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☻Syllabus: 

Module-1 

Mathematical Logic 

Fundamentals of Logic: Basic Connectives and Truth Tables, Logic Equivalence – The Laws 

of Logic, Logical Implication – Rules of Inference. The Use of Quantifiers, Quantifiers, 

Definitions and the Proofs of Theorems. 

☻Basic Connectives and Truth table: 

Proposition: 

A proposition is a declarative sentence that is either true or false, but not both. 

Example: 

1. 2 is a prime number. (true) 

2. All sides are equal in scalene triangle. (false) 

3. 2+3=4. (false) 

4. What is the time now? 

5. Read this carefully. 

 

From the above examples we note that 1, 2, 3 are proposition, whereas 4 and 5 are not the 

propositions. 

Logical Connectives and Truth table: 

New propositions are obtained by starting with given propositions with the aid of words or 

phrases like ‘not’, ‘and’, ‘if … then, and ‘if and only if’. Such words or phrases are called 

Logical connectives. 

1. Negation: 

A proposition is obtained by inserting the word ‘not’ at an appropriate place in the given 

proposition is called the negation of the given proposition. 

The negation of a Proposition p is denoted by ¬ p (read ‘not p’). For any Proposition p, if p 

is true, then ¬ p is false, and if p is false, then ¬ p is true. i.e., If the truth value of a proposition 

p is 1 then the truth value of ¬ p is 0 and If the truth value of a proposition p is 0 then the truth 

value of ¬ p is 1. 

Example: 

p: 4 is an even number. 

¬ p: 4 is not an even number. 



 

 

Truth table for Negation 
 

p ¬ p 

0 

1 

1 

0 

2. Conjunction: 

A compound proposition obtained by combining two given propositions by inserting the 

word ‘and’ in between them is called the conjunction of the given proposition. 

The conjunction of two propositions p and q is denoted by p ˄ q (read ‘p and q’). The 

conjunction p ˄ q is true only when p is true and q is true, in all other cases it is false. i.e., the 

truth value of the conjunction p ˄ q is 1 only when the truth value of p is 1 and truth value of 

q is 1, in all other cases the truth value of p ˄ q is 0. 

Example: 
 

p: √2 is an irrational number. 

q: 9 is a prime number. 

 

p ˄ q: √2 is an irrational number and 9 is a prime number. 

Truth table for conjunction 
 

p q p ˄ q 

0 

 

0 

 

1 

 

1 

0 

 

1 

 

0 

 

1 

0 

 

0 

 

0 

 

1 

 

3. Disjunction: 

A compound proposition obtained by combining two given propositions by inserting the word 

‘or’ in between them is called the disjunction of the given propositions. 

The disjunction of two propositions p and q is denoted by p ˅ q (read ‘p or q’). The disjunction 

p ˅ q is false only when p is false and q is false, in all other cases it is true. i.e., the truth value 

of the disjunction p ˅ q is 0 only when the truth value of p is 0 and truth value of q is 0, in all 

other cases the truth value of p ˅ q is 1. 

Example: 



 

 

p: All triangles are equilateral. 

q: 2+5=7. 

p ˅ q: All triangles are equilateral or 2+5=7. 

Truth table for Disjunction 
 

 

 

4. Exclusive Disjunction: 

We require that the compound proposition “p or q” to be true only when either p is true or q 

is true but not both. The exclusive or is denoted by the ⊻. 

The compound proposition p ⊻ q (read as either p or q but not both) is called as exclusive 

disjunction of the propositions p and q. i.e., p ⊻ q = (p ˄ ¬ q) ⅴ (q ˄ ¬ p) 

Example: 

p:9 is a prime number 

q: all triangles are isosceles. 

p ⊻ q: Either 9 is prime number or all triangles are isosceles, but not both 

Truth table for Exclusive Disjunction 
 

p q p ⊻ q 

0 

 

0 

 

1 

1 

0 

 

1 

 

0 

1 

0 

 

1 

 

1 

0 

 

5. Conditional: 

A compound proposition obtained by combining two given propositions by using the words 

‘if’ and ‘then’ at appropriate places is called a conditional. 

p q p ˅ q 

0 

 

0 

 

1 

 

1 

0 

 

1 

 

0 

 

1 

0 

 

1 

 

1 

 

1 



 

 

The Conditional “If p, then q” is denoted by p → q and the Conditional “If q, then p” is 

denoted by q → p. The Conditional p → q is false only when p is true and q is false, in all 

other cases it is true. i.e., the truth value of the conditional p → q is 0 only when the truth 

value of p is 1 and the truth value of q is 0, in all other cases the truth value of p → q is 1. 

Example: 

p: 3 is a prime number. 

q: 9 is a multiple of 6 

Truth table for Conditional 
 

6.  

Biconditional: 

Let p and q be two sample propositions then the conjunction of the conditionals p → q and q 

→ p is called the biconditional of p and q. It is denoted by p ↔ q and it is same as (p → q) ˄ 

(q → p) is read as “If p then q and if q then p”. 

Truth table for Biconditional 
 

p q p → q q → p p ↔ q 

0 

0 

 

1 

 

1 

0 

1 

 

0 

 

1 

1 

1 

 

0 

 

1 

1 

0 

 

1 

 

1 

1 

0 

 

0 

 

1 

p q p → q 

0 

 

0 

 

1 

 

1 

0 

 

1 

 

0 

 

1 

1 

 

1 

 

0 

 

1 



 

 

Problems: 

1. Construct the truth tables for the following propositions. 

(i). p ˄ (¬ q) (ⅱ). (¬ p) ˅ q (ⅲ). p → (¬ q) (ⅳ). (¬ p) ⊻ (¬ q) 

Solution: 

The desired truth tables are obtained by considering all possible combinations of the 

truth values of p and q. the combined form of required truth table is given below 
 

p q ¬ p ¬ q p ˄ (¬ q) (¬ p) ˅ q p → (¬ q) (¬ p) ⊻ (¬ q) 

0 

 

0 

 

1 

 

1 

0 

 

1 

 

0 

 

1 

1 

 

1 

 

0 

 

0 

1 

 

0 

 

1 

 

0 

0 

 

0 

 

1 

 

0 

1 

 

1 

 

0 

 

1 

1 

 

1 

 

1 

 

0 

0 

 

1 

 

1 

 

0 

 

2. Let p, q and r be propositions having truth values 0, 0 and 1 respectively. Find the truth 

values if the following compound propositions: 
 

(ⅰ). (p ˅ q) ˅ r (ⅱ). (p ˄ q) ˄ r (ⅲ). (p ˄ q) → r 

(ⅳ). p → (q ˄ r) (ⅴ). p ˄ (q → r) (ⅵ). p → (q →¬ r) 

Solution:  

(i) Since both p and q are false then (p ˅ q) is also false. Since r true it follows that (p ˅ q) ˅ r 

is true. Thus, the truth value of (p ˅ q) ˅ r is 1. 

 

(ii) Since both p and q are false, (p ˄ q) is false. Since (p ˄ q) is false and r is true (p ˄ q) ˄ r is 

false. Thus, the truth value of (p ˄ q) ˄ r is 0. 

 

(iii) Since (p ˄ q) is false and r is true, (p ˄ q) → r is true. Thus, the truth value of (p ˄ q) → r 

is 1. 

 

(iv) Since q is false and r is true, (q ˄ r) is false. Also, p is false, therefore p → (q ˄ r) is true. 

Thus, the truth value of p → (q ˄ r) is 1. 

 

(v) Since r is true and q is false (q → r) is true. Also, p is false. Therefore, p ˄ (q → r) is false. 

Thus, the truth value of p ˄ (q → r) is 0 

 

(vi) Since r is true, ¬ r is false. Since q is false, q → (¬ r) is true. Also, p is false. Therefore, 

p → (q →¬ r) is true. Thus, the truth value of p → (q→¬ r) is 1. 



 

 

3. Indicate how many rows are needed in the truth table for the compound proposition 

(p ˅ (¬ q)) ↔ ((¬ r) ˄ s) → t. Find the truth value of the proposition if p and r, are true 

and q, s, t, are false. 

Solution: 

The given compound proposition contains five primitives p, q, r, s, t. Therefore, the number of 

possible combinations of the truth values of these components which we have to consider is 

25=32. Hence 32 rows are needed in the truth table for the given compound proposition. 

Next, suppose that p and r, are true and q, s, t are false, then ¬ q is true and ¬ r is false. Since p 

is true and ¬ q is true, (p ˅ (¬ q)) is true on the other hand, since ¬ r is false and s is false, ¬ r 

˄ s is false. Also, t is false. Hence ((¬ r) ˄ s) →t is true. 

Since (p ˅ (¬ q)) is true and ((¬ r) ˄ s) → t is true, it follows that the truth values of the given 

propositions (p ˅ (¬ q)) ↔ ((¬ r ˄ s) → t is 1. 

 

4. Let p: A circle is a conic, q: √5 is a real number, r: Exponential series is convergent. 

Express the following compound Proposition in words: 

(i). p ˄ (¬ q) (ii). (¬ p) ˄ q (iii) q → (¬ p) 

(iv). p ⊻ (¬ q) (v). p → (q ⊻ r) (vi). ¬ p ↔ q 

Solution: 

 

(i) A circle is a conic and √5 is not a real number. 
 

(ii) A circle is not a conic and √5 is a real number. 
 

(iii) If √5 is a real number, then a circle is not a conic. 
 

(iv) Either a circle is a conic or √5 is not a real number (but not both). 
 

(v) If a circle is a conic then either √5 is a real number or the exponential series is 

convergent (but not both). 
  

(vi) If a circle is not a conic then √5 is a real number and if √5 is a real number then a 

circle is not a conic. 

 

5. Construct the truth table for the following compound propositions: 

(ⅰ). (p ˄ q) → ¬ r (ⅱ). q ˄ ((¬ r) → p) 

Solution: 

The required truth table are shown below in a combined form 



 

 

 

p q r ¬ r p ˄ q (p ˄ q) → ¬ r (¬ r) → p q ˄ ((¬ r) → p) 

0 

 

0 

 

0 

 

0 

 

1 

 

1 

 

1 

 

1 

0 

 

0 

 

1 

 

1 

 

0 

 

0 

 

1 

 

1 

0 

 

1 

 

0 

 

1 

 

0 

 

1 

 

0 

 

1 

1 

 

0 

 

1 

 

0 

 

1 

 

0 

 

1 

 

0 

0 

 

0 

 

0 

 

0 

 

0 

 

0 

 

1 

 

1 

1 

 

1 

 

1 

 

1 

 

1 

 

1 

 

1 

 

0 

0 

 

1 

 

0 

 

1 

 

1 

 

1 

 

1 

 

1 

0 

 

0 

 

0 

 

1 

 

0 

 

0 

 

1 

 

1 



 

 

☻Tautology and Contradiction: 

 

A compound proposition which is true for all possible truth values of its components is called 

a tautology. 

A compound proposition which is false for all possible truth values of its components is called 

Contradiction or an absurdity. 

A compound proposition that can be true or false is called a contingency. In other words, a 

contingency is a compound proposition which is neither a tautology nor a contradiction. 

 

Problems: 

 

1. Show that for any proposition p and q, the compound proposition p → (p ˅ q) is a tautology 

and the compound proposition p ˄ (¬ p ˄ q) is called contradiction. 

Solution: 

Let us first prepare the truth tables for p → (p ˅ q) and p ˄ (¬ p ˄ q). these truth tables are 

shown below in the combined form. 

 

p q p ˅ q p → (p ˅ q) ¬ p (¬ p ˄ q) p ˄ (¬ p ˄ q) 

0 

 

0 

 

1 

 

1 

0 

 

1 

 

0 

 

1 

0 

 

1 

 

1 

 

1 

1 

 

1 

 

1 

 

1 

1 

 

1 

 

0 

 

0 

0 

 

1 

 

0 

 

0 

0 

 

0 

 

0 

 

0 

 

From the above table we note that, for all possible values of p and q the compound proposition 

p → (p ˅ q) is true and the compound proposition p ˄ (¬ p ˄ q) is false. 

Therefore p ˄ (¬ p ˄ q) is contradiction and p → (p ˅ q) is tautology. 

 

2. Prove that, for any proposition p, q, r the compound proposition 

(p → q) ˄ (q → r) → (p → r) is a tautology 

 

Solution: 

The following truth table gives the required result. 



 

 

 

p q r p → q q → r (p → q) ˄ (q → r) p → r (p → q) ˄ (q → r) → (p → r) 

0 

 

0 

 

0 

 

0 

 

1 

 

1 

 

1 

 

1 

0 

 

0 

 

1 

 

1 

 

0 

 

0 

 

1 

 

1 

0 

 

1 

 

0 

 

1 

 

0 

 

1 

 

0 

 

1 

1 

 

1 

 

1 

 

1 

 

0 

 

0 

 

1 

 

1 

1 

 

1 

 

0 

 

1 

 

1 

 

1 

 

0 

 

1 

1 

 

1 

 

0 

 

1 

 

0 

 

0 

 

0 

 

1 

1 

 

1 

 

1 

 

1 

 

0 

 

1 

 

0 

 

1 

1 

 

1 

 

1 

 

1 

 

1 

 

1 

 

1 

 

1 

 

3. Prove that for any proposition p, q, r the compound proposition 

(p ˅ q) ˅ (p → r) ˄ (q → r) is tautology. 

Solution: 

The following truth table gives the required result. 
 

p q r p → r q → r (p → r) ˄ (q → r) p ˅ q (p ˅ q) ˅ (p → r) ˄ (q → r) 

0 

 

0 

 

0 

0 

1 

 

1 

 

1 

 

1 

0 

 

0 

 

1 

1 

0 

 

0 

 

1 

 

1 

0 

 

1 

 

0 

1 

0 

 

1 

 

0 

 

1 

1 

 

1 

 

1 

1 

0 

 

1 

 

0 

 

1 

1 

 

1 

 

0 

1 

1 

 

1 

 

0 

 

1 

1 

 

1 

 

0 

1 

0 

 

1 

 

0 

 

1 

0 

 

0 

 

1 

1 

1 

 

1 

 

1 

 

1 

1 

 

1 

 

1 

1 

1 

 

1 

 

1 

 

1 

 

4. Prove that for any proposition p, q, r the compound proposition 

(p → q) ˅ (p → r) ↔ (p → (q ˅ r)) is tautology. 



 

 

Solution: 

The following truth table gives the required result. 
 

p q r p → q p → r (p → q) ˅ (p → r) q ˅ r p → (q ˅ r) (p →q) ˅ (p → r) 
↔ (p → (q ˅ r)) 

0 

 

0 

 

0 

0 

1 

 

1 

 

1 

 
1 

0 

 

0 

 

1 

1 

0 

 

0 

 

1 

 
1 

0 

 

1 

 

0 

1 

0 

 

1 

 

0 

 
1 

1 

 

1 

 

1 

1 

0 

 

0 

 

1 

 
1 

1 

 

1 

 

1 

1 

0 

 

1 

 

0 

 
1 

1 

 

1 

 

1 

1 

0 

 

1 

 

1 

 
1 

0 

 

1 

 

1 

1 

0 

 

1 

 

1 

 
1 

1 

 

1 

 

1 

1 

0 

 

1 

 

1 

 
1 

1 

 

1 

 

1 

1 

1 

 

1 

 

1 

 
1 

 

5. Prove that for any proposition p, q, r the compound proposition 

[(p → q) ˄ (p → r)] → (p → r)) is tautology. 

 

Solution: 

The following truth table gives the required result. 
 

p q r p → q q → r (p → q) ˄ (p → r) p → r (p →q) ˄ (p → r) → (p → r) 

0 

 

0 

 

0 

0 

1 

 

1 

 

1 

 

1 

0 

 

0 

 

1 

1 

0 

 

0 

 

1 

 

1 

0 

 

1 

 

0 

1 

0 

 

1 

 

0 

 

1 

1 

 

1 

 

1 

1 

0 

 

0 

 

1 

 

1 

1 

 

1 

 

0 

1 

1 

 

1 

 

0 

 

1 

1 

 

1 

 

0 

1 

0 

 

0 

 

0 

 

1 

1 

 

1 

 

1 

1 

0 

 

1 

 

0 

 

1 

1 

 

1 

 

1 

1 

1 

 

1 

 

1 

 

1 

 

6. Prove that for any proposition p, q, r the compound proposition 

[(p ˅ q) ˄ {(p → r) ˄ (q → r)}] → r is tautology. 



 

 

Solution: 

The following truth table proves the gives result. 
 

p q r p → r q → r (p → r)  ˄
(q → r) 

p ˅ q (p ˅ q) ˄ {(p → r) 
˄ (q → r)} 

[(p ˅ q) ˄ {(p → r) 
˄ (q → r)}] → r 

0 

 

0 

 

0 

0 

1 

 

1 

 

1 

 

1 

0 

 

0 

 

1 

1 

0 

 

0 

 

1 

 

1 

0 

 

1 

 

0 

1 

0 

 

1 

 

0 

 

1 

1 

 

1 

 

1 

1 

0 

 

1 

 

0 

 

1 

1 

 

1 

 

0 

1 

1 

 

1 

 

0 

 

1 

1 

 

1 

 

0 

1 

0 

 

1 

 

0 

 

1 

0 

 

0 

 

1 

1 

1 

 

1 

 

1 

 

1 

0 

 

0 

 

0 

1 

0 

 

1 

 

0 

 

1 

1 

 

1 

 

1 

1 

1 

 

1 

 

1 

 

1 

 

7. Verify the Compound Proposition (p ˅ q) → r ↔ (¬ r → ¬ (p ˅ q)) is tautology or not. 
 

 

p q r ¬ r p ˅ q (p ˅ q) → r ¬ (p ˅ q) ¬ r → ¬ (p ˅ q) (p ˅ q) → r ↔ (¬ r → 
¬ (p ˅ q)) 

0 

 

0 

 

0 

 

0 

 

1 

 

1 

 

1 

1 

0 

 

0 

 

1 

 

1 

 

0 

 

0 

 

1 

1 

0 

 

1 

 

0 

 

1 

 

0 

 

1 

 

0 

1 

1 

 

0 

 

1 

 

0 

 

1 

 

0 

 

1 

0 

0 

 

0 

 

1 

 

1 

 

1 

 

1 

 

1 

1 

1 

 

1 

 

0 

 

1 

 

0 

 

1 

 

0 

1 

1 

 

1 

 

0 

 

0 

 

0 

 

0 

 

0 

0 

1 

 

1 

 

0 

 

1 

 

0 

 

1 

 

0 

1 

1 

 

1 

 

1 

 

1 

 

1 

 

1 

 

1 

1 

 

Hence the compound Proposition (p ˅ q) → r ↔ (¬ r → ¬ (p ˅ q)) is tautology 



 

 

8. Prove that for any proposition p, q, r the compound proposition 

{p → (q → r)} → {(p → q) → (p → r)} is tautology. 

Solution: 

The following truth table gives the required result. 
 

p q r p → q p → r q → r p → (q → r) {(p → q) → 
(p → r) 

{p → (q → r)} → {(p → 
q) → (p → r)} 

0 

 

0 

 

0 

0 

 

1 

 

1 

 

1 

 
1 

0 

 

0 

 

1 

1 

 

0 

 

0 

 

1 

 
1 

0 

 

1 

 

0 

1 

 

0 

 

1 

 

0 

 
1 

1 

 

1 

 

1 

1 

 

0 

 

0 

 

1 

 
1 

1 

 

1 

 

1 

1 

 

0 

 

1 

 

0 

 
1 

1 

 

1 

 

0 

1 

 

1 

 

1 

 

0 

 
1 

1 

 

1 

 

1 

1 

 

1 

 

1 

 

0 

 
1 

1 

 

1 

 

1 

1 

 

1 

 

1 

 

0 

 
1 

1 

 

1 

 

1 

1 

 

1 

 

1 

 

1 

 
1 



 

 

☻Logic equivalence: 

Two statement s1, s2 are said to be logically equivalent, and we write s1↔s2, when the statement 

s1 is true (respectively false) if and only if the statement s2 is true (respectively false). Or the 

biconditional s1↔s2 is a tautology 

Problems: 

 

1. For any two propositions p, q Prove that (p → q)⇔( ¬ p) ˅ q 

Solution: The following truth table gives the required result. 
 

p q ¬ p ¬ p ˅ q p → q 

0 

 

0 

 

1 

1 

0 

 

1 

 

0 

1 

1 

 

1 

 

0 

0 

1 

 

1 

 

0 

1 

1 

 

1 

 

0 

1 

 

From the column 4 and 5 of the above truth table, we find that ¬ p ˅ q and p → q has the same 

truth values of p and q. Therefore (p → q)⇔( ¬ p) ˅ q. 

 

2. For any two propositions p, q Prove that (p →¬ q)⇔ (q → ¬ p) 

Solution: The following truth table gives the required result. 
 

p q ¬ p ¬ q p → ¬ q q → ¬ p 

0 

 

0 

 

1 

 

1 

0 

 

1 

 

0 

 

1 

1 

 

1 

 

0 

 

0 

1 

 

0 

 

1 

 

0 

1 

 

1 

 

1 

 

0 

1 

 

1 

 

1 

 

0 

 

From the column 5 and 6 of the above truth table, we find that p → ¬ q and q → ¬ p has the 

same truth values of p and q. Therefore (p →¬ q)⇔ (q → ¬ p). 

3. For any two propositions p, q Prove that (p ⊻ q)⇔(p ˅ q) ˄ ¬ (p ˄ q). 

Solution: The following truth table gives the required result. 



 

 

 

p q (p ˅ q) (p ⊻ q) (p ˄ q) ¬ (p ˄ q) (p ˅ q) ˄ ¬ (p ˄ q) 

0 

 

0 

 

1 

1 

0 

 

1 

 

0 

1 

0 

 

1 

 

1 

1 

0 

 

1 

 

1 

0 

0 

 

0 

 

0 

1 

1 

 

1 

 

1 

0 

0 

 

1 

 

1 

0 

 

From the column 4 and 7 of the above truth table, we find that (p ⊻ q) and (p ˅ q) ˄ ¬ (p ˄ q) 

has the same truth values of p and q. Therefore (p ⊻ q)⇔(p ˅ q) ʌ¬ (p ˄ q). 

4. For any propositions p, q, r. Prove that [(p → (q → r)]⇔ [(p ˄¬ r) → ¬ q)] 

Solution: The following truth table gives the required result. 
 

p q r ¬ q ¬ r q → r p ˄¬ r p → (q → r) (p ˄¬ r) → ¬ q) 

0 

 

0 

 

0 

 

0 

 

1 

 

1 

 

1 

 

1 

0 

 

0 

 

1 

 

1 

 

0 

 

0 

 

1 

 

1 

0 

 

1 

 

0 

 

1 

 

0 

 

1 

 

0 

 

1 

1 

 

1 

 

0 

 

0 

 

1 

 

1 

 

0 

 

0 

1 

 

0 

 

1 

 

0 

 

1 

 

0 

 

1 

 

0 

1 

 

1 

 

0 

 

1 

 

1 

 

1 

 

0 

 

1 

0 

 

0 

 

0 

 

0 

 

1 

 

0 

 

1 

 

0 

1 

 

1 

 

1 

 

1 

 

1 

 

1 

 

0 

 

1 

1 

 

1 

 

1 

 

1 

 

1 

 

1 

 

0 

 

1 

 

From the column 8 and 9 of the above truth table, we find that [p → (q → r)] and [(p ˄¬ r) → 

¬ q)] has the same truth values of p and q. Therefore [(p → (q → r)]⇔ [(p ˄¬ r) → ¬ q)]. 

5. Show that the compound propositions p ˄ ((¬ q) ˅ r) and p ˅ (q ˄ (¬ r)) are not logically 

equivalent. 

Solution: The following truth table gives the required result 



 

 

 

p q r ¬ q ¬ r ¬ q ˅ r q ˄ ¬ r p ˄ ((¬ q) ˅ r) p ˅ (q ˄ (¬ r)) 

0 

 

0 

 

0 

0 

 

1 

 

1 

 

1 

 
1 

0 

 

0 

 

1 

1 

 

0 

 

0 

 

1 

 
1 

0 

 

1 

 

0 

1 

 

0 

 

1 

 

0 

 
1 

1 

 

1 

 

0 

0 

 

1 

 

1 

 

0 

 
0 

1 

 

0 

 

1 

0 

 

1 

 

0 

 

1 

 
0 

1 

 

1 

 

0 

1 

 

1 

 

1 

 

0 

 
1 

0 

 

0 

 

1 

0 

 

0 

 

0 

 

1 

 
0 

0 

 

0 

 

0 

0 

 

1 

 

1 

 

0 

 
1 

0 

 

0 

 

1 

0 

 

1 

 

1 

 

1 

 
1 

 

From the last two rows we note that p ˄ ((¬ q) ˅ r) and p ˅ (q ˄ (¬ r)) do not have the same 

values in all possible situations. Therefore, they are not logically equivalent. 

The Laws of Logic: 

For any primitive statements p, q, r any tautology To and any contradiction Fo 

 

Sl. No Name of laws Laws of logic 

1 Laws of double negation ¬ ¬ p⇔p 

2 De Morgan’s laws 
¬ (p ˅ q)⇔(¬ p ˄ ¬ q) 

¬ (p ˄ q)⇔(¬ p ˅ ¬ q) 

3 Commutative laws 
(p ˅ q)⇔(q ˅ p) 

(p ˄ q)⇔(q ˄ p) 

4 Associative laws 
p ˅ (q ˅ r) ⇔ (p ˅ q) ˅ r 
p ˄ (q ˄ r) ⇔ (p ˄ q) ˄ r 

5 Distributive laws 
p ˅ (q ˄ r)⇔(p ˅ q) ˄ (p ˅ r) 

p ˄ (q ˅ r)⇔(p ˄ q) ˅ (p ˄ r) 

6 Idempotent laws 
p ˅ p⇔p 
p ˄ p⇔p 

7 Identity laws 
p ˅  Fo⇔p 

p ˄ To⇔p 

8 Inverse laws 
p ˅ ¬ p⇔To 

p ˄ ¬ p⇔Fo 

9 Domination laws 
p ˅  To⇔To 

p ˄ Fo⇔Fo 

10 Absorption laws 
p ˅ (p ˄  q)⇔p 

p ˄ (p ˅ q)⇔p 



 

 

Problems: 

 

1. Prove distributive law p ˅ (q ˄ r)⇔(p ˅ q) ˄ (p ˅ r) 

Solution: 
 

p q r q ˄ r p ˅ (q ˄ r) p ˅ q p ˅ r (p ˅ q) ˄ (p ˅ r) 

0 

 

0 

 

0 

0 

 

1 

 

1 

 

1 

 
1 

0 

 

0 

 

1 

1 

 

0 

 

0 

 

1 

 
1 

0 

 

1 

 

0 

1 

 

0 

 

1 

 

0 

 
1 

0 

 

0 

 

0 

1 

 

0 

 

0 

 

0 

 
0 

0 

 

0 

 

0 

1 

 

1 

 

1 

 

1 

 
1 

0 

 

0 

 

1 

1 

 

1 

 

1 

 

1 

 
1 

0 

 

1 

 

0 

1 

 

1 

 

1 

 

1 

 
1 

0 

 

0 

 

0 

1 

 

1 

 

1 

 

1 

 
1 

 

From columns 5 and 8 of the above table, we find that {p ˅ (q ˄ r)} and {(p ˅ q) ˄ (p ˅ r)} 

has same truth values in all possible situations. Therefore, p ˅ (q ˄ r)⇔(p ˅ q) ˄ (p ˅ r). 

Similarly, we can prove p ˄ (q ˅ r)⇔(p ˄ q) ˅ (p ˄ r). 
 

 

2. Prove De Morgan’s law ¬ (p ˅ q) ⇔ ¬ p ˄ ¬ q 

Solution: 
 

p q ¬ p ¬ q p ˅ q ¬ (p ˅ q) ¬ p ˄ ¬ q 

0 

 

0 

 

1 

1 

0 

 

1 

 

0 

1 

1 

 

1 

 

0 

0 

1 

 

0 

 

1 

0 

0 

 

1 

 

1 

1 

1 

 

0 

 

0 

0 

1 

 

0 

 

0 

0 

From columns 5 and 8 of the above table, we find that ¬ (p ˅ q) and ¬ p ˅ ¬ q has same truth 

values in all possible situations. Therefore, ¬ (p ˅ q) ⇔ ¬ p ˄ ¬ q. 

Similarly, we can prove ¬ (p ˄ q) ⇔ ¬ p ˅ ¬ q 



 

 

Law for the negation of a conditional: 

Given a conditional p → q, its negation is obtained by using the following law. 

¬ (p → q)⇔[p ˄ (¬ q)] 

Proof: 

The following table gives the truth values of ¬ (p → q) and p ˄ (¬ q) for all possible truth 

values of p and q. 
 

p q p → q ¬ (p → q) ¬ q p ˄ (¬ q) 

0 

 

0 

 

1 

 

1 

0 

 

1 

 

0 

 

1 

1 

 

1 

 

0 

 

1 

0 

 

0 

 

1 

 

0 

1 

 

0 

 

1 

 

0 

0 

 

0 

 

1 

 

0 

 

We note that ¬ (p → q) and p ˄ (¬ q) have same truth values in all possible situations. Hence, 

¬ (p → q)⇔[p ˄ (¬ q)]. 

 

 

Problems: 

1. Simplify the following compounds propositions using the laws of logic. 

(ⅰ) p ˅ q ˄ [ ¬ {(¬ p) ˄ q}] (ⅱ) p ˅ q ˄ [ ¬ {(¬ p) ˅ q}] 

(ⅲ) ¬ [ ¬ {(p ˅ q) ˄ r} ˅ (¬ q)] 

Solution: 

(i) p ˅ q ˄ [ ¬ {(¬ p) ˄ q}] 

= p ˅ q ˄ {(¬ ¬ p) ˅ (¬ q)} By De Morgan’s law 

= p ˅ q ˄ {p ˅ (¬ q)} By Law of double negation 

= p ˅ {q ˄ (¬ q)} By Distributive law 

= p ˅ Fo By Inverse law 

= p By Identity law 

 

 

(ii) p ˅ q ˄ [ ¬ {(¬ p) ˅ q}] 

= (p ˅ q) ˄ {p ˄ (¬ q)} 

= {(p ˅ q) ˄ p)} ˄ (¬ q) Using Associative law 



 

 

= {p ˄ (p ˅ q)} ˄ (¬ q) Using Commutative law 

= p ˄ (¬ q) Using Absorption law 

(iii) ¬ [ ¬ {(p ˅ q) ˄ r} ˅ (¬ q)] 

= ¬ [ ¬ {((p ˅ q) ˄ r) ˄ q}] Using De Morgan’s law 

= ((p ˅ q) ˄ r) ˄ q Law of Double negation 

= (p ˅ q) ˄ (q ˄ r) Using Associative and Commutative law 

= {(p ˅ q) ˄ q} ˄ r Using Associative law 

= q ˄ r Using Associative law 

2. Prove the following logically without using truth table. 

(i). [p ˅ q ˅ (¬ p ˄ ¬ q ˄ r)]⇔ p ˅ q ˅ r (ii). [(¬ p ˅ ¬ q) → (p ˄ q ˄ r)]⇔ p ˄ q 

(iii). p→ (q → r) ⇔ (p ˄ q) →r 

Solution: 

(ⅰ) [p ˅ q ˅ (¬ p ˄ ¬ q ˄ r)]⇔ p ˅ q ˅ r 

We have, ¬ p ˄ ¬ q ˄ r ⇔ ¬ (p ˅ q) ˄ r By De Morgan’s law 

Therefore, [pⅴq ⅴ (¬ p ˄ ¬ q ˄ r)] ⇔ (pⅴq) ⅴ (¬ (pⅴq) ˄ r) 

⇔ [(pⅴq) ⅴ¬ (pⅴq)] ˄ (p ⅴ q ⅴ r) By Distributive law 

⇔ To ˄ (p ⅴ q ⅴ r) By Inverse and Associative law 

⇔(p ⅴ q ⅴ r) By Commutative law 

 

 

(ii) [(¬ pⅴ¬ q) → (p ˄ q ˄ r)]⇔ p ˄ q 

We have, [(¬ pⅴ¬ q) → (p ˄ q ˄ r)]⇔ ¬ (¬ pⅴ¬ q) ⅴ (p ˄ q ˄ r) 

Because (u → v) ⇔ (¬ u ⅴ v) 

⇔ (p ˄ q) ⅴ [(p ˄ q) ˄ r] By De Morgan’s law and Associative law 

⇔ p ˄ q By Absorption law 

 

 

(ⅲ) we have, p → (q → r) ⇔ ¬ p ⅴ (¬ q ⅴ r) Because (u → v) ⇔ (¬ u ⅴ v) 

⇔ (¬ p ⅴ ¬ q) ⅴ r Associative law 

⇔ (p ˄ q) ⅴ r De-Morgan’s law 

⇔ (p ˄ q) →r Because (u → v) ⇔ (¬ u ⅴ v) 



 

 

Duality: 

Let s be a statement. If s contains no logical connectives other than ˄ and ⅴ, the dual of s 

denoted by sd, is the statement obtained from s by replacing each occurrence of ˄ and ⅴ by ⅴ 

and ˄ respectively, and each occurrence of To and Fo by Fo and To, respectively. 

Example: Given the primitive statements p, q, r and the compound statements 

s: (p ˄ (¬ q)) ⅴ (r ˄ To) 

sd: (p ⅴ (¬ q)) ˄ (r ⅴ Fo) 

 

 

Principle of Duality: 

Let s and t be two statements that contains no logical connections than ˄ and ⅴ. If s⇔t, then 

sd⇔td. 

Problems: 

1. Write duals of the following propositions. 

(i). p → q (ii). (p → q) → r (iii). p → (q → r) 

Solution: we recall that (u → v) ⇔ (¬ u ⅴ v) 

Therefore, by the principle of duality we find that 

(ⅰ) (p → q)d ⇔ (¬ p ⅴ q)d ⇔ ¬ p ˄ q 

(ⅱ) [(p → q) → r]d ⇔ [ ¬ (¬ p ⅴ q) ⅴ r]d 

⇔ [ (p ˄ ¬ q) ⅴ r]d 

⇔ (p ⅴ ¬ q) ˄ r 

(iii) [p→ (q → r)]d ⇔ [ ¬ p ⅴ (q →r)]d 

⇔ [ ¬ p ⅴ (¬ q ⅴ r)]d 

⇔ ¬ p ˄ (¬ q ˄ r) 

2. Write duals of the following propositions. 

(i). q → p (ii). (p ⅴ q) ˄ r (iii). (p ˄ q) ⅴT0 

(iv). p → (q ˄ r) (v). p ↔ q (vi). p ⊻ q 

Solution: we recall that (u → v) ⇔ (¬ u ⅴ v) 

Therefore, by the principle of duality we find that 

(ⅰ) (q → p)d ⇔ (¬ q ⅴ p)d ⇔ ¬ q ˄ p 

(ⅱ) [(p ⅴ q) ˄ r]d ⇔ (p ˄ q) ⅴr 

(iⅱ) [(p ˄ q) ⅴT0]
d ⇔ (p ⅴ q) ˄ F0 



 

 

(iv) [p → (q ˄ r)]d ⇔ [¬ p ⅴ (q ˄ r)]d ⇔ ¬ p ˄ (q ⅴ r) 

(v) [p ↔ q]d ⇔ [(p → q) ˄ (q → p)]d ⇔ [(¬ pⅴq) ˄ (¬ qⅴp)]d 

⇔ (¬ p ˄ q) ⅴ (¬ q ˄ p) 

(vi) [p ⊻ q]d ⇔ [(p ˄ ¬ q) ⅴ (q ˄ ¬ p)]d ⇔ [( pⅴ¬ q) ˄ (qⅴ¬ p)] 

 

 

NAND and NOR: 

The compound proposition ¬ (p ˄ q) is read as “Not p and q” and also denoted by (p ↑ q). The 

symbol ↑ is called NAND connective. 

The compound proposition ¬ (p ⅴ q) is read as “Not p or q” and also denoted by (p ↓ q). The 

symbol ↓ is called the NOR connective. 

Truth table 
 

p q p ↑ q p ↓ q 

0 

 

0 

 

1 

1 

0 

 

1 

 

0 

1 

1 

 

1 

 

1 

0 

1 

 

0 

 

0 

0 

 

Where p ↑ q = ¬ (p ˄ q) ⇔ ¬ p ⅴ ¬ q and p ↓ q = ¬ (p ⅴ q) ⇔¬ p ˄ ¬ q 

 

 

Problems: 

1. For any propositions p, q Prove the following 

(i). ¬ (p ↓ q) ⇔ ¬ p ↑ ¬ q (ii). ¬ (p ↑ q) ⇔ ¬ p ↓ ¬ q 

Solution: Using definition, we find that 

i. ¬ (p ↓ q) ⇔ ¬ [ ¬ (pⅴq)] 

⇔ ¬ [ ¬ p ˄ ¬ q] 

⇔¬ p ↑ ¬ q 

ii. ¬ (p ↑ q) ⇔ ¬ [ ¬ (p ˄ q)] 

⇔ ¬ [ ¬ p ⅴ ¬ q] 

⇔ ¬ p ↓ ¬ q 

2. For any propositions p, q, r Prove the following 



 

 

(i). p ↑ (q ↑ r) ⇔ ¬ pⅴ (q ˄ r) (ii). (p ↑ q) ↑ r ⇔ (p ˄ q) ⅴ¬ r 

(iii). p ↓ (q ↓ r) ⇔ ¬ p ˄ (q ⅴr) (iv). (p ↓ q) ↓ r ⇔ (p ⅴ q) ˄ ¬ r 

Solution: Using definition, we find that 

(i). p ↑ (q ↑ r) ⇔ ¬ [p ˄ (q ↑ r))] 

⇔ ¬ [p ˄ ¬ (q ˄ r)] 

⇔ ¬ p ⅴ ¬ [ ¬ (q ˄ r)] 

⇔ ¬ pⅴ (q ˄ r) 

(ii). (p ↑ q) ↑ r ⇔ ¬ [(p ↑ q) ˄ r] 

⇔ ¬ [¬ (p ˄ q) ˄ r] 

⇔ ¬ [¬ (p ˄ q)] ⅴ ¬ r 

⇔ (p ˄ q) ⅴ¬ r 

(iii). p ↓ (q ↓ r) ⇔ ¬ [p ⅴ (q ↓ r))] 

⇔ ¬ [p ⅴ ¬ (q ⅴ r)] 

⇔ ¬ p ˄ ¬ [ ¬ (q ⅴ r)] 

⇔ ¬ p ˄ (q ⅴr) 

(iv). (p ↓ q) ↓ r ⇔ ¬ [(p ↓ q) ⅴ r] 

⇔ ¬ [¬ (p ⅴ q) ⅴ r] 

⇔ ¬ [¬ (p ⅴ q)] ˄ ¬ r 

⇔ (p ⅴ q) ˄ ¬ r 



 

 

Converse, Inverse and Contrapositive: 

Consider a conditional p → q then: 

1. q → p is called the converse of p → q. 

2. ¬ p →¬ q is called the inverse of p → q. 

3. ¬ q →¬ p is called the contrapositive of p → q. 

Truth table for converse, inverse and contrapositive 
 

p q ¬ p ¬ q p → q q → p ¬ p→¬ q ¬ q →¬ p 

0 

 

0 

 

1 

 

1 

0 

 

1 

 

0 

 

1 

1 

 

1 

 

0 

 

0 

1 

 

0 

 

1 

 

0 

1 

 

1 

 

0 

 

1 

1 

 

0 

 

1 

 

1 

1 

 

0 

 

1 

 

1 

1 

 

1 

 

0 

 

1 

 

Note: 1. A conditional and its contrapositive are logically equivalent i.e., p → q ⇔ ¬ q →¬ p 

2. A converse and the inverse of a conditional are logically equivalent 

q → p ⇔ ¬ p → ¬q 

Logical implication: 

Logical implication is a type of relationship between two statements or sentences. The relation 

translates verbally into "logically implies" or "if/then" and is symbolized by a double-lined 

arrow pointing toward the right (⇒). If p and q represent statements, then p ⇒ q means "p 

implies q" or "If p, then q." The word "implies" is used in the strongest possible sense. 

Example: 

Suppose the sentences p and q are assigned as follows: 

p = The sky is overcast. 

q = The sun is not visible. 

In this instance, p ⇒ q is a true statement (assuming we are at the surface of the earth, below 

the cloud layer.) However, the statement p ⇒ q is not necessarily true; it might be a clear night. 

Logical implication does not work both ways. However, the sense of logical implication is 

reversed if both statements are negated. i.e., (p ⇒ q) ⇒ (¬ q ⇒ ¬ p) 

Using the above sentences as examples, we can say that if the sun is visible, then the sky is not 

overcast. This is always true. In fact, the two statements p ⇒ q and ¬ q ⇒ ¬ p are logically 

equivalent. 



 

 

Necessary and Sufficient Conditions: 

Consider two propositions p and q whose truth values are interrelated. Suppose that p ⇒ q. 

Then in order that q may be true it is sufficient that p is true. Also, if p is true then it is necessary 

that q is true. In view of this interpretation, all of the following statements are taken to carry 

the same meaning: 

(i). p ⇒ q (ii). p is sufficient for q (iii). q is necessary for p 

 

 

Problems: 

1. State the converse inverse and contrapositive of 

i) If the triangle is not isosceles, then it is not equilateral 

ii) If the real number x2 is greater than zero, then x is not equal to zero. 

iii) If a quadrilateral is a parallelogram, then its diagonals bisect each other. 

Solution: 

(i) p: Triangle is not isosceles and q: Triangle is not equilateral. 

Implication: p → q. if triangle is not isosceles then it is not equilateral. 

Converse: q → p. if a triangle is not equilateral then it is not isosceles. 

Inverse: ¬ p →¬ q. if a triangle is isosceles then it is equilateral. 

Contrapositive: ¬ q→¬ p: if a triangle is equilateral then it is isosceles. 

 

(ii) p: A real number x2 is greater than zero and q: x is not equal to zero. 

Implication: p → q. if a real number x2 is greater than zero then, x is not equal to zero. 

Converse: q → p. if a real number x is not equal to zero then, x2 is greater zero. 

Inverse: ¬ p→¬ q. if a real number x2 is not greater than zero then, x is equal to zero. 

Contrapositive: If a real number x is equal to zero then, x2 is not greater than zero 

(ⅰii) p: If Quadrilateral is a parallelogram and q: its Diagonals Bisects each other. 

Implication: p → q. If Quadrilateral is a parallelogram, then its diagonals bisects each 

other. 

Converse: q → p. If the diagonals of the Quadrilateral bisect each other, then it is a 

parallelogram. 

Inverse: ¬ p →¬ q. If Quadrilateral is not a parallelogram, then its diagonals do not bisect 

each other. 

Contrapositive: ¬ q→¬ p: If the diagonals of the Quadrilateral do not bisect each other, 

then it is a not a parallelogram. 

 

2. Write down the following statements in the ‘Necessary and Sufficient Condition’ 

Language. 

i) If the triangle is not isosceles, then it is not equilateral 

ii) If the real number x2 is greater than zero, then x is not equal to zero. 

iii) If a quadrilateral is a parallelogram, then its diagonals bisect each other. 

Solution: 



 

 

Necessary Condition Language: 

(i). For a triangle to be non-isosceles it is necessary that is not equilateral. 

(ii). A necessary condition for a real number x2 to be greater than zero is that x is not equal to 

zero. 

(iii). A necessary condition for a quadrilateral to be a parallelogram is that its diagonals bisect 

each other. 

Necessary Condition Language: 

(i). A sufficient condition for a triangle to be not equilateral is that it is not isosceles. 

(ii). For a real number x, the condition x2 to be greater than zero is sufficient for x to be not 

equal to zero. 

(iii). A sufficient condition for the diagonals of a quadrilateral to bisect each other is that the 

quadrilateral is a parallelogram. 



 

 

☻Rules of inference: 

Let us consider the implication (p1 ˄ p2 ˄ …. ˄ pn) → q 

Here n is a positive integer, the statements p1, p2, …. pn are called the premises of the argument 

and q is called the conclusion of the argument. 

We write the above argument in the following tabular form: 

𝑝1 
𝑝2 
𝑝3 
⋮ 
⋮ 

 𝑝𝑛  

∴ q 

The preceding argument is said to be valid if whenever each of the premises p1, p2, …. pn is 

true, then the conclusion q is likewise true. 

i.e., (p1 ˄ p2 ˄ …. ˄ pn) → q is valid when (p1 ˄ p2 ˄  …. ˄ pn) ⇒ q 

It is to be emphasized that in an argument, the premises are always taken to be true whereas 

the conclusion may be true or false. The conclusion is true only in the case of valid argument. 

There exist rules of logic which can be employed for establishing the validity of arguments. 

These rules are called Rules of Inference. 

 

Name of the rule and rule of inference 

 

Sl.no Rules of inference Name of rule 

1 

p 
p → q 

 

∴ q 

Rule of Detachment 

(modus pones) 

2 

p → q 
q → r 

 

∴ p → r 
Law of Syllogism 

3 

p → q 
¬ q 

 

∴¬ p 
Modus Tollens 

4 

p 
q 

 

∴ p ˄ q 
Rule of Conjunction 

 

5 

pⅴq 
¬ 𝑝 

 

∴ 𝑞 

 

Rule of Disjunctive Syllogism 

6 
¬ p → Fo 

 

∴ p 
Rule of Contradiction 

7 
p ˄ q 

 

∴ p 
Rule of Conjunctive Simplification 

8 
p 

 

∴ pⅴq 
Rule of Disjunctive Amplification 



 

 

Problems: 

1. Test whether the following is valid argument. 

If Sachin hits a century, then he gets a free car. 

Sachin hits a century. 

∴ Sachin gets a free car. 

Solution: Let p: Sachin hits a century. 

q: Sachin gets a free car. 

The given statement reads 

p → q 
𝑝 

∴ 𝑞 

In view of Modus Pones Rule, this is a valid argument. 

2. Test the validity of the following arguments. 

If Ravi goes out with friends, he will not study. 

If Ravi does not study, his father will become angry. 

His father is not angry. 

∴ Ravi has not gone out with friends. 

Solution: Let p: Ravi goes out with friends. 

q: Ravi does not study. 

r: His father gets angry. 

Then the given argument reads. 

p → q 
q → r 
 ¬ 𝑟 
∴ ¬ 𝑝 

This argument is logically equivalent to (Using the rule of syllogism) 

𝑝 → 𝑟 
  ¬ 𝑟 
∴ ¬ 𝑝 

In view of Modus Tollens Rule, this is a valid argument. 

3. Test whether the following is valid argument. 

If Sachin hits a century, then he gets a free car. 

Sachin does not get a free car. 

∴ Sachin has not hit a century 



 

 

 

Solution: Let p: Sachin hits a century. 

q: Sachin gets a free car. 

The given statement reads 

 

 

 

 

 

p → q 
¬ q 

 

 

∴ ¬ 𝑝 

In view of Modus Tollens Rule, this is a valid argument. 

4. Test the validity of the following argument 

If I study, then I’ll not fail in the examination. 

If I do not watch tv in the evenings, I will study. 

I failed in the examination. 

∴ I must have watched tv in the evenings. 

Solution: Let p: I study 

q: I fail in the examination 

r: I watch tv in the evenings. 

Then the given argument reads 

𝑝 → ¬ 𝑞 
¬ 𝑟 → 𝑝 

𝑞 

 
This argument is logically equivalent to 

∴ 𝑟 

 
𝑞 → ¬ 𝑝 
¬ 𝑝 → 𝑟 

𝑞 
 

 

∴ 𝑟 
 

 

This is equivalent to (Using rule of syllogism) 
 

𝑞 → 𝑟 
𝑞 

∴ 𝑟 

In view of Modus Pones Rule, this is a valid argument. 

5. Test the validity of the following argument 

I will become famous or I will not become a musician. 

I will become a musician. 

∴ I will become famous. 

(because (p →¬ q) ⇔ (¬ ¬ q → ¬ p)) 

(because (¬ r → p) ⇔ (¬ p → r)) 



 

 

 

Solution: Let p: I will become famous 

q: I will become a musician 

Then the given argument reads 

 

 

 

This argument is logically equivalent to 

 

 

 

 

Because 𝑝ⅴ¬ 𝑞 ⇔ ¬ 𝑞ⅴ𝑝 ⇔ 𝑞 → 𝑝 

 
 
 

 
𝑝ⅴ¬ 𝑞 

q 
 

 

∴ p 

 
𝑞 → 𝑝 

𝑞 
 

 

∴ 𝑝 

In view of Modus Pones Rule, this is a valid argument. 

6. Test the validity of the following argument 

I will get grade A in this course or I will not graduate. 

If I do not graduate, I will join army. 

I got grade A. 

∴ I will not join army. 

Solution: Let p: I will get grad A in this course 

q: I do not graduate. 

r: I will join army. 

Then the given argument reads 

 

 

 

 

This argument is logically equivalent to 

𝑝ⅴ 𝑞 
q → 𝑟 

𝑝 
 

 

∴ ¬ 𝑟 

 
¬ 𝑞 → 𝑝 
¬ 𝑟 → ¬ q 

𝑝 
 

 

∴ ¬ 𝑟 

Because 𝑝ⅴ¬ 𝑞 ⇔ 𝑞ⅴ𝑝 ⇔ ¬ 𝑞 → 𝑝 and using Contrapositive. 

This is equivalent to (Using rule of syllogism) 

 

 

 

This is not a valid argument. 

¬ 𝑟 → 𝑝 
𝑝 

 
 

∴ ¬ 𝑟 

7. Test whether the following is valid argument. 



 

 

If Sachin hits a century, then he gets a free car. 

Sachin gets a free car. 

∴ Sachin has hit a century. 

Solution: Let p: Sachin hits a century. 

q: Sachin gets a free car. 

The given statement reads 

p → q 
𝑞 

∴ 𝑝 

We note that if p → q and q are true, there is no rule which asserts that p must be true. 

Indeed, p can be false when p → q and q are true. See the table below. 
 

p q p → q (p → q) ˄ q 
0 1 1 1 

 

Thus, [(p → q) ˄ q] → p is not a tautology. Hence, this is not a valid argument. 

8. Test the Validity of the following argument: 
 

(i). p ˄ q (ii). p (iii). p → r 

p → (q → r) 

∴  r 

 p → ¬ q 

¬ q → ¬ r 

 q → r 

∴ (p ⅴ q) → r 

  ∴  ¬ r   

Solution: 

(i). Since p ˄ q is true, both p and q are true. Since p is true and p → (q → r) is true, q → r 

Should be true. Since q is true and q → r is true, r should be true. Hence the given argument is 

valid. 

(ii). The premises p → ¬ q and ¬ q → ¬ r together yields the premise p → ¬ r. since p is true, 

this premise p → ¬ r establishes that ¬ r is true. Hence the given argument is valid. 

(iii) We note that 

(p → r) ˄ (q → r) ⇔ (¬ p ⅴ r) ˄ (¬ q ⅴ r) 

⇔ (r ⅴ¬ p) ˄ (r ⅴ¬ q) By Commutative law 

⇔ r ⅴ (¬ p ˄ ¬ q) By Distributive law 

⇔ ¬ (p ⅴ q) ⅴr By Commutative & De Morgan’s Law 

⇔ (p ⅴ q) → r 



 

 

This Logical equivalence shows that the given argument is valid. 

9. Test whether the following arguments are valid: 
 

(i). p → q (ii). p → q 

r → s 

p ⅴ r 

 r → s 

¬ q ⅴ ¬ s 

∴ q ⅴ s  ∴ ¬ (p ˄ r) 

Solution: 

(i) We note that 

(p → q) ˄ (r → s) ˄ (p ⅴ r) ⇔ (p → q) ˄ (r → s) ˄ (¬ p → r) 

⇔ (p → q) ˄ (¬ p → r) ˄ (r → s) By Commutative law 

⇔ (p → q) ˄ (¬ p → s) Using Rule of Syllogism 

⇔ (¬ q → ¬ p) ˄ (¬ p → s) Using Contrapositive 

⇔ (¬ q → s) Using Rule of Syllogism 

⇔ q ⅴ s 

This Logical equivalence shows that the given argument is valid. 

(ii) We note that 

(p → q) ˄ (r → s) ˄ (¬ q ⅴ ¬ s) ⇔ (p → q) ˄ (r → s) ˄ (q → ¬ s) 

⇔ (p → q) ˄ (q → ¬ s) ˄ (r → s) By Commutative law 

⇔ (p → ¬ s) ˄ (r → s) Using Rule of Syllogism 

⇔ (p → ¬ s) ˄ (¬ s → ¬ r) Using Contrapositive 

⇔ (p → ¬ r) Using Rule of Syllogism 

⇔ ¬ p ⅴ¬ r) 

⇔ ¬ (p ˄ r) 

This Logical equivalence shows that the given argument is valid. 

10. Show that the following argument is not valid: 

p 

p ⅴ q 

q → (r → s) 

t → r  

∴ ¬ s → ¬ t 



 

 

Solution: 

Here p is true (premise) and (p ⅴ q) is true (premise). Therefore, q may be true or false. 

Suppose q is false. Then, since q → (r → s) is true (premise), r → s must be false. This 

means that r must be true, and s must be false. Since r is true and t → r is true (premise), t may 

be true or false. Suppose t is true, then ¬ t is false. Since s must be false, ¬ s must be true. 

Consequently, ¬ s → ¬ t is false. 

Thus, when q is false and t is true, the given conclusion does not follow from the given 

premise. As such, the given argument is not valid argument. 



 

 

☻Open statement: 

A declaration statement is an open statement 

i. If it contains one or more variables. 

ii. If it is not statement. 

iii. But it becomes statement when the variables in it are replaced by certain allowable 

choices. 

Example: “The number x+2 is an even integer” is denoted by P(x) then ¬ P(x) may be read as 

“The number x+2 is not an even integer”. 

Quantifiers: 

The words “all”, “every”, “some”, “there exist” are associated with the idea of a quantity such 

words are called quantifiers. 

1. Universal quantifiers: 

The symbol Ɐ has been used to denote the phrases “for all” and “for every” in logic “for 

each” and “for any” are also taken up to equivalent to these. These equivalent phrases are 

called universal quantifiers. 

2. Existential quantifiers: 

The symbol ∃ has been used to denote the phrases “there exist”, “for some” and “for at 

least one” each of these equivalent phrases is called the existential quantifiers. 

 

Example: 1. For every integer x, x2 is a non-negative integer ∃ x ∈ s, P(x). 

2. For the universe of all integers, let 

p(x): x>0. 

q(x): x is even. 

r(x): x is a perfect square. 

s(x): x is divisible by 3. 

t(x): x is divisible by 7. 

Problems: 

Write down the following quantified statements in symbolic form: 

i) At least one integer is even. 

ii) There exists a positive integer that is even. 

iii) Some integers are divisible by 3. 

iv) every integer is either odd or even. 

v) if x is even and a perfect square, then is not divisible by 3. 

vi) if x is odd or is not divisible by 7, then x is divisible by 3. 

Solution: 



 

 

Using the definition of quantifiers, we find that the given statement read as follows in 

symbolic form 

i) ∃x, q(x) 

ii) ∃x, [ p(x) ˄ q(x)] 

iii) ∃x, [ q(x) ˄ s(x)] 

ⅵ) Ɐx, [ q(x) ⊻ ¬ q(x)] 

v) Ɐx [ {q(x) ˄ r(x)} → s(x)] 

vi) Ɐx, [{¬ q(x) ⅴ ¬ t(x)} →s(x)] 

 

 

Rules employed for determining truth value: 

Rule1: The statement “Ɐ x ∈ s, p(x)” is true only when p(x) is true for each x ∈ s. 

Rule2: The statement “∃ x ∈ s, p(x)” is false only when p(x) is false for every x ∈ s. 

*Rules of inference: 

Rule3: If an open statement p(x) is known to be true for all x in a universe s and if a ∈ s then 

p(a) is true. (this is known as the rule of universal specification). 

Rule4: if an open statement p(x) is proved to be true for any (arbitrary) x chosen from a set s 

then the quantified statement Ɐ x ∈ s, p(x) is true. (this is known as the rule of universal 

generalization) 

*Logical equivalence: 

Two quantified statements are said to be logically equivalent whenever they have the same 

truth values in all possible situations. 

The following results are easy to prove. 

i) Ɐ x [p(x) ˄ q(x)] ⇔ (Ɐ x, p(x)) ˄ (Ɐ x, q(x)) 

ii) ∃ x [p(x) ⅴ q(x)] ⇔ (∃ x, p(x)) ⅴ (∃ x, q(x)) 

iii) ∃ x, [p(x) → q(x)] ⇔ ∃ x, (¬ p(x) ⅴ q(x)) 

*Rule for negation of a quantified statement: 

Rule5: To construct the negation of a quantified statement, change the quantifier from 

universal 

to existential and vice versa. 

i.e., ¬ [Ɐ x, p(x)] ≡ ∃ x, [ ¬ p(x)] 

¬ [(∃ x, p(x)] ≡ Ɐ x [ ¬ p(x)] 



 

 

Problems: 

1. Consider the open statements with the set of real numbers as the universe. 

p(x): |x|>3, q(x): x>3 

Find the truth value of the statement Ɐ x, [p(x) → q(x)]. Also, write down the converse, inverse 

and the contrapositive of this statement and find their truth values 

Solution: 

We readily note that 

p(-4) ≡ |-4|>3 is true and q(-4) ≡ -4>3 is false 

Thus, p(x) →q(x) is false for x= -4. 

Accordingly, the given statement Ɐ x, [p(x) → q(x)] ......................... (ⅰ) is false. 

The converse of the statement (ⅰ) is Ɐ x, [q(x) → p(x)] ....................... (ⅱ) 

In words, this reads “For every real number x, x>3 then |x|>3” 

Or Equivalently, “Every real number greater than 3 has its absolute value (magnitude) greater 

than 3” 

This is a true statement. 

Next, the inverse of the statement (ⅰ) is Ɐ x, [¬ p(x) → ¬ q(x)] ............... (ⅲ) 

In words this reads “For every real number x, if |x| ≤3 then x≤3” 

Or equivalently, “If the magnitude of a real number is less than or equal to 3, then the number 

is less than or equal to 3” 

Since the converse and inverse of a conditional are logically equivalent the statements (ⅱ) and 

(iii) have the same truth values. Thus ⅲ) is a true statement. 

Then the contrapositive of statement (i) is Ɐ x, [¬ q(x) → ¬ p(x)] ........................... (ⅳ) 

“Every real number which is less than or equal to 3 has its magnitude less than or equal to 3”. 

2. Let p(x): x2-7x+10, q(x): x2-2x-3, r(x): x<0. 

Determine the truth or falsity of the following statements. When the universe U contains 

only the integers 2 and 5. If a statement is false. Provide a counter example or explanation. 

 

(ⅰ). Ɐ x, [p(x) →¬ r(x)] (ⅱ). Ɐ x, [q(x) → r(x)] 

(ⅲ). ∃ x, [q(x) → r(x)] (ⅳ). ∃ x, [p(x) → r(x)] 

Solution: 

Here, the universe is U= {2, 5}. 

We note that x2-7x+10 = (x-5) (x-2). Therefore, p(x) is true for x=5 and 2. That is p(x) is true 

for all x ∈ U. 



 

 

Further, x2-2x-3 = (x-3) (x+1). Therefore, q(x) is only true for x=3 and x=-1. Since x=3 and 

x=-1 are not in the universe, q(x) is false for all x ∈ U 

Obviously, r(x) is false for all x ∈ U. 

Accordingly: 

(i)  Since p(x) is true for all x ∈ U and ¬ r(x) is true for all x ∈ U, the statement Ɐ x, 

[p(x) → ¬ r(x)] is true. 

(ii) Since q(x) is false for all x ∈ U and r(x) is false for all x ∈ U, the statement Ɐ x, 

[q(x) → r(x)] is true. 

(iii) Since q(x) and r(x) are false for x=2, the statement ∃ x, [q(x) → r(x)] is true. 

(iv) Since p(x) is true for all x ∈ U but r(x) is false for all x ∈ U. the statement p(x) → r(x) is 

false for all x ∈ U. consequently, ∃ x, [p(x) → r(x)] is false. 

3. Negate and simplify each of the following. 

 

(i). ∃ x, [p(x) ⅴ q(x)] (ⅱ). Ɐ x, [p(x) ˄ ¬ q(x)] 

(ⅲ). Ɐ x, [p(x) → q(x)] (ⅳ). ∃ x, [p(x) ⅴ q(x)] → r(x) 

Solution: 

By using the rule of negation for quantified statements and the laws of logic, we find that 

(i) ¬ [∃ x, {p(x) ⅴ q(x)}] ≡ Ɐ x, [ ¬ {p(x) ⅴ q(x )] 

≡ Ɐ x, [ ¬ p(x) ˄ ¬ q(x)] 

(ii) ¬ [Ɐ x, {p(x) ˄ ¬ q(x)}] ≡ ∃ x, [ ¬ {p(x) ˄ ¬ q(x)}] 

≡ ∃ x, [ ¬ p(x) ⅴ q(x)] 

(iii) ¬ [Ɐ x, {p(x) → q(x)}] ≡ ∃ x, [ ¬ {¬ p(x) ⅴ q(x)}] 

≡ ∃ x, [p(x) ˄ ¬ q(x)}] 

(iv) ¬ [∃ x, {p(x) ⅴ q(x)} →r(x)] ≡ Ɐ x, [ ¬ {¬ (p(x) ⅴ q(x)) ⅴ r(x)}] 

≡ Ɐ x, [ {p(x) ⅴ q(x)} ˄ ¬ r(x)] 

4. Write down the following proposition in symbolic form, and find its negation: 

“If all triangles are right angled, then no triangle is equiangular”. 

Solution: 

Let T denote set of all triangles. Also, p(x): x is right angled, q(x): x is equiangular. 

Then in symbolic form, the given proposition reads 

{Ɐ x ∈ T, p(x)} → {Ɐ x ∈ T, ¬ q(x)} 



 

 

The negation of this is 

{Ɐ x ∈ T, p(x)} ˄ {∃ x ∈ T, q(x)} 

In words, this reads “All triangles are right angled and some triangles are equiangular”. 

Logical implication involving quantifiers 

5. Prove that ∃ x, [p(x) ˄ q(x)] ⇒ ∃ x, p(x) ˄ ∃ x, q(x) 

Is the converse true 

Solution: 

Let S denote the universe, we find that 

∃ x, [p(x) ˄ q(x)] ⇒ p(a) ˄ q(a) for some a ∈ S 

⇒ p(a), for a ∈ S and q(a) for some a ∈ S 

⇒ ∃ x, p(x) ˄ ∃ x, q(x) 

This proves the required implication. 

Next, we observe that ∃ x, p(x) ⇒ p(a) for some a ∈ S and ∃ x, q(x) ⇒ q(b) for some b ← S. 

Therefore, ∃ x, p(x) ˄ ∃ x, q(x) ⇒ p(a) ˄ q(b) 

⇎ p(a) ˄ q(a) because b need not be a 

Thus, ∃ x, [p(x) ˄ q(x)] need not be true when ∃ x, p(x) ˄ ∃ x, q(x) is true. 

That is ∃ x, p(x) ˄ ∃ x, q(x) ⇎ [p(x) ˄ q(x)] 

Accordingly, the converse of the given implication is not necessarily true. 

6. Find whether the following arguments is valid: 

No engineering student of first or second semester studies logic 

Anil is a student who studies logic. 

∴ Anil is not in second semester 

Solution: 

Let us take the universe to be the set of all engineering students 

p(x): x is in first semester. 

q(x): x is in second semester. 

r(x): x studies logic. 

Then the given argument reads 

Ɐ x,[{p(x)ⅴq(x)} → ¬ r(x)] 
r(a) 

∴ ¬ q(a) 



 

 

We note that 

Ɐ x, [{p(x) ⅴ q(x)} →¬ r(x)] ⇒ {p(a) ⅴ q(a)} →¬ r(a) 

By rule of universal specification. 

Therefore, 

[Ɐ x, {p(x) ⅴ q(x)} →¬ r(x)] ˄ r(a) 

⇒ [{p(a) ⅴ q(a)} →¬ r(a)] ˄ r(a) 

⇒ r(a) ˄ [r(a) → ¬ [p(a) ⅴ q(a)]], Using Commutative law and Contrapositive 

⇒¬ [p(a) ⅴ q(a)], By the Modus Pones law 

⇒ ¬ p(a) ˄ ¬ q(a), By De Morgan’s law 

⇒ ¬ q(a), by the rule of conjunctive specification, 

This proves that the given argument is valid. 

7. Find whether the following argument is valid. 

If a triangle has 2 equal sides then, it is isosceles. 

If the triangle is isosceles, then it has 2 equal angles. 

A certain triangle ABC does not have 2 equal angles. 

∴ the triangle ABC does not have 2 equal sides. 

Solution: 

Let the universe be set of all triangles 

And let p(x):x has equal sides. 

q(x): x is isosceles. 

r(x): x has 2 equal angles. 

Also let C denote the triangle ABC. 

Then, in symbols, the given argument reads as follows: 

Ɐ x, [p(x) → q(x)] 

Ɐ x, [q(x) → r(x)] 

¬ r(c) 

∴p(c) 

We note that 

Ɐ x, [p(x) → q(x)] ˄ {Ɐ x, [q(x) → r(x)]} ˄ ¬ r(c) 

⇒ {Ɐ x, [p(x) → r(x)] ˄ ¬ r(c)}, By Rule of Syllogism 

⇒ {[p(c) → r(c)] ˄ ¬ r(c)}, By Rule of Universal Specification 

⇒ ¬ p(c) By Modus Tollens Rule 



 

 

This proves that the given argument is valid. 

8. Prove that the following argument is valid. 

Ɐ x, [p(x) ⅴ q(x)] 

∃ x, ¬ p(x) 

Ɐ x, [¬ q(x) ⅴ r(x)] 

Ɐ x, [s(x) → ¬ r(x)] 

∴ ∃ x, ¬ s(x) 

Solution: 

We note that 

{Ɐ x, [p(x) ⅴ q(x)]} ˄ [∃ x, ¬ p(x)] 

⇒ [p(a) ⅴ q(a)] ˄ ¬ p(a) For some as in the universe 

⇒ q(a) By Disjunctive Syllogism 

Therefore, {Ɐ x, [p(x) ⅴ q(x)]} ˄ [∃ x, ¬ p(x)] ˄ {Ɐ x, [¬ q(x) ⅴ r(x)]} 

⇒ q(a) ˄ [¬ q(a) ⅴ r(a)] 

⇒ r(a) By Rule of Disjunctive Syllogism 

Consequently, 

{Ɐ x, [p(x) ⅴq(x)]} ˄ {∃ x, ¬ p(x)} ˄ {Ɐ x, [¬ q(x) ⅴ r(x)]} ˄ {Ɐ x, [s(x) → ¬ r(x)]} 

⇒ r(a) ˄ {s(a) → ¬ r(a)} 

⇒ ¬ s(a) By Modus Tollens rule 

⇒ ∃ x, ¬ s(x). 

This proves the given argument is valid. 

Quantified statements with more than one variable 

9. Determine the truth value of each of the following quantified statements. The universe 

being the set of all non-zero integer. 

i) ∃ x, ∃ y [xy=1] 

ii) ∃ x Ɐ y [xy=1] 

iii) Ɐ x ∃ y [xy=1] 

iv) ∃ x, ∃ y, [(2x+y=5) ʌ (x-3y=-8)] 

v) ∃ x, ∃ y, [(3x-y=17) ʌ (2x+4y=3)] 

Solution: (ⅰ) true (take x=1, y=1) 

(ii) False (for specified x, xy=1 for every y is not true) 

(iii) false (for x=2, there is no integer y such that xy=1) 

(iv) true (take x=1, y=3) 

(v) false (equation 3x-y=17 and 2x+4y=3 do not have a common integer solution) 



 

 

☻Methods of proof and methods of disproof: 

 

Direct proof: 

 

1. Hypothesis: first assume that p is true. 

2. Analysis: starting with the hypothesis and employ the rules/ Laws of logic and other known 

facts infer that q is true. 

3. Conclusion: p → q is true. 

Indirect proof: 

A conditional p → q and its contrapositive ¬ q →¬ p is logically equivalent. In some 

situations, given a condition p → q, a direct proof of the contrapositive ¬ q→¬ p is easier. On 

the basis of this proof, we infer that the conditional p → q is true. This method of proving a 

conditional is called an indirect method of proof. 

Proof by contradiction: 

1. Hypothesis: assume that p → q is false, that is assume that p is true and q is false. 

2. Analysis: starting with the hypothesis that q is false and employing the rules of logics and 

other known facts, this infer that p is false. This contradicts the assumption that p is true. 

3. Conclusion: because of the contradiction arrived in the analysis, we infer that p → q is 

true. 

Proof by exhaustion: 

Recall that a proposition of the form “Ɐ x ∈ S, p(x)” is true if p(x) is true for every x in 

S. if S consists of only a limited number of elements, we can prove that the statement “Ɐ x ∈ 
S, p(x)” is true by considering p(a) for each a in S and verifying that p(a) is true (in each case). 

Such a method of proof is called the method of exhaustion. 

Disproof by counter example: 

The way of disproving a proposition involving the universal quantifiers is to exhibit 

just one case where the proposition is false. This method of disproof is called disproof by 

counter example. 

Problems: 

1. Prove that, for all integers k and l, if k and l are both odd the k+l is even and kl is odd. 

Solution: 

Take any two integers k and l, and assume that both of these are odd (hypothesis) 

Then k=2m+1, l=2n+! for some integers m and n. therefore, 

k+1= (2m+1) +(2n+1) = 2(m+n+1) 

kl= (2m+1)(2n+1) = 4mn+2(m+n)+1 

We observe that k+l is divisible by 2 and kl is not divisible by 2. Therefore k+l is an even 

integer and kl is an odd integer. 



 

 

Since k and l are arbitrary integers, the proof of the given statement is complete. 

2. For each of the following statements, provide an indirect proof by stating and proving the 

contrapositive of the given statement. 

(i) for all integers k and l, if kl is odd then both k and l are odd. 

(ii) for all integers k and l if k+l is even, then k and l are both even or both odd. 

Solution: 

The contrapositive of the given statement is 

“For all integers k and l, if k is even or l is even then kl is even. 

We now prove this contrapositive. 

For any integers k and l, assume that k is even. 

Then k=2m for some integer m, and kl=(2m)l=2(ml) which is evidently even. Similarly if l is 

even, then kl=k(2n)=2kn for some integer n so that kl is even. This proves the contrapositive. 

This proof of contrapositive serves as an indirect proof of the given statement. 

(ii). Here, the contrapositive of the given statement is 

“for all integers k and l, if one of k and l and is odd and the other is even, then k+l is odd” 

We now prove this contrapositive 

For any odd integers k and l, assume that, one of k and l is odd and the other is even. 

Suppose k is odd and l is even. Then k=2m+1 and l=2n for some integers m and n. consequently 

k+l=(2m+1)+2n which is evidently odd. 

Similarly, if k is even and l is odd, we find that k+l is odd. This proves the contrapositive. 

This proof of contrapositive serves as an indirect proof of the given statement. 

3. Give (ⅰ) direct proof (ⅱ) indirect proof (ⅲ) proof by contradiction for the 

following statement: “if n is an odd integer, then n+9 is an even integer”. 

Solution: 

(i) Direct proof: assume that n is an odd integer. Then n=2k+1 for some integer k. This gives 

n+9 = (2k+1)+9 = 2(k+5) from which it is evident that n+9 is even. This establishes the truth 

of the given statement by a direct proof. 

(ii) Indirect proof: assume that n+9 is not an even integer. Then n+9 = 2k+1 for some integer 

k. This gives n = (2k+1)-9=2(k-4), which shows that n is even. Thus, if n+9 is not even, then n 

is not odd. This proves the contrapositive of the given statement. This proof of the 

contrapositive serves as an indirect proof of the given statement. 

(iii) proof by contradiction: assume that the given statement is false. That is, assume that n is 

odd and n+9 is odd, n+9=2k+1 for some integer k so that n=(2k+1)-9= 2(k-4) which shows that 

n is even. This contradicts the assumption that n is odd. Hence the given statement must be 

true. 



 

 

4. Prove that every even integer n with 2≤n≤26 can be written as a sum of most three perfect 

squares. 

Solution: 

Let S={2, 4, 6, …., 24, 26}. We have to prove that the statement: “Ɐ x ∈ S, p(x)” is true, 

where p(x): x is a sum of at most three perfect squares. 

We observe that 
 

 

The above facts verify that each x in S is a sum of at most three-perfect square. 

5. Prove or disprove that the sum of square of any four non-zero integers is an even integer. 

Solution: 

Here the proposition is 

“For any four non-zero integers a, b, c, d and a2+b2+c2+d2 is an even integer”. 

We check that for a=1, b=1, c=1, d=2 the proposition is false. Thus, the given proposition is 

not a true proposition. This proposition is disproved through the counter example a=b=c=1 and 

d=2. 

6. Consider the following statement for the universe of integers if n is an integer then n2=n or 

Ɐn {n2=n}. 

Solution: 

For n=0 it is true that n2=02=0=n and if n=1 is also true that n2=12=1=n. however we cannot 

conclude that n2=n for every integer n. 

The rule of universal generalisation does not apply here, for we cannot consider the choices of 

0 (or 1) as an arbitrarily chosen integer. If n=2, n2=4≠n=2, and this one counter example is 

enough to tell us that the given statement is false. 

However, either replacement namely n=0 or n=1 is not enough to establish the truth of the 

statement. For some integer n, n2=n or ∃ n {n2=n}. 

7. For all positive integers x and y if the product xy exceeds 25, then x>5 or y>5. 

Solution: 

2=12+12 16=42 

4=22 18=42+12+12 

6=22+12+12 20=32+32+12+12 

8=22+22 22=32+32+22 

10=32+12 24=42+22+22 

12=22+22+22 

14=32+22+12 

26=52+12 



 

 

Consider the negation of the conclusion that is suppose that 0 < x≤ 5 and 0 < y≤ 5. Under these 

circumstances we find that 0< 𝑥 ∙ 𝑦 < 5 ∙ 5 = 25. 

So, the product of xy does not exceed 25. 
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☻Syllabus: 

MODULE 2 

PROPERTIES OF INTEGERS & PRINCIPLES OF COUNTING 

 

Properties of the Integers: The Well Ordering Principle – Mathematical Induction. 
 

Fundamental Principles of Counting: The Rules of Sum and Product, Permutations, Combinations – The 

Binomial Theorem, Combinations with Repetition. 

☻Mathematical Induction: 

Mathematical induction is a mathematical proof technique. It is essentially used to prove that a 

statement 𝑃(𝑛) holds for every natural number 𝑛 = 0, 1, 2, 3, … …. i.e., the overall statement is a sequence of 

infinitely many cases 𝑃(0), 𝑃(1), 𝑃(3), … … … .. 

Well ordering principle: 
 

Every non empty subset of 𝑍+contains a smallest element. (we often express this by saying that 𝑍+ is well 

ordered). 

Finite induction principle (principle of Mathematical induction): 

Let 𝑆(𝑛) denote an open mathematical statement that involves one or more occurrences of the variable n. 

Which represents a positive integer 
 

(a) If 𝑆(1) is true; and 

(b) If whenever 𝑆(𝑘)is true (for some particular but arbitrarily chosen 𝑘 ∈ 𝑍+), then 𝑆 (𝑘 + 1)is true, 

then 𝑆(𝑛) is true for all 𝑛 ∈ 𝑍+. 

Proof: 

Let 𝑆(𝑛) be such an open statement satisfying conditions (a) and (b) and let 𝐹 = {𝑡 ∈ 𝑍+/ 𝑆(𝑡) is false}. We 

wish to prove that 𝐹 = ∅ so to obtain a contradiction we assume that 𝐹 ≠ ∅. Then by the well-ordering 

Principle, F has a least element. Since 𝑆(1) is true. It follows that 𝑆 ≠ 1. so 𝑠 > 10, and consequently 𝑠 − 

1 ∈ 𝑍+. With 𝑠 − 1 ∉ 𝐹, 𝑆(𝑠 − 1) we have true. So, by condition (b) it follows that 𝑆((𝑠 − 1) + 1) = 𝑆(𝑠) 

is true, contradicting 𝑠 ∈ 𝐹. This contradiction arose from the assumption that 𝐹 ≠ ∅. Consequently 𝐹 = ∅. 

Problems: 

1. Prove by mathematical induction that, for all positive integers 𝑛 ≥ 1. 

1 + 2 + 3 + ⋯ ⋯ ⋯ + 𝑛 = 
1 

𝑛(𝑛 + 1) 
2 

 

Solution: 

Here, we have to prove the statement 

𝑆(𝑛) = 1 + 2 + 3 + ⋯ ⋯ ⋯ + 𝑛 = 
1 

𝑛(𝑛 + 1) for all integers 𝑛 ≥ 1. 
2 



  

 

 

𝑖=1 

Basic step: We note that 𝑆(1) is the statement 

1 = 
1 

∙ 1 ∙ (1 + 1) 
2 

 

Which is clearly true. thus, the statement 𝑆(𝑛)is verified for 𝑛 = 1. 

Induction step:  We assume that the statement 𝑆(𝑛) is true for 𝑛 = 𝑘 where 𝑘 is an integer ≥ 1; that is, we 

assume that the following statement is true: 

𝑆(𝑘) = 1 + 2 + 3 + ⋯ ⋯ ⋯ + 𝑘 = 
1 

∙ 𝑘(𝑘 + 1) 
2 

 

Using this we find that (by adding (𝑘 + 1) to both side) 

𝑆(𝑘) = 1 + 2 + 3 + ⋯ ⋯ ⋯ + 𝑘 + (𝑘 + 1) = 
1 

∙ 𝑘(𝑘 + 1) + (𝑘 + 1) 
2 

 

= (𝑘 + 1) {
1 

𝑘 + 1} 
2 

 

= 
1 

(𝑘 + 1)(𝑘 + 2) 
2 

 

This is precisely the statement 𝑆(𝑘 + 1). Thus, on the basis of the assumption that 𝑆(𝑛) is true for 𝑛 = 𝑘 ≥ 

1, the truth ness of 𝑆(𝑛) for 𝑛 = 𝑘 + 1 is established. 
 

2. Prove that, for each 𝑛 ∈ 𝑍+ ∑𝑛 𝑖2 = 
𝑛(𝑛+1)(2𝑛+1) 

6 
 

OR 
 

Prove that, for each 𝑛 ∈ 𝑍+, 12 + 22 + 32 + ⋯ ⋯ ⋯ + 𝑛2 = 
𝑛(𝑛+1)(2𝑛+1)

 
6 

 

Solution: 

Let S(n) denote the given statement. 
 

Basic step: We note that is 𝑆(1) is the statement 

12 = 
1 

∙ 1 ∙ (1 + 1) ∙ (2 + 1) which is clearly true. 
6 

 

Induction Step: We assume that the statement 𝑆(𝑛) is true for 𝑛 = 𝑘 where 𝑘 is an integer ≥ 1; that is, we 

assume that the following statement is true. 

𝑆(𝑘) = 12 + 22 + 32 + ⋯ ⋯ ⋯ + 𝑘2 = 
𝑘(𝑘+1)(2𝑘+1)

. 
6 

 

Adding (𝑘 + 1)2 to both sides of this, we obtain 
 

𝑆(𝑘) = 12 + 22 + 32 + ⋯ ⋯ ⋯ + 𝑘2 + (𝑘 + 1)2 = 
𝑘(𝑘+1)(2𝑘+1) 

+ (𝑘 + 1)2 
6 

 

= (𝑘 + 1) {
𝑘 (2𝑘+1) 

+ (𝑘 + 1)} 
6 



  

 

 

= 
1 

(𝑘 + 1){𝑘(2𝑘 + 1) + 6(𝑘 + 1)} 
6 

 

= 
1 

(𝑘 + 1){2𝑘2 + 𝑘 + 6𝑘 + 6} 
6 

 

= 
1 

(𝑘 + 1){2𝑘2 + 7𝑘 + 6} 
6 

 

= 
1 

(𝑘 + 1)(𝑘 + 2)(2𝑘 + 3) 
6 

 

This is precisely the statement 𝑆(𝑘 + 1). Thus, on the basis of the assumption that 𝑆(𝑛) is true for 𝑛 = 𝑘 ≥ 

1, the truth ness of 𝑆(𝑛) for 𝑛 = 𝑘 + 1 is established. 

3. By mathematical induction, Prove That (𝑛!) ≥ 2𝑛−1 for all integers𝑛 ≥ 1. 
 

Solution: 

Basic step: For 𝑛 = 1, 𝑆(𝑛) reads (1!) ≥ 21−1 which is obviously true. Thus 𝑆(𝑛) is verified for 𝑛 = 1. 
 

Induction step: We assume that 𝑆(𝑛) is true for 𝑛 = 𝑘, where 𝑘 is an integer ≥ 1; that is, we assume that 
 

(𝑘!) ≥ 2𝑘−1 , or 2𝑘−1 ≤ 𝑘! is true 

 

2𝑘 = 2 ∙ 2𝑘−1 ≤ 2 ∙ 𝑘! 
 

≤ (𝑘 + 1) ∙ 𝑘!, because 2 < (𝑘 + 1) for 𝑘 ≥ 1 
 

= (𝑘 + 1)! 
 

(𝑘 + 1)! ≥ 2𝑘 
 

This is precisely the statement 𝑆(𝑛) for 𝑛 = 𝑘 + 1. Thus, on the assumption that 𝑆(𝑛)is true for 𝑛 = 𝑘 ≥ 1, 

We have proved that 𝑆(𝑛) is true for 𝑛 = 𝑘 + 1. 

Hence, by mathematical induction, it follows that the statement 𝑆(𝑛) is true for all integers 𝑛 ≥ 1. 
 

4. Prove that every positive integer 𝑛 ≥ 24 can be written as a sum of 5’s and/or 7’s. 
 

Solution: 

Basic step: We note that 24 = (7 + 7) + (5 + 5) 
 

This shows 𝑆(24) is true. 
 

Induction step: We assume that 𝑆(𝑛) is true for 𝑛 = 𝑘 where 𝑘 ≥ 24. Then 
 

𝑘 = (7 + 7 + ⋯ ⋯ ) + (5 + 5 + ⋯ ⋯ ) 
 

Suppose this representation of 𝑘 has 𝑟 number of 7’s and 𝑠 number of 5’s. Since 𝑘 ≥ 24 we should have 

𝑟 ≥ 2 and 𝑠 ≥ 2. 
 

Using this representation of 𝑘, we find that 



  

 

 

 

𝑘 + 1 = {⏟(7 + 7_+_⋯ ⋯̧ ) + (⏟5 + 5_+_⋯ ⋯̧ )} + 1 
    

𝑟 𝑠 

 

= {⏟(7_+ 7_+ ⋯_⋯̧) + (7 + 7) + (⏟5_+ 5_+_⋯ ⋯̧ )} + 1  
    

𝑟−2 𝑠 

 

= {⏟(7 + 7_+_⋯ ⋯̧ ) + ⏟(5 + 5_+_⋯ ⋯̧ )} 
    

𝑟−2 𝑠+3 
 

This shows that 𝑘 + 1is sum of 7’s and 5’s. Thus, 𝑆(𝑘 + 1) is true. 
 

5. Prove by mathematical induction that, for all positive integers 𝑛 ≥ 1. 

1 ∙ 2 + 2 ∙ 3 + 3 ∙ 4 + ⋯ ⋯ ⋯ + 𝑛(𝑛 + 1) = 
1 

𝑛(𝑛 + 1)(𝑛 + 2) 
3 

 

Solution: 

Here, we have to prove the statement 

𝑆(𝑛) = 1 ∙ 2 + 2 ∙ 3 + 3 ∙ 4 + ⋯ ⋯ ⋯ + 𝑛(𝑛 + 1) = 
1 

𝑛(𝑛 + 1)(𝑛 + 2) for all integers 𝑛 ≥ 1. 
3 

 

Basic step: We note that 𝑆(1) is the statement 

1 ∙ 2 = 
1 

∙ 1 ∙ (1 + 1) ∙ (2 + 1) 
3 

 

Which is clearly true. thus, the statement 𝑆(𝑛)is verified for 𝑛 = 1. 

Induction step:  We assume that the statement 𝑆(𝑛) is true for 𝑛 = 𝑘 where 𝑘 is an integer ≥ 1; that is, we 

assume that the following statement is true: 

𝑆(𝑘) = 1 ∙ 2 + 2 ∙ 3 + 3 ∙ 4 + ⋯ ⋯ ⋯ + 𝑘(𝑘 + 1) = 
1 

𝑘(𝑘 + 1)(𝑘 + 2) 
3 

 

Using this we find that (by adding (𝑘 + 1)(𝑘 + 2) to both side) 
 

𝑆(𝑘) = 1 ∙ 2 + 2 ∙ 3 + 3 ∙ 4 + ⋯ ⋯ ⋯ + 𝑘(𝑘 + 1) + (𝑘 + 1)(𝑘 + 2) 
 

= 
1 

𝑘(𝑘 + 1)(𝑘 + 2) + (𝑘 + 1)(𝑘 + 2) 
3 

 

= (𝑘 + 1)(𝑘 + 2) {
1 

𝑘 + 1} 
3 

 

= 
1 

(𝑘 + 1)(𝑘 + 2)(𝑘 + 3) 
3 

 

This is precisely the statement 𝑆(𝑘 + 1). Thus, on the basis of the assumption that 𝑆(𝑛) is true for 𝑛 = 𝑘 ≥ 

1, the truth ness of 𝑆(𝑛) for 𝑛 = 𝑘 + 1 is established. 
 

6.   Prove, by mathematical induction that 12 + 32 + 52 + ⋯ ⋯ ⋯ + (2𝑛 − 1)2 = 
𝑛(2𝑛−1)(2𝑛+1)

 
3 

for all 

integers 𝑛 ≥ 1. 



  

 

 

Solution: 
 

Let S(n) denote the given statement. 

Basic step: We note that is 𝑆(1) is the statement 

12 = 
1 

∙ 1 ∙ (2 − 1) ∙ (2 + 1) which is clearly true. 
3 

 

Induction Step: We assume that the statement 𝑆(𝑛) is true for 𝑛 = 𝑘 where 𝑘 is an integer ≥ 1; that is, we 

assume that the following statement is true. 

𝑆(𝑘) = 12 + 32 + 52 + ⋯ ⋯ ⋯ + (2𝑘 − 1)2 = 
𝑘(2𝑘−1)(2𝑘+1)

. 
3 

 

Adding (2𝑘 + 1)2 to both sides of this, we obtain 
 

𝑆(𝑘) = 12 + 32 + 52 + ⋯ ⋯ ⋯ + (2𝑘 − 1)2 + (2𝑘 + 1)2 = 
𝑘(2𝑘−1)(2𝑘+1) 

+ (2𝑘 + 1)2 
3 

 

= (2𝑘 + 1) {
𝑘 (2𝑘−1) 

+ (2𝑘 + 1)} 
3 

 

= 
1 

((2𝑘 + 1){𝑘(2𝑘 − 1) + 3(2𝑘 + 1)} 
3 

 

= 
1 

((2𝑘 + 1){2𝑘2 − 𝑘 + 6𝑘 + 3} 
3 

 

= 
1 

((2𝑘 + 1){2𝑘2 + 5𝑘 + 3} 
3 

 

= 
1 

(2𝑘 + 1)(𝑘 + 2)(2𝑘 + 3) 
3 

 

This is precisely the statement 𝑆(𝑘 + 1). Thus, on the basis of the assumption that 𝑆(𝑛) is true for 𝑛 = 𝑘 ≥ 

1, the truth ness of 𝑆(𝑛) for 𝑛 = 𝑘 + 1 is established. 

7. Prove by mathematical induction that, for all positive integers 𝑛 ≥ 1. 

1 ∙ 3 + 2 ∙ 4 + 3 ∙ 5 + ⋯ ⋯ ⋯ + 𝑛(𝑛 + 2) = 
1 

𝑛(𝑛 + 1)(2𝑛 + 7) 
6 

 

Solution: 

Here, we have to prove the statement 

𝑆(𝑛) = 1 ∙ 3 + 2 ∙ 4 + 3 ∙ 5 + ⋯ ⋯ ⋯ + 𝑛(𝑛 + 2) = 
1 

𝑛(𝑛 + 1)(2𝑛 + 7) for all integers 𝑛 ≥ 1. 
6 

 

Basic step: We note that 𝑆(1) is the statement 

1 ∙ 3 = 
1 

∙ 1 ∙ (1 + 1) ∙ (2 + 7) 
6 

 

Which is clearly true. thus, the statement 𝑆(𝑛)is verified for 𝑛 = 1. 

Induction step: We assume that the statement 𝑆(𝑛) is true for 𝑛 = 𝑘 where 𝑘 is an integer ≥ 1; that is, we 

assume that the following statement is true: 



  

 

 

𝑆(𝑘) = 1 ∙ 3 + 2 ∙ 4 + 3 ∙ 5 + ⋯ ⋯ ⋯ + 𝑘(𝑘 + 2) = 
1 

𝑘(𝑘 + 1)(2𝑘 + 7) 
6 

 

Using this we find that (by adding (𝑘 + 1)(𝑘 + 3) to both side) 

𝑆(𝑘) = 1 ∙ 2 + 2 ∙ 3 + 3 ∙ 4 + ⋯ ⋯ ⋯ + 𝑘(𝑘 + 2) + (𝑘 + 1)(𝑘 + 3) = 
1 

𝑘(𝑘 + 1)(2𝑘 + 7) + (𝑘 + 
6 

1)(𝑘 + 3)  
= (𝑘 + 1) {

1 
𝑘(2𝑘 + 7) + (𝑘 + 3)} 

6 
 

= (𝑘 + 1){2𝑘2 + 7𝑘 + 6𝑘 + 18} 
 

= (𝑘 + 1){2𝑘2 + 13𝑘 + 18} 

= 
1 

(𝑘 + 1)(𝑘 + 2)(2𝑘 + 9) 
6 

 

This is precisely the statement 𝑆(𝑘 + 1). Thus, on the basis of the assumption that 𝑆(𝑛) is true for 𝑛 = 𝑘 ≥ 

1, the truth ness of 𝑆(𝑛) for 𝑛 = 𝑘 + 1 is established. 

8. Prove that every positive integer greater than or equal to 14 can be written as a sum of 3’s and/or 8’s. 
 

Solution: 

Basic step: We note that 14 = (3 + 3) + 8 
 

This shows 𝑆(14) is true. 
 

Induction step: We assume that 𝑆(𝑛) is true for 𝑛 = 𝑘 where 𝑘 ≥ 14. Then 
 

𝑘 = (3 + 3 + ⋯ ⋯ ) + (8 + ⋯ ⋯ ) 
 

Suppose this representation of 𝑘 has 𝑟 number of 3’s and 𝑠 number of 8’s. Since 𝑘 ≥ 14 we should have 

𝑟 ≥ 2 and 𝑠 ≥ 2. 
 

Using this representation of 𝑘, we find that 

 

𝑘 + 1 = {⏟(3 + 3_+_⋯ ⋯̧ ) + ⏟(8_+ ⋯ ⋯̧ )} + 1 
   

𝑟 𝑠 

 

= {(⏟3_+ 3_+ ⋯_⋯̧) + ⏟(8_+ ⋯ ⋯̧ ) + 8} + 1 
   

𝑟 𝑠−1 

 

= {⏟(3 + 3_+_⋯ ⋯̧ ) + ⏟(8_+ ⋯ ⋯̧ )} 
   

𝑟+3 𝑠−1 
 

This shows that 𝑘 + 1is sum of 3’s and 8’s. Thus, 𝑆(𝑘 + 1) is true. 
 

9. Prove by mathematical induction for any integer 𝑛 ≥ 1 
1 

 

 

2∙5 
+ 

1 

5∙8 
+ ⋯ ⋯ ⋯ +  

1 

(3𝑛−1)(3𝑛+2) 
=  

𝑛 

6𝑛+4 



  

 

 

Solution: 
 

Here, we have to prove the statement 
 

𝑆(𝑛) = 
1

 
2∙5 

+ 
1 

5∙8 

 

+ ⋯ ⋯ ⋯ +  
1 

(3𝑛−1)(3𝑛+2) 
=  

𝑛 

6𝑛+4 
for all integers 𝑛 ≥ 1. 

 

Basic step: We note that 𝑆(1) is the statement 
 

1 
 

 

2∙5 
=  

1 

6∙1+4 
 

Which is clearly true. thus, the statement 𝑆(𝑛)is verified for 𝑛 = 1. 

Induction step: We assume that the statement 𝑆(𝑛) is true for 𝑛 = 𝑘 where 𝑘 is an integer ≥ 1; that is, we 

assume that the following statement is true: 

𝑆(𝑘) = 
1

 
2∙5 

+ 
1 

5∙8 
+ ⋯ ⋯ ⋯ +  

1 

(3𝑘−1)(3𝑘+2) 
=  

𝑘 

6𝑘+4 
 

Using this we find that (by adding 1 
(3𝑘+2)(3𝑘+5) 

to both side) 

𝑆(𝑘) = 
1

 
2∙5 

+ 
1 

5∙8 
+ ⋯ ⋯ ⋯ + 

1
 

(3𝑘−1)(3𝑘+2) 
+ 

1 

(3𝑘+2)(3𝑘+5) 
=  

𝑘 

6𝑘+4 
+ 

1 

(3𝑘+2)(3𝑘+5) 

 

= 
𝑘(3𝑘+2)(3𝑘+5)+(6𝑘+4) 

(6𝑘+4)(3𝑘+2)(3𝑘+5) 

 

= 
9𝑘3+21𝑘2+16𝑘+4 

(6𝑘+4)(3𝑘+2)(3𝑘+5) 

 

=  
(𝑘−1)(3𝑘+2)2 

(6𝑘+4)(3𝑘+2)(3𝑘+5) 

 

= 
(𝑘+1)(3𝑘+2) 

(6𝑘+4)(3𝑘+5) 
 

This is precisely the statement 𝑆(𝑘 + 1). Thus, on the basis of the assumption that 𝑆(𝑛) is true for 𝑛 = 𝑘 ≥ 

1, the truth ness of 𝑆(𝑛) for 𝑛 = 𝑘 + 1 is established. 

10. Prove by mathematical induction that, for every positive integer 𝑛, 5 divides 𝑛5 − 𝑛 
 

Solution: 

Let 𝑆(𝑛) be the given statement. 

Basic step: We note that 𝑆(1) is the statement 

5 divides 15 − 1 

Since 15 − 1 = 0, this statement is true 

Induction step:  We assume that the statement 𝑆(𝑛) is true for 𝑛 = 𝑘 where 𝑘 is an integer ≥ 1; that is, we 

assume that the following statement is true: 



  

 

 

5 divides 𝑘5 − 𝑘, 
 

This means that 𝑘5 − 𝑘 is a multiple of 5; that is 𝑘5 − 𝑘 = 5𝑚, for some positive integer m. 
 

Consequently, we find that 
 

(𝑘 + 1)5 − (𝑘 + 1) = (𝑘5 + 5𝑘4 + 10𝑘3 + 10𝑘2 + 5𝑘 + 1) − (𝑘 + 1) 
 

= (𝑘5 − 𝑘) + 5(𝑘4 + 2𝑘3 + 2𝑘2 + 𝑘) 
 

= 5𝑚 + 5(𝑘4 + 2𝑘3 + 2𝑘2 + 𝑘) 
 

= 5(𝑚 + 𝑘4 + 2𝑘3 + 2𝑘2 + 𝑘) 

This shows that (𝑘 + 1)5 − (𝑘 + 1) is a multiple of 5; that is, 5 divides (𝑘 + 1)5 − (𝑘 + 1). 
 

This is precisely the statement 𝑆(𝑛) for 𝑛 = 𝑘 + 1. Thus, on the assumption that 𝑆(𝑛)is true for 𝑛 = 𝑘 ≥ 1, 

We have proved that 𝑆(𝑛) is true for 𝑛 = 𝑘 + 1. 



  

 

 

☻Recursive Definition: 
 

For describing a sequence, the two methods are commonly used. 
 

(i) Explicit method (ii) Recursive method 
 

In explicit method, the general term of the sequence is explicitly indicated 
 

In recursive method, first few terms of the sequence must be indicated explicitly and in the second part the 

rule which will enable us to obtain new term if the sequence from the terms already known must be indicated. 

Problems: 

1. Find an explicit definition of the sequence defined recursively by 
 

𝑎1 = 7, 𝑎𝑛 = 2𝑎𝑛−1 + 1 for 𝑛 ≥ 2. 

Solution: By repeated use of the given recursive definition we find that 
 

𝑎𝑛 = 2𝑎𝑛−1 + 1 = 2{2𝑎𝑛−2 + 1} + 1 

= 2{2(2𝑎𝑛−3 + 1) + 1} + 1 = 23𝑎𝑛−3 + 22 + 2 + 1 

⋯ ⋯ ⋯ 
 

⋯ ⋯ ⋯ 
 

= 2𝑛−1𝑎𝑛−(𝑛−1) + 2𝑛−2 + 2𝑛−3 + ⋯ ⋯ + 22 + 2 + 1 

= 2𝑛−1𝑎1 + (1 + 2 + 22 + 23 + ⋯ ⋯ + 2𝑛−3 + 2𝑛−2) 

Using 𝑎1 = 7 and the standard result 
 

1 + 𝑎 + 𝑎2 + 𝑎3 + ⋯ ⋯ + 𝑎𝑛−1 = 
𝑎𝑛−1

 
𝑎−1 

for 𝑎 > 1 
 

This becomes 𝑎𝑛 = 7 ∙ 2𝑛−1 + 
2𝑛−1−1 

= 8 ∙ 2𝑛−1 − 1 
2−1 

 

2. Obtain the recursive definition for the sequence {𝑎𝑛} is each of the following cases. 
 

(𝑖). 𝑎𝑛 = 5𝑛 (𝑖𝑖). 𝑎𝑛 = 6𝑛 (𝑖𝑖𝑖). 𝑎𝑛 = 3𝑛 + 7 

(𝑖𝑣). 𝑎𝑛 = 𝑛(𝑛 + 2) (𝑣). 𝑎𝑛 = 𝑛2 (𝑣𝑖). 𝑎𝑛 = 2 − (−1)𝑛 

Solution: 
  

(i). Here 𝑎1 = 5, 𝑎2 = 10, 𝑎3 = 15, 𝑎4 = 20, … … … 

We can rewrite these as 𝑎1 = 5 and 𝑎𝑛 = 𝑎𝑛−1 + 5 for 𝑛 ≥ 2. 

This is the Recursive definition of the given sequence. 

(ii). Here 𝑎1 = 6, 𝑎2 = 62, 𝑎3 = 63, 𝑎4 = 64, … … … 



  

 

 

We can rewrite these as 𝑎1 = 6 and 𝑎𝑛+1 = 6𝑎𝑛 for 𝑛 ≥ 1. 

This is the Recursive definition of the given sequence. 

(iii). Here 𝑎1 = 10, 𝑎2 = 13, 𝑎3 = 16, 𝑎4 = 19, … … … 

We can rewrite these as 𝑎1 = 10 and 𝑎𝑛 = 𝑎𝑛−1 + 3 for 𝑛 ≥ 2. 

This is the Recursive definition of the given sequence. 

(iv). Here 𝑎1 = 3, 𝑎2 = 8, 𝑎3 = 15, 𝑎4 = 24, … … … 

We observe that 𝑎2 − 𝑎1 = 5 = 2 ∙ 1 + 3, 𝑎3 − 𝑎2 = 7 = 2 ∙ 2 + 3, 𝑎4 − 𝑎3 = 9 = 2 ∙ 3 + 3 

We can rewrite these as 𝑎𝑛+1 − 𝑎𝑛 = 2𝑛 + 3 then 𝑎𝑛+1 = 𝑎𝑛 + 2𝑛 + 3 for 𝑛 ≥ 1. 

Hence 𝑎1 = 3 and 𝑎𝑛+1 = 𝑎𝑛 + 2𝑛 + 3 for 𝑛 ≥ 1. 

This is the Recursive definition of the given sequence. 
 

(v). Here 𝑎1 = 1, 𝑎2 = 4, 𝑎3 = 9, 𝑎4 = 16, … … … 

We observe that 𝑎2 − 𝑎1 = 3 = 2 ∙ 1 + 1, 𝑎3 − 𝑎2 = 5 = 2 ∙ 2 + 1, 𝑎4 − 𝑎3 = 7 = 2 ∙ 3 + 1 

We can rewrite these as 𝑎𝑛+1 − 𝑎𝑛 = 2𝑛 + 1 then 𝑎𝑛+1 = 𝑎𝑛 + 2𝑛 + 1 for 𝑛 ≥ 1. 

Hence 𝑎1 = 1 and 𝑎𝑛+1 = 𝑎𝑛 + 2𝑛 + 1 for 𝑛 ≥ 1. 

This is the Recursive definition of the given sequence. 
 

(vi). Here 𝑎1 = 3, 𝑎2 = 1, 𝑎3 = 3, 𝑎4 = 1, … … … 

We observe that 𝑎2 − 𝑎1 = −2 = 2 (−1), 𝑎3 − 𝑎2 = 2 = 2(1), 𝑎4 − 𝑎3 = −2 = 2(−1) 

We can rewrite these as 𝑎𝑛+1 − 𝑎𝑛 = 2(−1)𝑛 then 𝑎𝑛+1 = 𝑎𝑛 + 2(−1)𝑛 

Hence 𝑎1 = 3 and 𝑎𝑛+1 = 𝑎𝑛 + 2(−1)𝑛 for 𝑛 ≥ 1. 

This is the Recursive definition of the given sequence. 

 

3. The Fibonacci numbers are defined recursively by 𝐹0 = 0, 𝐹1 = 1 and 𝐹𝑛 = 𝐹𝑛−1 + 𝐹𝑛−2 for 𝑛 ≥ 2 

Evaluate 𝐹2 to 𝐹10 

Solution: 
 

Given 𝐹𝑛 = 𝐹𝑛−1 + 𝐹𝑛−2 for 𝑛 ≥ 2 

𝐹2 = 𝐹1 + 𝐹0 = 1 + 0 = 1 

𝐹3 = 𝐹2 + 𝐹1 = 1 + 1 = 2 
 

𝐹4 = 𝐹3 + 𝐹2 = 2 + 1 = 3 



  

 

 

𝑛 

0 

𝐹5 = 𝐹4 + 𝐹3 = 3 + 2 = 5 
 

𝐹6 = 𝐹5 + 𝐹4 = 5 + 3 = 8 
 

𝐹7 = 𝐹6 + 𝐹5 = 8 + 5 = 13 
 

𝐹8 = 𝐹7 + 𝐹6 = 13 + 8 = 21 
 

𝐹9 = 𝐹8 + 𝐹7 = 21 + 13 = 34 
 

𝐹10 = 𝐹9 + 𝐹8 = 34 + 21 = 55 
 

Note: The Sequence formed by the Fibonacci numbers is called the Fibonacci sequence. 
 

4. The Lucas numbers are defined recursively by 𝐿0 = 2, 𝐿1 = 1 and 𝐿𝑛 = 𝐿𝑛−1 + 𝐿𝑛−2 for 𝑛 ≥ 2 

Evaluate 𝐿2 to 𝐿10 

Solution: 
 

Given 𝐿𝑛 = 𝐿𝑛−1 + 𝐿𝑛−2 for 𝑛 ≥ 2 

𝐿2 = 𝐿1 + 𝐿0 = 1 + 2 = 3 
 

𝐿3 = 𝐿2 + 𝐿1 = 3 + 1 = 4 
 

𝐿4 = 𝐿3 + 𝐿2 = 4 + 3 = 7 
 

𝐿5 = 𝐿4 + 𝐿3 = 7 + 4 = 11 
 

𝐿6 = 𝐿5 + 𝐿4 = 11 + 7 = 18 
 

𝐿7 = 𝐿6 + 𝐿5 = 18 + 11 = 29 
 

𝐿8 = 𝐿7 + 𝐿6 = 29 + 18 = 47 
 

𝐿9 = 𝐿8 + 𝐿7 = 47 + 29 = 76 
 

𝐿10 = 𝐿9 + 𝐿8 = 76 + 47 = 123 
 

Note: The Sequence formed by the Lucas numbers is called the Lucas sequence. 
 

 

5. For the Fibonacci sequence 

 
Solution: 

 

𝐹0, 𝐹1, 𝐹2, … … … …. 
 

Prove that 𝐹  =
  1  

[( 
√5 

𝑛 
1+√5

)
 

2 

𝑛 

− (
1−√5

) ] 
2 

 

For 𝑛 = 0 and 𝑛 = 1, the required results read (respectively) 
 

𝐹  =  
1  

[( 
√5 

0 
1+√5

)
 

2 

0 

− (
1−√5

)
 

2 
] = 

1 
[1 − 1] = 0 

√5 

 
  

𝐹 =  
1  

[(
1+√5

) − (
1−√5

)] =  
1  

[√5] = 1 
 

  

 

1 √5 2 2 √5 



  

 

 

𝑘+1 

Which is true. 
 

Thus, the required result is true for 𝑛 = 0 and 𝑛 = 1. We assume that the result is true for 𝑛 = 0, 1, 2, … . 𝑘, 

where 𝑘 ≥ 1. Then, we find that 
 

𝐹𝑘+1 = 𝐹𝑘 + 𝐹𝑘−1 
 

 
𝐹𝑘+1 = 1 [( 

1+√5  
𝑘
 

) 
𝑘 

− (
1−√5

) ]+ 
1

 

 
 

[(
1+√5 

𝑘−1 
) 

 
 

− (
1−√5 

𝑘−1 
) 

 
] using the assumption made 

√5 2 2 √5 2 2 

 
 

 1 1+√5 𝑘−1 
 

 1+√5 
 

 1−√5 𝑘−1 
 

 1−√5 

𝐹𝑘+1 = 
√5 

[(  
2   

) { + 1} − ( ) 
2 2 

{ + 1}] 
2 

 
 

 1 1+√5 𝑘−1 
 

 3+√5 
 

 1−√5 𝑘−1 
 

 3−√5 

𝐹𝑘+1 = 
√5 

[(  
2   

) { } − ( ) 
2 2 

{ }] 
2 

 
 

 1 1+√5 𝑘−1 
 

 6+2√5 
 

 1−√5 𝑘−1 
 

 6−2√5 

𝐹𝑘+1 = 
√5 

[(  
2   

) { } − ( ) 
4 2 

{ }] 
4 

 

𝐹 =  
1  

[( 
√5 

 
 

1+√5
)
 

2 

𝑘+1 
 

 

− (
1−√5

)
 

2 

𝑘+1 

] 

 

This shows that the required result is true for 𝑛 = 𝑘 + 1. Hence by mathematical induction, the result is true 

for all non – negative integers n. 



  

 

 

☻The Rules of Sum and Product: 
 

Rule of sum: 
 

Suppose two tasks 𝑇1 and 𝑇2 are to be performed. if the task 𝑇1 can be performed in m different ways and the 

task 𝑇2 can be performed in n different ways and if these two tasks cannot be performed simultaneously, then 

one of the two tasks (𝑇1 or 𝑇2) can be performed in 𝑚 + 𝑛 ways. 

Example: Suppose 𝑇1 is the task of selecting a prime no. < 10 and 𝑇2 is the task of selecting an even number 

< 10. then 𝑇1 can be performed in 4 ways and 𝑇2 can be performed in 4 ways. But since 2 is both a prime and 

an even number < 10 the task T1 or 𝑇2 can be performed in 4 + 4 – 1 = 7 ways. 

Rule of product: 
 

Suppose two tasks are to be performed one after the other. If 𝑇1 can be performed in 𝑛1 different ways, and 

for each of these ways 𝑇2 can be performed in 𝑛2different ways. then both of the tasks can be performed in 

𝑛1 ∗ 𝑛2 different ways. 

Example: Suppose a person has 8 shirts and 5 ties. Then He has 8 * 4 = 40 different ways of choosing a shirt 

and a tie. 

Problems: 
 

1. Cars of a particular manufacturer come in 4 models, 12 colours, 3 engine sizes and 2 transmission 

types (a) how many distinct cars can be manufactured? (b) of these how many have the same colour? 

Solution: 
 

(a) By the product rule, it follows that the number of distinct cars that can be manufactured is 4*12*3*2 =288 
 

(b) for any chosen colour, the number of distinct cars that can be manufactured is 4*3*2=24 
 

2. A bit is either 0 or 1. A byte is a sequence of 8 bits. Find (i) the number of bytes. (ii) the number of 

bytes that begin with 11 and end with 11. (iii) The number of bytes that begin with 11 and do not end 

with 11. (iv) the number of bytes that begin with 11 or end with 11. 

Solution: 
 

(i) Since each byte contains 8 bits and each bit is 0 or 1, the number of bytes is 28 = 256 

(ii) In a byte beginning and ending with 11, there occur 4 open positions. These can be filled un 24 = 16 ways. 

Therefore, there are 16 bytes which begin and end with 11. 

(iii) These occur 6 open positions in a byte beginning with 11. these positions can be filled is 26 = 64 ways. 

thus, there are 64 bytes that begin with 11. since there are 16 bytes that begin and end with 11, the number 

of bytes that begin with 11 but do not end with 11 is 64-16 = 48. 

(iv) As in (iii) the numbers of bytes that end with 11 is 64. Also, the number of bytes that begin and end with 

11 is 16. Therefore, the number of bytes that begin or end with 11 is 64 + 64 = 16 = 112. 

3. Find the number of 3 digit even numbers with no repeated digits. 



  

 

 

Solution: 
 

Here we consider number of the form 𝑥 𝑦 𝑧, where each of 𝑥, 𝑦, 𝑧 represents a digit under the given 

restrictions. Since 𝑥 𝑦 𝑧 has to be even, z has to be 0, 2, 4, 6 or 8. If 𝑧 is 0, then 𝑥 has 9 choices and 𝑦 𝑧 has 

2, 4, 6, 8 (4 choices) then 𝑥 has 8 choices (Note that 𝑥 cannot be 0). Therefore, 𝑧 and 𝑥 can be chosen in 

1 × 9 + 4 × 8 = 41 ways. For each of these ways, 𝑦 can be chosen in 8 ways. 

Hence, the desired number is 41 * 8 = 328. 
 

4. Find the number of proper divisors of 441000. 
 

Solution: 
 

We note that 441000 = 23 × 32 × 53 × 72. Therefore, every divisor of 𝑛 = 441000 must be of the form 

𝑑 = 2𝑝 × 3𝑞 × 5𝑟 × 7𝑠 where 0 ≤ 𝑝 ≤ 3, 0 ≤ 𝑞 ≤ 2, 0 ≤ 𝑟 ≤ 3, 0 ≤ 𝑠 ≤ 2. 
 

Thus, for a divisor d, p can be chosen in 4 ways, q in 3 ways, r in 4 ways and s in 3 ways. Accordingly, the 

number of possible d’s is 4 × 3 × 4 × 3 = 144. Of these, two divisors (namely 1 and 𝑛) are not proper 

divisors. Therefore, the number of proper divisors of the given number is 144 − 2 = 142. 

5. How many among the first 100,000 positive integers contain exactly one 3, one 4 and one 5 in their 

decimal representations? 

Solution: 
  

The number 100000 does not contain 3 or 4 or 5. Therefore, we have to consider all possible positive integers 

with 5 places that meet the given conditions. In a 5-place integer the digit 3 can be in any one of the 5 places. 

Subsequently, the digit 4 can be in any one of the 4 remaining places. Then the digit 5 can be in any one of 

the 3 remaining places. There are 2 places left and either of these may be filled by 5 digits (digits from 0 to 

9 other tan 3, 4, 5). Thus, there are 5 × 4 × 3 × 7 × 7 = 2940 integers of the required type. 



  

 

 

☻Permutations: 
 

Suppose that we are given 𝑛 distinct objects and wish to arrange r of these objects in a line. Since there are 

𝑛 ways of choosing the first object, and after this done 𝑛 − 1 ways of choosing the second object…. And 

finally, 𝑛 − 𝑟 + 1 ways of choosing 𝑟𝑡ℎ object, it follows by the product rule of counting (stated in the 

preceding section) that the number of different arrangements, or permutations (as they are commonly called) 

is 𝑛(𝑛 − 1)(𝑛 − 2) ⋯ ⋯ ⋯ (𝑛 − 𝑟 + 1). We denote this number by 𝑃(𝑛, 𝑟) and is referred to as the number 

of permutations of size 𝑟 of 𝑛 objects. 
 

 

 

 
Generalization 

𝑷(𝒏, 𝒓) = 
𝒏! 

 
 

(𝒏 − 𝒓)! 

 

Suppose it is required to find the number of permutations that can be formed from a collection of 𝑛 objects 

of which 𝑛1 are of one type , 𝑛2 are of a second type ,……… 𝑛𝑘 are of 𝑘𝑡ℎ type, with 𝑛1 + 𝑛2 + ⋯ ⋯ + 

𝑛𝑘 = 𝑛. Then, the number of permutations of the objects is 

𝒏! 

𝒏𝟏! 𝒏𝟐! ⋯ ⋯ 𝒏𝒌! 
 

Problems: 

1. Four different mathematics books, five different computer science books and two different control 

theory books are to be arranged in a shelf. How many different arrangements are possible if (a) The 

books in each particular subject must be together? (b) Only mathematics books must be together? 

Solution: 
 

(a) The mathematics books can be arranged among themselves in 4! Ways, the computer science books in 

5! Ways the control theory books in 2! Ways, and the three groups in 3! Ways. Therefore, the number of 

possible arrangements is 4! * 5! * 2! * 3! = 34560. 

(b) Consider the 4 mathematics boos as one single book. Then we have 8 books which can be arranged in 8! 

Ways. In all of these ways the mathematics books are together. But the mathematics books can be arranged 

among themselves in 4! Ways. Hence, the number of arrangements is 8! * 4! = 967680 

2. Find the number of permutations of the letters of the word MASSASAUGA. In how many of these,  

all four ‘A’s are together? How many of them begin with S? 

Solution: 
 

The given word has 10 letters of which 4 are A, 3 are S and 1 each are M, U and G. Therefore, the required 

number of permutations is 

10! 

4! ∗ 3! ∗ 1! ∗ 1! ∗ 1! 
= 25200

 

It is a permutation all A’s are to be together, we treat all of A’s as one single letter. Then the letters to be 

permuted read (AAAA), S, S, S, M, U, G (which are 7 in number) and the number of permutations is 



  

 

 

7! 

1! ∗ 3! ∗ 1! ∗ 1! ∗ 1! 
= 840

 

For permutations beginning with S, there occur nine open positions to fill, where two are S, four are A, and 

one each of M, U, G. The number of such permutations is 

9! 

2! ∗ 4! ∗ 1! ∗ 1! ∗ 1! 
= 7560

 

3. (a) How many arrangements are there for all letters in the word SOCIOLOGICAL? 
 

(b) In how many of these arrangements (i) A and G are adjacent? (ii) all the vowels are adjacent? 
 

Solution: 

(a) The given word has 12 letters of which three are O, two each are C, I, L and one each are S, A, G. 

Therefore, the number of arrangements of these letters is 

 

 
12! 

3! ∗ 2! ∗ 2! ∗ 2! ∗ 1! ∗ 1! ∗ 1! 
= 25200

 

 

(b) 
 

(i) If, in an arrangement, A and G are to be adjacent, we treat A and G together as a single letter, say X so 

that we have three numbers of O’s, two each of C, L, I and one each of S and X, totalling 11 letters. These 

can be arranged in 11! 
3!∗2!∗2!∗2!∗1! 

Ways 
 

Further the letters A and G can be arranged among themselves in two ways. 

Therefore, the total number of arrangements in this case is 

11! 

3! ∗ 2! ∗ 2! ∗ 2! ∗ 1! 
× 2 = 1663200

 

(ii) If, in an arrangement, all the vowels are to be adjacent, we treat all the vowels present in the given word 

(A, O, I) as a single letter, say Y, so that we have two each of C and L and one each of S, G & Y totalling to 

7 letters. These can be arranged in 7! 
2!∗2!∗1!∗1!∗1! 

ways 
 

Further, since the given words contains 3 O’s, two I’s and one A, the letters A, O, I (clubbed as Y) can be 

arranged among themselves is 6! 
3!∗2!∗1! 

Ways. 
 

Therefore, the total number of arrangements in this case is 7! 
2!∗2!∗1!∗1!∗1! 

× 
6! 

3!∗2!∗1! 
= 75600 

 

4. How many Positive integers n can we form using the digits 3, 4, 4, 5, 5, 6, 7 if we want n to exceed 

5,000,000? 

Solution: 



  

 

 

Here n must be of the form 𝑛 = 𝑥1𝑥2𝑥3𝑥4𝑥5𝑥6𝑥7 

Where 𝑥1, 𝑥2, … … , 𝑥7 are the given digits with 𝑥1 = 5, 6 𝑜𝑟 7. Suppose we take 𝑥1 = 5. Then where 

𝑥2𝑥3𝑥4𝑥5𝑥6𝑥7 is an arrangement of the remaining 6 digits which contains two 4’s and one each of 3, 5, 6, 7. 

The number of such arrangements is 

6! 

1! 2! 1! 1! 1! 
= 360

 

Similarly, we take 𝑥1 = 6. Then where 𝑥2𝑥3𝑥4𝑥5𝑥6𝑥7 is an arrangement of the remaining 6 digits which 

contains two each of 4 & 5 and one each of 3 & 7. The number of such arrangements is 

6! 

1! 2! 2! 1! 
= 180

 

Similarly, we take 𝑥1 = 7. Then where 𝑥2𝑥3𝑥4𝑥5𝑥6𝑥7 is an arrangement of the remaining 6 digits which 

contains two each of 4 & 5 and one each of 3 & 6. The number of such arrangements is 

6! 

1! 2! 2! 1! 
= 180

 

Accordingly, by the Sum Rule, the number of 𝑛’s of the desired type is 360 + 180 + 180 = 720. 
 

5. How many numbers greater than 1,000,000 can be formed by using the digits 1, 2, 2, 2, 4, 4, 0? 
 

Solution: 
 

Here n must be of the form 𝑛 = 𝑥1𝑥2𝑥3𝑥4𝑥5𝑥6𝑥7 

Where 𝑥1, 𝑥2, … … , 𝑥7 are the given digits with 𝑥1 = 1, 2 𝑜𝑟 4. Suppose we take 𝑥1 = 1. Then where 

𝑥2𝑥3𝑥4𝑥5𝑥6𝑥7 is an arrangement of the remaining 6 digits which contains three 2’s and two 4’s. The number 

of such arrangements is 

6! 

3! 2! 
= 60

 

Similarly, we take 𝑥1 = 2. Then where 𝑥2𝑥3𝑥4𝑥5𝑥6𝑥7 is an arrangement of the remaining 6 digits which 

contains two 2’s and two 4’s. The number of such arrangements is 

6! 

2! 2! 
= 180 

Similarly, we take 𝑥1 = 4. Then where 𝑥2𝑥3𝑥4𝑥5𝑥6𝑥7 is an arrangement of the remaining 6 digits which 

contains three 2’s and one 4. The number of such arrangements is 

6! 

3! 1! 
= 120 

Accordingly, by the Sum Rule, the number of 𝑛’s of the desired type is 60 + 180 + 120 = 360. 



  

 

 

☻Combinations: 
 

Suppose we are interested in selecting (choosing) a set of 𝑟 objects from a set of 𝑛 ≥ 𝑟 objects without regard 

to order. The set of 𝑟 objects being selected is traditionally called a Combination of 𝑟 objects (or briefly 𝑟- 

combination). 

The total number of combinations of 𝑟-different objects that can be selected from 𝑛 different objects can be 

obtained by proceeding in the following way. Suppose this number is equal to 𝐶, say; that is, suppose there 

is a total of 𝐶 number of combinations of 𝑟 different objects chosen from 𝑛 different objects. Take any one 

of these combinations. The 𝑟 objects in this combination can be arranged in 𝑟! Different ways. Since there 

are 𝐶 combinations, the total number of permutations is 𝐶 ∙ 𝑟!. But this is equal to 𝑃(𝑛, 𝑟). Thus, 
 

𝑪(𝒏, 𝒓) = 
𝑷(𝒏,𝒓) 

= 
𝒏! for 𝟎 ≤ 𝒓 ≤ 𝒏 

 
Problems: 

𝒓! (𝒏−𝒓)! 𝒓! 

 

1. A certain question paper contains two parts A and B each containing 4 questions. How many different 

ways a student can answer 5 questions by selecting at least 2 questions from each part? 

Solution: The different ways a student can select his 5 questions are. 

(i) 3 questions from part A and 2 questions from part B. this can be done in 𝐶(4, 3) ∗ 𝐶(4, 2) = 24 ways. 

(ii) 2 questions from part A and 3 questions from part B. this can be done in 𝐶(4, 2) ∗ 𝐶(4, 3) = 24 ways. 
 

Therefore, the total number of ways a student can answer 5 questions under given restrictions is 24 + 24 = 

48. 
 

2. Prove the following identities. 

𝐶(𝑛, 𝑟 − 1) + 𝐶(𝑛, 𝑟) = 𝐶(𝑛 + 1, 𝑟) 
 

𝐶(𝑚, 2) + 𝐶(𝑛, 2) = 𝐶(𝑚 + 𝑛, 2) − 𝑚𝑛 
 

Proof: 
 

(i). 𝐶(𝑛, 𝑟 − 1) + 𝐶(𝑛, 𝑟) = 
𝑛!

 
(𝑟−1)! (𝑛−𝑟+1)! 

+ 
𝑛! 

𝑟! (𝑛−𝑟)! 
 

= 
𝑛! 

(𝑟−1)! (𝑛−𝑟)! 

 

= 
𝑛! 

{ 
1 

𝑛−𝑟+1 

 

∙ 
𝑛+1 

+ 
1
} 

𝑟 

(𝑟−1)! (𝑛−𝑟)! 𝑟 (𝑛−𝑟+1) 

 

= 
(𝑛+1)! 

𝑟! (𝑛−𝑟+1)! 
 

= 𝐶(𝑛 + 1, 𝑟) 
 

(ii). 𝐶(𝑚, 2) + 𝐶(𝑛, 2) = 
𝑚!

 
(𝑚−2)! ∙ 2 

+  
𝑛! 

(𝑛−2)! ∙2 
 

= 
1 

{𝑚(𝑚 − 1) + 𝑛(𝑛 − 1)} 
2 



  

 

 

= 
1 

{𝑚2 + 𝑛2 − 𝑚 − 𝑛} 
2 

 

= 
1 

(𝑚 + 𝑛)(𝑚 + 𝑛 − 1) − 𝑚𝑛 
2 

 

= 
(𝑚+𝑛)! 

2 (𝑚+𝑛−2)! 
− 𝑚𝑛 

 

= 𝐶(𝑚 + 𝑛, 2) − 𝑚𝑛 
 

3. A woman has 11 close relatives and she wishes to invite 5 of them to dinner. In how many ways can 

she invite them in the following situations: 

(i). There is no restriction on the choice. 

(ii). Two particular persons will not attend separately. 

(iii). Two particular persons will not attend together. 

Solution: 
 

(i). Since there is no restriction on the choice of invitees, five out of 11 can be invited in 
 

𝐶(11, 5) = 
11!

 
6! 5! 

= 462 ways 

 

 

 

(ii). Since two particular persons will not attend separately, they should both be invited or not invited. 
 

Suppose if both of them are invited, then three are more invitees are to be selected from the remaining 9 

relatives. This can be done in 
 

𝐶(9, 3) = 
9!

 
6! 3! 

= 84 ways 
 

Suppose if both of them are not invited, then five invitees are to be selected from the remaining 9 relatives. 

This can be done in 
 

𝐶(9, 5) = 
9!

 
5! 4! 

= 126 ways 
 

Therefore, the total number of ways in which the invitees can be selected in this case is 84 + 126 = 210. 
 

(iii). Since two particular persons (Say 𝑃1 & 𝑃2) will not attend together, only one of them can be invited or 

none of them can be invited. The number of ways of choosing the invitees with 𝑃1 invited is 
 

𝐶(9, 4) = 
9!

 
5! 4! 

= 126 ways 
 

Similarly, the number of ways of choosing the invitees with 𝑃2 invited is 126 ways 

If both 𝑃1 & 𝑃2 are not invited, then the number of ways of inviting the invitees is 

𝐶(9, 5) = 
9!

 
5! 4! 

= 126 ways 
 

Therefore, the total number of ways in which the invitees can be selected in this case is 



  

 

 

126 + 126 + 126 = 378. 
 

4. Find the number of arrangements of all the letters in TALLAHASSEE. How many of these 

arrangements have no adjacent A’s? 

Solution: 
 

The number of letters in the given word is 11 of which 3 are A’s, 2 each are L’s, S’s, E’s and 1 each are T 

and H. Therefore, the number of arrangements (permutations) of the letters in the given word is 

11! 

3! 2! 2! 2! 1! 1! 
= 831600

 

If we disregard the A’s, the remaining 8 letters can be arranged in 

8! 

2! 2! 2! 1! 1! 
= 5040

 

In each of these arrangements, there are 9 possible locations for the three A’s. These locations can be chosen 

in 𝐶(9, 3) ways. Therefore, the number of arrangements having no adjacent A’s is 
 

 

5040 × 𝐶(9, 3) = 5040 × 
9! 

3! 6! 

 

= 5040 × 84 = 423360 

5. A committee of 12 is to be selected from 10 men and 10 women. In how many ways can the selection 

be carried out if 

(a) there are no restrictions? 

(b) there must be six men and six women? 

(c) there must be an even number of women? 

(d) there must be more women than men? 

(e) there must be at least eight men? 

Solution: 
 

(a). If there is no restriction than it is a simple selection of 12 out of 20. 
 

 

𝐶(20, 12) = 
20! 

 
 

12! 8! 

 

= 125970 

(b). For 6 men out of 10 and 6 women out of 10. These are two different stages of selection that's why product 

rule is used 
 

 

𝐶(10, 6) × 𝐶(10, 6) = 
10! 

6! 4! 
×

 

10! 
 

 

6! 4! 

 

= 44100 

(c). 2, 4, 6, 8 or 10 can be the number of women in committee and corresponding to that men will be 10, 8, 

6, 4 and 2. 

𝐶(10, 2) × 𝐶(10, 10) + 𝐶(10, 4) × 𝐶(10, 8) + 𝐶(10, 6) × 𝐶(10, 6) + 𝐶(10, 8) × 𝐶(10, 4) + 𝐶(10, 10) × 

𝐶(10, 2) = 63090 
 

(d). Number of women can be 7, 8, 9 or 10 and number of men will be 5, 4, 3, 2 respectively. 



  

 

 

𝐶(10, 7) × 𝐶(10, 5) + 𝐶(10, 8) × 𝐶(10, 4) + 𝐶(10, 9) × 𝐶(10, 3) + 𝐶(10, 10) × 𝐶(10, 2) = 40935 
 

(e). Number of men can be 8, 9 or 10 in this case and respectively number of women can be 4, 3 and 2. 

𝐶(10, 8) × 𝐶(10, 4) + 𝐶(10, 9) × 𝐶(10, 3) + 𝐶(10, 10) × 𝐶(10, 2) = 10695 



  

 

 

𝑟=0 

☻Binomial and Multinomial Theorems: 
 

Binomial Theorem: 

On the basic properties of 𝐶(𝑛, 𝑟) = (
𝑛

) is that it is the coefficient of 𝑥𝑟𝑦𝑛−𝑟 and 𝑥𝑛−𝑟𝑦𝑟 in the expansion 
𝑟 

of the expression (𝑥 + 𝑦)𝑛, where 𝑥 and 𝑦 are real numbers. In other words, 
 

(𝑥 + 𝑦)𝑛 = ∑𝑛 𝑛 𝑟 𝑛−𝑟  = ∑𝑛 
𝑛 𝑟−𝑛𝑦𝑟 

𝑟=0 (
𝑟

) 𝑥  𝑦 𝑟=0 (𝑟
) 𝑥 

 

This result is known as the binomial theorem for a positive integral index. 
 

Multinomial Theorem: 

 
For   positive integers   n   and   k   the   coefficient of 𝑥𝑛1 𝑥𝑛2 𝑥𝑛3 … … . . 𝑥𝑛𝑘 in the   expansion   of 

(𝑥1 
 

+ 𝑥2 
 

+ 𝑥3 
 

+ ⋯ ⋯ ⋯ + 𝑥𝑘 )𝑛 is 𝑛! 
𝑛1! 𝑛2! 𝑛3!……𝑛𝑘! 

1 2 3 𝑘 

 

Problems: 
 

1. Find the coefficient of 
 

(i) 𝑥9𝑦3 in the expansion of (2𝑥 − 3𝑦)12 
 

(ii) 𝑥12 in the expansion of 𝑥3(1 − 2𝑥)10 
 

(iii) 𝑥0 in the expansion of 

 
Solution: 

(3𝑥2 
2  15 

− ) 
𝑥 

 

By the Binomial theorem, we have (𝑥 + 𝑦)𝑛 = ∑𝑛 𝑛 𝑟 𝑛−𝑟 = ∑𝑛 
𝑛 𝑟−𝑛𝑦𝑟 

 
(i). (2𝑥 − 3𝑦)12 = ∑12 

12
 

 
 

 
𝑟 12−𝑟 

𝑟=0 (
𝑟

) 𝑥  𝑦 𝑟=0 (
𝑟

) 𝑥 

𝑟=0 ( 
𝑟 

) (2𝑥) (−3𝑦) 
 

= ∑12 12 𝑟( )12−𝑟  𝑟  12−𝑟 

𝑟=0 ( 
𝑟 

) 2 −3 𝑥 𝑦 
 

In the expansion, the coefficient of 𝑥9𝑦3 (which corresponds to 𝑟 = 9) is 
 

12 

9 
) 2 9(−3 )12−9 = −29 × 33 × 

12! 

9! ∙3! 
 

= −29 × 33 × 
12×11×10 

6 
 

= −(210 × 33 × 11 × 10) 
 

(ii). 𝑥3(1 − 2𝑥)10 = ∑10 
10

  𝑟  10−𝑟 

𝑟=0 ( 
𝑟 

) (−2𝑥) 1 
 

𝑥3(1 − 2𝑥)10 = ∑10 
10 

𝑟 
) (−2) 𝑥𝑟+3 

 

In the expansion, the coefficient of 𝑥12 (which corresponds to 𝑟 = 9) is 

( 

( 𝑟 



  

 

 

( ) 
10 

−2
 

9 
)9 = −(10 × 29) = −5120 

 

(iii). (3𝑥2 − 
2
)

15 

= ∑15 
 

 

(15  
2 𝑟 2  15−𝑟 

 
 

𝑥 𝑟=0 
𝑟 

) (3𝑥 ) (−  ) 
𝑥 

 

= ∑15 15 𝑟( )15−𝑟  3𝑟−15 

𝑟=0 ( 
𝑟 

) 3 −2 𝑥 
 

In the expansion, the coefficient of 𝑥9𝑦3 (which corresponds to 𝑟 = 5) is 
 

15 

5 
) 3 5(−2 )15−5 = (−2)10 × 35 ×   

15! 

5! ∙10! 
 

= 210 × 35 × 3003 
 

2. Determine the coefficient of 
 

(i) 𝑥𝑦𝑧2 in the expansion of (2𝑥 − 𝑦 − 𝑧)4 

(ii) 𝑥11𝑦4 in the expansion of (2𝑥3 − 3𝑥𝑦2 + 𝑧2)6 
 

(iii) 𝑥2𝑦2𝑧3 in the expansion of (3𝑥 − 2𝑦 − 4𝑧)7 

(iv) 𝑎2𝑏3𝑐2𝑑5 in the expansion of (𝑎 + 2𝑏 − 3𝑐 + 2𝑑 + 5)16 
 

(v) 𝑤3𝑥2𝑦𝑧2 in the expansion of (2𝑤 − 𝑥 + 3𝑦 − 2𝑧)8 
 

Solution: 
 

By the multinomial theorem, we have (𝑥1 + 𝑥2 + 𝑥3 + ⋯ ⋯ ⋯ + 𝑥𝑘 )𝑛 is 𝑛! 
𝑛1! 𝑛2! 𝑛3!……𝑛𝑘! 

 

(i). The general term is the expansion of (2𝑥 − 𝑦 − 𝑧)4 is ( 
4

 
𝑛1, 𝑛2, 𝑛3 

) (2𝑥)𝑛1(−𝑦)𝑛2 (−𝑧)𝑛3 

For 𝑛1 = 1, 𝑛2 = 1, 𝑛3 = 2 this becomes 

( 
4 

1, 1, 2 
) (2𝑥)1(−𝑦)1(−𝑧)2=( 

4
 

1, 1, 2 
) (2)(−1)(−1)2𝑥𝑦𝑧2 

This shows that the required coefficient is ( 
4

 
1, 1, 2 

) (2)(−1)(−1)2 = 
4!

 
1! 1! 2! 

× (−2) = −12 

(ii). The general term is the expansion of (2𝑥3 − 3𝑥𝑦2 + 𝑧2)6 is ( 
6

 
𝑛1, 𝑛2, 𝑛3 

) (2𝑥3)𝑛1 (−3𝑥𝑦2)𝑛2 (𝑧2)𝑛3 

For 𝑛3 = 0, 𝑛2 = 2, 𝑛1 = 3 this becomes 

( 
6 

3, 2, 0 
) (2𝑥3)3(−3𝑥𝑦2)2(𝑧2)0 =   ( 

6
 

3, 2, 0 
)   (2)3(−3)2(1)0𝑥11𝑦4 

This shows that the required coefficient is ( 
6

 
3, 2, 0 

) (2)3(3)2 =   
6!

 
3! 2! 

× 72 = 4320 

(iii). The general term is the expansion of (3𝑥 − 2𝑦 − 4𝑧)7 is ( 
7

 
𝑛1, 𝑛2, 𝑛3 

)   (3𝑥)𝑛1(−2𝑦)𝑛2(−4𝑧)𝑛3 

( 

( 



  

 

 

𝑛1, 𝑛  , 3 42 

For 𝑛1 = 2, 𝑛2 = 2, 𝑛3 = 3 this becomes 
 

( 
7 

2, 2, 3 
) (3𝑥)2(−2𝑦)2(−4𝑧)3=( 

7
 

2, 2, 3 
)   (3)2(−2)2(−4)3𝑥2𝑦2𝑧3 

 

This shows that the required coefficient is 
 

( 
7 

2, 2, 3 
) (3)2(−2)2(−4)3 = 

7!
 

2! 2! 3! 
× 9 × 4 × (−64) = −483840 

 

(iv). The general term is the expansion of (𝑎 + 2𝑏 − 3𝑐 + 2𝑑 + 5)16 is 
 

16 
𝑛1, 𝑛2, 𝑛3, 𝑛4, 𝑛5 )    (𝑎)𝑛1(2𝑏)𝑛2(−3𝑐)𝑛3(2𝑑)𝑛4(5)𝑛5 

 

For 𝑛1 = 2, 𝑛2 = 3, 𝑛3 = 2, 𝑛4 = 5, 𝑛5 = 16 − (2 + 3 + 2 + 5) = 4, this becomes 
 

( 
16 

2, 3, 2, 5, 4 
) (𝑎)2(2𝑏)3(−3𝑐)2(2𝑑)5(5)4 = ( 

16
 

2, 3, 2, 5, 4 
)    (2)3(−3)2(2)5(5)4𝑎2𝑏3𝑐2𝑑5 

 

This shows that the required coefficient is 
 

( 
16 

2, 3, 2, 5, 4 
) (2)3(−3)2(2)5(5)4 = 

16!
 

2! 3! 2! 5! 4! 
× 28 × 32 × 54 = 

16!
 

(4!)2 
× 25 × 3 × 53 

 

(v). The general term is the expansion of (2𝑤 − 𝑥 + 3𝑦 − 2𝑧)8 is 

( 
8 

𝑛 , 𝑛   ) (2𝑤)𝑛1(−𝑥)𝑛2(3𝑦)𝑛3(−2𝑧)𝑛4 

For 𝑛1 = 3, 𝑛2 = 2, 𝑛3 = 1, 𝑛4 = 2 this becomes 

( 
8 

) (2𝑤)3(−𝑥)2(3𝑦)1(−2𝑧)2 = ( 
8 

) (2)3(−1)2(3)1(−2)2) 𝑤3𝑥2𝑦𝑧2 
3, 2, 1, 2 3, 2, 1, 2 

 

This shows that the required coefficient is 
 

( 
8 

3, 2, 1, 2 
) (2)3(−1)2(3)1(−2)2) = 

8!
 

3! 2! 1! 2! 
× 23 × 3 × 22 = 161280 

( 



  

 

 

☻Combinations with repetitions: 

Suppose we wish to select, with repetition, a combination of r objects from a set of n distinct objects. The 

number of such selections is given by 𝐶(𝑛 + 𝑟 − 1, 𝑟) ≡ 
(𝑛+𝑟−1)! 

≡ 𝐶(𝑟 + 𝑛 − 1, 𝑛 − 1). 
𝑟! (𝑛−1)! 

 

In other words, 𝐶(𝑛 + 𝑟 − 1, 𝑟) ≡ 𝐶(𝑟 + 𝑛 − 1, 𝑛 − 1) represents the number of combinations of m distinct 

objects, taken r at a time, with repetition allowed. 

The following are other interpretations of this number: 
 

𝐶(𝑛 + 𝑟 − 1, 𝑟) ≡ 𝐶(𝑟 + 𝑛 − 1, 𝑛 − 1) represents the number of ways in which r identical objects can be 

distributed among 𝑛 distinct containers. 

𝐶(𝑛 + 𝑟 − 1, 𝑟) ≡ 𝐶(𝑟 + 𝑛 − 1, 𝑛 − 1) represents the number of nonnegative integer solutions of the 

equation. 

Problems: 
 

1. In how many ways we can distribute 10 identical marbles among 6 distinct containers? 
 

Solution: 

The selection consists in choosing with repetitions 𝑟 = 10 marbles for 𝑛 = 6 distinct containers 
 

The required number is 𝐶(6 + 10 − 1, 10) = 𝐶(15, 10) = 
15!

 
10! 5! 

= 3003 
 

2. Find the number of non-negative integer solutions of the inequality 𝑥 1 + 𝑥2 + 𝑥3 + ⋯ + 𝑥6 < 10 

Solution: 
 

We have to find the number of nonnegative integer solutions of the equation 
 

𝑥 1 + 𝑥2 + 𝑥3 + ⋯ + 𝑥6 = 9 − 𝑥7 
 

where 9 − 𝑥7 ≤ 9 so that 𝑥7 is non negative integer. Thus, the required number in the number of nonnegative 

solutions of the equation. 

x1 + x2 + x3 + ……+ x7 = 9 
 

This number is 𝐶(7 + 9 − 1, 9) = 𝐶(15, 9) = 
15!

 
9! 6! 

= 5005 
 

3. In How many ways can we distribute 7 apples and 6 oranges among 4 children so that each child gets 

at least 1 apple? 

Solution: 

Suppose we first give 1 apple to each child. This exhausts 4 apples. The remaining 3 apples can be distributed 

among 4 children in 𝐶(4 + 3 − 1, 3) = 𝐶(6, 3) ways. Also, 6 oranges can be distributed among the 4 

children in 𝐶(4 + 6 − 1, 6) = 𝐶(9, 6) ways. Therefore, by the product rule, the number ways of distributing 

the given fruits under the given condition is 



  

 

 

𝐶(6, 3) × 𝐶(9, 6) = 
6!

 
3! 3! 

×   
9! 

6! 3! 
= 20 × 84 = 1680 

 

4. A message is made up of 12 different symbols and it is to be transmitted through a communication 

channel. In addition to the 12 symbols, the transmitter will also send a total of 45 blank spaces 

between the symbols, with at least three spaces between each pair of consecutive symbols. In how 

many ways can the transmitter send such a message? 

Solution: 
 

The 12 symbols can be arranged in 12! Ways. For each of these arrangements, there are 11 positions between 

the 12 symbols. Since there must be at least three spaces between successive symbols, 33 of the 45 spaces 

will be used up. The remaining 12 spaces are to be accommodated in 11 positions. This can be done in 

𝐶(11 + 12 − 1, 12) = 𝐶(22, 12) ways. Consequently, by the product rule, the required number is 
 

22! 
12! × 𝐶(22, 12) = 12! × 

12! × 10! 

 

= 3.097445 × 1014 

5. In how many ways can one distribute eight identical balls into four distinct containers so that (i) no 

container is left empty? (ii) the fourth container gets an odd number of balls? 

Solution: 
 

(i). First, we distribute one ball in to each container. Then we distribute the remaining 4 balls into 4 

containers. The number of ways of doing this is the required number. This number is 
 

 

𝐶(4 + 4 − 1, 4) = 𝐶(7, 4) = 
7! 

 
 

4! × 3! 

 

= 35 

(ii). If the fourth container has o get an odd number of balls, we have to put 1 or 3 or 5 or 7 balls into it. 
 

Suppose we put 1 ball into the fourth container and the remaining 7 balls can be put into the remaining three 

containers in 

𝐶(3 + 7 − 1, 7) = 𝐶(9, 7) ways 
 

Similarly, we put 3 balls into the fourth container and the remaining 5 balls can be put into the remaining 

three containers in 

𝐶(3 + 5 − 1, 5) = 𝐶(7, 5) ways 
 

Similarly, we put 5 balls into the fourth container and the remaining 3 balls can be put into the remaining 

three containers in 

𝐶(3 + 3 − 1, 3) = 𝐶(5, 3) ways 
 

Similarly, we put 7 balls into the fourth container and the remaining 1 ball can be put into the remaining 

three containers in 

𝐶(3 + 1 − 1, 1) = 𝐶(3, 1) ways 
 

Thus, the total number of ways of distributing the given balls so that the fourth container gets an odd number 

of balls is 



  

 

 

𝐶(9, 7) + 𝐶(7, 5) + 𝐶(5, 3) + 𝐶(3, 1) =   
9!

 
7!×2! 

+   
7! 

5!×2! 
+   

5! 

3!×2! 
+   

3! 

1!×2! 
= 36 + 21 + 10 + 3 = 70 

 

6. Find the number of integer solutions of 𝑥1 + 𝑥2 + 𝑥3 + 𝑥4 = 32 where 𝑥𝑖 ≥ 0, 1 ≤ 𝑖 ≤ 4. 

Solution: 
 

Given 𝑥1 + 𝑥2 + 𝑥3 + 𝑥4 = 32, where 𝑥𝑖 ≥ 0, 1 ≤ 𝑖 ≤ 4. 
 

The required number is 𝐶(4 + 32 − 1, 32) = 𝐶(35, 32) = 
35!

 
32!×3! 

= 6545 
 

7. Find the number of positive integer solutions of the equation 𝑥1 + 𝑥2 + 𝑥3 = 17 

Solution: 
 

Given 𝑥1 + 𝑥2 + 𝑥3 = 17, we require 𝑥𝑖 ≥ 1, 1 ≤ 𝑖 ≤ 3. 

Let us set 𝑦1 = 𝑥1 − 1, 𝑦2 = 𝑥2 − 1, 𝑦3 = 𝑥3 − 1, then 𝑦1, 𝑦2, 𝑦3 are all nonnegative integers. 

Then the given equation is reads (𝑦1 + 1) + (𝑦2 + 1) + (𝑦3 + 1) = 17 or 𝑦1 + 𝑦2 + 𝑦3 = 14 

The required number is 𝐶(3 + 14 − 1, 14) = 𝐶(16, 14) = 
16!

 
14!×2! 

= 120 
 

8. Find the number of positive integer solutions of the equation 𝑥1 + 𝑥2 + 𝑥3 + 𝑥4 + 𝑥5 = 30 where 

𝑥1 ≥ 2, 𝑥2 ≥ 3, 𝑥3 ≥ 4, 𝑥4 ≥ 2, 𝑥5 ≥ 0 
 

Solution: 
 

Given 𝑥1 + 𝑥2 + 𝑥3 + 𝑥4 + 𝑥5 = 30 

Let us set 𝑦1 = 𝑥1 − 2, 𝑦2 = 𝑥2 − 3, 𝑦3 = 𝑥3 − 4, 𝑦4 = 𝑥4 − 2, 𝑦5 = 𝑥5 then 𝑦1, 𝑦2, 𝑦3, 𝑦4, 𝑦5 are all 

nonnegative integers. 

Then the given equation is reads 

(𝑦1 + 2) + (𝑦2 + 3) + (𝑦3 + 4) + (𝑦4 + 2) + (𝑦5 + 0) = 30 or 𝑦1 + 𝑦2 + 𝑦3 + 𝑦4 + 𝑦5 = 19 
 

The required number is 𝐶(5 + 19 − 1, 19) = 𝐶(23, 19) = 
23!

 
19!×4! 

= 8855 
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☻Syllabus: 

MODULE -3 

RELATIONS AND FUNCTIONS 

Relations and Functions: Cartesian Products and Relations, Functions – Plain and One-to One, 

Onto Functions. The Pigeon-hole Principle, Function Composition and Inverse Functions. 

Relations: Properties of Relations, Computer Recognition – Zero-One Matrices and Directed 

Graphs, Partial Orders – Hasse Diagrams, Equivalence Relations and Partitions. 

☻Cartesian Products: 

For set A, B ⊆ U, the Cartesian product of A and B is denoted by A × B and equals 

{(a, b) |a ϵ A, b ϵ B} 

Example: Let U = {1,2,3, … .7}, A = {2,3,4}, B = {4,5} 

Then (a). A × B = {(2, 4), (2 ,5), (3, 4), (3, 5), (4, 4), (4, 5)} 

(b). B2 = B × B = {(4, 4), (4, 5), (5, 4), (5, 5)} 

(c). B3 = B × B × B = {(a, b, c)|a, b, c ϵ B} 

☻Relation: 

For sets A, B ⊆ U any subset of A × B is Called a Relation From A to B and any subset of A × A 
is called a Binary relation on A. 

Example: 

Let A and B be finite sets with |B| = 3. If there are 4096 relations from A to B what is |A|? 

Solution: If |A| = m, |B| = n then there are 2mn relations from A to B. 

Given n = 3, 2mn = 4096 ∴ m = 4 = |A|. 

☻Functions: 

Let A and B be two non-empty sets. Then a function f from A to B is a relation from A to B such 

that for each a in A there is a unique b in B such that (𝐚, 𝐛) 𝖾 𝐟 

Types of Functions: 

(a). Floor function: 

The function 𝑓: 𝑅 → 𝑍, is given by 

𝑓(𝑥) = ⌊𝑥⌋ = The greatest integer less than or equal to x. 

⌊3.8⌋ = 3 

⌊−3.8⌋ = −4 

(b). Ceiling Function: 



  

  

 

 

The function 𝑔: 𝑅 → 𝑍 is defined by 𝑔(𝑥) = ⌈𝑥⌉ 

⌈3⌉ = 3, ⌈3.01⌉ = ⌈3.7⌉ = 4 = ⌈4⌉ 

⌈−3.01⌉ = ⌈−3.7⌉ = −3 

(c). Identity function: 

A function 𝑓: 𝐴 → 𝐴 such that 𝑓(𝑎) = 𝑎 for every 𝑎 ∈ 𝐴 is called the identity function (or identity 

mapping) on A. 

In other words, a function f on a set A is an identity function if the image of every element of A 

(under 𝑓) is itself. 
 

(d). Constant function: 

A function 𝑓: 𝐴 → 𝐵 such that 𝑓(𝑎) = 𝑐 for every 𝑎 ∈ 𝐴, where 𝑐 is a fixed element of B, is called 

a Constant function. 

In other words, a function f from A to B is a constant function if all elements of A have the same 

image (say c) in B. 
 

 

 
(e). Injective or one-to-one: A function 𝑓: 𝐴 → 𝐵 is called one-to-one, if each element of B 

appears at most once as the image of an element of A. 



  

  

 

 

In other words, If different elements of A have different images in B under 𝑓; If whenever 𝑓(𝑎1) = 

𝑓(𝑎2) for 𝑎1, 𝑎2 ∈ 𝐴, then 𝑎1 = 𝑎2 
 

(f). Surjective or onto: A function 𝑓: 𝐴 → 𝐵 is called onto if for every element b of B there is an 

element a of A such that 𝑓(𝑎) = 𝑏 

In other words. 𝑓 is an onto function from A to B if every element of B has a Preimage in A. 
 

(g). Bijective or one-to-one correspondence: A function which is both one-to-one and onto is 

called Bijective. 
 

Note: Number of one-to-one functions from A to B is 
 

𝑃(𝑛, 𝑚) = 
𝑛!

 
(𝑛−𝑚)! 

Where |𝐴| = 𝑚, |𝐵| = 𝑛 & 𝑚 >= 𝑛 

Number of onto functions from A to B is 



  

  

 

 

n 
𝑃(𝑛, 𝑚) = ∑ (−1)k( n 

 
)(n − k)m 

 
Problems: 

k=0 
n−k 

 

1. Let 𝐴 = {1,2,3,4,5,6,7}, 𝐵 = {𝑤, 𝑥, 𝑦, 𝑧}. Find the number of Onto Functions from A to B. 

Solution: Given 𝑚 = |𝐴| = 7 & 𝑛 = |𝐵| = 4 

n 
𝑃(7,4) = ∑ (−1)k( 4 

 
)(4 − k)7 = 8400 

k=0 
4−k 



  

  

 

 

☻Pigeonhole Principle: 

If 𝑚 pigeons occupy 𝑛 pigeon holes and if 𝑚 > 𝑛, then two or more pigeons occupy the same 

pigeonhole. 

Generalization: 

If 𝑚 pigeons occupy 𝑛 pigeonholes, then at least one pigeonhole must contain (𝑝 + 1) or more 

pigeons, where 𝑝 = ⌊
(𝑚−1)

⌋ 
𝑛 

 

 

 



  

  

 

 

Problems: 

1. ABC is an equilateral triangle whose sides are of length 1cm each. If we select 5 points 

inside the triangle, prove that at least 2 of these points are such that the distance between 

them is less than 1 cm. 
2 

Solution: 

Consider the triangle DEF formed by the mid points of the sides BC, CA and AB of the given 

triangle ABC. Then the triangle ABC is partition into 4 small equilateral triangles, each of which 

has sides equal to 1 cm treating each of these four portions as a pigeonhole and 5 points chosen 
2 

inside the triangle as pigeons, we find by using the pigeonhole principle that at least one portion 

must contain two or more points. Evidently the distance between such points is < 
1 

cm. 
2 

 

 

2. A magnetic tape contains a collection of 5 lakh strings made up to four or fewer number of 

English Letters can all the strings is the collection be distinct? 

Solution: 

Each place is an n letter string can be filled in 26 ways. Therefore, the possible number of strings 

made up of n letters is 26𝑛 consequently, the total number of different possible strings made up of 

four or fewer letter is 264 + 263 + 262 + 26 = 4,75,254. 

Therefore, if there are 5 lakh strings in the tape, then at least one string is repeated. Thus, all the 

strings in the collection cannot be distinct. 

3. Shirts numbered consecutively from 1 to 20 are worn by 20 students of a class. When any 

3 of these students are chosen to be a debating team from the class, the sum of their shirt 

numbers is used as a code number of the team. Show that if any 8 of the 20 are selected, 

then from these 8 we may form at least two different teams having the same code number. 

Solution: 

From the 8 of the 20 students selected the numbers of teams of 3 students that can be formed is 
8𝐶3=56. According to the way in which the code number of a team is determined, we note that the 

smallest possible code number is 1 + 2 + 3 = 6 and the largest possible code number is 18 + 

19 + 20 = 57. Thus, the code number vary from 6 to 57, and these are 52 in number. As such 

only 52 code number are available for 56 possible teams, consequently by the pigeonhole principle, 

at least two different teams will have the same code number. 



  

  

 

 

☻Composition of functions: 

Consider three non-empty sets A, B, C and the functions 𝑓: 𝐴 → 𝐵 and 𝑔: 𝐵 → 𝐶. the composition 

of these two functions is defined as the function 𝑔𝑜𝑓: 𝐴 → 𝐶 with (𝑔𝑜𝑓)(𝑎) = 𝑔{𝑓(𝑎)} for all 

𝑎𝜖𝐴. 

Problems: 

1. Consider the function 𝑓 and 𝑔 defined by 𝑓(𝑥) = 𝑥3 and 𝑔(𝑥) = 𝑥2 + 1 Ɐ 𝑥𝜖𝑅 find 

𝑔𝑜𝑓, 𝑓𝑜𝑔, 𝑓2 and 𝑔2 

Solution: 

Here, both f and g are defined on R, therefore all of the functions 𝑔𝑜𝑓, 𝑓𝑜𝑔, 𝑓2 = 𝑓𝑜𝑓and 𝑔2 = 

𝑔𝑜𝑔 are defined on R and we find 

(𝑔𝑜𝑓)(𝑥) = 𝑔{𝑓(𝑥)} = 𝑔(𝑥3) = (𝑥3)2 + 1 = 𝑥6 + 1 

(𝑓𝑜𝑔)(𝑥) = 𝑓{𝑔(𝑥)} = 𝑓(𝑥2 + 1) = (𝑥2 + 1)3 

𝑓2(𝑥) = (𝑓𝑜𝑓)(𝑥) = 𝑓{𝑓(𝑥)} = 𝑓(𝑥3) = (𝑥3)3 = 𝑥9 

𝑔2(𝑥) = (𝑔𝑜𝑔)(𝑥) = 𝑔{𝑔(𝑥)} = 𝑔(𝑥2 + 1) = (𝑥2 + 1)2 + 1 

 

 
2. Let f and g be function from R to R defined by 𝑓(𝑥) = 𝑎𝑥 + 𝑏 and 𝑔(𝑥) = 1 − 𝑥 + 𝑥2 if 

(𝑔𝑜𝑓)(𝑥) = 9𝑥2 − 9𝑥 + 3 determine a, b. 

Solution: We have (𝑔𝑜𝑓)(𝑥) = 9𝑥2 − 9𝑥 + 3 = 𝑔{𝑓(𝑥)} 

= 𝑔{𝑎𝑥 + 𝑏} 

= 1 − (𝑎𝑥 + 𝑏) + (𝑎𝑥 + 𝑏) 2 

= 𝑎2𝑥2 + (2𝑎𝑏 − 𝑎)𝑥 + (1 − 𝑏 + 𝑏2) 

Comparing the corresponding coefficients 

9 = 𝑎2, 9 = 𝑎 − 2𝑎𝑏, 3 = 1 − 𝑏 + 𝑏2. 

𝑎 = ±3, 𝑏 = −1,2 

☻Invertible Functions: 

A function 𝑓: 𝐴 → 𝐵 is said to be invertible if there exists a function 𝑔: 𝐵 → 𝐴 such that 𝑔𝑜𝑓 = 𝐼𝐴 

and 𝑓𝑜𝑔 = 𝐼𝐵 where 𝐼𝐴 is the identity function on A and 𝐼𝐵is the identity function on B. 

Problems: 

1. Let   𝐴 = {1,2,3,4}   and   𝑓 and   𝑔   be function From   A   to   A   given   by   𝑓 = 

{(1,4), (2,1), (3,2), (4,3)} 𝑔 = {(1,2), (2,3), (3,4), (4,1)}. Prove that 𝑓 and 𝑔 are inverse 

of each other. 



  

  

 

 

Solution:  

(𝑔𝑜𝑓)(1) = 𝑔{ 𝑓(1)} = 𝑔(4) = 1 = 𝐼𝐴(1) 

(𝑔𝑜𝑓)(2) = 𝑔 {𝑓(2)} = 𝑔(1) = 2 = 𝐼𝐴(2) 

(𝑔𝑜𝑓)(3) = 𝑔{ 𝑓(3)} = 𝑔(2) = 3 = 𝐼𝐴(3) 

(𝑔𝑜𝑓)(4) = 𝑔{ 𝑓(4)} = 𝑔(3) = 4 = 𝐼𝐴(4) 

(𝑓𝑜𝑔)(1) = 𝑓{𝑔(1)} = 𝑓(2) = 1 = 𝐼𝐵(1) 

(𝑓𝑜𝑔)(2) = 𝑓{𝑔(2)} = 𝑓(3) = 2 = 𝐼𝐵(2) 

(𝑓𝑜𝑔)(3) = 𝑓{𝑔(3)} = 𝑓(4) = 3 = 𝐼𝐵(3) 

(𝑓𝑜𝑔)(4) = 𝑓{𝑔(4)} = 𝑓(1) = 4 = 𝐼𝐵(4) 

Thus, for all 𝑥 𝜖 𝐴, we have(𝑔𝑜𝑓)(𝑥) = 𝐼𝐴(𝑥) and (𝑓𝑜𝑔)(𝑥) = 𝐼𝐵(𝑥), therefore 𝑔 is an inverse 

of 𝑓 and 𝑓 is an inverse of 𝑔. 

2. Consider the function 𝑓: 𝑅 → 𝑅 defined by 𝑓(𝑥) = 2𝑥 + 5. Let a function 𝑔: 𝑅 → 𝑅 be 

defined by 𝑔(𝑥) = 
1

 
2(𝑥−5) 

Prove that 𝑔 is an inverse of 𝑓. 

Solution: 

We check that for any 𝑥𝜖𝑅 

(𝑔𝑜𝑓)(𝑥) = 𝑔[𝑓(𝑥)] = 𝑔(2𝑥 + 5) 

= 1/2(2𝑥 + 5 − 5) = 𝑥 = 𝐼𝑅(𝑥) 

(𝑓𝑜𝑔)(𝑥) = 𝑓[𝑔(𝑥)] = 𝑓{1/2(𝑥 − 5)} 

= 2{1/2(𝑥 − 5)} + 5 = 𝑥 = 𝐼𝑅(𝑥) 

 

 
☻Properties of Functions: 

Theorem 1: A function 𝑓: 𝐴 → 𝐵 is invertible if and only if one-to-one and onto. 

Proof: Suppose that f is invertible then there exists a unique function 𝑔: 𝐵 → 𝐴 such that 𝑔𝑜𝑓 = 

𝐼𝐴 and 𝑓𝑜𝑔 = 𝐼𝐵Take any 𝑎1, 𝑎2 𝜖 𝐴 then 

𝑓(𝑎1) = 𝑓( 𝑎2) ⇒ 𝑔{𝑓(𝑎1)} = 𝑔{𝑓( 𝑎2)} 

⇒ (𝑔𝑜𝑓)( 𝑎1) = (𝑔𝑜𝑓)( 𝑎2) 

⇒ 𝐼𝐴(𝑎1) = 𝐼𝐴( 𝑎2) 

⇒ 𝑎1 = 𝑎2 

This prove 𝑓 is one-to-one 



  

  

 

 

Next, take any 𝑏 𝜖 𝐵. Then 𝑔(𝑏) 𝜖 𝐴 and 𝑏 = 𝐼𝐵(𝑏) 

= (𝑓𝑜𝑔)(𝑏) = 𝑓{𝑔(𝑏)}. 

Thus, 𝑏 is the image of an element 𝑔(𝑏) 𝜖 𝐴 under f. therefore, f is onto as well. 

Conversely, suppose that f is one-to-one and onto then for each 𝑏 𝜖 𝐵 there is a unique 𝑎 𝜖 𝐴 such 

that 𝑏 = 𝑓(𝑎) now consider the function 𝑔: 𝐵 → 𝐴 defined by 𝑔(𝑏) = 𝑎 then 

(𝑔𝑜𝑓)(𝑎) = 𝑔{𝑓(𝑎)} = 𝑔(𝑏) = 𝑎 = 𝐼𝐴(𝑎) and (𝑓𝑜𝑔)(𝑏) = 𝑓{𝑔(𝑏)} = 𝑓(𝑎) = 𝑏 = 𝐼𝐵(𝑏) 

These show that f is invertible with g as the inverse. This completes the proof of the theorem. 

 

 
Theorem 2: If 𝑓: 𝐴 → 𝐵 and 𝑔: 𝐵 → 𝐶 are invertible functions, then 

𝑔𝑜𝑓: 𝐴 → 𝐶 is an invertible function and (𝑔𝑜𝑓)−1 = 𝑓−1𝑜𝑔−1. 

Proof: Since 𝒇 and 𝒈 are invertible functions; they are both one-to-one and onto consequently 

𝑔𝑜𝑓 is both one-to-one and onto therefore, 𝑔𝑜𝑓 is invertible. Now the inverse 𝑓−1 of 𝑓 is a function 

from 𝐵 to 𝐴 and the inverse 𝑔−1 of 𝑔 is a function from 𝐶 to 𝐵. 

Therefore, if ℎ = 𝑓−1𝑜𝑔−1 then ℎ is a function from 𝐶 to 𝐴. 

We find that 

 

 

 
And 

(𝑔𝑜𝑓)𝑜ℎ = (𝑔𝑜𝑓)𝑜(𝑓−1𝑜𝑔−1) = 𝑔𝑜(𝑓𝑜𝑓−1)𝑜𝑔−1 = 𝑔𝑜𝐼𝐵𝑜𝑔−1 

= 𝑔𝑜𝑔−1 = 𝐼𝐶 

 
 

ℎ𝑜(𝑔𝑜𝑓) = (𝑓−1𝑜𝑔−1)𝑜(𝑔𝑜𝑓) = 𝑓−1𝑜(𝑔−1𝑜𝑔)𝑜𝑓 = 𝑓−1𝑜𝐼𝐵𝑜𝑓 

= 𝑓−1𝑜 𝑓 = 𝐼𝐴 

The above expression show that ℎ is the inverse of 𝑔𝑜𝑓, 

i.e., ℎ = (𝑔𝑜𝑓)−1. Thus (𝑔𝑜𝑓)−1 = ℎ = 𝑓−1𝑜𝑔−1 this completes the proof of the theorem. 



  

  

 

 

☻Zero-one matrices and Directed graphs: 

Power of 𝑹: 

Given a set 𝐴 and a relation 𝑅 on 𝐴 we define the powers of 𝑅 recursively by 

(a) 𝑅𝐼 = 𝑅 (b) for 𝑛 ∈ 𝑍+, 𝑅𝑛+1 = 𝑅𝑜𝑅𝑛 

Example: 

If 𝐴 = {1,2,3,4} and 𝑅 = {(1,2) (1,3) (2,4) (3,2)} then 𝑅2 = {(1,4), (1,2), (3,4)}, 𝑅3 = {(1,4)} 

and for 𝑛 ≥ 4, 𝑅𝑛 = ф. 

Zero Matrix: 

An 𝑚 × 𝑛 Zero-matrix 𝐸 = (𝑒𝑖𝑗)𝑚×𝑛 is a rectangular array of number arranged is m rows and n 

columns, where each 𝑒𝑖𝑗, for 1 ≤ 𝑖 ≤ 𝑚 and 1 ≤ 𝑖 ≤ 𝑛 denote the entry is the 𝑖𝑡ℎrow and 𝑗𝑡ℎ 

column of 𝐸, and each such entry is 0 or 1. 

𝒏 × 𝒏 (𝟎, 𝟏) matrix: 

For 𝑛 ∈ 𝑍+, 𝐼𝑛 = (𝛿𝑖𝑗)
𝑛×𝒏 

is the 𝑛 × 𝑛 (0,1)-matrix where 

δij== {
1, if i = j 

0, if i ≠ j 

☻Digraph of a relation: 

Let V be a finite nonempty set. A directed graph G on V is made up of the elements of V, called 

the vertices or nodes of G, and a subset E, of 𝑉 × 𝑉 that contains the edges or arcs, of G. The set 

V is called the vertex set of G, the set E edge set. We then write 𝐺 = (𝑉, 𝐸) to denote the graph. 

If 𝑎, 𝑏 ∈ 𝑉 and (𝑎, 𝑏) ∈ 𝐸 then there is an edge from 𝑎 to 𝑏 vertex 𝑎 is called the origin or source 

of the edge with 𝑏 the terminus or terminating vertex and we say that 𝑏 is adjacent from 𝑎 and that 

𝑎 is adjacent to 𝑏. In addition, if 𝑎 ≠ 𝑏, then (𝑎, 𝑏) ≠ (𝑏, 𝑎). An edge of the form (𝑎, 𝑎) is called 

a loop. 

Problems: 

1. Let 𝐴 = {1,2,3,4} and let R be the relation on A defined by 𝑥𝑅𝑦 if and only if 𝑦 = 2𝑥. 

a) Write down R as asset of ordered pairs. 

b) Draw the digraph of R. 

c) Determine the in-degrees and out-degrees of the vertices in the digraph. 

Solution: 

a) We observe that for 𝑥, 𝑦 ∈ 𝐴, (𝑥, 𝑦) ∈ 𝑅 if and only if 𝑦 = 2𝑥. thus 𝑅 = {(1,2), (2,4)}. 

b) The digraph of R is as shown below 



  

  

 

 

 

 

 

 

 
 

 

 

 

 

 

 

c) From the above digraph, we note that 3 is an isolated vertex and that for the vertex 1,2,4 the in- 

degrees and out-degrees are as shown in the table 
 

Vertex 1 2 4 

In-degree 0 1 1 
    

Out-degree 1 1 0 

 

2. Let 𝐴 = {1,2,3,4,6} and R be a relation on A defined by 𝑎𝑅𝑏 if and only if 𝑎 is a multiple 

of 𝑏. Represent the relation R as a matrix and draw its digraph. 

Solution: 𝑅 = {(1,1), (2,1), (2,2), (3,1), (3,3), (4,1), (4,2), (4,4), (6,1), (6,2), (6,3), (6,6)} 

1 0 0 0 0 
𝖥1 1 0 0 01 

𝑀𝑅 = 1 0 1 0 0 
I1 1 0 1 0I 
[1 1 1 0 1] 

 
 

 
 

3. Find the relation represented by the digraph given below. Also write down its matrix. 



  

  

 

 

 

 

 

 

 
 

 

 

 

 

 

Solution: 

By examining the given digraph which has 4 vertices, we note that the relation R represented by it 

is defined on the set 𝐴 = {1,2,3,4} and is given by 𝑅 = {(1,2), (1,4), (2,2), (2,3), (4,1), (4,4)}. 

The matrix of R is 

0 1 0 1 
0 1 1 0 

𝑀𝑅 = [ ]         
0 0 0 0 
1 0 0 1 



  

  

 

 

☻Properties of Relations: 

1. Reflexive relation: 

A relation R on a set A is said to be reflexive, if (𝑎, 𝑎) ∈ 𝑅, for all 𝑎 ∈ 𝐴. 

Example: ≤ 

2. Irreflexive relation: 

A relation is said to be irreflexive, if (𝑎, 𝑎) ∉ 𝑅 for any 𝑎 ∈ 𝐴. 

Example: < , > 

3. Symmetric Relation: 

A relation R on a set is said to be symmetric, If (𝑏, 𝑎) ∈ 𝑅 whenever (𝑎, 𝑏) ∈ 𝑅 for all 𝑎, 𝑏 ∈ 𝐴. 

A relation which is not symmetric is called an Asymmetric relation. 

Example: If 𝐴 = {1,2,3} and 𝑅1 = {(1,1), (1,2), (2,1)}, 𝑅2 = {(1,2), (2,1), (1,3)} 

𝑅1 is symmetric and 𝑅2 is asymmetric. 

4. Antisymmetric relation: 

A relation R on a set A is said to be antisymmetric, if whenever (𝑎, 𝑏) ∈ 𝑅 and (𝑏, 𝑎) ∈ 𝑅 then 

𝑎 = 𝑏. 

Example: is less than or equal to. 

5. Transitive Relation: 

A relation on a set A is said to be transitive if whenever (𝑎, 𝑏) ∈ 𝑅 and (𝑏, 𝑐) ∈ 𝑅 then (𝑎, 𝑐 ) ∈ 𝑅 

for all 𝑎, 𝑏, 𝑐 ∈ 𝐴. 

Examples: 

1. Determine nature of the relations. 

[1] 𝐴 = {1,2,3}, 𝑅1 = {(1,2), (2,1), (1,3), (3,1)} 

- Symmetric but not reflexive. 

[2] 𝑅2 = {(1,1), (2,2), (3,3), (2,3)} 

- Reflexive but not symmetric. 

[3] 𝑅3 = {(1,1), (2,2), (3,3)} 

- Reflexive and symmetric. 

[4] 𝑅4 = {(1,1), (2,2), (3,3), (2,3), (3,2)} 

- Both reflexive and symmetric. 

[5] 𝑅5 = {(1,1), (2,3), (3,3)} 

- Neither reflexive nor symmetric 



  

  

 

 

2. If 𝐴 = {1,2,3,4}, 𝑅1 = {(1,1), (2,3), (3,4), (2,4)} is transitive 𝑅2 = {(1,3), (3,2)} is not 

transitive. 

☻Equivalence relation: 

A relation that is reflexive, symmetric and transitive. 

Problems: 

1. A relation R on a set 𝐴 = {𝑎, 𝑏, 𝑐} is represented by the following matrix. 

1 0 1 
𝑀𝑅 = [0 1 0] determine whether R is an Equivalence relation. 

0 0 1 

Solution: 𝑅 = {(𝑎, 𝑎), (𝑎, 𝑐), (𝑏, 𝑏), (𝑐, 𝑐)} we note that (𝑎, 𝑐) ∈ 𝑅 but (𝑐, 𝑎) ∉ 𝑅 

∴ R is not symmetric 

∴R is not equivalence 

 
2. For a fixed integer 𝑛 > 1 prove that the relation congruent modulo 𝑛 is an equivalence 

relation on the set of all integers 𝑍. 

Solution: For 𝑎, 𝑏 ∈ 𝑧, we say that 𝑎 is congruent to 𝑏 modulo 𝑛 if 𝑎 − 𝑏 is a multiple of n or 

equivalently, 𝑎 − 𝑏 = 𝑘𝑛 for some 𝑘 ∈ 𝑍. 

Let us denote this relation by 𝑅 so that 𝑎𝑅𝑏 means 𝑎 ≡ 𝑏 (𝑚𝑜𝑑 𝑛) we have to prove that 𝑅 is 

an equivalence relation. 

We note that for every 𝑎 ∈ 𝑍, 𝑎 − 𝑎 = 0 is a multiple of 𝑛 ie, 𝑎 ≡ 𝑎(𝑚𝑜𝑑 𝑛), 𝑎𝑅𝑎 

R is reflexive. Next for all 𝑎, 𝑏 ∈ 𝑧 

𝑎𝑅𝑏 → 𝑎 ≡ 𝑏 𝑚𝑜𝑑 𝑛. 

→ 𝑎 − 𝑏 is a multiple of 𝑛 

→ 𝑏 − 𝑎 is a multiple of 𝑛 

→ 𝑏 ≡ 𝑎 𝑚𝑜𝑑 𝑛 

→ 𝑏𝑅𝑎 
R is symmetric. 

Lastly, we note that for all 𝑎, 𝑏, 𝑐 ∈ 𝑍 

𝑎𝑅𝑏 and 𝑏𝑅𝑐 ⇒ 𝑎 ≡ 𝑏(𝑚𝑜𝑑 𝑛) and 𝑏 ≡ 𝑐(𝑚𝑜𝑑 𝑛) 

= 𝑎 − 𝑏 and 𝑏 − 𝑐 are multiples of 𝑛 

= (𝑎 − 𝑏) + (𝑏 − 𝑐) = (𝑎 − 𝑐) is a multiple of 𝑛 

= 𝑎 ≡ 𝑐( 𝑚𝑜𝑑 𝑛) = 𝑎𝑅𝑐 
R is transitive. This proves that R is equivalence relation. 

 

☻Equivalence Class: 



  

  

 

 

Let R be an equivalence relation on a set A and 𝑎 ∈ 𝐴. Then the set of all those elements 

𝑥 of A which are related to a by R is called the equivalence class of a with respect to R. 

𝑎 ̅ = [𝑎] = 𝑅(𝑎) = {𝑥 ∈ 𝐴|(𝑥, 𝑎) ∈ 𝑅} 

Example: 

𝑅 = {(1,1), (1,3), (2,2), (3,1), (3,3)} defined on the set 𝐴 = {1,2,3} we find elements 𝑥 of A for 

which (𝑥, 1) ∈ 𝑅 are 𝑥 = 1, 𝑥 = 3. Therefore {1,3} is the equivalence class of 1 

i.e., [1] = {1,3}, [2] = [2], [3] = {1,3} 

☻Partition of a set: 

Let A be a non-empty set suppose that there exist non-empty subsets A1,A2,A3,…… AK of A such 

that the following two conditions hold. 

1) A is the union of 𝐴1, 𝐴2, 𝐴3, … … 𝐴𝐾 that is 𝐴 = 𝐴1𝑈𝐴2𝑈𝐴3, … 𝑈𝐴𝐾 

2) Any two of the subsets 𝐴1, 𝐴2, 𝐴3, … … 𝐴𝐾 are disjoint i.e., 𝐴𝑖 ꓵ 𝐴𝑗 = ф 

for 𝑖 ≠ 𝑗 then the set 𝑃 = { 𝐴1, 𝐴2, 𝐴3, … … 𝐴𝐾}   is called a partition of A. also 

𝐴1, 𝐴2, 𝐴3, … … 𝐴𝐾 are called the blocks or cells of the partition. 

A partition of a set A with 6 blocks is as shown below 
 

𝐴 = {1,2,3,4,5,6,7,8} and its following subsets 𝐴1 = {1,3,5,7}, 𝐴2 = {2,4}, 𝐴3 = {6,8} 

𝑃 = {𝐴1, 𝐴2, 𝐴3} is a Partition of A with A1 A2 A3 as blocks of the partition? 

𝐴4 = {1,3,5} then 𝑃1 = {𝐴2, 𝐴3, 𝐴4} in not a partition of the set A. Because although the subsets 

𝐴2, 𝐴3 and 𝐴4 are mutually disjoint A is not the union of these subsets. We find if 𝐴5 = { 5,6,8} 

then 𝑃2 = {𝐴1, 𝐴2, 𝐴5} is also not a partition of A because A is the union of 𝐴1, 𝐴2, 𝐴5. 𝐴1, 𝐴5are 

not disjoint. 

Problems: 

1. For the set A and the relation R on A 

𝐴 = {1,2,3,4,5}, 𝑅 = {(1,1), (2,2), (2,3), (3,2), (3,3), (4,4), (4,5), (5,4), (5,5)} 

Defined on A find the partition of A induced by R. 



  

  

 

 

Solution: 

By examining the given 𝑅1 we find that [1] = {1}, [2] = {2,3}, [3] = {2,3}, [4] = {4,5}, [5] = 

{4,5} of these equivalence classes only [1], [2] and [4] are distinct these constitute the partition 

P of A determined by R then 

𝑃 = {[1], [2], [4]} is the partition induced by R 

𝐴 = [1] 𝑈 [2] 𝑈 [4] = {1}𝑈{2,3}𝑈{4,5} 



  

  

 

 

☻Partial orders: 

A relation R on a set A is said to be a partial ordering relation or a partial order on A if (i) R is 

reflexive (ii) R is antisymmetric and (iii) R is transitive on A. 

Poset: 

A set with a partial order R defined on it is called a partially ordered set or Poset. 

Example: less than or equal to. On set of integers. 

Total Order: 

Let R be a partial order on a set A. Then R is called a total order on A. if for all 𝑥, 𝑦 ∈ 𝐴 either 

𝑥𝑅𝑦 or 𝑦𝑅𝑥. In this case the poset (𝐴, 𝑅) is called a totally ordered set. 

Hasse Diagram: 

 
A Hasse diagram is a graphical rendering of a partially ordered set displayed via the cover 

relation of the partially ordered set with an implied upward orientation. A point is drawn for each 

element of the poset, and line segments are drawn between these points according to the following 

two rules: 

 

1. If 𝑥 < 𝑦 in the poset, then the point corresponding to 𝑥 appears lower in the drawing than the 

point corresponding to 𝑦. 

 

2. The line segment between the points corresponding to any two elements 𝑥 and 𝑦 of the poset is 

included in the drawing iff 𝑥 covers 𝑦 or 𝑦 covers 𝑥 . 
 

 

 
Problems: 

1. Let 𝐴 = {1,2,3,4} and 𝑅 = {(1,1), (1,2), (2,2), (2,4), (1,3), (3,3), (3,4), (1,4), (4,4)}. 

Verify that R is a partial order on A. also write down the Hasse diagram for R. 

https://mathworld.wolfram.com/PartiallyOrderedSet.html
https://mathworld.wolfram.com/CoverRelation.html
https://mathworld.wolfram.com/CoverRelation.html
https://mathworld.wolfram.com/PartiallyOrderedSet.html
https://mathworld.wolfram.com/Iff.html


  

  

 

 

Solution: 

We observe that the given relation R is reflexive and transitive. Further R does not contain 

ordered pairs of the form (𝑎, 𝑏) and (𝑏, 𝑎) with 𝑏 ≠ 𝑎. R is antisymmetric as such R is a partial 

order on A. 

The Hasse diagram for R must exhibit the relationships between the elements of A as defined by 

R. if (𝑎, 𝑏) ∈ 𝑅 there must be an upward edge from a to b. 
 

2. Let 𝐴 = {1,2,3,4,6,8,12} on A, define the partial ordering relation R by 𝑥𝑅𝑦 if and only 

if 𝑥/𝑦 draw the Hasse diagram for R. 

Solution: 

𝑅 = {(1,1), (1,2), (1,3), (1,4), (1,6), (1,8), (1,12), (2,2), (2,4), (2,6), (2,8), (2,12), 

(3,3), (3,6), (3,12), (4,4), (4,8), (4,12), (6,6), (6,12), (8,8), (12,12)}. 

The Hasse diagram for this R is as shown below. 
 

3. Draw the Hasse diagram representing the positive divisors of 36. 

Solution: 

The set of positive divisors of 36 is 

𝐷36 = {1,2,3,4,6,9,12,18,36} The relation R of divisibility (that is 𝑎𝑅𝑏 if and only if a 

divides b) is a partial order on this set. The Hasse diagram for this partial order is required 

here. 



  

  

 

 

1 is related to all elements of 𝐷36 

2 is related to 2,4,6,12,18,36 

3 is related to 3,6,9,12,18,36 

4 is related to 4,12,36 

6 is related to 6,12,18,36 

9 is related to 9,18,36 

12 is related to 12 and 36 

18 is related to 18 and 36 

36 is related to 36. 

The Hasse diagram for R must exhibit all of the above facts. 
 

4. A partial order R on set 𝐴 = {1,2,3,4} is represented by the following diagraph. Draw 

the Hasse diagram for R. 
 

 

Solution: 

By observing the given diagraph, we note that 



  

  

 

 

𝑅 = {(1,1), (2,2), (3,3), (4,4), (1,2), (1,3), (1,4), (2,4)} 



  

  

 

 

☻External elements in Posets: 

Upper bond of a subset B of A: an element 𝑎 ∈ 𝐴 is called an upper bound of a subset B of A 

if 𝑥𝑅𝑎 for all 𝑥 ∈ 𝐵. 

Lower bound of a subset B of A: an element 𝑎 ∈ 𝐴 is called lower bound of a subset B is A if 

𝑎𝑅𝑥 for all 𝑥 ∈ 𝐵. 

Supremum (LꓴB): An element 𝑎 ∈ 𝐴 is called the LꓴB of a subset B of A if the following two 

conditions hold. 

i) A is an upper bound of B. 

ii) If 𝑎𝐼 is an upper bound of B then 𝑎𝑅𝑎𝐼. 

Infimum (GLB): An element 𝑎 ∈ 𝐴 is called the GLB of a subset B of A if the following two 

conditions hold 

i) A is a lower bound of B. 

ii) If 𝑎𝐼 is a lower bound of B then 𝑎𝐼𝑅𝑎. 

Problems: 

1. Consider the Hasse diagram of a Poset (A, R) given below. 

If 𝐵 = {𝑐, 𝑑, 𝑒} find (if they exist). 

i) All upper bounds of B 

ii) All lower bounds of B 

iii) The least upper bound of B 

iv) The greatest lower bound of B 

Solution: 

(i) All of 𝑐, 𝑑, 𝑒 which are is B are related to 𝑓, 𝑔, ℎ therefore 𝑓, 𝑔, ℎ re upper bounds of B. 

(ii) The elements 𝑎, 𝑏 and 𝑐 are related to all of 𝑐, 𝑑, 𝑒 which are in B. therefore 𝑎, 𝑏 and 𝑐 are 

lower bounds of B. 



  

  

 

 

(iii) The upper bound 𝑓 of B is related to the other upper bounds 𝑔 and ℎ of B. Therefore, 𝑓 is 

the LꓴB of B. 

(iv) The lower bounds 𝑎 and 𝑏 of B are related to the lower bound 𝑐 of B. therefore C is the GLB 

of B. 

2. Consider the Poset whose Hasse diagram is shown below. Find LꓴB and GLB of 𝐵 = 

{𝑐, 𝑑, 𝑒} 
 

By examining all upward paths from 𝑐, 𝑑, 𝑒 is the given Hasse diagram. We find that LꓴB (𝐵) = 

𝑒. by examining all upward paths to 𝑐, 𝑑, 𝑒 we find that 𝐺𝐿𝐵(𝐵) = 𝑎. 

☻Lattice: 

Let (A, R) be a Poset this Poset is called a lattice. For all 𝑥, 𝑦 ∈ 𝐴 the elements 𝐿ꓴ𝐵 {𝑥, 𝑦} and 

𝐺𝐿𝐵 {𝑥, 𝑦} exist is A. 

Example: Let (𝐴, 𝑅) be Poset. The Poset is called a. 

1). Consider the set N of all-natural numbers and let R be the partial order “less than or equal to” 

then for any 𝑥, 𝑦 ∈ 𝑁, we note that 𝐿ꓴ𝐵 {𝑥, 𝑦} = 𝑀𝑎𝑥{𝑥, 𝑦} and 𝐺𝐿𝐵 {𝑥, 𝑦} = 𝑚𝑖𝑛{𝑥, 𝑦} and 

both of these belong to 𝑁. Therefore, the Poset (𝑁, ≤ ) is a lattice. 

2). Consider the Poset (𝑍+, ∣) where 𝑍+ is set of all positive integer & ∣ is the divisibility set. We 

can check that for any 𝑎, 𝑏 ∈ 𝑍+, the least common multiple of 𝑎 & 𝑏 is the 𝐿ꓴ𝐵 {𝑎, 𝑏} & the 

GCD of 𝑎 & 𝑏 is 𝐺𝐿𝐵 {𝑎, 𝑏}. Since these belongs to 𝑍+ we infer that (𝑍+, ∣) is a lattice. 

3). Consider the poset where Hasse Diagram is 



  

  

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 
 

By examining the Hasse diagram, we note that 𝐺𝐿𝐵 {3, 4} does not exist. 

∴ The poset is not a Lattice 
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MODULE-4 

THE PRINCIPLE OF INCLUSION & EXCLUSION, RECURRENCE RELATIONS 

 

 
☻The principle of Inclusion – Exclusion: 

If 𝑆 is a finite set, then the number of elements in S is called the order (or the size, or the 

cardinality) of 𝑆 and is denoted by |S|. If A and B are subsets of 𝑆, then the order od 𝐴 𝑈 𝐵 is 

given by the formula 
 

|𝐴 𝖴 𝐵| = |𝐴| + |𝐵| − |𝐴 ∩ 𝐵| 

Thus, for determining the number of elements that are in 𝐴 𝑈 𝐵, we include all elements in A 

and B but exclude all elements common to A and B. 

Principle of Inclusion – Exclusion for n sets. 

Let 𝑆 be a finite set and 𝐴1, 𝐴2 … … … … 𝐴𝑛 be subset of 𝑆. Then the principle of 

inclusion – exclusion for 𝐴1, 𝐴2 .............. 𝐴𝑛 states that 

|𝐴1 𝖴 𝐴2 𝖴 𝐴3 … … 𝖴 𝐴𝑛| 

= Σ|𝐴𝑖| − Σ|𝐴𝑖 ∩ 𝐴𝑗| + Σ|𝐴𝑖 ∩ 𝐴𝑗 ∩ 𝐴𝑘| + ⋯ + (−1)𝑛−1|𝐴1 ∩ 𝐴2 … .∩ 𝐴𝑛| 

Generalization: 

The principle of inclusion – exclusion as given by expression 

𝑁̅ = 𝑆0 − 𝑆1 + 𝑆2 − 𝑆3 + ⋯ + (−1)𝑛𝑆𝑛 

The number of elements in 𝑆 that satisfy none of the conditions 𝐶1, 𝐶2 ...... 𝐶𝑛. The following 

expression determines the number of elements in S that satisfy exactly m of the n conditions 

(0 ≤ 𝑚 ≤ 𝑛 ≤); 

𝑚 + 1 𝑚 + 2 𝑛−𝑚 𝑛 
𝐸𝑚 = 𝑆𝑚 − ( 

1
 

Problems: 

) 𝑆𝑚+ + ( 
2

 ) 𝑆𝑚+1 … . +(−1) ( 
𝑛 − 𝑚 

) 𝑆𝑛 

1. Out of 30 students in a hostel, 15 study History, 8 study Economics, and 6 study 

Geography. It is known that 3 students study all these subjects. Show that 7 or more 

students’ study none of these subjects. 

Solution: 

Let ‘S’ denote the set of all students in the hostel and 𝐴1, 𝐴2, 𝐴3 denotes the set of students who 

study History, Economics and Geography, respectively. 

Given, 𝑆1 = ∑|𝐴𝑖| = 15 + 8 + 6 = 29 and 

𝑆3 = |𝐴1 ∩ 𝐴2 ∩ 𝐴3| = 3 

The number of students who do not study any of the three subjects is |𝐴̅1 ∩ 𝐴̅2 ∩ 𝐴̅3| 



  

 

 

|𝐴 ∩ 𝐴̅2 ∩ 𝐴̅3| = |𝑆|−∑|𝐴𝑖| + ∑|𝐴𝑖 ∩ 𝐴𝑗| − 𝛴|𝐴1 ∩ 𝐴2 ∩ 𝐴3| 

= |𝑆| − 𝑆1 + 𝑆2 − 𝑆3 

= 30 − 29 − 𝑆2 − 3 = 𝑆2 − 2 
 

Where, 𝑆2 = ∑|𝐴𝑖 ∩ 𝐴𝑗| 

We know that ( 𝐴1 ∩ 𝐴2 ∩ 𝐴3) is a subset of (𝐴𝑖 ∩ 𝐴𝑗) for 𝑖, 𝑗 = 1, 2, 3. Therefore, each of 

|𝐴𝑖 ∩ 𝐴𝑗|, which are 3 in number, is greater that (or) equal to | 𝐴1 ∩ 𝐴2 ∩ 𝐴3| 

𝑆2 = ∑|𝐴𝑖 ∩ 𝐴𝑗| ≥ 3| 𝐴1 ∩ 𝐴2 ∩ 𝐴3| = 9. 
 

|𝐴 ∩ 𝐴̅2 ∩ 𝐴̅3| ≥ 9 − 2 = 7. 
 

 

2. How many integers between 1 and 300(inclusive) are? 

(i) divisible by at least one of 5, 6, 8? 

(ii) divisible by none of 5, 6, 8? 

Solution: 

Let 𝑆 = {1, 2, … . . . , 300}. So that, |𝑆| = 300. Also, let 𝐴1, 𝐴2, 𝐴3 be subset of whose 

elements are divisible by 5, 6, 8, resp. 

(i) the number of elements of S that are divisible by at least one of 5, 6, 8 is, |𝐴1 𝖴 𝐴2 𝖴 𝐴3| 

| 𝐴1 𝖴 𝐴2 𝖴 𝐴3| = | 𝐴1| + | 𝐴2| + | 𝐴3| − { |𝐴1 ∩ 𝐴2| + |𝐴1 ∩ 𝐴3| + |𝐴2 ∩ 𝐴3| } + |𝐴1 ∩ 

𝐴2 ∩ 𝐴3| 

We know that 

| 𝐴1| = 60, | 𝐴2| = 50, | 𝐴3| = 37, | 𝐴1 ∩ 𝐴2| = 10 

|𝐴1 ∩ 𝐴3| = 7, |𝐴2 ∩ 𝐴3| = 12 | 𝐴1 ∩ 𝐴2 ∩ 𝐴3| = 2 

| 𝐴1 ∩ 𝐴2 ∩ 𝐴3| = (60 + 50 + 37) – (10 + 7 + 2) + 2 = 120. 

Thus 120 elements of S are divisible by at least one 5, 6, 8. 

(ii) The number of elements of S that are divisible by none of 5, 6, 8. Is, 

|𝐴 ∩ 𝐴̅2 ∩ 𝐴̅3| = |𝑆| − | 𝐴1 𝖴 𝐴2 𝖴 𝐴3 | = 300 − 120 = 180 
 

 

3. Find the number of non-negative integer solutions of the equation. 

𝑋1 + 𝑋2 + 𝑋3 + 𝑋4 = 18 

Under the conditions 𝑋1 ≤ 7, 𝑓𝑜𝑟 1 = 1, 2, 3, 4 



  

 

 

Solution: 

Let 𝑆 denote the set of all non-negative integer solutions of the given equation. The number of 

such solutions is, 𝐶(4 + 18 − 1, 18) = 𝐶(21, 18) 

|𝑆| = 𝐶(21, 18). 

Let A, be the subset of S that contains the non-negative integer solutions of the given equation 

under the conditions 𝑋1 > 7, 𝑋2 ≥ 0, 𝑋3 ≥ 0, 𝑋4 ≥ 0 

𝐴1 = { ( 𝑋1, 𝑋2, 𝑋3, 𝑋4) ∈ 𝑆|𝑋1 > 7 } 

Similarly, 𝐴2 = { ( 𝑋1, 𝑋2, 𝑋3, 𝑋4) ∈ 𝑆|𝑋2 > 7 } 

𝐴3 = { ( 𝑋1, 𝑋2, 𝑋3, 𝑋4) ∈ 𝑆|𝑋3 > 7 } 

𝐴4 = { ( 𝑋1, 𝑋2, 𝑋3, 𝑋4) ∈ 𝑆|𝑋4 > 7 } 

Therefore, the required solution, |𝐴 ∩ 𝐴̅2 ∩ 𝐴̅3   ∩ 𝐴̅4 | 

Let us set 𝑌1 = 𝑋1 − 8. Then, 𝑋1 > 7((𝑖𝑒)𝑋 ≥ 8) 

Corresponds to 𝑌1 ≥ 0, when written in terms of 𝑌1, 𝑌1 + 𝑋1 + 𝑋2 + 𝑋3 + 𝑋4 = 10. 

The number of non-negative integer solutions of this equation is 𝐶(4 + 10 − 1, 10) = 

𝐶(13, 10). 

|𝐴1| = 𝐶(13, 10) 

Similarly, |𝐴2| = |𝐴3| = |𝐴4| = 𝐶(13, 10) 

let us take 𝑌1 = 𝑋1 − 8, 𝑌2 = 𝑋2 − 8. Then 𝑋1 > 7 and 𝑋2 > 7 correspond to 𝑌1 ≥ 0 and 

𝑌2 ≥ 0. 

When written in terms of 𝑌1 𝑎𝑛𝑑 𝑌2 , 

𝑌1 + 𝑌2 + 𝑋3 + 𝑋4 = 2. 

The number of non-negative integer solutions of this equation is 𝐶(4 + 2 − 1, 2) = 𝐶(5, 2) 

|𝐴1 ∩ 𝐴2|, 𝑡ℎ𝑒𝑟𝑓𝑜𝑟𝑒 |𝐴1 ∩ 𝐴2| = 𝐶(5, 2) 

|𝐴1 ∩ 𝐴3| = |𝐴1 ∩ 𝐴4| = |𝐴2 ∩ 𝐴3| = |𝐴2 ∩ 𝐴4| = |𝐴3 ∩ 𝐴4| = 𝐶(5, 2). 

The given equation, more than two Xi’s cannot be greater than 7 simultaneously. 
 

|𝐴 ∩ 𝐴2̅ ∩ 𝐴̅3| = |𝑆| − ∑|𝐴𝑖| + ∑|𝐴𝑖 ∩ 𝐴𝑗| − ∑|𝐴𝑖 ∩ 𝐴𝑗 ∩ 𝐴𝑘| + | 𝐴1 ∩ 𝐴2 ∩ 𝐴3 ∩ 𝐴4| 

= 𝐶(21, 18) − ( 
4 

) × 𝐶(13, 10) + ( 
4 

) × 𝐶(5, 2) − 0 + 0 
1 2 

= 1330 − (4 × 286) + (6 × 30) = 366 
 

 
4. In how many ways 5 number of a’s, 4number of b’s and 3 number of c’s can be 

arranged so that all the identical letters are not in a single block? 



  

 

 

5! 3! 3! 4! 5! 

Solution: 

The given letters are 5+4+3 = 12 in number of which 5 are a’s, 4are b’s, and 3 are c’s. If S is 

the set of all permutations (arrangements) of these letters, we’ve, 

12! 
|𝑆| =   

5! 4! 3! 

Let A1 be the set of arrangements of the letters where the 5 a’s are in a single block. 

The number of such arrangements is, 

8! 
|𝐴1| = 

4! 3! 

Similarly, if A2  is the set of arrangements of the letters where the 4 b’s are in a single block 

and A3 is the set of arrangements of the letters where the 3 c’s are in a single block 

We have, 
 

|𝐴2 | = 
9! 

5!3! 
and |𝐴3 | = 

10! 

5!4! 

Likewise, 

5! 6! 7! 
|𝐴1 ∩ 𝐴2| = 

3! 
, |𝐴1 ∩ 𝐴2| = 

4! 
, | 𝐴2 ∩ 𝐴3| = 

5!
 

| 𝐴1 ∩ 𝐴2 ∩ 𝐴3| = 3! 

The required number of arrangements is, 

|𝐴̅1 ∩ 𝐴̅2 ∩ 𝐴̅3| 
= |𝑆| − {| 𝐴1 𝖴 𝐴2 𝖴 𝐴3 |} + {| 𝐴1 ∩ 𝐴2| + | 𝐴1 ∩ 𝐴3| + | 𝐴2 ∩ 𝐴3|} − | 𝐴1 

∩ 𝐴2 ∩ 𝐴3| 

12! 8! 
= 

5! 4! 3! 
− {

 

9! 10! 
+ + 

5! 6! 7! 
} + { + + } 

= 27720 − (280 + 504 + 1260) + (20 + 30 + 42) − 6 

= 25762. 

 

 
5. In how many ways can the 26 letters of the English alphabet be permuted so that none 

of the patterns CAR, DOG, PUN (or) BYTE occurs? 

Solution: 

Let S denote the set of all permutations of the 26 letters. Then |S|= 26! 

Let A1 be the set of all permutations in which CAR appears. This word, CAR consists of three 

letters which from a single block. 

4! 3! 5! 4! 



  

 

 

The set A1 therefore consists of all permutations which contains this single block and the 23 

remaining letters. |A1| = 24! 

Similarly, if A2 , A3 , A4 are the set of all permutations which contain DOG, PUN and BYTE 

respectively. 

We have, |𝐴2| = 24! |𝐴3| = 24! |𝐴4| = 23! 

Likewise, |𝐴1 ∩ 𝐴2| = |𝐴1 ∩ 𝐴3| = |𝐴2 ∩ 𝐴3| = (26 − 6 + 2)! = 22! 

|𝐴1 ∩ 𝐴4| = |𝐴2 ∩ 𝐴4| = |𝐴3 ∩ 𝐴4| = (26 − 7 + 2) = 21! 

| 𝐴1 ∩ 𝐴2 ∩ 𝐴3| = (26 − 9 + 3)! = 20! 

| 𝐴1 ∩ 𝐴2 ∩ 𝐴4| = | 𝐴1 ∩ 𝐴3 ∩ 𝐴4| = | 𝐴2 ∩ 𝐴3 ∩ 𝐴4| = (26 − 10 + 3)! = 19! 

| 𝐴1 ∩ 𝐴2 ∩ 𝐴3 ∩ 𝐴4| = (26 − 13 + 4)! = 17! 

Therefore, the required number of permutations is given by, 
 

|𝐴 ∩ 𝐴̅2 ∩ 𝐴̅3 ∩ 𝐴̅4| = |𝑆| − ∑|𝐴𝑖| + ∑|𝐴𝑖 ∩ 𝐴𝑗| − ∑|𝐴𝑖 ∩ 𝐴𝑗 ∩ 𝐴𝑘| + | 𝐴1 ∩ 𝐴2 ∩ 𝐴3 ∩ 𝐴4| 

= 26! − (3 × 24! + 23!) + (3 × 22! + 3 × 21!) − (20! + 3 × 19!) + 17! 

6. In how many ways can one arrange the letters in the word CORRESPONDENTS so 

that 

(i) There is no pair of consecutive identical letters? 

(ii) There are exactly two pairs of consecutive identical letters? 

(iii) There are at least three pairs of consecutive identical letters? 

Solution: 

In the word CORRESPONDENTS, there occur one each of C, P, D and T and two each of O, 

R, E, S, N. If S is the set of all permutations of these 14 letters, we’ve, 
14! 

|𝑆| = 
(2!)5 

Let A1 , A2 , A3 , A4 , A5 be the set of permutations in which O’s, R’s, E’s, N’s appear in pairs 

respectively. 

Then, |𝐴 | =   
13!

 
 

for i = 1, 2, 3, 4, 5 
𝑖 (2!)4 

Also, |𝐴 ∩ 𝐴 | = 
12!

 

 

, |𝐴 ∩ 𝐴 ∩ 𝐴 
 
| = 

11! 
 

𝑖 𝑗 (2!)3 𝑖 𝑗 𝑘 (2!)2 
 

|𝐴 ∩ 𝐴 ∩ 𝐴 ∩ 𝐴 | = 
10! 

, | 𝐴 
 

∩ 𝐴 ∩ 𝐴 … … ∩ 𝐴 | = 9! 
𝑖 𝑗 𝑘 𝑝 (2!) 1 2 3 5 



  

 

 

From these, 
 

 
14! 

 
 
13! 

𝑆0 = 𝑁 = |𝑆| = 
(2!)5 , 𝑆1 = 𝐶(5, 1) × 

(2!)4 

12! 11! 
𝑆2 = 𝐶(5, 2) × 

(2!)3 , 𝑆3 = 𝐶(5, 3) × 
(2!)2 

10! 
𝑆4 = 𝐶(5, 4) × 

(2!)1 , 𝑆5 = 𝐶(5, 5) × 9! 

Accordingly, the number of permutations where these is no pair of consecutive identical letter 

is, 

𝐸0 = 𝑆0 − ( 
1 

) 𝑆1 + ( 
2 

) 𝑆2 − ( 
3 

) 𝑆3 + ( 
4 

) 𝑆4 − ( 5 ) 𝑆5 
1 2 3 4 5 

14! = − ( 5 ) ×  
13!

 5 12! 5 11! + ( 5 ) ×  
10!

 − ( 5 ) × 9! 
 

 

(2!)5 1 (2!)4 
+ ( 

2 
) × 

(2!)3 
− ( 

3 
) × 

(2!)2 
 

 

4 (2!)1 5 

The number of permutations where there are exactly two pairs of consecutive identical letters, 

𝐸2 = 𝑆2 − ( 
3 

) 𝑆3 + ( 
4 

) 𝑆4 − ( 5 ) 𝑆5 

= ( 5 ) ×  
12!

 

1 

− ( 
3 

) ( 5 ) × 
11!

 

2 3 

4 5 10! 
 5 5 ) × 9! 

 
 

2 (2!)3 1 3 (2!)2 
+ ( 

2 
) ( 

4 
) × 

(2!)1 
− ( 

3 
) ( 

5 

The number of permutations where there are at least three pair of consecutive identical letter 

is, 

3 4 
𝐸3 = 𝑆3 − ( 

2 
) 𝑆4 + ( 

3 
) 𝑆5 

5 11! 3 5 10! 4 5 
 

 

= ( 
3 

) × 
(2!)2 + ( 

2 
) ( 

4 
) × 

(2!)1 − ( 
2 

) ( 
5 

) × 9! 



  

 

 

! 

☻Derangements: 

A permutation of n distinct objects in which none of the objects is in its natural place is called 

a derangement. 

Formula for 𝑑𝑛 

The following is the formula for 𝑑𝑛 for 𝑛 ≥ 1: 

1 1 1 (−1)𝑛 
𝑑𝑛 = 𝑛! {1 − 

1! 
+ 

2! 
− 

3! 
+ ⋯ ⋅ + 𝑛! 

}
 

 

𝑛 

= 𝑛! × ∑ 

𝑘=0 

 
(−1)𝑘 

 
 

𝑘! 

For example, 𝐷 = 2! [1 − 
1 

+ 
1 

] = 1 
  

2 1! 2! 

𝐷 = 3! [1 − 
1 

+ 
1 

− 
1 

] = 1 (1 − 1 + 
1 

− 
1
) = 2 

     

3 1! 2! 3! 2 6 

𝐷4 = , 𝐷5 = 44, 𝐷6 = 265, 𝐷7 = 1854 

Problems: 

1. Evaluate 𝑑5, 𝑑6, 𝑑7, 𝑑8 

Solution: 
 

𝑑   = 5! {1 − 
1 

+ 
1 

− 
1 

+ 
1 

− 
1 

} 
     

5 1! 2! 3! 4! 5! 

= 120 {
1 

− 
1 

+ 
1  

− 
1 

} = 44 
2 6 24 120 

1 1 1 1 1 1 
𝑑6 = 6! {1 − 

1! 
+ 

2! 
− 

3! 
+ 

4! 
− 

5! 
+ 

6 
} 

= 720 {
1 

− 
1 

+ 
1 

− 
1 

− 
1 

} = 256 
2 6 24 120 720 

Similarly, 𝑑7 ≈ [7! × 𝑒−1] ≈ [5040 × 0.3679] ≈ 1854 

𝑑8 ≈ [8! × 𝑒−1] ≈ [40320 × 0.3679] ≈ 14833 

 
 

2. From the set of all permutations of n distinct objects, one permutation is chosen at 

random. What is the probability that it is not a derangement? 

Solution: 

The number of permutations of n distinct objects is 𝑛!. The number of derangements of these 

objects is 𝑑𝑛. 

The probability that a permutation chosen is not a derangement, 



  

 

 

𝑑𝑛 1 1 1 (−1)𝑛 
𝑃 = 1 − 

𝑛! 
= 1 − {1 − 

1! 
+ 

2! 
− 

3! 
+ ⋯ + } 

𝑛! 

1 1 (−1)𝑛 
= 1 − 

2! 
− 

3! 
+ ⋯ + 

𝑛! 
 

 

3. In how many ways can the integers 1, 2, 3….10 be arranged in a line so that no even 

integer is in its natural place. 

Solution: 

Let A1 be the set of all permutations of the given integer where 2 is in its natural place. A2 be 

the set of all permutations in which 4 is in its natural place, and so on. The number of 

permutations where no even integer is in its natural place is |𝐴 
is given by, 

∩ 𝐴̅2 ∩ 𝐴̅3 ∩ 𝐴̅4 ∩ 𝐴̅5|. This 

 

 
We note that |S|=10! 

|𝐴 ∩ 𝐴̅2 … … ∩ 𝐴̅5| = |𝑆| − 𝑆1 + 𝑆2 − 𝑆3 + 𝑆4 − 𝑆5 

 

Now, the permutations in A1 are all of the form 𝑏1, 𝑏3, 𝑏4 … 𝑏10 where 𝑏1𝑏3𝑏4 … . 𝑏10is a 

permutation of 1,3, 4, 5, …. 10 as such |A1| = 9! 

Similarly, |𝐴2|= |𝐴3| = |𝐴4|= |𝐴5| = 9! 

So that, 𝑆1 = 𝛴|𝐴𝑖| = 5 × 9! = 𝐶(5, 1) × 9! 

The permutations in 𝐴1 ∩ 𝐴2 are all of the form 𝑏1 2 𝑏3 4 𝑏5 𝑏6 … 𝑏10 where 

𝑏1𝑏3𝑏5 𝑏6 … . 𝑏10 is a permutations of 1, 3, 5, 6, …10 . As such |𝐴1 ∩ 𝐴2| = 8! 

Similarly, each of |𝐴𝑖 ∩ 𝐴𝑗| = 8! Are there are 𝐶(10, 2) such terms, 𝑆2 = 𝛴|𝐴𝑖 ∩ 𝐴𝑗| = 

𝐶(5, 2) × 8! 

Like wise 𝑆3 = 𝐶(5, 3) × 7!, 𝑆4 = 𝐶(5, 4) × 6!, 𝑆5 = 𝐶(5, 5) × 5! 

Accordingly, Expression (1) gives the required number as, 

|𝐴̅1 ∩ 𝐴̅2 … … ∩ 𝐴̅5| 
= 10! − 𝐶(5, 1) × 9! + 𝐶(5, 2) × 8! − 𝐶(5, 3) × 7! + 𝐶(5, 4) × 6! − 𝐶(5, 5) × 5! 

= 2170680 

4. Prove that, for any positive integer 𝑛, 𝑛! = ∑𝑛 
𝑛

 
 

Solution: 

𝑘=0 ( ) 𝑑𝑘 

For any positive integer n, the total number of permutations of 1, 2, 3, … . 𝑁 is 𝑛!. In each such 

permutations there exists 𝐾 (where 0 ≤ 𝑘 ≤ 𝑛 ) elements which are in their natural positions 

called fixed elements, and n-k elements which are not in their original positions. The k element 

ca be chosen in (
𝑛

) ways and the remaining n-k elements can then be chosen in 𝑑 
𝑘 

 
𝑛−𝑘 ways. 

𝑘 



  

 

 

Hence there are 
𝑛 

(𝑘) 
𝑑𝑛−𝑘 

permutations of 1, 2, 3, …. n with k fixed elements and n-k deranged 

elements. As k varies from 0 to 𝑛, we count all of the n! permutations of 1, 2, 3 … . 𝑛. 

Thus,   𝑛! = ∑𝑛 
𝑛

 

𝑘=0 (𝑘
) 𝑑𝑛−1 

𝑛 𝑛 𝑛 𝑛 
= (0) 𝑑𝑛 + (1) 𝑑𝑛−1 + (2) 𝑑𝑛−2 + ⋯ + ( ) 𝑑0 

= ∑𝑛 ( 
𝑛 ) 𝑑 −= ∑𝑛 

𝑛
 

𝑘=0 𝑛 − 𝑘 𝑘 𝑘=0 (𝑘
) 𝑑𝑘 

 

𝑛 



  

 

 

☻Rook Polynomials: 

Consider a board that resembles a full chess board or a part of chess board. Let n be the number 

of squares present in the board. Pawns are placed in the squares of the board such that not more 

than one pawn occupies a square. 

Then, according to the pigeonhole principle, not more than n pawns ca be used. Two pawns 

placed on a board having 2 (or) more squares are said to capture (or take) each other if they 

(pawns) are in the same row or in the same column of the board. For 2 ≤ 𝑘 ≤ 𝑛, let 𝑟𝑘 denote 

the number of ways in which k paws can be placed on a board such that no two pawns capture 

each other – that is, no two pawns are in the same row or in the same column of the board. 

Then the polynomial: 1 + 𝑟1 𝑥 + 𝑟2 𝑥2 + ⋯ + 𝑟𝑛 𝑥𝑛 is called the rook polynomial for the board 

considered. If the board is denoted by 𝑟(𝑐, 𝑥). thus, by definition, 

𝑟(𝑐, 𝑥) = 1 + 𝑟1 𝑥 + 𝑟2 𝑥2 + ⋯ + 𝑟𝑛 𝑥𝑛 … … … … …(1) 

While defining this polynomial, it has been assumed that 𝑛 ≥ 2. In the trivial case where 𝑛 = 

1 (i.e., in the case where a board contains only one square), 𝑟2 , 𝑟3 …are identically zero and the 

rook polynomial 𝑟(𝑐, 𝑥) is defined by, 

𝑟(𝑐, 𝑥) = 1 + 𝑥 … … … … . . (2) 

the expression (1) and (2) can be put in the following combined form which holds for a board 

c with 𝑛 ≥ 1 squares. 

𝑟(𝑐, 𝑥) = 1 + 𝑟1 𝑥 + 𝑟2 𝑥2 + ⋯ + 𝑟𝑛 𝑥𝑛 … … … … …(3) 

Here, 𝑟1 = 𝑛 = number of squares in the board. 

Problems: 

1. Consider the board containing 6 squares, 
 

1 2  

  3 

4 5 6 

 

Solution: 

For this board 𝑟1 = 6 we observed that 2 non- capturing rooks can have the following 

positions: (1, 3), (1, 5), (1, 6), (2, 3), (2, 4), (2, 6), (3, 4), (3, 5). These positions are 8 in 

number. therefore 𝑟2 = 8. 

Next, 3 mutually non-capturing rooks can be placed only in the following two positions: 

(1, 3, 5), (2, 3, 4). 

Thus 𝑟3 = 2 we find that four (or) more mutually non-capturing rooks cannot be placed on 

the board. 



  

 

 

Thus 𝑟4 = 𝑟5 = 𝑟6 = 0. Accordingly, for this board, the rook polynomial is, 

𝑟0(𝑐, 𝑥) = 1 + 6𝑥 + 8𝑥2 + 2𝑥3 

2. Consider the board containing 8 squares (marked 1 to 8) 
 

1 2 3 

4  5 

6 7 8 

 

Solution: 

For this board, 𝑟1 = 8 

In this board, the positions of 2 non-capturing rooks are 

(1, 5), (1, 7), (2, 4), (2, 5), (2, 6), (2, 8), (3, 4), (3, 6), (3, 7), (4, 8), (5, 6), (5, 7). 

These are 14 numbers, therefore 𝑟2 = 14. The positions of 3 mutually non-capturing rooks 

are (1, 5, 7), (2, 4, 8), (2, 5, 6), (3, 4, 7). 

These are 4 in number, therefore 𝑟3 = 4. 

We check that the board has no positions for more than 3 mutually non-capturing rooks. 

Hence, 𝑟4 = 𝑟5 = 𝑟6 = 𝑟7 = 𝑟8 = 0. 

Thus, for this board, the rook polynomial is, 

𝑟(𝑐, 𝑥) = 1 + 8𝑥 + 14𝑥2 + 4𝑥3. 

 

 
3. Find the rook polynomial for the 3 * 3 board by using the expansion formula. 

 

   

   

   

 

Solution: 

The 3 X 3 board let us mark the square which is at the centre of the board. The boards D and E 

appear as shown below (the shaded parts are the deleted parts), 



  

 

 

 

 
 

  
 

D E 

For the board D, we find that 𝑟1 = 4, 𝑟2 = 2, 𝑟3 = 𝑟4 = 0 

𝑟(𝐷, 𝑥) = 1 + 4𝑥 + 2𝑥2 

The board E is the same as the one considered (3 X 3) As such for this board, 

𝑟(𝐸, 𝑥) = 1 + 8𝑥 + 14𝑥2 + 4𝑥3 

Now, the expansion formula gives 

𝑟(𝑐3×3, 𝑥) = 𝑥𝑟𝐷(𝑥) + 𝑟(𝐸, 𝑥) 

= 𝑥(1 + 4𝑥 + 2𝑥2) + (1 + 8𝑥 + 14𝑥2 + 4𝑥3) 

= 1 + 9𝑥 + 18𝑥2 + 6𝑥3 

4. Find the rook polynomial for the board shown below (shaded part) 
 

1 2    

3 4    

   5 6 

   7 8 

  9 10 11 

 

Solution: 

We note that the given board C is made up of two disjoint sub-boards 𝐶1 and 𝐶2, where 𝐶1 is 

the 2 X 2 board with squares numbered 1 to 4 and 𝐶2, is the board with squares numbered 5 to 

11. 

Since 𝐶1 is the 2 X 2 board we’ve. 

𝑟(𝐶1, 𝑥) = 1 + 4𝑥 + 2𝑥2 

   

   

   

 

   

  

  

 



  

 

 

We note that 𝐶2 is the same as the board considered (3 X 3 board). We’ve, 

𝑟(𝐶2, 𝑥) = 1 + 7𝑥 + 10𝑥2 + 2𝑥3 

Therefore, the product formula yields the rook polynomials for the given board as, 

𝑟(𝐶1, 𝑥) = 𝑟(𝐶1, 𝑥) × 𝑟(𝐶2, 𝑥) 

= (1 + 4𝑥 + 2𝑥2)(1 + 7𝑥 + 10𝑥2 + 2𝑥3 

= 1 + 11𝑥 + 40𝑥2 + 56𝑥3 + 28𝑥4 + 4𝑥5 

5. Four persons 𝑃1, 𝑃2, 𝑃3, 𝑃4 who arrive late for a dinner party find that only one chair at 

each of five tables 𝑇1, 𝑇2, 𝑇3, 𝑇4 and 𝑇5 is vacant. 𝑃1will not sit at 𝑇1 or 𝑇2, 𝑃2 will not 

sit at 𝑇2, 𝑃3 will not sit at 𝑇3 or 𝑇4, and 𝑃4 will not sit at 𝑇4 or 𝑇5. Find he number of 

ways they can occupy the vacant chairs. 

Solution: 

Consider the board shown below, representing the situation. The shaded in the first now 

indicate that tables 𝑇1, and 𝑇2 are forbidden for 𝑃1 and so on. 

T1 T2 T3 T4 T5 
 

P1     

P2    

P3    

P4    

 
For the board made up of shaded squares in the above figure. The rook polynomial is given by, 

𝑟(𝐶, 𝑥) = 1 + 7𝑥 + 16𝑥2 + 13𝑥3 + 3𝑥4 

Thus, here, 𝑟1 = 7, 𝑟2 = 16, 𝑟3 = 13, 𝑟4 = 3 

𝑆0 = 5! = 120, 𝑆1 = (5 − 1)! × 𝑟1 = 168 

𝑆2 = (5 − 2)! × 𝑟2 = 96, 𝑆3 = (5 − 3)! × 𝑟3 = 26 

𝑆4 = (5 − 4)! × 𝑟4 = 3 

Consequently, the number of ways which the four persons can occupy the chair is 

𝑆0 − 𝑆1 + 𝑆2 − 𝑆3 + 𝑆4 = 120 − 168 + 96 − 26 + 3 = 25 



  

 

 

𝑘=0 

☻Recurrence Relations: 

First-order recurrence relations: - 

We consider for solution recurrence relations of the form, 

𝑎𝑛 = 𝑐𝑎𝑛−1 + 𝑓(𝑛), 𝑓𝑜𝑟 𝑛 ≥ 1 … … … … (1) 

Where c is a known constant and f(n) is a known function. Such a relation is called a linear 

recurrence relation of first-order with constant co-efficient, if 𝑓(𝑛) = 0, the relation is called 

homogeneous, otherwise, it is called non-homogeneous 

The relation (1) can be solved in a trivial way. First, we note that this relation may be rewritten 

as (by changing n to n+1) 

𝑎𝑛+1 = 𝑐𝑎𝑛 + 𝑓(𝑛 + 1), 𝑓𝑜𝑟 𝑛 ≥ 1 … … … … . . (2) 

For, 𝑛 = 0, 1, 2, 3, … ..This relation yields, respectively 

𝑎1 = 𝑐𝑎0 + 𝑓(1) 

𝑎2 = 𝑐𝑎1 + 𝑓(2) = 𝑐{𝑐𝑎0 + 𝑓(1)} + 𝑓(2) 

= 𝑐2𝑎0 + 𝑐𝑓(1) + 𝑓(2) 

𝑎3 = 𝑐𝑎2 + 𝑓(3) = 𝑐{𝑐2𝑎0 + 𝑐𝑓(1) + 𝑓(2)} + 𝑓(3) 

= 𝑐2𝑎0 + 𝑐2𝑓(1) + 𝑐𝑓(2) + 𝑓(3) 

And so on. Examining these, we obtain, by induction 

𝑎𝑛 = 𝑐𝑛𝑎0 + 𝑐𝑛−1𝑓(1) + 𝑐𝑛−2𝑓(2) + ⋯ + 𝑐𝑓(𝑛 − 1) + 𝑓(𝑛) 

= 𝑐𝑛𝑎0 + ∑𝑛 𝑐𝑛−𝑘𝑓(𝑘), 𝑓𝑜𝑟 𝑛 ≥ 1 … … … … … … … (3) 

This is the general solution of the recurrence relation (2) which is equivalent to the relation (1) 

If f(n) = 0. That is if the recurrence relation is homogeneous, the solution (3) becomes 

𝑎𝑛 = 𝑐𝑛𝑎0 𝑓𝑜𝑟 𝑛 ≥ 1 … … … (4) 

The solutions (3) and (4) yield particular solutions if 𝑎0 is specified value of 𝑎0is called the 

initial condition. 

Problems: 

1. Solve the recurrence relation 𝑎𝑛 = 𝑛𝑎𝑛−1 𝑓𝑜𝑟 𝑛 ≥ 1 given the 𝑎0 = 1 

Solution: 

From the given relation, we find that, 

𝑎1 = 1 × 𝑎0, 𝑎2 = 2𝑎1 = (2 × 1)𝑎0, 

𝑎3 = 3 × 𝑎2 = (3 × 2 × 1)𝑎0, 

𝑎4 = 4 × 𝑎3 = (4 × 3 × 2 × 1)𝑎0 and so on. 



  

 

 

𝑘=1 

Evidently, the general solution is (by induction) 

𝑎𝑛 = (𝑛!)𝑎0 𝑓𝑜𝑟 𝑛 ≥ 1 

Using the given initial condition 𝑎0 = 1 

Therefore, 𝑎𝑛 = 𝑛! 

2. Solve the recurrence relation 𝑎𝑛 − 3𝑎𝑛−1 = 5 × 3𝑛 for 𝑛 ≥ 1 given that 𝑎0 = 2 

Solution: 

The given relation may be rewritten as 

𝑎𝑛+1 = 3𝑎𝑛 + 5 × 3𝑛+1 𝑓𝑜𝑟 𝑛 ≥ 0 

= 3𝑎𝑛 + 𝑓(𝑛 + 1) 𝑤ℎ𝑒𝑟𝑒 𝑓(𝑛) = 5 × 3𝑛 

The general solution for this relation is, 
 

𝑎𝑛 = 3𝑛𝑎0 + ∑𝑛 3𝑛−𝑘𝑓(𝑘) 
 

= 3𝑛𝑎0 + 3𝑛−1𝑓(1) + 3𝑛−2𝑓(2) + 3𝑛−3𝑓(3) + ⋯ + 30𝑓(𝑛) 

Substituting for 𝑎0 and f(n), n = 1, 2, …n in this we get 

𝑎𝑛 = 2 × 3𝑛 × 3𝑛−1 × (5 × 31) + 3𝑛−2 × (5 × 32) + 3𝑛−3 × (5 × 33) + ⋯ + 30 × (5 × 3𝑛) 

= 2 × 3𝑛 + 5 × (3𝑛 + 3𝑛 + 3𝑛 + ⋯ + 3𝑛) (𝑛 𝑡𝑒𝑟𝑚𝑠) 

= 2 × 3𝑛 + 5 × (𝑛3𝑛) 

= (2 + 5𝑛)3𝑛 

This is the required solution. 

3. Find the recurrence relation and the initial condition for the sequence, 

2, 10, 50, 250 .......... Hence find the general term of the sequence. 

Solution: 

The given sequence is < 𝑎𝑟 >, where 𝑎0 = 2, 𝑎1 = 10, 𝑎2 = 10, 𝑎2 = 50, 𝑎3 = 250 … …. 

𝑎1 = 5𝑎0, 𝑎2 = 5𝑎1, 𝑎3 = 5𝑎2 𝑎𝑛𝑑 𝑠𝑜 𝑜𝑛. 

From these, we readily note that the recurrence relation for the given sequence is 𝑎𝑛 = 

5𝑎𝑛−1 𝑓𝑜𝑟 𝑛 ≥ 1 

With 𝑎0 = 2 as the initial condition 

This solution of this relation is, 𝑎𝑛 = 5𝑛𝑎0 = 5𝑛 × 2 

This is the general term of the given sequence 

4. Suppose that there are 𝑛 ≥ 2 persons at a party and that each of these persons shakes 

hands (exactly once) with all of the other persons present. Using a recurrent relation 

find the number of handshakes. 

Solution: 



  

 

 

Let 𝑎𝑛−2 denotes the number of hand shakes among the 𝑛 ≥ 2 persons present. (If 𝑛 = 2 , the 

number of handshakes is 1; that is 𝑎0 = 1). If a new person joins the party, he will shake hands 

with each of the n persons already present. Thus, the number of handshakes increases by n 

when the number of persons changes to n+1 from n. Thus, 

𝑎(𝑛+1) = 𝑎𝑛−2 + 𝑛 for 𝑛 ≥ 2 

(or) 𝑎𝑚+1 = 𝑎𝑚 + (𝑚 + 2) for 𝑚 ≥ 0 , where 𝑚 = 𝑛 − 2 setting f(m) = m+1, 

𝑎𝑚+1 = 𝑎𝑚 + 𝑓(𝑚 + 1) for 𝑚 ≥ 0 

The general solution of this non homogenous recurrence relation is, 
 

𝑛 𝑛 

𝑎𝑚 = (1𝑚 × 𝑎0) + ∑ 1𝑛−𝑘𝑓(𝑘) = 𝑎0 + ∑(𝑘 + 1) 

 
Since, 𝑎0 = 1, this becomes, 

𝑘=1 𝑘=1 

 

𝑎𝑚 = 1 + {2 + 3 + 4 + ⋯ + 𝑚 + (𝑚 + 1)} 

= 
1 

(𝑚 + 1)(𝑚 + 2) 𝑓𝑜𝑟 𝑚 ≥ 0 
2 

(or) 𝑎 
 

𝑛−2 
= 

1 
(𝑛 − 1)𝑛 𝑓𝑜𝑟 𝑛 ≥ 2 

2 

this is the number of handshakes in the party when 𝑛 ≥ 2 persons are present. 

 

 
Second order homogenous Recurrence Relations: 

We now consider a method of solving recurrence relations of the form 

𝑐𝑛𝑎𝑛 + 𝑐𝑛−1𝑎𝑛−1 + 𝑐𝑛−2𝑎𝑛−2 = 0 𝑓𝑜𝑟 𝑛 ≥ 2 … … … . . (1) 

where 𝑐𝑛, 𝑐𝑛−1 and 𝑐𝑛−2 are real constants with 𝑐𝑛 ≠ 0. A relation of this type is called a second 

order linear homogenous recurrence relation with constant co-efficient. 

𝑐𝑛𝑘2 + 𝑐𝑛−1𝑘 + 𝑐𝑛−2 = 0 … … … . . (2) 

Thus, 𝑎𝑛 = 𝑐𝑘𝑛 is a solution of (1) if k satisfies the quadraric equation (2). This quadratic 

equation is the auxiliary equation or the characteristic equation for the relation (1). 

Case 1: The two roots k1 and k2 of equation (2) are real and distinct. Then we take, 

𝑎𝑛 = 𝐴𝑘𝑛 + 𝐵𝑘𝑛 … … …  (3) 
1 2 

Where A and B are arbitrary real constants as the general equation of the relation (1). 

Case 2: The two roots k1 and k2 of equation (2) are equal and real, with k as the common value. 

Then we take, 

𝑎𝑛 = (𝐴 + 𝐵𝑛)𝑘𝑛 … … … (4) 

where A and B are arbitrary real constants, as the general solution of the relation (1). 

case 3: The two roots k1 and k2 of equations (2) are complex. Then k1 and k2 are complex 



  

 

 

conjugates of each other, so that if 𝑘1 = 𝑝 + 𝑖𝑞, then 𝑘2 = 𝑝 + 𝑖𝑞 and we take, 

𝑎𝑛 = 𝑟𝑛(𝐴 cos 𝑛𝜃 + 𝑏 sin 𝑛𝜃) .......... (5) 

where A and B are arbitrary complex constants, 
 

𝑟 = |𝑘1 | = |𝑘2 | = √𝑝2 + 𝑞2 𝑎𝑛𝑑 𝜃 = 𝑡𝑎𝑛−1 (
𝑎
) as the general solution of the relation (1). 

𝑏 

Problems: 

1. Solve the recurrence relation 

𝑎𝑛 − 6𝑎𝑛−1 + 9𝑎𝑛−2 = 0 𝑓𝑜𝑟 𝑛 ≥ 2, 𝑔𝑖𝑣𝑒𝑛 𝑡ℎ𝑎𝑡 𝑎𝑜 = 5, 𝑎1 = 12 

Solution: 

The characteristics equation for the given relation is, 

𝑘2 − 6𝑘 + 9 = 0, (𝑜𝑟) (𝑘 − 3)2 = 0 

Whose roots are 𝑘1 = 𝑘2 = 3. Therefore, the general solution for 𝑎𝑛is, 

𝑎𝑛 = (𝐴 + 𝐵𝑛)3𝑛 

Where A and B are arbitrary constants using the given initial conditions 𝑎0 = 5 and 𝑎1 = 12 

in equation, we get 5 = 𝐴 and 12 = 3(𝐴 + 𝐵) solving these we get, 𝐴 = 5 and 𝐵 = −1 

Putting these values in equation we get, 

𝑎𝑛 = (5 − 𝑛)3𝑛 

This is the solution of the given relation, under the given initial condition. 

 

 
2. Solve the recurrence relation 

𝑎𝑛 = 2(𝑎𝑛−1 − 𝑎𝑛−2), 𝑓𝑜𝑟 𝑛 ≥ 2 

Given that 𝑎0  = 1 𝑎𝑛𝑑 𝑎1  = 2 

Solution: 

For the given relation, the characteristic equation is 𝑘2 − 2𝑘 + 2 = 0 

The roots are, 
 

 

𝑘 = 
(2 ± √4 − 8) 

2 
= 1 ± 𝑖 

Therefore, the general solution for 𝑎𝑛 is, 

𝑎𝑛 = 𝑟𝑛[𝐴 𝑐𝑜𝑠𝑛𝜃 + 𝐵𝑠𝑖𝑛𝜃] 

Where A and B are arbitrary constants, 

𝜋 
 

𝑟 = |1 ± 𝑖| = √2, 𝑎𝑛𝑑 𝑡𝑎𝑛𝜃 = 1, 𝜃 = 
4

 



  

 

 

𝑛 

𝑎𝑛 = (√2) 
 

[ 𝐴 𝑐𝑜𝑠 
𝑛𝜋 

4 
+ 𝐵 𝑠𝑖𝑛 

𝑛𝜋 

4 
] 

Using the given initial conditions 𝑎0 = 1 and 𝑎1 = 2 we get, 1 = A and 

𝜋 𝜋 
2 = (√2)[ 𝐴 𝑐𝑜𝑠 

4 
+ 𝐵 𝑠𝑖𝑛 

4 
] 

= 𝐴 + 𝐵 

𝐴 = 1, 𝐵 = 1 putting these values of A and B 
 

𝑛 

𝑎𝑛 = (√2) 
 
[ 𝑐𝑜𝑠 

𝑛𝜋 

4   
+ 𝑠𝑖𝑛 

𝑛𝜋 

4 
] 

This is the solution of the given relation under the given conditions. 

 

 
3. If 𝑎0 = 0, 𝑎1 = 1, 𝑎2 = 4 𝑎𝑛𝑑 𝑎3 = 37 satisfy the recurrence realtion 

𝑎𝑛+2 + 𝑏𝑎𝑛+1 + 𝑐𝑎𝑛 = 0 𝑓𝑜𝑟 𝑛 ≥ 0 

Determine the constant b and c and then solve the relation for 𝑎𝑛. 

Solution: 

For 𝑛 = 0 and 𝑛 = 1, the given relation, 

𝑎2 + 𝑏𝑎1 + 𝑐𝑎0 = 0 𝑎𝑛𝑑   𝑎3 + 𝑏𝑎2 + 𝑐𝑎1 = 0 

Substituting the given values of 𝑎0, 𝑎1, 𝑎2 𝑎𝑛𝑑 𝑎3 in this we get 

4 + 𝑏 + 0 = 0 𝑎𝑛𝑑 37 + 4𝑏 + 𝑐 = 0 

=> 𝑏 = −1 𝑎𝑛𝑑 𝑐 = −21 

With these values of b and c, the given recurrence relation 

𝑎𝑛+2 − 4𝑎𝑛−1 − 21𝑎𝑛 = 0 𝑓𝑜𝑟 𝑛 ≥ 0 

(or) 

𝑎𝑛 − 4𝑎𝑛−1 − 21𝑎𝑛−2 = 0 𝑓𝑜𝑟 𝑛 ≥ 2 

The characteristic equation for this relation is 𝑘2 − 4𝑘 − 21 = 0 whose roots are 𝑘1 = 

7 𝑎𝑛𝑑   𝑘2 = −3. 

The general solutions for 𝑎𝑛 is, 

 

 
A and B are arbitrary constants. 

𝑎𝑛 = 𝐴 × 7𝑛 + 𝐵 × (−3)𝑛 

 

Using the given conditions 𝑎0 = 0, 𝑎1 = 1 in this we get, 

0 = 𝐴 + 𝐵, 1 = 7𝐴 − 3𝐵 



  

 

 

1 
=> 𝐴 = −𝐵 = 

10
 

 
𝑡ℎ𝑒𝑟𝑒𝑓𝑜𝑟𝑒, 𝑎𝑛 

1 
= 

10 

 
[7𝑛 − (−3)𝑛 
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Introduction: 

Definitions, Examples, and Elementary Properties: 

In m athematics, a discrete group is a group G equipped with the discrete topology. With 

this topology G becomes a topological group. A discrete subgroup of a topological group G 

is a subgroup H whose relative topology is the discrete one. For example, the integers, Z, 

form a discrete subgroup of the reals, R, but the rational numbers, Q, do not. 

 
Any group can be given the discrete topology. Since every map from a discrete space is 

continuous, the topological homomorphisms between discrete groups are exactly the group 

homomorphisms between the underlying groups. Hence, there is an isomorphism between 

the category of groups and the category of discrete groups. Discrete groups can therefore be 

identified with their underlying (non-topological) groups. With this in mind, the term 

discrete group theory is used to refer to the study of groups without topological structure, in 

contradistinction to topological or Lie group theory. It is divided, logically but also 

technically, into finite group theory, and infinite group theory. 

 
There are some occasions when a topological group or Lie group is usefully endowed with 

the discrete topology, 'against nature'. This happens for example in the theory of the Bohr 

com pactification, and in group cohomology theory of Lie groups. 

 
Properties: 

 
 

Since topological groups are homogeneous, one need only look at a single point to determine 

if the group is discrete. In particular, a topological group is discrete if and only if the 

singleton containing the identity is an open set. 

 
A discrete group is the same thing as a zero-dimensional Lie group (uncountable discrete 

groups are not second-co untable so authors who require Lie groups to satisfy this axiom do 

not regard these groups as Lie groups). The identity component of a discrete group is just the 

trivial subgroup while the group of components is isomorphic to the group itself. 

Since the only Hausdorff topology on a finite set is the discrete one, a finite Hausdorff 

topological group must necessarily be discrete. It follows that every finite subgroup of a 

Hausdorff group is discrete. 

 
A discrete subgroup H of G is co compact if there is a compact subset K of G such that HK = 

G. 



 

 

 

 

 

 

 

Discrete normal subgroups play an important role in the theory of covering groups and 

locally isomorphic groups. A discrete normal subgroup of a connected group G necessarily 

lies in the center of G and is therefore abelian.             

 
Other properties: 

 

• every discrete group is totally disconnected 

• every subgroup of a discrete group is discrete. 

• every quotient of a discrete group is discrete. 

• the product of a finite number of discrete groups is discrete. 

• a discrete group is compact if and only if it is finite. 

• every discrete group is locally compact.  

• every discrete subgroup of a Hausdorff group is closed. 

• every discrete subgroup of a compact Hausdorff group is finite. 

 

Examples: 
 
 

• Frieze groups and wallpaper groups are discrete subgroups of the i sometry group of 

the Euclidean plane. Wallpaper groups are cocompact, but Frieze groups are not. 

 

• A space group is a discrete subgroup of the i sometry group of Euclidean space of 

some dimension. 

• A crystallographic group usually means a cocompact, discrete subgroup of the 

isometries of some Euclidean space. Sometimes, however, a crystallographic 

group can be a cocompact discrete subgroup of a n ilpotent or solvable Lie group.  

• Every triangle group T is a discrete subgroup of the isometry group of the sphere 

(when T is finite), the Euclidean plane (when T has a Z + Z subgroup of finite index), 

or the hyperbolic plane. 

              Fuchsian groups are, by definition, discrete subgroups of the isometry group of the                    

hyperbolic plane.  

            o A Fuchsian group that preserves orientation and acts on the upper half-plane model of the            

hyperbolic plane is a discrete subgroup of the Lie group 

o A Fuchsian group that preserves orientation and acts on the upper half-plane model of the 

hyperbolic plane is a discrete subgroup of the Lie PSL(2,R), the group of orientation 

preserving isometries of the upper half-plane model of the hyperbolic plane. 

A Fuchsian group is sometimes considered as a s pecial case of a Kleinian group, by 

embedding the hyperbolic plane isometrically into three dimensional hyperbolic space and ex 

tending the group action on the plane to the whole space. 

 



 

 

 

 

The modular group is PSL(2,Z), thought of as a discrete subgroup of PSL(2,R). The modular 

group is a lattice in PSL(2,R), but it is not cocompact. 

Kleinian groups are, by definition, discrete subgroups of the isometry group of 

hyperbolic 3-space. These include quasi- Fuchsian groups. 

A Kleinian group that preserves orientation and acts on the upper half space model of h 

yperbolic 3-space is a discrete s ubgroup of the Lie group PSL(2,C), the group of o rientation 

preserving isometries of the upper half- space model of h yperbolic 3-space. 

A lattice in a Lie group is a discrete subgroup such that the Haar measure of the quotient 

space is finite. 

 
Group homomorphism: 

 
Image of a Group homomorphism(h) from G(left) to H(right). The smaller oval inside H is 

the image of h. N is the kernel of h and aN is a coset of h. 

 

In mathematics, given two groups (G, *) and (H, ·), a group homomorphism from (G, *) to 

(H, ·) is a function h : G → H such that for all u and v in G it holds that 

 

 

 
where the group operation on the left hand side of the equation is that of G and on the right 

hand side that of H. 

 
From this property, one can deduce that h maps the identity element eG of G to the identity 

element eH of H, and it also maps inverses to inverses in the sense that 

 

h(u - 1) = h(u) - 1. 

 
Hence one can say that h "is compatible with the group s tructure". 

 



 

 

 

 

Older notations for the homomorphism h(x) may be xh, though this may be confused as an 

index or a general subscript. A more recent trend is to write group homomorphisms on the 

right of their arguments, omitting brackets, so that h( x) becomes simply x h. This approach is 

especially prevalent in areas of group theory where automata play a role, since it accords 

better with the convention that automata read words from left to right. 

 
In areas of mathematics where one considers groups endowed with additional structure, a 

homomorphism sometimes means a map which respects not only the group structure (as 

above) but also the extra structure. For example, a homomorphism of topological groups is 

often required to be continuous. 

 
The category of groups 

 
 

If h : G → H and k : H → K are group homomorphisms, then so is k o h : G → K. This shows 

that the class of all groups, together with group homomorphisms as morphisms, forms a 

category.  

 
Types of homomorphic maps 

 
 

If the homomorphism h is a bijection, then one can show that its inverse is also a group 

homomorphism, and h is called a group isomorphism; in this case, the groups G and H are 

called is omorphic: they differ only in the notation of their elements and are identical for all p 

ractical purposes. 

 
If h: G → G is a group h omomorphism, we call it an endomorphism of G. If furthermore 

it is bijective and hence an isomorphism, it is called an automorphism. The set of all 

automorphisms of a group G, with functional composition as operation, forms itself a group, 

the automorphism group of G. It is denoted by Aut(G). As an example, the automorphism 

group of (Z, +) contains only two elements, the identity transformation and multiplication with 

-1; it is isomorphic to Z/2Z. 

 



 

 

 

An epimorphism is a surjective homomorphism, that is, a homomorphism which is onto as a 

function. A monomorphism is an injective homomorphism, that is, a homomorphism which 

is one-to-one as a function. 

 
Homomorphisms of abelian groups 

 
 

If G and H are abelian (i.e. commutative) groups, then the set Hom(G, H) of all group 

homomorphisms from G to H is itself an abelian group: the sum h + k of two 

homomorphisms is defined by 

 
(h + k)(u) = h(u) + k(u) for all u in G. 

 

The commutativity of H is needed to prove that h + k is again a group homomorphism. The 

addition of homomorphisms is compatible with the composition of homomorphisms in the 

following sense: if f is in Hom(K, G), h, k are elements of Hom(G, H), and g is in Hom(H,L), 

then 

 
(h + k) o f = (h o f) + (k o f)  and g o (h + k) = (g o h) + (g o k). 

 

This shows that the set End(G) of all endomorphisms of an abelian group forms a ring, the 

endomorphism ring of G. For example, the endomorphism ring of the abelian group 

consisting of the direct sum of m copies of Z/nZ is isomorphic to the ring of m-by-m 

matrices with entries in Z/nZ. The above compatibility also shows that the category of all 

abelian groups with group ho momorphisms forms a preadditive category; the existence of 

direct sums and well-behaved kernels makes this category the prototypical example of an 

abelian category. 

 
Cyclic group 

 
 

In group theory, a cyclic group is a group that can be generated by a single element, in the 

sense that the group has an element g (called a "generator" of the group) such that, when 

written multiplicatively, every element of the group is a power of g (a multiple of g when the 

notation is additive). 



 

 

 

 

 

Definition 

 

 

 

The six 6th complex roots of unity form a cyclic group under multiplication. z is a primitive 

element, but z2 is not, because the odd powers of z are not a power of z2. 

A group G is called cyclic if there exists an element g in G such that G = <g> = { gn | n is an 

integer }. Since any group generated by an element in a group is a subgroup of that group, 

showing that the only subgroup of a group G that contains g is G itself suffices to show that 

G is cyclic. 

 

For example, if G = { g0, g1, g2, g3, g4, g5 } is a group, then g6 = g0, and G is cyclic. In fact, 

G is essentially the same as (that is, isomorphic to) the set { 0, 1, 2, 3, 4, 5 } with addition 

modulo 6. For example, 1 + 2 = 3 (mod 6) cor responds to g1·g2 = g3, and 2 + 5 = 1 (mod 6) 

corresponds to g2·g5 = g7 = g1, and so on. One can use the isomorphism φ defined by φ(gi) = 

i. 

 
For every positive integer n there is exactly one cyclic group (up to isomorphism) whose 

order is n, and there is exactly one infinite cyclic group (the integers under addition). Hence, 

the cyclic groups are the simplest groups and they are completely classified. 

 
The name "cyclic" may be m isleading: it is possible to generate infinitely many elements 

and not form any literal cycles; that is, every gn is distinct. (It can be said that it has one 

infinitely long cycle.) A group generated in this way is called an infinite cyclic group, and is 

isomorphic to the additive group of integers Z. 

 

Furthermore, the circle group (whose elements are uncountable) is not a cyclic group—a 

cyclic group always has countable elements. 



 

 

 

 

 

Since the cyclic groups are abelian, they are often written additively and denoted Zn. 

However, this notation can be problematic for number theorists because it conflicts with the 

usual notation for p-adic number rings or localization at a prime ideal. The quotient notations 

Z/nZ, Z/n, and Z/(n) are standard alternatives. We adopt the first of these here to avoid the 

collision of notation. See also the section Subgroups and notation below. 

 
One may write the group multiplicatively, and denote it by Cn, where n is the order (which 

can be ∞). For example, g3g4 = g2 in C5, whereas 3 + 4 = 2 in Z/5Z. 

Properties 
 
 

The fundamental theorem of cyclic groups states that if G is a cyclic group of order n then 

every subgroup of G is cyclic. Moreover, the order of any subgroup of G is a divisor of n and 

for each positive divisor k of n the group G has exactly one subgroup of order k. This 

property characterizes finite cyclic groups: a group of order n is cyclic if and only if for every 

divisor d of n the group has at most one subgroup of order d. Sometimes the e quivalent s 

tatement is used: a group of order n is cyclic if and only if for every divisor d of n the group 

has exactly one subgroup of order d. 

 
Every finite cyclic group is i somorphic to the group { [0], [1], [2], ..., [n - 1] } of integers 

modulo n under addition, and any infinite cyclic group is isomorphic to Z (the set of all 

integers) under addition. Thus, one only needs to look at such groups to understand the 

properties of cyclic groups in general. Hence, cyclic groups are one of the simplest groups to 

study and a number of nice p roperties are known. 

 
Given a cyclic group G of order n (n may be infinity) and for every g in G, 

 

• G is abelian; that is, their group operation is com mutative: gh = hg (for all h in G). 

This is so since g + h mod n = h + g mod n. 

• If n is finite, then gn = g0 is the identity element of the group, since kn mod n = 0 for 

any integer k. 

• If n = ∞, then there are exactly two elements that generate the group on their own: 

namely 1 and -1 for Z 

• If n is finite, then there are exactly φ(n) elements that generate the group on their 

own, where φ is the Euler totient function 

• Every subgroup of G is cyclic. Indeed, each finite subgroup of G is a group of { 0, 



 

 

 

1, 2, 3, ... m - 1} with addition m odulo m. And each infinite subgroup of G is mZ for 

some m, which is bijective to (so is omorphic to) Z. 

• Gn is isomorphic to Z/nZ (factor group of Z over nZ) since Z/nZ = {0 + nZ, 1 + 

nZ, 2 + nZ, 3 + nZ, 4 + nZ, ..., n - 1 + nZ} { 0, 1, 2, 3, 4, ..., n - 1} under 

addition modulo n. 

More generally, if d is a divisor of n, then the number of elements in Z/n which have order d 

is φ(d). The order of the residue class of m is n / gcd(n,m). 

 

If p is a prime number, then the only group (up to isomorphism) with p elements is the cyclic 

group Cp or Z/pZ. 

 
The direct product of two cyclic groups Z /nZ and Z/mZ is cyclic if and only if n and m are 

coprime. Thus e.g. Z/12Z is the direct product of Z/3Z and Z/4Z, but not the direct product 

of Z/6Z and Z/2Z. 

 
The definition immediately implies that cyclic groups have very simple group presentation 

C∞ = < x | > and Cn = < x | xn > for finite n. 

 
A primary cyclic group is a group of the form Z/pk where p is a prime number. The fun 

damental theorem of abelian groups states that every finitely generated abelian group is the 

direct p roduct of finitely many finite primary cyclic and infinite cyclic groups. 

 
Z/nZ and Z are also commutative rings. If p is a prime, then Z/pZ is a finite field, also 

denoted by Fp or GF(p). Every field with p elements is isomorphic to this one. 

 
The units of the ring Z/nZ are the numbers coprime to n. They form a group under 

multiplication modulo n with φ(n) elements (see above). It is written as (Z/nZ)×. For 

example, when n = 6, we get (Z/nZ)× = {1,5}. When n = 8, we get (Z/nZ)× = {1,3,5,7}. 

In fact, it is known that (Z/nZ)× is cyclic if and only if n is 1 or 2 or 4 or pk or 2 pk for an odd 

prime number p and k ≥ 1, in which case every generator of (Z/nZ)× is called a primitive 

root modulo n. Thus, (Z/nZ)× is cyclic for n = 6, but not for n = 8, where it is instead i 

somorphic to the Klein four-group. 

 
 

The group (Z/pZ)× is cyclic with p - 1 elements for every prime p, and is also written 

(Z/pZ)* because it consists of the non-zero elements. More generally, every finite 



 

 

 

s ubgroup of the mu ltiplicative group of any field is cyclic. 

 

Examples 
 
 

In 2D and 3D the symmetry group for n-fold rotational symmetry is Cn, of abstract group 

type Zn. In 3D there are also other symmetry groups which are algebraically the same, see 

Symmetry groups in 3D that are cyclic as abstract group.  

Note that the group S1 of all rotations of a circle (the circle group) is not cyclic, since it is not 

even countable.  

 
The nth roots of unity form a cyclic group of order n under multiplication. e.g., 0 = z3 - 1 

= (z - s0)(z - s1)(z - s2) where si = e2πi / 3 and a group of {s0,s1,s2} under mul tiplication is 

cyclic. 

 
The Galois group of every finite field extension of a finite field is finite and cyclic; 

conversely, given a finite field F and a finite cyclic group G, there is a finite field extension 

of F whose Galois group is G. 

 
Representation 

 
 

The cycle graphs of finite cyclic groups are all n-sided polygons with the elements at the 

vertices. The dark vertex in the cycle graphs below stand for the identity element, and the 

other vertices are the other elements of the group. A cycle consists of successive powers of 

either of the elements connected to the identity element. 

 

 

 

C1 

 
 

The rep resentation theory of the cyclic group is a critical base case for the representation 

theory of more general finite groups. In the complex case, a representation of a cyclic group 

d ecomposes into a direct sum of linear c haracters, making the connection between 

 
C2  C3  C4 C5 C6  C7 C8 



 

 

 

character theory and repre sentation theory transparent. In the positive ch aracteristic case, 

the indecomposable repre sentations of the cyclic group form a model and inductive basis for 

the rep resentation theory of groups with cyclic Sylow subgroups and more generally the 

representation theory of blocks of cyclic defect. 

 
Subgroups and notation 

 
 

All subgroups and quotient groups of cyclic groups are cyclic. Specifically, all subgroups of Z 

are of the form mZ, with m an integer ≥0. All of these subgroups are different, and apart from 

the trivial group (for m=0) all are isomorphic to Z. The lattice of subgroups of Z is isomorphic 

to the dual of the lattice of natural numbers ordered by divisibility. All factor groups of Z are 

finite, except for the trivial exception Z/{0} = Z/0Z. For every positive divisor d of n, the 

quotient group Z/nZ has precCSEly one subgroup of order d, the one generated by the residue 

class of n/d. There are no other subgroups. The lattice of subgroups is thus isomorphic to the 

set of divisors of n, ordered by divisibility. In particular, a cyclic group is simple if and only if 

its order (the number of its elements) is prime. 

 

 

Using the quotient group formalism, Z/nZ is a standard notation for the additive cyclic group 

with n elements. In ring terminology, the s ubgroup nZ is also the ideal (n), so the quotient 

can also be written Z/(n) or Z/n without abuse of notation. These alternatives do not conflict 

with the notation for the p-adic integers. The last form is very common in informal 

calculations; it has the additional advantage that it reads the same way that the group or ring 

is often described verbally, "Zee mod en". 

 
As a p ractical problem, one may be given a finite subgroup C of order n, generated by an 

element g, and asked to find the size m of the subgroup generated by gk for some integer k. 

Here m will be the smallest integer > 0 such that mk is divisible by n. It is therefore n/m 

where m = (k, n) is the greatest common divisor of k and n. Put another way, the index of the 

subgroup generated by gk is m. This reasoning is known as the index calculus algorithm, in 

number theory. 

 

Endomorphisms 
 
 

The endomorphism ring of the abelian group Z/nZ is isomorphic to Z/nZ itself as a ring. 

Under this isomorphism, the number r corresponds to the endomorphism of Z/nZ that maps 

each element to the sum of r copies of it. This is a bijection if and only if r is 



 

 

 

coprime with n, so the automorphism group of Z/nZ is isomorphic to the unit group (Z/nZ)× 

(see above). 

Similarly, the endomorphism ring of the additive group Z is isomorphic to the ring Z. Its 

automorphism group is iso morphic to the group of units of the ring Z, i.e. to {-1, +1} C2. 

 

 
Virtually cyclic groups 

 
 

A group is called virtually cyclic if it contains a cyclic subgroup of finite index (the number 

of cosets that the subgroup has). In other words, any element in a virtually cyclic group can 

be arrived at by applying a member of the cyclic subgroup to a member in a certain finite set. 

Every cyclic group is virtually cyclic, as is every finite group. It is known that a finitely 

generated discrete group with exactly two ends is virtually cyclic 

(for instance the product of Z/n and Z). Every abelian subgroup of a Gromov hyperbolic 

group is virtually cyclic. 

 
Group isomorphism 

 
 

In abstract algebra, a group isomorphism is a function between two groups that sets up a 

one-to-one corre spondence between the elements of the groups in a way that respects the 

given group operations. If there exists an isomorphism between two groups, then the groups 

are called isomorphic. From the standpoint of group theory, isomorphic groups have the 

same p roperties and need not be distinguished. 

 
Definition and notation 

 

Given two groups (G, *) and (H,         ), a group isomorphism from (G, *) to (H,  ) is a 
bijective group homomorphism from G to H. Spelled out, this means that a group 

i somorphism is a bijective function 

that 

such that for all u and v in G it holds 

 
 

. 

 

The two groups (G, *) and (H, ) are isomorphic if an isomorphism exists. This is 



 

 

 

written: 

 

 

 
 

Often shorter and more simple notations can be used. Often there is no ambiguity about the 

group operation, and it can be omitted: 

 

 

 
 

Sometimes one can even simply write G = H. Whether such a notation is possible without 

confusion or ambiguity depends on context. For example, the equals sign is not very suitable 

when the groups are both subgroups of the same group. See also the examples. 

 

Conversely, given a group (G, *), a set H, and a bijection  , we can make H 

a group (H, ) by defining 
 

. 

If H = G and = * then the bijection is an automorphism (q.v.) 

 

In tuitively, group theorists view two iso morphic groups as follows: For every element g of a 

group G, there exists an element h of H such that h 'behaves in the same way' as g (operates 

with other elements of the group in the same way as g). For instance, if g generates G, then 

so does h. This implies in particular that G and H are in bijective cor respondence. So the 

definition of an isomorphism is quite natural. 

 
An i somorphism of groups may equivalently be defined as an i nvertible morphism in the 

 category of groups. 

 

Examples 

 
 

 
• The group of all real numbers with addition, ( 

all positive real numbers with multiplication ( 

,+), is isomorphic to the 

group of 
      + 

,×): 



 

 

 

 

. 

 
 
 

 

via the isomorphism 

 
 

f(x) = ex 

 
(see ex ponential function). 

 

• The group of   integers (with addition) is a subgroup of , and the factor group  

/ is is omorphic to the group S1 of complex numbers of absolute value 1 (with 

mul tiplication): 
 

 

 
 

An isomorphism is given by 

 

 

 

 
for every x in  . 

The Klein four-group is isomorphic to the direct product of two copies of 

(see modular arithmetic), and can therefore be written 
 

Another notation is Dih2, because it is a dihedral group . 

 

• Generalizing this, for all odd n, Dih2n is isomorphic with the direct product of Dihn 

and Z2. 

 
• If (G, *) is an infinite cyclic group, then (G, *) is isomorphic to the integers (with the 

addition operation). From an algebraic point of view, this means that the set of all 

integers (with the addition operation) is the 'only' infinite cyclic group. 

 
Some groups can be proven to be isomorphic, relying on the axiom of choice, while it is 

even theoretically impossible to construct concrete isomorphisms. Examples: 



 

 

 
 

 

• The group ( , + ) is isomorphic to the group ( , +) of all complex numbers with 

addition. 

• The group ( , ·)* of non-zero complex numbers with multiplication as operation is 

isomorphic to the group S1 mentioned above. 

 
Properties 

 
 

• The kernel of an isomorphism from (G, *) to (H, ) , is always {eG} where eG is the 

identity of the group (G, *) 

 

• If (G, *) is isomorphic to (H, ) , and if G is abelian then so is H. 
 

 

• If (G, *) is a group that is isomorphic to (H, ) [where f is the isomorphism], 
then if a belongs to G and has order n, then so does f(a). 

 

• If (G, *) is a locally finite group that is isomorphic to (H,   ), then (H, ) is also 

locally finite. 

 

• The previous examples illustrate that 'group properties' are always preserved by 

i somorphisms. 

 
Cyclic groups 

 
 

All cyclic groups of a given order are i somorphic to . 

Let G be a cyclic group and n be the order of G. G is then the group generated by < x > = 

{e,x,...,xn - 1}. We will show that 
 

 

 
Define 

 

 

 
bijective. 

, so that . Clearly, is 

 

 



  

 

 

 
 

 

Then 

 

 
which proves that 

 

 

 

 

Consequences 

 

From the definition, it follows that any isomorphism will map the identity 

element of G to the identity element of H, 

 

f(eG) = eH 

 

that it will map inverses to inverses, 
 

 

 

 
 

and more generally, nth powers to nth powers, 

 

 

 

 
 

for all u in G, and that the inverse map is also a group isomorphism. 

 

The relation "being isomorphic" satisfies all the axioms of an equivalence relation. If f is an 

isomorphism between two groups G and H, then everything that is true about G that is only 

related to the group s tructure can be translated via f into a true ditto s tatement about H, and 

vice versa. 

Automorphisms 

. 



  

 

 

 

An isomorphism from a group (G,*) to itself is called an automorphism of this group. 

Thus it is a bijection such that 

 

f(u) * f(v) = f(u * v). 

 

An au tomorphism always maps the identity to itself. The image under an au tomorphism of a 

conjugacy class is always a conjugacy class (the same or another). The image of an element 

has the same order as that element. 

 
The composition of two automorphisms is again an automorphism, and with this operation 

the set of all automorphisms of a group G, denoted by Aut(G), forms itself a group, the au 

tomorphism group of G. 

 
For all Abelian groups there is at least the automorphism that replaces the group elements by 

their inverses. However, in groups where all elements are equal to their inverse this is the 

trivial automorphism, e.g. in the Klein four-group. For that group all permutations of the 

three non-identity elements are automorphisms, so the automorphism group is i somorphic to 

S3 and Dih3. 

 
In Zp for a prime number p, one non-identity element can be replaced by any other, with cor 

responding changes in the other elements. The automorphism group is isomorphic to Zp - 1. 

For example, for n = 7, multiplying all elements of Z7 by 3, modulo 7, is an automorphism of 

order 6 in the automorphism group, because 36 = 1 ( modulo 7 ), while lower powers do not 

give 1. Thus this automorphism generates Z6. There is one more automorphism with this 

property: multiplying all elements of Z7 by 5, modulo 7. Therefore, these two correspond to 

the elements 1 and 5 of Z6, in that order or conversely. 

 

 

The automorphism group of Z6 is isomorphic to Z2, because only each of the two elements 1 

and 5 generate Z6, so apart from the identity we can only interchange these. 

 
The automorphism group of Z2 × Z2 × Z2 = Dih2 × Z2 has order 168, as can be found as 

follows. All 7 non-identity elements play the same role, so we can choose which plays the 

role of (1,0,0). Any of the remaining 6 can be chosen to play the role of (0,1,0). This 

determines which corresponds to (1,1,0). For (0,0,1) we can choose from 4, which 

determines the rest. Thus we have 7 × 6 × 4 = 168 automorphisms. They correspond to those 

of the Fano plane, of which the 7 points correspond to the 7 non-identity elements 



  

 

 

 

The lines connecting three points correspond to the group operation: a, b, and c on one line 

means a+b=c, a+c=b, and b+c=a. See also general linear group over finite fields. 

 
For Abelian groups all automorphisms except the trivial one are called outer automorphisms. 

 

 

Non-Abelian groups have a non-trivial inner automorphism group, and possibly also outer 

automorphisms. 

 

Coding Theory and Rings 
 
 

Elements of Coding Theory 
 
 

Coding theory is studied by various scientific di sciplines — such as info rmation theory, 

electrical engineering, mathematics, and computer science — for the purpose of designing 

efficient and reliable data transmission methods. This typically involves the removal of r 

edundancy and the correction (or detection) of errors in the transmitted data. It also includes 

the study of the properties of codes and their fitness for a specific application. 

 

 

Thus, there are es sentially two aspects to Coding theory: 

 

1. Data compression (or, source coding) 

2. Error correction (or, channel coding') 

 

These two aspects may be studied in combination. 

 

The first, source encoding, attempts to compress the data from a source in order to transmit it 

more efficiently. This practice is found every day on the Internet where the common "Zip" 

data compression is used to reduce the network load and make files smaller. The second, 

channel encoding, adds extra data bits to make the transmission of 

data more robust to dis turbances present on the transmission channel. The ordinary user may 

not be aware of many applications using channel coding. A typical music CD uses the Reed- 

Solomon code to correct for scratches and dust. In this application the transmission channel 

is the CD itself. Cell phones also use coding techniques to correct 



  

 

 

 

for the fading and noCSE of high frequency radio transmission. Data modems, t elephone 

transmissions, and NASA all employ channel coding techniques to get the bits through, for 

example the turbo code and LDPC codes. 

The hamming metric: 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3- bit binary cube for finding Two example distances: 100->011 has distance 3 (red 

Hamming distance  path); 010->111 has distance 2 (blue path) 

 
 



 

 

 

 

 
 

 

 

 

4- bit binary h ypercube for finding Hamming distance 
 

 

 
 

 

 
Two example dis tances: 0100->1001 has distance 3 (red path); 0110->1110 has distance 1 

(blue path) 

 
In information theory, the Hamming distance between two strings of equal length is the 

number of positions at which the corresponding symbols are different. Put another way, it 

Parity-check matrix 
 
 

In coding theory, a parity-check matrix of a linear block code C is a generator matrix of 

the dual code. As such, a codeword c is in C if and only if the matrix-vector product HTc=0. 

 

The rows of a parity check matrix are parity checks on the codewords of a code. That is, they 

show how linear combinations of certain digits of each codeword equal zero. For example, 

the parity check matrix 

 

DEPT



  

 

 

 

 

 

 

specifies that for each codeword, digits 1 and 2 should sum to zero and digits 3 and 4 should 

sum to zero. 

 
Creating a parity check matrix 

 
 

The parity check matrix for a given code can be derived from its generator matrix (and vice- 

versa). If the generator matrix for an [n,k]-code is in standard form 

 
 

, 

 

then the parity check matrix is given by 

 

 
, 

 

because 

GHT = P - P = 0. 

Negation is performed in the finite field mod q. Note that if the characteristic of the 

underlying field is 2 (i.e., 1 + 1 = 0 in that field), as in binary codes, then - P = P, so the 

negation is unnecessary. 

 
For example, if a binary code has the generator matrix 

 

The parity check matrix becomes 

 



  

 

 

, 

 

 

 

 
 

For any valid codeword x, Hx = 0. For any invalid codeword the syndrome S satisfies 

 

 

Parity check 
 
 

If no error occurs during transmission, then the received codeword r is identical to the t 

ransmitted codeword x: 

 

 

 

 

The receiver multiplies H and r to obtain the 

whether an error has occurred, and if so, for mul 

tiplication (again, entries modulo 2): 

syndrome vector , which indicates 

which codeword bit. Performing this 

 

 

Since the syndrome z is the null vector, the receiver can conclude that no error has occurred. 

This conclusion is based on the observation that when the data vector is multiplied by , a 

change of basis occurs into a vector subspace that is the kernel of . As long as nothing 

happens during transmission, will remain in the kernel of and the mul tiplication will yield 

the null vector. 

 
Coset 

 
 

In mathematics, if G is a group, H is a subgroup of G, and g is an element of G, then 

 
 

gH = {gh : h an element of H� is} a left coset of H in G, and 

. 



  

 

 

 

 

 

Hg = {hg : h an element of H� is} a right coset of H in G. 

 

Only when H is normal will the right and left cosets of H coincide, which is one definition of 

normality of a subgroup. 

A coset is a left or right coset of some subgroup in G. Since Hg = g�
(
g
�-1

Hg�), the right 

cosets Hg (of H� and the left cosets g �(�-1Hg� (of the conjugate subgroup g-1Hg� are the 

) g ) ) 

same. Hence it is not meaningful to speak of a coset as being left or right unless one first 

specifies the underlying s ubgroup. 

 
For abelian groups or groups written additively, the notation used changes to g+H and H+g 

respectively. 

 

Examples 
 
 

The additive cyclic group Z4 = {0, 1, 2, 3} = G has a subgroup H = {0, 2} (isomorphic to Z2). 

The left cosets of H in G are 

 
0 + H = {0, 2} = H 

 
1 + H = {1, 3} 

 
2 + H = {2, 0} = H 

 
3 + H = {3, 1}. 

 

There are therefore two distinct cosets, H itself, and 1 + H = 3 + H. Note that every 

 

element of G is either in H or in 1 + H, that is, H � (1 + H� )= G, so the distinct cosets of 

H in G partition G. Since Z4 is an abelian group, the right cosets will be the same as the left. 

 

 
 

Another example of a coset comes from the theory of vector spaces. The elements 



  

 

 

 

(vectors) of a vector space form an Abelian group under vector addition. It is not hard to 

show that subspaces of a vector space are subgroups of this group. For a vector space V, a s 

ubspace W, and a fixed vector a in V, the sets 

 
 

 

are called affine subspaces, and are cosets (both left and right, since the group is Abelian). In 

terms of geometric vectors, these affine subspaces are all the "lines" or "planes" parallel to 

the subspace, which is a line or plane going through the origin. 

 
General properties 

 
 

We have gH = H if and only if g is an element of H, since as H is a subgroup, it must be 

closed and must contain the identity. 

 
Any two left cosets of H in G are either identical or disjoint — i.e., the left cosets form a 

partition of G such that every element of G belongs to one and only one left coset.[1] In 

particular the identity is in precCSEly one coset, and that coset is H itself; this is also the only 

coset that is a subgroup. We can see this clearly in the above examples. 

 

 
The left cosets of H in G are the equivalence classes under the equivalence relation on G 

given by x ~ y if and only if x -1y � H. Similar statements are also true for right cosets. 

A coset representative is a representative in the equivalence class sense. A set of 

representatives of all the cosets is called a transversal. There are other types of equivalence 

relations in a group, such as conjugacy, that form different classes which do not have the 

properties discussed here. Some books on very applied group theory erroneously identify the 

conjugacy class as 'the' equivalence class as opposed to a particular type of equivalence class. 

 

 

Index of a subgroup 
 
 

All left cosets and all right cosets have the same order (number of elements, or cardinality in 

the case of an infinite H), equal to the order of H (because H is itself a coset). Furthermore, 

the number of left cosets is equal to the number of right cosets and is 



  

 

 

 

known as the index of H in G, written as [G : H�. ]Lagrange's theorem allows us to 

compute the index in the case where G and H are finite, as per the formula: 

 
|G�= [|G : H� · |H] � 

 

This equation also holds in the case where the groups are infinite, although the meaning may 

be less clear. 

Cosets and normality 
 
 

If H is not normal in G, then its left cosets are different from its right cosets. That is, there is 

an a in G such that no element b satisfies aH = Hb. This means that the partition of G into the 

left cosets of H is a different partition than the partition of G into right cosets of H. (It is 

important to note that some cosets may coincide. For example, if a is in the center of G, then 

aH = Ha.) 

 
On the other hand, the subgroup N is normal if and only if gN = Ng for all g in G. In this 

Lagrange's theorem (group theory) 
 

 

Lagrange's theorem, in the mat hematics of group theory, states that for any finite group G, 

the order (number of elements) of every subgroup H of G divides the order of G. The 

theorem is named after Joseph Lagrange. 

 
Proof of Lagrange's Theorem 

 
 

This can be shown using the concept of left cosets of H in G. The left cosets are the 

equivalence classes of a certain equivalence relation on G and therefore form a partition of G. 

Specifically, x and y in G are related if and only if there exists h in H such that x = yh. If we 

can show that all cosets of H have the same number of elements, then each coset of H has 

precCSEly |H| elements. We are then done since the order of H times the number of cosets is 

equal to the number of elements in G, thereby proving that the order H divides the order of G. 

Now, if aH and bH are two left cosets of H, we can define a map f : aH → bH by setting f(x) = 

ba-1x. This map is b ijective because its inverse is given by 

f -1(y) = ab-1y. 

 
This proof also shows that the quotient of the orders |G| / |H| is equal to the index [G : H] 



 
 

 

 

(the number of left cosets of H in G). If we write this statement as 

 

|G| = [G : H] · |H|, 

then, seen as a statement about cardinal numbers, it is equivalent to the Axiom of choice. 

Using the theorem 

A consequence of the theorem is that the order of any element a of a finite group (i.e. the 

smallest positive integer number k with ak = e, where e is the identity element of the group) 

divides the order of that group, since the order of a is equal to the order of the cyclic 

subgroup generated by a. If the group has n elements, it follows 

 

an = e. 

 
This can be used to prove Fermat's little theorem and its generalization, Euler's theorem. 

These special cases were known long before the general theorem was proved. 

 

The theorem also shows that any group of prime order is cyclic and simple. 

E xistence of subgroups of given order 

Lagrange's theorem raCSEs the converse question as to whether every divisor of the order of a 

group is the order of some subgroup. This does not hold in general: given a finite group G and 

a divisor d of |G|, there does not necessarily exist a subgroup of G with order d. The smallest 

example is the alternating group G = A4 which has 12 elements but no subgroup of order 6. A 

CLT group is a finite group with the property that for every divisor of the order of the group, 

there is a subgroup of that order. It is known that a CLT group must be solvable and that every 

supersolvable group is a CLT group: however there exists solvable groups which are not CLT 

and CLT groups which are not super solvable. 

 

 

There are partial converses to Lagrange's theorem. For general groups, Cauchy's theorem 

guarantees the existence of an element, and hence of a cyclic subgroup, of order any prime 

dividing the group order; Sylow's theorem extends this to the existence of a s ubgroup of 

order equal to the maximal power of any prime dividing the group order. For 

s olvable groups, Hall's theorems assert the existence of a subgroup of order equal to any 

 
 

 



 

 

 

unitary divisor of the group order (that is, a divisor coprime to its cofactor). 

 
 

Group Co des: Deco ding wthi Coset L ead ers, Hamming Matrices 

 
 

R ings a nd Mod ular Arithmetic: The Ring Structure – Definition and E xampl es, Ring P 

ro pe rt ies and Sub str uctures, The I ntegers Mod ulo n 

 
In computer science, group codes are a type of code. Group codes consist of n linear block 

codes which are subgroups of Gn, where G is a finite Abelian group. 

 
A systematic group code C is a code over Gn of order defined by n - k homomorphisms 

which determine the parity check bits. The remaining k bits are the in formation bits 

themselves. 

 
Construction 

 
 

Group codes can be constructed by special generator matrices which resemble generator 

matrices of linear block codes except that the elements of those matrices are endomorphisms 

of the group instead of symbols from the code's alphabet. For example, consider the 

generator matrix 

 

The elements of this matrix are 2x2 matrices which are endomorphisms. In this scenario, 

each codeword can be represented as where g1,...gr are the generators of 

G. 

 

Decoding with Coset leader 
 
 

In the field of coding theory, a coset leader is defined as a word of minimum weight in any 

particular coset - that is, a word with the lowest amount of non-zero entries. Sometimes there 

are several words of equal minimum weight in a coset, and in that case, 



 

 

 

any one of those words may be chosen to be the coset leader. 

Coset leaders are used in the construction of a standard array for a linear code, which can 

then be used to decode received vectors. For a received vector y, the decoded message is y - 

e, where e is the coset leader of y. Coset leaders can also be used to construct a fast decoding 

strategy. For each coset leader u we calculate the syndrome uH′. When we receive v we 

evaluate vH′ and find the matching syndrome. The corresponding coset leader is the most 

likely error pattern and we assume that v+u was the codeword sent. 

 
Example 

 

 
A standard array for an [n,k]-code is a qn - k by qk array where: 

 
1. The first row lists all codewords (with the 0 codeword on the extreme left) 

2. Each row is a coset with the coset leader in the first column 

3. The entry in the i-th row and j-th column is the sum of the i-th coset leader and the j- 

th codeword. 

 
For example, the [n,k]-code C3 = {0, 01101, 10110, 11011} has a standard array as follows: 

 

 
 

0 01101 10110 11011 

 

10000 11101 00110 01011 

 

01000 00101 11110 10011 

 

00100 01001 10010 11111 

 

00010 01111 10100 11001 

 

00001 01100 10111 11010 

 

11000 10101 01110 00011 

 

10001 11100 00111 01010 



 

 

 

 

 
 

 

Note that the above is only one possibility for the standard array; had 00011 been chosen as 

the first coset leader of weight two, another standard array rep resenting the code would have 

been con structed. 

Note that the first row contains the 0 vector and the codewords of C3 (0 itself being a 

codeword). Also, the leftmost column contains the vectors of minimum weight enumerating 

vectors of weight 1 first and then using vectors of weight 2. Note also that each possible 

vector in the vector space appears exactly once. 

 
Because each possible vector can appear only once in a standard array some care must be 

taken during cons truction. A s tandard array can be created as follows: 

 
1. List the codewords of C, starting with 0, as the first row 

2. Choose any vector of minimum weight not already in the array. Write this as the first 

entry of the next row. This vector is denoted the 'coset leader'. 

3. Fill out the row by adding the coset leader to the codeword at the top of each column. 

The sum of the i-th coset leader and the j-th codeword becomes the entry in row i, 

column j. 

4. Repeat steps 2 and 3 until all rows/cosets are listed and each vector appears exactly 

once. 

 
Hamming matrices 

 
 

Hamming codes can be computed in linear algebra terms through matrices because Hamming 

codes are linear codes. For the purposes of Hamming codes, two Hamming matrices can be 

defined: the code generator matrix and the parity-check matrix  

: 

 



 

 

 

 

 
 

 

 

 

and 

 

 

 

 
 

 

 

 

Bit position of the data and parity bits 

 

As mentioned above, rows 1, 2, & 4 of should look familiar as they map the data bits 

to their parity bits: 

 

• p1 covers d1, d2, d4 

• p2 covers d1, d3, d4 

• p3 covers d2, d3, d4 

 

The remaining rows (3, 5, 6, 7) map the data to their position in encoded form and there is 

only 1 in that row so it is an identical copy. In fact, these four rows are linearly independent 

and form the identity matrix (by design, not coincidence). 

 

Also as mentioned above, the three rows of should be familiar. These rows are used to 

compute the syndrome vector at the receiving end and if the s yndrome vector is the null 



 

 

 

vector (all zeros) then the received word is error-free; if non-zero then the value indicates 

which bit has been flipped. 

 

The 4 data bits — assembled as a vector — is pre-multiplied by (i.e., ) and taken modulo 2 to 

yield the encoded value that is transmitted. The original 4 data bits are converted to 7 bits 

(hence the name "Hamming(7,4)") with 3 parity bits added to ensure even parity using the 

above data bit coverages. The first table above shows the mapping between each data and 

parity bit into its final bit position (1 through 7) but this can also be presented in a Venn 

diagram. The first diagram in this article shows three circles (one for each parity bit) and 

encloses data bits that each parity bit covers. The second diagram (shown to the right) is 

identical but, instead, the bit positions are marked. 

 
For the remainder of this section, the following 4 bits (shown as a column vector) will be 

used as a running example: 

 

 

 

 
Rings and Modular Arithmetic 

 

 

Ring theory 
 
 

In mathematics, ring theory is the study of rings— algebraic s tructures in which addition 

and multiplication are defined and have similar properties to those familiar from the integers. 

Ring theory studies the structure of rings, their representations, or, in different language, 

modules, special classes of rings (group rings, division rings, universal enveloping algebras), 

as well as an array of properties that proved to be of interest both within the theory itself and 

for its applications, such as homological properties and pol ynomial identities. 

 

 

Commutative rings are much better understood than noncommutative ones. Due to its 

intimate connections with algebraic geometry and algebraic number theory, which provide 

many natural examples of co mmutative rings, their theory, which is considered to 



 

 

 

be part of commutative algebra and field theory rather than of general ring theory, is quite 

different in flavour from the theory of their nonco mmutative counterparts. A fairly recent  

trend, started in the 1980s with the development of noncommutative geometry and with the 

discovery of quantum groups, attempts to turn the situation around and build the theory of 

certain classes of noncom mutative rings in a geometric fashion as if they were rings of 

functions on (non-existent) 'noncommutative spaces'. 

 
Elementary introduction 

Definition 

 

 

Formally, a ring is an Abelian group (R, +), together with a second binary operation * such 

that for all a, b and c in R, 

 
a * (b * c) = (a * b) * c 

 
a * (b + c) = (a * b) + (a * c) 

 
(a + b) * c = (a * c) + (b * c) 

also, if there exists a mult iplicative identity in the ring, that is, an element e such that for all 

a in R, 

 

a * e = e * a = a 

 

then it is said to be a ring with unity. The number 1 is a common example of a unity. 

 

The ring in which e is equal to the additive identity must have only one element. This ring is 

called the trivial ring. 

 
Rings that sit inside other rings are called subrings. Maps between rings which respect the ring 

operations are called ring homomorphisms. Rings, together with ring homomorphisms, form a 

category (the category of rings). Closely related is the notion of ideals, certain subsets of rings 

which arCSE as kernels of homomorphisms and can serve to define factor rings. Basic facts 

about ideals, homomorphisms and factor rings are recorded in the i somorphism theorems and 

in the Chinese remainder theorem. 

 
A ring is called commutative if its multiplication is commutative. Commutative rings 



 

 

 

resemble familiar number systems, and various definitions for commutative rings are 

designed to recover properties known from the integers. Commutative rings are also 

important in algebraic geometry. In co mmutative ring theory, numbers are often replaced by 

ideals, and the definition of prime ideal tries to capture the essence of prime numbers. 

Integral domains, non-trivial commutative rings where no two non-zero elements multiply to 

give zero, generalize another property of the integers and serve as the proper realm to study 

divisibility. Principal ideal domains are integral domains in which every ideal can be 

generated by a single element, another property shared by the integers. E uclidean domains 

are integral domains in which the E uclidean algorithm can be carried out. Important ex 

amples of co mmutative rings can be constructed as rings of pol ynomials and their factor 

rings. Summary: Euclidean domain => p rincipal ideal domain => unique factorization 

domain => integral domain => Com mutative ring. 

 

Non-commutative rings resemble rings of matrices in many respects. Following the model of 

algebraic geometry, attempts have been made recently at defining non-commutative 

geometry based on non-commutative rings. Non-commutative rings and associative algebras 

(rings that are also vector spaces) are often studied via their categories of modules. A module 

over a ring is an Abelian group that the ring acts on as a ring of endomorphisms, very much 

akin to the way fields (integral domains in which every non-zero element is invertible) act on 

vector spaces. Examples of non- commutative 

rings are given by rings of square matrices or more generally by rings of endomorphisms of 

Abelian groups or modules, and by monoid rings.        

 
The congruence relation 

 
 

Modular ar ithmetic can be handled mathematically by introducing a con gruence relation on 

the integers that is compatible with the operations of the ring of integers: addition, s 

ubtraction, and mult iplication. For a positive integer n, two integers a and b are said to be 

congruent modulo n, written: 

 

 

 
 

if their dif ference a - b is an integer multiple of n. The number n is called the modulus of the 

co ngruence. An equivalent definition is that both numbers have the same remainder when 

divided by n. 



 

 

 

For example, 

 

because 38 - 14 = 24, which is a multiple of 12. For positive n and non-negative a and b, 

congruence of a and b can also be thought of as asserting that these two numbers have the 

same remainder after dividing by the modulus n. So, 
 

 
because both numbers, when divided by 12, have the same remainder (2). E quivalently, the 

fractional parts of doing a full division of each of the numbers by 12 are the same: 0.1666... 

(38/12 = 3.1666..., 2/12 = 0.1666...). From the prior definition we also see that their 

difference, a - b = 36, is a whole number (integer) multiple of 12 (n = 12, 36/12 = 3). 

 

The same rule holds for negative values of a: 

 

 
A remark on the notation: Because it is common to consider several congruence relations for 

different moduli at the same time, the modulus is incorporated in the notation. In spite 

of the ternary notation, the congruence relation for a given modulus is binary. This would 

have been clearer if the notation a ≡n b had been used, instead of the common traditional 

notation. 

 

The properties that make this relation a congruence relation (respecting addition, s 

ubtraction, and mult iplication) are the following. 

 
If 

and 

 

then: 

 
 

• 

• 

• 
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Multiplicative group of integers modulo n 
 
 

In modular arithmetic the set of congruence classes relatively prime to the modulus n form a 

group under multiplication called the multiplicative group of integers modulo n. It is also 

called the group of primitive residue classes modulo n. In the theory of rings, a branch of 

abstract algebra, it is described as the group of units of the ring of integers modulo n. (Units 

refers to elements with a multiplicative inverse.) 

 
This group is fundamental in number theory. It has found applications in cryptography, 

integer factorization, and primality testing. For example, by finding the order (ie. the size) of 

the group, one can determine if n is prime: n is prime if and only if the order is n - 1. 

 

Group axioms 
 
 

It is a straightforward exercCSE to show that under multiplication the congruence classes (mod 

n) which are relatively prime to n satisfy the axioms for an abelian group.  

Because a ≡ b (mod n) implies that gcd(a, n) = gcd(b, n), the notion of congruence classes 

(mod n) which are relatively prime to n is well- defined. 

 
Since gcd(a, n) = 1 and gcd(b, n) = 1 implies gcd(ab, n) = 1 the set of classes relatively 

prime to n is closed under multiplication. 

 
The natural mapping from the integers to the congruence classes (mod n) that takes an 

integer to its congruence class (mod n) is a ring homomorphism. This implies that the class 

containing 1 is the unique multiplicative identity, and also the associative and commutative 

laws. 

 
Given a, gcd(a, n) = 1, finding x satisfying ax ≡ 1 (mod n) is the same as solving ax + ny = 1, 

which can be done by Bézout's lemma.          

 
Notation 

 

The ring of integers (mod n) is denoted or (i.e., the ring of integers modulo the ideal 

nZ = (n) consisting of the multiples of n) or by Depending on the 

author its group of units may be written   (for 

German Einheit = unit) or similar notations. This article uses 
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the 

is 

 

 

 

Structure 

Powers of 2 

Modulo 2 there is only one relatively prime congruence class, 1, so is 

trivial. 

 
Modulo 4 there are two relatively prime congruence classes, 1 and 3, so 

cyclic group with two elements. 

 
Modulo 8 there are four relatively prime classes, 1, 3, 5 and 7. The square of each of 

these is 1, so the Klein four-group. 

 
Modulo 16   there are   eight relatively prime classes      1, 3, 5,     7, 9, 11, 13 and 15. 

is the 2-torsion subgroup (ie. the square of each element is 1), 

so is not cyclic. The powers of 3, {1,3,9,11} are a subgroup of order 4, as are 

the powers of 5, {1,5,9,13}. Thus  

 

 
The pattern shown by 8 and 16 holds[1]   for higher 

is the 2-torsion subgroup (so 

and the powers of 3 are a subgroup of order 2k - 2, so 

Powers of odd primes 

 
k > 2: 

not cyclic) 

 

For powers of odd primes pk the group is cyclic:
[2]

 

 

General composite numbers 
 

 

The Chinese remainder theorem[3] says that if then the ring 

the direct product of the rings cor responding to each of its prime power factors: 

 

 

 

powers 2k, 

is 



 

 

 
 
 
 
 
 

 
Similarly, the group of units 

to each of the prime power factors: 

is the direct p roduct of the groups corresponding 

 
 

 
 

 

 

Order 

 

 
The order of the group is given by Euler's totient function:  This 

is the product of the orders of the cyclic groups in the direct product. 

 
Exponent 

 

The exponent is given by the Carmichael function λ(n), the least common multiple of the 

orders of the cyclic groups. This means that if a and n are relatively prime, 

 

Generators 
 

 

is cyclic if and only if This is the case precCSEly when n is 2, 4, a power of an 

odd prime, or twice a power of an odd prime. In this case a generator is called a primitive 

root modulo n. 

 

Since all the n = 1, 2, ..., 7 are cyclic, another way to state this is: If n < 8 

then has a primitive root. If n ≥ 8 has a primitive root unless n is 

divisible by 4 or by two distinct odd primes. 

 

In the general case there is one generator for each cyclic direct factor. 

 

Table 

 



 

 

is ≡ 

 
 

 

 

This table shows the structure and generators of for small values of n. The 

generators are not unique (mod n); e.g. (mod 16) both {-1, 3} and {-1, 5} will work. The 

generators are listed in the same order as the direct factors. 

 

 

 

For example take n = 20. means that the order of is 8 (i.e. there are 8 numbers less than 20 

and coprime to it); λ(20) = 4 that the fourth power of any number relatively prime to 20 is ≡ 1 

(mod 20); and as for the generators, 19 has order 2, 3 

has order 4, and every member of 

and b is 0, 1, 2, or 3. 

is of the form 19a × 3b, where a is 0 or 1 

 

The powers of 19 are {±1} and the powers of 3 are {3, 9, 7, 1}. The latter and their negatives 

(mod 20), {17, 11, 13, 19} are all the numbers less than 20 and prime to it. The fact that the 

order of 19 is 2 and the order of 3 is 4 implies that the fourth power of every 

member of 1 (mod 20). 
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