



# **Department of Computer Science & Design**

### <u>COURSE MODULE OF THE SUBJECT TAUGHT FOR THE SESSION 2025</u> <u>(EVEN SEM)</u>

### Course Syllabus with CO's

| Faculty Name                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Academic Year: 2025                       |                           |                           |                  |   |    |                        |  |  |  |  |  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------|---------------------------|---------------------------|------------------|---|----|------------------------|--|--|--|--|--|
| Department:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Computer Science &                        | Design and Cyber Security |                           |                  |   |    |                        |  |  |  |  |  |
| Course                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Course Title                              | Core/Elective             | Prerequisite              | Contact<br>Hours |   |    | Total Hrs/<br>Sessions |  |  |  |  |  |
| Code                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                           | Core/Elective             | Trerequisite              | L                | Т | Р  |                        |  |  |  |  |  |
| BCSL404                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Analysis &<br>Design of<br>Algorithms Lab | Core                      | C Programming<br>Concepts |                  | 2 | 28 |                        |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Course Learning Objectives:               |                           |                           |                  |   |    |                        |  |  |  |  |  |
| Course<br>Objective This laboratory course enables students to get practical experience in design, develop,<br>implement, analyze and evaluation/testing of<br>CLO1: To design and implement various algorithms in C/C++ programming using suitable<br>development tools to address different computational challenges.<br>CLO2: To apply diverse design strategies for effective problem-solving.<br>CLO3: To Measure and compare the performance of different algorithms to determine their<br>afficiency and suitability for specific tecks |                                           |                           |                           |                  |   |    |                        |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ·                                         | <b>Topics</b> Covered     | d as per Syllabu          | IS               |   |    |                        |  |  |  |  |  |
| <ol> <li>Design and implement C/C++ Program to find Minimum Cost Spanning Tree of a given<br/>connected undirected graph using Kruskal's algorithm</li> <li>Design and implement C/C++ Program to find Minimum Cost Spanning Tree of a given<br/>connected undirected graph using Prim's algorithm.</li> <li>a. Design and implement C/C++ Program to solve All-Pairs Shortest Paths problem using<br/>Floyd's algorithm.</li> <li>b. Design and implement C/C++ Program to find the transitive closure using Warshal's algorithm.</li> </ol>  |                                           |                           |                           |                  |   |    |                        |  |  |  |  |  |
| 4. Design and implement C/C++ Program to find shortest paths from a given vertex in a weighted connected graph to other vertices using Dijkstra's algorithm.                                                                                                                                                                                                                                                                                                                                                                                   |                                           |                           |                           |                  |   |    |                        |  |  |  |  |  |
| 5. Design and implement C/C++ Program to obtain the Topological ordering of vertices in a given digraph.                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                           |                           |                           |                  |   |    |                        |  |  |  |  |  |
| 6. Design and implement C/C++ Program to solve 0/1 Knapsack problem using Dynamic Programming method.                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                           |                           |                           |                  |   |    |                        |  |  |  |  |  |
| 7. Design and implement C/C++ Program to solve discrete Knapsack and continuous Knapsack problems using greedy approximation method.                                                                                                                                                                                                                                                                                                                                                                                                           |                                           |                           |                           |                  |   |    |                        |  |  |  |  |  |
| 8. Design and implement C/C++ Program to find a subset of a given set $S = \{sl, s2,, sn\}$ of n positive integers whose sum is equal to a given positive integer d.                                                                                                                                                                                                                                                                                                                                                                           |                                           |                           |                           |                  |   |    |                        |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                           |                           |                           |                  |   |    |                        |  |  |  |  |  |





## **Department of Computer Science & Design**

9. Design and implement C/C++ Program to sort a given set of n integer elements using Selection Sort method and compute its time complexity. Run the program for varied values of n > 5000 and record the time taken to sort. Plot a graph of the time taken versus n. The elements can be read from a file or can be generated using the random number generator.

10. Design and implement C/C++ Program to sort a given set of n integer elements using Quick Sort method and compute its time complexity. Run the program for varied values of n > 5000 and record the time taken to sort. Plot a graph of the time taken versus n. The elements can be read from a file or can be generated using the random number generator.

- 11. Design and implement C/C++ Program to sort a given set of n integer elements using Merge Sort method and compute its time complexity. Run the program for varied values of n> 5000, and record the time taken to sort. Plot a graph of the time taken versus n. The elements can be read from a file or can be generated using the random number generator.
- 12. Design and implement C/C++ Program for N Queen's problem using Backtracking.

|            | After studying this course, students will be able to                                               |  |  |  |  |  |  |  |
|------------|----------------------------------------------------------------------------------------------------|--|--|--|--|--|--|--|
|            | CO1:Develop programs to solve computational problems using suitable algorithm design               |  |  |  |  |  |  |  |
|            | strategy.                                                                                          |  |  |  |  |  |  |  |
| Laboratory | <b>CO2</b> :Compare algorithm design strategies by developing equivalent programs and observing    |  |  |  |  |  |  |  |
| Outcome    | running times for analysis (Empirical).                                                            |  |  |  |  |  |  |  |
|            | CO3:Make use of suitable integrated development tools to develop programs                          |  |  |  |  |  |  |  |
|            | CO4. Choose appropriate algorithm design techniques to develop solution to the                     |  |  |  |  |  |  |  |
|            | computational and complex problems.                                                                |  |  |  |  |  |  |  |
|            | <b>CO5</b> : Demonstrate and present the development of program, its execution and running time(s) |  |  |  |  |  |  |  |
|            | and record the results/inferences.                                                                 |  |  |  |  |  |  |  |
|            |                                                                                                    |  |  |  |  |  |  |  |

**Conduct of Practical Examination:** 

The weightage of Continuous Internal Evaluation (CIE) is 50% and for Semester End Exam (SEE) is 50%. The minimum passing mark for the CIE is 40% of the maximum marks (20 marks out of 50) and for the SEE minimum passing mark is 35% of the maximum marks (18 out of 50 marks). A student shall be deemed to have satisfied the academic requirements and earned the credits allotted to each subject/course if the student secures a minimum of 40% (40 marks out of 100) in the sum total of the CIE (Continuous Internal Evaluation) and SEE (Semester End Examination) taken together.

Continuous Internal Evaluation (CIE):

CIE marks for the practical course are 50 Marks.

The split-up of CIE marks for record/ journal and test are in the ratio 60:40.

• Each experiment is to be evaluated for conduction with an observation sheet and record write-up. Rubrics for the evaluation of the journal/write-up for hardware/software experiments are

designed by the faculty who is handling the laboratory session and are made known to students at the beginning of the practical session.

• Record should contain all the specified experiments in the syllabus and each experiment write-up will be evaluated for 10 marks.

• Total marks scored by the students are scaled down to 30 marks (60% of maximum marks).

• Weightage to be given for neatness and submission of record/write-up on time.

• Department shall conduct a test of 100 marks after the completion of all the experiments listed in the syllabus.

• In a test, test write-up, conduction of experiment, acceptable result, and procedural knowledge will carry a weightage of 60% and the rest 40% for viva-voce.

• The suitable rubrics can be designed to evaluate each student's performance and learning ability.

• The marks scored shall be scaled down to 20 marks (40% of the maximum marks).

The Sum of scaled-down marks scored in the report write-up/journal and marks of a test is the total CIE marks scored by the student.





# **Department of Computer Science & Design**

### The Correlation of Course Outcomes (CO's) and Program Outcomes (PO's)

| Subject<br>Code:   | BCS              | L404 | Title: Analysis & Design of Algorithms Lab |     |     |     |     | Faculty Name: Ms. Darshini Y |     |      |      |      |
|--------------------|------------------|------|--------------------------------------------|-----|-----|-----|-----|------------------------------|-----|------|------|------|
| List of            | Program Outcomes |      |                                            |     |     |     |     |                              |     |      |      |      |
| Course<br>Outcomes | PO1              | PO2  | PO3                                        | PO4 | PO5 | PO6 | PO7 | PO8                          | PO9 | PO10 | PO11 | PO12 |
| CO-1               | 3                | 2    | 1                                          | 2   | -   | -   | -   | -                            | -   | -    | -    | 2    |
| CO-2               | 3                | 2    | 1                                          | 2   | -   | -   | -   | -                            | -   | -    | -    | 2    |
| CO-3               | 3                | 2    | 1                                          | 2   | -   | -   | -   | -                            | -   | -    | -    | 2    |
| CO-4               | 3                | 2    | 1                                          | 2   | -   | -   | -   | -                            | -   | -    | -    | 2    |
| CO-5               | 3                | 2    | 1                                          | 2   |     |     |     |                              |     |      |      | 2    |
| Total              | 15               | 10   | 5                                          | 10  | -   | -   | -   | -                            | -   | -    | -    | 10   |

Note: 3 = Strong Contribution 2 = Average Contribution 1 = Weak Contribution - = No Contribution

#### The Correlation of Course Outcomes (CO's) and Program Specific Outcomes (PSO's)

| Subject Code:  | BCSL404 | TITLE: Analysis & Design of Algorithms Lab | Faculty Name: Ms. Darshini Y |  |  |  |  |
|----------------|---------|--------------------------------------------|------------------------------|--|--|--|--|
| List of Course |         | Program Specific Outcomes                  |                              |  |  |  |  |
| Outcomes       | PSO1    | PSO2                                       | Total                        |  |  |  |  |
| CO-1           | 3       | -                                          | 3                            |  |  |  |  |
| CO-2           | 3       | -                                          | 3                            |  |  |  |  |
| CO-3           | 3       | -                                          | 3                            |  |  |  |  |
| CO-4           | 3       | -                                          | 3                            |  |  |  |  |
| CO-5           | 3       | -                                          | 3                            |  |  |  |  |