11.

• Connecting cable or USB cable.

• Jumper wires

Circuit Diagram:

Figure 2.1 a) : DHT11 Sensor

ARDUINO AND RASPBERRY PI BASED PROJECT BEEL456D

Department of EEE, ATMECE, Mysore Page 32

Figure 2.1 b) : DHT11 interfacing with Arduino

Pin Connections:

• Arduino 5V -> DHT11 VCC

• Arduino GND -> DHT11 GND

• Arduino Digital Pin (e.g., pin 2) -> DHT11 DATA

Procedure:

• Install the library for DHT in Arduino IDE.

Open Arduino IDE and navigate to Sketch > Include Library > Manage Libraries.

• Search for “DHTlib” and install the “DHTlib” library in the Arduino IDE.

• DHT11 Sensor:

VCC: Connect to Arduino 5V pin.

GND: Connect to Arduino GND pin.

DATA: Connect to Arduino digital pin (e.g., pin 2).

• Connecting Cable or USB Cable:

Connect one end to the Arduino UNO.

Connect the other end to your computer for power and programming.

• Jumper Wires:

• Connect the jumper wires from the Arduino to the DHT11 sensor based on the connections

mentioned above.

Program:

ARDUINO AND RASPBERRY PI BASED PROJECT BEEL456D

Department of EEE, ATMECE, Mysore Page 33

`

Outcome:

• Understand the basic principles of interfacing sensors like DHT11 with

Arduino/Raspberry Pi.

• Write and evaluate a C program to read and display temperature and humidity readings

using Arduino/Raspberry Pi.

Result:

Figure 2.2: Output Serial Monitor Window

ARDUINO AND RASPBERRY PI BASED PROJECT BEEL456D

Department of EEE, ATMECE, Mysore Page 34

ii) To interface OLED with Arduino/Raspberry Pi and write a program to print

temperature and humidity readings on it.

Objectives:

• To understand and implement the concept of interfacing an OLED display with

Arduino/Raspberry Pi.

• To write a program to display temperature and humidity readings from the DHT11 sensor on the

OLED display.

Components Required:

• Arduino UNO/ Raspberry Pi.

• DHT11.

• OLED Display Module.

• Connecting cable or USB cable.

• Jumper wires

Circuit Diagram:

Figure 2.3: OLED interfacing with Arduino

ARDUINO AND RASPBERRY PI BASED PROJECT BEEL456D

Department of EEE, ATMECE, Mysore Page 35

Pin Connections:

• Arduino 5V -> DHT11 VCC & OLED VCC

• Arduino GND -> DHT11 GND & OLED GND

• Arduino Digital Pin 7 -> DHT11 DATA

• Arduino A4 -> OLED SDA

• Arduino A5 -> OLED SCL

Procedure:

• DHT11 Sensor:

VCC: Connect to Arduino 5V pin.

GND: Connect to Arduino GND pin.

DATA: Connect to Arduino digital pin 7.

• OLED Display Module:

VCC: Connect to Arduino 5V pin.

GND: Connect to Arduino GND pin.

SDA: Connect to Arduino A4 pin.

SCL: Connect to Arduino A5 pin.

• Connecting Cable or USB Cable:

Connect one end to the Arduino UNO.

Connect the other end to your computer for power and programming.

• Jumper Wires:

Connect the jumper wires from the Arduino to the DHT11 sensor and OLED display module

based on the connections mentioned above.

Program:

ARDUINO AND RASPBERRY PI BASED PROJECT BEEL456D

Department of EEE, ATMECE, Mysore Page 36

ARDUINO AND RASPBERRY PI BASED PROJECT BEEL456D

Department of EEE, ATMECE, Mysore Page 37

Outcome:

• Understand the concept of interfacing displays like OLED with Arduino/Raspberry Pi.

• Write and evaluate c program to display temperature and humidity readings on an OLED display

using Arduino/Raspberry Pi.

Result

Figure 2.4: Displaying Temperature and Humidity values on OLED using Arduino

ARDUINO AND RASPBERRY PI BASED PROJECT BEEL456D

Department of EEE, ATMECE, Mysore Page 38

Experiment 3

To interface motor using relay with Arduino/Raspberry Pi and write a program to ‘turn

ON’ motor when push button is pressed

Objectives:

• To understand and implement the concept of interfacing a motor using a relay with

Arduino/Raspberry Pi.

• To write a C program that controls the motor to turn ON when a push button is pressed.

Components Required:

• Arduino UNO.

• Relay

• Resistor (10kΩ)

• Motor.

• Connecting cable or USB cable.

• Breadboard

• Jumper wires

Circuit Diagram:

Figure 3.1: Push button interfacing with Arduino

ARDUINO AND RASPBERRY PI BASED PROJECT BEEL456D

Department of EEE, ATMECE, Mysore Page 39

Figure 3.2: Interfacing Motor with relay using Arduino

Figure 3.3: Interfacing Motor with relay and pushbutton using Arduino

Pin Connections:

• Arduino 5V -> Relay VCC

• Arduino GND -> Relay GND

• Arduino Digital Pin 8 -> Relay IN1

• 5V Pin (Arduino) -> One leg of 10kΩ Resistor -> Other leg of 10kΩ Resistor -> Relay IN1

• Motor Positive (+) -> Relay COM

• Motor Negative (-) -> Relay NO

• Digital Pin 2 (with optional 10kΩ Resistor) -> Push Button -> GND

ARDUINO AND RASPBERRY PI BASED PROJECT BEEL456D

Department of EEE, ATMECE, Mysore Page 40

Procedure:

• Relay:

Connect VCC of the Relay to Arduino 5V pin.

Connect GND of the Relay to Arduino GND pin.

Connect IN1 of the Relay to Arduino digital pin 8.

• Resistor (10kΩ):

Connect one leg of the 10kΩ resistor to 5V Pin (Arduino).

Connect the other leg of the 10kΩ resistor to Relay IN1.

• Motor:

Connect Motor Positive (+) to Relay COM.

Connect Motor Negative (-) to Relay NO.

• Push Button:

Connect one pin of the push button to Arduino digital pin 2.

Connect the other pin of the push button to GND.

If needed, connect a 10kΩ pull-down resistor between digital pin 2 and GND.

• Connecting Cable or USB Cable:

Connect one end to the Arduino UNO.

Connect the other end to your computer for power and programming.

• Breadboard:

Place the relay, resistor, motor, push button, and jumper wires on the breadboard to ensure stability.

Connect the jumper wires to the appropriate pins on the relay, resistor, motor, push button, and Arduino.

Program:

ARDUINO AND RASPBERRY PI BASED PROJECT BEEL456D

Department of EEE, ATMECE, Mysore Page 41

Outcome:

• Understand the basic principles of interfacing motors with Arduino/Raspberry Pi using a

relay.

• Write and evaluate a C program to control the motor's operation based on the input from

a push button using Arduino

Result:

Pushbutton Relay Motor Status (ON/OFF)

ON ON

OFF OFF

ARDUINO AND RASPBERRY PI BASED PROJECT BEEL456D

Department of EEE, ATMECE, Mysore Page 42

Experiment 4

To interface Bluetooth with Arduino/Raspberry Pi and write a program to send sensor data to

smartphone using Bluetooth

Objective:

• To establish a Bluetooth communication link between Arduino/Raspberry Pi and a smartphone.

• To send sensor data (e.g., temperature and humidity from DHT11 sensor) from

Arduino/Raspberry Pi to the smartphone via Bluetooth.

Components Required:

• Arduino UNO

• HC-05 or HC-06 Bluetooth module

• Connecting cable or USB cable

• Breadboard

• Jumper wires

• Sensor (e.g., DHT11)

Circuit Diagram:

Figure 4.1: Interfacing Bluetooth with Arduino

ARDUINO AND RASPBERRY PI BASED PROJECT BEEL456D

Department of EEE, ATMECE, Mysore Page 43

Figure 4.2: Interfacing Bluetooth and DHT11 with Arduino

Pin Connection:

• HC-05/HC-06 Bluetooth Module:

VCC: Connect to Arduino 5V pin.

GND: Connect to Arduino GND pin.

TX (Transmit): Connect to Arduino digital pin (e.g., pin 10) via a voltage divider (for HC-05) or

directly to pin 10 (for HC-06).

RX (Receive): Connect to Arduino digital pin (e.g., pin 11) via a voltage divider (for HC-05) or

directly to pin 11 (for HC-06).

• Sensor (e.g., DHT11):

Connect VCC to Arduino 5V pin.

Connect GND to Arduino GND pin.

Connect DATA to Arduino digital pin (e.g., pin 2).

Procedure: Smartphone Application:

• Pair Bluetooth Module with Smartphone:

Turn ON the Bluetooth on your smartphone.

Search for available devices and pair with the Bluetooth module (e.g., HC-05/HC-06).

Receive Data on Smartphone:

ARDUINO AND RASPBERRY PI BASED PROJECT BEEL456D

Department of EEE, ATMECE, Mysore Page 44

• Write a C program in Arduino IDE that connects to the Bluetooth module and reads the received

data.

• Parse the received data to display temperature, humidity, and heat index.

• Perfoorm the pin connection for HC05 and DHT11 sensor on Arduino UNO and verify the sensor

readings in the serial Monitor window.

Program:

#include <SoftwareSerial.h>

SoftwareSerial BTserial(10, 11); // RX, TX

// Define sensor pin

#define DHTPIN 2

#define DHTTYPE DHT11

#include <DHT.h>

DHT dht(DHTPIN, DHTTYPE);

void setup() {

 // Initialize Serial port

 Serial.begin(9600);

 // Initialize Bluetooth serial port

 BTserial.begin(9600);

 // Initialize DHT sensor

 dht.begin();

}

void loop() {

 // Read sensor data

 float humidity = dht.readHumidity();

 float temperature = dht.readTemperature();

 // Check if any reads failed

 if (isnan(humidity) || isnan(temperature)) {

 Serial.println("Failed to read from DHT sensor!");

return;

}

// Send sensor data via Bluetooth

BTserial.print("Temperature: ");

ARDUINO AND RASPBERRY PI BASED PROJECT BEEL456D

Department of EEE, ATMECE, Mysore Page 45

BTserial.print(temperature);

BTserial.print(" °C, Humidity: ");

BTserial.print(humidity);

BTserial.println(" %");

// Print sensor data to Serial Monitor

Serial.print("Temperature: ");

Serial.print(temperature);

Serial.print(" °C, Humidity: ");

Serial.print(humidity);

Serial.println(" %");

// Delay

delay(2000);

}

Outcomes:

• Successful interfacing of Bluetooth module with Arduino/Raspberry Pi.

• Successful transmission of sensor data to a smartphone using Bluetooth communication.

• The smartphone receives and displays the sensor data sent from Arduino/Raspberry Pi via

Bluetooth.

Result:

 Figure 4.3: Receiving Temperature and Humidity data on Bluetooth terminal of smart phone

ARDUINO AND RASPBERRY PI BASED PROJECT BEEL456D

Department of EEE, ATMECE, Mysore Page 46

Experiment 5

To interface Bluetooth with Arduino/Raspberry Pi and write a program to turn LED ON/OFF

when '1'/'0' is received from smartphone using Bluetooth.

Objectives:

• Interfacing Bluetooth with Arduino/Raspberry Pi:

Establish communication between Bluetooth module (HC-05/HC-06) and

Arduino/Raspberry Pi.

• Bluetooth Data Reception:

Write a C program to receive data ('1' or '0') from a smartphone via Bluetooth.

• LED Control:

Turn ON the LED connected to Arduino/Raspberry Pi when '1' is received.

Turn OFF the LED connected to Arduino/Raspberry Pi when '0' is received.

Components Required:

• Arduino UNO

• DHT11 sensor

• Resistor(220Ω)

• Connecting cable or USB cable

• Breadboard

• Jumper wires

• HC-05 or HC-06 Bluetooth module

• Smartphone with Bluetooth capability

ARDUINO AND RASPBERRY PI BASED PROJECT BEEL456D

Department of EEE, ATMECE, Mysore Page 47

Circuit Diagram:

Figure 5.1: Interfacing Bluetooth and LED with Arduino

Pin Connections:

• DHT11 VCC -> Arduino 5V

• DHT11 GND -> Arduino GND

• DHT11 DATA -> Arduino digital pin (e.g., pin 2)

• Resistor -> LED Anode (+)

• LED Cathode (-) -> Arduino GND

• Bluetooth VCC -> Arduino 5V

• Bluetooth GND -> Arduino GND

• Bluetooth TX -> Arduino digital pin (e.g., pin 10)

• Bluetooth RX -> Arduino digital pin (e.g., pin 11)

Procedure:

• DHT11 Sensor:

VCC: Connect to Arduino 5V pin.

GND: Connect to Arduino GND pin.

DATA: Connect to Arduino digital pin (e.g., pin 2).

• Resistor (470Ω):

Connect one leg of the resistor to the anode (+) of the LED.

ARDUINO AND RASPBERRY PI BASED PROJECT BEEL456D

Department of EEE, ATMECE, Mysore Page 48

Connect the other leg of the resistor to the anode (+) of the LED.

Connect the cathode (-) of the LED to Arduino GND pin.

• HC-05/HC-06 Bluetooth Module:

VCC: Connect to Arduino 5V pin.

GND: Connect to Arduino GND pin.

TX (Transmit): Connect to Arduino digital pin (e.g., pin 10).

RX (Receive): Connect to Arduino digital pin (e.g., pin 11).

Program:

#include <DHT.h>

#include <SoftwareSerial.h>

#define DHTPIN 2 // Digital pin connected to the DHT sensor

#define DHTTYPE DHT11 // DHT 11

#define bluetoothTx 10

#define bluetoothRx 11

DHT dht(DHTPIN, DHTTYPE);

SoftwareSerial bluetooth(bluetoothTx, bluetoothRx);

void setup() {

 Serial.begin(9600);

 bluetooth.begin(9600); // HC-05 default speed

 dht.begin();

}

void loop() {

 // Reading temperature or humidity takes about 250 milliseconds!

 float humidity = dht.readHumidity();

 float temperature = dht.readTemperature();

 // Check if any reads failed

 if (isnan(humidity) || isnan(temperature)) {

ARDUINO AND RASPBERRY PI BASED PROJECT BEEL456D

Department of EEE, ATMECE, Mysore Page 49

 Serial.println("Failed to read from DHT sensor!");

 return;

 }

 // Compute heat index in Celsius (isFahreheit = false)

 float heatIndex = dht.computeHeatIndex(temperature, humidity, false);

 // Send sensor data via Bluetooth

 bluetooth.print("Temperature: ");

 bluetooth.print(temperature);

 bluetooth.print(" °C, Humidity: ");

 bluetooth.print(humidity);

 bluetooth.print(" %, Heat index: ");

 bluetooth.print(heatIndex);

 bluetooth.println(" °C");

 // Print sensor data to Serial Monitor

 Serial.print("Temperature: ");

 Serial.print(temperature);

 Serial.print(" °C, Humidity: ");

 Serial.print(humidity);

 Serial.print(" %, Heat index: ");

 Serial.print(heatIndex);

 Serial.println(" °C");

 // Delay

 delay(2000); // Wait 2 seconds before next reading

}

ARDUINO AND RASPBERRY PI BASED PROJECT BEEL456D

Department of EEE, ATMECE, Mysore Page 50

Outcomes:

• Successfully paired the Bluetooth module and established correct pin connections.

• C Programmed the Arduino to interpret Bluetooth data and control the LED.

Result:

Bluetooth Smart Phone (1/0) LED Status (ON/OFF)

Connected

Not Connected

ARDUINO AND RASPBERRY PI BASED PROJECT BEEL456D

Department of EEE, ATMECE, Mysore Page 51

Experiment 6

Write a program on Arduino/Raspberry Pi to upload/retrieve temperature and humidity data to

thingspeak cloud.

Objectives:

• To interface DHT11 sensor with Arduino/Raspberry Pi and read temperature and humidity data.

• To establish a WiFi connection for Arduino/Raspberry Pi to connect to the internet.

• To upload temperature and humidity data to ThingSpeak cloud using WiFi connectivity.

Components Required:

• Arduino UNO

• DHT11.

• Connecting cable or USB cable.

• Breadboard.

• Jumper wires.

Circuit Diagram

Figure 6.1: Interfacing DHT11 with Arduino

ARDUINO AND RASPBERRY PI BASED PROJECT BEEL456D

Department of EEE, ATMECE, Mysore Page 52

Pin Connections: Arduino UNO Pin Connections:

• DHT11 Sensor

• VCC → 5V

• GND → GND

• DATA → Digital Pin 2

Procedure: Arduino Program:

• Setting ThingSpeak & Getting API Key:

Go to https://thingspeak.com/ and set up an account if you do not have one. Login to your

account.

• Create a new channel by clicking on the button. Enter the basic details of the channel. Then Scroll

down and save the channel. You can follow the video guide below.

• Then go to API keys, copy and paste this key in a separate file. You will require it again while

programming.

• Install DHT Library:

Open Arduino IDE.

Go to Sketch -> Include Library -> Manage Libraries.

Search for DHT and install the DHT sensor library by Adafruit.

• Upload the Program:

Copy and paste the following Arduino code into the Arduino IDE.

Replace 'Your_SSID', 'Your_PASSWORD', and 'YOUR_API_KEY' with your WiFi credentials

and ThingSpeak API key respectively.

• Select the correct board (Arduino UNO) and port from the Tools menu.

• Click on the Upload button to upload the program to Arduino UNO.

• Connect the DHT11 Sensor to Arduino UNO:

Connect the VCC pin of the DHT11 sensor to the 5V pin on Arduino UNO.

Connect the GND pin of the DHT11 sensor to the GND pin on Arduino UNO.

Connect the DATA pin of the DHT11 sensor to Digital Pin 2 on Arduino UNO.

• Connect Arduino UNO to Computer:

Connect Arduino UNO to the computer using a USB cable.

• Upload the Program:

Follow the procedure mentioned above to upload the program to Arduino UNO.

https://thingspeak.com/

ARDUINO AND RASPBERRY PI BASED PROJECT BEEL456D

Department of EEE, ATMECE, Mysore Page 53

Program:

#include <DHT.h>

#include <WiFi.h>

#include <WiFiClient.h>

#define DHTPIN 2 // DHT sensor data pin

#define DHTTYPE DHT11 // DHT sensor type

DHT dht(DHTPIN, DHTTYPE);

const char* ssid = "Your_SSID"; // WiFi SSID

const char* password = "Your_PASSWORD"; // WiFi Password

const char* server = "api.thingspeak.com";

WiFiClient client;

void setup() {

 Serial.begin(115200);

 dht.begin();

 WiFi.begin(ssid, password);

 while (WiFi.status() != WL_CONNECTED) {

 delay(1000);

 Serial.println("Connecting to WiFi...");

 }

 Serial.println("Connected to WiFi");

}

void loop() {

 float humidity = dht.readHumidity();

 float temperature = dht.readTemperature();

 if (isnan(humidity) || isnan(temperature)) {

 Serial.println("Failed to read from DHT sensor");

 return;

 }

 Serial.print("Humidity: ");

 Serial.print(humidity);

 Serial.print("% - Temperature: ");

 Serial.print(temperature);

ARDUINO AND RASPBERRY PI BASED PROJECT BEEL456D

Department of EEE, ATMECE, Mysore Page 54

 Serial.println("°C");

 if (client.connect(server, 80)) {

 String postStr = "api_key=YOUR_API_KEY";

 postStr += "&field1=";

 postStr += String(temperature);

 postStr += "&field2=";

 postStr += String(humidity);

 postStr += "\r\n\r\n";

 client.print("POST /update HTTP/1.1\n");

 client.print("Host: api.thingspeak.com\n");

 client.print("Connection: close\n");

 client.print("X-THINGSPEAKAPIKEY: YOUR_API_KEY\n");

 client.print("Content-Type: application/x-www-form-urlencoded\n");

 client.print("Content-Length: ");

 client.print(postStr.length());

 client.print("\n\n");

 client.print(postStr);

 Serial.println("Data sent to ThingSpeak");

 } else

 {

 Serial.println("Failed to connect to ThingSpeak");

 }

 client.stop();

 delay(20000); // Wait 20 seconds before sending next data

}

Outcomes:

• Successful interfacing of DHT11 sensor with Arduino.

• Establishment of a WiFi connection and internet connectivity for Arduino/Raspberry Pi.

• Successful evaluated the upload of temperature and humidity data to ThingSpeak cloud and

visualized the temperature and humidity data on ThingSpeak platform.

ARDUINO AND RASPBERRY PI BASED PROJECT BEEL456D

Department of EEE, ATMECE, Mysore Page 55

Result

Figure 6.2: Readings in Thingspeak Platform

ARDUINO AND RASPBERRY PI BASED PROJECT BEEL456D

Department of EEE, ATMECE, Mysore Page 56

Experiment 7

Write a program on Arduino/Raspberry Pi to retrieve temperature and humidity data from

thingspeak cloud.

Objectives

• To retrieve temperature and humidity data from ThingSpeak cloud using Arduino.

• To establish a WiFi connection for Arduino to connect to the internet.

• To parse and display the retrieved temperature and humidity data from ThingSpeak on

the Serial Monitor.

Components Required:

• Arduino UNO

• DHT11.

• Connecting cable or USB cable.

• Breadboard.

• Jumper wires.

Process Diagram:

Figure 7.1: Flow of data to ThingSpeak Platform

ARDUINO AND RASPBERRY PI BASED PROJECT BEEL456D

Department of EEE, ATMECE, Mysore Page 57

Circuit Diagram

Figure 7.2: Interfacing DHT11 with Arduino

Pin Connection:

• Connect the VCC pin of the DHT11 sensor to the 5V pin on Arduino UNO.

• Connect the GND pin of the DHT11 sensor to the GND pin on Arduino UNO.

• Connect the DATA pin of the DHT11 sensor to Digital Pin 2 on Arduino UNO.

Procedure:

• Arduino Program:

Install WiFi Library:

Open Arduino IDE.

Go to Sketch -> Include Library -> Manage Libraries.

Search for WiFi and install the WiFi library.

• Upload the Program:

Copy and paste the following Arduino code into the Arduino IDE.

• Replace 'Your_SSID', 'Your_PASSWORD', 'YOUR_CHANNEL_ID', and

'YOUR_READ_API_KEY' with your WiFi credentials, ThingSpeak channel ID, and read API

key respectively.

• Select the correct board (Arduino UNO) and port from the Tools menu.

• Click on the Upload button to upload the program to Arduino UNO.

ARDUINO AND RASPBERRY PI BASED PROJECT BEEL456D

Department of EEE, ATMECE, Mysore Page 58

• Connect the DHT11 Sensor to Arduino UNO:

Connect the VCC pin of the DHT11 sensor to the 5V pin on Arduino UNO.

Connect the GND pin of the DHT11 sensor to the GND pin on Arduino UNO.

Connect the DATA pin of the DHT11 sensor to Digital Pin 2 on Arduino UNO.

• Connect Arduino UNO to Computer:

Connect Arduino UNO to the computer using a USB cable.

Outcomes:

• Successful interfacing of DHT11 sensor with Arduino.

• Establishment of a WiFi connection and internet connectivity for Arduino and retrieved

temperature and humidity data on the Serial Monitor.

• Successful evaluated the upload of temperature and humidity data to ThingSpeak cloud and

visualized the temperature and humidity data on ThingSpeak platform.

Result

Figure 7.3: Readings in Thingspeak Platform

Figure 7.4: Displaying temperature and humidity data on Serial Monitor of Arduino IDE from

Thingspeak cloud

ARDUINO AND RASPBERRY PI BASED PROJECT BEEL456D

Department of EEE, ATMECE, Mysore Page 59

Experiment 8

Write a program on Arduino/Raspberry Pi to publish temperature data to MQTT broker

Objectives:

• To publish temperature data from Arduino to an MQTT broker.

• To establish a WiFi connection for Arduino to connect to the internet.

• To connect Arduino to an MQTT broker and publish temperature data to a specific topic.

Method-1: Components Required:

• Arduino UNO

• DHT11.

• Connecting cable or USB cable.

• Breadboard.

• Jumper wires

Circuit Diagram:

Figure 8.1: Interfacing DHT11 with Arduino

ARDUINO AND RASPBERRY PI BASED PROJECT BEEL456D

Department of EEE, ATMECE, Mysore Page 60

Pin Connection:

• Connect the VCC pin of the DHT11 sensor to the 5V pin on Arduino UNO.

• Connect the GND pin of the DHT11 sensor to the GND pin on Arduino UNO.

• Connect the DATA pin of the DHT11 sensor to Digital Pin 2 on Arduino UNO.

Procedure:

• Arduino Program:

Install WiFi Library:

Open Arduino IDE.

Go to Sketch -> Include Library -> Manage Libraries.

Search for WiFi and install the WiFi library.

• Upload the Program:

Copy and paste the following Arduino code into the Arduino IDE.

• Replace 'Your_SSID', 'Your_PASSWORD', 'YOUR_CHANNEL_ID', and

'YOUR_READ_API_KEY' with your WiFi credentials, ThingSpeak channel ID, and read API

key respectively.

• Select the correct board (Arduino UNO) and port from the Tools menu.

• Click on the Upload button to upload the program to Arduino UNO.

• Connect the DHT11 Sensor to Arduino UNO:

Connect the VCC pin of the DHT11 sensor to the 5V pin on Arduino UNO.

Connect the GND pin of the DHT11 sensor to the GND pin on Arduino UNO.

Connect the DATA pin of the DHT11 sensor to Digital Pin 2 on Arduino UNO.

• Connect Arduino UNO to Computer:

Connect Arduino UNO to the computer using a USB cable.

Program:

#include <WiFi.h>

#include <PubSubClient.h>

const char* ssid = "Your_SSID"; // WiFi SSID

const char* password = "Your_PASSWORD"; // WiFi Password

const char* mqttServer = "broker_address"; // MQTT Broker Address

ARDUINO AND RASPBERRY PI BASED PROJECT BEEL456D

Department of EEE, ATMECE, Mysore Page 61

const int mqttPort = 1883; // MQTT Broker Port

WiFiClient espClient;

PubSubClient client(espClient);

const char* temperatureTopic = "your_topic/temperature"; // MQTT Topic for Temperature

const char* mqttUsername = "your_mqtt_username"; // MQTT Username

const char* mqttPassword = "your_mqtt_password"; // MQTT Password

void setup() {

 Serial.begin(115200);

 WiFi.begin(ssid, password);

 while (WiFi.status() != WL_CONNECTED) {

 delay(1000);

 Serial.println("Connecting to WiFi...");

 }

 Serial.println("Connected to WiFi");

 client.setServer(mqttServer, mqttPort);

 client.setCallback(callback);

 while (!client.connected()) {

 Serial.println("Connecting to MQTT...");

 if (client.connect("ArduinoClient", mqttUsername, mqttPassword)) {

 Serial.println("Connected to MQTT");

 } else {

 Serial.print("Failed to connect to MQTT, rc=");

 Serial.println(client.state());

 delay(2000);

 }

 }

}

ARDUINO AND RASPBERRY PI BASED PROJECT BEEL456D

Department of EEE, ATMECE, Mysore Page 62

void loop() {

 float temperature = readTemperature(); // Replace this with your temperature reading function

 if (!client.connected()) {

 reconnect();

 }

 client.loop();

 char tempStr[10];

 dtostrf(temperature, 4, 2, tempStr);

 client.publish(temperatureTopic, tempStr);

 Serial.print("Temperature published: ");

 Serial.println(tempStr);

 delay(5000); // Wait 5 seconds before publishing next data

}

void callback(char* topic, byte* message, unsigned int length) {

 // Handle incoming messages if needed

}

void reconnect() {

 while (!client.connected()) {

 Serial.println("Attempting MQTT connection...");

 if (client.connect("ArduinoClient", mqttUsername, mqttPassword)) {

 Serial.println("Connected to MQTT");

 } else {

ARDUINO AND RASPBERRY PI BASED PROJECT BEEL456D

Department of EEE, ATMECE, Mysore Page 63

 Serial.print("Failed to connect to MQTT, rc=");

 Serial.println(client.state());

 delay(2000);

 }

 }

}

float readTemperature() {

 // Replace this function with your temperature reading logic return 25.5; // Example temperature

//reading

}

Outcomes:

• Successful connection of Arduino to WiFi network.

• Successful connection of Arduino to MQTT broker.

• Evaluated publishing of temperature data from Arduino to the specified MQTT

Result:

Figure 8.2: Temperature and Humidity Readings

ARDUINO AND RASPBERRY PI BASED PROJECT BEEL456D

Department of EEE, ATMECE, Mysore Page 64

Method-2

Program for Publishing Temperature Data to MQTT Broker on NodeMCU

This experiment involves using a NodeMCU (ESP8266) to publish temperature data from a DHT11

sensor to an MQTT broker. The MQTT broker can either be a public broker like test.mosquitto.org or a

private one set up locally.

Theory:

MQTT is a lightweight messaging protocol commonly used in IoT devices to communicate data between

clients and brokers. In this example, the NodeMCU will connect to an MQTT broker and send

temperature data from the DHT11 sensor.

Required Libraries:

1. ESP8266WiFi.h: For Wi-Fi connectivity on NodeMCU.

2. PubSubClient.h: For MQTT communication.

3. DHT.h: For reading data from the DHT11 sensor.

Circuit Connection:

• VCC to 3.3V on NodeMCU.

• GND to GND on NodeMCU.

• Data pin to GPIO pin (D2) on NodeMCU.

Program Code:

#include <ESP8266WiFi.h>

#include <PubSubClient.h>

#include <DHT.h>

// Replace these with your network credentials

ARDUINO AND RASPBERRY PI BASED PROJECT BEEL456D

Department of EEE, ATMECE, Mysore Page 65

const char* ssid = "your_SSID";

const char* password = "your_PASSWORD";

// Local MQTT broker details

const char* mqtt_server = "192.168.1.10"; // Replace with your local IP

const int mqtt_port = 1883;

// MQTT topic

const char* temperature_topic = "home/temperature";

// DHT11 sensor configuration

#define DHTPIN D2 // GPIO pin where the data pin of the DHT11 is connected

#define DHTTYPE DHT11

DHT dht(DHTPIN, DHTTYPE);

WiFiClient espClient;

PubSubClient client(espClient);

void setup() {

 Serial.begin(115200);

 setup_wifi();

 client.setServer(mqtt_server, mqtt_port);

ARDUINO AND RASPBERRY PI BASED PROJECT BEEL456D

Department of EEE, ATMECE, Mysore Page 66

 dht.begin();

}

void setup_wifi() {

 delay(10);

 Serial.println();

 Serial.print("Connecting to ");

 Serial.println(ssid);

 WiFi.begin(ssid, password);

 while (WiFi.status() != WL_CONNECTED) {

 delay(500);

 Serial.print(".");

 }

 Serial.println("");

 Serial.println("WiFi connected");

 Serial.println("IP address: ");

 Serial.println(WiFi.localIP());

}

void reconnect() {

 while (!client.connected()) {

 Serial.print("Attempting MQTT connection...");

 if (client.connect("ESP8266Client")) {

ARDUINO AND RASPBERRY PI BASED PROJECT BEEL456D

Department of EEE, ATMECE, Mysore Page 67

 Serial.println("connected");

 } else {

 Serial.print("failed, rc=");

 Serial.print(client.state());

 Serial.println(" try again in 5 seconds");

 delay(5000);

 }

 }

}

void loop() {

 if (!client.connected()) {

 reconnect();

 }

 client.loop();

 float t = dht.readTemperature();

 float h = dht.readHumidity();

 if (isnan(t) || isnan(h)) {

 Serial.println("Failed to read from DHT sensor!");

 return;

ARDUINO AND RASPBERRY PI BASED PROJECT BEEL456D

Department of EEE, ATMECE, Mysore Page 68

 }

 String temp_str = String(t);

 char temp_data[8];

 temp_str.toCharArray(temp_data, temp_str.length() + 1);

 client.publish(temperature_topic, temp_data);

 Serial.print("Temperature: ");

 Serial.println(temp_str);

 delay(2000); // Delay in milliseconds

}

Steps to Upload the Code:

1. Connect NodeMCU: Plug the NodeMCU into your computer.

2. Open Arduino IDE: Launch the Arduino IDE.

3. Copy and Paste Code: Copy the provided code into the Arduino IDE.

4. Modify Credentials: Update the ssid and password variables with your Wi-Fi network

credentials.

5. Select Board and Port:

o Go to Tools > Board and select NodeMCU 1.0 (ESP-12E Module).

o Go to Tools > Port and select the correct COM port for the NodeMCU.

6. Upload the Code: Click the Upload button (right arrow) to upload the program to the

NodeMCU.

ARDUINO AND RASPBERRY PI BASED PROJECT BEEL456D

Department of EEE, ATMECE, Mysore Page 69

MQTT Broker Configuration:

• Public Broker: If using a public broker, you can replace the mqtt_server value with

test.mosquitto.org.

• Private Broker: If you are running your own MQTT broker (e.g., Mosquitto), replace the

mqtt_server value with the broker's IP address.

Monitoring with MQTT Explorer:

1. Download and Install MQTT Explorer.

2. Connect to Broker:

o Open MQTT Explorer.

o Click on 'Add new connection'.

o Enter Broker Address (test.mosquitto.org for public or your local IP for private).

o Set Broker Port to 1883.

o Click 'Save' and 'Connect'.

3. Subscribe to Topic:

o In MQTT Explorer, subscribe to the home/temperature topic.

4. View Data: The temperature data from the NodeMCU will appear in the message log.

Result:

• The NodeMCU will connect to the specified Wi-Fi network and MQTT broker.

• It will read the temperature data from the DHT11 sensor and publish it to the

home/temperature topic every 2 seconds.

• You will see the published temperature data in the MQTT Explorer or any MQTT client

subscribed to the topic.

ARDUINO AND RASPBERRY PI BASED PROJECT BEEL456D

Department of EEE, ATMECE, Mysore Page 70

Experiment-9

Write a program to create UDP server on Arduino/Raspberry Pi and respond with humidity data

to UDP client when requested.

Objectives:

• To establish a reliable UDP server on the NodeMCU that connects to a Wi-Fi network

and listens for incoming packets on port 4210, providing real-time humidity data from the

DHT11 sensor when requested.

• To implement serial communication for monitoring the Wi-Fi connection status and

incoming UDP packets on the NodeMCU, ensuring successful packet reception and

response with accurate sensor data.

Prerequisites:

1. Hardware:

• NodeMCU (ESP8266)

• DHT11 Temperature and Humidity Sensor

• Breadboard and Jumper Wires

2. Software:

• Arduino IDE

• DHT Sensor Library

Circuit Connections:

1. NodeMCU to DHT11:

• VCC of DHT11 to 3.3V of NodeMCU

• GND of DHT11 to GND of NodeMCU

• DATA of DHT11 to D4 (GPIO2) of NodeMCU

ARDUINO AND RASPBERRY PI BASED PROJECT BEEL456D

Department of EEE, ATMECE, Mysore Page 71

Setup Instructions:

1. Install Arduino IDE:

• Download and install the Arduino IDE from Arduino's official website.

2. Add ESP8266 Board to Arduino IDE:

• Open Arduino IDE.

• Go to File > Preferences.

• In the Additional Boards Manager URLs field, add

http://arduino.esp8266.com/stable/package_esp8266com_index.json.

• Go to Tools > Board > Boards Manager.

• Search for ESP8266 and install it by ESP8266 Community.

3. Install Libraries:

• Go to Sketch > Include Library > Manage Libraries.

• Search for and install the DHT sensor library.

Arduino Program:

#include <ESP8266WiFi.h>

#include <WiFiUdp.h>

#include <DHT.h>

#define DHTPIN D4 // DHT11 data pin connected to D4 (GPIO2)

#define DHTTYPE DHT11 // DHT11 type

const char* ssid = "YOUR_SSID"; // Replace with your WiFi SSID

const char* password = "YOUR_PASSWORD"; // Replace with your WiFi Password

ARDUINO AND RASPBERRY PI BASED PROJECT BEEL456D

Department of EEE, ATMECE, Mysore Page 72

WiFiUDP udp;

unsigned int localUdpPort = 4210; // Local UDP port to listen on

char incomingPacket[255]; // Buffer for incoming packets

char replyPacket[255]; // Buffer for outgoing packets

DHT dht(DHTPIN, DHTTYPE);

void setup() {

 Serial.begin(115200);

 // Connecting to WiFi

 WiFi.begin(ssid, password);

 while (WiFi.status() != WL_CONNECTED) {

 delay(500);

 Serial.print(".");

 }

 Serial.println("WiFi connected");

 Serial.print("IP address: ");

 Serial.println(WiFi.localIP());

 // Start UDP

 udp.begin(localUdpPort);

ARDUINO AND RASPBERRY PI BASED PROJECT BEEL456D

Department of EEE, ATMECE, Mysore Page 73

 Serial.printf("Now listening at IP %s, UDP port %d\n", WiFi.localIP().toString().c_str(),

localUdpPort);

 dht.begin();

}

void loop() {

 int packetSize = udp.parsePacket();

 if (packetSize) {

 // Read the packet into the buffer

 int len = udp.read(incomingPacket, 255);

 if (len > 0) {

 incomingPacket[len] = 0;

 }

 Serial.printf("Received packet: %s\n", incomingPacket);

 // Check if the packet contains the request for humidity

 if (String(incomingPacket) == "GET_HUMIDITY") {

 float h = dht.readHumidity();

 if (isnan(h)) {

 Serial.println("Failed to read from DHT sensor!");

 snprintf(replyPacket, 255, "Failed to read humidity");

 } else {

ARDUINO AND RASPBERRY PI BASED PROJECT BEEL456D

Department of EEE, ATMECE, Mysore Page 74

 snprintf(replyPacket, 255, "Humidity: %.2f%%", h);

 }

 // Send a reply to the IP address and port of the sender

 udp.beginPacket(udp.remoteIP(), udp.remotePort());

 udp.write(replyPacket);

 udp.endPacket();

 }

 }

}

Procedure to Upload Program:

1. Open the Arduino IDE.

2. Copy and paste the provided program into the IDE.

3. Replace placeholders with your actual Wi-Fi details:

o ssid – Your Wi-Fi SSID.

o password – Your Wi-Fi password.

4. Select the correct board:

o Go to Tools > Board and select NodeMCU 1.0 (ESP-12E Module).

5. Select the correct port:

o Go to Tools > Port and select the COM port to which your NodeMCU is

connected.

ARDUINO AND RASPBERRY PI BASED PROJECT BEEL456D

Department of EEE, ATMECE, Mysore Page 75

6. Upload the program:

o Click on the Upload button (right arrow) to upload the program to your

NodeMCU.

Monitor the Output:

1. Open the Serial Monitor in Arduino IDE by going to Tools > Serial Monitor or

pressing Ctrl+Shift+M.

2. Set the baud rate to 115200.

3. Observe the output. The Serial Monitor will display Wi-Fi connection status and

incoming UDP packets.

Test the UDP Server:

1. Use a UDP client (such as Packet Sender, Netcat, or a custom script) to send a UDP

packet with the message GET_HUMIDITY to the NodeMCU's IP address and port 4210.

2. The NodeMCU will respond with the current humidity data from the DHT11 sensor.

Outcome:

• The NodeMCU will connect to the specified Wi-Fi network.

• It will listen for incoming UDP packets on port 4210.

• When a packet with the message GET_HUMIDITY is received, it will respond with the

current humidity data from the DHT11 sensor.

• The Serial Monitor will display the Wi-Fi connection status and incoming UDP packets.

ARDUINO AND RASPBERRY PI BASED PROJECT BEEL456D

Department of EEE, ATMECE, Mysore Page 76

Experiment-10

Write a program to create TCP server on Arduino/Raspberry Pi and respond with humidity data

to TCP client when requested

Objectives:

• To establish a TCP server on the NodeMCU that connects to a Wi-Fi network and

responds with humidity data from the DHT11 sensor when requested by a TCP client.

• To monitor the connection status of the NodeMCU to the Wi-Fi network and TCP client

interactions, and display real-time sensor readings via the Serial Monitor.

Prerequisites:

1. Hardware:

o NodeMCU (ESP8266)

o DHT11 Temperature and Humidity Sensor

o Breadboard and Jumper Wires

2. Software:

o Arduino IDE

o DHT Sensor Library

Circuit Connection:

• VCC to 3.3V on NodeMCU.

• GND to GND on NodeMCU.

• Data pin to GPIO2 (D4) on NodeMCU.

Step-by-Step Guide:

Step 1: Gather Components

1. NodeMCU (ESP8266)

2. DHT11 Temperature and Humidity Sensor

3. Breadboard

4. Jumper Wires

ARDUINO AND RASPBERRY PI BASED PROJECT BEEL456D

Department of EEE, ATMECE, Mysore Page 77

Step 2: Circuit Connections

1. Connect the VCC pin of the DHT11 sensor to the 3.3V pin on the NodeMCU.

2. Connect the GND pin of the DHT11 sensor to the GND pin on the NodeMCU.

3. Connect the DATA pin of the DHT11 sensor to GPIO2 (D4) on the NodeMCU.

Step 3: Set up the Software

1. Install Arduino IDE:

o Download and install the Arduino IDE from the official website.

2. Add ESP8266 Board to Arduino IDE:

o Open Arduino IDE.

o Go to File > Preferences.

o In the Additional Boards Manager URLs field, add:

http://arduino.esp8266.com/stable/package_esp8266com_index.json.

o Go to Tools > Board > Boards Manager.

o Search for ESP8266 and install it from ESP8266 Community.

3. Install Libraries:

o Go to Sketch > Include Library > Manage Libraries.

o Search for and install the DHT sensor library.

Step 4: Write and Upload the Program

1. Open Arduino IDE.

2. Copy and paste the provided program into the IDE.

3. Replace the placeholders with your actual Wi-Fi details:

o ssid - Your Wi-Fi SSID.

o password - Your Wi-Fi password.

4. Go to Tools > Board and select NodeMCU 1.0 (ESP-12E Module).

5. Go to Tools > Port and select the COM port to which your NodeMCU is connected.

ARDUINO AND RASPBERRY PI BASED PROJECT BEEL456D

Department of EEE, ATMECE, Mysore Page 78

6. Click on the Upload button (right arrow) to upload the program to your NodeMCU.

Program Code:

#include <ESP8266WiFi.h>

#include <WiFiClient.h>

#include <DHT.h>

#define DHTPIN D4 // DHT11 data pin connected to D4 (GPIO2)

#define DHTTYPE DHT11 // DHT11 type

DHT dht(DHTPIN, DHTTYPE);

const char* ssid = "OPPO F21s Pro"; // Replace with your Wi-Fi SSID

const char* password = "Deepashree@04"; // Replace with your Wi-Fi password

WiFiServer server(80); // TCP server on port 80

float humidity, temp_f;

String webString = "";

unsigned long previousMillis = 0; // Will store last time the temp was read

const long interval = 2000; // Interval at which to read sensor

void setup() {

 Serial.begin(115200);

 dht.begin();

 WiFi.begin(ssid, password);

ARDUINO AND RASPBERRY PI BASED PROJECT BEEL456D

Department of EEE, ATMECE, Mysore Page 79

 Serial.print("\n\r \n\rConnecting to WiFi");

 while (WiFi.status() != WL_CONNECTED) {

 delay(500);

 Serial.print(".");

 }

 Serial.println("");

 Serial.println("WiFi connected");

 Serial.println("IP address: ");

 Serial.println(WiFi.localIP());

 server.begin(); // Start the TCP server

 Serial.println("TCP server started");

}

void loop() {

 WiFiClient client = server.available(); // Listen for incoming clients

 if (client) {

 Serial.println("New client connected");

 while (client.connected()) {

 if (client.available()) {

 char c = client.read(); // Read the incoming byte

 if (c == '\n') { // If a new line is received

ARDUINO AND RASPBERRY PI BASED PROJECT BEEL456D

Department of EEE, ATMECE, Mysore Page 80

 gettemperature(); // Read the sensor data

 webString = "Humidity: " + String((int)humidity) + "%";

 client.println(webString); // Send humidity data to client

 delay(100);

 break;

 }

 }

 }

 client.stop();

 Serial.println("Client disconnected");

 }

}

void gettemperature() {

 unsigned long currentMillis = millis();

 if (currentMillis - previousMillis >= interval) {

 // Save the last time the sensor was read

 previousMillis = currentMillis;

 humidity = dht.readHumidity();

 temp_f = dht.readTemperature(true);

 if (isnan(humidity) || isnan(temp_f)) {

 Serial.println("Failed to read from DHT sensor!");

 return;

ARDUINO AND RASPBERRY PI BASED PROJECT BEEL456D

Department of EEE, ATMECE, Mysore Page 81

 }

 }

}

Step 5: Monitor the Output

1. Open the Serial Monitor in the Arduino IDE by going to Tools > Serial Monitor or

pressing Ctrl+Shift+M.

2. Set the baud rate to 115200.

3. Observe the output. The Serial Monitor will display Wi-Fi connection status, IP address,

and incoming TCP client connections.

Step 6: Test the TCP Server

1. Use a TCP client (such as Telnet, Netcat, or a custom script) to connect to the

NodeMCU's IP address on port 80.

2. Send a request to the server (simply pressing Enter should work).

3. The NodeMCU will respond with the current humidity data from the DHT11 sensor.

Outcomes:

• The NodeMCU will connect to the specified Wi-Fi network.

• When a TCP client connects and sends a request, the NodeMCU will respond with the

current humidity data from the DHT11 sensor.

• The Serial Monitor will display Wi-Fi connection status, incoming TCP client

connections, and sensor readings.

ARDUINO AND RASPBERRY PI BASED PROJECT BEEL456D

Department of EEE, ATMECE, Mysore Page 82

Experiment-11

Write a program on Arduino/Raspberry Pi to subscribe to MQTT broker for temperature data and

print it

Objectives

• To establish a reliable connection between the NodeMCU and a Wi-Fi network, enabling

the device to subscribe to the MQTT broker and listen for temperature data on the

home/temperature topic.

• To continuously read temperature data from the DHT11 sensor, publish it to the MQTT

broker at regular intervals, and monitor the connection statuses and incoming messages

via the Serial Monitor.

Prerequisites:

1. Hardware:

• NodeMCU (ESP8266)

• DHT11 Temperature and Humidity Sensor

• Breadboard and Jumper Wires

2. Software:

• Arduino IDE

• DHT Sensor Library

• PubSubClient Library (for MQTT)

Circuit Connections:

1. NodeMCU to DHT11:

• VCC of DHT11 to 3.3V of NodeMCU

• GND of DHT11 to GND of NodeMCU

• DATA of DHT11 to D4 (GPIO2) of NodeMCU

Setup Instructions:

1. Install Arduino IDE:

• Download and install the Arduino IDE from Arduino's official website.

2. Add ESP8266 Board to Arduino IDE:

ARDUINO AND RASPBERRY PI BASED PROJECT BEEL456D

Department of EEE, ATMECE, Mysore Page 83

• Open Arduino IDE.

• Go to File > Preferences.

• In the Additional Board Manager URLs field, add

http://arduino.esp8266.com/stable/package_esp8266com_index.json.

• Go to Tools > Board > Boards Manager.

• Search for ESP8266 and install it by ESP8266 Community.

3. Install Libraries:

• Go to Sketch > Include Library > Manage Libraries.

• Search for and install the DHT sensor library.

• Search for and install the PubSubClient library.

Arduino Program:

#include <ESP8266WiFi.h>

#include <PubSubClient.h>

#include <DHT.h>

#define DHTPIN D4 // DHT11 data pin connected to D4 (GPIO2)

#define DHTTYPE DHT11 // DHT11 type

const char* ssid = "YOUR_SSID"; // Replace with your WiFi SSID

const char* password = "YOUR_PASSWORD"; // Replace with your WiFi Password

const char* mqttServer = "YOUR_MQTT_BROKER"; // Replace with your MQTT Broker

address

const int mqttPort = 1883;

const char* mqttUser = "YOUR_MQTT_USER"; // Replace with your MQTT Broker Username

const char* mqttPassword = "YOUR_MQTT_PASSWORD"; // Replace with your MQTT

Broker Password

ARDUINO AND RASPBERRY PI BASED PROJECT BEEL456D

Department of EEE, ATMECE, Mysore Page 84

WiFiClient espClient;

PubSubClient client(espClient);

DHT dht(DHTPIN, DHTTYPE);

void setup() {

 Serial.begin(115200);

 // Connecting to WiFi

 WiFi.begin(ssid, password);

 while (WiFi.status() != WL_CONNECTED) {

 delay(500);

 Serial.print(".");

 }

 Serial.println("WiFi connected");

 client.setServer(mqttServer, mqttPort);

 client.setCallback(callback);

 dht.begin();

}

void callback(char* topic, byte* payload, unsigned int length) {

 Serial.print("Message arrived [");

 Serial.print(topic);

ARDUINO AND RASPBERRY PI BASED PROJECT BEEL456D

Department of EEE, ATMECE, Mysore Page 85

 Serial.print("] ");

 for (int i = 0; i < length; i++) {

 Serial.print((char)payload[i]);

 }

 Serial.println();

}

void reconnect() {

 while (!client.connected()) {

 Serial.print("Attempting MQTT connection...");

 if (client.connect("ESP8266Client", mqttUser, mqttPassword)) {

 Serial.println("connected");

 client.subscribe("home/temperature");

 } else {

 Serial.print("failed, rc=");

 Serial.print(client.state());

 Serial.println(" try again in 5 seconds");

 delay(5000);

 }

 }

}

void loop() {

 if (!client.connected()) {

ARDUINO AND RASPBERRY PI BASED PROJECT BEEL456D

Department of EEE, ATMECE, Mysore Page 86

 reconnect();

 }

 client.loop();

 // Read humidity and temperature data from DHT11

 float h = dht.readHumidity();

 float t = dht.readTemperature();

 if (isnan(h) || isnan(t)) {

 Serial.println("Failed to read from DHT sensor!");

 return;

 }

 // Publish the temperature data to the MQTT topic

 String tempString = String(t);

 client.publish("home/temperature", tempString.c_str());

 delay(2000);

}

Procedure to Upload Program:

1. Open the Arduino IDE.

2. Copy and paste the provided program into the IDE.

3. Replace placeholders with your actual Wi-Fi and MQTT broker details:

• ssid – Your Wi-Fi SSID.

• password – Your Wi-Fi password.

• mqttServer – MQTT broker address.

ARDUINO AND RASPBERRY PI BASED PROJECT BEEL456D

Department of EEE, ATMECE, Mysore Page 87

• mqttUser – MQTT broker username.

• mqttPassword – MQTT broker password.

4. Select the correct board:

• Go to Tools > Board and select NodeMCU 1.0 (ESP-12E Module).

5. Select the correct port:

• Go to Tools > Port and select the COM port to which your NodeMCU is

connected.

6. Upload the program:

• Click on the Upload button (right arrow) to upload the program to your

NodeMCU.

Monitor the Output:

1. Open the Serial Monitor in Arduino IDE by going to Tools > Serial Monitor or pressing

Ctrl+Shift+M.

2. Set the baud rate to 115200.

3. Observe the output. The Serial Monitor will display Wi-Fi connection status, MQTT

connection status, and incoming messages on the subscribed topic.

Verify MQTT Data:

1. Use an MQTT client (such as MQTT.fx, MQTT Explorer, or an online MQTT

dashboard) to subscribe to the home/temperature topic.

2. Verify that temperature data is being published to the topic by the NodeMCU.

Outcomes:

• The NodeMCU will connect to the specified Wi-Fi network.

• It will connect to the MQTT broker and subscribe to the home/temperature topic.

• It will read temperature data from the DHT11 sensor and publish it to the

home/temperature topic every 2 seconds.

• The Serial Monitor will display connection statuses and incoming messages.

