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Course Outcomes(COs):

Course Outcomes:

CO 1. Analyze the performance of the algorithms, state the efficiency using asymptotic
notations and analyze mathematically the complexity of the algorithm.

CO 2. Apply divide and conquer approaches and decrease and conquer approaches in
solving the problems analyze the same.

CO 3. Apply the appropriate algorithmic design technique like greedy method, transform
and conquer approaches and compare the efficiency of algorithms to solve the given
problem.

CO 4. Apply and analyze dynamic programming approaches to solve some problems.
and improve an algorithm time efficiency by sacrificing space.

CO 5. Apply and analyze backtracking, branch and bound methods and to describe P, NP
and NP-Complete problems. ATME College of Engineering
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Agenda

What is an Algorithm?

Algorithm Specification

Analysis Framework

Performance Analysis: Space complexity, Time complexity
Asymptotic Notations: Big-Oh notation (O), Omega notation (Q),
Theta notation (©), and Little-oh notation (o)

Mathematical analysis of Non-Recursive

Recursive Algorithms with Examples.

Important Problem Types: Sorting, Searching, String processing, Graph Problems,

Combinatorial Problems.

Fundamental Data Structures: Stacks, Queues, Graphs, Trees, Sets and Dictionaries.
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Module 1

Introduction: What is an Algorithm? It’s Properties.
Algorithm Specification-using natural language, using

Pseudo code convention, Fundamentals of Algorithmic
Problem solving, Analysis Framework-Time efficiency and
space efficiency, Worst-case, Best-case and Average case
efficiency.
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What is an algorithm?

Algorithmic: The sprit of computing — David Harel.

Another reason for studying algorithms is their
usefulness in developing analytical skills.

Algorithms can be seen as special kinds of solutions to
problems — not answers but rather precisely defined
procedures for getting answers.

ATME College of Engineering



What is an algorithm?

Recipe, process, method, technique, procedure,
routine,... with the following requirements:

1. Finiteness
§] terminates after a finite number of steps

Definiteness
§) rigorously and unambiguously specified

Clearly specified input
§) valid inputs are clearly specified
Clearly specified/expected output

§] can be proved to produce the correct output given a valid input

Effectiveness
§] steps are sufficiently simple and basic

Department of ATME College of Engineering



Algorithm

 Can be represented in various forms
« Unambiguity/clearness

* Effectiveness

* Finiteness/termination

e Correctness

Department of ATME College of Engineering



What is an algorithm?

An algorithm is a sequence of unambiguous instructions
for solving a problem, i.e., for obtaining a required
output for any legitimate input in a finite amount of
time.

Problem

|

Algorithm

l

:




Euclid’s Algorithm

Problem: Find gcd(m,n), the greatest common divisor of two
nonnegative, not both zero integers m and n

Examples: gcd(60,24)=12, gcd(60,0)=60, gcd(0,0)="

Euclid’s algorithm is based on repeated application of equality
gcd(m,n) = gcd(n, m mod n)

m mod n is the reminder of the division m &n.

until the second number becomes 0, which makes the problem

trivial.

Example: gcd(60,24) = gcd(24,12) = gcd(12,0) =12

Department of ATME College of Engineering




Two descriptions of Euclid’s algorithm

Step 1 If n=0, return m and stop; otherwise go to Step 2
Step 2 Divide m by n and assign the value of the remainderto r

Step 3 Assign the value of nto m and the value of rton. Goto
Step 1.

whilen#0do
r< mmodn
mé&< n
n&r
returnm

Department of ATME College of Engineering



Other methods for computing
gcd(m,n)

Consecutive integer checking algorithm
Step 1 Assign the value of min{m,n} to t

Step 2 Divide m by t. If the remainderis O, go to Step 3;
otherwise, go to Step 4

Step 3 Divide n by t. If the remainderis O, return t and stop;
otherwise, go to Step 4

Step 4 Decrease t by 1 and go to Step 2

Is this slower than Euclid’s algorithm?
How much slower?

Department of ATME College of Engineering



Other methods for gcd(m,n)[cont.]

Middle-school procedure

Step 1 Find the prime factorization of m
Step 2 Find the prime factorization of n
Step 3 Find all the common prime factors

Step 4 Compute the product of all the common prime factors
and return it as gcd(m,n)

Is this an algorithm?

How efficient is it?

Department of ATME College of Engineering



Sieve of Eratosthenes

Input: Integern = 2
Output: List of primes less than or equal to n
forp &< 2tondoAlp]l & p
forp €& 2 tosqgrt(n) do
if A[p] # 0 //p hasn’t been eliminated on previous passes
j<pp
whilej<n do
A[j] ¢ 0 //mark element as eliminated

J&itp

Example:2 3456 7 8 910 11 12 13 14 15 16 17 18 1920

Output: 23 5 7 11 13 17 19

Department of ATME College of Engineering




Fundamental steps in solving problems

Lindersiand the problam

|

Dacida on
l'.‘lHTn‘lulﬂlh:'n-rl.iﬂ FiESsdEins
oxact Ve, appoosirmato sobnng,
algorithrm deswgn techmique

x

algonthrm

x

Frowe coeroctness

L J
Code the algorthem
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Fundamental steps in solving problems

v'Statement of the problem
v'Development of mathematical model
v'Design of the algorithm
v'Correctness of the algorithm

v’ Analysis of algorithm for its time and space
complexity

v Implementation

v'Program testing and debugging
v'"Documentation

Department of ATME College of Engineering




Important problem types

Sorting
Searching

String processing
Graph problems

Combinatorial problems

Geometric problems

Numerical problems

Department of ATME College of Engineering



Graph Problems

 Informal definition

- A graph is a collection of points called , some of
which are connected by line segments called

* Modeling real-life problems
- Modeling WWW
- Communication networks
- Project scheduling ...
 Examples of graph algorithms
- Graph traversal algorithms
Shortest-path algorithms
Topological sorting

Department of ATME College of Engineering



Linear Data Structures

A sequence of n items of the same
data type that are stored contiguously
in computer memory and made
accessible by specifying a value of the
array’s index.

A sequence of zero or more nodes
each containing two kinds of
information: some data and one or
more links called pointers to other
nodes of the linked list.

Singly linked list (next pointer)
Doubly linked list (next + previous
pointers)

Arrays

= fixed length (need preliminary
reservation of memory)

= contiguous memory locations

= direct access

= Insert/delete

Linked Lists

= dynamic length

= arbitrary memory locations

= access by following links
Insert/delete

al fa2 | -+




Stacks and Queues

A stack of plates

* insertion/deletion can be done only at the top.
* LIFO

Two operations (push and pop)

A queue of customers waiting for services

* Insertion/enqueue from the rear and deletion/dequeue from the
front.

* FIFO
Two operations (enqueue and dequeue)

Department of ATME College of Engineering



Priority Queue and Heap

(implemented using )

= A data structure for maintaining a set of elements, each associated
with a key/priority, with the following operations

= Finding the element with the highest priority
= Deleting the element with the highest priority

= Inserting a new element
= Scheduling jobs on a shared computer




Graphs

 Formal definition

- A graph G =<V, E> is defined by a pair of two sets: a finite set V of
items called and a set E of vertex pairs called

and graphs ( ).

* What's the maximum number of edges in an
undirected graph with |V| vertices?

and graphs

- A graph with every pair of its vertices connected by an edge is called
complete, Ky




Graph Representation

n x n boolean matrixif |V] is n.

The element on the ith row and jth column is 1 if there’s an edge from ith
vertex to the jth vertex; otherwise 0.

The adjacency matrix of an undirected graph is symmetric.

A collection of linked lists, one for each vertex, that contain all the vertices
adjacent to the list’s vertex.

*  Which data structure would you use if the graph is a 100-node star shape?

|
1
1
0




Weighted Graphs

- Graphs or digraphs with numbers assigned to the edges.

.s

Department of ATME College of Engineering



Graph Properties -- Paths and Connectivity

A path from vertex u to v of a graph G is defined as a sequence of
adjacent (connected by an edge) vertices that starts with u and ends
with v,

: All edges of a path are distinct.
Path lengths: the number of edges, or the number of vertices — 1.

A graph is said to be connected if for every pair of its vertices u and v
there is a path from u to v.

The maximum connected subgraph of a given graph.




Graph Properties -- Acyclicity

- A simple path of a positive length that starts and ends
a the same vertex.

- Agraph without cycles
(Directed Acyclic Graph)
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Trees

* Trees
- Atree (or ) is a connected acyclic graph.

- Forest: a graph that has no cycles but is not necessarily connected.
*  Properties of trees

- For every two vertices in a tree there always exists exactly one simple
path from one of these vertices to the other. Why?

: The above property makes it possible to select an arbitrary vertexin a
free tree and consider it as the root of the so called rooted tree.

* Levelsinarooted tree.

rooted

3
= |[E| = |V]-1




Rooted Trees (I)

For any vertex v in a tree T, all the vertices on the simple path
from the root to that vertex are called ancestors.

All the vertices for which a vertex v is an ancestor are said to be

descendants of v.
and

If (u, v) is the last edge of the simple path from the root to
vertex v, u is said to be the parent of vand vis called a child of

u.
Vertices that have the same parent are called siblings.

A vertex without children is called a leaf.

A vertex v with all its descendants is called the subtree of T
rooted at v.
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Rooted Trees (I)

of a vertex
- The length of the simple path from the root to the vertex.

of a tree

- The length of the longest simple path from the root to a leaf.

h=2




Ordered Trees

*  Ordered trees

An ordered tree is a rooted tree in which all the children of each vertex
are ordered.

A binary tree is an ordered tree in which every vertex has no more than
two children and each children is designated s either a left child or a
right child of its parent.

Each vertex is assigned a number.

A number assigned to each parental vertex is larger than all the

numbers in its left subtree and smaller than all the numbers in its right
subtree.

. Llogsz <h <n-1,where his the height of a binary tree and n the size.

Department of ATME College of Engineering




Computing time functions

constant
logarithmic
linear
n-log-n
quadratic
cubic
exponential

factorial




Values of some important functionsas n —» «©

n |log,n n  nlogyn n? n® 2% 12!

10 3.2 100 33100 107 10° 10° 3.6-10°
104 | 66 107 6.610° 10¢  10° 1.3.10°° 9.3.10%%7
102 | 10 100 Lo10f 109 107

104 13 104 1.3.10° 108 1014

10° 17 105  1.7.108 1010 1018

108 20) 108 20107 1012 108

Table 2.1 Values {(some approximate) of several functions important
for analysis of aleorithms

Department of ATME College of Engineering



Order of growth

* Most important: Order of growth within a
constant multiple as n—>eo

* Example:

- How much faster will the algorithm run on computer that is
twice as fast?

- How much longer does it take to solve problem of double
input size?

Department of ATME College of Engineering



Best-case, average-case, worst-case

For some algorithms efficiency depends on form of input:

 Worstcase: Cyorst(n) — maximum over inputs of size n
 Best case: Chbest(n) — minimum over inputs of size n
* Average case: C,,(n)— “average” over inputs of size n

- Number of times the basic operation will be executed on typical
input.

- NOT the average of worst and best case.

Department of ATME College of Engineering



Asymptotic order of growth

A way of comparing functions that ighores constant
factors and small input sizes

* O(g(n)): class of functions f(n) that grow no faster than g(n)

* O(g(n)): class of functions f(n) that grow at same rate as g(n)

* ()(g(n)): class of functions f(n) that grow at least as fast as g(n)

Department of ATME College of Engineering



Establishing order of growth using the definition

Definition: f(n) is in O(g(n)) if order of growth of f(n) < order of
growth of g(n) (within constant multiple),
i.e., there exist positive constant ¢ and non-negative integer ng
such that

f(n) £c g(n) for every n = ng

Example:
e 5n+2is0O(n); c=7andnpg=1

Note : The Upper Bound indicates that the function will be the worst case that it
does not consume more than this computing time.

Department of ATME College of Engineering



doesn't
matter

i
I
I
I
I
:
i

Figure 2.1 Big-oh IlDt.EII.lDIl t{n) € Ogin))
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Establishing order of growth using the definition

Definition: f(n) is in {1(g(n)) if order of growth of f(n) = order of
growth of g(n) (within constant multiple),
i.e., there exist positive constant ¢ and non-negative integer n,
such that

fln) = c g(n) for everyn 2 n,

Example:
* 5n+2isQ(n); c=5andn,=1
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Big-omega

doesn't
matter

Fig. 2.2 Big-omega notation: t(n) € X g(n))
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Establishing order of growth using the definition

Definition: f(n) is in ©(g(n)) iff there exists three positive
constants c1,c2 and ng with the constraint that c1 g(n) < f(n)
< c2 g(n) foreveryn=ng.

Example:

* 3n+2is O (n)

* ¢l g(n) <f(n)<c2g(n) for every n =2 ng

* 3n<3n+2<4n foreveryng=2,c1=3,c2=4

Department of ATME College of Engineering



Big-theta

doesn't
matter

Figure 2.3 Big-theta notation: ¢(n) € @{g(n))

Department o ATV ollege of Engineering




Properties of asymptotic order of growth

* fln) € O(f(n))

* fln) € O(g(n)) iff g(n) €Q(f(n))

* Iff(n) € O(g(n)) and g(n) € O(h(n)), then f(n) € O(h(n))

Note similarity witha <b

* If filn) € O(g1(n)) and f,(n) € O(g.(n)), then

f1(n) + f(n) € O(max{gi(n), g2(n)})

Department of ATME College of Engineering



Time efficiency of nonrecursive
algorithms

General Plan for Analysis

Decide on parameter n indicating input size

Identify algorithm’s basic operation

Determine worst, average, and best cases for input of size n

Set up a sum for the number of times the basic operation is
executed

Simplify the sum using standard formulas and rules

Department of ATME College of Engineering



Establishing order of growth using limits

0 order of growth of 7(y)) < order of growth of 4(;

lim T(n)/g(n)< ¢ >0 order of growth of r(n)= order of growth of ;I

fi—ase

c order of growth of I(n)> order of growth of (n
N

Examples:
*10n Ve, w2

- )2 vs. A2

Department of ATME College of Engineering



Example: Sequential search

Algorithm Sequential search(A[0..n-1], k)
//search for a given value in a given array by sequential search
//Input: An array A|0..n-1] and a search key k
//Output: The index of the first elements of A that matchesk or -1 if there are no
matching element. ¢ Typeequation here.

forl € 0tondo A n 1 n/2

It (Afl] == k) n 1 n/2

{

found;

break:

}

not found

Worst case - O(n) Best case - Q(n)
Average case — O(n/2)

Department of ATME College of Engineering




Example 1: Maximum element

ALGORITHM MaxElement(A[0..n — 1])

//Determines the value of the largest element in a given array
/[Input: An array A[0..n — 1] of real numbers
//Output: The value of the largest element in A
maxval < A[0]
fori < 1ton—1do

if Ali]| > maxval

maxval < Ali]

return maxval
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Analysis

1. Input parameter : n 3. -

r:‘{m=21.
i=1

2. Basic operation:
Comparison
A[i] > max

-1

Cln)= Z |=n-1€06(n)
B

Department of ATME College of Engineering



Example 2: Element uniqueness
problem

ALGORITHM UniqueElements(A[0..n — 1])

//Determines whether all the elements in a given array are distinct
/Input: An array A[0..n — 1]
//Output: Returns “true” if all the elements in A are distinct
/1 and “false™ otherwise
fori <~ Oton —2do

for j —i+1ton—1do

if A[i]= A[/] return false

return true
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Analysis

1. Input parameteris input size n

2. Basic operation: Comparison Ali] == AJj]

3.

=2 - 2 -2
Cuorse(N) Z Z l—z ”—l +1}+1J:Z{H—]—f}
1=l j=r+1 i=( 1=l
—Z[ﬂ—i}—z:—m—i]Z[—m_ )n—1)
= 1=l
(n— 2}{:: — 1} (n—n_ 1.,

=(n -, ; ) —nT E{H‘.r{n }

We also could have computed the sum Z:‘;,f{n — 1 — i) faster as follows:

il (n—1)n

an—l—:"jzm—l}+(ft—2J-é-*-'-§-I: T €0(n2

1= B
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Example 3: Matrix
multiplication

ALGORITHM MatrixMultiplication(A[O..n — 1, 0..n — 1}, B[0..n — 1. O.n — 1])
//Multiplies two n-by-n matrices by the definition-based algorithm
//Tnput: Two n-by-n matrices A and B
//Output: Matrix C = AB
fori < Oton —1do
for j «0ton - ldo
Cli. j] < 0.0
fork —Oton 1do
Cli. j] < Cli, 1+ Ali. k% B[k, j]

return C




col. J

where C|i, j]=Ali, 0180, j]+ - + Ali, k|B[k, j]+- -+ Ali,n = 1]B[n -1, j]
for every pair of indices 0 <i, j <n -1,

Department of ATME College of Engineering



Analysis

1. Input parameteris inputsize n2 X n2
2. Basic operation: Comparison Cli,j] == C|i,j] + Ali,k] * B[k,j]

3. a1
b
L={
and the total number of multiplications M(n) is expressed by the following
triple sum:

a—1 g=1 a-1

Mn)=)3 31

i=D j=0 k=0
Now, we can compute this sum by using formula (S1) and rule (R1) given

above. Starting wilh the innermost sum E:;:] 1, which is equal ton (why?), we get

a—|l a—| g—1 g—1 a—|

Min) = FFYI:YTH -.T_!'n:--n'l.

j=0) j=l) k=) i=0 j=0 i=0

€ O(n3)
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Selection Sort

Algorithm SelectionSort (A[0..n-1])

//The algorithm sorts a given array by selection sort
//Input: An array A[0..n-1] of orderable elements
//Output: Array A[0..n-1] sorted in ascending order

fori<-O0ton—2do
min < i
forj<i+1lton—-1do
if A[j] < A[min]
min < j
swap Ali] and A[min]

Time efficiency: g) eemparisens (in the Wworst case)




Solve recurrence relations
*X(n) =x(n-1) + 5 forn>1, x(1) =0
X(n) =x(n-1) + 5

X(n) = x(n-2) + 5+5
=x(n-2) + 2 *5

X(n) = x(n-3) + 3*5

X(n) = x(n-n-1) + n-1 * 5
=x(1) + (n-1) *5
= 0(n-1) =0O(n)

Department of ATME College of Engineering




Solve x(n) = 3x(n-1) for n>1, x(1) =4

x(n) = 3x(n-1)
= 3[3x(n-2)]
= 32 x(n-2)
= 33 [x(n-3)]

= 34 [x(n-4)]

1 [x(n-n-1)]
1[x(1)] =3n1[4] =4/3 * 3n

Department of ATME College of Engineering



Solve

1. X(n) = x(n/2) + n for n>1
2. T(n) =T(n/2) + T(n/2) + 3 forn> 2
T(2)=2,T(1) =1

Department of ATME College of Engineering



Plan for Analysis of Recursive
Algorithms

Decide on a parameter indicating an input’s size.
|dentify the algorithm’s basic operation.

Check whether the number of times the basic op. is executed
may vary on different inputs of the same size. (If it may, the
worst, average, and best cases must be investigated
separately.)

Set up a recurrence relation with an appropriate initial
condition expressing the number of times the basic op. is
executed.

Solve the recurrence (or, at the very least, establish its
solution’s order of growth) by backward substitutions or
another method.

Department of ATME College of Engineering




Example 1: Recursive evaluation of

n!
Definition:n!=1%2* ... %(n-1) *n forn21 and
0l=1
Recursive definition of n!: F(n) = F(n-1) * n forn 2
1 and

F(0) = 1

ALGORITHM F(n)
. /[[Computes n! recursively
Size: /[Input: A nonnegative integer n
Basic operation: //Output: The value of n!

. - — ]
Recurrence relation; ~ r=Uretuml
else return F(n — 1) xn
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Solving the recurrence for M(n)

M(n) = M(n-1) +1, M(0)=0
Refer Notes

Department of ATME College of Engineering



Tower of Hanoi Problem

* In this problem, we have n disks of different sizes and
three pegs.

* |nitially, all the disks are on the first peg in order of
size, the largest on the bottom and the smallest on
top.

* The goal is to move all the disks to the third peg,
using the second one as an auxiliary if necessary.

* We can move only one disk at a time, and it is

forbidden to place a larger disk on top of a smaller
one.

Department of ATME College of Engineering




Example 2: The Tower of Hanoi
Puzzle

—

Raeurrsrics jor numaar of mmovas:




Algorithm : TOH (n, §, T, D)

/| Solving Tower of Hanoi Problems
// Input : Number of discs n

/1 Output : The sequence of movements.
{

ifn>0

{
H (n-1, S, D, 7);
move disk from 8 to D
o8 {n-1,7 8D
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Solving recurrence for number of

M(n) =2M(n-1) + 1, M(0) = CmOveS
2[2M(n-2)+1]+1

2°M(n-2) +2 +1
2° [2M(n-3) +1]+2 +1
23 M(n-3) + 22+2 +1

2" M(n-n) + 2™ +202 4+ 2242 +1

Standard formula used is G.P sequence
alr—1)

r— 1

(142422422024 201) =

Here a=1 and r=2 => 0O(2")

Department of ATME College of Engineering




Tree of calls for the Tower of Hanoi

Department of ATME College of Engineering



Fibonacci numbers

The Fibonacci numbers:
0,1,1,2,3,5,8,13, 21, ...

The Fibonacci algorithm (recursive )
Fib(n)
{
If n<=1
return n

Else
Return F(n-1) + F(n-2)

Department of ATME College of Engineering



*The recurrence equation for this problem is:
T(n) = T(n-1) + T(n-2) for n>1 and the initial
conditions are T(0) =0, T(1) =1

Solution to recurrence relation:

T(n) = T(n-1) + T(n-2)

T(n) —=T(n-1) =T(n-2) =0

This is of the form ax(n) +bx(n-1) +cx(n-2) =0

Which is a homogeneous second order linear

rE|at|On Wlt Dq9.ast‘r.;|1-ofl$m B> In&ftﬁgﬁ-?[g@%@i’gwﬁ@ﬁng



* Wherea=1, b=-1, c=-1
Consider it as a quadratic equation

ar’+br+c=0

Then the roots of the equation
rr—r—1=0

r1,2 = (1+ V5)/2

These roots rl and r2 are real and distinct.

The reciirrence relation can he siven as

Department of ATME College of Engineering



T(n)=ocr,® + Br,”

T(n)=o [(L4+ V5)/2 1" +B[(1 — V5)/2 ]

Substituting T(0) =0

=oc [(14 V5)/21°+B[(1 = V5)/2]°
=xX=-F orPp=—-—«
T(1) =1

o [(L+ V5)/2 1 +B[(1L = V5)/2 " -1

x = 1/7/5% and R= —1 /-/§




Little oh Notation (o)

* The asymptotic upper bound provided by O-
notation may or may not be asymptotically
tight. The bound 2n2 = O(n2) is asymptotically
tight but the bound 2n = o(n2) is not.

We use o-notation to denote an upper bound
that is not asymptotically tight

* f(n) = o(g(n)); f(n) is equal to the little oh of
g(n), iff f(n) < ¢, g(n) for any +ve constant c>0,
no>0 and n>no
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Establishing order of growth using limits

0 order of growth of 7(y)) < order of growth of 4(;

lim T(n)/g(n)< ¢ >0 order of growth of r(n)= order of growth of ;I

fi—ase

c order of growth of I(n)> order of growth of (n

N

Examples:
*10n

Department of ATME College of Engineering



Property of the Asymptotic Notations

1.Theorem :If t1(n) € O(g1(n)) and t2(n) €
O(g2(n)), then

tl(n) + t2(n) € O(max{gl(n), (g2(n)})

2.Theorem: If f(n)=a, nm+----+a; n+agand
am >0, then f(n) = O(nm)

Department of ATME College of Engineering



Brute Force

A straightforward approach, usually based directly on the
problem’s statement and definitions of the concepts involved

Examples:

1. Computing an(a > 0, n a nonnegative integer)
2. Computingn!

3. Multiplying two matrices

4. Searching for a key of a given value in a list

Department of ATME College of Engineering



Brute-Force Sorting Algorithm

Selection Sort Scan the array to find its smallest element and
swap it with the first element. Then, starting with the second
element, scan the elements to the right of it to find the
smallest among them and swap it with the second elements.
Generally, on passi (0 < i< n-2), find the smallest element in
Ali..n-1] and swap it with A[/]:

Al0] < . . . <A[i-1] ’er[i]" : .,A[min],./r. ., A[n-1]

in their final positions

Example:7 3 2 5

Department of ATME College of Engineering



Analysis of Selection Sort

ALGORITHM SelectionSort(A[0..n — 1])

/[Sorts a given array by selection sort
/[Input: An array A[0..n — 1] of orderable elements
//Output: Array A[0..n — 1] sorted in ascending order
fori < 0Oton —2do

min < i

for j < i+1ton—1do

if A[j] < A[min] min « j
swap A[i] and A[min]

Time efficiency: ©(n*2)

In place: Yes

Stability: yes




Brute-Force String Matching

e pattern: a string of m characters to search for

e text:a (longer) string of n characters to search in
* problem: find a substring in the text that matches the pattern

Brute-force algorithm

Step 1 Align pattern at beginning of text

Step 2 Moving from left to right, compare each character of
pattern to the corresponding character in text until
e all characters are found to match (successful search); or
* amismatch is detected

Step 3 While pattern is not found and the text is not yet
exhausted, realign pattern one position to the right and
repeat Step 2
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Examples of Brute-Force String Matching

1. Pattern: 001011
Text: 10010101101001100101111010

2. Pattern: happy
Text: It 1s never too late to have a

happy childhood.
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Pseudocode and Efficiency

ALGORITHM BruteForceStringMatch(T[0..n — 1], P[0..m — 1])

//Implements brute-force string matching
/Input: An array T [0..n — 1] of n characters representing a text and

/I an array P[0..m — 1] of m characters representing a pattern
//Output: The index of the first character in the text that starts a

/] matching substring or —1 if the search is unsuccessful
fori <~ Oton —mdo

j <0
while j <m and P[j]=T][i + j]do
j4i+1
if j = m return |
return —1

Tlme efflClenCV- ®(mn) compzarisons (in tha warst 2asa)




Brute-Force Strengths and
Weaknesses

e Strengths
- wide applicability
- simplicity
- vyields reasonable algorithms for some important problems

(e.g., matrix multiplication, sorting, searching, string
matching)

e \WWeaknesses

- rarely yields efficient algorithms
- some brute-force algorithms are unacceptably slow
- not as constructive as some other design techniques
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MODULE -2

DIVIDE AND CONQUER

introduction to The DESigﬂ &

Analysis of tnlforithms
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Divide-and-Conquer

The most-well known algorithm design strategy

1. Divide instance of problem into two or more
smaller instances

2. Solve smaller instances recursively

3. Obtain solution to original (larger) instance by
combining these solutions
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Divide and conquer involves three steps,
at each level of recursion.

* Divide: Divide the problem into a number of
sub problems

Conquer: Conquer the sub problems by

solving them recursively. If the sub — problem
sizes are small enough, then solve the sub-
problem in a straight forward manner.

e Combine: combine the solutions to the sub-
problems to get the solution to the original
problem.
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Divide-and-Conquer Technique (cont.)

subproblem 1
of size n/2

a solution to
subproblem 1

a problem of size n

subproblem 2
of size n/2

a solution to
subproblem 2

T(n) = @ TQw/) * [ @n)
where fin) € O(n9), d20

a solution to In general leads to a
the original problem . .
recursive algorithm!




Divide-and-Conquer Examples

Sorting: merge sort and quicksort

Finding min and max element in an array
Binary search

Multiplication of large integers

Matrix multiplication: Strassen’s algorithm
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General Divide-and-Conquer Recurience

T(n) = aT(wh) + f(m) where f(n) € ), d>0

Master Theovem: Ifa<bd4 T(n) < ()
Wa=b, T(n)e m'logm)

Ha>by Tin) < ROSHY))

Note: The same results hold wiiilh © insteadi off @),
0(n*2)
Fsanpies: 7)) =T D) +m = M)<? e(n*2log n)
Ky =4l@iD) + w2 W) e? g ag
) =4M@ D)+ m®=> M) = ?
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Merge Sort Algorithm

Mergesort(low, high)
//Given an array A of n elements. This algorithm sorts the elements in
//ascending order. The variables low and high are used to identify the

//positions of first and last element in each partition.
If (low< high)
mid = (low+high)/2;

Mergesort (low,mid);
Mergesort(mid+1,high);
Merge(low,mid,high);
End if
Exit
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Merge Algorithm

Merge(low, mid, high)

/ The variables low, mid, and high are used to identify the
portions of elements in each partition.

1. |Initialize i=low, j= mid+1, h=low;
2. while ((h <= mid) && (j <= high))
3. if(a[h]<alj])

b[i++] = a[h++];
else
b[i++] = a[j++];
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Cont...

if (h > mid)
for(k = j; k <= high; k++)
b[i++] = a[k];
else
for (k = h; k <= mid; k++)
b[i++] = a[k];
for (k = low; k <= high; k++)
a[k] = b[k];
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Mergesort

e Split array A[0..n-1] into about equal halves and make
copies of each half in arrays B and C

* Sort arrays B and C recursively

 Merge sorted arrays B and C into array A as follows:

- Repeat the following until no elements remain in one of the arrays:
e compare the first elements in the remaining unprocessed portions
of the arrays
* copy the smaller of the two into A, while incrementing the index
indicating the unprocessed portion of that array

- Once all elements in one of the arrays are processed, copy the
remaining unprocessed elements from the other array into A.
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Mergesort Example

8329

/N /\
/\ /\ /\ /\

VARVARVARY
NS NS

2389




Analysis of Mergesort

ifn=1
otherwise
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All cases have same efficiency: ©(n log n)

Number of comparisons in the worst case is
close to theoretical minimum for comparison-

based sorting:
|_Iog2 n!—| = nlogyn -1.44n
Space requirement: ©(n) (not in-place)

Can be implemented without recursion
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Quicksort

* Select a pivot (partitioning element) — as the first element

Ali]zp
Exchange the pivot with the last element in the first (i.e., <)
subarray — the pivot is now in its final position

Sort the two subarrays recursively

Note : Invented b




Quick Sort Algorithm

Quick sort(low, high)

// A is an array of elements.

// The variables low and high are used to identify the positions of first and
// last elements in each partition.

If(low< high) then
J= partition(low, high)
Quick sort( low, j-1)
Quick sort(j+1, high)
End if
Exit
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Partition Algorithm
Partition(low, high)

//This procedure partitions the element into two lists and places the pivot
//element into a appropriate place. Low = first element of the array, high =
//last element of the array, a[low] = pivot.

Step 1. Set pivot = aflow];
i=low +1;

J = high;
Step 2. Repeat step 3 while (afi] < pivot && i < high)

Step 3. i++;
Step 4. Repeat step 5 while (a[j] > pivot)
Step 5. j--;
Step 6. If(i<j)
swap afi] and a[j]
go to step 2
else

swap a[j] and piva
Department of CSE = ATME College of Engineering

Step 7. Return (j)




Quicksort Example

53198247
23145897
1234 729

4
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Analysis of Quicksort

Best case: split in the middle — ©(n log n)
Worst case: sorted array! — ©(n2) T(n) = T(A=1) + Q(m)

Average case: random arrays — ©O(n log n)

Improvements:

- better pivot selection: median of three partitioning
- switch to insertion sort on small subfiles

- elimination of recursion

These combine to 20-25% improvement

Considered the method of choice for internal sorting of large
files (n =10000)
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Binary Search

Algorithm Binary_Search( A[O...n-1], Key)

Input: Given an array of n elements in sorted order and key is an element to be
searched.

Output: Returns the position of key element, if successful and returns -1
otherwise.

1. Setfirst =0, last =n-1
2. W h il e (f i r s t
mid = (first +last) / 2
if (key == A[mid])
return (mid+1); // successful
else if ( key < A[mid] )
last = mid -1
else
first = mid+1
end while
return -1 // unsuccessful
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Analysis

Best Case: Best case occurs, when we are
searching the middle element itself. In that case,
total number of comparisons required is 1. there

fore best case time complexity of binary search
is Q(1).

Worst Case: Let T(n) be the cost involved to
search ‘n’ elements. Let T(n/2) be the cost
involved to search either left part or the right
part of an array.
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Analysis

p—

a if n=1
T(n/2) + b otherwise

T(n/2) = Time required to search either the left
part or the right part of the array.

b =2 Time required to compare the middle element.

Where a and b are some positive integer constants.
T(n) = O(log 2n )
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Analysis

Average Case:

The average case occurs when an element is found some where
in the recursive calls, but not till the recursive call ends.

The average number of key comparisons made by binary search
is only slightly smaller than that in this worst case.

T(n) =log,n

The average number of comparison in a successful search is
T(n)=log,n-1

The average number of comparison in a unsuccessful search is
T(n)=logn+1

Department of ATME College of Engineering



Algorithm for straight forward maximum and
minimum

StraightMaxMin(a,n,max,min)
// set max to the maximum and min to the minimum of a[1:n].

{
max := min :=a[l];
fori:=2tondo
{
if(a[i] > max) then max := ali];
if(a[i] < min) then min := a[i];
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Analysis

* This algorithm requires 2(n-1) element

comparisons in the best, average, and worst
cases.

Now the Best case occurs when the elements
are in increasing order. The number of
element comparisons is n-1.

* The worst case occurs when the element are
in decreasing order. In this case number of
comparisons is 2(n-1).
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Finding maximum and minimum using
divide and conquer technique

Algorithm max_min(i, j, max, min)

{

// Input: a[1:n] is a global array. Parameters i and j
are integers, 1<=i <= j<=n.

// output: to set max and min to the largest and
smallest values in ali: j], respectively.

If (i ==j) then // Small(P)
{ max = min € A[i];
}
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else if (i=j-1) then // Another case of Small(P)
{

if (A[i] < A[j]) then
{
max < A[j]
min < Ali]

}

else

{
max < Ali]

min < Alj]




else

{

// if P is not small, divide P into sub problems. //
Find where to split the set

mid := (i+j)/2;
// Solve the sub problems.

max_min(i,mid,max,min);
max_min(mid+1, j, max1,min1);
// Combine the solutions
if( max < max1) then max := max1;
if( min > minl) then min:= min1;

}




Analysis

0
T(n)= _J1
T(n/2) + T(n/2) + 2

“—

When n is a power of two, n = 2k for some positive integer k, then
T(n) =2T(n/2) + 2
=2T(2x1) ) + 2
=2(2T(2x2) + 2) + 2
= 22T(2x2) + 22 + 2
= 23T(2x3) + 23+ 22 + 2

= 2k-1 T(2k-(k-1)) + 2k2 4+ 2k14- - - + 21
= 2kl 4 2k2+- - - +21
=2.(2x1—=1)/ 2-1 = 0O(n)
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Multiplication of Large Integers

Consider the problem of multiplying two (large) n-digit integers
represented by arrays of their digits such as:

A =12345678901357986429 B =87654321284820912836

The grade-school algorithm:

(d20) d21d22 ... dan

(an) dnldnz dnn

Efficiency: ©(n2) single-digit multiplications
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First Divide-and-Conquer
Algorithm

A small example: A = B where A=2135and B=4014
A=(21-102+35), B=(40-102+ 14)
So,A B=(21-102+35) (40-102+ 14)

=21 40-104+(21 14+35 40)-102+35 14

In general, if A= AjA,and B =B;B, (where A and B are n-digit,

A1, A,, By, B, are n/2-digit numbers),
A B=A; By10n+ (A1 B,+ A, Bl) 1002+ A, B,
Recurrence for the number of one-digit multiplications M(n):

M(n) =4M(n/2), M(1)=1
Solution: M(n) = n2
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Second Divide-and-Conquer
Algorithm

A*B=A;*B;-10n+ (Ag* Bo+ Ay * By) -1072+ A, * B,

The idea is to decrease the number of multiplications from 4 to 3:
(A1+A2 ) * (Bl+ Bz)=A1 Bl+(A1>X< Bz+A2>’< Bl)+A2 Bz’

l.e., (A1# Ba+Ay* Bg)=(A1+A;) *(B1+B2)-A1 Bi-Ay By

which requires only 3 multiplications at the expense of (4-1) extra
add/sub.

Recurrence for the number of multiplications M(n):
M(n) =3M(n/2), M(1)=1
Solution: M(n) = 3log 2n = Nlog 23 = N1.585
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Example of Large-Integer
Multiplication

2138 <4014

= (21*1072 + 35) * (40*10"2 + 14)
= (21 40)*10™ + c1*10"2+ 35 14
where c1 = (21+35)%(40+14) - 21 40-35 14, and
21*40=2*10+ 1) * (4*10 + 0)
=2 4)*10M2+c2*10+1 0
where c2 = (2+1)%(4+0)-2 4 -1 0, etc.
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Matrix Multiplication

Brute-force algorithm

C11 C12

C21 Cx2

ai1*¥byp t an ¥ by a1l *byy tan * b

321* b11 +ax * l:)21 321* b12 + a * l:)22

4 additions
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Strassen’s Matrix Multiplication

Strassen’s algorithm for two 2x2 matrices (1969):

Ci1 Ci2 di1  di12 b1 b
d21 d2 b1 b2

Cl=E +1 +J-G C2=D+G

C3=E+F CA=D +H +J-F
D = Al1(B2 — B4)
E =A4( B3 -B1)
F = (A3 + A4) B1
G=(A1+A2)B4 _
H=(A3-A1)(B1+B2)
| = (A2 — A4) (B3 +B4) 18 additions
J=(A1 +A4)(B1 +B4)




Strassen’s Matrix Multiplication

A={1
3

Al=1,A2=2,A3=3,A4=4
B1=1,B2=2,B3=2,B4=2

1. D=A1(B2-B4) =1(1-2)=-1
2. E=A4(B3-B1)=4(2-1)=4

3. F=(A3+A4)B1=(3+4)1=7
4. G=(A1+A2)B4=(1+2)2 =6
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5. H = (A3 —A1) (B1 + B2) = (3-1)(1+1) = 4
6.1= (A2 — A4)(B3+B4) = (2-4)(2+2) = -8
7.1 = (A1+A4)(B1+B4) = (1+4)(1+2) = 15

Cl =E +l+J-G = 4+(-8) +15-6 =5
C2=D+G=-1+6=5
C3=E+F=4+7=11
C4=D+H+J-F=-1+4+15-7=11
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Strassen’s Matrix Multiplication

Strassen observed [1969] that the product of two
matrices can be computed in general as follows:

)

Cio Ci1 Ap A; Bio Bi1

M; +My, - Mg+ M-

|V|2+|V|4




Formulas for Strassen’s Algorithm

Mj = (Ago + A11) * (Boo + B11)
Mj = (A10+ A11) * Bgo

M3 = Ago * (Bo1 - B11)

Ms = A1z * (B1o - Boo)

Ms = (Ago + Ao1) * Bis

Mg = (A10 - Aoo) * (Boo + Bo1)

M7 = (Ao1 - A11) * (B1o + B11)
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-

Ms = Ai1 % (B1o - Boo)
=4%(2-1) = 4

/BOO\ BO1
Ms = (Ao + Ao1) * B
1 =(1+2)*2 = 6

Ms = (A10 - Aoo) * (Boo + Bo1)

4 2 =(3-1)*(1+1)=4

-~ J N J L )

A10 A1 B10 pg11 M7 = (Ao1 - A11) * (B1o + B11)
=(2-4)*(2+2)=-8

M1 = (Ago + A11) * (Boo + Bi1)

=(1+4)7(1+2) =15 CO00 CO1
N

Ml +M4-M5+M7

M, = (Aqo +A11% *Boo [

=(3+4)" {

=7
M, + My
M =_'°1‘og * (Bgy - B1q) {

1-2) =-1
1-2) C10
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-

4

-~
A10 A1

J

Ms = Ai1* (B1o - Boo)
=4%(1-5) = -16

BOO BO1
)

5

1

-

B10

Ms = (Ao + Ao1) * B
=@2+1)*2 = 6

Mes = (A10 - Aoo) * (Boo + Bo1)
=(3-2)*(5+2)=7

PN Y,

B11 M7 = (Aot - A11) * (B1o + B11)
=(1-4)*(1+2)=-9

M1 = (Ago + A11) * (Boo + Bi1)
=(2+4)"(5+2) =42 C00 CO1

\

{Ml + M4- M5+ M7

{ M, + My

C10

_/
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71021
4110

0130
5021

- /

A1 A2

- N
10

41
- J
r R

01

50
\ J
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1.D =A1 (B2 - B4)

Lo 01
* — | 04
41

—

HEH

2. E =A4 (B3- B1)
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Analysis of Strassen’s Algorithm

If nis not a power of 2, matrices can be padded with zeros.

Number of multiplications:
M(n)=7M(n/2), M(1)=1
M(n) =7M(2 k1)
=7[7M(2 k2)] =7 2 M(2 k2)]
=7KM(2 k)] =7k (1)

Solution: M(n) = 7'%e; =N, . 2,= N, 45, Vs. n,of brute-force alg.
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Advantages and Disadvantages

* Difficult problems is broken down into sub
problems and each sub problem is solved
independently.

* |t gives efficient algorithms like quick sort,
merge sort, streassen’s matrix multiplication.

Sub problems can be executed on parallel
Processor.

Disadvantage

|t makes use of recursive methods and the
recursion is slow and complex.
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Decrease-and-Conquer

The decrease and conquer technique is almost similar to the
divide and conquer technique, but instead of dividing the

problem into size n/2, it is decremented by a constant or
constant factor.

There are three variations of decrease and conquer
 Decrease by a constant

 Decrease by a constant factor

e \Variable size decrease

The problems can be solved either top down (recursively) or
bottom up ( without recursion)
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Decrease by a constant

* |n this type of variation, the size of an instance
is reduced by the same constant ‘1’ on each
iteration. So, if a problem is of size ‘n’, then a
sub problem of size ‘n-1" is solved first but
before a sub sub problem of size ‘n-2’ is solved

and so on.
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Decrease by a constant

Problem of Size n

n-1

Sub Problem of Size (n- 1)

(n-2)

\ 4
Solution to sub problem

v

Solution to the Original

Problem
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Decrease by a constant

Example: Consider a problem for computing a »
where n is a positive integer exponent

Let f(n)=an
an=agnl, 3

— -2
dn<s.d.d F(n){f(n-l).aifml

=an3.a.a.a a ifn=1

=3.4a.a.a...ntimes

The above definition is a recursive definition i.e, a top down approach

Eg: Insertion sort, Depth First Search, Breath First Search,
Topological Sc




Decrease by a constant factor

* In this type of variation, the size of instance is
reduced by a constant factor on each iteration
(most of the case it is 2).

* So, if a problem of size ‘n’ is to be solved then
first the sub problem of size n/2 is to be solved
which in-turn requires the solution for the sub
sub problem n/4 and so on.
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Decrease by a constant factor

‘I( Problem of Size n

1 n/2

Sub Problem of Silze (n/2)

(n/4)

\ 4
Solution to sub problem

Solution to the Original

Problem
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Decrease by a constant factor

Example: Consider a problem for computing an

As the problem is to be halved each time (Since

the constant factor is 2, to solve a n. first solve an/2
, but before solve an/4 and so on.

—

(an/2)2 if nisevenand > 1
(an-1/2) 2 if nisodd and > 1

a ifn=1

—

Department of ATME College of Engineering



Decrease by a constant factor

The efficiency of this variation i.e decrease by a
constant factor is O(log n) because, the size is
reduced by at least one half at the expense of

no more than two multiplications on each
iteration

Eg: Binary search and the method of bisection,
Fake coin problem
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Variable size decrease

In this type, the reduction in the size of the
problem instance is varied from one iteration to
another.

Eg: Euclid’s algorithm for computing
GCD of two nos.
gcd (m,n) ={gcd (h, mmodn) ifn>0

m if n=0

Eg: Computing a median, Interpolation Search
and Binary Search Tree
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DAGs and Topological Sorting

A dag: a directed acyclic graph, i.e. a directed graph with no
(directed) cycles

B P
» . <

Arise in modeling many problems that involve prerequisite
constraints (construction projects, document version control)

Vertices of a dag can be linearly ordered so that for every edge its
starting vertex is listed before its ending vertex (topological
sorting). Being a dag is also a necessary condition for topological

sorting to be pQ
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Topological Sorting Example
Order the following items in a food chain
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DFS-based Algorithm

DFS-based algorithm for topological sorting

- Perform DFS traversal, noting the order vertices
are popped off the traversal stack

- Reverse order solves topological sorting problem
- Back edges encountered?—> NOT a dag!

Example:

QNS
o0 0 0
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Source Removal Algorithm

Repeatedly identify and remove a source (a vertex with no
incoming edges) and all the edges incident to it until either no
vertex is left or there is no source among the remaining
vertices (not a dag)

O —0

NN

Efficiency: same as efficiency of the DFS-based algorithm, but how would you
identify a source? How do you remove a source from the dag?

Example 2 G\G/Q
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Source Removal Algorithm

Topological Sort(G)

. Find the indegree INDG(n) of each node n of
G.

. Putin a queue Q all the nodes with zero
indegree.

. Repeat step 4 and 5 until G becomes empty.

4. Repeat the element n of the queue Q and
add it to T (Set Front = Front +1).

Department of ATME College of Engineering



Source Removal Algorithm

5.Repeat the following for each neighbour, m of
the node n

a) Set INDEG(m) = INDG(m)-1
b) If INDEG(m) = 0 then add m to the rear end
of the Q.

6. Exit.

Note: For Problems refer class notes
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MODULE -3

GREEDY METHOD

introduction to The DESigﬂ &

Analysis of tnlforithms
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Greedy Method

Approach for Solving problem

Used for Solving Optimization Problem

Optimization Problem : Problems which demands
minimum/maximum results

Example:

Minimum cost

A -B

SI S2 S3 S4 S5

Optimal solﬁt{on\\“k‘ easible solutions

There will be only one minimum solution




Strategies used for Optimization
Problem

* Greedy Method
* Dynamic Programming

 Branch and Bound
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Greedy Technique

sequence of steps, each step expanding a partiall
constructed solution obtained so far, until a complet
solution to the problem is reached.

Greedy algorithms, construct a solution through aZI

> feasible -it has to satisfy the problem s constraints

> locally optimal - it has to be the best local choice
among all feasible choices available on that step

> irrevocable - once made, it cannot be changed on
subsequent steps of the algorithm
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General method control abstraction

Algorithm Greedy(a, n)
// a[l..n] contains the ‘n’ inputs

{

Solution :=0;  //Initialize the solution

fori:=1tondo

{
X : =Select(a);
If Feasible(Solution, x) then
Solution:= Union(Solution, x);

}
Return Solution;

)
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Applications of the Greedy Strategy

Optimal solutions:
change making for “normal” coin denominations
minimum spanning tree (MST)
single-source shortest paths
simple scheduling problems

Huffman codes

Approximations/heuristics:

- traveling salesman problem (TSP)
- knapsack problem
- other combinatorial optimization problems




Differences b/w Divide and conquer and greedy
Method

Divide and conquer

Greedy algorithm

obtain a solution to given g
problem.

Greedy method is used to obtain
optimum solution.

In this technique, the problem is
divided into small subl;rnblems.
These subproblems are solved
independently. Finally all the
solutions of subproblems are
collected together to get the
solution to the given problem.

In greéd}r:meﬂinﬂ a set of feasible
solution is generated and optimum

. solution is picked up.

In this method, duplications in

means duplicate solutions may

Divide and conquer is less
efficient because of rework on
solutions.




Change-Making Problem

Problem Statement: Given coins of several denominations

find out a way to give a customer an amount with fewest
number of coins.

Example: 1f denominations are 1,5,10, 25 and 100 and the
change required 1s 30, the solutions are,

Amount : 30

Solutions : 3 x 10 ( 3 coins )
6x5 (6cos)
1 x25+5x1(6coins)
1 x25+1x5(2coins)

The last solution 1s the optimal one as it gives us change only with 2

Co1ns. Department of CSE | ATME College of Engineering




Change-Making Problem

Given unlimited amounts of coins of denominations d; > ... >d,,
give change for amount n with the least number of coins

Example: di=25c, d2=10c, d;=5c, d;,=1c and n=48c

Greedy solution is optimal for any amount and “normal” set of
denominations

Solution: <1, 2, 0, 3>




cashier’s Algorithm

Algorithm coinchange() {25 10 1} for 30c
//Input: Denomination d[1] > d[2] > Y

d*3+... d*n+ | n=3, C:30

//Amount to obtain change - C * ot [1) > 30|d[) = 3]s = |
// Output: The optimal number of i C=CJafi): 4255
coins for change of C, is stored in '
CoinsJi]

i:‘i Cﬁﬁ-[:,]: Eld[;]: 5)1G=0
- ¢ 1.9 5Wo=S
fori < 1tondo c: ¢ ol \

{ i (=3 A E 5= 5
Coinsl[i] = C/d[i]; oz 64130
C = € mod d[i] ¢
Print coins|[i]

}




Change-Making Problem

For example, dI = 25c,d2 =10c, d3 = 1c, and n = 30c

Solution: <1, 0, 5>

May not be optimal for all denominations




Knapsack Problem
(Fractional knapsack problem)

Given n objects and a knapsack or bag. Object 1 has a
weight wi and the knapsack has a capacity m. if the
fraction Xi, 0<=Xi1<=1, of object 1 1s placed into thg
knapsack, then a profit of P1*X1 1s earned.

The objective 1s to maximize the total profit earned.
Since the knapsack capacity 1s m, we require the total
weight of all chosen objects to be at most m.




Knapsack Problem - 1

Obtain the optimal solution for the knapsack
problem wusing greedy method given the
following:

M =15

n=7/

pl,p2,p3,p4,p5,p6,p7 = 10,5,15,7,6,18,3
wlw2,w3,w4 w5 wébw/=2,3,5,7,1,4,1
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3

—

There are several greedy methods to obtain the feasible solutions.
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Pt (7i)

—

1%
15
|0

HX)= 4

—

ts= K7 Solution Ve 1,4/7,0,1,0)= (1, 0,1, 0.57,0,1,0)

ik N

solution using this methoc 3,%4,x5,x6,x7) = (1, 0,1, 0.57,0,1,0)

with profit = 47
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ﬂs—”‘fj - Jead Objed pith ynfmum Mdahf (i)
- ks

Dbjtl.! 1P ]J&’@h! (1) %_m{};m'na mahf

-..._____‘____

o - |5
1 15-1=1y

I4-1=13
13-9= I

‘ l1-3=8
e
“ B~z

--"""———.‘_FE_-___H | Rl
Profits = - Solution Vector = (1, 1,4/5,0,1,1,1)= (1, 1,0.8,0,1,1,1)

Optimal solution using this method is (x1, x2, x3,x4,x5,x6,x7) = (1, 1,0.8,0,1,1,1)
with profit = 54
Optimal solution is not guaranteed using method 1 and 2
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| (5 = |y

o 4= =

| @ 4 Ja-U:- &
5 g-5:3
| 3=] =

|5

A

2

1 3
i o9X 1 63 3-3ﬂ' Ny 230

Profits = [ 55-34] Solution Vector = (1,(2/3,1,0, 1,1,1)= (1, 0.67,1,0, 1,1,1)

Optimal solution is (x1, x2, x3,x4,x5,x6,x7) = (1, 0.67,1,0, 1,1,1)
with profit [1*10+0.67*5+1*15+0*7+1*6+1*18+1*3]= 55.34
Weight=[1*2+0.67*3+1*5+0*7+1*1+1*4+1*1]=15
This greedy approach always results optimal solution
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Knapsack Problem
(Fractional knapsack problem)

Given n objects and a knapsack or bag. Object 1 has a
weight wi and the knapsack has a capacity m. if the
fraction Xi, 0<=Xi1<=1, of object 1 1s placed into thg
knapsack, then a profit of P1*X1 1s earned.

The objective 1s to maximize the total profit earned.
Since the knapsack capacity 1s m, we require the total
weight of all chosen objects to be at most m.




Knapsack problem

Maximize )1 cj<pn PiXi
Subject t0 ) 1<j<, WIXi < m

The profits and weights are positive numbers.
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Knapsack Algorithm

Algorithm Greedy Knapsack(m,n)

//p[1:n] and w[1:n] contain the profits and weights respectively, of the n
objects ordered such that p[1]/w[1] >= p[1+]1]/w[i+1].

// m 1s the knapsack size and x[1:n] is the solution vector

{

fori:=1to n do x[i] := 0.0; //Initialize x
U:= m;//sack capacity
fori:=1tondo

{
if (W[i] > U) then break; // weight of an object is greater than sack capacity
x[i] := 1.0; U:=U-wli];

}

If(i<=n) then x[i]:=U/wl[i];

}

Analysis: Disregarding the time to initially sort the object, each
of the above strategies use O(n) time
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Problem - 2

Obtain the optimal solution for the knapsack
problem using greedy method given the
following:

M=40 : n=3

wl,w2,w3 =20,25,10
pl,p2,p2 =30,40,35
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Job Sequencing with Deadline

Given an array of jobs where every job has a deadline
and associated profit, the job is to be finished before
the deadline. It is also given that every job takes
single unit of time. So the minimum possible deadline

for any job is 1. the objective is to maximize total profit)
provided only one job can be scheduled at a time.
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Problem 1

For the following sequence of job, give the snapshot of
execution which will achieve maximum profit.

Jobs n=>5

pl,p2,p3,p4.p5 =20,15,10,1,6
d1,d2,d3,d4,d5= 2, 2, 1, 3,3
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Job Sequencing with Deadline

Algorithm GreedyJob(d. J,n)

/] J is a set of jobs that can be completed by their deadlines,

J = {l};
for i:=2tondo

{

if (all jobs in J U {1} can he completed
by their deadlines) then J := J U {i};
}

}

Analysis:The computing time taken by this algorithmis O(n?)
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Minimum Spanning Tree (MST)

Spanning tree of a connected graph G: a connected acyclic
subgraph of G that includes all of G’s vertices

A AL
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Minimum spanning tree of a weighted, connected graph G: a
spanning tree of G of the minimum total weight

Example:

6‘ 6
4 | 4 1
) 2
3 @

COST=11




O—C

2

OgmO @%@ 0 @

graph wiTy) = s wil)) =9 wiTy =8

Graph and its spanning trees, with T, being the minimum spanning tree.

Note: MST of graph with n vertices will have exactly n-1 edges
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Minimum Cost spanning Tree
algorithms

* Prim’s algorithm
* Kruskal’s algorithm
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MST — Prim’s algorithm

Prims Algorithm
Example

Prims Algor
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Algorithm Prim(G)
Vit € {v0} //Set of visited vertices

Et & *
foric-1to|V| -1do

find minimum edge e between
vertices v and u such thatV is in Vit and
uisin V-Vt

//Add u to Vt
Vit & Vt U {u]
f/Add the edge to the spanning tree
Et € Et U {e)

Prims Algorithm
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bia, 3)

c(f, 5)

Remaining vertices

bia. 3) c{—. oo) di{—, oc)
e(a, 6) fi(a, 5)

cib, 1) d(—, oo) e{a, 6)
fib, 4)

dic. 6) e(a, 6) b, 4)

d(f, 5) ef, 2)

Hlustration
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Efficiency

> The time efficiency of depends on the data
structures used for implementing the priority
queue and for representing the input graph.

> Since we have implemented using weighted

matrix and unordered array, the efficiency is
o(|vz]).

> |If we implement using adjacency list and the
priority queue for min-heap, the efficiency is
O(|E]log]|V]).

ATME College of Engineering



Kruskal’s algorithm

Kruskal's algorithm findS MST of a weighted
connected graph G=<V,E> as an acyclic subgraph

with |[V| - 1 edges. Sum of all the edges weight
should be minimum.

The algorithm begins by sorting the graph’s
edges in increasing order of their weights.

Then it scans this sorted list starting with the|
empty sub graph and it adds the next edge on|
the list to the current sub graph, if such an
inclusion doesn’t create a cycle and simply
skipping the edges.

Departmentof CSE | ARMRE=Golsge



Brute Fore way:

There are 16 possibilites.
List out all possibilites
and choose the smallest

| /
1/
O===0

Kruskal’s Algorithm
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Kruskal’s Algorithm
Example

be ¢f ab b of of df ac o de
i 3 5 5

4 4

l B 6 XN
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Edge Lengths JAlgorithm Kruskal (G)
l?r—)c 1
f=>e
a=>b
b=>f
c=>f
a=>f
c=2>f
a=vre
c=>d
e=>d

Sort E in ascending order of weights
Et € 0 //no edges selected
encounter € 0 //no of edges selected
k€0
while encounter< |V| -1
k€ k+1
if Et U {eik} is acyclic
Et € Et U {eik)
encounter += 1

co OO UL & & WN

return Et

Kruskal’s Algorithm
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Time complexity

The crucial check whether two vertices belong to the
same tree can be found out using union -find algorithms.

if the graph is represented as an adjacency
matrix then the complexity of kruskal
algorithm is -

if you use binary heap and adjacency list the
complexity can be of the order of ElogV.
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Shortest paths — Dijkstra’s
algorithm

The Dijkstra’s algorithm finds the shortest path

from a given vertex to all the remaining vertices
in a diagraph.

The constraint is that each edge has non-
negative cost. The length of the path is the sum
of the costs of the edges on the path.

We have to find out the shortest path from a
given source vertex ‘S’ to each of the
destinations (other vertices ) in the graph.




Example

Initially




Example




Example




Example




Exa m p I e Final distance form note 1 to

all other nodes

1 2 3

1




b4
Example2 7% 4,

Tree vertices Remaining vertices
a(-,0) b(a.3) c(-,~) d e(-,) / \H

b(a,3) c(b,3+4) d(b,3+2) e(-,) 3 ﬁ / \

d(b,5) c(b.7) e(d,5+4)

c(b,7) e(d.9)

e(d,9)
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Dijkstra’s algorithm

Dijkstra’s( s)
// Finds shortest path from source vertex to all other vertices

//Input: Weighted connected graph G=<V,E> with nonnegative
weights and its vertices s

//Output: The length of distance of a shortest path fromstov
{
1. fori=1ton do // Intialize
S[i] =0;
dli] = als][il;

2. S[s] =1; //Assume 1 as the source vertex
dfs] =1;




Dijkstra’s algorithm

3.fori=z=1tondo
{

Choose a vertex u in v-s such that d[u] is
minimum
S=s[ u
for each vertex vin v-s do
d[v] = min{ d[u], d[u]+c[u,v]}




Key points on Dijkstra’s
algorithm

Doesn’t work for graphs with negative weights
(whereas Floyd’s algorithm does, as long as
there is no negative cycle).

‘Applicable to both undirected and directed graphs.

Efficiency O(|V2]) for graphs represented by weight
matrix and array implementation of priority queue

O(|E|log|V]|) for graphs represented by adj. lists and
min-heap implementation of priority queue




MODULE -4

DYNAMIC PROGRAMMING

introduction to The DESign &

Analvsis of Algorithms
w0 comon |k A

Department of A MEE DU kgged BBggieeengg



Dynamic Programming

Invented by American mathematician Richard Bellman 1n the
1950s to solve optimization problems

Optimization Problem : Problems which demands mimimum/maximum
results

Dynamic *“ means “changing”
Programming” means “planning”

Dynamic Programming 1s a general algorithm design technique
for solving problems with overlapping sub-problems.

Main idea:
-Solve smaller instances once.
-Record solutions in a table.
-Get solution to a larger instance from some smaller instances.
-Optimal solution for the initial instance is obtained from that table.




Principle of Optimality

Definition [Principle of optimality] The principle of optimality states
that an optimal sequence of decisions has the property that whatever the
initial state and decision are, the remaining decisions must constitute an
optimal decision sequence with regard to the state resulting from the first
decision.

Problems can be solved by taking sequence of
decisions to get optimal solutions
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Example: Fibonacci numbers

! 0 nt n=0 : :.;:_:; :fr _ .
i iﬂ i 0=l - A8,
Jibln-)+fib(n) i 071 N il $i

ARG

'E 4 Cn{ i)

gduro O
rokuco 4ib(o-) AAfblnD;

E@*




Example: Fibonacci numbers

“Tabuolion Melro d

int b (inr n)

T

i+ (n<=)

reburn N

Flo)=05 ¢00=1 .
Sor (InF iz <=0 irY)
{ F[;J: F[:‘l-ﬂj-‘r ?[;-;];

s
 gurn FLA),
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Examples of DP algorithms
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Multistage Graph

A Multi stage graph G = <V,E> which is a directed graph. In
this graph all the vertices and partitioned into K stageq
where K>=2.

In multistage graph problem we have to find the shortest
path from source to sink.

The cost of each path is calculated by using the weight given
along that edge.

In multistage graph can be solved using forward and
backward approach.
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o

Algorithm FGraph(G.k.n,p)

// The input is a k-stage graph G = (V, E) with n vertices
/ indexed in order of stages. E is a set of edges and ¢fz, 7|

// is the cost of (i, 7). p[l : k] is a minimum-cost path.

/ Find a minimum-cost path.
1] := 1; plk] ;= n;
} for j :=2to k—1do ply| :=dplj —1]};




R D e L
(28)- "‘f'f"‘"rl ® Foost (2.5 - 643 =%

(3. 5)mnl STOost(a:skac=F = 3

+ (3,6): manm TGt 2+ 5:=8 = &
(2.8) i 8¥esc(2.3):=8+a =10 "

e ¥ t +oost(3,84D:=
oSt (14,9) = ’“{“% 5 mnr(u;.'f’

6+ wmoex t'_s &)
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Algorithm BGraph(G. k. n. p)
// Same function as FGraph

{

beost|1] := 0.0;

for j:= 2 to ndo

{ // Compute beost|;|.
Let v be such that (r, j) is an edge of
G and beost{r| 4 or, 3] is minimum;
beost[j] := beostir] + ¢|r. jl;
dlf] 1= 71}

/ ( Find a minimum-cost path.
pll] := 15 plk] := m
for 7 := k-1 to 2 do plj| :=dplj 4+ 1]|;
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Warshall’s Algorithm: Transitive Closure

Definition: The transitive closure of a directed graph with n vertices can be defined as the n

% n boolean matrix T= {t;}, in which the element in the i row and the * column is | 1if there

exists a nontrivial path (i.e., directed path of a positive length) from the i* vertex to the |

vertex; otherwise, 115 0.
b

a

1 1
0 5 11
2 0

1

b
1
1
0

0
1T 0 1

1

(b} Its adjacency matrix (c) Its transitive closure.
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Warshall’s Algorithm: Transitive
Closure

Constructs transitive closure T as the last matrix in the sequence
of n-by-n matrices R0), ..., R&), ..., R(n where

R&[i,j] = 1 iff there is nontrivial path fromitoj with only the first
k vertices allowed as intermediate

Note: that R(0) = A (adjacency matrix), R(n =T (transitive closure)
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Warshall’s Algorithm (recurrence)

On the k-th iteration, the geiitivm drtemines fRIrevarw R fraff
vertices i, j if a path exists from i and j with just vertices 1,....k
allowed as intermedite

R [k'”[f, j] R (k-l)[il.i ] (péth USIﬂg Mt | l,w.v,lk-l»
R(ﬂ[m = or or
R0 k] and RE-Djkj] (path from ite &
and froem ktojj
using just 1 ,....k-1)
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Warshall’s Algorithm (matrix generation)

Reeurrence relaiting elrmemis fk) i@ el RMeMss it Atk )iss

RWjj = Re-1[f] oF (R-D[;, ki and Re-Dijk i)

It implies the following rules for generating RX) from R(-1):

Rule 1 If an elementin rowjand columnjis 1 in R(k-1)
Rule 1 If an element in row i and column’jis 1 in Rk,

It FeAIAS 1 iim /)

Rule 2 If an element in rRW i e cllummJjis Qimak),
it Ras to be ehanged i 1 im AW ifrand Myiff
the elerment in its Fw /i AN RN AN thR |lRMRM:
iR its EBIUFAR.j AREl TN & i@ pRith WS AL
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Warshall’s Algorithm (pseudocode and analysis)

ALGORITHM Warshall(A[l.n, 1..n])

/[Implements Warshall’s algorithm for computing the transitive closure
//Input: The adjacency matrix A of a digraph with n vertices
/[[Output: The transitive closure of the digraph
RO . 4
for k < 1tondo
fori < 1tondo
for j < 1ton do
RMIi, j]< R*=D[i, jlor (R*V[;, k] and R*V[k, j])
return R

Time efficiency: ©(n3)




Floyd’s Algorithm: All pairs shortest paths

Problem: In a weighted (di)graph, find shortest paths between
every pair of vertices

Same idea: construct solution through series of matrices D), ...,
D (n)using increasing subsets of the vertices allowed

as intermediate

Example:

(a) Digraph. (b) Its weight matnx, (c) Its distance matnx




Lo +D(e¥) =345 _

i IIegeofEngineering'._' ;

dl 8 168 8 D




Floyd’s Algorithm (matrix generation)

On the k-th iteration, the algorithm determines shortest path
between every pair of vertices i, j that use only vertices amon
1,...,k as intermediate

D®[i,j]= min {D&D[ij], DED[ik] + D&D[k,]}

Dik-1[i, k]

.................................. h

D] -

‘N ,:"'D(k'”[k,.l]

\
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ALGORITHM Floyd(W|[l..n. 1..n])

/[Implements Floyd’s algorithm for the all-pairs shortest-paths problem
//Input: The weight matrix W of a graph with no negative-length cycle
//Output: The distance matrix of the shortest paths’ lengths
D « W //is not necessary if W can be overwritten
for k < 1ton do
fori < 1tondo
for j < 1tondo
D[i, j] < min{D[i, j], D[i, k] + D[k, j]}
return D

Time efficiency: ©(n3)

Note: Works on graphs with negative edges but without negative
cycles.




Optimal Binary Search Tree

Binary Tree

=
P @

9 © ©

All elements in the left subtree of root are less than root and ail elementsin the right
subtree of root are greater than root.
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BST is constructed from the elements 10, 20 and 30.

10 as root node 20 as root node 30 as root node

O ©

number of BSTs with n nodes is given
2n,n)/(n+1)
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Cost of searching any Key

* Costof searching any key is dependent on comparisons required for searching any key

element inthe tree.

C Key C | Ky K C
! 1| 3 10 10 3
4 20 3 20 ; 20 )
3 0| 2 30 " 30 1
6/3-2 | Aug.l 6/3n2 | Avg |5/3+186 | | Avg | 6/3=2

*  Third tree is balanced tree because,
« Average of comparison is less
* Heightis less
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Cost of BST-Frequencies

Keys 10 20 30

Frequencies
for Searching

Total Costis = 25 Total Costis =18

Tolal Costis =21 . Total Costis = 19

Minimum searching cost is low meansit’s a Optimal BST

Tree 5 is having minimum searching cost =18

Tree 5is OBST.

Though it is not height balanced, tree 5 is OBST which is based on frequencies the
cost of BST is minimum.

Key Point to Remember: "Highest frequency key must be root node and lowest
frequency key must be a child (Leaf) node.”




Optimal Binary Search Tree

Problem: Given n keys a; < ...< a, and probabilities py, ..., pn
searching for them, find a BST with a minimum
average number of comparisons in successful search.

Since total number of BSTs with n nodes is given by C(2n,n)/(n+1),
which grows exponentially, brute force is not recommended.

« BST is a tree which is mainly constructed for
searching a key from it.
For searching any key from a given BST, it should
take optimal time.
For this, we need to constructa BST in such a way
that it should take optimal time to search any of
the key from given BST.
To construct OBST, frequency of searching of
every key is required.




Example: What is an optimal BST for keys A, B, C, and D with
search probabilities 0.1, 0.2, 0.4, and 0.3, respectively?

Q Average # of comparisons

= 1%0.4 + 2%(0.2+0.3) + 3*0.1
ONENO —17

0.1*1+02*2+04*3+03%4=29




Obtain the optimal binary search tree for the
following

(do, if, int, while) with the following
probability(0.1,0.2,0.4,0.3)

\ 2

ali] I¥l__ 9 .,}J

Coet  takle
b e







ATME College of Engineering



ATME College of Engineering




Department of ATME College of Engineering




Department of ATME College of Engineering




When k=2 cpr.na-ml‘lﬂ'ﬂhmh?

0+10+02+04+03
= 19
—Whenk=3 . C[2, 2] + C[4, 4] + P[2] + P[3] + p[g
02 +03+02+04 + 0.3
= 14 — Minimum value
. consider k = 3
Whenk=4 _ C[2, 3] + CI5, 4] + P[2] + P[3] + P[4]
08 +0+02+ 04+ 03
= 1.7
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Th+1,]




ALGORITHM  OprimalBST(P|1..n])
/lFinds an optimal binary scarch tree by dvnamic programming
[fInput: An array P|1.n]of search probabilities for a sorted list of n Keys
fOutput: Average number of comparisons in successiul searches in the
f optimal BST and table R of subtrees’ roots in the optimal BST
for /i« | ton do

Cli.i = 1] =0 L 0ot e

Cli. i] = PJi] l‘ 0 & 3 Yy Root fable
Rli.i] =i ! |Olo
Cln+ 1,00 l__fnl
ford < 1ton — 1do //diagonal count op

Lok

fori < | ton —d do
J—i+d
pnvil «— oo
for k « i to j do
HCli, k= 1]+ Clk + 1, j] < minval
minval « Cli. k = 1]+ Clk + 1. jF  kmin — &
R[i. j] < kmin
siim == Plil fors «—i + 1to j do sum «— sum + P|s]
Cli. j]| « minval + sum
return fl 58 rr]i K
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Knapsack Problem

Given n objects of known weights wl,w2...wn and
profit p1, p2, ... pn for those n objects and a knapsack
of capacity M i.e is not exceeding the weight M. Let a
variable xi be ‘O’ if we do not select the object ‘i’ or ‘1’
if we include the object ‘i’ into the knapsack.

The objective is to maximize the total profit
earned. Since the knapsack capacity is M, we

require the total weight of all chosen objects to
be at most M.

ATME College of Engineering



Knapsack problem

Maximize 2,1 <j<pn PiXi
Subject t0 ) 1<j<, WIXi < m

The profits and weights are positive numbers.
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For the given instances of problem obtain the
optimal solution for the knapsack problem

r__——

4
L—-—'—-""_

The capacity of knapsack is W=5
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; “’ﬂ lhl table [1, 2] as
B.ﬂ = maximum {table[i-1, ], v, +table[i-1,j-w,
= maximum {{(table [0, 2]),(3+ table[o, o)}

! itlri =3, w;=2andv,; =3
ﬂﬂﬁﬁhﬂ,ﬂﬂ
S S Sy {ﬁ]e[i—l.-ﬂ v +table[i-1,j-w i]}

e m{ﬂ [0, 3], 3+ table [0, 1]}
- I s



*mﬂminl,j=4’wi=z

. nd v; =3

table [1, 4] = maximum {tab]e [i—

1] v i + table [i-1, -
4], 3+ table [0, 2]}

maximum { table [0, wil}
= maximum {0, 3 + 0}
table [1, 4] = 3
table [1, 5] With i = 1, j =5, w. = 2 ang v
As j = w ; we will obtain table [1, 5] as
table [1, 5] =

=3

maximum { table[i—1,j], v; +table[i—1, j— w, 1}
maximum {table [0, 5] , 3 + table [0, 3]}

= maximum {0, 3 + 0}

table [1, 5] = 3

The table with these values can be




NWHmﬁnupmnmwufme
WklM]Wltthj:1,“-.l=3mdx.-i=4
AS | < W, we will obtain tabe 2,1] as
table [2,1] = tablei- 1,
= table (1, 1]

table [2, 1]:[]

table 2, 2] Withi=2,j=2 w;=3and v =4

kj(Wi,wewillebtaintable[Z,Zlas

table [2,2) = tablefi-1 I
= tﬂble [1.* 2] =

— a
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table 2. 3] With i =2, j=3, w, =3 and v, = 4
A:jzw..wewﬂluhumt-bh[lalu
table [2, 3] = m.lximum{t:ahle[i-—l,i].vi +table[i-1, i-w,. 1}
= maximum {table [1, 3], 4 + table [1. on
= maximum {3, 4 + 0)

5 table [2,L 3] = 4

tnhle[:l,-l]Withi-Z,j=4,wi=3andv; = 4

As j = w ;, we will obtain table [2, 4] as
table [2, 4] = maximum {table[i—1, j], v, +table[i—-1.j—w;]}
= maximum (table [1, 4], 4 + table [1. 1]}
= maximum {3, 4 + 0}

o table [2, 4] = 4

tlbl:{!,ﬁ]Witl'Li:E,j=5,wi =3 and v; =4

As j = w ;, we will obtain table [2, 5] as
table [2, 5] = maximum {table[i—1, il v; +table[i—1.j— w; [}
= maximum {table [1, 5], 4 + table i - |

= maximum {3, 4 + 3}

table [2, 5] = 7

-
- =

The table with these computed values will be

n

=

bl lo]le
MW

W iolw

2
L]
3
3

CQloc|lo|~

(&)
1
2
3
4



able [3, 11 With i = 3, j =1, w, = 4 ang vy =5
As f =< wo. we will obtain table [3; 1) as
table [3., 1] = table [i — 1, il
= table [2, 1]

table [3, 1] = 0

table [3, 2] With i = 3, j =2, w, =4 and v, = 5

As | = W . we will obtain talsle [3; 2] as
table [3, 2] = table [i — 1, j]

= table [2, 2]

table E:'.!'.p 2] — R ]

table [3, 3] with i = 3, j = 3, w; = 4 and v, =5
As j = w ., we will obtain table [3, 3] as

table [3, 3] = table [i — 1, j]
= table [2, 3]

table [3, 3] = 4

table [3, 4] With i = 3, j=4, w; =4 and v =5
As j= w ., we will obtain table [3, 4] as
table [3, 4] = maximum {table[i—1,j], v +table[i—-1,j—w 1}
maximum {table [2, 4], 5 + table [2, O] }

= maximum (4, 5 + 0)

table [3, 4] = 5

table [3, 5] With i = 3, j =5, w; =4 and v =5

As = w ,, we will obtain table [3, 5] as y :
table [3, 5] = maximum { table[i—1,j]. v, +table[i=Lj=w I}

- maximum {table [2, 5], 5 + table [2, 1] )

w maximum {7, 5 + 0}

[ublr [3, 5] =7




= 5, L

table [4, 1] With i =4, j = 1, w |
As ] < w;, we will obtain table [4, 1] as
table [4, 1] = table [i — 1, j]
table [3, 1]

table [4, 1] = 0O J

table[4,2]Withi=4,j=2, wi=35and v; =6

As j < w;, we will obtain table [4, 2] as
table [4, 2] = table [i-1, il
= table [3, 2]

table [4, 2] = 3

table [4, 3] Withi=4,j=.’3,w,— =5and v; =6
As j < w;, we will obtain table [4, 3] as

table [4, 3] = table [i — 1, il
= table [3, 3]

table [4, 3] = 4 ]

table [4, 4] withi=4,j=4, Wi =5 and Vi = 6
As j < w;, we will obtain table [4, 4] as

table [4, 4] = table [ i — 1, j]
= table [3, 4]

table [4, 4] = 5




maximum {table [i-1,i], v +table[i-1,j-w,])

= Mmaximum (table [3, 5], 6 + table (3, 0]}
maximum (7, ¢ + 0}

table [4, 5]=7

Thus the table can be finally as given below

This is the total
“=" | value of selected
== jtems
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To find items to be selected

—tahl\e [ij\(} =

Sdex (™ jlem ynTo boa
B L-b ond K- K-
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4= Start from here

Aoble (i) £ tale [i-1,K]

Sdea h ifem inTo ‘ma]fw
izi-1 ond k:k-H

i.e, table [4, 5] = table [3, 5]
~.do not select i'™" ie, 4™ item.

h e
Now set i = i-1

i = 3




do not select ith jrem ie., 30d
Nﬂwﬁ!tial_:{-_z

As table [i, k] = table [i — 1, k]
i.e. table [2, 5] # table [1, 5]
select i item.

That is, select 2" jrem.
Seti=i—1land k =k—w
ie.i=land k=5=-3=2

As table [i, k] = table [i — 1, k]
Le. table [1, 2] # table [0, 2]

Select itM jtemn.

That is select 15t item.
SETiEi'-lﬂ.ﬂdk:k“W[

Ci=0andk=2-2=0

e Thus we have selected item 1 and jtem 2 for
“Presented by sclution vector (1, 1, 0, 0).

table [i,k] £ Twle [i-1,K)

St i {Tem nTo bma]ﬂﬂ-!#
1_: i—} ond k= K- Ho
|

the knapsack. This solution can also be



Knapsack Problem by DP (pseudocode)

Algorithm DPKnapsack(int: w[1..n], int: p[1..n], M)
int: V[0..n,0..M]
forj:=0toMdo
V[0,j]:=0
fori:=0tondo
V[i,0] :=0
fori:=1tondo
forj:=1toMdo
if wli]l <jand pl[i] + V[i-1,j-wl[i]] > V[i-1,j] then
VIij] := pli] + VIi-1,j-wli]];
else
VIij] == VIi-1,j];
return V[n,M]

Running time and space:




Analysis

The classic dynamic programming approach, works
bottom up: it fills a table with solutions to all smaller
subproblems, each of them is solved only once.

Drawback: Some unnecessary subproblems are also
solved

The time efficiency and space efficiency of this
algorithm are both in @(nW).

The time needed to find the composition of an
optimal solution is in O(n).
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maximum {table [i-1,1] v +table[i-1,j-w,])

= Mmaximum {table [3, 5] , 6 + table [3, 0]}

= maximum {7, 6 + 0}

table [4, 5]=7

Thus the table can be finally as given below

This is the total
7= | value of selected
== jtems
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Discussion

* The direct top-down approach to finding a solution to
such a recurrence leads to an algorithm that solves
common subproblems more than once and hence is very
inefficient.

Since this drawback is not present in the top-down
approach, it is natural to try to combine the strengths of
the top-down and bottom-up approaches.

The goal is to get a method that solves only subproblems
that are necessary and does so only once. Such a method
exists; it is based on using memory functions.
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Algorithm MFKnapsack(i, j )

Implements the memory function method for the
knapsack problem
Input: A nonnegative integer i indicating the number of the

first items being considered and a nonnegative integer j
indicating the knapsack capacity

Output: The value of an optimal feasible subset of the first i
items

Note: Uses as global variables input arrays Weights[1..n], V
alues[1..n], and table F[0..n, 0..W ] whose entries are
initialized with —1’s except for row 0 and column 0 initialized
with 0’s
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Memory Function Knapsack

Example: Knapsack of capacity M =5
item weight value

1 2 S8

2 1 S6
3 3 S16
4

2 S11 capacityj




Memory Function Knapsack

31 pea) & ma ke [inY,a-wid)

i=4, j=5, p[i]=11, wi =2

J-wi =5-2 =3 ( able to fit into knapsack)

Find V[4,5] = max{ mfk[i-1,j], p[i] + mfk[i-1, j-wi]}
= max{ mkf(3,5), 11+mfk(3,3)}

Find V[3,5] = max{ mkf(2,5), 16+mfk(2,2)}
= max{ , 16+ }
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Memory Function Knapsack

Find V[3,3] = max{ mfk|[i-1,j], p[i] + mfk[i-1, j-wi]}
= max{ mkf(2,3), 16+mfk(2,0)}
= max{ ----,
Find V[2,5] = max{ mkf(1,5), 6+mfk(1,4)}
= max{ b6+ }
Find V[2,2] = max{ mkf(1,2), 6+mfk(1,1)}

= max{ b6+ }
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Find V[2,3] = max{ mkf(1,3), 6+4mfk(1,2)}
= max{ , 6+ -}

Find V[1,5] = max{ mkf(0,5), 8+mfk(0,3)}
=max{ 0, 8+0}=8

Find V[1,4] = max{ mkf(0,4), 8+mfk(0,2)}
=max{ 0, 8+0}=8

Find V[1,2] = max{ mkf(0,2), 8+mfk(0,0)}
=max{ 0, 8+0}=8
Find V[1,3] = max{ mkf(0,3), 8+mfk(0,0)}
=max{ 0, 8+0}=8
Find V[1,1] = max{ mkf(0,1)}=0
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Find V[2,3] = max{ mkf(1,3), 6+mfk(1,2)}
=max{8, 6+8} =14

Find V[1,5] = max{ mkf(0,5), 8+mfk(0,3)}
=max{ 0, 8+0}=8

Find V[1,4] = max{ mkf(0,4), 8+mfk(0,2)}
=max{ 0, 8+0}=8

Find V[1,2] = max{ mkf(0,2), 8+mfk(0,0)}
=max{ 0, 8+0}=8
Find V[1,3] = max{ mkf(0,3), 8+mfk(0,0)}
=max{ 0, 8+0}=8
Find V[1,1] = max{ mkf(0,1)}=0
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Memory Function Knapsack

Find V[3,3] = max{ mfk|[i-1,j], p[i] + mfk[i-1, j-wi]}
= max{ mkf(2,3), 11+mfk(2,0)}
=max{ 14, 16+ 0)} = 16

Find V[2,5] = max{ mkf(1,5), 6+mfk(1,4)}
= max{ 8, 6+ 8} = 14

Find V[2,2] = max{ mkf(1,2), 6+mfk(1,1)}
=max{8, 6+0}=8

Department of ATME College of Engineering



Memory Function Knapsack

V[i,j] = max{ mfkl[i-1,j], p[i] + mfk[i-1, j-wi]}

1=4, j=5, pli]=11, wi =2

J-wi =5-2 = 3 ( able to fit into knapsack)

Find V[4,5] = max{ mfk[i-1,j], p[i] + mfk[i-1, j-wi]}
= max{ mkf(3,5), 11+mfk(3,3)}
=max{ 24,11+ 16)} =27

Find V[3,5] = max{ mkf(2,5), 16+mfk(2,2)}
= max{ 14, 16+ 8} =24
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Memory Function Knapsack

Example: Knapsack of capacity M =5
item  weight  value

1 2

2 1
3 3
4 2

capacityj
2 3 4 5
0O 0 O




Memory Function Knapsack Algo.

ALGORITHM MFKnapsack(i, j) //Implements the memory function method fo
the knapsack problem //Input: A nonnegative integer i indicating the numbe
of the first // items being considered and a nonnegative integer j indicating /,
the knapsack capacity //Output: The value of an optimal feasible subset of th
first i items //Note: Uses as global variables input arrays Weights[1..n],
Values[1..n], //and table V[0..n, 0..W]whose entries are initialized with -1’
except for //row 0 and column 0 initialized with 0’s

if V[i, jl< 0
if j<Weights[i] =value¢-MFKnapsack(i-1,j)
else valueémax,MFKnapsack(i -1, j),
values[i]+MFKnapsack(i -1, j-Weights*i+)-
V[i, j+&value
return V[i, j]
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MODULE =5

BACKTRACKING

introduction to The DESigﬂ &

Analysis of tnlforithms
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Backtracking

Backtrack’ the Word was first introduced by Dr. D.H. Lehmer in

1950s.
*R.J Walker Was the First man who gave algorithmic description

in 1960.
e Later developed by S. Golamb and L. Baumert.

Backtracking technique resembles a depth-first — search
in a directed graph. The graph concerned here is usually
a tree, the aim of backtracking is to search the state
space tree systematically. The aim of the search is to find
solutions to some problems.
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What is Backtracking?

When the search begins, solution to the problem is unknown
Each move along an edge of the tree corresponds to adding
new element to a partial solution, that 1s to narrowing down th
remaining possibilities for a complex solution.

The search 1s successful 1f, a solution can be completely
defined. At this stage an algorithm may terminate or it may
continue for an alternative solution.

The search 1s unsuccessful if at some stage the partial solution
constructed so far cannot be completed. In this case the search
backtracks like a depth first search, removing elements that
were added at each stage.
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State Space Tree

In state space tree, root represents an initial state before the
search for a solution begins. The nodes of the first level in the
tree represent the choice made for the first component of a
solution, the nodes of the second level represent the choices for
the second components, and so on. A node 1n a state space tree
1s said to be promising if it corresponds to a partially

constructed solution that may lead to a complete solution;
otherwise a node 1s said to be non promising.
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Application of Backtracking

Optimization and tactical problems
Constraints Satisfaction Problem
Electrical Engineering

Robotics

Artificial Intelligence

Genetic and bioinformatics Algorithm
Materials Engineering

Network Communication

Solving puzzles and path
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N-Queen Problem

History:

First Introduced in 1848 which was known as 8- queens Puzzle. Surprisingly,

The First Solution was created in 1950 by Franz Nauck. Nauck made an 8X8
Chessboard to find the first Feasible Solution.

e

—
e
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N Queen Problem

Problem Description
In a NxN square board N — number of queens need fo be
placed considering three Condition ---
* No two Queens can be placed in same row.
* No two Queens Can be places in same Column
* No two queens Can be placed in same Diagonal.

Department of A MEE DU kggeod BBggieeengg



Constraints

Explicit Constraints: All ‘n” queens must be placed on the
chessboard in the columns 1,2,3, .... N. Xi belongs to S where S =
{1,2,3,....N}

Implicit Constraints: In this all Xi Values must be distinct
No two queens can be on the same row

No two queens can be on the same column

No two queens can be on the same diagonal
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Horizontal Attack:

Row wise attacking is avoided by placing 1st queen in
1st row, 2nd queen in 2nd row and so on.

By placing ith queen in ith row, horizontal attacking can
be avoided

-
Q2
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Vertical Attack:

(i, x[i])=> means the position of ith queen in row i and
column x([i]

(k, x[k])=> means the position of kth queen in row k
and column x[k]
If ith & kth queen are in same column then

X[i] == x[K]
Hence indicate that queens attack vertically

m--- (1,1) & (4,1) x][i] == x[k] to be avoided
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Diagonal Attack:

Top left corner to bottom right corner: The difference
between row value and column value is same.
11]1213[14 (1,3) &(2,4) |i-x[i]| = [k-x[k]|
5 2 > 155 - avoided
3,31 3,2 3,3 34
41 4,2 43 44
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Diagonal Attack:

Top right corner to bottom left corner: The difference
between row value and column value is same.

mmm (1,3) &(3,1) i+x[i]=k+x[k] (3) to be

21 22 23 24
- 32 33 34 Usingeqn.(2) and(3)

avoided

mmrarmmm |k - xll -kl
S i—k = -x[i] + x[k]
li—k| = |x[i] - x[k]]| indicates queens attack diagonally.

X[i]1 == x[k] | | abs(i —k) = abs(x[i] — x[k]) = two queens
attack each other and cannot be placed.
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Algorithm

Backtracking approach for solution

Algorithm Nqueen(K,n){
Fori=1ton{ Place(k,i){
If Place(K,i} For j=1 to k-1{
X[k]=1; If((x[j] = i) or abs(x[j] - 1 = abs(j-k)))
If(k = n) then Return false;
Write x[1:n]; }
Else Return true;
Nqueen(k+1, n) ; }

The Algorithm will check each position [i, j] foreach queens . If any Suitable places found , It will
place a queen on that position. If not Algorithm will try same approach for next position.
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State Space Tree for 4 Queens

o)

\

Q

T e
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Two Solutions of 4 Queen Problem

Queen-1 2 Queen-1

Queen-2 Queen-2

Queen-3 ? Queen-3

Queen-4 Queen-4

Department of A MEE DU kggeod BBggieeengg



Hamiltonian Cycle

Hamiltonian Path in an undirected graph is a path that visits each vertex exactly
once. A Hamiltonian cycle (or Hamiltonian circuit) is a Hamiltonian Path such that
there is an edge (in graph) from the last vertex to the first vertex of the
Hamiltonian Path. Determine whether a given graph contains Hamiltonian Cycle
or not. If it contains, then print the path. Following are the input and output of
the required function.

Input:
A 2D array graph[V][V] where V is the number of vertices in graph and
graph[V][V] is adjacency matrix representation of the graph. A value graph[i][j] is
1 if there is a direct edge from i to j, otherwise graphli][j] is O.

Output:
An array path[V] that should contain the Hamiltonian Path. path[i] should
represent the ith vertex in the Hamiltonian Path. The code should also return
false if there is no Hamiltonian Cycle in the graph.
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http://en.wikipedia.org/wiki/Hamiltonian_path

Exam

Hamiltonian Cyc

nle 2

e is a graph theory problem where the graph cycle

through a graph can visit each node only once. The puzzle was first
devised by Sir William Rowan Hamilton and the Problem is named after

Him.

B L

Condition: The Cycle Started with a Starting Node, and visit all the Nodes in the Graph

(Not necessary to visit in sequential Order and not creating edge that is not given) And
Stoo at The Startina Point/Node.
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The Backtracking Approach

The Algorithm First Check the Starting Node, if there is any edge to the next node. If
yes, then the Algorithm will check that node for the edge to the next Node. It will Also
Check If any Node is visited twice by the previous Node. If there is any then the
Algorithm Will Ignore One and Choose the Optimal One for the Solution.

B &

B

The Important thing is the tour must finish at the starting point.
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Example

For example consider the given graph
and evaluate the mechanism:-

[ # L
(| d ) (7)
dead-end dead-end

(a) (b)

Figure: * (a) Graph.
* (b) State-space tree for finding a Hamiltonian circuit. The
numbers above the nodes of the tree indicate the order the order
in which nodes are generated.
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Hamiltonian Cycle

Solution Solution
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Algorithm
Repeat(

Hamilton_Cycle(k){

NextVal(k);

I(x [k

==() then

Return;
If (k ==n) then
Write (x[1:n]);

Else

Hamilton_Cycle(k+1);

)

Until (false);

}

AlgortihmNextVal(k){
Repeat{
X[k] = (x[k]+1) mod (n+1);
If(x[k]=0) then return;
If (G[x[k-1],x[K]] != 0 ) then{
Forj=1to k-1 do
If(x[j]=x[k]) then
Break;
If(j = k) then
If ((k<n or k=n) && G[x[n],x[1]] = 0)
Then return;
}
}
Until (false);

}
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for (inti=1;i<= n; i++)
X[i] = 0;
X[1] =1;

void HamiltonianMethod(int k) {
while (true) {

NextValue(k, G, x, n);

if (x[k] ==0)

return;
if (k==n){
for (inti=1;i<=k; i++)
System.out.print(x[i] + " ");
QYeEEm Suk-Brintintxi 11);
found = true;
return;
} else
HamiltonianMethod(k + 1);

Solution
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void NextValue(int k, int G[][], int x[], int n) {
while (true) {

X[k] = (x[k] + 1) % (n + 1);

if (x[k] ==0)

return;

if (G[x[k - 1]][x[k]] != 0) {

intj;

for(j=1;j<k;j++)

if (x[k] == x[j])

break;

if (j ==k)

if (k <n) || ((k == n) && G[x[n]][x[1]] !=0))
return;

Hamiltonian Cycle
Enter the number of the vertices: 4

If edge between the following vertices
enter 1 else O:

land2:1

land3:1

1and4:1

2 and 3:

1

2and4:0

3and4:1

Solution:
12341

14321
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Solution Solution
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Sum of subsets

* Subset-sum Problem: The problem is to find a subset of a given set
§$ = {s, 55~ == s,} of ‘n’ positive integers
whose sum is equal to a given positive integer
‘d’.

* Observation : It is convenient to sort the set's elements in
increasing order, S, £ §,<..... £§_ And each
set of solutions don't need to be necessarily of
fixed size.

For $ = {3, 5, 6, 7} and d = 15, the solution is
shown below :-

Solution = {3, 5, 7}
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Sum of subsets

The Sum of Subset Problem is, there will be a set of distinct positive
Numbers X and a given Number N. Now, we have to find all the
combination of numbers from X that sum up to N. Make a Set of
those Number.

W = {4,5,6,3)
M =13
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Sum of Subsets

Find a subset of a given set S={S1, S2, S3, 54, Sn}
Of n +ve integers whose sum is equal to given +ve integer d subject
to the constrains

1. Implicit: All Xi values should be distinct and should belong to

the set S

2. Explicit: optimal solution be 3 =d
=1

Xi of the solution vector is either 1 or 0 depending on weather the
weight Wi is included or not.
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For a node at level i, the left child corresponds to Xi =1
and the right child to Xi=0

The bounding function X[X1, X2, X3, Xn] = true iff
> +2 =

+1
=1
Xk cannot lead to an promising node if this
condition is not satisfied.
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The bounding function can be strengthened if we
assume that Wi’s are initially in increasing order.

In this case X1 — Xk can not lead to promising node if

X[X1, X2, X3, Xn] = true iff

Z + + 1
=1

=

Xk cannot lead to an promising node if this
condition is not satisfied.
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Therefore the bounding function will be
+ Z =
= +1
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State space tree
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Sum of subsets

5 0 S 0 5 0
X o 0 X x X x
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Sum of subsets
Backtracking Approach

First, organize the numbers in non decreasing order. Then generating a tree, we
can find the solution by adding the weight of the nodes. Note that, here more than
necessary nodes can be generated. The algorithm will search for the weighted amount
of the nodes. If it goes beyond given Number N, then it stops generating nodes and
move to other parent nodes for finding solution.

Algorithm SumOfSubset(s,k,y){

X[k] =1;
If(s+w[k] = m)
Write (x[1:n]);

Else if((s+w[k] + wlk+1]) <= m)
SumOfSubset(s+w[k], k+1, y-w[k]);

If ((s* y-w[k]>=m) &&(s =w[k+1] <=m)) {

X[k] =0;

SumOfSubset(s,k+1,y-w[k]);

}
}
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Sum of subsets

wo b5

wWio 8 with & wiab wio 6 ﬂ*ﬁ-;?d:‘l 5

141-?:-15 with 7 94715 31?-:15 'I1+T:-1'5 5+T(15

solution &15

Compete state-space tree of the backtracking algorithm applied to the instance 5 =
{3,5,6,7) and d = 15 of the subset-sum problem. The number inside a node is the
sum of the elements clready included in subsets represented by the node. The
inequality below a leaf indicates the reason for its termination.
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Coding

for (inti=1;i<=n;i++)

sum = sum + S[i/;

if (sum<d /[ S[1]>d)
System.out.printin("No Subset possible");
else

SumofSub(0, 0, sum);
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static void SumofSub(int i, int weight, int total)
{ if (promising(i, weight, total) == true)

if (weight==d) {

for (intj=1;j<=i; j++) {

if (soIn[j] == 1)

System.out.print(S[j]+" ");

}
System.out.printin();

} else {
solnfi+ 1] =1;
SumofSub(i + 1, weight + S[i + 1], total - S[i + 1]);
soln[i+ 1] =0;

SumofSub(i + 1, weight, total - S[i + 1]);

}
}
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static boolean promising(int i, int weight, int
total) {

return ((weight + total >= d) && (weight ==d | |
weight + S[i + 1] <=d));
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Graph Coloring

Coloring a map

Problem:

Let G be a graph and m be a given positive integer. We want to
discover whether the nodes of G can be colored in such a way that
no two adjacent node have the same color yet only m colors are
used. This technique is broadly used in “map-coloring”; Four-color
map is the main objective.

Consider the following map and it can be easily decomposed
into the following planner graph beside it :

i —
\ 2 .

-

J
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ALGORITHM FOR GRAFPH COLORING

Algorithm mcolor(k)
!

The graph is represented in the form of matrix nxn
“kK” is an index of vertex to be colored
i
1
repeat
i
Nextvalue(k)
If (x[k] = 0) then return
If (lk=n) then
Write(x][1:n])

Else

Mcolor{k+1)
i until(false)
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Algorithm nextvalue(k)

Assume x[1..k-1] are assigned integer in the range of [1,m] such that no
two adjacent vertices are in the same color
x[k] is assigned the next value such that distinctness is maintained

If no such color exists then x[k|=0

repeat

J
1

x[k] = (x[k] + 1) mod m+1
if x[k] = O then return
forj=1tondo

\

If (G[k,j]!=0) and (x[k]=x]j]) then
Break

i
If (j=n+1) then
Retum
antil (false)
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Graph Coloring

This map-coloring problem of the given map
can be solved from the planner graph, using
the mechanism of backtracking. The state-
space tree for this above map is shown below:

/)L
S Mt - A

il
G L
2 I_ J_ f.l‘_-'—\_

Y

s(r)

sol&lon
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Graph Coloring

Now the map can be
colored as shown here:-

Four colors are chosen as
- Red, Green, Blue and
Yellow
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Branch and Bound

The term Branch means the way in which we search the
state space tree and Bound means assigning bounding
function at each node. This bounding function is used to

prevent the expansion of nodes that cannot possibly
lead to an answer node.

Basically there are two methods used in branch and
bound technique.

1. FIFO based Branch & Bound

2. In this method, the live node form a queue (FIF
Structure) & each live node will be taken from th
gueue and next live node is selected.
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Branch and Bound

Least Cost Branch and Bound

At each node, an intelligent ranking function is used to
assign a value to that node. The next live node is
selected on the basis of the least cost.

Travelling sales man problem, a sales man must visit n
cities. The sales man visits each city exactly once and
comes back to the starting city.

The travelling sales man problem is minimization
problem and hence we require to find the lower bound.
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Example 1

Assignment Problem : given n jobs <j1,j2,--- jn> and n persons
<pl,p2,p3 ---pn>, it is required to assign all n jobs to all n person
with the constraint that one job has to be assigned to one perso

and the cost involved in completing all the jobs should b
minimum.

BRI
A 9 2 7

B
C
D
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Example 1

-nmn Take minimum in each row
A 9 2 7 8
B 6 4 3 7
C 5 8 1 8
D

7 6 9 4

10
n 9 2 7 8
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Example 1

-nnn Take minimum in each row
A 9 2 7 8

4 3 7
8 1 8

6 9 4

2

2 2

6 3 7
1 5 1
4 4 7
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Example 1

-nnn Take minimum in each row
A 9 2 7 8

4 3 7
8 1 8

6 9 4

L :

6
8
9
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Example 2
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Knapsack Problem

Knapsack Problem: Given n items of known weights wi and values vi, i=1, 2, . ..
n,and a knapsack of capacity W, find the most valuable subset of the items tha
fit in the knapsack. It is convenient to order the items of a given instance i
descending order by their value-to-weight ratios. Then the first item gives th
best payoff per weight unit and the last one gives the worst payoff per weigh
unit

item weight value

$40
$42 The knapsack’s capacity W is 10.
$25
$12
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item weight value

$40

$42 The knapsack’s capacity W is 10.
$25

$12

First arrange in V/W in decreasing order
Since it is a maximization problem. The upper bound is calculated

using the function 5 _ + (W —w)(v;41/w;11)-

i =0 , V=O, w=0 v i+1/Wi+1 =10
Ub=0+(10) 10 = 100
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With item 1
i=1, w=4.v=40, V j;1/Wi:1 = 6
Ub = v+ (W-W)(Vi+1/Wis1 )
=40+6.6
=76

With item 2
i=2, w=7.v=42, V i;1/Wi:1 =5
Ub = v+ (W-W)(V i+1/Wis1 )

= 42 +(10-11).5

= Not Feasible

Department of

Without item 1
i =1, w=0.v=0, V i;1/Wi;1 = 6

Ub= v+ (W-W)(V i+1/Wi+1 )
=0+10.6
= 60

With out item 2
i =2, w=0+4. v=40+0, V ;,1/Wi.1 =
5

= V+ (W-W)(Vi+1/Wis1 )
40+ 6.5
70
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With item 3
i =3, w=5+4. v=40+25, V i;1/Wi:1 = 4

Ub = v+ (W-W)(V i+1/Wis1 )
=65+1.4
= 69

With item 4

i =4, w=9+3 =12.

Ub = v+ (W-W)(V i+1/Wis1 )
= Not Feasible

Department of

Without item 3
i =3, w=4+0. v=40+0, V j;1/Wi:;1 = 4
Ub = v+ (W-W)(Vi+1/Wis1 )
=40+6.4
= 64

With out item 4
i =4, w=0+9. v=65+0, V ;;1/Wi,1 = 1
Ub =V+ (W-W)(V i+1/Wi+1 )
=65+1.1
= 66
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With item 1 Without item 2
i=1, w=4.v=40,V ,,;/wi.; =6 i=1, w=0.v=0,V ,;/wi, =6

With item 2 With outitem 2
i =2, w=7.v=42, V i;1/Wij,; =5 i =2, w=0+4. v=40+0, V ;,,/wi,; =5

= Not Feasible

With item 3 Without item 3
i =3, w=5+4. v=40+25, v ;,, /w;,; =4 i =3, w=4+0. v=40+0, Vv .., /w;,; =4

With item 4 With out item 4
i =4, w=9+3 =12. i =4, w=0+9. v=65+0, V ., /w;,; =0

Not Feasible
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Travelling Sales Person Problem

In the travelling sales man problem, a sales man must visit j
cities. The sales man visits each city exactly once and come
back to the starting city.

The travelling sales man problem is minimization problem
and hence we require to find the lower bound.

Lower bound=1b =S/ 2;

Where S = [Va+ Vb+Vc+Vd]

Va = sum of distances from vertex a to the nearest
vertices1+3 =4

Vb=1+3=4

Vc=1+2=3

Vd=1+2=3

Lb=[4+4+343]/2=14/2=7
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Now find,

a2 b=(3+1)+(3+1)+(1+2)+(1+2)=14/2=7
a2 c=(1+43)+(3+1)+(1+2)+(1+2) = 14/ 2 =7
a—>d =(4+1)+(1+3)+(1+2)+(4+1) = 17/2 =8

v
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Now find,

b 2> c=(3+1)+(5+1)+(5+1)+(1+2) =19/ 2 =9
b2 d=(1+3)+(1+3)+(1+2)+(1+2) =14/ 2 =7
c 2 b =(1+3)+(5+1)+(5+1)+(1+2) =19/2=9
c 2> d=(1+43)+(3+1)+(2+1)+(2+1) =14/ 2 =7

Lb=7
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Now find,

d 2> c = (143)+(1+43)+(2+1)+(1+2) = 14/2 =
d=>b = (1+3)+(1+3)+(1+2)+(1+2) = 14/2 =
c > a=(1+3)+(1+3)+(1+2)+(1+2) = 14/2 =
b—>a =(3+1)+(3+1)+(1+2)+(1+2) = 14/2 =7

Lb=7

Lb=8

e iy i
a2>c>d->b

a>b->d->c a%c%d—>b
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Thank you
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