

Department of Electrical and Electronics Engineering

COURSE MODULE OF THE COURSE TAUGHT FOR THE SESSION FEB-MAY: 2024-25

Course Syllabus with CO's

Faculty Name: Shreeshayana R			Academic Year: 2024-25					
Department: Electrical and Electronics Engineering								
Course Code	Course Title	Core/Elective	Prerequisite	Contact Hours			Total Hrs/	
			1	L	Т	Р	Sessions	
BEE613B	Embedded Systems Design	Professional Elective	C Programming, Microcontrollers fundamentals	3			40 Hours	
Objectives 1. Introductory topics of Embedded System design 2. Characteristics & attributes of Embedded System 3. Introduction of Embedded System 4. Software and Hardware development RTOS based Embedded system design								
		Topics Covere	d as per Syllabus					
Introduction: Embedded Systems and general purpose computer systems, history, classifications, applications and purpose of embedded systems (Chapter 1 – Text 1) Core of Embedded Systems : Microprocessors and microcontrollers, RISC and CISC controllers, Big endian and Little endian processors, Application specific ICs, Programmable logic devices, COTS, sensors and actuators, communication interface, embedded firmware, other system components, PCB and passive components (Chapter 2 – Text 1)Bloom's Taxonomy LevelL1 – Remembering, L2 – UnderstandingMODULE-2Characteristics and quality attributes of embedded systems: Characteristics, Operational and nonoperational quality attributes, application specific embedded system - washing machine, domain specific – automotive (Chapter								
3 & 4 – Text 1) Bloom's Taxonomy Level L ₁ – Remembering			z. L2 – Understanding					
MODULE-3: Hardware Software Co design and Program Modelling : Fundamental issues in Hardware Software Co-design, Computational models in Embedded System Design (Chapter 7 – Text 1: 7.1, 7.2) Embedded Hardware Design and Development: Analog Electronic Components, Digital Electronic Components, VLSI & Integrated Circuit Design, Electronic Design Automation Tools (Chapter 8 – Text 1: 8.1, 8.2, 8.3, 8.4)								
Bloom's Taxonomy Level L1 – Remembering, L2 – Understanding, L3 – Applying								
Embedded Firmware Design Approaches, Embedded Firmware Development Languages (Chapter 9 – Text 1: 9.1, 9.2) Embedded System Development Environments: Types of files generated on cross compilation (only explanation – programming codes need not be dealt), disassemble/decompliler, Simulators, Emulators and Debugging (Chapter 13 – Text 1: 13.2, 13.3,13.4)Bloom's Taxonomy LevelL1 – Remembering, L2 – Understanding, L3 – Applying L4– AnalysingMODULE-5Real-time Operating System(RTOS) based Embedded System Design: Operating System basics, Types of Operating Systems, Tasks, Process and Threads, Multiprocessing and Multitasking, Task Scheduling (Chapter 10 – Text 1: 10.1 to 10.5)								

Department of Electrical and Electronics Engineering

List of Text Books

Shibu K V, "Introduction to Embedded Systems", Second Edition, McGraw Hill Education								
List of Additional Reference Books/URLs, Text Books, Notes, Multimedia Content, etc								
1. NPTL	NPTL Lectures: https://nptel.ac.in/courses/108102045							
Embe	Embedded Systems, IIT Delhi, Prof. Santanu Chaudhary							
2. https:/	ps://www.arduino.cc							
3. https:/	tps://www.raspberrypi.org/							
4. Cours	Course in Internet of Things (IOT) Using Arduino - NIELIT Delhi Centre							
5. Vijay	Vijay Madisetti, Arshdeep Bahga, Internet of Things. "A Hands on Approach", University Press							
6. Dr. SH	6. Dr. SRN Reddy, Rachit Thukral and Manasi Mishra, "Introduction to Internet of Things: A practical Approach" ETL abs							
7. Pethu	ru Raj and Anupama C Raman, "The Internet of Things: Enabling Technologies, Platforms,							
and U	se Cases", CRC Press							
8. Jeeva	Jose, "Internet of Things", Khanna Publishing House, Delhi							
9. Adria	n McEwen, "Designing the Internet of Things", Wiley							
10. Raj K	amal, "Internet of Things: Architecture and Design", McGraw Hill							
11. https:/	//projecthub.arduino.cc/							
12. https:/	//www.raspberrypi.com/documentation/computers/remote-access.html							
· · · · · · · · · · · · · · · · · · ·								
Activity Based Learning (Suggested Activities in Class)/ Practical Based learning								
To design a simple Embedded System like simple remote To demonstrate simple microcontroller based								
experiments like LED interfacing, LCD interfacing, DAC etc								
At the end of the course the student will be able to:								
	1. Explain characteristics of Embedded System design [L2]							
C	2. Acquire knowledge about basic concepts of circuit emulators, debugging and							
Course RTOS [L2] Outcomes 3. Analyse embedded system software and hardware requirements. [L3]								
	5. Design basic embedded system for real time applications.[L4]							

Assessment Details (both CIE and SEE)

The weightage of Continuous Internal Evaluation (CIE) is 50% and for Semester End Exam (SEE) is 50%. The minimum passing mark for the CIE is 40% of the maximum marks (20 marks out of 50) and for the SEE minimum passing mark is 35% of the maximum marks (18 out of 50 marks). A student shall be deemed to have satisfied the academic requirements and earned the credits allotted to each subject/ course if the student secures a minimum of 40% (40 marks out of 100) in the sum total of the CIE (Continuous Internal Evaluation) and SEE (Semester End Examination) taken together.

Continuous Internal Evaluation (CIE):

For the Assignment component of the CIE, there are 25 marks and for the Internal Assessment Test component, there are 25 marks.

• The first test will be administered after 40-50% of the syllabus has been covered, and the second test will be administered after 85-90% of the syllabus has been covered

• Any two assignment methods mentioned in the 22OB2.4, if an assignment is project-based then only one assignment for the course shall be planned. The teacher should not conduct two assignments at the end of the semester if two assignments are planned.

• For the course, CIE marks will be based on a scaled-down sum of two tests and other methods of assessment. Internal Assessment Test question paper is designed to attain the different levels of Bloom's taxonomy as per the outcome defined for the course.

ATME COLLEGE OF ENGINEERING

Department of Electrical and Electronics Engineering

Semester End Evaluation (SEE):

Semester-End Examination: Theory SEE will be conducted by University as per the scheduled timetable, with common question papers for the course (duration 03 hours).

1. The question paper will have ten questions. Each question is set for 20 marks.

2. There will be 2 questions from each module. Each of the two questions under a module (with a maximum of 3 sub-questions), should have a mix of topics under that module.

3. The students have to answer 5 full questions, selecting one full question from each module.

4. Marks scored shall be proportionally reduced to 50 marks.

The Correlation of Course Outcomes (CO's) and Program Outcomes (PO's)

Course Code:	BEE613B	TITLE: Embedded Systems Design							Faculty Member: SHREESHAYANA R			
List of		Program Outcomes										
Course Outcomes	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO-1	3	3	-	-	2	-	-	-	-	-	-	2
CO-2	3	3	-	-	2	-	-	-	-	-	-	2
CO-3	3	3	2	-	2	-	-	-	-	-	-	2
CO-4	3	3	2	-	2	-	-	-	-	-	-	2
CO-5	3	3	2	-	2	-	-	-	-	-	-	2

Note: 3 = Strong Contribution 2 = Average Contribution 1= Weak Contribution - = No Contribution

The Correlation of Course Outcomes (CO's) and Program Specific Outcomes (PSO's)

Course Code:	BEE613B	TITLE: Embedded Systems Design	Faculty Member: SHREESHAYANA R				
List of Course		Program Spec	ific Outcomes				
Outcomes		PSO1	PSO2				
CO-1		-	3				
CO-2		-	3				
CO-3		-	3				
CO-4		-	3				
CO-5		-	3				

Note: 3 = Strong Contribution 2 = Average Contribution 1 = Weak Contribution - = No Contribution